

Go, change the world

RV College of Engineering[®]

(An Autonomous Institution Affiliated to VTU, Belagavi) Approved by AICTE, New Delhi, Accredited By NBA, New Delhi R.V. Vidyaniketan Post, 8th Mile, Mysuru Road, Bengaluru - 560 059.

Bachelor of Engineering (B.E.) Scheme and Syllabus

(2021 SCHEME)

| & || Semester (COMMON TO ALL B.E. PROGRAMS)

ACADEMIC YEAR 2021-2022

RV-Mercedes Benz Centre for Automotive Merchatronics

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Go, change the world

Bachelor of Engineering (B.E.) Scheme and Syllabus

(2021 Scheme)

I & II Semester (COMMON TO ALL B.E. PROGRAMS) (AS PER NEP-2020 GUIDELINES)

ACADEMIC YEAR 2021-2022

VISION

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

MISSION

- 1. To deliver outcome based Quality education, emphasizing on experiential learning with the state of the art infrastructure.
- 2. To create a conducive environment for interdisciplinary research and innovation.
- 3. To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- 4. To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- 5. To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

QUALITY POLICY

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

CORE VALUES

Professionalism, Commitment, Integrity, Team Work, Innovation

ABBREVIATIONS

Sl. No.	Abbreviation	Meaning
1.	AI & ML	Artificial Intelligence & Machine Learning
2.	AS	Aerospace Engineering
3.	BS	Basic Sciences
4.	BT	Biotechnology
5.	СН	Chemical Engineering
6.	CIE	Continuous Internal Evaluation
7.	CS	Computer Science & Engineering
8.	CV	Civil Engineering
9.	CY	Chemistry
10.	EC	Electronics & Communication Engineering
11.	EE	Electrical & Electronics Engineering
12.	EI	Electronics & Instrumentation Engineering
13.	ET	Electronics & Telecommunication Engineering
14.	GE	Global Elective
15.	HSS	Humanities and Social Sciences
16.	IDEA	Idea Development, Evaluation & Application
17.	IM	Industrial Engineering & Management
18.	IS	Information Science & Engineering
19.	L	Lectures
20.	Р	Practicals
21.	Т	Tutorials
22.	MA	Mathematics
23.	ME	Mechanical Engineering
24.	PE	Professional Core Elective
25.	PY	Physics
26.	SEE	Semester End Examination
27.	VTU	Visvesvaraya Technological University

INDEX

		FIRST YEAR COURSES	
Sl. No.	Course Code	Name of the Course	Page No.
1.	21MA11	Multivariable Calculus	01
2.	21MA21	Differential Equations & Numerical Methods	03
3.	21PH12/22	Engineering Physics	05
4.	21EE13/23	Elements of Electrical Engineering	08
5.	21CV14/24	Engineering Mechanics	11
6.	21ME15/25	IDEA Lab	13
7.	21ME16/26	Computer Aided Engineering Graphics	14
8.	21HSE17	Technical English I	16
9.	21HSE27	Technical English II	18
10.	21HSI18/28	Indian Knowledge Systems	20
11.	21CH12/22	Engineering Chemistry	22
12.	21CS13/23	Programming in C	25
13.	21ME14/24	Elements of Mechanical Engineering	28
14.	21EC15/25	Elements of Electronics Engineering	30
15.	21HSY16/26	Yoga Practice	32

RV COLLEGE OF ENGINEERNG, BENGALURU-560 059 (Autonomous Institution Affiliated to VTU, Belagavi)

FIRST SEMESTER CREDIT SCHEME

(Effective from the Academic year 2021-22)

Г

		PHYSIC	s cy	CLE						
	(COMMON TO ALL B.E. PROGRAMS)									
S1.	Course			ļ	CREDIT ALLOCATION					
No.	Code	Course Title	BoS	Lecture	Tutorial	Practical	Total Credits			
1.	21MA11	Multivariable Calculus	MA	3	1	0	4			
2.	21PH12	Engineering Physics	PY	3	0	1	4			
3.	21EE13	Elements of Electrical Engineering	EE	2	1	0	3			
4.	21CV14	Engineering Mechanics	CV	2	1	0	3			
5.	21ME15	IDEA Lab	ME	0	0	1	1			
6.	21ME16	Computer Aided Engineering Graphics	ME	0	0	3	3			
7.	21HSE17	Technical English – I	HSS	0	0	1	1			
8.	21HSI18	Indian Knowledge Systems	HSS	1	0	0	1			
		Total number of Credits		11	03	06	20			
	Тс	otal Number of Hours / Week		11	06	12				

	CHEMISTRY CYCLE							
	(COMMON TO ALL B.E. PROGRAMS)							
Sl.	Course				CREDIT AL	LOCATION		
No.	Code	Course Title	BoS	Lecture	Tutorial	Practical	Total Credits	
1.	21MA11	Multivariable Calculus	MA	3	1	0	4	
2.	21CH12	Engineering Chemistry	CY	3	0	1	4	
3.	21CS13	Programming in C	CS	3	0	1	4	
4.	21ME14	Elements of Mechanical Engineering	ME	2	1	0	3	
5.	21EC15	Elements of Electronics Engineering	EC	2	1	0	3	
6.	21HSY16	Yoga Practice	HSS	0	0	1	1	
7.	21HSE17	Technical English - I	HSS	0	0	1	1	
		Total number of Credits		13	03	04	20	
	Τα	otal Number of Hours / Week		13	06	08		

R V COLLEGE OF ENGINEERNG, BENGALURU-560 059 (Autonomous Institution Affiliated to VTU, Belagavi)

SECOND SEMESTER CREDIT SCHEME

(Effective from the Academic year 2021-22)

PHYSICS CYCLE

		(COMMON TO A	ALL B.E.	PROGRA	MS)		
Sl.	Course			(CREDIT AL	LOCATION	[
No.	Code	Course Title	BoS	Lecture	Tutorial	Practical	Total Credits
1.	21MA21	Differential Equations & Numerical Methods	MA	3	1	0	4
2.	21PH22	Engineering Physics	PY	3	0	1	4
3.	21EE23	Elements of Electrical Engineering	EE	2	1	0	3
4.	21CV24	Engineering Mechanics	CV	2	1	0	3
5.	21ME25	IDEA Lab	ME	0	0	1	1
6.	21ME26	Computer Aided Engineering Graphics	ME	0	0	3	3
7.	21HSE27	Technical English - II	HSS	0	0	1	1
8.	21HSI28	Indian Knowledge Systems	HSS	1	0	0	1
		Total number of Credits		11	03	06	20
	Tot	al Number of Hours / Week		11	06	12	

CHEMISTRY CYCLE

(COMMON TO ALL B.E. PROGRAMS)

					,		
S1.	Course	~ ~ ~ .		(CREDIT AL	LOCATION	[
No.	Code	Course Title	BoS	Lecture	Tutorial	Practical	Total Credits
1.	21MA21	Differential Equations & Numerical Methods	MA	3	1	0	4
2.	21CH22	Engineering Chemistry	CY	3	0	1	4
3.	21CS23	Programming in C	CS	3	0	1	4
4.	21ME24	Elements of Mechanical Engineering	ME	2	1	0	3
5.	21EC25	Elements of Electronics Engineering	EC	2	1	0	3
6.	21HSY26	Yoga Practice	HSS	0	0	1	1
7.	21HSE27	Technical English - II	HSS	0	0	1	1
	Tot	al number of Credits		13	03	04	20
	Total N	Number of Hours / Week		13	06	08	

						Semester						
			I	MULTI		BLE CA	LCUI	LUS				
Course Co	le	: 2	21MA11			eory)		CIE		:	10	0 Marks
Credits: L:			3:1:0					SEE			-	0 Marks
Total Hou			45L+307	Г					uration	:		Hours
	I											
					Unit-I							09 Hr
Multivaria	ble functi	ons	and Par	rtial Dif	ferentia	tion						
Functions of												
derivatives,											eme	values for
functions of	two Vari	able	s-Metho				. Jaco	oians –	propertie	es.		1
				l	Unit – Il							09 Hr
Vector Dif												
Vector valu												
tangent, ve												
directional			-		-		lofa	vector f	eld, Lap	lacian	of so	calar fiel
Solenoidal	ind irrotat	iona	ıl fields,									
					Unit –II							09 Hr
Curvilinea												
Curvilinear	co-ordina	ites-	Scale f	actors, I	Base veo	ctors, Cyl	indric	al-polar	coordin	ates, S	sphe	rical-pola
coordinates	- Transfo	rma	tions bet	tween Ca	artesian	and curvi	linear	system	s, Orthog	gonalit	y. E	lements (
arc, area ar	d volume	in o	curviline	ear syste	m, Grad	lient, Div	ergend	e, Curl	and Lap	olacian	in o	orthogon
curvilinear	coordinate	es.		-			-		_	-		_
				J	U <mark>nit –IV</mark>	7						09 Hr
Integral Ca	lculus											
Gamma an					, relation	1 . 1 /		L C				
Multiple in		-	1.1	arrala								
					Introduc	tion and	metho	d of ev				of order of
integration	and Chang				Introduc		metho	d of ev				of order of
integration gravity. Tri		ge o	f variabl	les to po	Introduc	ction and dinates. A	metho Applica	od of ev ations –	Area, V	olume	and	of order of Centre of
		ge o	f variabl	les to po ction and	Introduc	tion and dinates. A l of evalu	metho Applica	od of ev ations –	Area, V	olume	and	of order of Centre of
	ole integra	ge o	f variabl	les to po ction and	Introduc lar coor l method	tion and dinates. A l of evalu	metho Applica	od of ev ations –	Area, V	olume	and	of order of Centre of a solid.
gravity. Tri Vector Inte	ole integra	ge o als -	f variabl Introduc	les to po ction and	Introduc olar coor <u>d methoc</u> Unit –V	tion and dinates. A l of evalu	metho Applica ation.	od of ev ations – Applica	Area, V tions – V	Volume Volume	and e of	of order of Centre of a solid.
gravity. Tri	e and volu	ge o als - ume	f variabl Introduc integral	les to po ction and ls. Green	Introduc olar coor d method Unit –V n's theor	etion and dinates. A l of evalu em, Stoko	metho application.	od of ev ations – Applica	Area, V tions – V nd Gauss	Volume Volume	and e of	of order Centre a solid. 09 Hr
gravity. Tri Vector Inte Line, surface	e and volu	ge o als - ume	f variabl Introduc integral	les to po ction and ls. Green	Introduc olar coor d method Unit –V n's theor	etion and dinates. A l of evalu em, Stoko	metho application.	od of ev ations – Applica	Area, V tions – V nd Gauss	Volume Volume	and e of	of order of Centre of a solid.
gravity. Tri Vector Inte Line, surfac (statements	e and volu only), solu	ge o als - ume enoi	f variabl Introduc integral idal field	les to po ction and ls. Green ls and irr	Introduce lar coord method Unit –V n's theore rotationa	tion and dinates. A l of evalu em, Stoko l fields. V	metho application. e's the Vork o	od of ev ations – Applica orem ar lone by	Area, V tions – V ad Gauss a force.	Volume Volume	and e of	of order of Centre of a solid.
gravity. Tri Vector Inte Line, surface (statements Course Ou	gration e and volu only), solution	ge o als - ume enoi	f variabl Introduc integral idal field r comple	les to po ction and ls. Green ls and irr eting the	Introduce olar coord d method Unit –V a's theore rotationate e course	tion and dinates. A l of evalu em, Stoko l fields. V , the stud	metho application. e's the Vork o	od of ev ations – Applica orem ar lone by will be a	Area, V tions – V ad Gauss a force.	Volume Volume	and e of genc	of order of Centre of a solid. 09 Hr ce theore
gravity. Tri Vector Inte Line, surfac (statements Course Ou CO1 Des	e and volu only), solution	ge o als - ume enoi	f variabl Introduc integral idal field r comple understa	les to po ction and ls. Green ls and irr eting the anding of	Introduce olar coord d method Unit –V n's theore rotationa e course f the bas	tion and dinates. A l of evalu em, Stoka l fields. V , the stuc sics of pa	metho application. e's the Vork o lents y	od of ev ations – Applica orem ar lone by vill be a fferenti	Area, V tions – V ad Gauss a force. Ible to ation, el	Volume Volume Diverg	and e of genc	of order of Centre of a solid. 09 Hr
gravity. Tri Vector Inte Line, surfac (statements Course Ou CO1 Der sys	e and volu only), solution tecomes: A nonstrate ems, multi	ge o als - ume enoi After the tiple	f variabl Introduc integral idal field r comple understa	les to po ction and ls. Green ls and irr eting the anding of ls, vector	Introduce blar coord d method Unit –V n's theore rotationa e course f the bas r different	tion and dinates. <i>A</i> l of evalu em, Stoko l fields. V , the stuc sics of pa ntiation a	metho ation. e's the Vork o lents v rtial di nd imp	od of ev ations – Applica orem ar lone by will be a fferenti proper in	Area, V tions – V d Gauss a force. ble to ation, el ntegrals.	Volume Volume Diver; ements	and e of a genc	of order Centre a solid. 09 Hr ce theore
gravity. Tri Vector Inte Line, surface (statements Course Ou CO1 Den sys CO2 Sol	e and volu only), solution tcomes: A nonstrate tems, multive proble	ge o als - ume enoi After the tiple ems	f variabl Introduc integral idal field r comple understa integral on tota	les to po ction and ls. Green ls and irr eting the anding of ls, vector al deriva	Introduce olar coord int method Unit –V a's theore rotationa e course f the bas r different atives, d	tion and dinates. A l of evalu em, Stoke l fields. V , the stuc sics of pa ntiation a lifferent	methor application. e's the Vork of lents v rtial di nd imp curvil	od of ev ations – Applica orem ar lone by vill be a fferenti proper in near s	Area, V tions – V d Gauss a force. ble to ation, el ntegrals.	Volume Volume Diver; ements	and e of a genc	of order Centre a solid. 09 Hr ce theore
gravity. Tri Vector Inte Line, surface (statements) Course Ou CO1 Der sys CO2 Sol inte	e and volu only), solution tcomes: A nonstrate ems, multive proble gration, v	ge o als - ume enoi After the tiple ems eloc	f variabl Introduc integral dal field r comple understa integral on tota ity, acce	les to po ction and ls. Green ls and irr eting the anding of ls, vector al deriva eleration	Introduce olar coord <u>Unit –V</u> a's theore rotationa <u>e course</u> f the bas r different atives, co vectors,	tion and dinates. A l of evalu em, Stoko l fields. V , the stud sics of pa ntiation a lifferent vector in	metho application. e's the Vork of lents y rtial d nd imp curvil tegrat	of of ev ations – Applica orem ar lone by will be a fferenti proper in near sy	Area, W tions – V ad Gauss a force. Ible to ation, el ntegrals. /stems,	olume Volume Diver; ements change	and e of : genc in c e of	of order Centre a solid. 09 Hr ce theore curviline
gravity. Tri Vector Inte Line, surface (statements) Course Ou CO1 Der sys CO2 Sol inte CO3 App	e and volu only), solution tcomes: A nonstrate tems, multive gration, ve oly acquire	ge o als - ume enoi the tiple ems eloc ed k	f variabl Introduc integral idal field r comple understa integral on tota ity, acce	les to po ction and ls. Green ls and irr eting the anding of ls, vector al deriva eleration ge to find	Introduce olar coord d method Unit –V n's theore rotationa e course f the bas r different atives, co vectors, d Jacobi	tion and dinates. A l of evalu em, Stoke l fields. V , the stuc sics of pa ntiation a lifferent vector ir ans, cha	metho application. e's the Vork of lents y rtial d nd imp curvil tegrat	of of ev ations – Applica orem ar lone by will be a fferenti proper in near sy	Area, W tions – V ad Gauss a force. Ible to ation, el ntegrals. /stems,	olume Volume Diver; ements change	and e of : genc in c e of	of order of Centre of a solid. 09 Hr ce theore curviline
gravity. Tri Vector Inte Line, surface (statements) Course Ou CO1 Der sys CO2 Sol inte CO3 App Del	e and volu only), solution tcomes: A nonstrate tems, multive proble gration, vi operator a	ge o als - ume enoi the tiple ems eloc k and	f variabl Introduc integral idal field r comple understa integral on tota ity, acce nowledg to verify	les to po ction and ls. Green ls and irr eting the anding of ls, vector al deriva eleration ge to fin- y integral	Introduce olar coord d method Unit –V n's theore rotationa e course f the bas r different atives, d vectors, d Jacobi l theorer	tion and dinates. A l of evalu em, Stoke l fields. V , the stue sics of pa ntiation a lifferent vector ir ans, cha ns.	methor application. e's the Vork of lents we rtial de nd implication curvilitegration	of of ev ations – Applica orem ar lone by vill be a fferenti proper in inear sy ion.	Area, V tions – V d Gauss a force. ble to ation, el ntegrals. /stems, es, diffe	Volume Volume Diver; ements change rent op	and e of : gence s in c e of	of order Centre a solid. 09 Hr ce theore curviline order
gravity. Tri Vector Inte Line, surface (statements) Course Ou CO1 Der sys CO2 Sol inte CO3 App Del CO4 Est	e and volu only), solution tcomes: A nonstrate ems, multive proble gration, ve operator a mate extra	ge o als - ume enoi the tiple ems eloc k and	f variabl Introduc integral idal field r comple understa integral on tota ity, acce nowledg to verify	les to po ction and ls. Green ls and irr eting the anding of ls, vector al deriva eleration ge to fin- y integral	Introduce olar coord d method Unit –V n's theore rotationa e course f the bas r different atives, d vectors, d Jacobi l theorer	tion and dinates. A l of evalu em, Stoke l fields. V , the stue sics of pa ntiation a lifferent vector ir ans, cha ns.	methor application. e's the Vork of lents we rtial de nd implication curvilitegration	of of ev ations – Applica orem ar lone by vill be a fferenti proper in inear sy ion.	Area, V tions – V d Gauss a force. ble to ation, el ntegrals. /stems, es, diffe	Volume Volume Diver; ements change rent op	and e of : gence s in c e of	of order of Centre of a solid. 09 Hr ee theore curviline order of ions usin
gravity. Tri Vector Inte Line, surface (statements) Course Ou CO1 Der sys CO2 Sol inte CO3 App Del	e and volu only), solution tcomes: A nonstrate ems, multive proble gration, ve operator a mate extra	ge o als - ume enoi the tiple ems eloc k and	f variabl Introduc integral idal field r comple understa integral on tota ity, acce nowledg to verify	les to po ction and ls. Green ls and irr eting the anding of ls, vector al deriva eleration ge to fin- y integral	Introduce olar coord d method Unit –V n's theore rotationa e course f the bas r different atives, d vectors, d Jacobi l theorer	tion and dinates. A l of evalu em, Stoke l fields. V , the stue sics of pa ntiation a lifferent vector ir ans, cha ns.	methor application. e's the Vork of lents we rtial de nd implication curvilitegration	of of ev ations – Applica orem ar lone by vill be a fferenti proper in inear sy ion.	Area, V tions – V d Gauss a force. ble to ation, el ntegrals. /stems, es, diffe	Volume Volume Diver; ements change rent op	and e of : gence s in c e of	of order Centre a solid. 09 Hr ce theore curviline order
gravity. Tri Vector Inte Line, surface (statements) Course Ou CO1 Der sys CO2 Sol inte CO3 App Del CO3 Est fiel	e and volu only), solution teomes: A nonstrate ems, multive proble gration, ve obly acquire operator a mate extra ds.	ge o als - ume enoi the tiple ems eloc k and	f variabl Introduc integral idal field r comple understa integral on tota ity, acce nowledg to verify	les to po ction and ls. Green ls and irr eting the anding of ls, vector al deriva eleration ge to fin- y integral	Introduce olar coord d method Unit –V n's theore rotationa e course f the bas r different atives, d vectors, d Jacobi l theorer	tion and dinates. A l of evalu em, Stoke l fields. V , the stue sics of pa ntiation a lifferent vector ir ans, cha ns.	methor application. e's the Vork of lents we rtial de nd implication curvilitegration	of of ev ations – Applica orem ar lone by vill be a fferenti proper in inear sy ion.	Area, V tions – V d Gauss a force. ble to ation, el ntegrals. /stems, es, diffe	Volume Volume Diver; ements change rent op	and e of : gence s in c e of	of order Centre a solid. 09 Hu ce theore curviline curviline
gravity. Tri Vector Inte Line, surface (statements) Course Ou CO1 Den sys CO2 Sol inte CO3 Ap De CO4 Est fiel Reference	e and volu only), solution teomes: A nonstrate ems, multive proble gration, v obly acquire operator a mate extra ds.	ge o als - ume enoi tiple enoi tiple ems eloc ed k and ema	f variabl Introduc integral dal field r comple understa integral on tota ity, acce nowledg to verify l points,	les to po ction and s. Green ls and irr eting the anding of ls, vector al deriva eleration ge to find y integral , area and	Introduce olar coord d method Unit –V a's theore rotationa e course f the bas r different atives, d vectors, d Jacobi l theorer d volume	tion and dinates. A l of evalu em, Stoke l fields. V , the stuc sics of pa ntiation a lifferent vector ir ans, cha ns. e using m	methor application. c's the Vork of lents v rtial di nd imp curvil tegrat nge of ultiple	od of ev Ations – Applica orem ar lone by vill be a fferenti proper in inear sy ion. Variable integra	Area, W tions – V ad Gauss a force. Ible to ation, el ntegrals. /stems, es, diffe lls, solen	olume Volume Diver; ements change rent op	and e of : gence s in c e of moret	of order Centre a solid. 09 Hi ce theore curviline curviline order ions usin
gravity. Tri Vector Inte Line, surface (statements) Course Ou CO1 Der sys CO2 Sol inte CO3 App Del CO4 Est fiel Reference 1 Hig	e and volu only), solution teomes: A nonstrate ems, multive proble gration, ve obly acquire operator a mate extra ds.	ge o als - ume enoi After the tiple ens eloc ed k and ema	f variabl Introduc integral idal field r comple understa integral on tota ity, acce nowledg to verify l points, ng Math	les to po ction and s. Green ls and irr eting the anding of ls, vector al deriva eleration ge to find y integral , area and	Introduce olar coord d method Unit –V a's theore rotationa e course f the bas r different atives, d vectors, d Jacobi l theorer d volume	tion and dinates. A l of evalu em, Stoke l fields. V , the stuc sics of pa ntiation a lifferent vector ir ans, cha ns. e using m	methor application. c's the Vork of lents v rtial di nd imp curvil tegrat nge of ultiple	od of ev Ations – Applica orem ar lone by vill be a fferenti proper in inear sy ion. Variable integra	Area, W tions – V ad Gauss a force. Ible to ation, el ntegrals. /stems, es, diffe lls, solen	olume Volume Diver; ements change rent op	and e of : gence s in c e of moret	of order of Centre of a solid. 09 Hr ce theorem curvilines order of ions usir

1	978-81-933284-9-1.
2	Calculus, Thomas and Finney, 9th Edition, 2006, Pearson Education, ISBN: 81-7758-325-5.
3	Schaum's Outline of Advanced Calculus, Robert Wrede and Murray Spiegel, 3 rd Edition, 2010, McGraw-Hill Education, ISBN -10: 0071623663, ISBN -13: 978-0071623667.
4	Advanced Engineering Mathematics, E. Kreyszig, 10 th Edition (Reprint), 2016. John Wiley & Sons, ISBN: 978-0470458365.

ASSESSMENT AND EX	ALUATION PATTERN						
	CIE	SEE					
WEIGHTAGE	50%	50%					
QUIZZES							
Quiz-I							
Quiz-II	adding up to 20 MADKS						
THEORY COURSE (Bloom's Taxonomy Levels: Remembering, Understan Evaluating, and Creating) Test – I	nding, Applying, Analyzing, Each test will be conducted for 50						
Test – II	Marks adding upto 100 marks. Final test marks will be reduced to 40 MARKS						
EXPERIENTIAL LEARNING (40 marks)							
MATLAB	20						
Model preparation/case study/video preparation, etc.	20						
MAXIMUM MARKS FOR THE THRORY	100 MARKS	100 MARKS					

					CO	-PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	-	-	1
CO2	3	2	-	-	-	-	-	-	-	-	-	1
CO3	3	3	1	1	-	-	-	-	-	-	-	1
CO4	3	3	2	1	-	-	-	-	-	-	-	1

			Semester: II				
	DIFF	FERENTIAL EQU	ATIONS AND NU	MERICAL METH	ODS		
		1	(Theory)			-	
Course Code	:	21MA21		CIE	:	100 Marks	
Credits: L:T:P	:	3:1:0		SEE	: 100 Marks		
Total Hours	:	45L+30T		SEE Duration	:	3 Hours	
		TI	nit-I			09 Hrs	
Elementary Linear A	lgeb		111-1			07 1113	
Rank of matrices -	0		Echelon form, co	nsistency of system	n of	linear equations-	
homogeneous and nor							
Eigen values and Eige		0 1					
			t – II			09 Hrs	
Linear Ordinary Dif	feren						
Standard form of hig				constant coefficient	ts, cc	ncept of different	
types of solutions. S							
equations- Concept o							
function (force function							
equations. Application						5	
		•	t –III			09 Hrs	
Partial Differential H	Equat	tions					
Formation of partial			by elimination of	arbitrary constants/	funct	tions. Solution of	
Lagrange's linear equ							
Solution of Wave an							
method of separation						2	
		Uni	t–IV			09 Hrs	
Numerical Methods	- I						
Finite differences, con	ncept	of forward and back	kward differences, i	ntroduction to interp	olati	on (extrapolation).	
Newton-Gregory (N-	G) fo	orward and backw	ard interpolation f	ormulae, Lagrange	inter	polation formula,	
application oriented p	roble	ms. Numerical diff	erentiation based or	n N-G forward and b	Jackv	vard interpolation,	
applications - velocity	y and	acceleration.					
Numerical integration	- Nev	vton-Cotes approacl	$h - Simpson's 1/3^{rd}$,	3/8 th rules and Wede	dle's	rule.	
		Un	it –V			09 Hrs	
Numerical Methods							
Algebraic and Transc			ots of equations, int	ermediate value proj	perty	, Regula-Falsi and	
Newton-Raphson met	hods.						
Taylor's and Maclaur	in's s	eries for a function	of single variable an	d problems.			
Methods of solving fi	rst or	der ordinary differen	ntial equations – Ta	ylor series method, 4	4th or	der Runge - Kutta	
method and Milne pre	dicto	r–corrector method.					
~ ~ ~							
Course Outcomes: A					1	1 11 -	
				pes of solutions of	hıgh	er order linear &	
partial differe	ntial	equations and basics	s of numerical meth	ods.			

	partial differential equations and basics of numerical methods.
CO2	Solve – system of linear equations, linear differential equations, Lagrange linear pde, interpolating
	data and finding roots of equations.
CO3	Apply acquired knowledge to find $-$ solution of equations using Gauss Seidel method derivatives

CO3 Apply acquired knowledge to find – solution of equations using Gauss Seidel method, derivatives and integrals of numerical data and solve differential equations numerically.

CO4 Estimate the solutions of problems involving applications of differential equations using both analytical and numerical methods.

Refere	ence Books
1	Higher Engineering Mathematics, B.S. Grewal, 44 th Edition, 2015, Khanna Publishers, ISBN: 978-81-933284-9-1.
2	Advanced Engineering Mathematics, E. Kreyszig, 10 th Edition (Reprint), 2016. John Wiley & Sons, ISBN: 978-0470458365.
3	Numerical methods for scientific and engineering computation, M.K. Jain, S.R.K. Iyenger and R.K. Jain, 6 th Edition, 2012, New Age International Publishers, ISBN: 9788122433234, 8122433235.
4	A Textbook of Engineering Mathematics Vol. I & II (AICTE), N. P. Bali and Manish Goyal, 10 th Edition, Laxmi Publications Pvt Ltd, ISBN: 9789352743766, 9789352743766.

ASSESSMENT AND EV	VALUATION PATTERN	
	CIE	SEE
WEIGHTAGE	50%	50%
QUIZZES		
Quiz-I	Each quiz is evaluated for 10 marks	
Quiz-II	adding up to 20 MARKS.	
THEORY COURSE (Bloom's Taxonomy Levels: Remembering, Understan Evaluating, and Creating) Test – I	nding, Applying, Analyzing, Each test will be conducted for 50 Marks adding upto 100 marks. Final test marks will be reduced to	
Test – II	40 MARKS	
EXPERIENTIAL LEARNING	40	
MATLAB	20	
Model preparation/case study/video preparation, etc.	20	
MAXIMUM MARKS FOR THE THRORY	100 MARKS	100 MARKS

					CO	-PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	-	-	1
CO2	3	2	-	-	-	-	-	-	-	-	-	1
CO3	3	3	1	1	-	-	-	-	-	-	-	1
CO4	3	3	2	1	-	-	-	-	-	-	-	1

			Semester: I/II							
			ENGINEERING PH		_	_				
			(Theory and Pract	tice)						
Course Code	:	21PH12/22		CIE	:	15	0 Marks			
Credits: L: T:P	:	3:0:1		SEE	:		0 Marks			
Total Hours	:	45L + 30P		SEE Duration	:	3	Hours			
			Unit-I				9 Hrs			
Elasticity and Osc	illat	tions:					71115			
•			ending of beams, singl	le cantilever (deriva	ation). to	orsion of a cvlinder			
torsion pendulum, 1			6 , 6	(,,	5			
· ·		•	rmonic oscillations: c	lifferential equatio	n fo	or c	lamped and force			
	-		ectrical resonance, Nur	•						
, 		(1	Unit – II	F			9 Hrs			
Quantum mechan	ics									
•		latter waves, Gro	up velocity and phase v	velocity, Heisenberg	g's U	nce	rtainty principle an			
-			ines, One dimensional		-		• • •			
			gen functions and Eiger	—						
· · ·			Sumerical problems.	× 11						
1		1	Unit –III				9 Hrs			
Electrical Conduc	tivi	ty in solids:								
Postulates of Classi	cal	free electron theo	ry (CFET) and Quantur	n free electron theo	ry (C	QFE	T), Density of state			
in three dimension	s (q	ualitative) and Fe	ermi factor. Fermi ener	gy: variation of Fe	rmi	facto	or with temperature			
Band theory of sol	ids (qualitative appro	ach), electron concentr	ation in metals at 0	K. I	ntrir	sic semiconductors			
electronic concent	atic	on in conduction	band and hole conce	entration (qualitativ	e), l	Fern	ni level in intrinsi			
semiconductors, E	xtrii	nsic semiconduct	ors: Variation of carri	ier concentration w	vith	tem	perature and Ferm			
			s and semiconductors,				*			
Dielectrics: Types	of	Polarizations. Qua	alitative treatment of In	ternal field in solids	s for	one	dimensional infinit			
• •		-	s-Mossotti equation(der							
		,	Unit –IV	,			9 Hrs			
Lasers and Optica	l fil	pers:					·			
			tter, Energy density in t			icie	nts, Laser requisites			
			eye and skin surgery, N	*						
			n optical fibre, types of							
problems.	nua	tion, Point to Poin	t communication, appli	cations in sensors, j	onase	; mo	odulators, numerica			
problems.			Unit –V				9 Hrs			
Electron Ballistics	&	Surface Characte	erization Techniques				7 111 5			
			se $\vec{E} \& \vec{B}$ fields: \vec{E} pe	rpendicular to velo	ocitv.	ele	ectrostatic deflection			
			ngle (qualitative), Magi							
			rossed $\vec{E} \& \vec{B}$ configura	-		-				
			n Microscope, Scannin							

lens, Applications in Scanning Electron Microscope, Scanning Tunnelling Electron Microscope. Numerical problems.

Sl. No.	Lab Experiments
1	Determination of Young's modulus of the given material.
2	Determination of rigidity modulus of the given material.
3	Determination of spring constant, effective spring constants using springs in series and parallel.
4	Determination of wavelength of the given laser.
5	Determination of hall coefficient and carrier concentration of a given semiconductor.
6	Determination of the band gap of a given thermistor.
7	Determination of dielectric constant of a material using charging and discharging of the given capacitor.
8	Determination of numerical aperture, acceptance angle and fiber loss of a given optical fiber.
9	Fermi energy of a material.
10	Verification of Stefan's Law.

Cours	e Outcomes: After completing the course, the students will be able to:-						
CO1	Understand the basic principles of oscillator, elastic properties of materials, quantum mechanics,						
	electrical properties of metals & semiconductors, dielectric properties of materials and behavior of						
	charged particles in electric and magnetic fields.						
CO2	Apply the Physics principles to solve Engineering problems in elasticity, oscillation, applied optics, and						
	semiconductors.						
CO3	Analyze and solve complex problems using critical thinking.						
CO4	Design and develop models by simulation using open-source tools and validate with real time						
	experimentation.						

Refere	nce Books
1	Engineering Physics, Hitendra K Malik and A K Singh, 2010, Tata McGraw Hill Publication, ISBN: 9780070671539.
2	Engineering Physics, R K Gaur and S L Gupta, 2011, DhanpatRai Publications, ISBN: 9788189928223.
3	A Textbook of Engineering Physics, M. N. Avadhanulu and P G Kshirsagar, 2019, S. Chand publications, ISBN : 978-93-528-3399-3.
4	Physics for Degree students, C.L. Arora and Dr. P. S. Hemne, revised 2010, S Chand, ISBN: 9788121933506.
5	Fundamentals of Physics- Resnick, Halliday and Walker, 9 th Edition, 2011, John Wiley & Sons, ISBN: 9780470547915.
6	Introduction to Electrodynamics, David J. Griffiths, 4 th Edition, 2012, Pearson publishers, ISBN.978-93-325-5044-5.

	ASSESSMENT AND EVA	LUATION PATTERN	
		CIE	SEE
WEIG	HTAGE	50%	50%
QUIZZES			
Quiz-I		Each quiz is evaluated for 10 marks	
Quiz-II		adding up to 20 MARKS.	
THEORY COURSE (Bloom's Taxonomy Levels: Creating)	Remembering, Understanding, J	Applying, Analyzing, Evaluating, and	
Test – I		Each test will be conducted for 50	
Test – II		- Marks adding upto 100 marks. Final test marks will be reduced to 40 MARKS	
EXPERIENTIAL LEARNI	NG (40 marks)		
Case Study-based Teaching-I	Learning	10	
	dation (Topics from the current hnology and augmenting the	20	-
Video based seminar (4-5 mi	nutes per student)	10	
MAXIMUM MARKS FOR	THE THRORY	100 MARKS	100 MARKS
PRACTICALS			
CIE Conduction: 25 Lab test: 05 Experiential Learning: 20 Total : 50	SEE Two experiments: for each Write up: 05 Set up & Conduction: 10 Substitution, Calculation & Accuracy: 05 Viva Voce: 05 Total : 50	50	50
TOTAL MARKS FOR TH	E COURSE	150	150

					CO	-PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1				2						3
CO2	3	2										
CO3	3	3	2	2	2				2			
CO4	3	3	3	2	3	2	2		2	3	3	

Semester: I/II						
	ELEMENTS OF ELECTRICAL ENGINEERING					
	(Theory)					
Course Code	:	21EE13/23	CIE	:	100 Marks	
Credits: L:T:P	:	2:1:0	SEE	:	100 Marks	
Total Hours	:	30L+30T	SEE Duration	:	3 Hours	

Unit-I	07 Hrs						
Electrical Power Generation: Sources of energy - renewable and non-renewable	ble, working principle of						
hydel, thermal and nuclear power plants through block diagrams, environn							
limitations. Synchronous generator (Alternator) - Construction and Principle of operation, e.m.f equation.							
Wind Power Generation: Principle of conversion, constructional details, Types – vertical and horizontal.							
	Solar Power Generation: Principle of conversion, Different types of PV cells, Parameters, conversion						
efficiency, I-V and P-V characteristics, PV modules and arrays. Standalone an	d grid connected plants,						
Advantages and disadvantages of solar plants.							
Batteries: Types, Parameters, Comparison of various rechargeable batteries, Sel	ection and Estimation of						
number of batteries in series-parallel combinations, Estimation of total energy stor							
from Array of batteries.	Ĩ						
Overview of Smart Grid through block diagrams.							
Unit – II	06 Hrs						
AC Circuits: Parameters of sinusoidal quantities, Generation of sinusoidal volta	age, Voltage and current						
relationship in R, L and C circuits. Analysis of R-L, R-C, R-L-C Series and Para	0						
reactive power, apparent power and Power factor.							
Three-phase circuits: Generation of three phase power, balanced star (3 wire and	4 wire system) and delta						
loads, Phase and line relations of voltages and currents, Phase relation and pl							
currents, measurement of three phase power by two wattmeter method.	2 1						
Unit –III	06 Hrs						
Power distribution and Load calculation: Introduction to power transmission	and distribution. Power						
rating of household appliances including PCs, laptop, printer, etc., total connecte	d load, definition of unit						
used for consumption of electrical energy, tariff, calculation of electricity bill.							
Electric Wiring Schemes: Casing and cap wiring, Open conduit and closed conduit systems.							
Standby power supplies: DG set, Uninterrupted power supplies (explanation usir	ng Block diagram).						
Safety measures: Working principle of Fuse, MCB, ELCB, merits and demerits	s. Electric Shock, Safety						
Precautions, Earthing and its types.							
Unit –IV	06 Hrs						
Transformers: Necessity of transformer, Principle of operation, Construction of c	ore and shell type for						
single - phase and three - phase, losses, efficiency and regulation of 1-phase transf							
Autotransformer.	1						
Induction Motors: General classification of electrical motors.							
Three phase I.M: Principle of operation, Concept of rotating magnetic field, con	struction and types, slip						
and its significance.							
Single Phase I M: Principle of operation of capacitor start-run induction motor.							
Unit –V	05 Hrs						

DC Motors: Necessity of motors, principle of operation, constructional features, Types, Torque equation, characteristics and comparison of series and shunt motors, Applications. **BLDC, PMSM and Stepper Motor**: Construction, Working Principle and Applications.

Cours	Course Outcomes: After completing the course, the students will be able to :-					
CO1	Understand the fundamental concepts of electric power generation, electric machines and safety					
	rules.					
CO2	Evaluate energy consumption of different loads and electric parameters of various A.C. and D.C.					
	machines.					
CO3	Analyze the performance of renewable sources, electric machines and selection of machine for a					
	given application.					
CO4	Design rooftop solar PV system and load distribution scheme for residential applications.					

Reference Books

1	Basic Electrical Engineering, C.L. Wadhwa, 1 st Edition, 2007, New Age international(P) Limited, ISBN- 10: 9788122421521.
2	Solar Photovoltaic Technology and Systems, Chetan Singh Solanki, 1 st Edition, 2013, PHI Learning private limited, ISBN-13 : 978-8120347113
3	Basic Electrical Engineering, D C Kulshreshtha, Revised First Edition, 2017, Tata McGraw Hill, ISBN- 13 : 978-0071328968
4	Electric Machines, Ashfaq Hussain, 3 rd Edition, 2016, Dhanpat Rai & Co. (P) Limited, ISBN-10-8177001663.

ASSESSMENT AND EVA	LUATION PATTERN	
	CIE	SEE
WEIGHTAGE	50%	50%
QUIZZES		
Quiz-I	Each quiz is evaluated	
Quiz-II	for 10 marks adding up to 20 MARKS.	
THEORY COURSE (Bloom's Taxonomy Levels: Remembering, Understanding, Evaluating, and Creating)	, Applying, Analyzing,	
Test – I	Each test will be conducted for 50 Marks	
Test – II	adding upto 100 marks. Final test marks will be reduced to 40 MARKS	
EXPERIENTIAL LEARNING (40 marks)		
Case Study-based Teaching-Learning	10	
Sector wise study & consolidation. In-depth study and delivery of outcomes in the following topics are Generation, Transmission and Distribution, E-mobility, Electrical machines, Renewable energy sources and Smart grid		
Video based seminar (4-5 minutes per student)	10	
MAXIMUM MARKS FOR THE THRORY	100 MARKS	100 MARKS
TOTAL MARKS FOR THE COURSE	100	100

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	1	1	3	2	1	1	1	1	2
CO2	3	3	2	3	2	1	1	1	2	1	1	2
CO3	3	3	1	1	2	2	2	1	1	1	1	2
CO4	3	2	3	2	2	2	2	1	3	2	2	2

Semester: I / II								
	ENGINEERING MECHANICS							
	(Theory)							
Course Code	:	21CV14 / 24		CIE	:	100 Marks		
Credits: L:T:P	:	2:1:0		SEE	:	100 Marks		
Total Hours	:	30L+30T		SEE Duration	:	3 Hours		

Unit-I	06 Hrs
Introduction to Engineering Mechanics: Basic concepts of force systems, particle equilit	orium in 2-D; Rigid
body equilibrium; System of forces, coplanar concurrent and non-concurrent forces, Rest	ultant – Moment of
forces and its application; Couples and Resultant of force system, Equilibrium of system of	of forces, Free body
diagrams, Equations of equilibrium of coplanar systems.	-
Unit – II	05 Hrs
Support Reactions: Types of supports, loads and beams, statically determinate and in	determinate beams,
support reactions for statically determinate beams subjected to various loading combinations.	
Trusses: Types of trusses, support reactions for statically determinate trusses.	
Unit –III	06 Hrs
Centroid and Centre of Gravity: Definition, Centroid of simple figures (rectangle, tri	angle, semicircle,
quarter circle, sector of circle) from first principle, centroid of composite sections; Centre	of gravity and its
implications.	
Area Moment of Inertia: Definition, Moment of inertia of plane sections (rectangle, trian	ngle, semicircle and
quarter circle) from first principles, Theorems of moment of inertia, Moment of inertia of st	andard sections and
composite sections.	
Unit –IV	07 Hrs
Simple Stresses and Strain: Hooke's law, Stress-Strain behavior of ductile and brittle	material; Factor of
safety, Poisson's ratio, types of stress, stress components on inclined planes, Principal Stre	ss, Principal plane -
Mohr's circle.	
Unit –V	06 Hrs
Kinematics: Displacement, average velocity, instantaneous velocity, speed, acceleration, a variable acceleration, acceleration due to gravity, Newton's law of motion, rectilinear motion, super elevation, projectile motion, relative motion, motion under gravity. Kinetics: D'Alemberts principle and its application in plane motion and connected bodies inc	motion, curvilinear
Course Outcomes: After completing the course, the students will be able to	

	o accompto inter completing the coalse, the statenes will be able to
CO1	Understand the fundamental concepts of Mechanics - Force systems, beams, cross sections and rigid
	bodies.
CO2	Apply the concepts of Engineering Mechanics in solving simple engineering problems.
CO3	Analyze the support reactions, assess strain and cross sectional properties.
CO4	Demonstrate the applications of mechanics to solve engineering problems.

Refere	ence Books
1	Engineering Mechanics - Statics and Dynamics, A.Nelson, 2017, Tata McGraw Hill Education,
1	Publication,1st Edition, ISBN-13: 978-0070146143.
2	A Textbook of Strength of Materials: Mechanics of Solids, R.K. Bansal, 2018, Laxmi Publications, 6 th
2	Edition, ISBN-13: 978-8131808146.
2	Mechanics of Materials (SI Edition), R. C. Hibbler, 2018, Pearson Education; 9th Edition, ISBN-13: 978-
3	9332584037.
4	A Textbook of Engineering Mechanics, R.K. Bansal and Sanjai Bansal, 2015, Laxmi Publications; 6th
4	Edition, ISBN-13: 978-8131804094.
_	Mechanics for Engineers – Statics, Ferdinand P.Beer and E.Russel Johnston Jr, 2013, McGraw-Hill, 4th
5	Edition, ISBN-13: 978-0070045804.
6	Engineering Mechanics - Statics and Dynamics, Irving H. Shames, 2005, Pearson Education India; 4th

ASSESSMENT AND EVALUATION PATTERN						
	CIE	SEE				
WEIGHTAGE	50%	50%				
QUIZZES						
Quiz-I	Each quiz is evaluated for 10 marks					
Quiz-II	adding up to 20 MARKS.					
THEORY COURSE (Bloom's Taxonomy Levels: Remembering, Understanding, A Creating)						
Test – I	Each test will be conducted for 50 Marks adding upto 100 marks. Final					
Test – II	test marks will be reduced to 40 MARKS					
EXPERIENTIAL LEARNING (40 marks)						
Case Study-based Teaching-Learning	10					
In-depth study and delivery of outcomes in the following topics are Material science, smart technologies, Modern equipment's, Ancient architecture in modern construction, construction in extreme environment, sustainable and green technologies.	20					
Video based seminar (4-5 minutes per student)	10					
MAXIMUM MARKS FOR THE THEORY	100 MARKS	100 MARKS				
PRACTICALS						
TOTAL MARKS FOR THE COURSE	100	100				

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	1	-	-	1	-	-	-	1	-	-	-
CO2	3	-	1	-	1	-	-	-	1	1	-	1
CO3	2	3	-	-	1	-	-	-	1	-	-	1
CO4	2	2	2	1	1	-	-	-	2	2	-	1

Semester: I/II						
	IDEA LAB					
			(Practice)			
Course Code	:	21ME15/25		CIE	:	50 Marks
Credits: L: T:P	:	0:0:1		SEE	:	50 Marks
Total Hours	:	30P		SEE Duration	:	3 Hours

LABORATORY EXPERIMENTS

- 1. Digital Reading & Writing: Motion controlled lighting.
- 2. Analog Reading & Writing: Laser based security system.
- 3. Serial Communication & Bluetooth: Configuring Bluetooth module and building a home automation system.
- 4. Assembling chassis and configuring motor driver.
- 5. Line following robot.
- 6. Mobile Bluetooth controlled robot.
- 7. IoT based Weather Station using Blynk.
- 8. Google Assistant based Home Automation using IFTTT & Adafruit IO.
- 9. Streaming real-time data to a web page via Firebase.

PRACTICE EXPERIMENTS / DEMO

1.	Using Serial Plotter to plot potentiometer readings.
2.	Interfacing Servo motor using PWM Techniques and performing sweep operation.
3.	Voice Controlled Robot.
4.	Robotic Arm to pick and place objects.
5.	Smart Garden.
6.	Event based emails / push notifications.

	Course Outcomes						
CO1	Hands-on experience to interface various Digital and Analog sensors with Arduino.						
CO2	Assembling Robotic Chassis & Arm (Mechanical and Electronic Components).						
CO3	Connecting sensors and devices to various IoT Platforms.						
CO4	Improved coding experience with C, C++, HTML and JavaScript.						

Refere	Reference Books						
1.	Arduino Project Handbook: Volume One: Complete Guide to Creating with the Arduino by Mark						
	Geddes [ISBN-10 0992952603, Publisher: Sketch Publishing]						
2.	Exploring Arduino: Tools and Techniques for Engineering Wizardry by Jeremy Blum						
	[ISBN-10 1119405378, Publisher: Wiley]						
3.	Internet of Things with ESP8266 by Marco Schwartz [ISBN-13 9781786468024, Publisher: Packt]						
4.	https://www.arduino.cc/reference/en/						

ASSESSMENT AND EVALUATION PATTERN					
CIE SEE					
WEIGHTAGE	50%	50%			
PRACTICALS	50	50			
TOTAL MARKS FOR THE COURSE	50	50			

Semester: I/II COMPUTER AIDED ENGINEERING GRAPHICS (Practice)

Course Code	:	21ME16/26	CIE	:	50 Marks		
Credits: L:T:P		0:0:3	SEE	:	50 Marks		
Total Hours	:	90 P	SEE Dura	ation :	3 Hours		

Unit-I15 HrsIntroduction: Significance of engineering graphics, BIS conventions, drawing sheets, drawing scales,
dimensioning, line conventions, material conventions. Symbolic representation of fasteners - bolts and nuts,
riveted, welded, brazed and soldered joints, bars and profile sections, electrical & electronic elements and piping.
Use of Simple CAD tools: Overview of CAD software [Menu bar, tabs -sketch, modify, dimension, annotation
and commands].

Orthographic Projections: Principles of orthographic projections - quadrant systems, projection of points (All quadrants); Projection of lines (first angle projection); Projection of planes - inclined to HP, VP and PP (first angle projection).

Unit – II	13 1118
Projection of Solids: Prisms, pyramids, cylinder & cone with axis inclined to HP and VP (fit	rst angle projection).
(Computer Drafting)	
Unit –III	20 Hrs

Isometric projection: Isometric scale, Isometric Projection of regular solids and combination of two simple solids (Computer Drafting).

3D modeling of components: Conversion of isometric view to orthographic views and sectional views, missing views in orthographic projections. (Computer Drafting)

Unit –IV	20 Hrs
Development of lateral surfaces: Introduction to section planes, methods of development -	parallel line method
and radial line method - prism and cylinder (truncated), pyramid and cone (frustum and trun	cated) and transition
pieces (Computer Drafting).	

Unit –V Engineering components Assembly of Hexagonal bolt with nut (with washer)-3D Riveted joint: - butt joint with two covering plate (chain riveting): 3D Union joint, butt muff coupling, socket and spigot joint: 3D Basic building drawing (Plan and Elevation): 2D Electrical wiring and lighting drawing: 2D

Electronic PCB drawings: 2D

Cours	Course Outcomes: After completing the course, the students will be able to :-					
CO1	Understand the convention and methods of engineering drawing					
CO2	Enhance their visualization skills to develop new products					
CO3	Elucidate the principles of multi-view drawings and pictorial drawings					
CO4	Apply the knowledge of engineering graphics to develop respective (simple) engineering assembly					
	drawings.					

Refe	erence Books
1	Textbook of Engineering Graphics by K R Gopalakrishna, Sudhir Gopalakrishna, Subhash Publishers, 40th
1.	Edition, 2018; ISBN 978-9383214204
2.	SOLIDWORKS 2020 for Designers by Sham Tickoo Purdue University, CADCIM Technologies, 18th
	Edition, 2019; ISBN: 978-1640570849
2	Machine drawing by N. D. Bhatt, V. M. Panchal, Charotar Publishing House, 50th Edition, 2016; ISBN: 978-
3.	9385039232
4.	NPTEL :: Mechanical Engineering - Engineering Drawing

20 Hrs

ASSESSMENT AND EVALUATION PATTERN					
	CIE	SEE			
WEIGHTAGE	50%	50%			
Lab Practice					
Manual Drawing (Unit 1): Practice session	10				
Computer Drafting : Practice Session	15				
Test – I	Each test will be conducted for 50 Marks adding upto 100				
Test – II	marks. Final test marks will be reduced to 10				
PROJECT/ASSIGNMENT/EXPERIENTIAL LEARNING	15				
MAXIMUM MARKS	50	50			
TOTAL MARKS FOR THE COURSE	100				

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	-	-	-	-	-	1	-	1
CO4	3	3	3	3	-	-	-	-	-	1	-	1

	Semester: I								
	TECHNICAL ENGLISH- I								
			(Online English Course)						
Course Code	:	21HSE17	CIE	:	50 Marks				
Credits: L:T:P	:	0:0:1	SEE	:	50 Marks				
Total Hours	:	30P	SEE Dura	tion :	3 Hours				

Unit – I	6 Hrs			
Chapter 1 & 2: Identifying main ideas and details in a reading text - Understanding places on a map				
Understanding new words using Punctuation Clues - Previewing Vocabulary - Organizing, o	lrafting, editing, and			
writing an email - Researching and Documenting, Listening for and visualizing directions, Listening t				
advertisement - Role-play: talking about places on campus, Role-play: returning merchandise to a stor				
Comparing shopping in a store and online shopping - Conducting research and giving a presentation.				
Unit – II	6 Hrs			

Chapter 3 & 4: Skimming a text using headings, subheadings, and images, identifying text organization -Reading and answering a questionnaire - Brainstorming and making notes on pros and cons, writing a paragraph using the words should and shouldn't - Listening for conversation starters, advice, instructions, complaints, Voice mail messages - Leaving voicemail messages, describing people, Changing nouns to adjectives - Using model verbs to give advice.

Unit – III6 HrsChapter 5 & 6: Reading and Understanding graphs, Identifying a good summary - Reading faster: reading in
phrases - Summarizing facts and ideas in a written text, Identifying narrative sequence, Recognizing and writing
conclusions, Understanding pronouns and pronoun reference - Thinking critically about cultural events and
celebrations - Recognizing polite and impolite expressions of disagreement.

Unit – IV	6 Hrs			
Chapter 7 & 8: Understanding chronological events, Using Organizers to organize ideas in rea				
Summarizing Events and Describing feelings, Writing a summary statement, Understanding	g paragraph function			
- Listening to work-place complaints, Job interviews, future plans, Listening for expression	s used in restaurant,			
instruction in following a recipe - Discussing future plans, careers, and work-related	issues, healthy and			
unhealthy eating habits and nutrition.	-			

 Unit – V
 6 Hrs

 Chapter 9 & 10: Understanding relationships between ideas - writing a questionnaire and an opinion blog post - posting a comment - Expressing an opinion - Listening to conversations about travel plans, travel information, activities, an opinion, agreement and disagreement - Discussing travel plans, fares, transportation, sights, and activities, Using conditional forms to support an argument, Using parts of speech to classify word families.

Cours	e Outcomes: After completing the course, the students will be able to:-							
CO1	Understand the fundamental concepts of Academic English LSRW skills with Grammar - Articles,							
	Pronouns, Prepositions, Nouns, Verbs and Tenses.							
CO2	Use appropriate Vocabulary in real-life scenarios that students might face in professional and social							
	situations.							
CO3	Construct grammatically correct sentences, Learn basics of professional e-mail writing, Blog post.							
CO4	Introduce Oneself in detail, preparing for interview, small talk, conversations, voice email messages,							
	discussing future plans, careers, work related issues, environmental problem and travel conversations.							

Refere	ence Books
1	McGraw Hill New Interactions – Level 1- e-Book from McGraw Hill

ASSESSMENT AND EVALUATION PATTERN							
	CIE	SEE					
WEIGHTAGE	50%	50%					
EVALUATION OF CIE (Bloom's Taxonomy Levels: Remembering, Understanding, A Creating)	Applying, Analyzing, Evaluating, and						
Test – I	Each test will be conducted for 50						
Test – II	Marks adding upto 100 marks. Final test marks will be reduced to 40 MARKS						
 EXPERIENTIAL LEARNING Communication Skills- Activity based test – Script writing, Essay Writing, Role plays. Any other activity that enhances the Communication skills. The students will be assigned with a topic by the faculty handling the batch. The students can either prepare a presentation/write essay/role play etc. for the duration (4-5 minutes per student. Parameters for evaluation of the Presentation a. Clarity in the presentation/ Speaking/Presentation skills. b. Concept / Subject on which the drama is enacted/ scripted. 	10	Final Assessment will be conducted for 50 marks					
MAXIMUM MARKS	50 MARKS	50 MARKS					
TOTAL MARKS FOR THE COURSE	50	50					

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	-	-	-	-	-	1	-	1
CO4	3	3	3	3	-	-	-	-	-	1	-	1

	Semester: II						
TECHNICAL ENGLISH- II							
(Online English Course)							
Course Code	:	21HSE27	CIE	:	50 Marks		
Credits: L:T:P	Credits: L:T:P : 0:0:1 SEE : 50				50 Marks		
Total Hours	:	30P	SEE Duration	:	3 Hours		
		Unit-	-I		6 Hrs		
Chapter 1 & 2: De	escr	ibing a weather phenom	enon – Using transition words and J	ohra	ses to connect cause and		
effect - Vocabula	ry	words related to weath	ner and climate situations - Liste	ning	g to weather forecast -		
Introduction yourse	elf	and others - speaking	from notes and discussing study h	nabit	s and body language -		
Assessing good stu	ıdy	habits and Evaluating v	why some students may not gradua	ite –	- Casual expressions for		
making new friends	s –	Distinguish between Car	n and can't – Identifying the meani	ng a	and importance of sign –		
Words related to lea	arni	ng from history.		C			
	6 Hrs						
Chapter 3 & 4: Id	lent	ifying and Expressing o	ppinions, Using arguments and exar	nple	s to support an opinion,		

 Chapter 3 & 4: Identifying and Expressing opinions, Using arguments and examples to support an opinion, Creating an outline or mind map – Vocabulary on words related to food, healthy and unhealthy eating habits – Using modal verbs such as should, must and have to – Identifying paragraph, main text and supporting ideas – Drafting, editing, reviewing and finalizing the text and Blogging – Speaking about food shopping and recipes.

 Unit –III
 6 Hrs

 Chapter 5 & 6: Verbs and expression used to explain home maintenance – Comparing reduced and unreduced pronunciation – Identfying True or false information – Using idioms and discourse markers. Expression for apologizing - Identifying and practicing stressed words and reduced forms - Giving and receiving apologies – Vocabulary words related to homes through time, ancestry, home and family – Recognizing punctuation and phrase clues.

Unit –IV6 HrsChapter 7 & 8: Conducting a interview – Using a graphic organizer: Problem – Solution chart – Discussing the
benefits of a healthy lifestyle - Vocabulary words on health and stress issues and fitness issues - Describing
symptoms – Summarizing a story plot – Vocabulary words and phrases about TV and Social Media – Using
reducing pronunciation.6 Hrs

Chapter 9 & 10: Role-playing – Preparing a 30 second speech – Expression of like and Dislikes – Reporting survey results – Conducting a review – Identifying and practicing stresses words and reduced forms – Identifying speaker attitudes - Understanding left-out words and reference - Understanding literal meaning and reference - Interpreting and rewording quotes - Identifying negative prefixes.

Cours	Course Outcomes: After completing the course, the students will be able to:-							
CO1	Understand the fundamental concepts of Academic English LSRW skills with Grammar - Articles,							
	Pronouns, Prepositions, Nouns, Verbs and Tenses							
CO2	Use appropriate Vocabulary in real-life scenarios that students might face in professional and social							
	situations.							
CO3	Construct grammatically correct sentences, Learn basics of professional e-mail writing, Blog post.							
CO4	Introduce Oneself in detail, preparing for interview, small talk, conversations, voice email messages,							
	discussing future plans, careers, work related issues, environmental problem and travel conversations.							

Refere	ence Books
1	McGraw Hill New Interactions – Level 1 – e-Book from McGraw Hill

ASSESSMENT AND EVAI	LUATION PATTERN	
	CIE	SEE
WEIGHTAGE	50%	50%
THEORY COURSE (Bloom's Taxonomy Levels: Remembering, Understanding, A Creating)	Applying, Analyzing, Evaluating, and	
Test – I	Each test will be conducted for 50	
Test – II	Marks adding upto 100 marks. Final test marks will be reduced to 40 MARKS	
EXPERIENTIAL LEARNING		
Communication Skills- Activity based test – Script writing, Essay Writing, Role plays. Any other activity that enhances the Communication skills. The students will be assigned with a topic by the faculty handling the batch. The students can either prepare a presentation/write essay/role play etc. for the duration (4-5 minutes per student. Parameters for evaluation of the Presentation a. Clarity in the presentation/ Speaking/Presentation skills. b. Concept / Subject on which the drama is enacted/ scripted.	10	Final Assessment will be conducted for 50 marks
MAXIMUM MARKS	50 MARKS	50 MARKS
TOTAL MARKS FOR THE COURSE	50	50

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	-	-	-	-	-	1	-	1
CO4	3	3	3	3	-	-	-	-	-	1	-	1

Semester : I / II								
INDIAN KNOWLEDGE SYSTEMS								
Course Code	:	21HSI18/28	CIE	:	50 Marks			
Credits: L:T:P	:	1:0:0	SEE	:	50 Marks			
Total Hours	:	15L	SEE Duration	:	02 Hours			

Unit-I	03 Hrs
Introduction to Indian Knowledge Systems (IKS): Historical Background, Indian Tr	aditional
Knowledge Systems, Nature, Philosophy, Character scope and importance, kinds of tr	aditional
knowledge, traditional knowledge vis-a-vis indigenous knowledge, traditional knowledge	edge vs.
western knowledge.	
Unit – II	03 Hrs

Protection of Traditional Knowledge: The need for protecting traditional knowledge, Sign	nificance
of TK Protection, value of TK in global economy, Role of Government to harness TK.	

Unit -III	03 Hrs								
Traditional Knowledge in Humanities and Sciences: Chemistry, Physics, Mathematics, Art, Astronomy, Astrology, Crafts and Trade in ancient India and other such areas.									
Unit –IV 03 Hrs									
Traditional Knowledge in Professional domain: Production, Construction, Medicine, Agriculture,									
Engineering Sciences, Aviation, Architecture and other domains.									

Unit -V03 HrsIndian Knowledge systems and Contemporary topics: Traditional Knowledge and Contemporary
world, Traditional knowledge system and IT Revolution, Management of biodiversity, United
Nations Sustainable development goals.03 Hrs

Cours	Course Outcomes: After completing the course, the students will be able to									
-	CO1 Provide an overview on the concept of Indian Knowledge System and its importance.									
CO2	Appreciate the need and importance of protecting traditional knowledge.									
CO3	Recognize the relevance of Traditional knowledge in different domains.									
CO4	Establish the significance of Indian Knowledge systems in contemporary world.									

Re	ference Books
1	Traditional Knowledge System in India, Amit Jha, 2009, Atlantic Publishers and Distributors
1	(P) Ltd., ISBN-13: 978-8126912230,
2	Knowledge Traditions and Practices of India, Kapil Kapoor, Avadesh Kumar Singh, Vol. 1,
2	2005, DK Print World (P) Ltd., ISBN 81-246-0334,

Suggested Web Links:

- 1. https://www.youtube.com/watch?v=LZP1StpYEPM
- 2. http://nptel.ac.in/courses/121106003/
- **3.** http://www.iitkgp.ac.in/department/KS;jsessionid=C5042785F727F6EB46CBF432D7683B63
- Centre of Excellence for Indian Knowledge System, IIT Kharagpur)
- 5. https://unctad.org/system/files/official-document/ditcted10_en.pdf
- 6. http://nbaindia.org/uploaded/docs/traditionalknowledge_190707.pdf
- 7. https://unfoundation.org/what-we-do/issues/sustainable-development-
- 7. goals/?gclid=EAIaIQobChMInp-Jtb_p8gIVTeN3Ch27LAmPEAAYASAAEgIm1vD_BwE

ASSESSMENT AND EVAL	UATION PATTERN	
WEIGHTAGE	50%	50%
QUIZZES		
Quiz-I	Each quiz will be conducted for	
	10 Marks adding up to 20 marks.	****
Quiz-II	Final quiz marks will be	
	reduced to 10 Marks	
THEORY COURSE - (Bloom's Taxonomy Level	s: Remembering, Understanding,	
Applying, Analyzing, Evaluating, and Creating)		
Test – I	Each test will be conducted for	
	25 Marks adding up to 50 marks.	****
Test – II	Final test marks will be reduced	
	to 20 Marks	
EXPERIENTIAL LEARNING	20	****
Case Study-based Teaching-Learning		
Sector wise study & consolidation (viz., Engg.		
Semiconductor Design, Healthcare & Pharmaceutical,		****
FMCG, Automobile, Aerospace and IT/ ITeS)		
Video based seminar (4-5 minutes per student)]
Maximum Marks for the Theory	50 Marks	50 Marks
Practicals		
Total Marks for the Course	50	50

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	-	-	3	-	-	-	1
CO2	-	-	-	-	-	2	-	-	-	-	-	-
CO3	-	-	2	2	-	-	-	-	-	-	-	-
CO4	-	-	-	-	-	3	2	-	-	-	-	-

Semester: I/II										
ENGINEERING CHEMISTRY										
(Theory and Practice)										
:	21CH12/22	CIE	:	150 Marks						
:	3:0:1	SEE	:	150 Marks						
:	45L + 30P	SEE Duration	:	3 Hours						
	:	ENGINER (Theo : 21CH12/22 : 3:0:1	ENGINEERING CHEMISTRY (Theory and Practice) : 21CH12/22 CIE : 3:0:1 SEE	ENGINEERING CHEMISTRY (Theory and Practice) : 21CH12/22 CIE : : 3:0:1 SEE :						

Water Technology and Management

Introduction, sources and impurities, Potable water, meaning and specifications (as per WHO standards), Hardness of water, types, determination of hardness using EDTA titration, numerical problems on hardness of water. Determination of Biological oxygen demand (BOD) and Chemical Oxygen Demand (COD), Numericals on BOD and COD. Membrane technology: Desalination of sea water by reverse osmosis using Polysulfone membrane, preparation of polysulfone membrane by NIPS method. Waste water management case studies (Primary, secondary and tertiary treatments). Toxic effects of heavy metals in water: Mercury, Cadmium, Lead, Chromium and Arsenic.

Energy Technology

Chemical Fuels: Introduction, Knocking in IC engines, octane number, cetane number, power alcohol, unleaded petrol and biodiesel, Rocket fuels and propellants.

Electrochemical devices: Concept of electrochemistry, types of electrodes, construction and working of calomel and glass electrodes. Determination of pH using glass electrode.

Battery technology: Components, construction and working of Li-ion battery (Li-CoO₂).

Unit – II

Unit-I

Fuel cell: Introduction, construction and working of Methanol-Oxygen fuel cell.

Green fuel: Hydrogen-production (Photo catalytic water splitting), storage and applications in fuel cells.

Solar Energy: Introduction, photovoltaic cells, construction and working of Dye sensitized solar cells.

Solar Energy: Introduction, photovorane cens, construction and working of Dye sensitized solar cens.								
Unit –III	09 Hrs							
Corrosion science and Engineering								
Corrosion: Introduction, electrochemical theory of corrosion, factors affecting the rate o	f corrosion: ratio of							
anodic to cathodic areas, nature of metal and nature of corrosion product (PB Ratio), pl	H, conductivity and							
temperature. Common types of corrosion - differential aeration (pitting and water line), di	ifferential metal and							
stress corrosion.								
Corresion control: Introduction types inorganic coatings-Phosphating and anodizing	Metallic coatings-							

Corrosion control: Introduction, types, inorganic coatings-Phosphating and anodizing. Metallic coatingsgalvanization and tinning (hot dipping method), Electroplating and Electroless plating-principle, process of gold plating, chrome plating, electroless plating of copper and its application in fabrication of PCBs.

Chemistry of Nanomaterials

Introduction, size dependent properties (Surface area, Optical and Catalytic properties), classification of nanomaterials, Synthesis of nano-materials (Solution combustion and Sol-gel methods).

Carbon nanotubes: Introduction, types, synthesis by modified CVD method, functionalization and applications. Graphene-Synthesis (Modified Hummer's method), functionalization and applications.

Nano-Toxicology and safety measures. Green Chemistry: Introduction-Basic principles.

Unit –IV

Unit –V	09 Hrs
Delement for an inclusion and the first	

Polymers for engineering applications

Introduction to polymers, Glass transition temperature (Tg), factors affecting Tg. Thermo plastic polymers: Polycarbonate, polyether sulfones, preparation and specific applications in industries. Thermosetting polymers: Epoxy resin synthesis, properties and applications.

Synthesis and applications of functional polymers: Conducting polymers (Synthesis of PANI), photoconductive polymers (PVK), electrochromic polymers (PDOT), electro-active polymers (PVDF) and Self-healing polymers (Silicone rubbers).

Toxicity of polymers: Micro plastics and leaching of polymers.

Biodegradable polymers: Introduction and their requirements. Synthesis and properties of Poly lactic acid. Applications of biodegradable polymers in the medical industry.

09 Hrs

10 Hrs

08 Hrs

LIST OF LABORATORY EXPERIMENTS

- 1. Introduction to Volumetric analysis.
- 2. Evaluation of quality of water in terms of total hardness by Complexometric method.
- 3. Determination of Chemical Oxygen Demand (COD) of the given industrial waste water sample.
- 4. Estimation of copper in Brass.
- 5. Estimation of FAS using standard $K_2Cr_2O_7$ solution by Potentiometric method.
- 6. Evaluation of acid content in soft drinks by using pH sensors.
- 7. Colorimetric estimation of copper.
- 8. Conductometric estimation of acid mixture.
- 9. Determination of viscosity coefficient of a given liquid using Ostwald's viscometer.
- 10. Estimation of amount of sodium by Flame photometry.
- 11. Computational determination of molecular/electronic parameters of small conjugated molecules.
- 12. Electroplating of copper on metallic objects.

Cours	Course Outcomes: After completing the course, the students will be able to :-							
CO1	Explain the principles of chemistry in Engineering & Technology.							
CO2	Apply the knowledge of chemistry in solving socio-economic and environmental issues.							
CO3	Identify and analyse engineering problems to achieve practical solutions through knowledge of							
	chemistry							
CO4	Develop solutions for chemistry problems associated with technologies and real life.							

Refer	ence Books							
1	Engineering Chemistry, O.G.Palanna, Tata McGraw Hill Education Pvt. Ltd. New Delhi, Fourth Reprint							
-	2017. ISBN: 978-0070146105.							
2	Engineering Chemistry, S. S Dhara, 2013, S. Chand Publications, 4th Edition, ISBN: 812-1997658.							
2	Engineering Chemistry, S Satyanarayana and H C Shashidhara, 2011, Himalaya Publishing House,							
3	Edition-, ISBN-9789350514986.							
4	Fundamentals of Analytical chemistry, Douglas A. Skoog et.al., 2004, Thomson Asia pte Ltd, Eighth							
4	edition-ISBN: 981-243-513-1.							
	e-Book							
	Smart Polymers and Their Applications-2 nd Edition– Elsevier, Editor - Maria Rosa Aguilar Julio San							
1	Roman ISBN: 9780081024171.							
	https://www.elsevier.com/books/smart-polymers-and-their-applications/aguilar/978-0-08-102416-4.							

	ASSESSMENT AND EVAL	LUATION PATTERN	
		CIE	SEE
WEIG	HTAGE	50%	50%
QUIZZES			
Quiz-I		Each quiz is evaluated for 10 marks	
Quiz-II		adding up to 20 MARKS.	
THEORY COURSE (Bloom's Taxonomy Levels: I Creating) Test – I	Remembering, Understanding, A	Applying, Analyzing, Evaluating, and Each test will be conducted for 50	
Test – II		Marks adding upto 100 marks. Final test marks will be reduced to 40 MARKS	
EXPERIENTIAL LEARNIN	NG (40 marks)		
Case Study-based Teaching-L	earning	10	
topics: Green chemistry, applications, Corrosion scien	ce and engineering, Polymer ications, Natural resource	20	
Video based seminar (4-5 min		10	-
MAXIMUM MARKS FOR	THE THEORY	100 MARKS	100 MARKS
PRACTICALS			
CIE	SEE		
Conduction: 25 Lab Test: 05 Experiential Learning: 20 Total : 50	Conduction: 40 Viva-Voce: 10 Total : 50	50	50
TOTAL MARKS FOR THE	COURSE	150	150

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	-	-	-	-	-	-	-	1
CO2	3	2	-	-	-	2	2	1	-	1	1	1
CO3	1	2	-	2	-	-	-	-	-	-	-	2
CO4	-	-	1	-	-	1	1	-	-	-	-	2

			Semester: I/I	[
			PROGRAMMING						
			(Theory and Prac	ctice)					
Course Code	:	21CS13/23		CIE	:	150) Marks		
Credits: L:T:P	:	3:0:1		SEE	:	150) Marks		
Total Hours	:	45L+30P		SEE Duration	: 3Hours + 3Hours				
							-		
I I I D I I			Unit-I				8 Hrs		
Logical Reasoning				a and Analytical Da		:			
			Arithmetical Reasoning. Algorithmic Problem				Algebraic problems		
Sorting and Search				in Solving. Antiline		ing <i>I</i>	Algeorate problems,		
Introduction to Co									
			tware and its Types.						
			Unit – II				10 Hrs		
Introduction to C	prog	gramming:							
0 01	-		of C program, Proces			•	1 0		
		eter set, C token	s, Keywords and Ide	entifiers, Constants,	Var	iable	es, Data types, Pre-		
processor directive		.							
Handling Input a				Sunctions with mass			avamalas using all		
functions.	որու	lunctions, Unio	rmatted input/output	lunctions with prog	rami	ning	examples using all		
Operators:									
A	perat	or set. Arithmet	tic operators, Relation	nal operators. Los	rical	One	erators Assignment		
			rators, Conditional ope			-			
			evaluation of express						
			edence and associativi				1 / 11		
			Unit –III				10 Hrs		
statements, The 'el Decision making a Arrays: Introduction to Arr and Multidimensio String Operations	with se if and I rays, nal A :	'if' statement, S ladder, The 'swi ooping: The 'for' Types of arrays, Array) with examp	Simple 'if' statement tch' statement, The '? ','while','do-while' sta , Declaration arrays, I ples. g String Variables us	' operator, The ' <i>got</i> atements with examp nitializing dimension	o'sta oles, nal a	atem Jump arrays	ent. os in loops . s (One Dimensional		
examples.			Unit –IV				10 Hrs		
Functions:							101113		
Need for Function declaration and its Recursion: Introd quick sort and othe Pointers: Introduc	scop uctic r exa tion, cast	e, Category of fur on, Example prog amples). Benefits of using ing of a pointer,	s (User Defined and nctions Storage classes grams (Factorial, Fibo g pointers, Declaration Arithmetic Operations	(Automatic, Static, nacci Series, Acker and Initialization of	Exterman	ern, R fun inter	Register). ction merge sort or s, Obtaining a value		
			Unit –V				7 Hrs		
Structures and Ur	ninna						/ 111 5		
Introduction, Struction, Copy within structures, Struc	cture ing a truct	definition, dec and comparing str sures and function	laring structure vari ucture variables, Arra is. tructure and Unions.						

Course	Course Outcomes: After completing the course, the students will be able to:-					
CO 1	Describe the fundamental computer concepts and syntax of C programming.					
CO 2	Apply logical skills to design and develop algorithms/flow charts to solve real-world problems.					
CO 3	Analyze the logic of the program and output obtained using different sets of input.					
CO 4	Design and develop programs using appropriate data structures and functions in C language.					

Reference Books

14014							
1.	Programming in C, P. Dey, M. Ghosh, 2011, 2 nd Edition, Oxford University press, ISBN (13): 9780198065289.						
2.	Algorithmic Problem Solving, Roland Backhouse, 2011, Wiley, ISBN: 978-0-470-68453-5						
3.	The C Programming Language, Kernighan B.W and Dennis M. Ritchie, 2015, 2 nd Edition, Prentice Hall, ISBN (13): 9780131103627.						
4.	Turbo C: The Complete Reference, H. Schildt, 2000, 4th Edition, Mcgraw Hill Education, ISBN-13: 9780070411838.						
5.	Rasberry pi: https://www.raspberrypi.org/documentation/						
6.	Nvidia: <u>https://www.nvidia.com/en-us/</u>						
7.	Ardunio: https://www.arduino.cc/en/Tutorial/BuiltInExamples						
8.	Scratch software: https://scratch.mit.edu/						

Laboratory Component PART A Implement the following programs using cc/gcc compiler

Practice Programs:

- i. Familiarization with programming environment: Concept of creating, naming and saving the program file in gedit/vi editor, Concept of compilation and execution, Concept of debugging in GDB environment.
- ii. Implementation and execution of simple programs to understand working of:
 - Formatted input and output functions- printf() and scanf().
 - Escape sequences in C.
 - Using formula in a C program for specific computation: For example: computing area of circle, converting Celsius to Fahrenheit, area of a triangle, converting distance in centimeters to inches, etc.
 - Preprocessor directives (#include, #define).
 - Execution of erroneous C programs to understand debugging and correcting the errors like:
 - Syntax / compiler errors.
 - Run-time errors.
 - Linker errors.
 - Logical errors.
 - Semantical errors.
 - Implementation and execution of simple programs to understand working of operators like:
 - Unary.
 - Arithmetic.
 - Logical.
 - Relational.
 - Conditional.
 - Bitwise.

Lab Programs:

iii.

iv.

- 1. Develop a C program to compute the roots of the equation $ax^2 + bx + c = 0$.
- 2. Develop a C program that reads N integer numbers and arrange them in ascending or descending order using selection sort and bubble sort technique.
- 3. Develop a C program for Matrix multiplication.
- 4. Develop a C program to search an element using Binary search and linear search techniques.

- 5. Using functions develop a C program to perform the following tasks by parameter passing to read a string from the user and print appropriate message for palindrome or not palindrome.
- 6. Develop a C program to compute average marks of 'n' students (Name, Roll_No, Test Marks) and search a particular record based on 'Roll_No'.
- 7. Develop a C program using pointers to function to find given two strings are equal or not.
- 8. Develop a C program using recursion, to determine GCD, LCM of two numbers and to perform binary to decimal conversion.

PART B

- Design and development of a working model using any of the following combination of hardware and software.
- Develop a model that helps the user to monitor weather, health condition, environment parameters, etc. using Arduino board.
- Develop a simple Robot that can assist the user to perform simple activities home sanitization, lifting things etc. using Raspberry pi.
- Hardware interfacing (Ardunio Board, Finch, Lego WeDo 2.0) with scratch to design various models to solve simple problems.
- Develop applications using Nvidia Jetson Kit.

ASSESSMENT AND EVALUATION PATTERN					
	CIE	SEE			
WEIGHTAGE	50%	50%			
QUIZZES					
Quiz-I	Each quiz is evaluated for 10 marks				
Quiz-II	adding up to 20 MARKS.				
THEORY COURSE (Bloom's Taxonomy Levels: Remembering, Understanding, A Creating)	Applying, Analyzing, Evaluating, and				
Test – I	Each test will be conducted for 50 Marks adding upto 100 marks.				
Test – II	Final test marks will be reduced to 40 MARKS				
EXPERIENTIAL LEARNING (40 marks)					
Case Study-based Teaching-Learning.	10				
Project Based learning.	20				
Video based seminar (4-5 minutes per student).	10				
MAXIMUM MARKS FOR THE THRORY	100 MARKS	100 MARKS			
PRACTICALS	50	50			
TOTAL MARKS FOR THE COURSE	150	150			

					CO	-PO Maj	oping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	-	2	-	-	-	-	-	-	1
CO2	2	3	3	3	3	-	-	-	-	-	-	3
CO3	3	3	3	2	3	-	-	-	1	1	1	-
CO4	2	3	3	3	3	-	-	-	-	-	-	2

Semester: I/II ELEMENTS OF MECHANICAL ENGINEERING (Theory)

(Theory)							
Course Code	:	21ME14/24	CIE	:	100 Marks		
Credits: L:T:P	••	2:1:0	SEE	:	100 Marks		
Total Hours		30L+30T	SEE Duration	1 :	3 Hours		

	Unit-I	06 Hrs
Engin	eering Materials: Introduction & Classification, Metals (Ferrous and Non	ferrous), Polymers
	noplastics, Thermosets, Elastomers), Ceramics and Composites.	
	ial Properties & applications: Physical, Mechanical, Optical, Electrical and El	ectronics, Thermal,
Chemi	cal Properties. Applications: Aerospace, Automotive, Electronic & Biomedical.	
	Unit – II	06 Hrs
Turnin	and Lathe operations: Classification, specifications of a lathe. Lathe operation g, drilling, boring, knurling, and thread cutting). Introduction to CNC Machines. g processes & Non-destructive testing	ns (Turning, Taper
	action to metal joining process-permanent & temporary joints, Soldering & v	velding types and
	ations, accessories consumables and safety, Welding defects and causes, Non-Destru	
	ate testing, Magnetic particle testing, Ultrasonic testing, Eddy current testing.	enve testing. Eiquid
peneur	Unit –III	06 Hrs
Steam	and its properties, property charts.	00 111 3
	turbines: Classification and working.	
	ulic Turbines: Classification of hydraulic turbines, working of Pelton, Francis and	nd Kaplan turbines:
	rison between impulse and reaction turbines.	
	urbines: Working of Gas Turbines (Brayton cycle).	
	eration: Refrigeration effect, working principle of Vapour Compression refrigerat	ion systems, ton of
	ration, COP, refrigerants and their properties.	•
	Unit –IV	06 Hrs
Mecha	anical and Electrical Drives	
Mecha	anical Drives: Classification of IC Engines, Working of 4-S direct injection en	gines, Performance
charac	teristics, Classification of gears, velocity ratio for simple and compound gear trains.	
	ical Drives: History, Well to Wheel analysis, Electric vehicles, Configurations, EV	
	mance, Traction Motor Characteristics, Concept of Hybrid Electric Drive Trains, Cla	ssification of hybrid
electri	c vehicles.	
	Unit –V	06 Hrs
Introdu system	atronics action: Evolution of Mechatronic system, measurement & control system, basic a, Applications-water level controller, washing machine, Engine management system ag System (ABS).	
	e Outcomes: After completing the course, the students will be able to	
CO1	Apply the knowledge of various properties of important engineering materials.	

- **CO3** Elucidate the principles of lathe machine tools, their operations, joining processes and Non-destructive testing in various engineering applications.
- **CO4** Apply the knowledge of Electrical drives & Mechatronics systems and its applications.

Refere	ence Books						
1	Elements of Mechanical Engineering, K. R. Gopalakrishna, Subhas Publications, 18th Edition. ISBN						
1	5551234002884						
2	Material Science & Engineering- William D Callister, 2 / 10th Edition, ISBN 978-1-119-45520-2.						
3	Welding Technology (PB), Khanna O P, Dhanpat Rai publication, 4th Edition, ISBN 9383182555.						
4	Electric and Hybrid Vehicles, Design Fundamentals – Iqbal Husain, CRC Press, 2 nd Edition, 2010. ISBN						
4	- 13-978-1439811757.						
5	Modern Electric, Hybrid Electric & Fuel Cell Vehicles, Fundamentals, Theory and Design - Mehrdad						
3	Ehsani, CRC Press, 1st Edition, 2005. ISBN – 13- 978-0849331541.						
6	Mechatronics - Electronic control systems in Mechanical and Electrical Engineering, William Bolton,						
	Pearson, 6 th Edition, ISBN: 978-1-292-07668-3, 2015.						

ASSESSMENT AND EVA	LUATION PATTERN					
	CIE	SEE				
WEIGHTAGE	50%	50%				
QUIZZES						
Quiz-I Each quiz is evaluated for 10 marks						
Quiz-I	adding up to 20 MARKS.					
THEORY COURSE (Bloom's Taxonomy Levels: Remembering, Understanding, A Creating)	Applying, Analyzing, Evaluating, and					
Test – I						
Test – II	– Marks adding upto 100 marks. Final test marks will be reduced to 40 MARKS					
EXPERIENTIAL LEARNING (40 marks)						
Fabrication of FRP and characterization	10					
Fabrication of Machine component	20					
Electrical or electronic based component demonstration	10					
MAXIMUM MARKS FOR THE THRORY	100 MARKS	100 MARKS				
TOTAL MARKS FOR THE COURSE	100	100				

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	1	-	-	1	-	1
CO2	3	2	2	1	2	1	-	2	2	1	-	1
CO3	3	3	2	2	-	1	2	-	-	1	-	1
CO4	3	3	3	3	1	-	1	2	2	1	-	1

			SEMESTER – I/II			
		ELEMENTS OF	ELECTRONICS ENG (Theory)	INEERING		
Course Code	:	21EC15/25		CIE	:	100 Marks
Credits: L: T: P	:	2:1:0		SEE	:	100 Marks
Total Hours	:	30L+30T		SEE Duration	:	3 Hours
			UNIT-I			07 Hrs
SEMICONDUCT	OR	DIODES AND A	PPLICATIONS:			
•			eristics, Full wave Brid	• · ·		
diode as a voltage r	egi		m of a DC Power supply	v, working of phot	o di	
			UNIT-II			07 Hrs
BJT AND APPLIC						
*		•	e Divider Biasing, BJT as	s an amplifier and	as	a switch.
FEEDBACK AMI						
Basic Principles and	d a	<u> </u>				05 11
MOSFET:		l	JNIT-III			05 Hrs
Difference between			onstruction, Operation, C as a switch, CMOS inve			• •
Circuit and operation		is an amplitter and			·L,	emos non.
(Case study- doma		specific: online mo	ode)			
COMMUNICATI		-				
	-		n system, Need for modu	ulation and types of	of n	odulation.
	0		JNIT-IV			06 Hrs
DIGITAL ELECT	R	ONIC FUNDAME	NTALS:			
Difference between	1 ai	nalog and digital s	ignals, Boolean Algebra	and Simplificati	on	using Boolean
theorems and postu	late	es, K-map.		-		-
DIGITAL ELECT	R	ONIC CIRCUITS:				
Basic and Universa	1 G	ates, Half adder, Fu	ll adder, Multiplexer, De	e-multiplexer, Enc	ode	r, Decoder.
CONTROLLERS	:0	verview of microco	ntrollers and block diagr	am, serial and par	alle	l interfaces.
Case study: Connec	ctio	n of sensors and act	uators to Aurdino.			
(Case study- doma	in	specific: online mo	ode)			
		١	UNIT-V			05 Hrs
OPERATIONAL	AN	IPLIFIERS AND	APPLICATIONS:			
Introduction to Op-	An	np, Op-Amp parame	eters: Gain, Bandwidth, I	nput & Output im	ped	ances, CMRR,
PSRR, Slew Rate,	Inp	out Offset voltage,	Applications: Inverting a	amplifier, Non-In	vert	ing Amplifier,
Voltage Follower,	Su	mmer, Difference	amplifier, Integrator, D	ifferentiator and	Co	mparator with
equations, Pin Con amplifier.	nfig	guration and paran	neters of 741 Op-Amp.	., Schmitt trigger	r, I	nstrumentation
A	in	specific: online mo	ode)			
Cust study donit		-promotion online inte				

Cours	Course Outcomes: After completing the course, the students will be able to:-					
CO1	Analyze the operation and the characteristics of the Electronic devices for various applications.					
CO2	Apply and analyze circuits for applications of various Electronic systems.					
CO3	Demonstrate the different building blocks of Electronics systems.					
CO4	Evaluate the performance of the electronic circuits to meet given specifications using modern					
	IT tools.					

Reference Books						
1.	Electronic Devices and Circuit Theory by Robert L Boylestad, Louis Nashelsky, 10th Edition,					
	2009, Prentice Hall India publication, ISBN: 978-317-2700-3.					
2.	Electronic Devices and Circuits by David A. Bell, 5th Edition, 2008, Oxford University Press,					
	ISBN:9780195693409.					
3.	Basic Electronics by D P Kothari, I J Nagrath, 2 nd Edition, 2017, MCGraw Higher Ed, ISBN:					
	9789352606467.					
4.	Digital Logic and Computer Design by Morris Mano, 54th Edition, 2007, Prentice Hall India					
	publication, ISBN: 978-81-317-1450-8.					

ASSESSMENT AND EVALUATION PATTERN							
	CIE	SEE					
WEIGHTAGE	50%	50%					
QUIZZES							
Quiz-I	Each quiz is evaluated for 10 marks						
Quiz-II	adding up to 20 MADVS						
THEORY COURSE : (Bloom's Taxonomy Le Applying, Analyzing, Evaluating, and Creating).	evels: Remembering, Understanding,						
Test – I	Each test will be conducted for 50						
Test – II	Marks adding upto 100 marks. Final test marks will be reduced to 40 MARKS						
EXPERIENTIAL LEARNING (40 marks)							
Case Study-based Teaching-Learning	10						
Sector wise study & consolidation (viz., Engg. Semiconductor Design, Healthcare & Pharmaceutical, FMCG, Automobile, Aerospace and IT/ITeS)	20						
Video based seminar (4-5 minutes per student)	10						
MAXIMUM MARKS FOR THE THEORY	100 MARKS	100 MARKS					
PRACTICALS							
TOTAL MARKS FOR THE COURSE	100	100					

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	-	2	2	1	-	-	-	-	-
CO2	3	3	2	1	3	2	1	1	2	-	-	2
CO3	3	3	2	2	3	3	2	2	3	2	3	3
CO4	3	2	-	-	3	3	2	2	3	2	3	1

Semester: I/II							
YOGA PRACTICE							
Course Code	:	21HSY16/26		CIE	:	50 Marks	
Credits: L:T:P	:	0:0:1		SEE	:	50 Marks	
Total Hours	:	30P		SEE Duration	:	2 Hours	

Introduction to Yoga

Definition and Meaning of Yoga, Aims and Objectives, Historical development of Yoga, Eight stages of Yoga, Relevance of Yoga in modern age and scope.

Unit – II

Unit-I

07 Hrs

07 Hrs

Starting Practice –Swasa Kriya, Marjalaswasa, Swanaswasa, Urasandhi chalane, Greeva sandhi chalane, Kati chalane, Super Brain yoga.

Suryanamaskara/Pragya Yoga: With Mantras & Breathing pattern.

Standing Asanas: Trikonasana, Veerabhadrasana, Vrikshasana, Tadasana, Tiryak Tadasana, Sarvangapushti, Utkatasana.

Unit –III	08 Hrs					
Sitting Asanas: Baddhakonasana, Bharadwajasana, Mandukasana, Ushtrasana, SuptaVe	erasana, Vakrasana,					
Gomukhasana, Janushirasana, Dhanurasana, Shashankasana.						

Lying Asanas: Pawanamuktasana, Sarvangasana, Naukasana, Halasana, Chakrasana, Bhujangasana, Shalabhasana, Dhanurasana, Yoga Nidra.

Unit –IV08 HrsRelaxative/ Meditative Asanas: Shavasana, Balasana, Makarasana, Sukhasana, Padmasana, Vajrasana.Pranayama: Mantra, Breathing – Chest, Abdominal & Yogic, Puraka, Rechaka and Kumbhaka, Anulom-
Vilom, Nadishodhan, Suryabhedan, Chadrabhedan, Bhastrika, Bhramri, Sheetali, Shitkari and Kapalabhati.

Course Outcomes: After completing the course, the students will be able to				
CO1	Understand and practice yoga.			
CO2	Analyze the health impact.			
CO3	Identify the remedial measures if there are any health issues.			
CO4	Develop concentration for better performance.			

Reference Books								
1	Light on Yoga, B.K.S. Iyengar, 2017, Harper Collins Publishers, ISBN : 9780008267919.							
2	Light on Pranayama, B.K.S. Iyengar, 2013, Harper Collins Publishers, ISBN: 978-8172235413.							
2	Asana Pranayama Mudra Bandha, Swami Satyananda Saraswathi, 12th Edition, 2002, Published by Yoga							
3	Publications Trust, Bihar School of Yoga, ISBN:9788186336144.							
4	Yoga Nidra, Swami Satyananda Saraswathi, 2009, Published by Yoga Publications Trust, ISBN:							
	9788185787121.							

ASSESSMENT AND EVALUATION PATTERN CIE-50 MARKS Activity book- 10 marks QUIZZES Quiz-I Each quiz is evaluated for 10 marks adding up to 20 MARKS. Quiz-II Test – I Demonstration of Asanas is evaluated for 10 marks adding up to 20 MARKS. Test – II ASSESSMENT AND EVALUATION PATTERN **SEE-50 MARKS** Demonstration of Asanas and Pranayama 30 marks Viva voce 20 marks Total 50 marks

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	2	-	-	-	-	-	2	1	-	-
CO2	-	1	-	1	-	-	-	-	-	1	-	1
CO3	-	-	2	1	-	-	-	-	-	1	-	1
CO4	2	3	3	-	1	1	-	-	-	-	-	2

Innovative Clubs of RVCE

1	Ashwa Racing	Ashwa Mobility Foundation (AMF) is a student R&D platform that designs and fabricates Formula theme race cars and future mobility solutions to tackle urban transportation problems.
2	Astra Robitics	Team involved in the design, fabrication and building applications specific robots
3	Coding Club	To facilitate students the skills, confidence, and opportunity to change their world using coding and help them become successful in GSoC, ACM-icpc, and other recognized coding competitions.
4	Entrepreurship Development Cell	E-Cell is a student run body that aims to promote entrepreneurship by conducting workshops, speaker sessions and discussion on business and its aspects. We possess a mentor board to help startups grow.
5	Frequency Club	Team aims at contributing in both software and hardware domains mainly focusing on Artiicial Intelligence, Machine Learning and it's advances.
6	Garuda	Design and Development of supermileage urban concept electric car. Indigenous developmen of E-mobility products.
7	Jatayu	Build a low cost Unmanned Aerial Vehicle capable of Autonomous Navigation, Obstacle Avoidance, Object Detection, Localization, Classification and Air Drop of a package of optimum weight.
8	Solar Car	Build a roadworthy solar electric vehicle in under to build a green and sustainable environment
9	Team Antariksh	Team Antariksh is a Space Technology Student Club whose goal is to understand, disseminate and apply the engineering skills for innovation in the field of Space technology. designing Nano-Satellite payload for ISRO PS4 Orbital platform, RVSAT-I along with developing experimental rockets of various attitde.
10	Team Chimera	Building a Formula Electric Car through Research and Development in E-Mobility, Electrifying Formula R acing.
11	Helios Racing	Team involved in design manufacturing and testing of All Terrain Vehicles and other supportive tasks for he functioning of the team . Participating in BAJA competitions organized by SAE in India and the USA.
12	Team Hydra	Developing autonomous underwater vehicles and use it for various real world applications such as water purification, solid waste detection and disposal etc.
13	Team Krushi	Develop low cost equipments, which help farmers in cultivating and harvesting the crops. Use new technology applications to reduce the labour time hand cost for farmers. Aims at developing implants for Tractors.
14	Team Vyoma	Design, fabrication and testing of radio controlled aircrafts and research on various types of unnamed aerial vehicles.
15	Team Dhruva	Organizing activities like quizzes based on astronomy Stargazing and telescope handling sessions. Construction of a standard observatory. working on small projects with organizations like ICTS. IIA, Aries etc.
16	Ham Club	To popularize Amateur Radio as a hobby among students, alongside exploring technical innovations n the communications domain. Intended to provide human capital for service to the nation at times of natural claimatics.

"Not me but you" "Education through Community Service & Community Service through education"

Cultural Activity Teams

- 1. AALAP (Music club)
- 2. DEBSIC (Debating society)
- 3. CARV (Dramatics club)
- 4. Footprints (Dance club)
- 5. QUIZCORP (Quizzing society)
- 6. Rotaract (Social welfare club)
- 7. RAAG (Youth club)
- 8. EVOKE (Fashion team)
- 9. f/6.3 (Photography club)
- 10. CARV ACCESS (Film-making club)

VISION

Leadership in Technical Education, Interdisciplinary Research & Innovation, with a focus on Sustainable and Inclusive Technology

- ➡ To deliver outcome based Quality education, emphasizing on experiential learning with state of the art infrastructure.
- ⇒ To create a conducive environment for interdisciplinary research and innovation.
- ➡ To develop professionals through holistic education focusing on indiidual growth, discipline, integrity, ethics and social sensitivity.
- ➡ To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- ➡ To focus on technologies that are sustainable and inclusive, benefitting all sections of the society.

Rashtreeya Sikshana Samithi Trust RV COLLEGE OF ENGINEERING[®]

(Autonomous Institution Affiliated to VTU, Belagavi) RV Vidyaniketan Post, Mysore Road, Bengaluru – 560 059

www.rvce.edu.in