

R.V. COLLEGE OF ENGINEERING

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus for V & VI Semesters

2016 SCHEME

ELECTRONICS & COMMUNICATION ENGINEERING

Department Vision

Imparting quality technical education through interdisciplinary research, innovation and teamwork for developing inclusive & sustainable technology in the area of Electronics and Communication Engineering.

Department Mission

- To impart quality technical education to produce industry-ready engineers with a research outlook.
- To train the Electronics & Communication Engineering graduates to meet future global challenges by inculcating a quest for modern technologies in the emerging areas.
- To create centres of excellence in the field of Electronics & Communication Engineering with industrial and university collaborations.
- To develop entrepreneurial skills among the graduates to create new employment opportunities.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **PEO1.** To apply concepts of mathematics, science and computing to Electronics and Communication Engineering
- **PEO2.** To design and develop interdisciplinary and innovative systems.
- **PEO3.** To inculcate effective communication skills, team work, ethics, leadership in preparation for a successful career in industry and R & D organizations.

PSO	Description
PSO1	Should be able to clearly understand the concepts and applications in the field of Communication/networking, signal processing, embedded systems and semiconductor technology.
PSO2	Should be able to associate the learning from the courses related to Microelectronics, Signal processing, Microcomputers, Embedded and Communication Systems to arrive at solutions to real world problems.
PSO3	Should have the capability to comprehend the technological advancements in the usage of modern design tools to analyze and design subsystems/processes for a variety of applications.
PSO4	Should possess the skills to communicate in both oral and written forms, the work already done and the future plans with necessary road maps, demonstrating the practice of professional ethics and the concerns for societal and environmental wellbeing.

PROGRAM SPECIFIC OUTCOMES (PSOs)

Lead Society: Institute of Electrical and Electronics Engineers (IEEE)

PROGRAM OUTCOMES (POs)

1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.

2. **Problem analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet t h e specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.

4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.

6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with t h e society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

R.V. COLLEGE OF ENGINEERING

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus for V & VI Semesters

2016 SCHEME

ELECTRONICS & COMMUNICATION ENGINEERING

Abbreviations

Sl. No.	Abbreviation	Meaning
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	CS	Computer Science and Engineering
5.	CV	Civil Engineering
6.	СНУ	Chemistry
7.	EC	Electronics and Communication Engineering
8.	EE	Electrical and Electronics Engineering
9.	ES	Engineering Science
10.	HSS	Humanities and Social Sciences
11.	ME	Mechanical Engineering
12.	PHY	Engineering Physics
13.	SEE	Semester End Examination
14.	MAT	Engineering Mathematics

INDEX

		V Sem	
SI.	Course Code	Name of the Course	Page No.
No. 1.	16HSI51	IPR & Entrepreneurship	
2.	16EC52	Communication System I	
<u>2.</u> 3.	16EC53	Digital VLSI Design	
<u> </u>	16EC54		
<u>4.</u> 5.	16EC55	Embedded System Design	
		Digital Signal Processing	
<u>6.</u> 7.	16EC5A1	Antennas and Wave Propagation	
<u>/.</u> 8.	16EC5A2	Transducers & Data Acquisition Systems	
	16EC5A3	Artificial Neural Networks & Deep Learning	
9.	16EC5A4	Modelling of semiconductor devices	
10.	16EC5A5	Object Oriented Programming in C++	
11.	16EC5A6	Computer Organization and Architecture	
12.	16EC5A7	Robotics	
13.	16G5B01	Bioinformatics	
14.	16G5B02	Fuel Cell Technology	
15.	16G5B03	Geoinformatics	
16.	16G5B04	Graph Theory	
17.	16G5B05	Artificial Neural Networks & Deep Learning	
18.	16G5B06	Hybrid Electric Vehicles	
19.	16G5B07	Optimization Techniques	
20.	16G5B08	Sensors & Applications	
21.	16G5B09	Introduction To Management Information Systems	
22.	16G5B10	Industrial Automation	
23.	16G5B11	Telecommunication Systems	
24.	16G5B12	Computational advanced numerical methods	
25.			
26.			

		VI Sem	
SI. No.	Course Code	Name of the Course	Page No.
1.	16HEM61	Foundations of Management & Economics	
2.	16EC62	Communication System II	
3.	16EC63	Computer Communication Networks	
4.	16EC64	Analog & Mixed Signal IC Design	
5.	16EC6C1	Cryptography & Network Security	
6.	16EC6C2	Real Time Embedded Systems	
7.	16EC6C3	Image Processing	
8.	16EC6C4	Low power VLSI Design	
9.	16EC6C5	Data structure using C++	
10.	16EC6C6	System Programming & Software	
11.	16EC6C7	Flexible Electronics	
12.	16EC6D1	Optical Fiber Communication & Networks	
13.	16EC6D2	ARM Cortex Processors	
14.	16EC6D3	Adaptive Signal Processing	
15.	16EC6D4	System Verilog	
16.	16EC6D5	Algorithm for VLSI Design Automation	
17.	16EC6D6	Database Management Systems (DBMS)	
18.	16EC6D7	Internet of Things (IoT)	
19.	16G6E01	Bioinspired Engineering	
20.	16G6E02	Green Technology	
21.	16G6E03	Solid Waste Management	
22.	16G6E04	Introduction to Web Programming	
23.	16G6E05	Automotive Electronics	
24.	16G6E06	Industrial Electronics	
25.	16G6E07	Project Management	
26.	16G6E08	Virtual Instrumentation	
27.	16G6E09	Introduction to Mobile Application Development	
28.	16G6E10	Automotive Engineering	
29.	16G6E11	Mobile Network System and Standards	
30.	16G6E12	Partial Differential Equations	
31.			
32.			

R V COLLEGE OF ENGINEERNG, BENGALURU-560 059 (Autonomous Institution Affiliated to VTU, Belagavi) DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

	FIFTH SEMESTER CREDIT SCHEME							
SI.	Course		Dog	Credit Allocation				Total
No	Code	Course Title	BOS	L	Т	Р	S	Credits
1	16HSI51	IPR & Entrepreneurship	HSS	3	0	0	0	3
2	16EC52	Communication System I	ECE	3	1	1	0	5
3	16EC53	Digital VLSI Design	ECE	3	1	1	0	5
4	16EC54	Embedded System Design	ECE	3	0	0	1	4
5	16EC55	Digital Signal Processing	ECE	3	0	0	1	4
6	16EC5AX	Elective A (PE)	ECE	3	0	0	1	4
7	16G5BXX	Elective B (OE)*	Respective BOS	4	0	0	0	4
		Total No. of Credits						29
		No. Of Hrs.		22	4	4	12**	30

*Students should take other department Global Elective courses

**Non-contact hours

Elective A (PE)	Elective Title	Elective B (OE)
16EC5AX		16G5BXX
16EC5A1	Antennas and Wave Propagation	To be opted from electives
16EC5A2	Transducers & Data Acquisition	offered by other Departments. For
	Systems	more information about other
16EC5A3	Artificial Neural Networks & Deep	electives see following table
	Learning	
16EC5A4	Modelling of semiconductor devices	
16EC5A5	Object Oriented Programming in C++	
16EC5A6	Computer Organization and	
	Architecture	
16EC5A7	Robotics	

PE - PROFESSIONAL ELECTIVE

OE- OTHER ELECTIVES

R V COLLEGE OF ENGINEERNG, BENGALURU-560 059 (Autonomous Institution Affiliated to VTU, Belagavi) DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

	SIXTH SEMESTER CREDIT SCHEME							
SI.	Course		DOS	Credit Allocation				Total
No.	Code	Course Title	BOS	L	Т	Р	S	Credits
1	16HEM61	Foundations of Management & Economics	HSS	2	0	0	0	2
2	16EC62	Communication System II	ECE	4	0	1	0	5
3	16EC63	Computer Communication Networks	ECE	3	0	1	1	5
4	16EC64	Analog & Mixed Signal IC Design	ECE	3	1	0	0	4
5	16EC6CX	Elective C (PE)	ECE	3	0	0	1	4
6	16EC6DX	Elective D (PE)	ECE	3	0	0	1	4
7	16G6EXX	Elective E (OE)*	Respective BOS	3	0	0	0	3
8	16HS8	Professional Practice-III (Employability Skills and Professional Development of Engineers)	HSS	1	0	0	0	1
		Total No. of Credits						28
		No. Of Hrs.		22	2	4	12**	28

*Students should take other department Global Elective courses **Non-contact hours

Elective C (PE) 16EC6CX	Elective Title	Elective D (PE) 16EC6DX	Elective Title	Elective E (OE) 16G6EXX
16EC6C1	Cryptography & Network Security	16EC6D1	Optical Fiber Communication & Networks	
16EC6C2	Real Time Embedded Systems	16EC6D2	ARM Cortex Processors	To be opted from
16EC6C3	Image Processing	16EC6D3	Adaptive Signal Processing	electives offered by other Departments.
16EC6C4	Low power VLSI Design	16EC6D4	System Verilog	For more information about other electives
16EC6C5	Data structure using C++	16EC6D5	Algorithm for VLSI Design Automation	see following table
16EC6C6	System Programming & Software	16EC6D6	Database Management Systems(DBMS)	
16EC6C7	Flexible Electronics	16EC6D7	Internet of Things (IoT)	

PE – PROFESSIONAL ELECTIVE

OE- OTHER ELECTIVES

Global Electives offered

·	V SEMIESTER					
S.No	Course Code	Course	Offering Dept.			
1.	16G5B01	Bioinformatics	Biotechnology			
2.	16G5B02	Fuel Cell Technology	Chemical Engineering			
3.	16G5B03	Geoinformatics	Civil Engineering			
4.	16G5B04	Graph Theory	Computer Science Engineering			
5.	16G5B05	Artificial Neural Networks &	Electronics & Communication			
		Deep Learning	Engineering			
6.	16G5B06	Hybrid Electric Vehicles	Electrical & Electronics Engineering			
7.	16G5B07	Optimization Techniques	Industrial & Management Engineering			
8.	16G5B08	Sensors & Applications	Electronics & Instrumentation			
			Engineering			
9.	16G5B09	Introduction To Management	Information Science Engineering			
		Information Systems	Information Science Engineering			
10.	16G5B10	Industrial Automation	Mechanical Engineering			
11.	16G5B11	Telecommunication Systems	Telecommunication Engineering			
12.	16G5B12	Computational advanced	Mathematics			
		numerical methods				

V SEMESTER

VI SEMESTER

S.No	Course	Course	Offering Dept.		
	Code				
1.	16G6E01	Bioinspired Engineering	Biotechnology		
2.	16G6E02	Green Technology	Chemical Engineering		
3.	16G6E03	Solid Waste Management	Civil Engineering		
4.	16G6E04	Introduction to Web Programming	Computer Science Engineering		
5.	16G6E05	Automotive Electronics	Electronics & Communication		
	10000203	Automotive Electronics	Engineering		
6.	16G6E06	Industrial Electronics	Electrical & Electronics Engineering		
7.	16G6E07	Project Management	Industrial & Management Engineering		
8.	16G6E08	Virtual Instrumentation	Electronics & Instrumentation		
	10000208	Viituai instrumentation	Engineering		
9.	16G6E09	Introduction to Mobile Application	Information Science Engineering		
		Development	Information Science Engineering		
10.	16G6E10	Automotive Engineering	Mechanical Engineering		
11.	16G6E11	Mobile Network System and	Telecommunication Engineering		
	TUCULII	Standards			
12.	16G6E12	Partial Differential Equations	Mathematics		

Local Elective	Semester V	Semes	ter VI	Semester VII	Semester VII
Streams	Sem V-1 (16EC5AX)	Sem VI-1 (16EC6CX)	Sem VI-2 (16EC6DX)	Sem VII- 1(16EC7FX)	Sem VII- 2(16EC7GX)
L:T:P:S	3:0:0:1	3:0:0:1	3:0:0:1	4:0:0:0	4:0:0:0
Communications	Antennas & Wave Propagation	Cryptography & Network Security	Optical Fiber Communication & Networks	Satellite Communications & GPS	Radar & Navigation
Embedded Systems	Transducers & Data Acquisition Systems	Real Time Embedded Systems	ARM Cortex Processors	ARM Programming & Optimization	Automotive Electronics
Signal Processing	Artificial Neural Networks & Deep Learning	Image Processing	Adaptive Signal Processing	Speech Processing	Multimedia Communication
VLSI	Modelling of semiconductor devices	Low power VLSI Design	System Verilog/Algorith m for VLSI Design Automation	Radio Frequency Integrated Circuits Design	VLSI Testing for ICs
Computer	Object Oriented Programming in C++ /Computer Organization and Architecture	Data structure using C++/System Programming & Software	Database Management Systems (DBMS)	High Performance Computing	High Speed digital design
Others	Robotics	Flexible Electronics	Internet of Things (IoT)	Integrated Photonics/Nanoelec tronics	MEMS and Smart Systems
Global Elective	Artificial Neural Networks & Deep Learning (L:T:P:S 4:0:0:0)	Automotive Electronics (L:T:P:S 3:0:0:0)		Image Processing (L:T:P:S 3:0:0:0)	

B.E., ECE -ELECTIVE COURSES (Co	Consolidated Stream	wise)
--	---------------------	-------

	Semester: V								
	INTELLECTUAL PROPERTY RIGHTS AND ENTREPRENEURSHIP								
	(Theory)								
	(COMMON 7	TO CS, EC, EE, IS, TC)							
Cour	rse Code: 16HSI51	CIE Marks: 100							
Cred	lits: L:T:P:S: 3:0:0:0	SEE Marks: 100							
Hou	Hours: 36L SEE Duration: 03Hrs								
Cour	rse Learning Objectives: The students	will be able to							
1	To build awareness on the various forms of IPR and to build the perspectives on the concepts								
1	and to develop the linkages in technology innovation and IPR.								
2	To equip students on the need to pro-	otect their own intellectual works and o	levelop ethical						
2	standards governing ethical works.								
3	To motivate towards entrepreneurial careers and build strong foundations skills to enabl								
3	starting, building and growing a viable as well as sustainable venture.								
4	Develop an entrepreneurial outlook an	d mind set along with critical skills and	l knowledge to						
4	manage risks associated with entrepren	eurs.	_						

UNIT-I	
Introduction: Types of Intellectual Property, WIPO, WTO, TRIPS.	07 Hrs
Patents: Introduction, Scope and salient features of patent; patentable and non-patentable	
inventions, Patent Procedure - Overview, Transfer of Patent Rights; Biotechnology patents,	
protection of traditional knowledge, Infringement of patents and remedy, Case studies	
Trade Secrets: Definition, Significance, Tools to protect Trade secrets in India.	
UNIT-II	
Trade Marks: Concept, function and different kinds and forms of Trade marks,	04 Hrs
Registrable and non- registrable marks. Registration of trade mark; Deceptive similarity;	
Assignment and transmission; ECO Label, Passing off; Offences and penalties.	
Infringement of trade mark with Case studies	
UNIT-III	
Industrial Design: Introduction, Protection of Industrial Designs, Protection and	09 Hrs
Requirements for Industrial Design. Procedure for obtaining Design Protection,	
Revocation, Infringement and Remedies, Case studies	
Copy Right: Introduction, Nature and scope, Rights conferred by copy right, Copy right	
protection, transfer of copy rights, right of broad casting organizations and performer's	
rights, Case Studies.	
Intellectual property and cyberspace: Emergence of cyber-crime; Grant in software	
patent and Copyright in software; Software piracy; Data protection in cyberspace	
UNIT-IV	
Introduction to Entrepreneurship – Learn how entrepreneurship has changed the world.	08 Hrs
Identify six entrepreneurial myths and uncover the true facts. Explore E-cells on Campus	
Listen to Some Success Stories: - Global legends Understand how ordinary people	
become successful global entrepreneurs, their journeys, their challenges, and their success	
stories. Understand how ordinary people from their own countries have become successful	
entrepreneurs.	
Characteristics of a Successful Entrepreneur Understand the entrepreneurial journey and	
learn the concept of different entrepreneurial styles. Identify your own entrepreneurship	
style based on your personality traits, strengths, and weaknesses. Learn about the 5M	
Model, each of the five entrepreneurial styles in the model, and how they differ from each	
other. Communicate Effectively: Learn how incorrect assumptions and limiting our	
opinions about people can negatively impact our communication. Identify the barriers	
which cause communication breakdown, such as miscommunication and poor listening, and	
learn how to overcome them.	
Communication Best Practices. Understand the importance of listening in communication	

and learn to listen actively. Learn a few body language cues such as eye contact and	
handshakes to strengthen communication. (Practical Application)	
UNIT-V	
Design Thinking for Customer Delight: - Understand Design Thinking as a problem-	08 Hrs
solving process. Describe the principles of Design Thinking. Describe the Design Thinking	
process.	
Sales Skills to Become an Effective Entrepreneur: - Understand what is customer focus	
and how all selling effort should be customer-centric. Use the skills/techniques of personal	
selling, Show and Tell, and Elevator Pitch to sell effectively.	
Managing Risks and Learning from Failures: - Identify risk-taking and resilience traits.	
Understand that risk-taking is a positive trait. Learn to cultivate risk-taking traits. (Practical	
Application) Appreciate the role of failure on the road to success, and understand when to	
give up. Learn about some entrepreneurs/risk-takers. (Practical Application).	
Are You Ready to be an Entrepreneur: - Let's ask "WHY" Give participants a real	
picture of the benefits and challenges of being an entrepreneur. Identify the reasons why	
people want to become entrepreneurs. Help participants identify why they would want to	
become entrepreneurs.	

Cours	e Outcomes: After completing the course, the students will be able to
CO1:	Comprehend the applicable source, scope and limitations of Intellectual Property within the
	perview of engineering domain.
CO2:	Knowledge and competence related exposure to the various Legal issues pertaining to
	Intellectual Property Rights with the utility in engineering perspectives.
CO3:	Enable the students to have a direct experience of venture creation through a facilitated
	learning environment.
CO4:	It allows students to learn and apply the latest methodology, frameworks and tools that
	entrepreneurs use to succeed in real life.

Reference Books

1.	Law Relating to Intellectual Property, Wadehra B L,5 th Edition, 2012, Universal Law Pub Co.								
	LtdDelhi, ISBN: 9789350350300								
2.	Intellectual Property Rights: Unleashing Knowledge Economy, Prabuddha Ganguly, 1st								
	Edition, 2001, Tata McGraw Hill Publishing Company Ltd., New Delhi, ISBN: 0074638602.								
3.	Intellectual Property and the Internet, Rodney Ryder, 2002, Lexis Nexis U.K., ISBN:								
	8180380025, 9788180380020.								
4.	Entrepreneurship, Rajeev Roy, 1 st Edition, 2012, Oxford University Press, New Delhi, ISBN:								
	9780198072638.								

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

R.V. College of Engineering – Bengaluru-59

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	3	3	-	3	1	2	-	3
CO2	1				3	3	3	3	1	2	-	3
CO3	-	3	2	-	-	2	2	3	3	3	3	3
CO4	-	3	2	-	-	3	3	3	3	3	3	3

Low-1 Medium-2 High-3

Semester: V							
	COMMUNICATIO						
	(Theory & Pr	actice)					
Cou	rse Code: 16EC52	CIE Marks: 100+50					
Cre	dits: L:T:P:S: 3:1:2:0	SEE Marks: 100+50					
Hou	Irs: 36L+24T	SEE Duration: 03Hrs					
Cou	rse Learning Objectives: The students will be al	le to					
1	Understand the concepts of FM, Low pass and bandpass sampling and Random processes to						
1	compute performance parameters						
2	Analyse the concepts of sampling, quantization, encoding and apply them to voice conditioning						
4	for communication purposes.						
3	Understand the concepts of information theory as	a prerequisite for error detection and					
3	correction.						
4	Associate the concepts of Information Theory to	the principle of block error coding and					
	decoding for different communication scenario.						

UNIT-I	
Angle (Exponential) Modulation Nonlinear Modulations, Bandwidth of Angle-	07 Hrs
Modulated Waves, Generating of FM Waves by direct methods, Demodulation of FM,	
PLL.	
Sampling and Analog to Digital Conversion Low Pass Sampling Theorem (Impulse,	
Pulse and Flat top), Bandpass and equivalent low pass signal representation, Quadrature	
Sampling of bandpass signals, Bandpass Sampling Theorem statement with Applications.	L
UNIT-II	
Review of Random Variables and their properties	07 Hrs
Multiple Random Variables: Properties, Operations. Random Processes From Random	
Variable to Random Process, Classification of Random Processes, properties and	
operations.	
Baseband Pulse Transmission (Line Codes) (RZ and NRZ) Unipolar, Polar, Bipolar,	
Manchester signaling, Discrete form statement of Wiener – Khinchine Theorem –	
Applications to PSD derivations for these pulses. Highlights of other baseband pulses	
HDB3, B6ZS.	<u>.</u>
UNIT-III	00 11
Digital Multiplexing and demultiplexing: Framing with overheads, Types- Synchronous,	08 Hrs
Asynchronous, Quasi-Synchronous. Demultiplexing FSM, Retiming FSM with Plesiochronous buffering.	
Pulse-Code Modulation (PCM) – Uniform Quantization, Non uniform Quantization –	
Optimal quantizer and Robust quantizer (μ -law and A-law), SNR derivations for all types.	
Differential Pulse Code Modulation (DPCM), Delta Modulation with SNR derivation,	
Adaptive DM with SNR statement only.	
Sigma-delta Modulation concept. Applications to Channel Vocoders and LPC	
Vocoders.(Conceptual treatment)	
UNIT-IV	
Introduction to Information Theory Measure of Information, Source Encoding, Error-	07 Hrs
Free Communication over a Noisy Channel, Channel Capacity of a Discrete Memory less	
Channel, Channel Capacity of a Continuous memory less Channel, Practical	
Communication Systems in Light of Shannon's Equation, Frequency selective Channel	
capacity, Multiple input Multiple output Communication System.	
UNIT-V	
Error Correcting Codes	07 Hrs
Redundancy for error correction, Linear Block Codes, Cyclic Codes, The effect of error	
correction, Burst-Error Detecting and Correcting Codes. A brief concept of RS Codes +	
Interleaving	

Practical's: Communication Lab

- 1. Frequency Modulation and Demodulation (Matlab)
- 2. Verification of Sampling theorem
- 3. Implementation of Convolution and DFT
- 4. Realization of FIR filter to meet given specifications (DSP kit)
- 5. Realization of IIR filter to meet given specifications (DSP kit)
- 6. Generation of Noise and study of its properties
- 7. Time Division Multiplexing (Matlab & Circuit)
- 8. Pulse Code Modulation & Delta Modulation (Matlab & Simulink)
- 9. Linear block code and Huffman code (Matlab)
- 10. Line codes generation and Pe & PSD Calculation

Course Outcomes: After completing the course, the students will be able toCO1:Associate and apply the concepts of digital formatting, reconstruction to digital transmitter
and receivers used in cellular and other communication devices.CO2:Analyze and compute performance of continuous wave modulation, digital formatting
schemes.CO3:Test and validate digital formatting schemes and block codes under noisy channel conditions
to estimate the performance in practical communication systems.CO4:Design/Demonstrate by way of simulation or emulation of different functional blocks of
digital formatting and block error correction

Ref	erence Books
1.	Modern Digital and Analog communication Systems, B.P.Lathi and Zhi Ding, 4 th Edition, 2010, Oxford University Press, ISBN: 9780198073802.
2.	Analog & Digital Communication Systems, Simon Haykin, 1 st Edition, 2014, John Wiley & sons, , ISBN 978-0-471-64735-5.
3.	Communication Systems, Simon Haykin, 4 th Edition, 2004, John Wiley, India Pvt. Ltd, ISBN 0471178691

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	2	-	-	-	1	1	-	2
CO2	3	2	2	1	-	-	-	-	1	1	-	1
CO3	3	3	2	2	2	-	-	-	-	1	-	1
CO4	3	3	3	3	2	-	-	-	-	1	-	2

	Semeste	er: V				
	DIGITAL VLS	SI DESIGN				
	(Theory & I	Practice)				
Cou	rse Code: 16EC53	CIE Marks: 100+50				
Cre	dits: L:T:P:S: 3:1:1:0	SEE Marks: 100+50				
Hou	rs: 36L+24T	SEE Duration: 03Hrs				
Cou	rse Learning Objectives: The students will be	able to				
1	Analyze the impact of fabrication technologies	: Methods for optimizing the area, speed, and				
I	power of circuit layouts.					
2	Design and implement combinational circuit.					
3						
4	4 Analyze the impact of RC effect in post simulation.					
	· · · ·					
	UNIT	I				

UNIT-I

0111-1	-
VLSI Design Flow : Specification, Design entry, Functional simulation, planning	07 Hrs
placement and routing, timing simulation.MOS Transistor: Introduction, Ideal I-V	
characteristics, C-V Characteristics, Simple MOS Capacitance Models, Detailed MOS	
Gate Capacitance Model, Non-ideal I-V Effects, Mobility Degradation and Velocity	
Saturation, Channel Length Modulation, Threshold Voltage Effects, Junction Leakage,	
Body effect, Tunneling. DC Transfer Characteristics: Static CMOS Inverter DC	
Characteristics, Beta Ratio Effect, Noise Margin, Pass Transistor DC Characteristics.	
UNIT-II	
Combinational Circuit Design: CMOS Logic, Inverter, NAND Gate, NOR Gate,	08 Hrs
Combinational Logic, Compound Gates, Pass Transistors and Transmission Gates,	
Tristates, Multiplexers. Circuit Families: Static CMOS, Ratioed Circuits, Cascode	
Voltage Switch Logic, Dynamic Circuits, Complementary Pass-Transistor Logic Circuits.:	
Datapath Subsystem: Single-Bit Addition, Ripple Carry Adder, Carry Look ahead Adder,	
Carry Save Adder, Unsigned Array Multiplication, 2's Complement Array Multiplication,	
Wallace Tree Multiplication.	
UNIT-III	
Sequential MOS Logic Circuitry: Behavioral of Bistable element, SR Latch Circuitry,	07 Hrs
Clocked latch and Flip Flop Circuitry, C-MOS D-Latch and Edge Triggered Flip-Flop.	
Sequencing Static Circuits: Sequencing Methods, Max-Delay Constraints, Min-Delay	
Constraints Time Borrowing, Clock Skew	
UNIT-IV	
Array Sub system SRAM: Memory cell Read/Write operation, Decoder, Bit-line	07 Hrs
conditioning and column circuitry and Column Circuitry, Multi-Ported SRAM. DRAM	•••
Subarray Architectures, Column Circuitry Read-Only Memory Programmable ROMs,	
NAND ROMs. Content-Addressable Memory	
UNIT-V	
CMOS Processing Technology: CMOS Technologies, Wafer Formation,	07 Hrs
Photolithography, Well and Channel Formation, Silicon Dioxide (SiO2), Isolation, Gate	07 1115
Oxide, Gate and Source/Drain Formations, Contacts and Metallization, Passivation,	
Methodology. : Lambda Design Rules. Transistor Scaling. Inverter (nMOS and CMOS)	
Practical's: VLSI Lab	
1.	
a Realize CMOS Logic-universal gates.	
b Practice question: Realize XOR/XNOR gates	
2.	
a Realization of CMOS - adder circuits	
 b Practice question: Realize 4-bit adder/subractor 	
3.	
a MOS device Characterization	

	b	Practice question: Plot g_m Vs V_{gs} for NMOS/PMOS	
4.			
	а	Inverter Static Characteristics	
	b	Practice question: Plot the Voltage Transfer Characteristic graph of CMOS	
		inverter and calculate the switching voltage for the given specification	
5.		8	
0.	а	Sequential Circuit Design using Master-Slave configuration	
	b	Practice question: Realize 4-bit binary counter	
6.	-	er layout and post simulation	
0. 7.	mvente	and post simulation	
7.		NOD (NAND actes layout and next simulation	
	a	NOR/NAND gates layout and post simulation	
_	b	Practice question: Realize AND/OR gates	
8.			
	а	Common source single stage amplifier and Differential amplifier	
	b	Practice question: Realize Op-amp circuit	
9.	Realiz	ze 2-bit multiplier circuit using Mixed mode	
Ca	se study	y: ASIC design flow using cadence. (Students should learn the concept and	
	-	e relevant document)	
P10			

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Analyze transistor circuits and its impact on VLSI design flow.						
CO2:	Apply & analyze the design parameters for speed, area & power optimization.						
CO3:	Evaluate the functionality of VLSI blocks using various architectures.						
CO4:	Analyze various fabrication processes for different logic families/designs.						

Reference Books

1.	CMOS VLSI Design, Neil H.E. Weste, David Harris, Ayan Banerjee, 3rd Edition, 2006, Pearson
	Education, ISBN: 0321149017

- **2.** CMOS Digital Integrated Circuits, Sung MO Kang, Yousf Leblebici, 3rd Edition, Tata McGrawHill, ISBN: 0-7923-7246-8
- **3.** Basic VLSI Design, Douglas.A.Pucknell, Kamaran Eshraghian, 3rd Edition 2010 ,PHI, ,ISBN: 0-321-26977-2
- 4. Digital Integrated Circuits- A Design perspective, Jan M rabaey, 2nd Edition, 2005. Prentice Hall

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I,

R.V. College of Engineering – Bengaluru-59

IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	-	3	-	-	-	1	-	-	2
CO2	3	2	3	2	3	-	1	-	-	-	-	2
CO3	3	3	2	2	3	-	-	-	-	1	-	1
CO4	1	1	3	3	3	-	2	1	-	1	-	1

	Semester: V							
	EMBEDDED SYSTEM DESIGN							
	(Theory)							
Cou	Course Code: 16EC54 CIE Marks: 100							
Crea	dits: L:T:P:S: 3:0:0:1		SEE Marks: 100					
Hou	Hours: 36L SEE Duration: 03Hrs							
Cou	Course Learning Objectives: The students will be able to							
1	Understand embedded computing system, design process and basic building blocks of an embedded system.							
2	Illustrate how microprocessor, memory, peripheral components and buses build an embedded platform and their interaction.							
3	3 Evaluate how architectural and implementation design decisions influence performance and power dissipation.							
4	Explain the basic operation of a real-time operating system.							
5	Building, testing the operation of real-time embedded application programs through hands-on experience with a single-board computer.							

UNIT-I	
I Introduction to Embedded System Design: Introduction, Characteristics of Embedding	08 Hrs
Computing Applications, Concept of Real time Systems, Challenges in Embedded System	
Design, Design Process: Requirements, Specifications, Hardware Software Partitioning,	
Architecture Design. Embedded System Architecture: Co-Processor & Hardware	
Accelerators, Processor performance Enhancement: Pipelining, Superscalar Execution,	
Multi Core CPUs.	
UNIT-II	
Designing Embedded System Hardware -I: Memory systems: Memory organization,	07 Hrs
Error detecting and correcting, memory Access times, DRAM interfaces, DRAM refresh	
techniques, Cache, Unified versus Harvard caches, Cache coherency, Cache, Dual port and	
shared memory.	
UNIT-III	
Designing Embedded System Hardware –II: I/O Devices: Watchdog Timers, Interrupt	08 Hrs
Controllers, Interfacing Protocols: SPI, I2C, CAN: Frame Formats, Wiring Topology, Reset	
Circuits, Interfacing RTC.	
UNIT-IV	
Designing Embedded System Software Application Software, System Software, Use of	07 Hrs
High Level Languages: C, C++, Java, Programming & Integrated Development	
Environment tools, Debugger, Board Support Library, Chip Support Library Analysis and	
Optimization: Execution Time, Energy & Power, Program Size; Embedded System	
Coding Standards: MISRA C 2012.	
UNIT-V	
	07.11
Designing Embedded System Software -II: OS based Design, Real Time Kernel,	07 Hrs

Designing Embedded System Software –II: OS based Design, Real Time Kernel, Process& Thread, Multi-threading, Synchronization, Kernel services, Case Study: RTX-ARM.

Cours	Course Outcomes: After completing the course, the students will be able to								
CO1:	Analyse the architecture of embedded system, functional difference between general purpose								
	system, operational & nonoperational attributes of embedded system.								
CO2:	Analyze the hardware requirements of an embedded system & design according to								
	specifications.								
CO3:	Develop software architecture & realize optimally using suitable language.								
CO4:	Engage in self-study to formulate, design, implement, analyze and demonstrate an embedded								
	application developed to control real world operations.								

Refe	Reference Books					
1.	Introduction to Embedded Systems, Shibu K V, 2009, Tata McGraw Hill Education Private					
	Limited, ISBN: 10: 0070678790					
2.	Embedded System Design, Steve Heath, 2 nd Edition, 2004, Elsevier,					
3.	Embedded Systems - A contemporary Design Tool ,James K Peckol, 2008, John Weily,					
	ISBN: 0-444-51616-6					
4.	MSP430 Microcontroller Basics, John H. Davies, 2008, Newness Publishing House					

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	1	1	-	-	-	-	-	1	-	1
CO2	3	2	2	1	1	2	1	-	-	1	-	2
CO3	3	3	2	2	2	2	1	2	-	1	-	2
CO4	3	3	3	3	2	3	2	3	3	3	3	3

	Semester	: V					
	DIGITAL SIGNAL I						
	(Theory & Pi	actice)					
Cou	rse Code: 16EC55	CIE Marks: 100					
Crea	dits: L:T:P:S: 3:0:0:1	SEE Marks: 100					
Hou	Hours: 36L SEE Duration: 03Hrs						
Cou	rse Learning Objectives: The students will be a	ble to					
1	Understand the key theoretical principles underpinning Digital Signal Processing in a design						
I	procedure through FIR and IIR filters.						
2	Analyze the effect of up-sampling and down-sampling	npling and interprets the sampling rate					
4	conversion in multistage implementation of digi	tal filters					
3	Develop the DFT filter bank using the concept of Maximally decimated DFT filter bank and						
3							
4	Interface the digital system with different sampl	ing rates and Sub-band Coding of Speech					
4	Signals with touch tone generation and reception	n for digital telephones.					

UNIT-I	
Design of IIR Filter: Analog filter design using Butterworth and Chebyshev filter. IIR	07 Hrs
Filter design by Bilinear Transformation, digital filter designs based on the Bilinear	
Transformation using Analog filter.	
UNIT-II	
Design of FIR Filters : Symmetric and anti-symmetric FIR Filters, FIR Filter structure:	08 Hrs
Direct form structure, cascade form structures, frequency sampling structures, lattice	
structure. Design of Linear phase FIR Filters using Windows, Design of Linear phase FIR	
filters by frequency Sampling method.	
UNIT-III	
Multirate Digital signal Processing: Introduction, Analysis of down sampling and up-	08 Hrs
sampling, Sampling rate conversion by a rational factor, Multistage implementation of	
digital filters, Efficient implementation of Multirate systems	
UNIT-IV	
Applications of Multirate Signal Processing: Digital to Analog conversion, DFT filter	07 Hrs
bank, maximally decimated DFT filter bank, Transmultiplexer.	
UNIT-V	
Applications of Digital Filter Banks: Implementation of Narrow band Low pass Filters,	07 Hrs
Design of phase shifter, Interfacing of digital system with different sampling rates, Sub	
band Coding of Speech Signals, Touch tone generation and reception for digital telephones.	

Cours	Course Outcomes: After completing the course, the students will be able to						
CO1:	Apply appropriate mathematical skills to describe and solve problems in designing of filters						
	and Multirate signal processing						
CO2:	Analyse and design the fundamental blocks of Multirate signal processing and DFT filter						
	banks.						
CO3:	Analyze discrete system and validate the functionality of the same using simulation tool.						
CO4:	Design discrete systems to meet specific requirement for signal processing application						

Refe	erence Books
1.	Proakis G, Dimitris G. Manolakis; "Digital Signal Processing"; PHI; 4 th Edition; 2007;
	ISBN: 978-0131873742
2.	Roberto Cristi, "Modern digital signal Processing", Cengage learning, 2004.
3.	Lonnie C. Ludeman; "Fundamentals of Digital Signal Processing"; John Wiely & Sons;
	1986; ISBN: 0471603635

4. Monson H.Hayes; "Digital Signal Processing"; Schaum's Outline Series; 2nd Edition; 2011; ISBN: 0071635092

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	2
CO2	3	2	2	-	-	-	-	-	-	1	-	2
CO3	3	3	2	-	2	-	-	2	3	1	1	2
CO4	3	3	3	-	2	-	-	1	1	1	2	2

Low-1 Medium-2 High-3

	Semester: V				
	ANTENNAS AND WAVE PRO	OPAGATION			
	(Theory)				
	rse Code: 16EC5A1	CIE Marks: 100			
	lits: L:T:P:S: 3:0:0:1	SEE Marks: 100			
Hours: 36LSEE Duration: 3Hrs					
Cour	se Learning Objectives: The students will be able to				
1	Analyze how an antenna radiates and capture radio w	ave energy from the concepts of	radiation		
	by dynamic currents, charges and retarded potentials.				
2	Demonstrate properties and parameters of antenn		radiation		
	impedance, directivity, antenna gain and effective area		- 1 4 - 1		
3	Apply the Friss transmission expression and recipr receive power in a system consisting of transmit and r		edict the		
	Develop an antenna system including the shape of the		uiramant		
4	on the arrangement of the radiating elements in an arr				
-	radiation pattern, gain, operating frequency, transmit/		s such as		
	radiation pattern, gain, operating frequency, transmith				
	UNIT-I				
Anter	nna Basics		08 Hrs		
Paran	neters, Patterns, Beam Solid Angle, Radiation Intensi	ty, Directivity and Gain, Radio			
	munication Link, Polarization, Antenna Temperature.	5, 5, 5, 7,			
	es of Antennas				
• -	Source, Monopole & Dipole, Loop Antenna, Slot An	tenna, Horn Antenna, Reflector			
	nna, Lens Antenna, Helical Antenna, Reflector Anten				
Recep	ption, MIMO	-			
	UNIT-II				
Elect	tric Dipole		07 Hrs		
Short	t Electric Dipole, Fields, Radiation Resistance, $\lambda/2$	Dipole and its Characteristics,			
	ed Dipole, Rhombic Antenna and V Antenna.				
	nna Arrays				
Linea	ar Array, Principle of Pattern Multiplication, Broadside	and End Fire Arrays, Uniform			
Linea	ar Array, Principle of Pattern Multiplication, Broadside Non- Uniform Arrays.	and End Fire Arrays, Uniform			
Linea and N	ar Array, Principle of Pattern Multiplication, Broadside Non- Uniform Arrays. UNIT-III	e and End Fire Arrays, Uniform			
Linea and N Speci	ar Array, Principle of Pattern Multiplication, Broadside Non- Uniform Arrays. UNIT-III ial Types of Antennas		07 Hrs		
Linea and N Speci Babin	ar Array, Principle of Pattern Multiplication, Broadside Non- Uniform Arrays. UNIT-III ial Types of Antennas net's Principle and Complementary Antennas, Lens Ar		07 Hrs		
Linea and N Speci Babin Statio	ar Array, Principle of Pattern Multiplication, Broadside Non- Uniform Arrays. UNIT-III ial Types of Antennas net's Principle and Complementary Antennas, Lens Ar on and Mobile Antenna, Embedded Antenna.		07 Hrs		
Linea and N Speci Babin Statio Broa	ar Array, Principle of Pattern Multiplication, Broadside Non- Uniform Arrays. UNIT-III ial Types of Antennas net's Principle and Complementary Antennas, Lens Ar on and Mobile Antenna, Embedded Antenna. dband and Frequency Independent Antennas	ntenna, Turnstile Antenna, Base	07 Hrs		
Linea and N Speci Babin Statio Broa	ar Array, Principle of Pattern Multiplication, Broadside Non- Uniform Arrays. UNIT-III ial Types of Antennas net's Principle and Complementary Antennas, Lens Ar on and Mobile Antenna, Embedded Antenna. dband and Frequency Independent Antennas es, Biconical Antenna, Log Periodic Antenna, UWB An	ntenna, Turnstile Antenna, Base	07 Hrs		
Linea and N Speci Babin Statio Broad Basic	ar Array, Principle of Pattern Multiplication, Broadside Non- Uniform Arrays. UNIT-III ial Types of Antennas net's Principle and Complementary Antennas, Lens Ar on and Mobile Antenna, Embedded Antenna. dband and Frequency Independent Antennas cs, Biconical Antenna, Log Periodic Antenna, UWB An UNIT-IV	ntenna, Turnstile Antenna, Base			
Linea and N Speci Babin Statio Broad Basic Micro	ar Array, Principle of Pattern Multiplication, Broadside Non- Uniform Arrays. UNIT-III ial Types of Antennas net's Principle and Complementary Antennas, Lens Ar on and Mobile Antenna, Embedded Antenna. dband and Frequency Independent Antennas cs, Biconical Antenna, Log Periodic Antenna, UWB An UNIT-IV ro-Strip and Patch Antennas	atenna, Turnstile Antenna, Base tennas for Digital Applications			
Linea and N Speci Babin Statio Broad Basic Micro Salier	ar Array, Principle of Pattern Multiplication, Broadside Non- Uniform Arrays. UNIT-III ial Types of Antennas net's Principle and Complementary Antennas, Lens Ar on and Mobile Antenna, Embedded Antenna. dband and Frequency Independent Antennas es, Biconical Antenna, Log Periodic Antenna, UWB An UNIT-IV ro-Strip and Patch Antennas nt Features, Advantages and Limitations, Feed Meth	atenna, Turnstile Antenna, Base tennas for Digital Applications			
Linea and N Speci Babin Statio Broad Basic Micro Salier Micro	ar Array, Principle of Pattern Multiplication, Broadside Non- Uniform Arrays. UNIT-III ial Types of Antennas net's Principle and Complementary Antennas, Lens Ar on and Mobile Antenna, Embedded Antenna. dband and Frequency Independent Antennas cs, Biconical Antenna, Log Periodic Antenna, UWB An UNIT-IV ro-Strip and Patch Antennas nt Features, Advantages and Limitations, Feed Meth o-Strip Antennas, Applications.	atenna, Turnstile Antenna, Base tennas for Digital Applications			
Linea and N Speci Babin Statio Broad Basic Micro Salier Micro Anter	ar Array, Principle of Pattern Multiplication, Broadside Non- Uniform Arrays. UNIT-III ial Types of Antennas net's Principle and Complementary Antennas, Lens Ar on and Mobile Antenna, Embedded Antenna. dband and Frequency Independent Antennas cs, Biconical Antenna, Log Periodic Antenna, UWB An UNIT-IV ro-Strip and Patch Antennas nt Features, Advantages and Limitations, Feed Meth o-Strip Antennas, Applications. nna measurements	tenna, Turnstile Antenna, Base tennas for Digital Applications nods, Characteristics, Array of	07 Hrs 07 Hrs		
Linea and N Speci Babin Statio Broad Basic Micro Salier Micro Anten Meas	ar Array, Principle of Pattern Multiplication, Broadside Non- Uniform Arrays. UNIT-III ial Types of Antennas net's Principle and Complementary Antennas, Lens Ar on and Mobile Antenna, Embedded Antenna. dband and Frequency Independent Antennas es, Biconical Antenna, Log Periodic Antenna, UWB An UNIT-IV ro-Strip and Patch Antennas nt Features, Advantages and Limitations, Feed Meth o-Strip Antennas, Applications. nna measurements surement Range, Radiation Pattern Measurement, Gai	tenna, Turnstile Antenna, Base tennas for Digital Applications nods, Characteristics, Array of			
Linea and N Speci Babin Statio Broad Basic Micro Salier Micro Anten Measu	ar Array, Principle of Pattern Multiplication, Broadside Non- Uniform Arrays. UNIT-III ial Types of Antennas net's Principle and Complementary Antennas, Lens Ar on and Mobile Antenna, Embedded Antenna. dband and Frequency Independent Antennas es, Biconical Antenna, Log Periodic Antenna, UWB An UNIT-IV ro-Strip and Patch Antennas nt Features, Advantages and Limitations, Feed Meth o-Strip Antennas, Applications. nna measurements surement Range, Radiation Pattern Measurement, Gai er Measurements	tenna, Turnstile Antenna, Base tennas for Digital Applications nods, Characteristics, Array of			
Linea and N Speci Babin Statio Broad Basic Micro Anter Mease Powe	ar Array, Principle of Pattern Multiplication, Broadside Non- Uniform Arrays. UNIT-III ial Types of Antennas net's Principle and Complementary Antennas, Lens Ar on and Mobile Antenna, Embedded Antenna. dband and Frequency Independent Antennas es, Biconical Antenna, Log Periodic Antenna, UWB An UNIT-IV ro-Strip and Patch Antennas nt Features, Advantages and Limitations, Feed Meth o-Strip Antennas, Applications. nna measurements surement Range, Radiation Pattern Measurement, Gai er Measurements UNIT-V	ntenna, Turnstile Antenna, Base tennas for Digital Applications nods, Characteristics, Array of n and Directivity, Polarization,	07 Hrs		
Linea and N Speci Babin Statio Broad Basic Micro Salier Micro Anter Measu Powe Basic	ar Array, Principle of Pattern Multiplication, Broadside Non- Uniform Arrays. UNIT-III ial Types of Antennas net's Principle and Complementary Antennas, Lens Arr on and Mobile Antenna, Embedded Antenna. dband and Frequency Independent Antennas cs, Biconical Antenna, Log Periodic Antenna, UWB An UNIT-IV ro-Strip and Patch Antennas nt Features, Advantages and Limitations, Feed Meth o-Strip Antennas, Applications. nna measurements surement Range, Radiation Pattern Measurement, Gai er Measurements UNIT-V cs of Wave Propagation Guided Waves, Unguided	tenna, Turnstile Antenna, Base tennas for Digital Applications nods, Characteristics, Array of n and Directivity, Polarization, Waves, Classification of EM			
Linea and N Speci Babin Statio Broad Basic Micro Anter Measy Powe Basic Spect	ar Array, Principle of Pattern Multiplication, Broadside Non- Uniform Arrays. UNIT-III ial Types of Antennas net's Principle and Complementary Antennas, Lens Ar on and Mobile Antenna, Embedded Antenna. dband and Frequency Independent Antennas es, Biconical Antenna, Log Periodic Antenna, UWB An UNIT-IV ro-Strip and Patch Antennas nt Features, Advantages and Limitations, Feed Meth o-Strip Antennas, Applications. nna measurements surement Range, Radiation Pattern Measurement, Gai er Measurements Surement Range, Radiation Pattern Measurement, Gai er Measurements Surement Range, Radiation Pattern Measurement, Gai er Measurements Surement Range, Tropo and Iono Scatter, Mobile Propagation	tenna, Turnstile Antenna, Base tennas for Digital Applications nods, Characteristics, Array of n and Directivity, Polarization, Waves, Classification of EM on Models	07 Hrs		
Linea and N Speci Babin Statio Broad Basic Micro Anter Measy Powe Basic Spect Grou	ar Array, Principle of Pattern Multiplication, Broadside Non- Uniform Arrays. UNIT-III ial Types of Antennas net's Principle and Complementary Antennas, Lens Ar on and Mobile Antenna, Embedded Antenna. dband and Frequency Independent Antennas es, Biconical Antenna, Log Periodic Antenna, UWB An UNIT-IV ro-Strip and Patch Antennas nt Features, Advantages and Limitations, Feed Meth o-Strip Antennas, Applications. nna measurements surement Range, Radiation Pattern Measurement, Gai er Measurements Surement Range, Tropo and Iono Scatter, Mobile Propagatio Ind, Sky & Space Wave Propagation Ground Refl	ntenna, Turnstile Antenna, Base tennas for Digital Applications nods, Characteristics, Array of n and Directivity, Polarization, Waves, Classification of EM on Models ection, Diffraction, Wave Tilt,	07 Hrs		
Linea and N Speci Babin Statio Broad Basic Salier Micro Anter Measu Powe Basic Spect Grou Ionos	ar Array, Principle of Pattern Multiplication, Broadside Non- Uniform Arrays. UNIT-III ial Types of Antennas net's Principle and Complementary Antennas, Lens Ar on and Mobile Antenna, Embedded Antenna. dband and Frequency Independent Antennas es, Biconical Antenna, Log Periodic Antenna, UWB An UNIT-IV ro-Strip and Patch Antennas nt Features, Advantages and Limitations, Feed Meth o-Strip Antennas, Applications. nna measurements surement Range, Radiation Pattern Measurement, Gai er Measurements Surement Range, Radiation Pattern Measurement, Gai er Measurements Surement Range, Radiation Pattern Measurement, Gai er Measurements Surement Range, Tropo and Iono Scatter, Mobile Propagation	ntenna, Turnstile Antenna, Base tennas for Digital Applications nods, Characteristics, Array of n and Directivity, Polarization, Waves, Classification of EM on Models ection, Diffraction, Wave Tilt, , MUF, LUF, Virtual Height&	07 Hrs		

R.V. College of Engineering – Bengaluru-59

Cours	Course Outcomes: After completing the course, the students will be able to						
CO1:	Apply the concepts of physics to understand the mechanism of antenna radiation and						
	working of different antennas.						
CO2:	Apply basic concepts of electromagnetics to determine different performance parameters of						
	antennas.						
CO3:	Analyze the antenna parameters such as radiation pattern, directivity, gain, etc of various						
	antennas.						
CO4:	Design the antennas to achieve prescribe specification for different RF applications.						

Reference Books

11010	
1.	Antennas and wave propagation, John D Kraus, Ronald J Marhefka, Ahmad S Khan, 4th
	Edition, 2010, McGraw Hill, ISBN: 0-07-067155-9
2.	Antennas and Wave Propagation, A.R.Harish, M.Sachidananda, 2007, Oxford University
	Press, ISBN: 978-0195686661
3.	Antenna Theory: Analysis & Design ,C A Balanis, 3rd Edition, John-Wiley, ISBN: 978-
	0471025900
4.	Antenna Theory & Design, Warren L. Stutzman, Gary A. Thiele, 3rd Edition, Wiley India Pvt.
	Ltd, ISBN 9788126523771

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	2
CO2	3	2	2	1	-	-	-	-	-	1	-	2
CO3	3	3	2	1	2	-	-	-	-	1	2	2
CO4	3	3	3	1	2	-	-	1	1	1	2	2

	S	Semester: V	
	TRANSDUCERS & D.	ATA ACQUISITION SYSTEMS	
		(Theory)	
	rse Code: 16EC5A2	CIE Marks: 100	
	lits: L:T:P:S: 3:0:0:1	SEE Marks: 100	
	rs: 36L	SEE Duration: 3Hrs	
	rse Learning Objectives: The students		
1	Understand the architecture & importan		
2	signal processing, transmission and ana		quisition,
3	hardware interface cards available com		
4	Introduce the students to pSpice and La	abView through practical sessions.	
		UNIT-I	0.0 77
	damentals of Data Acquisition	tion and Otmotion Trate Core Or to Table C	08 Hrs
		tion and Structure-Interface Systems-Interface	
		Quantization in Amplitude and Time Axis.	
0	al Conditioners al Conditioners Voltage and Current	Amplifiers-Voltage Conditioners-Integrated	
		ors, Strain Gages, Piezoelectric Sensors and	
	ar Position Sensors	is, Strain Gages, Trezoelectric Sensors and	
Line		UNIT-II	
Mec	hanical Transducers		07 Hrs
		rement: Absolute thermodynamic or Kelvin	07 1115
		re Measurement: Manometers, Ring Balance,	
		of Flow Measurement: Pitot Static Tube,	
	lacement to Pressure Transducer		
P		UNIT-III	
Pass	ive Electrical Transducers		07 Hrs
Resi	stance Thermometers: Thermistors, Ser	niconductor Temperature sensors, Errors in	
		sistive Transducers, Capacitive transducers:	
		ement Transducers, proximity Transducers,	
		Introduction to Inductive	
Tran	sducers.		
		UNIT-IV	
Activ	ve Electrical Transducers		07 Hrs
Ther Piezo Tach	ometers, Variable Reluctance Tachomete	Thermoelectric Phenomenon, Common Transducer: Piezoelectric Phenomenon, ransducer, Electromechanical Transducer: ers, Digital Transducers: Digital Displacement	
trans	ducers, Optical Encoder.	UNIT V	
C:	al Propagging Cinquita	UNIT-V	07 II
Signa High Float	Speed Digital Transmitter. Field Wir	ard, Two-Wire Transmitter, Distributed I/O - ing and Signal Measurement-Grounded and ferential Ended Measurements. Ground Loop Shielding.	07 Hrs

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Identify and interpret different sensor design & analyze data acquisition system							
CO2:	Design suitable sensor front end to monitor real world signals without information loss.							
CO3:	Realization of sensors and data acquisition system for real time application.							
CO4:	Usage of modern engineering tools for realizing the working of sensors and data acquisition							
	system.							

Reference Books

1.	Transducers and Instrumentation, D V S Murthy, 2 nd Edition, 2008, PHI Publisher
2.	Practical Data acquisition for Instrumentation and Control, John Park and Steve Mackay, 2003,
	Newness publishers
3.	Data Acquisition systems- from fundamentals to Applied Design, Maurizio Di Paolo Emilio,
	2013, Springer
4.	Introduction to Data Acquisition with LabVIEW, Robert H King, 2 nd edition, 2012, McGraw
	Hill,

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	1	-	-	-	-	-	1	-	1
CO2	2	2	2	2	1	1	-	-	1	1	1	1
CO3	2	2	2	2	1	1	2	-	2	1	2	2
CO4	2	1	2	2	3	-	-	2	3	1	2	2

	Semester: V							
	ARTIFICIAL NEURAL NETWORKS & DEEP LEARNING							
	(Theory)							
Cou	urse Code: 16EC5A3	CIE Marks: 100						
Crea	edits: L:T:P:S: 3:0:0:4	SEE Marks: 100						
Hou	urs: 36L	SEE Duration: 3Hrs						
Cou	arse Learning Objectives: The students will be able to							
1	Understand Neural Network and model a Neuron and Express both Artificial Intelligence							
1	¹ Neural Network							
2	Analyze ANN learning, Error correction learning, Me	emory-based learning, Hebbian learning,						
	Competitive learning and Boltzmann learning							
	Implement Simple perception, Perception learning algorithm, Modified Perception learni							
3	algorithm, and Adaptive linear combiner, Continue	ous perception, learning in continuous						
	perception.							
	Analyze the limitation of Single layer Perceptron and							
4	Develop Delta learning rule of the output layer and	Multilayer feed forward neural network						
	with continuous perceptions							

UNIT-I	
Introduction to Neural Networks: Neural Network, Human Brain, Models of Neuron,	08 Hrs
Neural networks viewed as directed graphs, Biological Neural Network, Artificial neuron,	
Artificial Neural Network architecture, ANN learning, analysis and applications, Historical	
notes.	
UNIT-II	
Learning Processes: Introduction, Error correction learning, Memory-based learning,	07 Hrs
Hebbian learning, Competitive learning, Boltzmann learning, credit assignment problem,	
Learning with and without teacher, learning tasks, Memory and Adaptation.	
UNIT-III	
Single layer Perception: Introduction, Pattern Recognition, Linear classifier, Simple perception, Perception learning algorithm, Modified Perception learning algorithm,	07 Hrs
Adaptive linear combiner, Continuous perception, Learning in continuous perception.	
Limitation of Perception.	
UNIT-IV	
Multi-Layer Perceptron Networks: Introduction, MLP with 2 hidden layers, Simple layer	07 Hrs
of a MLP, Delta learning rule of the output layer, Multilayer feed forward neural network	
with continuous perceptions, Generalized delta learning rule, Back propagation algorithm	
UNIT-V	
Introduction to Deep learning: Neuro architectures as necessary building blocks for the	07 Hrs
DL techniques, Deep Learning & Neocognitron, Deep Convolutional Neural Networks,	
Recurrent Neural Networks (RNN), feature extraction, Deep Belief Networks, Restricted	
Boltzman Machines, Autoencoders, Training of Deep neural Networks, Applications and	
	1

examples (Google, image/speech recognition)

Cours	Course Outcomes: After completing the course, the students will be able to				
CO1:	Model Neuron and Neural Network, and to analyze ANN learning, and its applications.				
CO2:	Perform Pattern Recognition, Linear classification.				
CO3:	Develop different single layer/multiple layer Perception learning algorithms				
CO4:	Design of another class of layered networks using deep learning principles.				

Reference Books

1. Neural Network- A Comprehensive Foundation, Simon Haykins, 2nd Edition, 1999, Pearson Prentice Hall, ISBN-13: 978-0-13-147139-9

2.	Introduction to Artificial Neural Systems, Zurada and Jacek M, 1992, West Publishing
	Company, ISBN: 9780534954604
3.	Learning & Soft Computing, Vojislav Kecman, 1st Edition, 2004, Pearson Education, ISBN:0-
	262-11255-8
4.	Neural Networks Design, M T Hagan, H B Demoth, M Beale, 2002, Thomson Learning,
	ISBN-10: 0-9717321-1-6/ ISBN-13: 978-0-9717321-1-7

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	1	1	-	-	1	-	1
CO2	3	2	2	1	-	1	1	-	-	1	-	1
CO3	3	3	2	2	2	1	1	-	-	1	-	1
CO4	3	3	3	3	2	1	1	-	-	1	-	1

	Semester: V						
	MODELLING OF SEMICONDUCTOR DEVICES						
	(Theory)						
Cou	rse Code: 16EC5A4	CIE Marks: 100					
Cree	dits: L:T:P:S: 3:0:0:1	SEE Marks: 100					
Hou	Hours: 36L SEE Duration: 3Hrs						
Cou	Course Learning Objectives: The students will be able to						
1	Explain and apply basic concepts of semiconductor physics relevant to devices						
2	Describe, explain, and analyze the operation of important semiconductor devices in terms of						
4	their physical structure						
	Explain, describe, and use physics-based device and circuit models for semiconductor device						
3 of varying levels of complexity, select models appropriate to a specific need, and		appropriate to a specific need, and apply those					
	models to analyze multi-component circuits						
4	Analyze and design microelectronic circuits for	linear amplifier and digital applications					

UNIT-I		
Charge Carriers and Transport Modelling		
Crystal Structure, Semiconductor Models, Carrier Properties, State and Carrier		
Distributions, Equilibrium Carrier Concentrations, Drift, Diffusion, Recombination-		
Generation, Equations of State, Modelling & Simulation examples.		
UNIT-II		
Modelling of PN Junction Diodes: pn Junction Electrostatics, Preliminaries, Quantitative Electrostatic Relationships, I-V Characteristics, The Ideal Diode Equation, Deviations from the Ideal, Small-Signal Admittance, Reverse-Bias Junction Capacitance, Forward-Bias Diffusion Admittance, MS Contacts and Schottky Diodes, Modelling & Simulation examples.		
UNIT-III		
Modelling of BJT: Electrostatics, Performance Parameters, Ideal Transistor Analysis,	07 Hrs	
General Solution, Simplified Relationships, Ebers-Moll Equations and Model, Deviations		
from the Ideal, Modern BJT Structures, Modelling & Simulation examples.		
UNIT-IV		
Modelling of MOS: Electrostatics, Capacitance-Voltage Characteristics, Quantitative I_D/V_D Relationships, Square-Law Theory, Bulk-Charge Theory, a.c. Response, Small-Signal Equivalent Circuits, Cutoff Frequency, Small-Signal Characteristics, Modelling & Simulation examples.	07 Hrs	
UNIT-V		
Emerging semiconductor devices (Qualitative approach): Introduction, HEMT, HBT, Fin-FET. Nanowire-FET, quantum and molecular devices, energy storage and harvesting Electronics devices	07 Hrs	

Cours	Course Outcomes: After completing the course, the students will be able to					
CO1:	Apply semiconductor models to analyze carrier densities and carrier transport.					
CO2:	Analyze basic governing equations to analyze semiconductor devices.					
CO3:	Design the p-n junction, Schottky barrier diodes and emerging semiconductor devices.					
CO4:	Simulate characteristics of a simple device using MATLAB, SPICE and ATLAS /					
	SYNOPSYS					

Refe	erence Books
1.	Semiconductor Device Fundamentals, Robert F. Pierret, 2006, Pearson, ISBN 9780201543933
2.	Operation and Modeling of the MOS Transitor, Y.P. Tsividis, Colin McAndrew, 3rd Edition,
	2014, Oxford Univ Press, ISBN:978-0195170153
3.	Fundamentals of Modern VLSI Devices, Yuan Taur, Tak H. Ning, "",2nd edition, 2013
	Cambridge University Press, ISBN: 978-1107635715
4.	Semiconductor Simulation Tools, "https://nanohub.org/groups/semiconductors"

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	2	1	1	-	-	-	-	-	-	2
CO3	3	3	2	2	2	-	-	-	-	1	-	2
CO4	3	3	3	3	3	1	-	-	1	2	1	2

	Sei	mester: V				
	OBJECT ORIENTEI	O PROGRAMMING IN C++				
	('	Theory)				
Cou	irse Code: 16EC5A5	CIE Marks: 100				
Cre	dits: L:T:P:S: 3:0:0:1	SEE Marks: 100				
Hou	irs: 36L	SEE Duration: 3Hrs				
Cou	rse Learning Objectives: The students w	ill be able to				
1	Analyze the basic programming concepts and primitives of object-oriented programming.					
2	Analyze new programming concept which	h should help in developing high quality software.				
3	Interpret basic data structures & dimension	onality of arrays to store data efficiently.				
4						
	· · · · · · · · · · · · · · · · · · ·					
		UNIT-I				

UNIT-I		
Introduction to C++: Procedure–Oriented Programming, Object Oriented Programming,	08 Hrs	
Comparison of C++ with C, Input/output in C++, Bool data types, Enumerated data types,		
structures, Unions, Pointers, Pointer arithmetic, Pointers to different data types, Reference,		
Operators: new, delete, volatile, size of ,typecasting, Storage classes Functions: Function		
components, Function arguments, Function overloading, Function with default arguments,		
Inline function, #define macros, Function templates		
UNIT-II		
Pointers & 1D Arrays	07 Hrs	
Introduction, accessing array elements using pointers, pointer to strings, dynamic arrays,		
pointers to structures, passing pointers to functions.		
Classes and Objects		
Introduction to classes and objects, Member function and member data, Access specifiers,		
constructors, destructors, static members, friend function, friend class, Copy constructor,		
Overloaded assignment operator, this pointer, class templates.		
UNIT-III		
Operator Overloading	07 Hrs	
Operator overloading, overloading the increment and the Decrement operators (Prefix and		
Post fix), Overloading the Unary Minus and unary plus operator, Overloading the		
arithmetic operators, Over loading the relational operators, Overloading the insertion and		
extraction operator, Data Conversion using Member function.		
UNIT-IV		
Data Representation using Arrays	07 Hrs	
1-D arrays, arrays as a member of the class, creating array using dynamic constructors,		
array of object, strings, Implementation of stack and queue using arrays. Data		
Representation using Linked List Single-Linked List, Implementation of stack and queue		
using Linked list.		
UNIT-V		
Inheritance	07 Hrs	
Types of inheritance, Visibility mode, Function overriding, Need for virtual function,		
virtual function, Pure virtual function.		
Stream Handling		
Streams, Text Input/Output, Opening and Closing Files, Object Input/Output through		
Member Functions. Exception Handling in C++		

R.V. College of Engineering – Bengaluru-59

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Explain the concepts & constructs of object-oriented programming.					
CO2:	Analyze the basic constructs, operations, control structures and advanced features of the C++					
	programming language and apply this knowledge to develop algorithms for given problem.					
CO3:	Perform analysis of real-world problems and implement C++ software solutions to meet the					
	industry requirements with the help of modern engineering tools.					
CO4:	Engage in self-study as a team member/individual to formulate, design, implement, analyze					
	and demonstrate the C++ software developed for a given assignments.					

Reference Books

1.	Mastering C++, K.RVenugopal, Rajkumar, T Ravishankar, 4 th Edition, 2008, Tata McGraw- Hill Pubications, ISBN-13: 978-81-7758-373-1
	Object-oriented Programming in Turbo C ++, Robert Lafore, 3 rd Edition,2009, Galgotia Publishing House,
3.	C++:The Complete Reference ,Herbert Schildt, 4 th Edition, 2007, McGraw-Hill, , ISBN-10: 0078824761/ ISBN-13: 978-0078824760
4.	Object Oriented Programming with C++, E.Balagurusamy, 2008, Tata McGraw-Hill Publications, ISBN-13: 9780070669079

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1					3							2
CO2	3	3	3	2				2	2			2
CO3	3	2	3	3	3			2	2			
CO4	3	3	3	3	3	1	1	3	3	3	2	3

Low-1	Medium-2	High-3
-------	----------	--------

	Semester: V					
	COMPUTER ORGANISATION AND ARCHITECTURE					
	(Theorem	ry)				
Cou	rse Code: 16EC5A6	CIE Marks: 100				
Crec	lits: L:T:P:S: 3:0:0:1	SEE Marks: 100				
Hou	rs: 36L	SEE Duration: 3Hrs				
Cou	Course Learning Objectives: The students will be able to					
1	Understand the fundamentals of computer System and its Organization.					
2	Appreciate the functionalities of basic process	ing unit and its control system in processing the				
2	² Instruction.					
3	3 Understand the role of bus system.					
4	4 Develop a clear understanding on the pipelining.					
Present an adequate Instruction Set Architectures for better understandin		res for better understanding of the assembly level				
3	5 programming.					

UNIT-I	
Basic Structures of Computers: Functional units, Basic Operational Concepts, Bus	08 Hrs
Structures, Performance measurement. Machine Instructions and Programs: Numbers,	
Number Notation, Arithmetic operations and characters. Memory Locations and Addresses,	
Memory Operation, Instruction and Instruction Sequencing, Addressing Modes,	
implementation of Variables & Constants, Indirection & pointers, Indexing & Arrays,	
Relative Addressing, Example Programs.	
UNIT-II	
Machine Instructions and Programs: Additional addressing Modes, Assembly Language,	06 Hrs
Stacks & Queues, Subroutines, Subroutine Nesting & Processor Stack, Parameter passing,	
The stack frame. Additional Instructions, Example programs.	
UNIT-III	
Input / Output Organization: Basic Input / Output Operations, Accessing I/O devices,	08 Hrs
Interrupts: Interrupt Hardware, Enabling & Disabling Interrupt, Handling Multiple Devices,	
Controlling Device Requests, Exceptions, Direct Memory Access: Bus arbitration.	
Basics of memory: Memory Hierarchy, Speed, Size and cost, Performance considerations:	
Hit Rate and miss penalty	
UNIT-IV	
Arithmetic Operations: Booth Algorithm, Fast Multiplication: Bit-pair Recording of	07 Hrs
Multipliers; Integer division; IEEE Standard for floating – point Numbers.	
Control Unit Logic: Fundamental Concepts: Register Transfers, Performing an Arithmetic	
or Logic operation, Fetching a Word from Memory, Storing a Word in Memory, Execution	
of a Complete Instruction, Branch instruction. Multiple Bus Organization, Micro	
programmed control: Micro Instructions and its comparison with hardwired control.	
UNIT-V	

Pipelining: Basic concepts: Role of Cache Memory, Pipeline Performance; data hazards:07 HrsOperand forwarding, Handling Data Hazards in software, Side Effects; Instruction Hazards:Unconditional Branches, Conditional Branches: delayed branch; Influence on Instruction07 Hrssets. Super Scalar Operation: Out-of-order Execution, Execution Completion, Dispatch
Operations.Operation:04 Hrs

Cours	Course Outcomes: After completing the course, the students will be able to				
CO1:	Analyze the basic operation and organization of computer system				
CO2:	Identify the design requirements in organizing computer system components				
CO3:	Develop assembly language program for different instruction set architecture and its data				
	representation				
CO4:	Examine the different interfaces of a computer system				

Refe	erence Books
1.	Computer Organization, Carl Hamacher, Z Vranesic& S Zaky, 5 th Edition, 2011, Mc Graw Hill,
	ISBN 10: 1259005275 / ISBN 13: 9781259005275.
2.	Computer Organization and Architecture: Designing for Performance, William Stallings, 8th
	edition, 2010, Prentice Hall, ISBN-13: 978-0-13-607373-4 ISBN-10: 0-13-607373-5.
3.	Computer Organization and Design, David A. Patterson & John L. Hennessy, 5th Edition, 2013
	Morgan Kaufmann, ISBN : 9780124077263
4.	Fundamentals of Computer Organization and Architecture, Mostafa Abd-El-Barr, Hesham El-
	Rewini, 2005, Wiley publishers, ISBN10: 0-471-46741-3.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-PO	Mapp	oing					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	-	-	-	-	-	-	1	-	2
CO2	3	3	3	2	-	-	-	-	-	1	-	2
CO3	3	3	2	2	3	-	-	-	2	1	-	2
CO4	3	3	3	3	3	-	-	-	2	1	-	2

	Semester: V					
	ROBOTICS					
	(Theory)					
Cou	rse Code: 16EC5A7	CIE Marks: 100				
Crea	dits: L:T:P:S: 3:0:0:1	SEE Marks: 100				
Hou	urs: 36L	SEE Duration: 3Hrs				
Cou	Course Learning Objectives: The students will be able to					
1	Explain the basic principles of Robotic technology, con	figurations, control and				
1	programming of Robots.					
2 Describe the concept of Robot kinematics and dynamics, latest algorithms & analy		namics, latest algorithms & analytical				
4	Approaches.					
3	3 Discuss and apply the concepts of dynamics for a typical Pick and Place robot					
4	Choose the appropriate Sensor and Machine vision system for a given application.					

UNIT-I	
Introduction: Automation and Robotics, Historical Development, Definitions, Basic	07 Hrs
Structure of Robots, Robot Anatomy, Complete Classification of Robots, Fundamentals	
about Robot Technology, Factors related to use Robot Performance, Basic Robot	
Configurations and their Relative Merits and Demerits, the Wrist & Gripper	
Subassemblies.	
UNIT-II	
Kinematics of Robot Manipulator: Introduction, Geometry Based Direct kinematics	07 Hrs
problem, Composite Rotation matrix, Homogenous Transformations, Robotic Manipulator,	
Joint Co-Ordinate System, Roll Pitch-Yaw (RPY) Transformation. DH Representation &	
Displacement Matrices for Standard Configurations, Jacobian Transformation in Robotic	
Manipulation.	
UNIT-III	
Trajectory Planning: - Introduction, Trajectory Interpolators, Basic Structure of	07 Hrs
Trajectory Interpolators, Cubic Joint Trajectories. General Design Consideration on	
Trajectories.	
UNIT-IV	
Dynamics of Robotic Manipulators: Introduction, Preliminary Definitions, Generalized	07 Hrs
Robotic Coordinates, Jacobian for a Two link Manipulator, Euler Equations, The	
Lagrangian Equations of motion. Dynamic Modeling of Robotic Manipulators: - Velocity	
of Joints, Kinetic Energy of Arm, Potential Energy of Robotic Arm, The Lagrange, Two	
Link Robotic Dynamics with Distributed Mass.	
UNIT-V	
Robot Sensing & Controlling: Various Sensors and their Classification, Use of Sensors	08 Hrs
and Sensor Based System in Robotics, Machine Vision System, Description, Sensing,	
Digitizing, Image Processing, Analysis and Application of Machine Vision System,	
Robotic Assembly Sensors and Intelligent Sensors. Industrial Applications: Automation in	
Manufacturing, Robot Application in Industry, Task Programming, Robot Intelligence and	
Task Planning, Modern Robots, Goals of AI Research and AI Techniques- Case Study.	

Cours	Course Outcomes: After completing the course, the students will be able to					
CO1:	Explain the basic principles of Robotic technology, configurations, control and					
	programming of Robots.					
CO2:	Describe the concept of Robot kinematics and dynamics, latest algorithms & analytical					
	Approaches.					
CO3:	Discuss and apply the concepts of dynamics for a typical Pick and Place robot					
CO4:	Choose the appropriate Sensor and Machine vision system for a given application.					

1.	Robotics, control vision and intelligence, Fu, Lee and Gonzalez, 2 nd edition, 2007, McGraw Hill
	International publication
2.	Introduction to Robotics, John J. Craig, 3 rd edition, 2010, Addison Wesley Publishing
3.	Robotics for Engineers, Yoram Koren, 1 st edition, 1985, McGraw Hill International
4.	Robotics Engineering-An Integrated Approach ,Klafer, Chmielewski and Negin, 1st Edition,
	2009, PHI.

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	2	1
CO2	3	2	2	1	-	-	-	-	2	1	-	1
CO3	2	3	2	2	2	-	1	-	1	1	-	1
CO4	3	3	3	3	2	1	-	-	-	1	-	1

	Semester: V(Global Elective-B)							
	Artifi	icial Neural Networks &Deep Learning						
Cou	rse Code: 16G5B05	CIE Marks: 100						
Crec	lits: L:T:P:S: 4:0:0:0	SEE Marks: 100						
Hou	rs: 46L	SEE Duration: 3Hrs						
Cou	rse Learning Objectives: T	he students will be able to						
1		twork and model a Neuron and Express both Artificial Intelligence						
1	and Neural Network							
2	Analyze ANN learning, Error correction learning, Memory-based learning, Hebbian learning,							
4	Competitive learning and Boltzmann learning							
	Implement Simple perception, Perception learning algorithm, Modified Perception learning							
3	algorithm, and Adaptive linear combiner, Continuous perception, learning in continuous							
	perception.							
		Single layer Perceptron and Develop MLP with 2 hidden layers,						
4		le of the output layer and Multilayer feed forward neural network						
	with continuous perception	8,						

UNIT-I	
Introduction to Neural Networks: Neural Network, Human Brain, Models of Neuron,	08 Hrs
Neural networks viewed as directed graphs, Biological Neural Network, Artificial neuron,	l
Artificial Neural Network architecture, ANN learning, analysis and applications, Historical	l
notes.	

1	UNIT-II

 Learning Processes: Introduction, Error correction learning, Memory-based learning,
 10 Hrs

 Hebbian learning, Competitive learning, Boltzmann learning, credit assignment problem,
 10 Hrs

 learning with and without teacher, learning tasks, Memory and Adaptation.
 10 Hrs

UT(TT-III	
Single layer Perception: Introduction, Pattern Recognition, Linear classifier, Simple	10 Hrs
perception, Perception learning algorithm, Modified Perception learning algorithm,	
Adaptive linear combiner, Continuous perception, Learning in continuous perception.	
Limitation of Perception.	

UNIT-IV

Multi-Layer Perceptron Networks:Introduction, MLP with 2 hidden layers, Simple layer10 Hrsof a MLP, Delta learning rule of the output layer, Multilayer feed forward neural networkwith continuous perceptions, Generalized delta learning rule, Back propagation algorithm10 Hrs

UNIT-V

Introduction to Deep learning: Neuro architectures as necessary building blocks for the DL techniques, Deep Learning & Neocognitron, Deep Convolutional Neural Networks, Restricted Boltzman Machines, Autoencoders, Training of Deep neural Networks, Applications and examples (Google, image/speech recognition)

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	CO1: Model Neuron and Neural Network, and to analyze ANN learning, and its applications.						
CO2:	Perform Pattern Recognition, Linear classification.						
CO3:	Develop different single layer/multiple layer Perception learning algorithms						
CO4:	Design of another class of layered networks using deep learning principles.						

Reference Books

1. Neural Network- A Comprehensive Foundation, Simon Haykins, 2nd Edition, 1999, Pearson Prentice Hall, ISBN-13: 978-0-13-147139-9

2.	Introduction to Artificial Neural Systems, Zurada and Jacek M, 1992, West Publishing
	Company, ISBN: 9780534954604
3.	Learning & Soft Computing, Vojislav Kecman, 1st Edition, 2004, Pearson Education, ISBN:0-
	262-11255-8
4.	Neural Networks Design, M T Hagan, H B Demoth, M Beale, 2002, Thomson Learning,
	ISBN-10: 0-9717321-1-6/ ISBN-13: 978-0-9717321-1-7

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	2	-	-	-	-	1	-	1
CO4	3	3	3	3	2	-	-	-	-	1	-	1

	Semester: VI							
	FOUNDATIONS OF MANAGEMENT & ECONOMICS							
	(The	ory & Practice)						
	(COMMON 7	TO CS, EC, EE, IS, TC)						
Cour	Course Code: 16HEM61 CIE Marks: 50							
Cred	Credits: L:T:P:S: 2:0:0:0 SEE Marks: 50							
Hou	Hours: 23L SEE Duration: 2 Hrs							
Cour	rse Learning Objectives: The students	will be able to						
1	Understand the evolution of manageme	ent thought.						
2	2 Acquire knowledge of the functions of Management.							
3	Gain basic knowledge of essentials of Micro economics and Macroeconomics.							
4	Understand the concepts of macroecone	omics relevant to different organizational contexts.						

UNIT-I

0111-1					
Introduction to Management: Management Functions, Roles & Skills, Management	04 Hrs				
History - Classical Approach: Scientific Management & Administrative Theory,	1				
Quantitative Approach: Operations Research, Behavioral Approach: Hawthorne Studies,	l				
Contemporary Approach: Systems & Contingency Theory.					
UNIT-II					
Foundations of Planning: Types of Goals & Plans, Approaches to Setting Goals & Plans,	05 Hrs				
Strategic Management Process, Corporate & Competitive Strategies.					
Organizational Structure & Design: Overview of Designing Organizational Structure:					
Work Specialization, Departmentalization, Chain of Command, Span of Control,					
Centralization & Decentralization, Formalization, Mechanistic & Organic Structures.					
UNIT-III					
Motivating Employees: Early Theories of Motivation: Maslow's Hierarchy of Needs	06 Hrs				
Theory, McGregor's Theory X & Theory Y, Herzberg's Two Factor Theory,					
Contemporary Theories of Motivation: Adam's Equity & Vroom's Expectancy Theory.					
Managers as Leaders: Behavioral Theories: Ohio State & University of Michigan					
Studies, Blake & Mouton's Managerial Grid, Contingency Theories of Leadership: Hersey					
& Blanchard's Situational Leadership, Contemporary Views of Leadership: Transactional					
& Transformational Leadership.					
UNIT-IV					
Introduction to Economics: Concept of Economy and its working, basic problems of an	04Hrs				
Economy, Market mechanism to solve economic problems, Government and the economy,					
Essentials of Micro Economics: Concept and scope, tools of Microeconomics, themes of					
microeconomics, Decisions: some central themes, Markets: Some central themes, Uses of					
Microeconomics.					
UNIT-V					
Essentials of Macroeconomics: Prices and inflation, Exchange rate, Gross domestic	04 Hrs				
product (GDP), components of GDP, the Labor Market, Money and banks, Interest rate,					
Macroeconomic models- an overview, Growth theory, The classical model, Keynesian					
cross model, IS-LM-model, The AS-AD-model, The complete Keynesian model, The neo-					
classical synthesis, Exchange rate determination and the Mundell-Fleming model.					

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Explain the principles of management theory & recognize the characteristics of an					
	organization.					
CO2:	Demonstrate the importance of key performance areas in strategic management and design					
	appropriate organizational structures and possess an ability to conceive various					
	organizational dynamics.					

Γ

CO3:	Select & Implement the right leadership practices in organizations that would enable systems
	orientation.
CO4:	Understand the basic concepts and principles of Micro economics and Macroeconomics

Refe	erence Books
1.	Management, Stephen Robbins, Mary Coulter & Neharika Vohra, 10th Edition, Pearson
	Education Publications, , ISBN: 978-81-317-2720-1.
2.	Management, James Stoner, Edward Freeman & Daniel Gilbert Jr, 6th Edition, PHI, ISBN: 81-
	203-0981-2.
3.	Microeconomics, Douglas Bernheim B & Michael D Whinston, 2009 Edition, TMH
	Pub.Co.Ltd, ISBN: 13:978-0-07-008056-0.
4.	Macroeconomics: Theory and Policy, Dwivedi. D.N, 3rd Edition, 2010, McGraw Hill Education,
	ISBN-13: 978-0070091450.
5.	Essentials of Macroeconomics, Peter Jochumzen, 1st Edition, e-book(www.bookboon.com),
	2010, ISBN:978-87-7681-558-5.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level. .

					.CO	-PO Ma	apping					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	1	-	-	3	-	3	3	3	3	3
CO2	3	2		-	-	-	-	1	2	3	2	2
CO3	-	-	1	-	-	2	-	2	2	3	3	3
CO4	2	-	2	-	-	3	1	3	2	2	3	3

	Semester: VI						
	COMMUNICATION SYSTEM II						
	(Theory & Practic	ce)					
Cou	rse Code: 16EC62	CIE Marks: 100+50					
Cred	dits: L:T:P:S: 4:0:1:0	SEE Marks: 100+50					
Hou	rs:46L	SEE Duration: 03Hrs+03Hrs					
Cou	Course Learning Objectives: The students will be able to						
1	Identify the digital communication system as a series of functional blocks and the concepts of						
1	signal and channel representation.						
2	Apply the concept of signal conversion to symbols and symbol processing in transmitter and						
2	receiver blocks.						
3	Compute performance issues and parameters for syr	nbol processing and recovery in ideal and					
3	corrupted channel conditions.						
1	Compute and mitigate for performance parameter	ers in corrupted and distorted channel					
4	conditions.						

UNIT-I

UNIT-I	
Digital Communication Transmitter: Digital communication blocks and impediments.	10 Hrs
Review of Lowpass and Bandpass signals. Geometric Representation of Signals in terms of	
a low pass basis set, Gram Schmidt procedure, conversion statement to bandpass basis set.	
Geometric representation of baseband modulated signals as examples Geometric	
representation of low pass equivalents of bandpass signals - BPSK, QPSK, M-PSK, M-	
QAM. Transmitter Architectures and, Computation of Transmit PSD. Applications to	
GPRS, 3G. Orthogonal symbol modulation - Geometric representation of BFSK, MSK	
(Simple Cases). Applications to GSM, Training.	
UNIT-II	
Communication through AWGN Channels: Demodulation and Detection - Center point	09 Hrs
sampling, Matched Filter, and Correlation Receiver. Estimation Basics - MAP and MLI	
Estimation of Binary signals with AWGN, Probability of error for binary signaling,	
Probability of error for binary baseband pulses (Line codes) using center point sampling	
and Matched filters. Coherent demodulation scheme – Receiver Architecture, Probability	
of symbol error for BPSK, QPSK, BFSK. Coherent Demodulation scheme for multiple	
signals - M-PAM, M-PSK and M-QAM. Union Bounded Probability of error these	
signals, Lower and upper bounds.	
UNIT-III	1
Communication Through AWGN Signals (contd) - Non-Coherent demodulation of	09 Hrs
BFSK and DPSK – Symbol representation, Block diagrams treatment of Transmitter and	
Receiver, Probability of error (Without derivation).	
Communication through Band Limited Channels: Digital Transmission through Band	
limited channels - Inter Symbol Interference, Signal design for Band limited ideal channel	
with zero ISI – Nyquist Criterion (statement only), Sinc and Raised pulse shaping.	
Signal design for Band limited channel with controlled ISI – Correlative coding, DB and	
MDB, with and without Precoding.	
UNIT-IV	
Convolution Codes: Encoding of convolution Codes, Transfer function and distance	09 Hrs
properties, Maximum Likelihood sequence decoding – Viterbi search Algorithm with Hard	
and soft decision, Probability of error statement only (No derivation).	
UNIT-V	00.77
Principles of Spread Spectrum (SS) Concept of Spread Spectrum, Direct Sequence/SS,	09 Hrs
Frequency Hopped SS, Processing Gain, Interference, and probability of error statement	
only. PN sequences for Spread Spectrum – M- sequences with Properties; Gold, Kasami	
sequences with basic properties. Spread Spectrum Synchronization (Block diagram	
treatment) - Code Acquisition and Tracking.	

Practical's: Communication systems 2 Lab

- 1. Pulse Amplitude Modulation and Demodulation
- 2. ASK Modulation and Demodulation
- 3. FSK modulation and demodulation
- 4. BPSK modulation and demodulation
- 5. QPSK modulation and DPSK modulation and demodulation
- 6. MSK Modulation & Demodulation
- 7. QAM modulation and demodulation
- 8. Convolution coding decoding
- 9. Correlative coding and Study of Inter symbol Interference using eye pattern
- 10. Spread Spectrum sequences

Course Outcomes: After completing the course, the students will be able to

CO1:	Associate and apply the concepts of Bandpass sampling to well specified signals and
	channels.
CO2:	Analyze and compute performance parameters and transfer rates for low pas and bandpass
	symbol under ideal and corrupted non band limited channels.
CO3:	Test and validate symbol processing and performance parameters at the receiver under ideal
	and corrupted bandlimited channels.
CO4:	Demonstrate by simulation and emulation bandpass signals subjected to convolution coding and symbol processed at transmitter and correspondingly demodulated and estimated at receiver after passing through a corrupted channel.

Reference Books Communication Systems, Simon Haykin and Michael Moher, 5th Edition, 2014, John Wiley and sons, ISBN-978 81 265 2151 7. Communication systems, Simon Haykin, 3rd or 4th Edition, Reprinted 2013, John Wiley & sons, ISBN 0-471- 17869-1. Modern Digital and Analog communication Systems, B.P.Lathi and Zhi Ding, 4th Edition, 2010, Oxford University Press, ISBN: 9780198073802... Digital Communications, Ian A. Glover, Peter M. Grant, 3rd Edition, 2010, Pearson Educations, ISBN:978-0-273-71830-7 Communication System, Bruce Carlson and P.B Chilly, 5th Edition, 2011, Tata McGraw-Hill,

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	3	-	-	1	-	1	-	1
CO2	3	2	2	1	3	-	-	1	-	1	-	1
CO3	3	3	2	2	3	-	-	1	-	1	-	1
CO4	3	3	3	3	3	-	-	1	-	1	-	1

	Semest				
	COMPUTER COMMUN	ICATION NETWORKS			
	(Theory &	Practice)			
Cot	urse Code: 16EC63	CIE Marks: 100+50			
Credits: L:T:P:S: 3:0:1:1 SEE Marks: 100+50					
Hours: 36L SEE Duration: 03Hrs+0					
Cot	Course Learning Objectives: The students will be able to				
1	Develop awareness towards basic internetworking principles.				
2	Analyze various aspects involved in multiple accesses, various data switching techniques.				
3	Explain protocols operating at different layers of computer networks				
4	4 Analyze various data compression techniques and security issues.				
5	Analyze various aspects involved in network control and traffic management.				

UNIT-I

UNIT-I	
Computer Networks and the Internet: Internet, Protocol, Network Edge, Network Core,	07Hrs
Access Networks and Physical Media, Delay and Loss in Packet-Switched	
Networks, Protocol Layers and Their Service Models, Internet Backbones, NAPs, and ISPs.	
Network models, OSI, TCP/IP. Physical Layer: Introduction to Guided and unguided	
physical media.	
UNIT-II	
Local Area Networks and Connecting Devices:	07 Hrs
Data Link layer Services, Data link control-Framing, Flow & error control, Multiple Access	
Protocols-Random Access protocols	
LAN Addresses and ARP, IEEE 802.3 LANs, Ethernet, Hubs, Bridges, and Switches,	
Virtual LAN, PPP: The Point-to-Point Protocol, X.25 and Frame Relay. IEEE 802.11	
LANs	
UNIT-III	1
Network Layer-Logical Addressing& Internet Protocol	07 Hrs
Network Layer, Logical Addressing, IPV4 Addresses, Structure, Address Space, Classful	
Addressing, Classless Addressing, Network Address Translation.	
IPv6 Addresses, Structure, Address Space of IPV6, Transition from IPV4 to IPV6	
Forwarding. Subnet addressing. Inter- and intra-domain routing. Datagram networks; virtual	
circuits. RIP, OSPF, BGP. CI	
UNIT-IV	
Transport Layer: Process to Process Delivery, Connectionless Versus Connection	07 Hrs
Oriented Service, UDP, TCP.	
Congestion control and resource allocation-Issues in resource allocation, Queuing	
disciplines congestion control. Slow start. Fast retransmit. Fast recovery. Rate-based	
congestion control. Congestion avoidance mechanisms. Leaky Bucket Algorithm	
UNIT-V	00 -
Naming and the DNS.	08 Hrs
Cell switching & ATM service classes. Switch architectures. Switching fabrics. Space-	
division multiplexing vs. shared-memory switches. Source Coding. Data Compression,	
Security and Cryptography	
Practical's: CCN Lab	
Practical's: Computer Communication Networks Lab	
Part –I: Experiments Using C/C++ programming.	
1) a)Implement Bit stuffing Algorithm	
b)Character stuffing algorithms and	
c)Cyclic Redundancy Check codes for error detection using C programs.	
2) Implement Encryption and Decryption algorithms using C program.	
3) Implement following Minimum Spanning Tree algorithms using C program	
i) Kruskal's Algorithm	

ii) Prim's Algorithms

4) Implement STOP and WAIT protocol using socket programming concept using C Program.

5) Implement RSA algorithm using C program.

Part-II: Experiments that may be carried out using QualNet/NS-3/Packet Tracer

- 1 Simulate & Analyze CSMA/CD and CSMA/CA Protocols.
- 2 Test and verify Network configurations using Packet Tracer.
- 3 Configure Inter VLAN network using Packet Tracer
- 4 Configure and test a given network using Packet Tracer Simulation of congestion control algorithms using NS-3

Course Outcomes: After completing the course, the students will be able to

CO1:	Acquire the knowledge of network architecture, topologies and security issues	3.
001.	i i e and and and a second for a second for and became, top of ogres and became, top of ogres	· •

CO2: Design a network for given configuration by assigning IP addresses.

- CO3: Analyze various aspects involved in network control and traffic management
- CO4: Analyze the performance of various scheduling algorithms

Reference Books

1.	Computer Networks- A System Approach, Larry L Peterson, Bruce S Davie, 4th edition, 2007,
	ELSEVIER publication, ISBN: 978-0123705488
2.	Data Communication and Networking, B Forouzan, 4th Edition, 2006, TMH, ISBN: 0-07-
	010829-3
3.	Computer Networks, James F. Kurose, Keith W. Ross, 2 nd Edition, 2003, Pearson Education,
	ISBN: 0199217637
4.	Computer Communication Networks, Andrew S Tanenbaum and David J Wetherall, 5 th Edition,
	2010, Person Education.
5.	Introduction To Data Compression, Sayood Khalid, 3rd Edition, Elsevier, 2010, ISBN: 978-
	8131206249

Continuous Internal Evaluation (CIE): Total marks: 100+50=150

Theory – 100 Marks

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total CIE for theory is 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150

Theory – 100 Marks

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

R.V. College of Engineering – Bengaluru-59

	CO-PO Mapping											
CO/PO	CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	2	-	-	-	-	1	-	1
CO4	3	3	3	3	2	-	-	-	-	1	-	1

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

ANALOG AND MIXED SIGNAL IC DESIGN (Theory)						
Соц	rse Code: 16EC64	CIE Marks: 100				
	lits: L:T:P:S: 3:1:0:0	SEE Marks: 100				
	rs:36L+24T	SEE Marks: 100 SEE Duration: 03Hrs				
-	Course Learning Objectives: The students will be able to					
1		plifiers and current mirrors using MOSFETs.				
2	Design different opamp topologies for a					
$\frac{2}{3}$		y the appropriate compensation technique.				
3		ering noise effects & Design and analyze	compling			
4	switches and switched capacitor amplifi		sampning			
	switches and switched capacitor ampin					
		UNIT-I				
Intre	aduction to Analog Integrated Design	Models for analog design, output resistance	08 Hrs			
		iency: Single-stage Amplifiers – CS stage,	00 1115			
		d source degeneration, review of CD and CG				
		t), Cascode stage & folded cascode concepts.				
		ferential Amplifiers – Half circuit analysis,				
	imon mode response.	referitiar Ampimers – fran chcun analysis,				
Com	mon mode response.	UNIT-II				
Cum	rent mirror – Cascode current mirror, ac		08 Hrs			
		ons – performance parameters, One-Stage Op				
-	-					
		folded cascode opamps, Two-Stage Op amps, e of various opamp topologies. Design of				
	nps from specifications.	e of various opanip topologies. Design of				
opan	ips from specifications.	UNIT-III				
Stab	ility and Engquancy Companyation.		08 Hrs			
		Frequency response of CS amplifier - Miller Miller compensation. Two stage opamp -				
		sovers, closed-loop stability, optimal phase				
marg		sovers, crosed-roop stability, optimal phase				
-		e – thermal, flicker, Representation of noise in				
	circuits, Noise in single stage amplifiers (Common source only). UNIT-IV					
Bandgap references : Temperature independent references - Bipolar CTAT, PTAT, Band						
	references (BGR)	ent references - Dipolar CIAI, I IAI, Dallu	06 Hrs			
Introduction to Switched-capacitor Circuits: Sampling Switches – MOSFETs as						
	-	I Charge injection, Capacitive feedthrough,				
bottom plate sampling, Parasitic insensitive Switched Capacitor Integrator, Switched						
Capacitor Common-Mode Feedback						
UNIT-V						
Data	Converter Fundamentals. Digital-to-	Analog Converter Specifications, Analog-to-	06 Hrs			
		rchitectures: Current Steering DAC ADC	00 1115			
-	*	ADC, Oversampling ADC - Benefits of				
	sampling, First Order Sigma Delta ADC.					
U V CI	sumpring, i noi Oruci Sigina Della ADC.					

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Apply the knowledge of MOSFET & amplifiers to investigate various design trends of analog						
	IC design						
CO2:	Analyze the functionality of analog/mixed signal circuits & systems						
CO3:	Design and implement analog integrated circuits						
CO4:	Evaluate the different performance parameters of analog/mixed signal integrated circuits						

Refe	erence Books
1.	Design of Analog CMOS Integrated Circuits, Behzad Razavi, 2002, Mc GrawHill Edition, ISBN: 0-07-238032-2
2.	CMOS Circuit Design, Layout and Simulation, R. Jacob Baker, Harry W. Li and David E. Boyce, 2002, IEEE Press, ISBN: 81-203-1682-7
3.	CMOS Mixed-signal Circuit Design, R. Jacob Baker, 2009, IEEE Press, ISBN: 978-81-265-1657-5
4.	Analysis and Design of Analog Integrated Circuits, Paul R. Gray, Paul J. Hurst, Stephen H. Lewis, Robert G. Meyer, "", 4 th edition, 2008, Wiley India Private Limited, ISBN:978-8126515691

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	-	-	-	-	-	-	2
CO2	3	2	3	-	3	-	-	-	-	-	-	2
CO3	3	3	2	2	3	-	-	-	2	-	-	2
CO4	3	3	-	2	3	-	-	-	2	-	-	2

	S	emester: VI		
	CRYPTOGRAPHY	Y & NETWORK SECURITY		
		(Theory)		
Cour	rse Code: 16EC6C1	CIE Marks: 100		
Cred	lits: L:T:P:S: 3:0:0:1	SEE Marks: 100		
Hou	Hours: 36L SEE Duration: 3Hrs			
Cour	rse Learning Objectives: The students	will be able to		
1	Analyze the needs, principles and pract	ices of cryptography and network security		
2	Evaluate conventional encryption algorithms and design principles.			
3	Analyze the use of conventional encryp	ption for confidentiality & evaluate public key algorithm		
3	design issues.			
4		authentication codes and hash functions to provide		
-	authentication.			

UNIT-I	
Introduction	08 Hrs
Services, Mechanism and attacks, OSI security architecture, Model for network security,	
Classical Encryption Techniques	
Symmetric cipher model, Substitution techniques, Transposition techniques, Simplified	
DES. Problems	
Block Ciphers and DES (Data Encryption Standards)	
Simplified DES Block, Cipher Principles, DES and strength of DES, Block cipher design	
principles and modes of operation, The AES Cipher.	
UNIT-II	
Public Key Cryptography and RSA	07 Hrs
Principles of public key cryptosystems, RSA algorithm. Problems	
Other Public Key Cryptosystems and Key Management	
Key Management, Diffie-Hellman exchange, Elliptic curve arithmetic, Elliptic curve	
cryptography.	
Message Authentication and Hash Functions	
Authentication requirements, Authentication functions, Message Authentication codes,	
Hash functions, Security of Hash functions and MAC's	
UNIT-III	
Digital Signature and Authentication Protocol: Digital signature, Authentication	07 Hrs
protocols, Digital signature standard. Authentication Applications Kerberos encryption	
technique, Problems.	
UNIT-IV	
Transport-Level Security: Web security Issues, Security socket layer (SSL) and	07 Hrs
Transport layer Security, HTTPS and Secure Shell	
Wireless network security: IEEE 802.11 Wireless LAN Overview, IEEE 802.11i	
Wireless LAN Security, Wireless application Protocol Overview, wireless transport layer	
Security, WAP End-End Security	
UNIT-V	
Electronic Mail Security Pretty good privacy, S/MIME, Data compression using ZIP,	07 Hrs
Radix-64 conversion, PGP random number generator. IP Security IP security architecture,	
Authentication header, ESP (encapsulating security pay load), Security associations, Key	
management, Problems	

R.V. College of Engineering – Bengaluru-59

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Identifying external and internal threats to an organization.						
CO2:	Master fundamentals of secret, public key cryptography and Analyze advanced security issues						
	and technologies.						
CO3:	Evaluate & Compare different encryption algorithms.						
CO4:	Use of modern tools for implementing different security algorithms and comparing their						
	robustness.						

Refe	erence Books									
1.	Cryptography and Network Security, William Stallings, 5th Edition, 2003,									
	Prentice Hall of India, ISBN 10: 0-13-609704-9/ISBN 13: 978-0-13-609704-4									
2.	Network Security: Private Communication in a Public World, Kaufman, R. Perlman, and M.									
	Speciner, 2 nd Edition, 2002, Pearson Education (Asia), ISBN13: 9780130460196									
3.	Cryptography and Network Security, Atul Kahate, 2003, Tata McGraw-Hill,									
	ISBN 13:9781259029882									
4.	Fundamentals of Network Security, Eric Maiwald, 2003, McGraw-Hill, ISBN-13:978-									
	0072230932									

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	-	-	2
CO2	3	2	2	2	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	1	-	2
CO4	2	3	3	-	-	-	-	-	-	1	-	2

Low-1 Medium-2 High-3

	Semester: VI	[
	REAL TIME EMBEDDE	D SYSTEMS			
	(Theory)				
Cou	rse Code: 16EC6C2	CIE Marks: 100			
Crea	dits: L:T:P:S: 3:0:0:1	SEE Marks: 100			
Hou	rs: 36L	SEE Duration: 3Hrs			
Cou	rse Learning Objectives: The students will be able	to			
1	Understand functional differences between differen	t real time systems.			
2	Examine and evaluate the hardware functionality re	equired by embedded system to achieve real-			
4	time operation.				
3	Analyse, evaluate and implement task control and	real-time scheduling algorithms required to			
5	⁵ perform multitasking.				
	Demonstrate the concept of real-time programming				
4	necessary to design and develop embedded app	lications by means of real-time operating			
	systems.				

UNIT-I	
Introduction: Overview, Architecture Real Time Systems, Real Time Services, Real Time	08
Standards, System Resources: Resource Analysis, Real Time Service Utility, Cyclic	Hrs
Executives Basics of RTOS: Kernel Features, Real-time Kernels: Polled Loops System, Co-	l
routines, Interrupt-driven System, Multi-rate System; Processes, Threads, Tasks, States,	l
Context Switching: Cooperative Multi-tasking, Pre-emptive Multi-tasking	l
UNIT-II	
Processing: Scheduling Classes, Scheduler Concepts, Pre-emptive Fixed Priority Policy,	07
Feasibility, Rate Monotonic LUB, Necessary & Sufficient Feasibility, Dead Line Monotonic,	Hrs
Dynamic Priority Policies I/O Resources: WCET, Intermediate I/O, Execution Efficiency	l
Memory: Physical Hierarchy, Cache, Memory Planning, Memory shadowing	l
UNIT-III	
RTOS Services: Task Creation, Inter Task Communication: Pipes, Message Queues, Mail	07
Box, Memory Mapped Objects; Critical Section, Shared Data Problem, Synchronization:	Hrs
Signals, Semaphores Mutex; Remote Procedure and Sockets, Real Time Memory	l
Management: Process Stack Management, Dynamic Allocation	L .
UNIT-IV	
Timer & Timer Services: Real Time Clocks & System Clocks, Programmable Interval	07
Timers, Timer Interrupt Service Routine, Soft-timer Handling, Soft Timers elated Task	Hrs
Synchronization Issues: Resource Classification, Racing, Deadlock, Live lock, Starvation,	l
Priority Inversion, Priority Ceiling & Inheritance	l
UNIT-V	
Examples of Real Time OS: Vx-Works, RTX-ARM: Task Management, Scheduling,	07
Primitive Kernel Services, Application Program development using APIs	Hrs

CO1: Understand the fundamental concepts of real-time system and real-time operating system.
CO2: Analyze given requirements, design hardware & software for real time systems.
CO3: Apply modern engineering tools for real time firmware development & performance analyse
CO4: Verify the specifications of various real time operating systems used for meeting timing constraints of given problem.

Refe	erence Books
1.	Real-Time Embedded Systems and Components, Sam Siewert, 2007, Cengage Learning India
	Edition, ISBN: 9788131502532
2.	Real time systems, Krishna CM and Kang Singh G, 2003, Tata McGraw Hill, ISBN: 0-07-
	114243-64
3.	Real-Time Concepts for Embedded Systems, Qing Li and Carolyn Yao, 2003 CMP Books,
	ISBN:1578201241
4.	Real Time Systems, Jane W. S. Liu, 2000, Prentice Hall, ISBN:0130996513

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	2	-	-	-	-	-		-	
CO2	3	2	2	1	2	1	-	-	-	1	-	1
CO3	3	3	2	2	3	1	1	1	-	1	-	1
CO4	2	3	2	2	1	1	2	2	2	2	2	1

	Semester: VI					
	IMAGE PROCESSING	G				
	(Theory)					
Cour	Course Code: 16EC6C3 CIE Marks: 100					
Cred	dits: L: T:P:S: 3:0:0:1	SEE Marks: 100				
Hou	Hours: 36L SEE Duration: 3Hrs					
Cour	Course Learning Objectives: The students will be able to					
1	Get an introduction to basic concepts and methodologies of Digital Image processing, image					
	formation and color image representation					
2	Differentiate between the image enhancement and restoration techniques. Enhance the image					
	by various methods in spatial and frequency domain. Perform image restoration using					
	convolution, discrete linear operators and filters					
3	3 Perform image segmentation using different algorithms suitable for various applications.					
4	4 Recognize the different image patterns using supervised and unsupervised classification					
	algorithms.					

UNIT-I	
Digital Image Fundamentals	08 Hrs
Fundamentals of Image Processing, Applications of Image Processing, Components of	
Image Processing System, Image Formation, Representation.	
UNIT-II	
Image Enhancement & Restoration	07 Hrs
Distinction between image enhancement and restoration, Spatial Image Enhancement	
Techniques, Histogram-based Contrast Enhancement, Frequency Domain Methods of	
Image Enhancement, Noise Modeling, Image Restoration, Image Reconstruction.	
UNIT-III	
Image Segmentation	07 Hrs
Edge, Line, and Point Detection, Edge Detector, Image Thresholding Techniques, Region	
Growing, Waterfall algorithm for segmentation, Connected component labeling.	
UNIT-IV	
Recognition of Image Patterns	07 Hrs
Decision Theoretic Pattern Classification, Bayesian Decision Theory, Nonparametric	
Classification, Linear Discriminant Analysis, Unsupervised Classification Strategies -	
clustering, K-Means Clustering Algorithm.	
UNIT-V	
Texture and Shape Analysis	07 Hrs
Introduction, Gray Level Co-occurrence Matrix, Texture Classification using Fractals,	
Shape Analysis, Region Based Shape Descriptors,	
Morphological image processing	
Preliminaries, Dilation and Erosion, Opening and Closing, the Hit-or-Miss	
Transformation, Some Basic Morphological Algorithms	
Preliminaries, Dilation and Erosion, Opening and Closing, the Hit-or-Miss	

Cours	e Outcomes: After completing the course, the students will be able to
CO1:	Understand digital image processing fundamentals: hardware and software, digitization,
	enhancement and restoration, encoding, segmentation, feature detection
CO2:	Apply image processing techniques in both the spatial and frequency (Fourier) domains
CO3:	Write image processing programs in MATLAB
CO4:	Perform image segmentation using different algorithms suitable for various applications.

Refe	erence Books
1.	Image Processing-Principles and Applications, Tinku Acharya and Ajoy K. Ray, 2005, John
	Wiley & Sons Inc., ISBN: 978-0-471-71998-4.
2.	Digital Image Processing, Rafael C. Gonzalez and Richard E. Woods, 2001, Pearson Education
	Edition, ISBN 0-201-18075-8.
3.	Fundamentals of Digital Image Processing, Anil K. Jain, 2001, Pearson Education, PHI, ISBN:
	0071412379
4.	Digital Image Processing and Analysis, Chanda and D. Dutta Majumdar, 2 nd Edition, 2003,
	PHI, ISBN: 9788120343252

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	2
CO3	3	3	2	2	3	-	-	-	2	2	-	3
CO4	3	3	3	3	2	-	-	-	2	1	-	2

	Semester: VI					
	LOW POWER VLSI DESIGN					
	(Theory)					
Cou	Course Code: 16EC6C4 CIE Marks: 100					
Cre	lits: L: T:P:S: 3:0:0:1 SEE Marks: 100					
Hou	rs: 36L SEE Duration: 3Hrs					
Cou	Course Learning Objectives: The students will be able to					
1	Explain the need for low power VLSI chips, Sources of power dissipation on Digital Integrated					
	circuits.					
2	2 Analyze the impact of Device Technology such as Transistor sizing & gate oxide thickness and					
	Device innovation on Low Power.					
3	Evaluate various probabilistic based power analysis techniques at various levels of abstraction.					
4	4 Compare the trade-off between accuracy and resources for both simulations based and					
	probability-based power analysis.					
5	Apply various logic level techniques to optimize the power dissipation of the design reducing					
	the switching activities in the design					
6	6 Design and analyze digital circuits like combinational, sequential circuits using low power					
	concepts.					

UNIT-I	
Introduction	08 Hrs
Need for Low Power VLSI Design, Sources of power dissipation, Physics of Power	
Dissipation in CMOS devices, MIS structure, long channel effect, sub-micron MOSFET,	
Gate induced drain leakage, Power dissipation in CMOS circuits: Short Circuit dissipation,	
Dynamic dissipation, load capacitance Charging and Discharging, Static Power: Leakage	
Currents, Static Currents, Emerging low power approaches and limits.	
UNIT-II	
Power Estimation -Signal Modeling and probability calculation, Probabilistic techniques	07 Hrs
for signal activity estimation, statistical techniques, Estimation of glitching power,	
sensitivity analysis, power estimation using input vector compaction, power estimation at	
circuit level, information theory-based approach, estimation of maximum power.	
UNIT-III	
Device and Technology Impact on Low Power Electronics Introduction, Dynamic	07 Hrs
Dissipation in CMOS, Effects of V _{DD} and V _t on speed, Constraints on V _t Reduction,	
Transistor and Gate Sizing, Transistor Sizing and Optimal Gate Oxide Thickness, Impact	
of Technology Scaling, Equivalent Pin Ordering, Network Restructuring and	
Reorganization, Technology and Device Innovations, Gate Reorganization, Signal Gating,	
Logic Encoding, State Machine Encoding, Pre-computational Logic	
UNIT-IV	
Low Power Circuit Techniques	07 Hrs
Introduction, Power consumption in circuits, Circuit design styles, Analysis of adders,	
multipliers, Flip-Flops and Latches, Low Power Cell Library.	
Low power SRAM architectures: SRAM organization, MOS SRAM cells-4T and 6T,	
Banked organization of SRAMs, Reducing voltage swings on bit-lines, Reducing power in	
write driver circuits, Reducing power in sense amplifier circuits.	
UNIT-V	
Synthesis for Low Power	07 Hrs
Behavioral level transforms, logic level optimizations, circuit level transforms, CMOS	
gates, Power Reduction in Clock Networks:power dissipation in clock distribution, single	
driver Vs distributed buffers, buffer and device sizing, zero sew Vs tolerable skew, CMOS	
Floating Nodes, Low Power Bus, Delay Balancing, Energy recovery CMOS and Adiabatic	
computation.	

Cours	Course Outcomes: After completing the course, the students will be able to					
CO1:	Acquire the knowledge with regard to the physical principles, analysis and the characteristics					
	of the low power designs.					
CO2:	Identify, formulate, and solve engineering problems in the area of low power VLSI designs.					
CO3:						
	logic works SPICE and description languages such as VHDL and Verilog.					
CO4:	Design a digital system, components or process to meet desired needs of low power within					
	realistic constraints.					

Reference Books

1.	Low-Power CMOS VLSI Circuit Design, Kaushik Roy and Sharat Prasad, 2009, John Wiley
	India press, ISBN: 978-81-265-2023-7,
2.	Practical Low Power Digital VLSI Design, Gary K. Yeap, 2009, Kluwer Academic Publishers,
	ISBN: 978-1-4613-77778-8.
3.	Low Power Design Methodologies, Jan M. Rabaey and MassoudPedram, 5th reprint, Kluwer
	Academic Publishers, , ISBN: 978-1-4613-5975-3, 2002.
4.	Low Power CMOS design, Anantha Chandrakasan and Robert W. Brodersen, 1998, Wiley-
	IEEE press, ISBN: 0-7803-3429-9.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	2	1	1	1	-	-	1	1	-	3
CO2	2	2	2	1	1	1	-	-	1	1	-	3
CO3	2	2	2	1	3	2	-	-	2	1	-	3
CO4	2	2	2	1	3	2	-	-	2	1	-	3

Low-1	Medium-2	High-3
-------	----------	--------

	Semester: VI								
	DATASTRUCTURE USING C++								
		(Theory)							
Cour	Course Code: 16EC6C5 CIE Marks: 100								
Cred	Credits: L:T:P:S: 3:0:0:1 SEE Marks: 100								
Hou	Hours: 36L SEE Duration: 3Hrs								
Cour	rse Learning Objectives: The students	will be able to							
1	Analyze the need for data structuring te	chniques.							
2	2 Implement standard data structures like stack, queue, list and tree.								
3	3 Demonstrate the use of standard data structures using relevant applications.								
4	Write appropriate data structures while	building applications.							

UNIT-I

UNII-I	
Data Representation: Overview of C++, Introduction to data representation, Linear Lists,	07 Hrs
Formula - Based Representation, Linked Representation, Indirect Addressing-	
Representation	
+Arrays and Matrices: Arrays- The abstract data type, Indexing a C++ array, row and	
column major mapping, class Array1D, class Array2D, Matrices -definition and	
operations. Special Matrices-Definition and application, Diagonal Matrices, Tridiagonal	
Matrices, Triangular Matrices, Symmetric matrices, Sparse Matrices.	
UNIT-II	
Stacks: The Abstract Data Types, Derived Classes and Inheritance, Formula-based	07 Hrs
Representation, Linked Representation, Applications- Parenthesis matching, Towers of	
Hanoi. Queues: The Abstract Data Types, Derived Classes and Inheritance, Formula-based	
representation, Linked Representation, Applications- Rearranging railroad cars, Wire	
routing.	
UNIT-III	
Skip List and Hashing: Dictionaries, Linear List Representation- The ideal case, insertion	08 Hrs
and deletion, Assigning levels, class skipnode, the class skiplist, Skip list representation,	
Hash table representation-ideal hashing, hashing with linear open addressing, hash tables	
with chains.	
Binary and other Trees: Trees, Binary Trees, Properties and Representation of Binary	
Trees-Formula – Based Representation, Linked Representation, Common Binary Tree	
Operations, Binary Tree Traversal The ADT Binary Tree, ADT and class Extensions	
UNIT-IV	
Priority Queues: Linear Lists, Heaps-Definitions, Insertion and Deletions from MaxHeap,	07 Hrs
MaxHeap Initialization, the class max Heap. Left list Trees-Height and Weight biased Min	
and Max lefist trees, Insertion and Deletion from a Max HBLT, Melding two max HBLTs,	
Initialization, the class Max HBLT	
UNIT-V	
Graphs: Definitions, Properties, Representation of Graphs, Representation of Networks,	07 Hrs
Class definitions, Graph Search methods, applications of Graphs.	
	·

Cours	Course Outcomes: After completing the course, the students will be able to								
CO1:	Acquire the knowledge of importance of data structures in computer programs.								
CO2:	Represent and solve data analytics problems using graph algorithms.								
CO3:	Implement classic data structures: array lists, linked lists, stacks, queues, heaps, binary trees,								
	hash tables.								
CO4:	Evaluate the performance of applications built using different data structures.								

Γ

Refe	erence Books
1.	Data Structures, Algorithms and Applications in C++, Sartaj Sahni, 2000, McGraw Hill, ISBN: 10: 007236226X.
2.	C++:The Complete Reference, Herbert Schildt, 4th Edition, 2007, McGraw-Hill, , ISBN: 0-
	07-213485-2
3.	Data Structures Using C++, D.S. Malik, 2 nd Edition, 2009, Cengage Learning,
4.	Mastering C++, K.R Venugopal, Rajkumar, and T Ravishankar, 4th Edition, 2008, Tata
	McGraw-Hill Pubications.

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	-	-	-	-	-	-	-	1
CO2	3	3	3	2	2	2	-	-	-	2	-	1
CO3	3	3	3	2	2	2	-	-	-	2	-	1
CO4	3	3	3	3	2	1	-	-	-	2	-	1

	Sen	nester: VI						
	SYSTEM PROGRA	MMING & SOFTWARE						
	(*	Гheory)						
Cou	Course Code: 16EC6C6 CIE Marks: 100							
Crea	lits: L:T:P:S: 3:0:0:1	SEE Marks: 100						
Hou	rs: 36L	SEE Duration: 3Hrs						
Cou	rse Learning Objectives: The students wi	ill be able to						
1	Explain the need for low power VLSI ch	ps, Sources of power dissipation on Digital Integrated						
	circuits.							
2	Analyze the impact of Device Technolog	y such as Transistor sizing & gate oxide thickness and						
	Device innovation on Low Power.							
3	Evaluate various probabilistic based power	er analysis techniques at various levels of abstraction.						
4	Compare the trade-off between accuracy and resources for both simulation based and probability based power analysis.							
5		optimize the power dissipation of the design reducing						
-	the switching activities in the design							
6	6 Design and analyze digital circuits like combinational, sequential circuits using low power concepts.							
		UNIT-I						
Asse	mblers:	08 Hrs						

Assemblers:	08 Hrs
Introduction, Basic Assembler functions, algorithms and data structures; Machine-	
dependent assembler features, Machine-independent assembler features, Assembler design	
options: One- pass and Multi-pass assemblers, Case study: MASM assembler, SPARC	
assembler.	
UNIT-II	
Loaders and Linkers:	07 Hrs
Basic Loader functions: Absolute loader, Bootstrap loader, Machine-dependent loader	
features: re-location, program linking, Algorithm and Data structures of a linking loader,	
Machine-independent loader features, loader design options, linkage editors, dynamic	
linking, bootstrap loader, Case study: MS-DOS linker, SunOS linkers.	
UNIT-III	
Macro-processors:	07 Hrs
Basic Macro-processor functions: macro definition and expansion, Algorithm and Data	
structures of macro-processor, Machine-dependent macro-processor features:	
concatenation of macro-processor parameter, generation of unique labels, conditional	
macro expansion, keyword macro parameters, macro-processor design options, recursive	
macro expansion, general purpose macro processors, Case study: MASM macro processor,	
ELENA macro processor, ANSI Macro language.	
UNIT-IV	
Compilers:	07 Hrs
Basic compiler functions, Machine-dependent compiler features: intermediate form of the	
program, machine dependent code optimization, Machine-independent compiler features:	
structured variables, machine independent code optimization, storage allocation, block	
structured languages, Compiler design options: Interpreters, P-code compilers, Compiler-	
compilers, Case study: SunOS C compiler, Java compiler.	
UNIT-V	
Operating Systems:	07 Hrs
Basic operating system functions, Machine-dependent operating system features: interrupt	
processing, process scheduling, IO supervision, Real memory management, virtual	
memory management, Machine-independent operating system features: File processing,	
Job scheduling, Resource allocation, protection, Operating system design options:	
Hierarchical structure, Multiprocessor OS, Distributed OS, Object oriented OS, Case	

study: MS-DOS, SunOS and Windows

Cours	Course Outcomes: After completing the course, the students will be able to								
CO1:	Acquire the knowledge with regard to the physical principles, analysis and the characteristics								
	of the low power designs.								
CO2:	Identify, formulate, and solve engineering problems in the area of low power VLSI designs.								
CO3:	Use the techniques and skills in system designing through modern engineering tools such as								
	logic works SPICE and description languages such as VHDL and Verilog.								
CO4:	Design a digital system, components or process to meet desired needs of low power within								
	realistic constraints.								

Refe	erence Books
1.	System Software-An Introduction to System Programming, Leland L. Beck, 3rd Edition, 2009,
	Pearon Education, ISBN: 978-81-317-2700-3
2.	System Programming, John J. Donovan, 2009, Tata McGraw Hill Edition, ISBN-13: 978-0-07-
	460482-3

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	1	1	-	-	1	1	-	3
CO2	2	1	2	1	1	1	-	-	1	1	-	3
CO3	2	1	2	1	1	1	-	-	1	1	-	3
CO4	2	1	2	1	1	1	-	-	1	1	-	3

	Semester: VI							
	FLEXIBLE ELECTRONICS							
	(Theory)							
Cou	Course Code: 16EC6C7 CIE Marks: 100							
Cred	Credits: L:T:P:S: 3:0:0:1 SEE Marks: 100							
Hou	Hours: 36L SEE Duration: 3Hrs							
Cou	rse Learning Objectives: The students	will be able to						
1	1 Realize the importance and advantages of Large Area and Flexible Electronics.							
2	Understand the processes and equipments used for Large Area and Flexible Electronics.							
3	3 Familiarization with the materials, substrates and interfaces in Large Area and Flexible							
	Electronics.							
4	4 Selection of materials and formulation of processes for various possible applications of Large							
	Area and Flexible Electronics.							

UNIT-I					
Introduction to Flexible Electronics and their Materials Systems: Background and	08 Hrs				
history, trends, emerging technologies, general applications.					
Introduction to Semiconductors & Circuit Elements: Carrier transport, doping, band					
structure, thin-film electronic devices. Thin-film Deposition and Processing Methods for					
Flexible Devices -CVD, PECVD, PVD, etching, photolithography, low-temperature					
process integration.					
UNIT-II					
Materials for Flexible and Printed Electronics: Nanowire and nanoparticle synthesis,	07 Hrs				
transition metal oxides, amorphous thin films, polymeric semiconductors, structure and					
property relationships, paper-based electronics, textile substrates, barrier materials.					
UNIT-III					
Thin Film Transistors 1: device structure and performance: I-V characteristics,	07 Hrs				
gradual channel approximation, electrical stability, lifetime extraction, characterization					
methods for rigid and flexible devices. Metal Oxide TFT's, Carbon Nanotube TFT's					
UNIT-IV					
Solution-based Patterning Processes: Ink-jet printing, gravure, imprint lithography, spray	07 Hrs				
pyrolysis, surface energy effects, multilayer patterning, design rule considerations.					
Substrates for Flexible electronics					
UNIT-V					
Contacts and Interfaces to Organic and Inorganic Electronic Devices Schottky	07 Hrs				
contacts, defects, carrier recombination, effect of applied mechanical strain.Flexible					
Electronics Applications :Displays, sensor arrays, memory devices, MEMS, lab-on-a-					
chip, and photovoltaics					

Cours	Course Outcomes: After completing the course, the students will be able to							
CO1:	Define the requirements of materials, working and fabrication for flexible electronics devices							
CO2:	Categorize fabrication/Patterning/Printing techniques various flexible electronics application							
CO3	Analyze thin film devices & circuits for flexible electronics applications							
CO4:	Engage in selfstudy for modeling & simulation of various materials & devices used in flexible							
	electronics							

Ref	Reference Books							
1.	Flexible Electronics – Materials and applications, William S Wong, Salleo, Alberto, 2009,							
	Springer, ISBN 978-0-387-74363-9							
2.	Large Area and Flexible Electronics, Mario Carioni, Yong-Yong Noh, 2015, Wiley ISBN: 978- 3-527-67999-7							

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	1	-	-	-	-	2
CO2	3	2	1	-	-	1	2	-	-	-	-	2
CO3	3	3	2	2	1	1	2	-	-	-	-	2
CO4	3	3	2	2	3	1	2	-	3	2	1	2

Low-1 Medium-2 High-3

	Semester: VI OPTICAL FIBER COMMUNICATION & NETWORKS								
	(Theory)								
Cou	Course Code: 16EC6D1 CIE Marks: 100								
Crec	Credits: L:T:P:S: 3:0:0:1 SEE Marks: 100								
Hou	Hours: 36L SEE Duration: 3Hrs								
Cou	Course Learning Objectives: The students will be able to								
1	1 Analyze Optical spectral band and incorporate the standards for optical fiber communication								
2	2 Analyze Single-mode Fibers, Graded-index Fiber Structure, Mechanical Properties of Fibers and Fiber Optic Cables								
3	3 Demonstrate light sources using Light-Emitting Diodes (LEDs), Laser Diodes								
4	4 Develop optimum Source-to-Fiber Power Launching & Lensing Schemes for Coupling Improvement.								

UNIT-I	
Introduction	08 Hrs
Ray theory transmission, Total internal reflection, Acceptance angle, Numerical aperture,	
Skew rays, Electromagnetic mode theory of optical propagation, EM waves, modes in	
planar guide, phase and group velocity, cylindrical fibers, SM fibers.	
UNIT-II	
Transmission Characteristics of Optical Fibers	07 Hrs
Attenuation, Material absorption losses in silica glass fibers, Linear and Nonlinear	
Scattering losses, Fiber Bend losses, Midband and far band, infra-red transmission, Intra	
and inter Modal Dispersion, over all Fiber Dispersion, Polarization, nonlinear	
Phenomena. Optical fiber connectors, Fiber alignment and Joint Losses, Fiber Splices,	
Fiber connectors, Expanded Beam Connectors, Fiber Couplers.	
UNIT-III	
Sources and Detectors	07 Hrs
Optical sources: Light Emitting Diodes, LED structures, surface and edge emitters, mono	
and hetero structures, internal, quantum efficiency, injection laser diode structures,	
comparison of LED and ILD	
Optical Detectors: PIN Photo detectors, Avalanche photo diodes, construction,	
characteristics and properties, Comparison of performance, Photo detector noise, Noise	
sources, Signal to Noise ratio, Detector response time.	
UNIT-IV	
Fiber Optic Receiver and Measurements	07 Hrs
Fundamental receiver operation, Pre-amplifiers, Error sources, Receiver Configuration,	
Probability of Error, Quantum limit.	
Fiber Attenuation measurements- Dispersion measurements, Fiber Refractive index	
Profile measurements, Fiber cut- off Wave length Measurements, Fiber Numerical	
Aperture Measurements, Fiber diameter measurements.	
UNIT-V	
Optical Networks	07 Hrs
Basic Networks, SONET / SDH, Broadcast and select WDM Networks, Wavelength	
Routed Networks, Nonlinear effects on Network performance	
Performance of WDM + EDFA system, Solitons, Isolators, Circulators, Optical CDMA,	
Ultra High Capacity Networks.	
Self-Study:	
Seminars, Projects, Paper publication, etc. on emerging technologies pertaining to the	
subject 4 Hrs/Week: 1 Credit	

R.V. College of Engineering – Bengaluru-59

Cours	Course Outcomes: After completing the course, the students will be able to							
CO1:	Select the proper Optical spectral band and incorporate the standards for optical fiber							
	communication.							
CO2:	Analyze various WDM Concepts and Apply different Optical Network concepts and							
	topologies and design WDM Networks.							
CO3:	Analyze the Optical Fiber Modes and Configurations of the Single-mode Fibers, Graded-							
	index Fiber Structure, Mechanical Properties of Fibers and Fiber Optic Cables.							
CO4:	Design the light sources using Light-Emitting Diodes (LEDs), Laser Diodes and evaluate							
	Light Source Linearity, and analyze the Reliability considerations.							

Refe	Reference Books						
1.	Optical Fiber Communication, Gerd Keiser, 2008, Tata McGraw Hill Publication,						
2.	Optical Fiber Communications, John M. Senior, "", 3 rd Edition, 2007, Pearson Education, ISBN						
3.	Optical Networks: A Practical Perspective, Rajiv Ramaswami, Kumar N. Sivarajan and Galen						
	H. Sasaki, 3 rd Edition, 2010, The Morgan Kaufmann Series in Networking.						
4.	Fiber Optics and Optoelectronics, R.P. Khare, 2007, Oxford University Press						

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	1	2	-	3	-	-	2	3	1	2
CO2	1	2	3	3	-	2	-	-	3	2	1	3
CO3	3	1	2	2	-	1	-	-	3	2	3	1
CO4	2	3	1	3	-	2	-	-	2	2	1	2

		Semester: VI						
	ARM COF	RTEX PROCESSORS						
Соц	rse Code: 16EC6D2	(Theory) CIE Marks: 100						
Credits: L:T:P:S: 3:0:0:1 SEE Marks: 100								
	rs: 36L	SEE Duration: 3Hrs						
	rse Learning Objectives: The students							
1		t processors suitable for embedded system.						
2	To gain knowledge on ARM cortex-M memory & special OS features.	series CPU architecture, instruction set, excepti	ons,					
3	Identify the design issues ARM based embedded OS & ARM architectures.	embedded system with the basic knowledge of	firmware					
 Analyse the execution of instructions/program knowing the basic principles of ARM architecture and assembly language & the special features of Cortex-M3/M4 to realize signal processing applications. 								
		UNIT-I						
Sign Portf	al Processors ARM Cortex-2 Series Ov	tion, PowerPC, ARM Cortex, SoC, Digital verview: Cortex-M Processor Family, Product Microcontroller Software Interface Standard	08 Hrs					
		UNIT-II						
Statu Debu	is Register (APSR), Memory System, Ex	: Programmer's Model, Application Program acceptions & Interrupts, System Control Block, a Set-I: Assembly Language Syntax, Suffixes a Language, Assembly Instructions UNIT-III	07 Hrs					
Men Alig	nory Map, Connecting Cortex-M3/M4 w	Instructions, Barrel Shifter Memory System: vith Memory & Peripherals, Endianness, Data port, Bit Band Operations, Memory Access	07 Hrs					
		UNIT-IV						
Inter Pend Inter Exce	rupt Management, Vector Table & Ve ling Behaviors, Exceptions Sequence, rupt Control, SCB Registers for Exception	Exceptions and Interrupts, Exception Types, ector Table Relocation, Interrupts Inputs & Overview, Details of NVIC Registers for ons & Interrupt Control, Special Registers for up Interrupts, Software Interrupts. Exception ences.	07Hrs					
		UNIT-V						
Usin Appl Cont Supj	g WFI & WFE Instructions in fo lications, The SysTick Timer, Self-Re rol Register, Auxiliary Control Register,	: Low Power Designs, Low Power Features, or Programming, Developing Low Power eset, CPU ID Base Register, Configuration s, Co-Processor Access Control Register. OS c, SVC Exception, PendSV Exception, Context	07 Hrs					
Corr	rse Outcomes: After completing the co	urse the students will be able to						
011	rse Unicomes: After completing the co	nirse, the students will be able to						

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand the architecture, instruction set, memory organization and addressing modes of							
	the embedded processors.							
CO2:	Realize real time signal processing applications & primitive OS operations on different ARM							
	architectures by making use of software libraries.							
CO3:	Perform market survey of available embedded processors & arrive at the required processor							
	for solving the given problem statement.							

CO4:	Engage in self-study to formulate, design, implement, analyze and demonstrate an application
	realized on ARM development boards through assignments.

Refe	Reference Books								
1.	The Definitive Guide to the ARM Cortex-M3& M4 Processors, Joseph Yiu, 3rd Edition, 2014								
	Newnes (Elsevier), ISBN:978-93-5107-175-4								
2.	ARM System Developers Guide, Andrew N Sloss, Dominic Symes, Chris Wright, 2008,								
	Elsevier, Morgan Kaufman publishers, ISBN-13:9788181476463								
3.	ARM System on Chip Architecture, Steve Furber, 2nd Edition, 2000, Pearson Education								
	Limited, ISBN-13:9780201675191								
4.	Technical reference manual for ARM processor cores, including Cortex M3, M4, M7 processor								
	families.								

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	-	-	-	-	-	-	-		-	-
CO2	3	2	2	3	-	2	-	2	2		-	1
CO3	3	3	2	2	2	2	-	2	2		-	1
CO4	3	3	3	3	2	3	2	3	3	3	3	3

	S	emester: VI						
		SIGNAL PROCESSING						
		(Theory)						
Cou	rse Code: 16EC6D3	CIE Marks: 100						
Crea	lits: L:T:P:S: 3:0:0:1	SEE Marks: 100						
Hou	rs: 36L	SEE Duration: 3Hrs						
Cou	Course Learning Objectives: The students will be able to							
1	Identify applications in which it wo	uld be possible to use the different adaptive	filtering					
I	approaches.							
2	Design, implement and apply LMS filte	er to given application.						
3		ean square estimators and in particular linear e	stimators.					
	To understand and compute their expect	· · · · · · · · · · · · · · · · · · ·						
4	Design, implement and apply filters (F	IR, non-causal, causal) and evaluate their perform	mance.					
		UNIT-I						
-		acteristics, Areas of application, General	08 Hrs					
		on, Applications of closed-loop adaptation,						
		tive Linear Combiner: General description,						
		sponse and error, the performance function,						
		xample of a performance surface, Alternative						
expre	ession of the gradient, Decorrelation of e							
0		UNIT-II	0 					
		of the input correlation matrix, Eigen values	07 Hrs					
		on matrix, an example with two weights,						
		gnificance of eigenvectors and Eigen values.						
	8	hods of searching the performance surface,						
		ple gradient search algorithm and its solution,						
	idimensional space, Steepest descent met	e learning curve. Newton's method in						
mun	iumensional space, steepest descent met	UNIT-III						
۸da	ntive Modeling and System Identificat	tion: General description, Adaptive modeling	07 Hrs					
		ptive modeling in geophysical exploration,	07 1115					
		esis. Gradient Estimation and Its Effects on						
		by derivative measurement. The performance						
-		formance penalties with multiple weights,						
-	•	the weight-over solution, excess mean-square						
		comparative performance of Newton's and						
	best-descent methods, Total misadjustmen							
1		UNIT-IV						
The	LMS Algorithm: Derivation of the	LMS algorithm, convergence of the weight	07 Hrs					
vecto	or, an example of convergence, learning	g curve, noise in the weight-vector solution,						
		rference Canceling: The concept of adaptive						
noise	e canceling, stationary noise-canceling s	olutions, effects of signal components in the						
reference input, The adaptive interference canceller as a notch filter, The adaptive interface								
canc	eller as a high-pass filter.	_						
		UNIT-V						
		of Speech Production, Lossless tube models,	07 Hrs					
Digit		main Models for Speech Processing: Time						
		ge zero crossing rate, Speech vs. silence						
		ssing, pitch period estimation using parallel						
		tion function, Short time average magnitude						
diffe	rence function, Pitch period estimation u	sing autocorrelation function						

Cours	Course Outcomes: After completing the course, the students will be able to									
CO1:	Understand the concepts of linear algebra & linear adaptive systems.									
CO2:	Applying the concepts of adaptive algorithms to various engineering problems.									
CO3:	Analyze the effect various parameters in developing an adaptive systems.									
CO4:	Design and implement simple adaptive systems for any computational applications.									

Reference Books

1	A dard's C's at Description of Withers at Course 1 d. Course 2001. Description Education
1.	Adaptive Signal Processing, Bernard Widrow and Samuel d. Stearns, 2001, Pearson Education
	Asia, ISBN:9788131705322
2.	Adaptive Filter Theory, Simon Haykin, 4th Edition, 2002, Pearson Education Asia, ISBN 0-13-
	090126-1
3.	Theory and Design of Adaptive Filters, John R. Treichler C. Richard Johnson, Jr. and Michael
	G. Larimore, 2002, Pearson Education, , ISBN-10: 0130402656
4.	Digital Processing of Speech Signals, L R Rabiner and R W Schafer, 2004, Pearson Education,
	ISBN 978-1848822535

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	2	-	-	-	-	-	-	-	1	-	1	
CO2	2	2	2	1	-	-	-	-	-	1	-	1	
CO3	2	3	2	2	2	-	-	-	-	1	-	1	
CO4	2	3	3	3	2	-	-	-	-	1	-	1	

	S	Semester: VI						
	SYST	TEM VERILOG						
		(Theory)						
Cour	Course Code: 16EC6D4 CIE Marks: 100							
Cred	Credits: L:T:P:S: 3:0:0:1 SEE Marks: 100							
Hou	Hours: 36L SEE Duration: 3Hrs							
Cour	rse Learning Objectives: The students	will be able to						
1	Build a System Verilog verification env	vironment						
2	2 Define test bench components using object-oriented programming							
3								
4	Develop a stimulus generator to create	constrained random test stimulus						

UNIT-I					
System Verilog data types, Operators, Loops, Functions	08 Hrs				
Data types, Built-In Data Types, Fixed-Size Arrays, Dynamic Arrays, Queues, Associative					
Arrays, Linked Lists, Array Methods, Choosing a Storage Type, Creating New Types with					
typedef, Creating User-Defined Structures, Type conversion, Enumerated Types,					
Constants, Strings, Procedural Statements, Tasks, Functions, and Void Functions, Routine					
Arguments, Returning from a Routine.					
UNIT-II					
Class and Randomization	07 Hrs				
System verilog class basics, class declaration, class members and methods, class handles,					
class object construction, super and this keywords, object handles, user defined					
constructors, class extension and inheritance, chaining new() constructors, overriding class					
methods, extending class methods, local and protected keywords, constrained random					
variables, directed vs random testing, rand and randc class data types, randomize-					
randomizing class variables, randcase, built-in-randomization methods, randsequence and					
examples.					
UNIT-III					
Interfaces, Program block and Clocking	07 Hrs				
Interface overview, generic interfaces, interfaces Vs records, how interfaces work,					
requirements of good interface, interface constructs, interface modports, Fundamental test					
bench construction, program blocks, program block interaction with modules, final blocks,					
Test bench stimulus/Verification vector timing strategies, Clocking blocks, clocking					
skews, clocking block scheduling, fork-join processes.					
UNIT-IV					
Constrained Random variables, Coverage, Methods and interfaces	07 Hrs				
Randomization constraints, simple and multi-statement constraints, constraint distribution					
and set membership, constraint distribution operators, external constraints, cover groups,					
cover points, cover point bins and labels, cross coverage, cover group options, coverage					
capabilities. Virtual class, why to use virtual class, virtual class methods and restrictions,					
polymorphism using virtual methods, pure virtual methods, pure constraints, passing type					
parameters, virtual interfaces.					
UNIT-V					
System Verilog Assertions	07 Hrs				
Assertion definition, assertion benefits, system Verilog assertion types, immediate					
assertions, concurrent assertions, assert and cover properties and labels, overlapping and					
non-overlapping implications, edge testing functions, sequences, Vacuous success,					
property styles, System Verilog assertion system functions, Assertion severity tasks,					
assertion and coverage examples of an FSM design.					

R.V. College of Engineering – Bengaluru-59

Cours	Course Outcomes: After completing the course, the students will be able to									
CO1:	Explain the behavior of different digital blocks by writing HDL code.									
CO2:	Apply the System Verilog verification features, including classes, constrained random stimulus, coverage, strings, queues and dynamic arrays, and learn how to utilize these features for more effective and efficient verification.									
CO3:	Integrate various digital blocks and implement a complete digital system.									
CO4:	Design different architectures of various digital blocks and optimize the area, speed and									
	power.									

Refe	erence Books
1.	System Verilog for Verification: A guide to learning the Test bench Language Features, Christian B Spear, 3 rd Edition, Springer Publications.
	Christian B Spear, 3 rd Edition, Springer Publications.
2.	System Verilog Assertions, Vijaya Raghavan, 2005, Springer Publications, ISBN 978-0-387-
	26173-7
3.	System Verilog for Design, Stuart Sutherland, Smon Davidmann Peter Flake, 2nd Edition,
	Springer Publications.
4.	System Verilog Primer, J Bhaskar, 2010, Star Galaxy Publishing, ISBN 13: 9780965039116

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	-	-	3	-	1	-	1	-	-	2	
CO2	3	2	2	1	3	1	2	-	2	-	-	2	
CO3	3	3	2	2	3	-	1	1	1	-	-	2	
CO4	3	3	3	3	3	1	3	-	1	-	-	2	

Low-1	Medium-2	High-3
-------	----------	--------

	Semester: VI			
		VLSI Design Automation		
Cou	Course Code: 16EC6D5 CIE Marks: 100			
	lits: L:T:P:S: 3:0:0:1	SEE Marks: 100		
Hou	rs: 36L	SEE Duration: 3Hrs		
Cour	rse Learning Objectives: The students	will be able to		
1	Analyze the concept of digital systems, how they can be optimized for area, power and cost, why it is advantageous to use physical design tools.			
2	Implement the concept of the physical design cycle and develop algorithms (tools)for each design cycle step.			
3	Optimize the digital system at architectural level.			
4 Synthesize a given system starting with problem requirements, identifying and designing the building blocks, and then integrating blocks designed earlier				
UNIT-I				
Architectural Level Synthesis: Introduction, Circuit specifications for architectural on the synthesis, the fundamentals of architectural synthesis problems, Area and Performance Estimation, Strategies for Architectural Optimization Scheduling Algorithms: Introduction, A model for scheduling problems, Scheduling without and with resource constraints, Scheduling algorithms for extended sequencing models, Scheduling pipelined circuits, Resource sharing and binding.				
	× ×	UNIT-II		
Com Form	Data Structure and Basic Algorithms: Basic Terminology, Graph Search Algorithms, Computational Geometry Algorithms, Basic Data structures. Partitioning: Problem Formulation, Classification of Partitioning Algorithms, Group migration Algorithms, Simulated Annealing and evolution algorithm, other partitioning algorithms07 Hrs			
	UNIT-III			
based planr			07 Hrs	
UNIT-IV				
Prob Rout	Global Routing: Problem formulation, Classification, Maze routing Algorithms, Line07HrsProbe Algorithms, shortest path-based Algorithms, Steiner tree-based Algorithms Detailed07HrsRouting: Problem formulation, Classification single Layer routing, General river routing, Single row routing07Hrs			
UNIT-V				
consi form	Channel, Clock and Power Routing: Two-layer channel routing Algorithms, Design considerations for the clocking system, delay calculation for clock trees, Problem formulation, Clock routing Algorithms, Clock Tree Routing: H-tree based Algorithms, MMM Algorithms, Geometric matching based Algorithms.			

Course Outcomes: After completing the course, the students will be able to		
CO1:	Analyze each stage of VLSI design flow to develop a CAD tool for physical design.	
CO2:	Apply design knowledge to develop algorithms for VLSI design automation.	
CO3:	Evaluate the algorithms for optimizing VLSI design with respect to speed, power and area.	
CO4:	Create an optimized VLSI IC design technique using various algorithms.	

Refe	erence Books
1.	Synthesis and Optimization of Digital Circuit, 1994, Giovanni De Micheli, McGraw-Hill, ISBN: 10-0070163332
	ISBN: 10-0070105552
2.	Algorithms for VLSI Physical Design Automation, N.A. Sherwani, 2002, Kluwar Academic
	Publishers, ISBN: 0-7923-8393-1
3.	An Introduction to VLSI Physical Design, M Sarraf Zadeh, C K Wong, 1996, McGraw Hill,
	ISBN:0070571945
4.	Algorithms for VLSI Design Automation, S.H. Gerez, 1998, John Wiley & Sons, ISBN: 978-0-
	471-98489-4

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	-	1	3	2	3	-	-	-	1	1	2	3	
CO2	3	2	3	1	3	-	1	1	2	2	3	3	
CO3	3	2	3	3	3	1	-	-	1	1	3	3	
CO4	3	3	3	1	3	-	-	1	2	1	1	3	

Low-1 Medium-2 High-3

	Semester: VI	[
	Database Management Systems									
Cou	Course Code: 16EC6D6 CIE Marks: 100									
Cre	edits: L:T:P:S: 3:0:0:1	SEE Marks: 100								
Hou	Hours: 36L SEE Duration: 3Hrs									
Cou	rse Learning Objectives: The students will be able	to								
1	Understand the differences between logical and ph	ysical database design.								
2	Understand the context, phases and techniques for	designing and building database								
	information systems in business.									
3	Analyse database requirements and determine the entities involved in the system and their									
	relationship to one another.									
4	Design and build a simple database system and dem									
	tasks involved with modelling, designing, and imple	ementing a DBMS.								

UNIT-I

UNIT-I					
Introduction: An example, Characteristics of Database approach, Actors on the screen,	08 Hrs				
Workers behind the scene, Advantages of using DBMS approach, A brief history of					
database applications. Data models: schemas and instances, Three-schema architecture					
and data independence, Database languages and interfaces, The database system					
environment, Centralized and client-server architectures, Classification of Database					
Management systems. Entity-Relationship Model: Using High-Level Conceptual Data					
Models for Database Design, An Example Database Application, Entity Types, Entity Sets,					
Attributes and Keys, Relationship types, Relationship Sets, Roles and Structural					
Constraints, Weak Entity Types, Refining the ER Design, ER Diagrams, Naming					
Conventions and Design Issues, Relationship types of degree higher than two.					
UNIT-II					
Relational Model and Relational Algebra: Relational Model Concepts, Relational Model	07 Hrs				
Constraints and Relational Database Schemas, Update Operations, Transactions and					
dealing with constraint violations, Unary Relational Operations: SELECT and PROJECT,					
Relational Algebra Operations from Set Theory.					
SQL basics: SQL Data Definition and Data Types, Specifying constraints in SQL, Basic					
retrieval queries in SQL. Insert, Delete and Update statements in SQL.					
UNIT-III					
SQL programming: complex SQL queries. Specifying constraints as Assertion and	07 Hrs				
actions as Trigger, Views (Virtual Tables) in SQL, schema change statements in SQL.					
Introduction to Python: SQL Database connection using python, Creating and searching					
tables, Reading and storing configurations information on database, Programming using					
database connections					
UNIT-IV					
Database Design -1: Informal Design Guidelines for Relation Schemas, Functional	07 Hrs				
Dependencies, Normal Forms Based on Primary Keys, General Definitions of Second and					
Third Normal Forms, Boyce-Codd Normal Form. Database Design -2 Properties of					
Relational Decompositions, Algorithms for Relational Database Schema Design,					
Multivalued Dependencies and Fourth Normal Form, Join Dependencies and Fifth Normal					
Form, Inclusion Dependencies					
UNIT-V					
Transaction Management The ACID Properties, Transactions and Schedules, Concurrent	07 Hrs				
Execution of Transactions, Lock- Based Concurrency Control, Performance of locking,					
Transaction support in SQL, Introduction to crash recovery, 2PL, Serializability and					
Recoverability, Lock Management, Introduction to ARIES, The log, Other recovery-					
related structures, The write-ahead log protocol, Check pointing, Recovering from a					
System Crash, Media Recovery, Other approaches and interaction with concurrency					
control.					

Γ

R.V. College of Engineering – Bengaluru-59

Cours	Course Outcomes: After completing the course, the students will be able to								
CO1:	Demonstrate the understanding of the fundamentals of Data Base management system, entity-								
	relationship model, Relational Algebra, Database Design, Transaction Management.								
CO2:	Use an SQL interface of a multi-user relational DBMS package to create, secure, populate,								
	maintain, and query a database.								
CO3:	Analyse an information storage problem and derive an information model expressed in the								
	form of an entity relation diagram and other optional analysis forms, such as a data dictionary.								
CO4:	Design a data model that satisfies relational theory and provides users with business Queries,								
	business forms and business reports.								

Reference Books

1.	Fundamentals of Database Systems, Elmasri, Navathe, 5th Edition, 2007, Pearson Education,
	ISBN-13: 978-0-136-08620-8
2.	Database Management Systems, Raghu Ramakrishnan, Johannes Gehrke, 3rd Edition, 2003,
	McGraw-Hill, ISBN-10: 007246563
3.	Data base System Concepts, Silberschatz, Korth, Sudharshan, 6th Edition, 2010, Mc-GrawHill,
	ISBN-10: 0073523321/ISBN-13: 978-0073523323
4.	An Introduction to Database Systems, C.J. Date, A. Kannan, S. Swamynatham, 8th Edition,
	2006, Pearson Education, ISBN: 9788177585568.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	3	1	1	1	-	-	-	-	-	2
CO2	1	2	2	1	1	1	-	-	-	-	-	2
CO3	1	2	2	1	1	1	-	-	2	1	-	2
CO4	1	3	3	1	1	-	-	-	2	1	-	2

Low-1	Medium-2	High-3
-------	----------	--------

	Semester: VI									
Internet of Things (IoT)										
Cou	rse Code: 16EC6D7	CIE Marks: 100								
Credits: L:T:P:S: 3:0:0:1 SEE Marks: 100										
Hou	Hours: 36L SEE Duration: 3Hrs									
Cou	rse Learning Objectives: The students will be	able to								
1	Understands the mechanisms used in the design of IoT device.									
2	2 Aware of the role and importance of the Internet of Things in the enterprise, economy and society.									
3	Design the architecture and technologies neede	ed to implement IoT devices.								
4		· , , · · · , · · ,								

4 Create software for devices equipped with sensors interacting with environment

UNIT-I

Introduction to IoT, IoT Network Architecture and Design, Drivers Behind New Network
Architectures, Comparing IoT Architectures, A Simplified IoT Architecture, IoT Data
Management and Compute Stack07 HrsUNIT-IIEngineering IoT Networks: Smart Objects: The "Things" in IoT, Sensors, Actuators, and
Smart Objects, Sensor Networks, Wireless Sensor Networks, Connecting Smart Objects,
Communications Criteria, Range, Frequency Bands, Power Consumption, Constrained-
Node Networks, Data Rate and Throughput, Latency and Determinism, Overhead and
Payload07 Hrs

UNIT-III

IoT Access Technologies: IEEE 802.15.4, IEEE 802.15.4g and 802.15.4e, IEEE 1901.2a,07 HrsIEEE 802.11ah, Physical Layer, MAC Layer, Topology, Security, LoRaWAN,07 Hrs

UNIT-IV

IP as the IoT Network Layer, The Need for Optimization, Optimizing IP for IoT, Profiles
and Compliances, Application Protocols for IoT, IoT Application Transport Methods,
SCADA, SCADA Transport over LLNs with MAP-T, IoT Application Layer Protocols07 Hrs

UNIT-V

Programming IoT using C: Introduction to Raspberry Pi, Pi vs. Microcontroller, Getting
started with IDE, Introduction to GPIO, Inputs and interrupts, Memory mapped GPIO,
Programming examples.08 Hrs

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Demonstrate the working of IoT Networks, IoT Access Technologies								
CO2:	Analyze the different IoT Access & Network Technologies and sensing elements								
CO3:	Design the Communications & Payload for IoT applications								
CO4:	Design the application using sensing elements though various networks & protocol								

Refe	erence Books
1.	IoT Fundamentals: Networking Technologies, Protocols and Use Cases for the Internet of
	Things, Hanes David, Salgueiro Gonzalo, Grossetete Patrick, Henry Jerome, 1st edition, 2017,
	Pearson Education, ISBN-13:978-9386873743
2.	Raspberry Pi Iot in C, Harry Fairhead, 1st edition, 2016, I/O Press;, ISBN-13: 978-1871962468.
3.	Internet of Things: A Hands-On Approach, Arsheep Bahga, Vijay Madisetti, 1 st edition, 2015,
	Orient Blackswan Private Limited - New Delhi, ISBN-13: 978-8173719547
4.	Getting Started with Sensors, Kimmo Karvinen ,Tero Karvinen, 1st edition 2014, O'Reilly;,
	ISBN-13: 978-1449367084

R.V. College of Engineering – Bengaluru-59

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	2	-	-	-	-	1	1	1
CO2	3	2	2	1	2	-	-	-	-	1	1	1
CO3	3	3	2	2	2	-	-	-	-	-	-	-
CO4	3	3	3	3	2	-	-	-	-	-	-	-

Low-1 Medium-2 High-3

	Ser	nester: V& VI				
		ional Practice – III				
		Skills and Professional Ethics				
Сош	rse Code: 16HS68	CIE Marks: 50				
	lits: L:T:P:S: 1:0:0:0	SEE Marks:				
	rs: 36	SEE Marks				
	rse Learning Objectives: The student	A A A A A A A A A A A A A A A A A A A				
1						
	Improve qualitative and quantitative p					
2	Apply critical and logical thinking pro					
3	based on verbal reasoning.	ast words and arrive at relationships between con	icepts,			
		n communicating ideas as well as in technical				
4	documentation.					
		NIT-I				
		f Aptitude tests, Key Components, Quantitative	06 Hrs			
		ency, Data Analysis - Number Systems, Math				
	bulary, fraction decimals, digit places e					
		troduction to puzzle and games organizing				
		flaws, arguments and assumptions. Analytical				
Reas	oning, Critical Reasoning,					
	U	NIT-II				
Verb	al Analogies - What are Analogies, I	How to Solve Verbal Analogies & developing	06 Hrs			
High	er Vocabulary, Grammar, Compreher	nsion and Application, Written Ability. Non-				
Verb	al Reasoning, Brain Teasers. Creativity	Aptitude.				
Grou	IP Discussion - Theory & Evaluation:	Understanding why and how is the group				
		group discussion, Discuss the FAQs of group				
discu	ssion, body language during GD.					
	UNI	IT-III-A				
Resu	me Writing- Writing Resume, how to	write effective resume, Understanding the basic	06 Hrs			
		Guidelines for better presentation of facts.				
		T-III-B				
		to technical writing- Emphasis on language	06 Hrs			
		riting, Contents in a technical document, Report				
	e	k special notes, Writing processes, Translating				
		chniques, Patterns & elements of sentences,				
	mon grammar, usage & punctuation pro	A · ·				
		NIT-IV				
Inter		, b) Group Interviews , c) Mock Interviews -	06 Hrs			
		dy language in interview, Etiquette, Dress code				
_		views, Mock interviews - Mock interviews with				
	-					
etc.	different Panels. Practice on stress interviews, technical interviews, General HR interviews					
cic.		UNIT-V				
Inter	nersonal Relations - Optimal Co. avist		06 Hrs			
	Interpersonal Relations - Optimal Co-existence, Cultural Sensitivity, Gender sensitivity06 HrsAdapting to the Corporate Culture- Capability & Maturity Model, Decision Making					
Analysis, Brain Storm. Adapting to the Corporate Culture.						
	rse Outcomes: After completing the c					
CO1						
CO2						
CO3		ppropriate comprehension and application.				
CO4	: Focus on Personal Strengths and Co	ompetent to face interviews and answer the aptitu	ide			

Ref	erence Books
1	The 7 Habits of Highly Effective People, Stephen R Covey, 2004 Edition, Free Press, ISBN: 0743272455
2	How to win friends and influence people, Dale Carnegie, "",1st Edition, 2016, General Press,
	ISBN: 9789380914787
3	Crucial Conversation: Tools for Talking When Stakes are High, Kerry Patterson, Joseph Grenny,
	Ron Mcmillan, "", McGraw-Hill Publication, 2012 Edition, ISBN: 9780071772204
4	Aptimithra: Best Aptitude Book, Ethnus, 2014 Edition, Tata McGraw Hill, ISBN:
	9781259058738

Scheme of Continuous Internal Examination (CIE)

Evaluation will be carried out in TWO Phases.

Phase	Activity	Weight				
		age				
Ι	Test 1 is conducted in V Sem for 50 marks (15 Marks Quiz and 35 Marks	50%				
	Descriptive answers) after completion of Unit-1, Unit-2 and Unit -3.A for 18					
	hours of training sessions.					
II	Test 2 is conducted in VI Sem for 50 marks ((15 Marks Quiz and 35 Marks	50%				
	Descriptive answers) after completion of Unit -3B, Unit - 4 and Unit-5 for 18					
	hours of training sessions.					
	At the end of the VI sem Marks of Test 1 and Test 2 is consolidated for 50 marks a					
	grading is done. The final CIE marks is scrutinized by the committee comprising of HSS-					
	Chairman, Training Co-ordinator, respective department Staff Placement co-ordinator					
	before submitting to CoE.					

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

11	0			()	0		()				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	-	1	-	-	3	-	3	3	3	3
CO2	3	2	3	-	-	-	-	-	2	3	2
CO3	-	-	1	-	-	2	-	2	2	3	3
CO4	-	-	2	-	-	3	1	3	2	2	3

Low-1 Medium-2 High-3

	Semester: VI (Global Elective-E)							
	Automotive Electronics							
Cou	Course Code: 16G6E05 CIE Marks: 100							
Cre	SEE Marks: 100							
Hours: 36L SEE Duration: 3Hr								
Cou	rse Learning Objectives: The students will be	e able to						
1	Understand the application of principles of sensing technology in automotive field							
2	Apply control systems in the automotive domain							
3	Understand automotive specific communication protocols / techniques							
4	Analyze fault tolerant real time embedded systems							

UNIT-I	
Power Train Engineering and Fundamentals of Automotive: Fundamentals of Petrol,	08 Hrs
diesel and gas engines, electric motors and control systems. Basic Automotive System,	
System Components, Evolution of Electronics in Automotive. Alternators and charging,	
battery technology, Ignition systems. Working principles of various electronic components	
and accessories used in Automotive. Developments in existing engine forms and	
alternatives. Hybrid designs (solar power, electric/gasoline, LPG, CNG, fuel cells). Basic	
Transmission systems.	
UNIT-II	
Sensor Technologies in Automotive: In-vehicle sensors: Working principles,	07 Hrs
Characteristics, limitations and use within the automotive context of the following:	
Temperature sensing e g. coolant, air intake. Position sensing e.g. crankshaft, throttle plate.	
Pressure sensing e.g. manifold, exhaust differential, tyre. Distance sensing e.g. anti-	
Collision, Velocity sensing e.g. speedometer, anti-skid. Torque sensing e.g. automatic	
transmission. Vibration sensing e.g. Airbags. flow sensing and measurement e.g. fuel	
injection. Interfacing principles: Operation, topologies and limitations of all sensors	
covered in the above to in-vehicle processing or communications nodes. Use of Actuators:	
Types, working principle, Characteristics, limitations and use within the automotive context	
of each type.	
UNIT-III	l
Automotive Control Systems: Control system approach in Automotive: Analog and	07 Hrs
Digital control methods, stability augmentation, control augmentation. Transmission	07 1115
control, System components and functions. Cruise control, traction control, actuator	
limiting, wind-up, gain scheduling, adaptive control. Special Control Schemes: Vehicle	
braking fundamentals, Antilock systems. Variable assist steering and steering control.	
Controls for Lighting. Wipers, Air conditioning /heating. Remote keyless Entry and Anti-	
theft System, Emission Course-system control. Control techniques used in hybrid system.	
Electronic Engine control: Motion equations, modeling of linear and non-linear systems,	
numerical methods, system responses Objective of Electronic Engine control. Spark	
Ignition and Compression Ignition Engines and their electronic controls. Engine	
management testing: Engine management system strategies and implementation.	
Simulation and implementation methods. Methods of improving engine performance and	
efficiency. Model Based Development (MBD) Technology. AUTOSAR: Objectives and	
Architecture.	<u> </u>
	07.11
Automotive Communication Systems: Communication interface with ECU's: Interfacing	07 Hrs
techniques and interfacing with infotainment gadgets. Relevance of internet protocols, such	
as TCP/IP for automotive applications. Wireless LANs standards, such as Bluetooth,	
IEEE802.11x. Communication protocols for automotive applications. Automotive Buses:	

Use of various buses such as CAN, LIN, Flex Ray. Recent trends in automotive buses (Such as OBDI1. MOST, IE, IELI.I, D2B and DSI). Application of Telematics in Automotive: Global Positioning Systems (GPS) and General Packet Radio Service (GPRS),

for use in an automotive environment. Vehicle to Vehicle Communication Higher End Technology: Comparative Study and applications of ARM Cortex-Ascries/M-scries. ARM 9 and ARM11.

UNIT-V

Diagnostics and Safety in Automotive: Fundamentals of Diagnostics: Basic wiring system and Multiplex wiring system. Preliminary checks and adjustments, Self-Diagnostic system. Fault finding and corrective measures. Electronic transmission checks and Diagnosis, Diagnostic procedures and sequence. On board and off board diagnostics in Automotive. Safety in Automotive: Safety norms and standards. Passenger comfort and security systems. Future trends in Automotive Electronics.

Course Outcomes: After completing the course, the students will be able to								
CO1:	Acquire the knowledge of automotive domain fundamentals and need of electronics in							
	Automotive systems							
CO2:	Apply various sensors and actuators for Automotive applications							
CO3:	Analyze different control systems and communication interfaces used in automotive systems.							

CO4: Evaluate the performance of telematics Diagnostics and safety norms in Automotive Systems.

Reference Books

1.	Understanding Automotive Electronics, Williams. B. Ribbens, 6th Edition, 2003, Elsevier					
	science, Newness publication, ISBN-9780080481494.					
2.	Automotive Electronics Handbook, Robert Bosch, 2004, John Wiley and Sons,					
3.	Automotive Embedded Systems Handbook, Nicolas Navet, F Simonot-Lion, Industrial					
	Information Technology Series, CRC press.					

 Automotive Control Systems Engine, Driveline and vehicle, Uwekiencke and lars Nielsen, Springer, 2nd Edition, 2005, ISBN 0-387-95368X

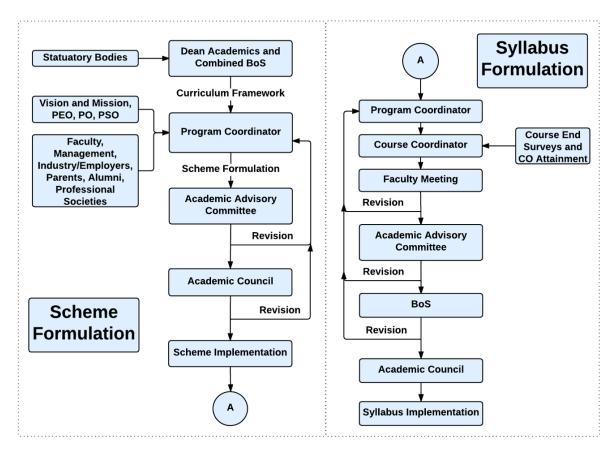
Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

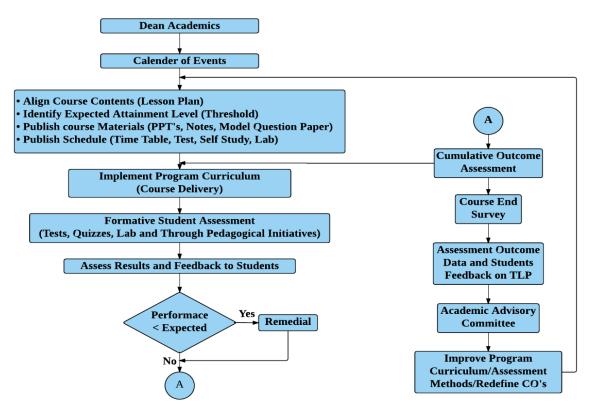
SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	1	-	-	1	-	-	-	-	1
CO2	3	2	2	1	-	1	-	-	-	1	-	1
CO3	3	2	2	1	-	1	-	-	2	-	1	1
CO4	3	1	2	1	2	1	-	-	1	-	-	-

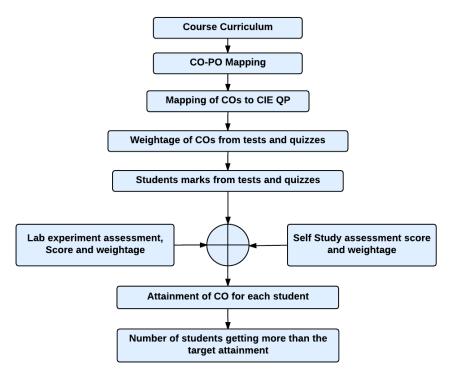

Low-1 Medium-2 High-3

			Minimum	Assigned	2016 s	2016 scheme	
Sl. No.	Category	Percentage (%)	No. of credits	No. Of credits 2012	Without Mini Project	With Mini Project	
1	Humanities	5-10	10	10	9+2	9+2	
2	Basic Science	15-20	30	28	30	30	
3	Engineering Science	15-20	30	28	30	30	
4	Professional Core Courses (PC)	30-40	60	80	78+3=81 (3 credits core in place of Minor project in 7 th semester)	81-3=78 (3 Credits for minor project in 7 th semester)	
5	Professional Elective Courses	10-15	20	20	20	20	
6	Other Electives	5-10	10	11	10	10	
7	Project Work	10-15	20	23 + 2	16+2 Major project +Tech. Seminar	16+2+3 Major project +Tech. Seminar +Mini Project	
	r	200	200				

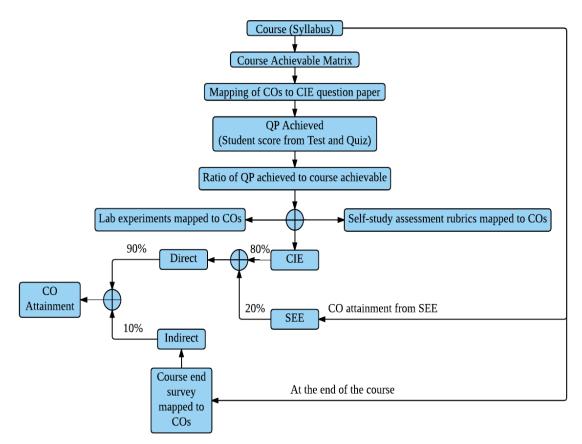
Credits Distribution as per UGC/VTU

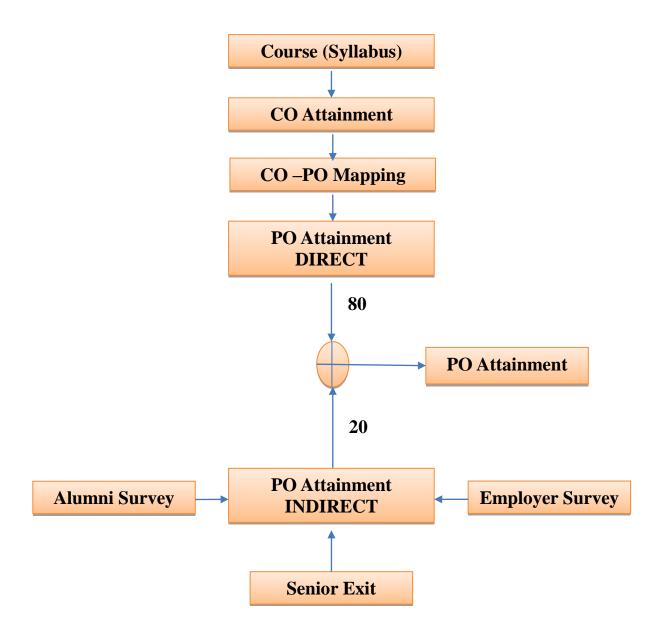

SEMESTER WISE CREDIT DISTRIBUTION (SELF STUDY CREDIT INCLUDED EXCEPT FOR VII SEM)								
Ι	II	III	IV	V	VI	VII	VIII	TOTAL
25 (P)/25(C)	25/25	25	25	29	28	23	20	200

PROFESSIONAL CORE COURSE(PC)	PROFESSIONAL ELECTIVE COURSES(PES)	OTHER ELECTIVES(OE)
Common syllabus to be set jointly for such core Courses offered by two or more departments (Mandatory requirement)	Branch specific latest/Advanced Courses.	Include Courses which can be offered by various departments as group/global elective to other departments.



Curriculum Design Process


Academic Planning and Implementation


PROCESS FOR COURSE OUTCOME ATTAINMENT

Final CO Attainment Process

Program Outcome Attainment Process

Guidelines for Fixing Targets

• The target may be fixed based on last 3 years' average attainment