

Institution Affiliated to Visvesvarava Technological University, Belagavi Approved by AICTE, New Delhi

Scheme and Syllabus of I – IV semester

(Autonomous System of 2022 Scheme)

Master of Technology (M. Tech.)

PRODUCT DESIGN AND MANUFACTURING (MPD)

DEPARTMENT OF MECHANICAL ENGINEERING

Academic Year 2022-23

RV COLLEGE OF ENGINEERING

(An Autonomous Institution Affiliated to VTU, Belagavi) RV Vidyaniketan Post, 8th Mile, Mysuru Road, Bengaluru - 560 059.

2022 Ranked 89th in Engineering Category

One of the most preferred Technical Institutions

PROGRAMS OFFERED

Accredited by **NBA**

B.E. Programs AI, AS, BT, CH, CS, CV, CD, CY, EC, EE, EI, ET, IM, IS, ME

M. Tech (13) MCA, M.Sc. (Engg.)

All Departments are recognized as Ph.D. Programs:

Research Centres by VTU Except AI & AS

Five RVCE Alumni cleared Civil Services Exam in 2020-21

Ranked in top 10 Pvt. College in the Country by various magazines

Ranked 3rd in Sports & Cultural Activities under VTU (2019-20)

Use of ICT in Teaching Learning Process

e-Journals e-books

QEE 48 Courses

NPTEL 9.300+ Enrolled **SWAYAM** 68th place in

Wikispace the country (Jul-Oct-2019)

MOOCS

MODULE

Journal Conference **Patents Publications Publications** Filed 1020 1325 55 **Patents** Patents **Publised** Granted 48 16

Holistic development of students through NCC, NSS Cultural activities, Community service & Sports.

16 Centres of Excellences 07 Centres of Competence

MoUs: 90+with Industries / Academic Institutions in India & abroad

Executed more than Rs. 40 crores worth sponsored research projects & consultancy works sicnce 3 years

UPSC Results (2020): RVCE-Alumni

Name: Kushal Jain

Rank : 40 ISE-2016 Pass out

Name: Naveen Kumar

Rank : 62 ME - Pass out

Name: Deepak R. Shet

Rank : 311

ECE - 2013 Pass out

Faculty with Industrial

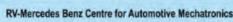
Total Number of **Faculty**

Human Resource

Visiting

Adjunct Faculty

Faculty **Pursuing** Ph.D.


Faculty with Ph D Qualification

& Admin Staff 221

RVCE - Greaves Cotton Ltd Centre of excellence in e-mobility

Glossary of Abbreviations

1. AS Aerospace Engineering 2. BS Basic Sciences 3. BT Biotechnology 4. CH Chemical Engineering 5. CHY Chemistry 6. CIE Continuous Internal Evaluation 7. CS Computer Science & Engineering 8. CV Civil Engineering 9. EC Electronics & Communication Engineering 10. EE Electrical & Electronics Engineering 11. EI Electronics & Instrumentation Engineering 12. ET Electronics & Telecommunication Engineering 13. GE Global Elective 14. HSS Humanities and Social Sciences 15. IM Industrial Engineering & Management 16. IS Information Science & Engineering 17. L Laboratory 18. MA Mathematics 19. MBT M. Tech in Biotechnology 20. MCE M. Tech. in Computer Science & Engineering 21. MCN M. Tech. in Computer Network Engineering 22. MCS M. Tech. in Digital Communication 24. ME Mechanical Engineering 25. MHT M. Tech. in Information Technology 26. MIT M. Tech. in Information Technology 27. MMD M. Tech. in Information Technology 28. MPD M. Tech. in Product Design & Manufacturing 29. MPE M. Tech. in Structural Engineering 30. MSE M. Tech. in Structural Engineering 31. MST M. Tech. in VLSI Design & Embedded Systems 33. N Internship 34. P Projects (Minor / Major) 35. PHY Physics 36. SDA Skill Development Activity 37. SEE Semester End Examination 40. VTU Visvesvaraya Technological University			
3. BT Biotechnology 4. CH Chemical Engineering 5. CHY Chemistry 6. CIE Continuous Internal Evaluation 7. CS Computer Science & Engineering 8. CV Civil Engineering 9. EC Electronics & Communication Engineering 10. EE Electronics & Instrumentation Engineering 11. EI Electronics & Telecommunication Engineering 12. ET Electronics & Telecommunication Engineering 13. GE Global Elective 14. HSS Humanities and Social Sciences 15. IM Industrial Engineering & Management 16. IS Information Science & Engineering 17. L Laboratory 18. MA Mathematics 19. MBT M. Tech in Biotechnology 20. MCE M. Tech. in Computer Network Engineering 21. MCN M. Tech. in Communication Systems 23. MDC M. Tech. in Digital Communication 24. ME	1.	AS	Aerospace Engineering
4. CH Chemical Engineering 5. CHY Chemistry 6. CIE Continuous Internal Evaluation 7. CS Computer Science & Engineering 8. CV Civil Engineering 9. EC Electronics & Communication Engineering 10. EE Electronics & Instrumentation Engineering 11. EI Electronics & Telecommunication Engineering 12. ET Electronics & Telecommunication Engineering 13. GE Global Elective 14. HSS Humanities and Social Sciences 15. IM Industrial Engineering & Management 16. IS Information Science & Engineering 17. L Laboratory 18. MA Mathematics 19. MBT M. Tech in Biotechnology 20. MCE M. Tech in Computer Science & Engineering 21. MCN M. Tech. in Computer Network Engineering 22. MCS M. Tech. in Digital Communication 24. ME Mechanical Engineering 25. MHT M. Tech. in Highway Technology 26. MIT M. Tech. in Highway Technology 27. MMD M. Tech. in Information Technology 28. MPD M. Tech. in Power Electronics 30. MSE M. Tech. in Power Electronics 31. MST M. Tech. in Structural Engineering 32. MVE M. Tech. in Software Engineering 33. N Internship 34. P Projects (Minor / Major) 35. PHY Physics 36. SDA Skill Development Activity 37. SEE Semester End Examination 38. T Theory 39. TL Theory Integrated with Laboratory	2.	BS	Basic Sciences
5. CHY Chemistry 6. CIE Continuous Internal Evaluation 7. CS Computer Science & Engineering 8. CV Civil Engineering 9. EC Electronics & Communication Engineering 10. EE Electrical & Electronics Engineering 11. EI Electronics & Instrumentation Engineering 12. ET Electronics & Telecommunication Engineering 13. GE Global Elective 14. HSS Humanities and Social Sciences 15. IM Industrial Engineering & Management 16. IS Information Science & Engineering 17. L Laboratory 18. MA Mathematics 19. MBT M. Tech in Biotechnology 20. MCE M. Tech in Computer Science & Engineering 21. MCN M. Tech. in Computer Network Engineering 22. MCS M. Tech. in Digital Communication 24. ME Mechanical Engineering 25. MHT M. Tech. in Highway Technology 26. MIT M. Tech. in Information Technology 27. MMD M. Tech. in Product Design & Manufacturing 29. MPE M. Tech. in Product Design & Manufacturing 30. MSE M. Tech. in Software Engineering 31. MST M. Tech. in Suftware Engineering 32. MVE M. Tech. in Suftware Engineering 33. N Internship 34. P Projects (Minor / Major) 35. PHY Physics 36. SDA Skill Development Activity 37. SEE Semester End Examination 38. T Theory 39. TL Theory Integrated with Laboratory	3.	BT	Biotechnology
6. CIE Continuous Internal Evaluation 7. CS Computer Science & Engineering 8. CV Civil Engineering 9. EC Electronics & Communication Engineering 10. EE Electrical & Electronics Engineering 11. EI Electronics & Instrumentation Engineering 12. ET Electronics & Telecommunication Engineering 13. GE Global Elective 14. HSS Humanities and Social Sciences 15. IM Industrial Engineering & Management 16. IS Information Science & Engineering 17. L Laboratory 18. MA Mathematics 19. MBT M. Tech in Biotechnology 20. MCE M. Tech. in Computer Science & Engineering 21. MCN M. Tech. in Computer Network Engineering 22. MCS M. Tech. in Digital Communication 24. ME Mechanical Engineering 25. MHT M. Tech. in Information Technology 26. MIT M. Tech. in Information Technology 27. MMD M. Tech. in Machine Design 28. MPD M. Tech. in Product Design & Manufacturing 29. MPE M. Tech. in Software Engineering 30. MSE M. Tech. in Software Engineering 31. MST M. Tech. in Structural Engineering 32. MVE M. Tech. in Software Engineering 33. N Internship 34. P Projects (Minor / Major) 35. PHY Physics 36. SDA Skill Development Activity 37. SEE Semester End Examination 38. T Theory 39. TL Theory Integrated with Laboratory	4.	CH	Chemical Engineering
7. CS Computer Science & Engineering 8. CV Civil Engineering 9. EC Electronics & Communication Engineering 10. EE Electronics & Instrumentation Engineering 11. EI Electronics & Instrumentation Engineering 12. ET Electronics & Telecommunication Engineering 13. GE Global Elective 14. HSS Humanities and Social Sciences 15. IM Industrial Engineering & Management 16. IS Information Science & Engineering 17. L Laboratory 18. MA Mathematics 19. MBT M. Tech in Biotechnology 20. MCE M. Tech. in Computer Science & Engineering 21. MCN M. Tech. in Computer Network Engineering 22. MCS M. Tech. in Digital Communication 24. ME Mechanical Engineering 25. MHT M. Tech. in Information Technology 26. MIT M. Tech. in Information Technology 27. MMD M. Tech. in Power Electronics 30. MSE M. Tech. in Software Engineering 31. MST M. Tech. in Structural Engineering 32. MVE M. Tech. in Software Engineering 33. N Internship 34. P Projects (Minor / Major) 35. PHY Physics 36. SDA Skill Development Activity 37. SEE Semester End Examination 38. T Theory 39. TL Theory Integrated with Laboratory	5.	CHY	Chemistry
8. CV Civil Engineering 9. EC Electronics & Communication Engineering 10. EE Electrical & Electronics Engineering 11. EI Electronics & Instrumentation Engineering 12. ET Electronics & Telecommunication Engineering 13. GE Global Elective 14. HSS Humanities and Social Sciences 15. IM Industrial Engineering & Management 16. IS Information Science & Engineering 17. L Laboratory 18. MA Mathematics 19. MBT M. Tech in Biotechnology 20. MCE M. Tech. in Computer Science & Engineering 21. MCN M. Tech. in Computer Network Engineering 22. MCS M. Tech. in Digital Communication 24. ME Mechanical Engineering 25. MHT M. Tech. in Highway Technology 26. MIT M. Tech. in Information Technology 27. MMD M. Tech. in Information Technology 28. MPD M. Tech. in Power Electronics 30. MSE M. Tech. in Software Engineering 31. MST M. Tech. in Software Engineering 32. MVE M. Tech. in Software Engineering 33. N Internship 34. P Projects (Minor / Major) 35. PHY Physics 36. SDA Skill Development Activity 37. SEE Semester End Examination 38. T Theory 39. TL Theory Integrated with Laboratory	6.	CIE	Continuous Internal Evaluation
9. EC Electronics & Communication Engineering 10. EE Electrical & Electronics Engineering 11. EI Electronics & Instrumentation Engineering 12. ET Electronics & Telecommunication Engineering 13. GE Global Elective 14. HSS Humanities and Social Sciences 15. IM Industrial Engineering & Management 16. IS Information Science & Engineering 17. L Laboratory 18. MA Mathematics 19. MBT M. Tech in Biotechnology 20. MCE M. Tech. in Computer Science & Engineering 21. MCN M. Tech. in Computer Network Engineering 22. MCS M. Tech. in Digital Communication 24. ME Mechanical Engineering 25. MHT M. Tech. in Highway Technology 26. MIT M. Tech. in Highway Technology 27. MMD M. Tech. in Machine Design 28. MPD M. Tech. in Product Design & Manufacturing 29. MPE M. Tech. in Software Engineering 31. MST M. Tech. in Software Engineering 32. MVE M. Tech. in Software Engineering 33. N Internship 34. P Projects (Minor / Major) 35. PHY Physics 36. SDA Skill Development Activity 37. SEE Semester End Examination 38. T Theory 39. TL Theory Integrated with Laboratory	7.	CS	Computer Science & Engineering
10. EE Electrical & Electronics Engineering 11. EI Electronics & Instrumentation Engineering 12. ET Electronics & Telecommunication Engineering 13. GE Global Elective 14. HSS Humanities and Social Sciences 15. IM Industrial Engineering & Management 16. IS Information Science & Engineering 17. L Laboratory 18. MA Mathematics 19. MBT M. Tech in Biotechnology 20. MCE M. Tech. in Computer Science & Engineering 21. MCN M. Tech. in Computer Network Engineering 22. MCS M. Tech. in Digital Communication 24. ME Mechanical Engineering 25. MHT M. Tech. in Highway Technology 26. MIT M. Tech. in Highway Technology 27. MMD M. Tech. in Machine Design 28. MPD M. Tech. in Product Design & Manufacturing 29. MPE M. Tech. in Software Engineering 30. MSE M. Tech. in Software Engineering 31. MST M. Tech. in Structural Engineering 32. MVE M. Tech. in Structural Engineering 33. N Internship 34. P Projects (Minor / Major) 35. PHY Physics 36. SDA Skill Development Activity 37. SEE Semester End Examination 38. T Theory 39. TL Theory Integrated with Laboratory	8.	CV	Civil Engineering
11. EI Electronics & Instrumentation Engineering 12. ET Electronics & Telecommunication Engineering 13. GE Global Elective 14. HSS Humanities and Social Sciences 15. IM Industrial Engineering & Management 16. IS Information Science & Engineering 17. L Laboratory 18. MA Mathematics 19. MBT M. Tech in Biotechnology 20. MCE M. Tech in Computer Science & Engineering 21. MCN M. Tech. in Computer Network Engineering 22. MCS M. Tech. in Digital Communication Systems 23. MDC M. Tech. in Digital Communication 24. ME Mechanical Engineering 25. MHT M. Tech. in Highway Technology 26. MIT M. Tech. in Information Technology 27. MMD M. Tech. in Machine Design 28. MPD M. Tech. in Product Design & Manufacturing 29. MPE M. Tech. in Power Electronics 30. MSE M. Tech. in Software Engineering 31. MST M. Tech. in Structural Engineering 32. MVE M. Tech. in VLSI Design & Embedded Systems 33. N Internship 34. P Projects (Minor / Major) 35. PHY Physics 36. SDA Skill Development Activity 37. SEE Semester End Examination 38. T Theory 39. TL Theory Integrated with Laboratory	9.	EC	Electronics & Communication Engineering
12. ET Electronics & Telecommunication Engineering 13. GE Global Elective 14. HSS Humanities and Social Sciences 15. IM Industrial Engineering & Management 16. IS Information Science & Engineering 17. L Laboratory 18. MA Mathematics 19. MBT M. Tech in Biotechnology 20. MCE M. Tech. in Computer Science & Engineering 21. MCN M. Tech. in Computer Network Engineering 22. MCS M. Tech. in Digital Communication Systems 23. MDC M. Tech. in Digital Communication 24. ME Mechanical Engineering 25. MHT M. Tech. in Highway Technology 26. MIT M. Tech. in Information Technology 27. MMD M. Tech. in Machine Design 28. MPD M. Tech. in Product Design & Manufacturing 29. MPE M. Tech. in Software Engineering 31. MST M. Tech. in Software Engineering 32. MVE M. Tech. in Structural Engineering 33. N Internship 34. P Projects (Minor / Major) 35. PHY Physics 36. SDA Skill Development Activity 37. SEE Semester End Examination 38. T Theory 39. TL Theory Integrated with Laboratory	10.	EE	Electrical & Electronics Engineering
13. GE Global Elective 14. HSS Humanities and Social Sciences 15. IM Industrial Engineering & Management 16. IS Information Science & Engineering 17. L Laboratory 18. MA Mathematics 19. MBT M. Tech in Biotechnology 20. MCE M. Tech. in Computer Science & Engineering 21. MCN M. Tech. in Computer Network Engineering 22. MCS M. Tech. in Digital Communication Systems 23. MDC M. Tech. in Digital Communication 24. ME Mechanical Engineering 25. MHT M. Tech. in Highway Technology 26. MIT M. Tech. in Information Technology 27. MMD M. Tech. in Machine Design 28. MPD M. Tech. in Product Design & Manufacturing 29. MPE M. Tech. in Power Electronics 30. MSE M. Tech. in Software Engineering 31. MST M. Tech. in Structural Engineering 32. MVE M. Tech. in VLSI Design & Embedded Systems 33. N Internship 34. P Projects (Minor / Major) 35. PHY Physics 36. SDA Skill Development Activity 37. SEE Semester End Examination 38. T Theory 39. TL Theory Integrated with Laboratory	11.	EI	Electronics & Instrumentation Engineering
14.HSSHumanities and Social Sciences15.IMIndustrial Engineering & Management16.ISInformation Science & Engineering17.LLaboratory18.MAMathematics19.MBTM. Tech in Biotechnology20.MCEM. Tech. in Computer Science & Engineering21.MCNM. Tech. in Computer Network Engineering22.MCSM. Tech. in Communication Systems23.MDCM. Tech. in Digital Communication24.MEMechanical Engineering25.MHTM. Tech. in Highway Technology26.MITM. Tech. in Information Technology27.MMDM. Tech. in Machine Design28.MPDM. Tech. in Product Design & Manufacturing29.MPEM. Tech. in Power Electronics30.MSEM. Tech. in Software Engineering31.MSTM. Tech. in Structural Engineering32.MVEM. Tech. in VLSI Design & Embedded Systems33.NInternship34.PProjects (Minor / Major)35.PHYPhysics36.SDASkill Development Activity37.SEESemester End Examination38.TTheory39.TLTheory Integrated with Laboratory	12.	ET	Electronics & Telecommunication Engineering
15. IM Industrial Engineering & Management 16. IS Information Science & Engineering 17. L Laboratory 18. MA Mathematics 19. MBT M. Tech in Biotechnology 20. MCE M. Tech. in Computer Science & Engineering 21. MCN M. Tech. in Computer Network Engineering 22. MCS M. Tech. in Communication Systems 23. MDC M. Tech. in Digital Communication 24. ME Mechanical Engineering 25. MHT M. Tech. in Highway Technology 26. MIT M. Tech. in Information Technology 27. MMD M. Tech. in Machine Design 28. MPD M. Tech. in Product Design & Manufacturing 29. MPE M. Tech. in Software Engineering 30. MSE M. Tech. in Structural Engineering 31. MST M. Tech. in VLSI Design & Embedded Systems 33. N Internship 34. P Projects (Minor / Major) 35. PHY Physics 36. SDA Skill Development Activity 37. SEE Semester End Examination 38. T Theory 39. TL Theory Integrated with Laboratory	13.	GE	Global Elective
16. IS Information Science & Engineering 17. L Laboratory 18. MA Mathematics 19. MBT M. Tech in Biotechnology 20. MCE M. Tech. in Computer Science & Engineering 21. MCN M. Tech. in Computer Network Engineering 22. MCS M. Tech. in Communication Systems 23. MDC M. Tech. in Digital Communication 24. ME Mechanical Engineering 25. MHT M. Tech. in Highway Technology 26. MIT M. Tech. in Information Technology 27. MMD M. Tech. in Machine Design 28. MPD M. Tech in Product Design & Manufacturing 29. MPE M. Tech. in Software Engineering 31. MST M. Tech. in Structural Engineering 32. MVE M. Tech. in VLSI Design & Embedded Systems 33. N Internship 34. P Projects (Minor / Major) 35. PHY Physics 36. SDA Skill Development Activity 37. SEE Semester End Examination 38. T Theory 39. TL Theory Integrated with Laboratory	14.	HSS	Humanities and Social Sciences
17. L Laboratory 18. MA Mathematics 19. MBT M. Tech in Biotechnology 20. MCE M. Tech. in Computer Science & Engineering 21. MCN M. Tech. in Computer Network Engineering 22. MCS M. Tech. in Communication Systems 23. MDC M. Tech. in Digital Communication 24. ME Mechanical Engineering 25. MHT M. Tech. in Highway Technology 26. MIT M. Tech. in Information Technology 27. MMD M. Tech. in Machine Design 28. MPD M. Tech in Product Design & Manufacturing 29. MPE M. Tech. in Power Electronics 30. MSE M. Tech. in Software Engineering 31. MST M. Tech. in Structural Engineering 32. MVE M. Tech. in VLSI Design & Embedded Systems 33. N Internship 34. P Projects (Minor / Major) 35. PHY Physics 36. SDA Skill Development Activity 37. SEE Semester End Examination 38. T Theory 39. TL Theory Integrated with Laboratory	15.	IM	Industrial Engineering & Management
18. MA Mathematics 19. MBT M. Tech in Biotechnology 20. MCE M. Tech. in Computer Science & Engineering 21. MCN M. Tech. in Computer Network Engineering 22. MCS M. Tech. in Communication Systems 23. MDC M. Tech. in Digital Communication 24. ME Mechanical Engineering 25. MHT M. Tech. in Highway Technology 26. MIT M. Tech. in Information Technology 27. MMD M. Tech. in Machine Design 28. MPD M. Tech. in Product Design & Manufacturing 29. MPE M. Tech. in Power Electronics 30. MSE M. Tech. in Software Engineering 31. MST M. Tech. in Structural Engineering 32. MVE M. Tech. in VLSI Design & Embedded Systems 33. N Internship 34. P Projects (Minor / Major) 35. PHY Physics 36. SDA Skill Development Activity 37. SEE Semester End Examination 38. T Theory 39. TL Theory Integrated with Laboratory	16.	IS	Information Science & Engineering
19. MBT M. Tech in Biotechnology 20. MCE M. Tech. in Computer Science & Engineering 21. MCN M. Tech. in Computer Network Engineering 22. MCS M. Tech. in Communication Systems 23. MDC M. Tech. in Digital Communication 24. ME Mechanical Engineering 25. MHT M. Tech. in Highway Technology 26. MIT M. Tech. in Information Technology 27. MMD M. Tech. in Machine Design 28. MPD M. Tech in Product Design & Manufacturing 29. MPE M. Tech. in Power Electronics 30. MSE M. Tech. in Software Engineering 31. MST M. Tech. in Structural Engineering 32. MVE M. Tech. in VLSI Design & Embedded Systems 33. N Internship 34. P Projects (Minor / Major) 35. PHY Physics 36. SDA Skill Development Activity 37. SEE Semester End Examination 38. T Theory 39. TL Theory Integrated with Laboratory	17.	L	Laboratory
20. MCE M. Tech. in Computer Science & Engineering 21. MCN M. Tech. in Computer Network Engineering 22. MCS M. Tech. in Communication Systems 23. MDC M. Tech. in Digital Communication 24. ME Mechanical Engineering 25. MHT M. Tech. in Highway Technology 26. MIT M. Tech. in Information Technology 27. MMD M. Tech. in Machine Design 28. MPD M. Tech in Product Design & Manufacturing 29. MPE M. Tech. in Power Electronics 30. MSE M. Tech. in Software Engineering 31. MST M. Tech. in Structural Engineering 32. MVE M. Tech. in VLSI Design & Embedded Systems 33. N Internship 34. P Projects (Minor / Major) 35. PHY Physics 36. SDA Skill Development Activity 37. SEE Semester End Examination 38. T Theory 39. TL Theory Integrated with Laboratory	18.	MA	Mathematics
21. MCN M. Tech. in Computer Network Engineering 22. MCS M. Tech. in Communication Systems 23. MDC M. Tech. in Digital Communication 24. ME Mechanical Engineering 25. MHT M. Tech. in Highway Technology 26. MIT M. Tech. in Information Technology 27. MMD M. Tech. in Machine Design 28. MPD M. Tech. in Product Design & Manufacturing 29. MPE M. Tech. in Power Electronics 30. MSE M. Tech. in Software Engineering 31. MST M. Tech. in Structural Engineering 32. MVE M. Tech. in VLSI Design & Embedded Systems 33. N Internship 34. P Projects (Minor / Major) 35. PHY Physics 36. SDA Skill Development Activity 37. SEE Semester End Examination 38. T Theory 39. TL Theory Integrated with Laboratory	19.	MBT	M. Tech in Biotechnology
22. MCS M. Tech. in Communication Systems 23. MDC M. Tech. in Digital Communication 24. ME Mechanical Engineering 25. MHT M. Tech. in Highway Technology 26. MIT M. Tech. in Information Technology 27. MMD M. Tech. in Machine Design 28. MPD M. Tech. in Power Electronics 30. MSE M. Tech. in Power Electronics 30. MSE M. Tech. in Software Engineering 31. MST M. Tech. in Structural Engineering 32. MVE M. Tech. in VLSI Design & Embedded Systems 33. N Internship 34. P Projects (Minor / Major) 35. PHY Physics 36. SDA Skill Development Activity 37. SEE Semester End Examination 38. T Theory 39. TL Theory Integrated with Laboratory	20.	MCE	M. Tech. in Computer Science & Engineering
23. MDC M. Tech. in Digital Communication 24. ME Mechanical Engineering 25. MHT M. Tech. in Highway Technology 26. MIT M. Tech. in Information Technology 27. MMD M. Tech. in Machine Design 28. MPD M. Tech in Product Design & Manufacturing 29. MPE M. Tech. in Power Electronics 30. MSE M. Tech. in Software Engineering 31. MST M. Tech. in Structural Engineering 32. MVE M. Tech. in VLSI Design & Embedded Systems 33. N Internship 34. P Projects (Minor / Major) 35. PHY Physics 36. SDA Skill Development Activity 37. SEE Semester End Examination 38. T Theory 39. TL Theory Integrated with Laboratory	21.	MCN	M. Tech. in Computer Network Engineering
24. ME Mechanical Engineering 25. MHT M. Tech. in Highway Technology 26. MIT M. Tech. in Information Technology 27. MMD M. Tech. in Machine Design 28. MPD M. Tech in Product Design & Manufacturing 29. MPE M. Tech. in Power Electronics 30. MSE M. Tech. in Software Engineering 31. MST M. Tech. in Structural Engineering 32. MVE M. Tech. in VLSI Design & Embedded Systems 33. N Internship 34. P Projects (Minor / Major) 35. PHY Physics 36. SDA Skill Development Activity 37. SEE Semester End Examination 38. T Theory 39. TL Theory Integrated with Laboratory	22.	MCS	M. Tech. in Communication Systems
25. MHT M. Tech. in Highway Technology 26. MIT M. Tech. in Information Technology 27. MMD M. Tech. in Machine Design 28. MPD M. Tech in Product Design & Manufacturing 29. MPE M. Tech. in Power Electronics 30. MSE M. Tech. in Software Engineering 31. MST M. Tech. in Structural Engineering 32. MVE M. Tech. in VLSI Design & Embedded Systems 33. N Internship 34. P Projects (Minor / Major) 35. PHY Physics 36. SDA Skill Development Activity 37. SEE Semester End Examination 38. T Theory 39. TL Theory Integrated with Laboratory	23.	MDC	M. Tech. in Digital Communication
26. MIT M. Tech. in Information Technology 27. MMD M. Tech. in Machine Design 28. MPD M. Tech in Product Design & Manufacturing 29. MPE M. Tech. in Power Electronics 30. MSE M. Tech. in Software Engineering 31. MST M. Tech. in Structural Engineering 32. MVE M. Tech. in VLSI Design & Embedded Systems 33. N Internship 34. P Projects (Minor / Major) 35. PHY Physics 36. SDA Skill Development Activity 37. SEE Semester End Examination 38. T Theory 39. TL Theory Integrated with Laboratory	24.	ME	Mechanical Engineering
27. MMD M. Tech. in Machine Design 28. MPD M. Tech in Product Design & Manufacturing 29. MPE M. Tech. in Power Electronics 30. MSE M. Tech. in Software Engineering 31. MST M. Tech. in Structural Engineering 32. MVE M. Tech. in VLSI Design & Embedded Systems 33. N Internship 34. P Projects (Minor / Major) 35. PHY Physics 36. SDA Skill Development Activity 37. SEE Semester End Examination 38. T Theory 39. TL Theory Integrated with Laboratory	25.	MHT	M. Tech. in Highway Technology
28. MPD M. Tech in Product Design & Manufacturing 29. MPE M. Tech. in Power Electronics 30. MSE M. Tech. in Software Engineering 31. MST M. Tech. in Structural Engineering 32. MVE M. Tech. in VLSI Design & Embedded Systems 33. N Internship 34. P Projects (Minor / Major) 35. PHY Physics 36. SDA Skill Development Activity 37. SEE Semester End Examination 38. T Theory 39. TL Theory Integrated with Laboratory	26.	MIT	M. Tech. in Information Technology
29. MPE M. Tech. in Power Electronics 30. MSE M. Tech. in Software Engineering 31. MST M. Tech. in Structural Engineering 32. MVE M. Tech. in VLSI Design & Embedded Systems 33. N Internship 34. P Projects (Minor / Major) 35. PHY Physics 36. SDA Skill Development Activity 37. SEE Semester End Examination 38. T Theory 39. TL Theory Integrated with Laboratory	27.	MMD	M. Tech. in Machine Design
30. MSE M. Tech. in Software Engineering 31. MST M. Tech. in Structural Engineering 32. MVE M. Tech. in VLSI Design & Embedded Systems 33. N Internship 34. P Projects (Minor / Major) 35. PHY Physics 36. SDA Skill Development Activity 37. SEE Semester End Examination 38. T Theory 39. TL Theory Integrated with Laboratory	28.	MPD	M. Tech in Product Design & Manufacturing
31. MST M. Tech. in Structural Engineering 32. MVE M. Tech. in VLSI Design & Embedded Systems 33. N Internship 34. P Projects (Minor / Major) 35. PHY Physics 36. SDA Skill Development Activity 37. SEE Semester End Examination 38. T Theory 39. TL Theory Integrated with Laboratory	29.	MPE	M. Tech. in Power Electronics
32. MVE M. Tech. in VLSI Design & Embedded Systems 33. N Internship 34. P Projects (Minor / Major) 35. PHY Physics 36. SDA Skill Development Activity 37. SEE Semester End Examination 38. T Theory 39. TL Theory Integrated with Laboratory	30.	MSE	M. Tech. in Software Engineering
33. N Internship 34. P Projects (Minor / Major) 35. PHY Physics 36. SDA Skill Development Activity 37. SEE Semester End Examination 38. T Theory 39. TL Theory Integrated with Laboratory	31.	MST	M. Tech. in Structural Engineering
34. P Projects (Minor / Major) 35. PHY Physics 36. SDA Skill Development Activity 37. SEE Semester End Examination 38. T Theory 39. TL Theory Integrated with Laboratory	32.	MVE	M. Tech. in VLSI Design & Embedded Systems
35. PHY Physics 36. SDA Skill Development Activity 37. SEE Semester End Examination 38. T Theory 39. TL Theory Integrated with Laboratory	33.	N	Internship
36. SDA Skill Development Activity 37. SEE Semester End Examination 38. T Theory 39. TL Theory Integrated with Laboratory	34.	P	Projects (Minor / Major)
37. SEE Semester End Examination 38. T Theory 39. TL Theory Integrated with Laboratory	35.	PHY	Physics
38. T Theory 39. TL Theory Integrated with Laboratory	36.	SDA	Skill Development Activity
39. TL Theory Integrated with Laboratory	37.	SEE	Semester End Examination
Ţ Ç	38.	Т	Theory
40. VTU Visvesvaraya Technological University	39.	TL	Theory Integrated with Laboratory
	40.	VTU	Visvesvaraya Technological University

POSTGRADUATE PROGRAMS

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Sl. No	Core Department	Program	Code
1.	BT	M. Tech in Biotechnology	MBT
2.	CS	M. Tech in Computer Science & Engineering	MCE
3.	CS	M. Tech in Computer Network Engineering	MCN
4.	CV	M. Tech in Structural Engineering	MST
5.	CV	M. Tech in Highway Technology	MHT
6.	EC	M. Tech in VLSI Design & Embedded Systems	MVE
7.	EC	M. Tech in Communication Systems	MCS
8.	EE	M. Tech in Power Electronics	MPE
9.	ET	M. Tech in Digital Communication	MDC
10.	IS	M. Tech in Software Engineering	MSE
11.	IS	M. Tech in Information Te <mark>ch</mark> nology	MIT
12.	ME	M. Tech in Product Design & Manufacturing	MPD
13.	ME	M. Tech in Machine Design	MMD

DEPARTMENT OF MECHANICAL ENGINEERING

VISION

Quality education in Design, Materials, Thermal and Manufacturing with emphasis on research, sustainable technologies and entrepreneurship for societal symbiosis.

MISSION

- 1. Imparting knowledge in basic and applied areas of Mechanical Engineering.
- 2. Providing state-of-the-art laboratories and infrastructure for academics and research in the areas of design, materials, thermal engineering, and manufacturing.
- 3. Facilitating faculty development through continuous improvement programs.
- 4. Promoting research, education and training in materials, design, manufacturing, Thermal Engineering, and other multidisciplinary areas.
- 5. Strengthening collaboration with industries, research organizations and institutes for internship, joint research and consultancy.
- 6. Imbibing social and ethical values in students, staff and faculty through personality development programs.

PROGRAMME OUTCOMES (PO)

M. Tech in **Product Design and Manufacturing** graduates will be able to: PO1: Independently carry out a research / investigation and development work to solve practical problems related to product design & manufacturing.

PO2: Write and present a substantial technical report / document in the field of product design & manufacturing.

PO3: Demonstrate a degree of mastery over the areas of product design. The mastery would be at a level higher than the requirements in the bachelor's in Mechanical Engineering

PO4: Use modern tools for the design and analysis of static and dynamic systems and mechanisms.

PO5: Adopt safety, ethical and environmental factors in product design and processes

PO6: Perform in multidisciplinary teams with sound interpersonal and management skills with a commitment to lifelong learning.

INDEX

S1. No	Course Code	Course Title	Page No.
1	22MAT11AT	Computational Mathematics	09 – 10
2	22MPD12TL	Product Design	11 – 12
3	22MPD13TL	Digital Manufacturing	13 – 14
4	22MMD14L	Machine learning Lab	15 – 16
	22MPD1A1T	Machine Learning For Mechanical Engineers	17 – 18
	22MPD1A2T	Design For Sustainability and Safety	19 – 20
5	22MPD1A3T	Advanced Manufacturing Practices	21 – 22
	22MPD1A4T	Product Life Cycle Management	23 – 24
	22MPD1A5T	Product Data Management	25 – 26
	22MMD1B1T	Finite Element Modeling and Analysis	27 – 28
	22IM1B2T	Financial Management	29 – 30
6	22MPD1B3T	Robotics and Automation.	31 – 32
	22MPD1B4T	Sheet Metal Forming and Plastic Design	33 – 34
	22MPD1B5T	Surface Engineering	35 – 36
7	22IM21T	Research Methodology	37 – 38
8	22MPD22TL	Industrial Ergonomics and Biomechanics	39 – 40
9	22MPD23T	Product and Cost Analysis	41 – 42
	22MMD2C1T	Design for Tribology	43 – 44
	22MPD2C2T	Additive Manufacturing Technology	45 – 46
10	22MPD2C3T	GD&T and Digital Metrology	47 – 48
	22MPD2C4T	Design for Manufacture and Assembly	49 – 50
	22MPD2C5T	Electric Vehicle Technology	51 – 52
	22BT2D01T	Bioinspired Engineering	53 – 54
	22BT2D02T	Health Informatics	55 – 56
	22CS2D03T	Business Analytics	57 – 58
	22CV2D04T	Industrial and Occupational Health and Safety	59 – 60
	22CV2D05T	Intelligent Transportation Systems	61 – 62
	22EC2D06T	Electronic System Design	63 – 64
11	22EC2D07T	Evolution of Wireless Technologies	65 – 66
	22ET2D08T	Tracking and Navigation Systems	67 – 68
	22IM2D09T	Project Management	69 – 70
	22IS2D10T	Database and Information Systems	71 – 72
	22IS2D11T	Management Information Systems	73 – 74
	22MAT2D12T	Statistical and Optimization Methods	75 – 76
	22ME2D13T	Industry 4.0	77 – 78
12	22MPD24L	Skill Lab- Advanced Product Design Lab	79
13	22HSS25T	Professional Skills Development -I	80 – 81
14	22MPD31TL	Industrial IoT	82 – 83
15	22MPD3E1T	Product Planning and Marketing	85 – 86

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	22MPD3E2T	Reliability Engineering	87 – 88
	22MPD3E3T	Mechatronics in Manufacturing System	89 – 90
	22MPD3E4T	Lean Manufacturing	91 – 92
	22MPD3E5T	Creative Engineering	93 – 94
16	22MPD32N	Internship	95
17	22MPD33P	Minor Project	96
18	22MPD41P	Major Project	97
19	22HSS42	Professional Skills Development-II	_

M.Tech in Product Design & Manufacturing: MPD

I SE	SEMESTER M.Tech											
01	Sl. Course Code	Course Title		edit A	lloc	ation			CIE	Max	SEE	Max
No.				T/	Р	Total	BoS	Category	Duration	Marks	Duration	Marks
110.		-11-51	D	SDA	Р	Total		6	(H)	CIE	(H)	SEE
1	22MAT11AT	Computational Mathematics	3	1	0	4	MA	Theory	1.5	100	3	100
2	22MPD12TL	Product Design	3	0	1	4	ME	Theory+Lab	1.5	100	3	100
3	22MPD13TL	Digital Manufacturing	3	0	1	4	ME	Theory+Lab	1.5	100	3	100
4	22MMD14L	Machine learning Lab	1	0	1	2	ME	Lab	1.5	50	3	50
5	22MPD1AXT	Elective A (Professional Elective)	3	0	0	3	ME	Theory	1.5	100	3	100
6	22XXX1BXT	Elective B (Professional Elective)	3	0	0	3	ME/IM	Theory	1.5	100	3	100

Note: For the course code 22HSS42, Students need to select one ONLINE MOOC course as recommended by HSS BoS. This course can be selected anytime between I to III semester and it will be evaluated during IV semester.

20

Code	Elective A (Professional Elective)	Code	Elective B (Professional Elective)
22MPD1A1T	Machine Learning For Mechanical Engineers	22MMD1B1T	Finite Element Modeling and Analysis
22MPD1A2T	Design For Sustainability and Safety	22IM1B2T	Financial Management
22MPD1A3T	Advanced Manufacturing Practices	22MPD1B3T	Robotics and Automation.
22MPD1A4T	Product Life Cycle Management	22MPD1B4T	Sheet Metal Forming and Plastic Design
22MPD1A5T	Product Data Management	22MPD1B5T	Surface Engineering

II S	I SEMESTER M.Tech											
01	01	14.07		edit A	lloc	ation	7		CIE	Max	SEE	Max
S1. No.	Course Code	Course Title	т	T/	Р	Total	BoS	Category	Duration	Marks	Duration	Marks
NO.		\///	Ъ	SDA	Р	Total			(H)	CIE	(H)	SEE
1	22IM21T	Research Methodology	3	0	0	3	IM	Theory	1.5	100	3	100
2	22MPD22TL	Industrial Ergonomics and Biomechanics	3	0	1	4	ME	Theory+Lab	1.5	100	3	100
3	22MPD23T	Product and Cost Analysis	3	0	0	3	ME	Theory	1.5	100	3	100
4	22XXX2CXT	Elective C (Professional Elective)	3	0	0	3	ME	Theory	1.5	100	3	100
5	22XXX2DXXT	Elective D (Global Elective)	3	0	0	3	Res. BoS	Theory	1.5	100	3	100
6	22MPD24L	Advanced Product Design Lab	1	0	1	2	ME	Lab	1.5	50	3	50
7	22HSS25T	Professional Skills Development -I	0	0	2	2	HSS	Theory*	1.5	50	2	50
* Ex	ternal Agencu u	ill be conducting the classes and both CIE and SEE i	pill	he en	าไนด	ited hi	the Agenci	1	•		•	

20

Code	Elective C (Professional Elective)	
	Design for Tribology	
22MMP202M. Tech	Additive Manufacturing Technology	2022 SCHEME
22MPD2C3T	GD&T and Digital Metrology	
22MPD2C4T	Design for Manufacture and Assembly	
OOMDDOCET	E14	

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Elective D (Global Elective)									
22BT2D01T	Bioinspired Engineering	22ET2D08T	Tracking and Navigation Systems						
22BT2D02T	Health Informatics	22IM2D09T	Project Management						
22CS2D03T	Business Analytics	22IS2D10T	Database and Information Systems						
22CV2D04T	Industrial and Occupational Health and Safety	22IS2D11T	Management Information Systems						
22CV2D05T	Intelligent Transportation Systems	22MAT2D12T	Statistical and Optimization Methods						
22EC2D06T	Electronic System Design	22ME2D13T	Industry 4.0						
22EC2D07T	Evolution of Wireless Technologies	7/20.1							

III S	SEMESTER M.1	`ech										
01		/ 35	Credit Allocation						CIE	Max	SEE	Max
S1. No.	Course Code	Course Title	т	T/	D	T-4-1	BoS	Category	Duration	Marks	Duration	Marks
INO.		10	Ъ	SDA	Р	Total			(H)	CIE	(H)	SEE
1	22MPD31TL	Industrial IoT	3	0	1	4	ME	Theory+Lab	1.5	100	3	100
2	22MPD3EXT	Elective E (Professional Elective)	3	1	0	4	ME	Theory	1.5	100	3	100
3	22MPD32N	Internship	0	0	6	6	ME	Project	1.5	50	3	50
4	22MPD33P	Minor Project	0	0	6	6	ME	Project	1.5	50	3	50

Code Elective E (Professional Elective)

22MPD3E1T Product Planning and Marketing

22MPD3E2T Reliability Engineering

22MPD3E3T Mechatronics in Manufacturing System

22MPD3E4T Lean Manufacturing

22MPD3E5T Creative Engineering

IV S	SEMESTER M.T	'ech				-						
Sl. No.	Course Code	Course Title	Cr L	edit A T/ SDA		ation Total	BoS	Category	CIE Duration (H)	Max Marks CIE	SEE Duration (H)	Max Marks SEE
1	22MPD41P	Major Project	0	0	18	18	ME	Project	1.5	100	3	100
2	22HSS42	Professional Skills Development-II	0	0	2	2	HSS	NPTEL		50	ONLINE	50
Stu	dent need to sub	omit the certificate for the evaluation of Course code 2	2HS	SS42		•						

20

SEMESTER: I										
Course Code : 22MAT11AT	COMPUTATIONAL MATHEMATICS	CIE Marks	: 100							
Credits L-T-P : 3 - 1 - 0	COMPUTATIONAL MATHEMATICS	SEE Marks	: 100							
Hours : 42L+28T	Common Course (MPD, MMD, MPE, MBT, MST, MHT)	SEE Durations	: 3 Hrs							
Faculty Coordinator:	Faculty Coordinator: Dr. A Sujatha									
UNIT - I										

Vector Spaces and Orthogonality: Vector spaces and subspaces, linear independence, basis and dimension, four fundamental subspaces, change of basis. Inner product, orthogonal vectors, orthogonal projections, orthogonal bases. Eigen subspaces, Gram-Schmidt orthogonalization process, QR factorization and singular value decomposition.

UNIT - II 09 Hrs

Multiple Random variables: Joint probability mass functions and probability density functions, marginal density function, conditioning of random variables, statistical independence, correlation and covariance functions, covariance and correlation matrices, transformation of random variables, Markov and Chebyshev inequalities, Gaussian distribution-Multivariate normal density and its properties.

UNIT - III 08 Hrs

Principal component analysis and Factor analysis:

Overview of principal component analysis and factor analysis, eigen structure of covariance or correlation matrix. Principal component-standardized variables, covariance matrices. Factor model-principal component method, maximum likelihood method, factor scores, factor rotation.

UNIT - IV 08 Hrs

Engineering optimization: Engineering applications of optimization, statement of an optimization problem-design vector, design constraints, constraint surface, objective function and objective function surface. Multivariable optimization with inequality constraints-Kuhn-Tucker conditions, constraint qualification.

UNIT - V 08 Hrs

Numerical solution of differential equations:

Boundary value problems–finite difference method for linear and nonlinear problems, shooting method and Galerkin method. Finite difference methods for parabolic, elliptic and hyperbolic partial differential equations.

Course Outcomes:

After going through this course the student will be able to:

CO1	:	Illustrate the fundamental concepts of distributions, linear algebra, differential equations and
		optimization arising in various fields engineering.
CO2	:	Derive the solution by applying the acquired knowledge and skills of
		statistical/numerical/optimization techniques to solve problems of probability distributions,
		linear algebra and differential equations.
CO3	3 :	Evaluate the solution of the problems using appropriate statistical numerical and optimization
		techniques to the real world problems arising in many practical situations.
CO4	- :	Compile the overall knowledge of probability distributions, linear algebra and optimization
		methods gained to engage in life – long learning.

Reference Books

- 1. Richard A Johnson and Dean W Wichern, "Applied Multivariate Statistical Analysis", Pearson Prentice Hall, 6th Edition, 2007, , ISBN-13: 978-0-13-187715-3, ISBN-10: 0-13-187715-1.
- 2. Gilbert Strang, "Linear Algebra and its Applications", Cengage Learning, 4th Edition, 2006, ISBN 97809802327.
- 3. Edgar G. Goodaire "Linear Algebra: Pure & Applied Kindle Edition", World Scientific, 1st Edition, 2013, ISBN-13: 978-9814508360.
- 4. M K Jain, S. R. K. Iyengar, R. K. Jain; Numerical methods for scientific and engineering computation; New Age International Publishers; 6th edition; 2012; ISBN-13: 978-81-224-2001-2.
- 5. Singiresu S. Rao, Engineering Optimization Theory and Practice, New Age International (P)Ltd., 3rd edition, 2009, ISBN: 81-224-1149-5.

MPD., M. Tech 2022 SCHEME Page 9 of 100

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE & SEE Theory courses							
	RUBRIC for CIE			RUBRIC for SEE			
SLNo	Content	Marks	Q. No	Contents	Marks		
1	Quizzes - Q1 & Q2	20	Each u	Each unit consists of TWO questions of 20 Marks each. Answer FIVE			
2	2 Tests - T1 & T2 4			full questions selecting ONE from each unit (1 to 5).			
3	3 Experiential Learning - EL1 & EL2		1 & 2	Unit-1: Question 1 or 2			
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20		
			5 & 6	Unit-3: Question 5 or 6	20		
/ 350				Unit-4: Question 7 or 8	20		
1.50			9 & 10	Unit-5: Question 9 or 10	20		
				Total Marks	100		

MPD., M. Tech 2022 SCHEME Page 10 of 100

		SEMESTER: I	
Course Code	: 22MPD12TL	PRODUCT DESIGN	CIE Marks : 100
Credits L-T-P	: 3-0-1	(Theory & Practice)	SEE Marks : 100
Hours	: 42L + 28P	(Professional Core - 1)	SEE Durations : 3 Hrs
Facu	ılty Coordinator:	Dr P V Srihari	

UNIT - I 8 Hrs

Design as a Discipline: Mass production and professional designers-quality of life- get more, pay less- cost reduction and higher sophistication- products of dynamic culture.

Product life cycle: Various stages of product life cycle- design stage-manufacturing and marketing/implementation- usage and maintenance- the death of a product.

Design phases: Design methodology- formulation- idea rack- short listing and selecting TWO idea- detailing-prototype preparation

UNIT - II 8 Hrs

User centred Design survey: Importance on problem formulation, primary focus on people, target domain, clients and users, interaction, integrated approach, kinds of knowledge, style and peer group, user centred feedback.

Need statement and Design requirements: Need statement, guidance for designers, independent of physical embodiment, major requirements and articulation.

Specifications and Constraints: Quantitative and qualitative specifications and constraints, design space, refinement of design space, side stepping, various approaches like engineering, architectural, hybrid.

UNIT - III 9 Hrs

Idea-Rack: Seeking several concepts, Usability considerations: flexibility, interdisciplinary design and interaction, design activities like original design, adaptive design, and variant design. Tools helpful in generating ideas like deep encounter, analogy, reversal, fusion of opposites, brainstorming, realizing new constraints.

Optimization configuration Exploration: Conventional optimization vs configuration optimization, thumb rules, yield to nature's forces, light weight components, use of standard parts, design for manufacturing, material selection.

UNIT - IV 9 Hr

Concept Selection: Overview of methodology, concept screening, and concept scoring Concept Testing: Define the purpose of concept test, choose a survey population, choose a survey format, communicate the concept, measure customer response, interpret the result, reflect on the results and the process.

UNIT - V 8 Hrs

Product Architecture: What is product architecture, implications of the architecture, establishing the architecture, variety and supply chain considerations, platform planning, related system level design issues. Industrial design: Assessing the need for industrial design, the impact of industrial design, industrial design process, managing the industrial design process, assessing the quality of industrial design.

LABORATORY 28 Hrs

- 1. Product sketching, shading and lettering 2. Product Modelling using Solid works commercial applications
- 3. Clay modeling
- 4. 3D printing of electrical components
- 5. Product Video Demonstration using Animaker 6. Human Bone Morphing using Synfig Studio
- 7. 3D printed product testing for strength and impact resistance 8. Laser Marking of 3D printed components

Course Outcomes:

After going through this course the student will be able to:

CO1	Understand the design phases
CO2	Formulate need statement and specifications
CO3	Evaluate concepts with testing
CO4	Learn concept communication concepts

MPD., M. Tech 2022 SCHEME Page 11 of 100

Reference Books

- 1. Prashant Kumar, "Product Design", PHI Learning Pvt. Ltd., 2012, ISBN: 978-81-203-4427-3
- 2.Karl.T.Ulrich, Steven D Eppinger, "Product Design and Development", McGrawHill ,2000, ISBN- 13: 978-0078029066
- 3.A C Chitale and R C Gupta, "Product Design and Manufacturing", PH1, 3rd Edition, 2003. ISBN- 13: 978-8120342828.
- 4.Sham Tickoo, "SOLIDWORKS 2018 for Designers", CADCIM Technologies,16th revised Edition Paperback, 2018.ISBN- 13: 567-8342828.

Scheme of Continuous Internal Evaluation (CIE): 10 + 30 + 30 + 30 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The average of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 30 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (10), Video based seminar /presentation /demonstration (20) adding upto 30 marks.

Laboratory: Conduction of laboratory exercises, Lab report & observation & analysis (30 Marks), Lab Test (10 Marks) & Innovative Experiment/Concept Design & Implementation (10 Marks) adding up to 50 Marks. The final marks will be reduced to 30 Marks.

Scheme of Semester End Examination (SEE) for 100 marks: Each unit consists of TWO Questions of 16 Marks each. Answer FIVE full questions selecting one from each unit (from 1 to 5). Question No. 11 is compulsory (Laboratory component) for 20 Marks.

Rubric for CIE & SEE for Integrated Theory courses with Laboratory

	RUBRIC of CIE		RUBRIC of SEE			
SLNo	Content	Marks	Q. No	Contents	Marks	
1	Quizzes - Q1 & Q2	10	Each unit consists of TWO questions of 16 Marks each. Answer FIVE			
2	Tests - T1 & T2	30	full questions selecting ONE from each unit (1 to 5). Question No. 11 is compulsory (Laboratory component) for 20 Marks.			
3	Experiential Learning - EL1 & EL2	30	1 & 2 Unit-1: Question 1 or 2			
4	Laboratory	30	3 & 4	Unit-2: Question 3 or 4	16	
	Total Marks	100	5 & 6	Unit-3: Question 5 or 6	16	
			7 & 8	Unit-4: Question 7 or 8	16	
	NO CON S. I al and a			Unit-5: Question 9 or 10	16	
NO SEE for Laboratory			11	Laboratory Component (Compulsory)	20	
				Total Marks	100	

MPD., M. Tech 2022 SCHEME Page 12 of 100

		SEMESTER: I			
Course Code	: 22MPD13TL	Digital Manufacturing	CIE Marks :	100	
Credits L-T-P	: 3-0-1	(Theory & Practice)	SEE Marks :	100	
Hours	: 42L+ 28P	(Professional Core - 2)	SEE Durations :	3 Hrs	
Faculty Coordinator: Dr Gopalakrisna H D					
UNIT - I					

NC and CNC: Introduction, Components of Digital Manufacturing, N.C Part Programming: Introduction, NC/CNC programming methods: Manual part programming for turning and milling centers, G codes, M codes, canned cycles, Programming with CAD/CAM integration, CAM packages for CNC part program generation, Practical Exercises on CNC part programming. Computer Controls in NC: CNC Technology: Functions of CNC Control in Machine Tools, Advantages of CNC, Direct Numerical Control (DNC Systems): Configuration of DNC system, Functions of DNC, Communication between DNC computer & MCU, Advantages of DNC.

UNIT - II 8 Hrs

Adaptive Control: machining systems. Adaptive control optimization system, adaptive control constraint system, applications to machining processes, Benefits of Adaptive control Machining. Computerized Manufacturing Planning and Control Systems: Computer aided process planning, Variant and Generative approaches, Computer integrated production planning and control systems, Typical production planning and control system, Material planning systems, Capacity planning, Shop Floor Control, Automatic identification, Automated data collection systems

UNIT - III 8 Hrs

Manufacturing Databases: Database Systems; Database Models; Database Design; Database Normalization; General Database Management Issues; Applications of Relational Databases and Future Trends; Manufacturing Resource Planning Systems

Materials Requirements Planning: Manufacturing Resources Planning System (MRP II)

Shop-Floor Data Collection Systems: Introduction; Computerized SFDC; Bar Codes; Electronic Labels; Other Types of SFDC System; The People Factor

UNIT - IV 8 Hrs

The Concept of the IIoT: Modern Communication Protocols, Wireless Communication Technologies, Proximity Network Communication Protocols, TCP/IP, API: A Technical Perspective, Middleware Architecture. Cloud and Fog: M2M Learning and Artificial Intelligence, AR, Industrial Internet Architecture Framework (IIAF), Data Management.

UNIT - V 9 Hrs

Augmented Reality: The Role of Augmented Reality in the Age of Industry 4.0, Introduction, AR Hardware and Software Technology, Industrial Applications of AR, Maintenance, Assembly, Collaborative Operations, Training.

Smart Factories: Introduction, Smart factories in action, Importance, Real world smart factories, The way forward. A Roadmap: Digital Transformation, Transforming Operational Processes, Business Models, Increase Operational Efficiency, Develop New Business Models.

LABORATORY 28 Hrs

PART-A

(NC Guide: CNC Simulation)

Free form Program generation and Simulation for turning operations such as step turning, grooving, thread cutting, profile turning, drilling etc.

Free form Program generation and Simulation for Milling operations such as End milling, face milling, pocket milling, slot milling, peck drilling etc.

Demonstration of CNC milling and turning for generated programmes and operations PART-B (Roboguide: Robot with workstation Simulation)

Design and simulation of robot workstations for material handling applications using Solid Works models, pallets, machines, tables, fixtures, and conveyors.

Design and modelling of a robot workstation for welding applications including straight and curved connections.

Demonstration of robot with system engineering component for various materials handling movement.

Course Outcomes:

After going through this course the student will be able to:

MPD., M. Tech 2022 SCHEME Page 13 of 100

CO1:	Explain the working process and technology development in Digital Manufacturing
CO2 :	Apply the principles of DM in the manufacturing industry
CO3 :	Apply the Industrial 4.0 concepts in a manufacturing plant to improve productivity and profits
CO4 :	Evaluate the effectiveness of Cloud Computing in a networked economy

Reference Books

- 1. Zude Zhou, Shane (Shengquan) Xie, Dejun Chen "Fundamentals of Digital Manufacturing Science" 2012. Springer ISBN 978-0-85729-564-4,...
- 2. Lihni Wang, Andrew Y.C. Nee "Collabarative design and planning for digital manufacturing" Springer Series, 2009, ISBN 998-1-84882-286-3 3.
- 3. Alasdair Gilchrist "Industry 4.0 The Industrial Internet of Things" A press Publisher, ISBN-13 (pbk): 978-1-4842-2046-7.
- 4. Alp Ustundag Emre Cevikcan "Industry 4.0: Managing The Digital Transformation", Springer, 2018 ISBN 978-3-319-57869-9

Scheme of Continuous Internal Evaluation (CIE): 10 + 30 + 30 + 30 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The average of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 30 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (10), Video based seminar /presentation /demonstration (20) adding upto 30 marks.

Laboratory: Conduction of laboratory exercises, Lab report & observation & analysis (30 Marks), Lab Test (10 Marks) & Innovative Experiment/Concept Design & Implementation (10 Marks) adding up to 50 Marks. The final marks will be reduced to 30 Marks.

Scheme of Semester End Examination (SEE) for 100 marks: Each unit consists of TWO Questions of 16 Marks each. Answer FIVE full questions selecting one from each unit (from 1 to 5). Question No. 11 is compulsory (Laboratory component) for 20 Marks.

Rubric for CIE & SEE for Integrated Theory courses with Laboratory

	RUBRIC of CIE		RUBRIC of SEE				
SLNo	Content	Marks	Q. No Contents Mark				
1 Quizzes - Q1 & Q2 10 Each unit consists of TWO questions of 16 Marks each. Answer F					er FIVE		
2	Tests - T1 & T2	30	full questions selecting ONE from each unit (1 to 5). Question No. 11 is compulsory (Laboratory component) for 20 Marl				
3	Experiential Learning - EL1 & EL2	30	1 & 2 Unit-1: Question 1 or 2				
4	Laboratory	30	3 & 4	Unit-2: Question 3 or 4	16		
	Total Marks	100	5 & 6	Unit-3: Question 5 or 6	16		
			7 & 8	Unit-4: Question 7 or 8	16		
	NO SEE for Laboratory			Unit-5: Question 9 or 10	16		
				Laboratory Component (Compulsory)	20		
				Total Marks	100		

MPD., M. Tech 2022 SCHEME Page 14 of 100

SEMESTER: I							
Course Code : 22MMD1	4L Machine Learning Lab	CIE Marks : 50					
Credits L-T-P : 1 - 0 - 1	wachine Learning Lab	SEE Marks : 50					
Hours : 14L + 28I	P (Coding / Skill Laboratory)	SEE Durations : 3 Hrs					
Faculty Coordinator: Dr. Krishna M							
Content							

Introduction to Python: Unique features of Python, Install Python and Environment Setup (jupyter), First Python Program, Python Identifiers, Keywords and Indentation Comments and document interlude in Python Command line arguments Getting User Input Python Data Types, variables, Python Core objects and Functions, Number and Mathematical functions, Control flow (if-elif-else), loop (for,while), List, Ranges & Dython, Introduction Lists in Python, More About Lists, Generators, Comprehensions and Lambda Expressions, Introduction Generators and Yield, Next and Ranges, Python Dictionaries and Sets Introduction to the section, Python Dictionaries, More on Dictionaries, Sets, Python Sets Examples, Input and Output in Python, Reading and writing text files, writing Text, Files, Appending to Files, Strings, regular expressions, pandas, Numpy, Scipy, matplot functions, Introduction to Plotting and visualization, Solving Dynamic Equations, Curve Fitting And Regression, Understanding Iterative Solvers, Data Analysis, Programs on simple equation of Mechanics, Mechanical vibration, thermal, heat transfer and fluid mechanics

Course Outcomes:

After going through this course the student will be able to:

The going through this course the student will be usic to.	tter Soms timodes timo obdato timo obdato to.					
CO1: Understand python Programming in Mechanical Engineering						
CO2 : Use Python for Data Analysis						
CO3 : Solve Mechanical Engineering problems						
CO4 : Simulate Mechanical problems using Python						

Reference Books

- 1. Zude Zhou, Shane (Shengquan) Xie, Dejun Chen "Fundamentals of Digital Manufacturing Science" 2012. Springer ISBN 978-0-85729-564-4,
- 2. Lihni Wang, Andrew Y.C. Nee "Collabarative design and planning for digital manufacturing" Springer Series, 2009, ISBN 998-1-84882-286-3
- 3. Alasdair Gilchrist "Industry 4.0 The Industrial Internet of Things" A press Publisher, ISBN-13 (pbk): 978-1-4842-2046-7.
- 4. Alp Ustundag Emre Cevikcan "Industry 4.0: Managing The Digital Transformation", Springer, 2018 ISBN 978-3-319-57869-9

Scheme of Continuous Internal Evaluation (CIE- Laboratory): Only LAB Course 30 + 10 + 10 = 50. The Laboratory session is held every week as per the timetable and the performance of the student is evaluated in every session. The average of marks over number of experiments conducted over the weeks is considered for 30 Marks i.e (Lab Report, Observation & Analysis). The students are encouraged to implement additional innovative experiments in the lab (10 marks). At the end of the semester a test is conducted for 10 Marks (Lab Test). This adds to 50 Marks.

Scheme of Semester End Examination (SEE- Laboratory) : Only LAB Course 40 + 10 =50. Students will be evaluated for Write-up, Experimental Setup, Experiment Conduction with Results, Analysis & Discussions for 40 Marks and Viva will be conducted for 10 Marks adding to 50 Marks.

MPD., M. Tech 2022 SCHEME Page 15 of 100

Only LAB Courses with 50 Marks						
	RUBRIC FOR CIE	RUBRIC FOR SEE				
S1.No	Content	Marks	Content	Marks		
1	Write Up, Setup, Conduction Results, Analysis & Discussions	30	1. Write Up, Setup, Conduction	40		
2	Innovative Experiment/Concept Design & Implementation	10	2. Results, Analysis & Discussions			
3	Laboratory Internal	10	Viva Voce	10		
	Total Marks	50	Total Marks	50		

SEMESTER: I								
Course Code	: 22MPD1A1T	Machine Learning for Mechanical Engineers	CIE Marks	:	100			
Credits L-T-P	: 3- 0-0	machine Learning for Mechanical Engineers	SEE Marks	:	100			
Hours	: 42L	Elective A (Professional Elective)	SEE Durations	:	3 Hrs			
Facu	Faculty Coordinator: Dr Nagesh S							
UNIT - I 8 Hrs								
Introduction to Machine Learning, history of machine learning, artificial intelligence vs machine learning, data								
science vs machine learning decision tree Naive Rayes approach								

9 Hrs UNIT - II

Components of Learning, Learning Models, Types of Learning, Supervised, Unsupervised, Reinforcement, Perspectives and Issues, Version Spaces, PAC Learning, VC Dimension

> UNIT - III 8 Hrs

Regression: Linear Regression, Multiple Linear Regression, Bayesian Regression, Neural Networks: Introduction, Perception, Multilayer Perception, Support Vector Machines: Linear and Non-Linear, Kernel Functions, K nearest Neighbours. Introduction to clustering, K-means clustering, K-Mode Clustering.

> UNIT - IV 9 Hrs

Genetic Algorithms: Hypotheses, Genetic Operator, Fitness Function and Selection, an Illustrative Example, Hypothesis Space Search, Genetic Programming, Parallelizing Genetic Algorithms.

> UNIT - V 8 Hrs

Smart machining: application of neural networks, genetic algorithm for turning, milling, drilling and robotic applications, sensing, monitoring, data analysis, parameters, interpretation of responses.

Course Outcomes:

After going through this course the student will be able to:

COI	: Understand the basics of probability distributions and components of learning.
CO2	: Develop the regression models and algorithms for mechanical applications.
CO3	: Assess the solution using advanced optimisation techniques.
CO4	: Predict the responses from neural network and genetic algorithms for smart machining applications.

Reference Books

1. Ethem Alpaydin," Introduction to Machine Learning", MIT Press, Prentice Hall of India, 3rd Edition, 2014,

2. Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar" Foundations of Machine Learning", MIT Press, 2012, **ISBN**

- 3.Tom Mitchell, "Machine Learning", McGraw Hill, 3rdEdition, 1997, ISBN 405-345-672-123
- 4.MACHINE LEARNING An Algorithmic Perspective, Second Edition, Stephen Marsland, 2015, ISBN 102234.

Page 17 of 100 MPD., M. Tech **2022 SCHEME**

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

	RUBRIC for CIE			RUBRIC for SEE	
SLNo	Content	Marks	Q. No	Contents	Marks
1	Quizzes - Q1 & Q2	20	Each u	nit consists of TWO questions of 20 Marks each. Answ	ver FIVE
2	Tests - T1 & T2	40		full questions selecting ONE from each unit (1 to 5).	
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20
			5 & 6	Unit-3: Question 5 or 6	20
			7 & 8	Unit-4: Question 7 or 8	20
			9 & 10	Unit-5: Question 9 or 10	20
				Total Marks	100

MPD., M. Tech 2022 SCHEME Page 18 of 100

978-8121927642,2010

ISBN: 978-1-84407-520-1, 3rd edition, 2008.

University, Be		SEMESTER: I		-
Course Code	: 22MPD1A2T		CIE Marks	: 100
Credits L-T-P	: 3- 0 -0	DESIGN FOR SUSTAINABILITY AND SAFETY	SEE Marks	: 100
Hours	: 42L	Elective A (Professional Elective)	SEE Durations	: 3 Hr
Facu	Ity Coordinator:	Dr H N Narasimha Murthy		
		UNIT - I		9 Hrs
		roach, Ecodesign to Design for Sustainability, Procespects, financial aspects. drivers for industry	lucts and Sustaina	ıbility,
011/11/01111011001	aspects, sectar c	UNIT - II		8 Hrs
		n: Mined area, Habitats, Water bodies, Mangroves; inciples, Evaluation of sustainable development	Global Changes, E	Biodiversit
	reconditionally pr	UNIT - III		9 Hrs
NSC, ASSE, HS	-	omoting safe practice - motivation – communicatio SH – creating awareness, awards, celebrations, sat mpaign.	_	
		UNIT - IV	5)	8 Hrs
<u> </u>	e scheme and ca	UNIT - V	11.9	8 Hrs
Case studies: R Cutter, Safety I	_	Bottle, Mobility concepts, Photovoltaic Lantern, Car	and blke rental sy	rstem. Box
	1.5		1	
Course Outcor	nes:			
After going thro	ough this course	the student will be able to:		
CO1	: Describe the i	nnovation processes for sustainable products, from anufacturing.	ı product definitior	ı to
CO2	_	evelop a product focused on sustainability and colle at data, developing product specifications.	ecting the user nee	ds data,
CO3	: Evaluate the p	parameters for building product prototypes, and informatity during product development	teracting with the	
CO4		fundamental tools and concepts of sustainable eng	gineering to analyze	e
	1 8 1 81			
Reference Boo	ks			
•	c , David W. Ries 4 , 2019, 3rd Ed	ke "Industrial Safety and Health Management" Pea	urson Prentice Hall,	, ISBN
		Ann Cunninggham, Principles of environmental s	cience, McGraw Hi	11, ISBN-1
978-00780360'	71, 8th edition ,	2016.		
		a, Environmental Science, S. Chand and co.3rd Edi	ition, 2019, ISBN-	
070 01010076		,	, -,	

4. Peter P. Rogers, Kazi F. Jalal and John A. Boyd, An Introduction to Sustainable Development. London:

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

	RUBRIC for CIE			RUBRIC for SEE	
SLNo	Content	Marks	Q. No	Contents	Marks
1	Quizzes - Q1 & Q2	20	Each u	nit consists of TWO questions of 20 Marks each. Answ	ver FIVE
2	Tests - T1 & T2	40	1110	full questions selecting ONE from each unit (1 to 5).	
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20
			5 & 6	Unit-3: Question 5 or 6	20
			7 & 8	Unit-4: Question 7 or 8	20
			9 & 10	Unit-5: Question 9 or 10	20
				Total Marks	100

MPD., M. Tech 2022 SCHEME Page 20 of 100

SEMESTER: I							
Course Code	: 22MPD1A3T	ADVANCED MANUFACTURING PRACTICES		:	100		
Credits L-T-P	: 3- 0 - 0	ADVANCED MANUFACTURING PRACTICES	SEE Marks	:	100		
Hours	: 42L	Elective A (Professional Elective)	SEE Durations	:	3 Hrs		
Facul	ty Coordinator:	Dr N V Nanjundaradhya					
UNIT - I							

Just in Time Production – Primary purpose, profit through cost reduction, elimination of over production, quality control, quality assurance, respect for humanity, flexible work force, JIT production adapting to changing production quantities, process layout for shortened lead Times, standardization of operation, automation.

Sequence and Scheduling Used by Suppliers: Monthly and daily Information. sequenced withdrawal system by sequenced schedule table, problems and counter measures in applying the Kanban system to sub contractors

UNIT - II 9 Hrs

Toyota Production System-The philosophy of TPS, basic frame work of TPS, Kanbans. determining the number of Kanbans in Toyota Production System, Kanban number under constant quantity withdrawal system, constant cycle, non-constant quantity withdrawal system.

Kanban Systems- Supplier Kanban and the sequence schedule for use by suppliers - Later replenishment system by Kanban, Sequenced Withdrawal System and Circulation of the Supplier Kanban within Toyota. production smoothing in TPS, production planning, production smoothing, adaptability to demand fluctuations, sequencing method for the mixed model assembly line to realize smoothed production of goal.

UNIT - III 8 Hrs

Just-in-Time Production with Total Quality Control just in time concept, cutting lot sizes, cutting set-up times, cutting purchase order costs, the JIT cause-Effect chain,

Quality Improvements: scrap/quality improvements, motivational effects, responsibility effects, small group improvement activities, withdrawal of buffer inventory, the total quality control concept.

UNIT - IV 8 Hrs

Total Quality Control-Introduction-Total Quality Control concepts, responsibility, learning from the west, TQC concepts categorized, goals, habit of improvement, perfection, basics, process control, easy to see quality control as facilitator, small lot sizes, housekeeping,

Scheduling: Capacity scheduling, daily machine checking, techniques and Aids, exposure of problems, fool proof devices, tools of analysis, QC circles, TQC in Japanese-owned US electronics plant, TQC in Japanese-owned automotive plants.

UNIT - V 8 Hrs

Plant Configurations: Introduction-ultimate plant configuration, job shop fabrication, frame welding, forming frame parts from tubing, dedicated production lines, overlapped production, the daily schedule, forward linkage, physical merger of processes, adjacency,

Material Handling Systems: mixed models, automated production lines, pseudo robots, robots, CAD and manufacturing, conveyors and stacker cranes, automatic quality monitoring

Course Outcomes:

After going through this course the student will be able to:

	CO1	Explain the role of JIT, TPS and TQC strategies in production system
	CO2	: Analyze the various concepts of modern manufacturing practices
	CO3	: Apply the concepts of JIT and TPS in real time applications
	CO4	: Acquire knowledge in branding
- 1		

Reference Books

1. Japanese Manufacturing Techniques, Richard Schonberger, Pearson Higher Education, 2010, ISBN-13-9780029291009, 3rd Edition

- 2. An Integrated Approach to Just In Time, Yasuhiro Monden, Toyota Production system, 4th Edition, 2011, ISBN-13-978-1439820971
- 3. Adult Lean Thinking, James Womack, Simon & Schuster, 2010, 4th Edition, ISBN 13: 9781439135952
- 4. The machine that changed the World The story of Lean production, James P. Womack, Daniel T Jones, and Daniel Roos, Harper Perennial edition published, 2007, 2nd Edition ISBN-13-978-0743299794

MPD., M. Tech 2022 SCHEME Page 21 of 100

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric	tor	CIE	Ö	SEE	Theory	courses

	RUBRIC for CIE			RUBRIC for SEE	
SLNo	Content	Marks	Q. No	Contents	Marks
1	Quizzes - Q1 & Q2	20	Each u	nit consists of TWO questions of 20 Marks each. Answ	wer FIVE
2	Tests - T1 & T2	40		full questions selecting ONE from each unit (1 to 5).	
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20
	/ 45		5 & 6	Unit-3: Question 5 or 6	20
			7 & 8	Unit-4: Question 7 or 8	20
			9 & 10	Unit-5: Question 9 or 10	20
				Total Marks	s 100

MPD., M. Tech 2022 SCHEME Page 22 of 100

	SEMESTER: I								
Course Code	: 22MPD1A4T	PRODUCT LIFE CYCLE MANAGEMENT	CIE Marks	: 1	100				
Credits L-T-P : 3- 0 - 0		PRODUCT LIFE CICLE MANAGEMENT	SEE Marks	: 1	100				
Hours	: 42L	Elective A (Professional Elective)	SEE Durations	: 3	3 Hrs				
Facul	Faculty Coordinator: Dr P V Srihari								
UNIT - I									
Product life cycle management: Need for PLM, Components of PLM, Product Data and Product workflow, Drivers									

for Change.

UNIT - II 9 Hrs

The PLM Strategy, Developing a PLM Strategy, A Five-step Process, Strategy Identification and Selection, Strategy Elements, Implications of Strategy Elements, Policies, Strategy Analysis, Communicating the Strategy.

> UNIT - III 8 Hrs

Concurrent engineering, Cost of design changes, schemes for concurrent engineering, Design for manufacturing and assembly, robust design, failure mode and effect- analysis.

> UNIT - IV 8 Hrs

Product-line decision, Product mix, Product-line analysis, Product -line length

UNIT - V 8 Hrs

An Overview of Branding Decisions, Branding Decision, Brand- Sponsor Decision, Brand-Name Decision, Brand- Strategy Decision, Brand- Repositioning Decision.

Course Outcomes:

After going through this course the student will be able to:

7 22 20 22 20 22 22 2		And the course the state of the
CO1	:	Gain knowledge about phases of PLM components
CO2	:	Understand PLM strategy development.
CO3	:	Apply product line decisions.
CO4	:	Acquire know <mark>ledge in</mark> branding.

Reference Books

- 1. Product Lifecycle Management Paradigm for century Product Realization John Stark, Springer-Verlag, 21st, London, 3rd printing - 2016. 441 pp., 3rd Edition, ISBN: 1-85233-810-5.
- 2. CAD/CAM Theory and Practice Zeid, McGraw Hill. 2014, 2nd Edition ISBN-13 978-0070151345
- 3. Product Life Cycle Management, Mandar M. Bidwe, First Edition, ISBN: 978-93-5563-114-5
- 4. Computer Integrated Design and Manufacturing, Mark Henderson & Philip Wolfe, BedworthMcGraw Hill Inc, 4th Edition, 2011, ISBN-13-978-0070042049

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

2022 SCHEME MPD., M. Tech Page 23 of 100

	RUBRIC for CIE			RUBRIC for SEE	
SLNo	Content	Marks	Q. No	Contents	Marks
1	Quizzes - Q1 & Q2	20	Each u	nit consists of TWO questions of 20 Marks each. An	swer FIVE
2	Tests - T1 & T2	40		full questions selecting ONE from each unit (1 to 5	i).
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20
			5 & 6	Unit-3: Question 5 or 6	20
			7 & 8	Unit-4: Question 7 or 8	20
			9 & 10	Unit-5: Question 9 or 10	20
				Total Mar	ks 100

SEMESTER: I							
Course Code : 22MPD1A57	PRODUCT DATA MANAGEMENT	CIE Marks :	100				
Credits L-T-P : 3- 0 - 0	PRODUCT DATA MANAGEMENT	SEE Marks :	100				
Hours : 42L	Elective A (Professional Elective)	SEE Durations :	3 Hrs				
Faculty Coordinator: Dr B W Shivaraj							
UNIT - I							

Centralized systems: Client Server Systems, Parallel Systems, Distributed Systems, Network Types, Parallel Database, Distributed Database, Purpose Of Database System. Advantages and disadvantages of Database systems.

UNIT - II 9 Hrs

Product Data Management: Complexity in Product Development, General Description of PDM Basic functionality of PDM: Information architecture, PDM System architecture, Applications in PDM systems. Trends in PDM

UNIT - III 9 Hrs

Document Management Systems: Document management and PDM, Document life cycle, Content Management, Document management and related technologies, Document management resources on the Internet.

UNIT - IV 8 Hrs

Workflow Management in PDM: Structure Management, Engineering Change Management, Release Management, Version Management, Configuration Management, Build Management.

UNIT - V 8 Hrs

PDM Implementation Case Studies: Sun Micro systems, Ericssion Radio systems, Matrix One, Team Centre, Windchill, Enovia. Standards in PDM, CM, SCM and CMM.

Course Outcomes:

After going through this course the student will be able to:

CO1 : Understanding the Product data base systems
CO2: Select the Product data base systems based on material and product
CO3: Analysing the Product data base and Product life cycle for new products
CO4: Evaluate the parameters for Product data base considerations based on process.

Reference Books

1. Implementing and Integrating Product Data Management and Software Configuration Management - 20 - Ivica

Cmkovic Ulf Asklund - Annita Persson Dahlqvist - Archtech House Publishers, ISBN-13:978-0970035226 - 2013

- 2. Product Data Management Rodger Burden Publisher: Resource Publishing- ISBN-10: 0970035225, 3rd edition, 2011.
- 3. Windchill 8.0 PDM Link User's Guide-Parametric Technology Corporation (PTC),2008
- 4. The AutoCAD Database Book Accessing and Managing CAD Drawing Information Galgotia Publications Third

Edition, ISBN-11: 3244035225

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

MPD., M. Tech 2022 SCHEME Page 25 of 100

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE & SEE Theory courses

	RUBRIC for CIE			RUBRIC for SEE	
SLNo	Content	Marks	Q. No	Contents	Marks
1	Quizzes - Q1 & Q2	20	Each u	nit consists of TWO questions of 20 Marks each. Answ	ver FIVE
2	Tests - T1 & T2	40		full questions selecting ONE from each unit (1 to 5).	
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20
			5 & 6	Unit-3: Question 5 or 6	20
			7 & 8	Unit-4: Question 7 or 8	20
			9 & 10	Unit-5: Question 9 or 10	20
				Total Marks	100

MPD., M. Tech 2022 SCHEME Page 26 of 100

		SEMESTER: I	•			
Course Code	: 22MMD1B1T	Finite Element Modeling and Analysis	CIE Marks	:	100	
Credits L-T-P : 3- 0- 0		Finite Element Modering and Analysis	SEE Marks	100		
Hours	: 42L	Elective B (Professional Elective)	SEE Durations	: :	3 Hrs	
Facul	ty Coordinator:	Dr Bharatish A	•			
	IINIT - I					

Introduction to Finite Element Analysis: Basic Concepts of Finite Element Analysis, shape function of the linear bar element, quadratic bar element, 2-D Constant strain triangular element, 2-D linear triangular element, 4 noded quadrilateral element, 9-noded, quadrilateral element and scrindipidy elements. Stiffness, traction and body force vectors for 2 noded element, truss element, CST element and 4 noded quadrilateral elements and related problems

UNIT - II 8 Hrs

Axisymmetric Solids: Structures of Revolution, Derivation of stiffness matrix, shape functions of axisymmetric triangular element, strain displacement relations, numericals, numerical integration

UNIT - III 8 Hrs

General Solids: Solid Elements: Overview. Four noded Tetrahedron, eight noded hexhedron element, shape functions, strain matrix, stiffenss and mass matrices, application of morphing

UNIT - IV 8 Hr

Dynamic Analysis: Introduction – simple harmonic oscillator, multi degrees of freedom systems, equation of motion, longitudinal vibration of bars – transverse vibration of beams – consistent mass matrices, eigen values and eigen vectors, modeling of damping, solution methods: polynomial iteration, matrix iteration and cholesky method.

UNIT - V 9 Hrs

Heat Transfer and Fluid flow Analysis: : One dimensional heat transfer element, composite structures, applications, fins in 2-Dimensions, Axisymmetric heat transfer, stream function in two dimeional flow, velocity potential function, boundary conditions

Course Outcomes:

After going through this course the student will be able to:

CO1	Understand the basic elements, shape functions and domains of FEA
CO2	Develop the stiffness matrices, stress and strain relations of various elements
CO3	: Assess the solution obtained for structural, thermal and dynamic problems
CO4	Formulate the finite element model for industry oriented projects

Reference Books

- 1. Fundamentals of FEM, Hutton, Tata McGraw Hill education Pvt. Ltd, 2005, ISBN: 070601224
- 2. First Course in Finite element methods, Daryl L Logan, 5 th Edition, Thomson Brooks, 2011, ISBN: 10:0495668257
- 3. Introduction to FE in engineering, T R Chandrupatla, A D Belegondu, 3 rd Edition, Prentice Hall, 2004, ISBN : 110-230- 304
- 4. Finite Element method in machining processes, Angelos. P.Markopoulos, S
rpinger series, 2013, ISBN: 978-1-4471-4330-10

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE & SEE Theory courses

	RUBRIC for CIE			RUBRIC for SEE	
SLNo	Content	Marks	Q. No	Contents	Marks
1	Quizzes - Q1 & Q2	20	Each u	nit consists of TWO questions of 20 Marks each. Answ	er FIVE
2	Tests - T1 & T2	40	1	full questions selecting ONE from each unit (1 to 5).	
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20
			5 & 6	Unit-3: Question 5 or 6	20
			7 & 8	Unit-4: Question 7 or 8	20
			9 & 10	Unit-5: Question 9 or 10	20
				Total Marks	100

MPD., M. Tech 2022 SCHEME Page 28 of 100

		SEMESTER: I		
Course Code	: 22IM1B2T	Financial Management	CIE Marks	: 100
Credits L-T-P	: 3- 0 - 0	rmanciai management	SEE Marks	: 100
Hours	: 42L	Elective B (Professional Elective)	SEE Durations	: 3 Hrs
Facul	ty Coordinator:	Dr.Rajeswara Rao KVS	•	
		8 Hrs		

Financial Management - An overview: Financial Decisions in a firm, Goals of a firm, Fundamental principle of finance, Organization of finance function and its relation to other functions, Regulatory framework.

The financial System: Functions, Assets, Markets, Market returns, Intermediaries, regulatory framework, Growth and trends in Indian financial system.

Financial statements, Taxes and cash flow: Balance sheet, statement of profit and loss, items in annual report, manipulation of bottom line, Profits vs Cash flows, Taxes.

(Conceptual treatment only)

UNIT - II 8 Hrs

Time Value of Money: Future value of a single amount, future value of an annuity, present value of a single amount, present value of an annuity.

Valuation of securities: Basic valuation model, bond valuation, equity valuation-dividend capitalization approach and other approaches.

Risk and Return: Risk and Return of single assets and portfolios, measurement of market risk, relationship between risk and return, implications

(Conceptual and Numerical treatment)

UNIT - III 9 Hrs

Techniques of Capital Budgeting: Capital budgeting process, project classification, investment criteria, Net present value, Benefit-Cost ratio, Internal Rate of return, Pay back period, Accounting rate of return. Cost of Capital: Preliminaries Cost of debt and preference, cost of retained earnings, cost of external equity, determining the proportions, weighted average cost of capital, weighted marginal cost of capital schedule. Capital structure and cost of capital: Assumptions and concepts, net income approach, net operating income approach, traditional position, Modigliani and Miller Position, Taxation and Capital structure, Other imperfections and Capital structure (Conceptual and Numerical treatment)

UNIT - IV 8 Hrs

Long term finance: Sources- Equity capital, Internal accruals, preference capital, term loans, debentures. Raising long term finance- Venture capital, Initial Public Offer, Follow on Public Offer, Rights Issue, Private Placement, Term Loans, Investment Banking

Securities Market: Primary market vs Secondary market, Trading and Settlements, Stock market quotations and Indices, Govt. securities market, Corporate debt market.

Working Capital – Policy and Financing: Factors influencing working capital requirements, Current assets financing policy, operating cycle and cash cycle. Accruals, trade credit, banks, public deposits, inter-corporate deposits, short term loans, right debentures, commercial paper, Factoring (Conceptual treatment only)

UNIT - V 9 Hrs

Contemporary topics in Finance: Reasons and Mechanics of a merger, Takeovers, Divestures, Demergers, World monetary system, Foreign exchange markets, raising foreign currency finance, International capital budgeting, Options market, Futures market, Warrants, Venture capital financing framework, Indian venture capital scenario. (Conceptual treatment only)

Course Outcomes:

After going through this course the student will be able to:

CO1 :	Explain the features of financial system and basic principles of financial management
CO2	Describe the processes and techniques of capital budgeting and theories of capital structure.
CO3 :	Demonstrate an understanding of various sources of long term and working capital financing by organizations.
CO4 :	Analyze the trends in global financial scenarios

Reference Books

 $1.\ Fundamentals$ of Financial Management , Prasanna Chandra, 6th Edition, 2018, McGraw Hill Education(India) Pvt.

Ltd, ISBN: 978-93-392-0313-9, 93-392-0313-5, 3rd Edition, 2013

- 2. Financial Management-Text, Problems and Cases, Khan M Y & Jain P K, 8th Edition, 2018, McGraw Hill Education(India) Pvt. Ltd, 4th Edition ISBN: 9353162181, 2010
- 3. Financial Management, I M Pandey, 11th Edition, 2015, Vikas Publishing House, 4th Edition, 2015, ISBN: 978932598229
- 4. Fundamentals of Financial Management, James C. Van Horne, 13th Edition, 2008, 5th Edition, 2013, Prentice Hall, ISBN: 978-0273713630

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE & SEE Theory courses

RUBRIC for CIE					RUBRIC for SEE		
SLNo	Content			Marks	Q. No	Contents	Morks
1	Quizzes -	Q1 & Q2		20	Each u	nit consists of T <mark>WO questio</mark> ns of 20 Ma	arks each. Answer FIV
2	Tests - T	1 & T2		40		full questions selecting ONE from ea	ch unit (1 to 5).
3	Experient	tial Learning	- EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20
			Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20
					5 & 6	Unit-3: Question 5 or 6	20
					7 & 8	Unit-4: Question 7 or 8	20
					9 & 10	Unit-5: Question 9 or 10	20
							Total Marks 100

MPD., M. Tech 2022 SCHEME Page 30 of 100

	•	SEMESTER: I			
Course Code : 22M	MPD1B3T	Robotics and Automation			100
Credits L-T-P : 3-0-0		Robotics and Automation	SEE Marks	100	
Hours : 42 I	L	Elective B (Professional Elective)	SEE Durations	:	3 Hrs
Faculty Coordinator: Dr S K Harisha UNIT - I					

Configuration Space: Degrees of Freedom of a Rigid Body, Degrees of Freedom of a Robot, Topology and Representation, Configuration and Velocity Constraints, Task Space and Workspace. Multiple robots, machine interface, robots in manufacturing and non-manufacturing applications, robot cell design, selection robot. Rigid-Body Motions: Rigid-Body Motions in the Plane, Rotations and Angular Velocities, Rigid-Body Motions and Twists: Homogeneous Transformation Matrices, Exponential Coordinate Representation of Rigid-Body Motions.

UNIT - II 8 Hrs

Forward Kinematics: Denavit-Hartenberg Parameters, Euler Angles, Roll-Pitch-Yaw Angles, Unit Quaternions, Analytic Forward Kinematics First Formulation: Axes Expressed in Base Frame, Planar robot and Spatial robot. Inverse Kinematics: Analytic Inverse Kinematics, Numerical Inverse Kinematics, Inverse Velocity Kinematics, Closed loop system.

UNIT - III 8 Hrs

Velocity Kinematics and Statics: Manipulator Jacobian, Statics of Open Chains, Singularity Analysis, Manipulability.

Trajectory Generation: Joint space, Cartesian space, Point to point, Continuous trajectory planning, Polynomial Via Point Trajectories, Time-Optimal Time Scaling.

UNIT - IV 8 Hrs

Dynamics of Open Chains: Lagrangian Formulation, Dynamics of a Single Rigid Body, Newton-Euler Inverse Dynamics, Dynamic Equations in Closed Form, Forward Dynamics of Open Chains, Dynamics in Task Space Coordinates, Constrained Dynamics, Actuation, Gearing, and Friction.

UNIT - V 9 Hrs

Wheeled Mobile Robots: Types of Wheeled Mobile Robots, Omnidirectional Wheeled Mobile Robots, Nonholonomic Wheeled Mobile Robots, Odometry, Mobile Manipulation. Motion Planning: Overview of Motion Planning, Foundations, Complete Path Planners, Grid Methods, Sampling Methods, Virtual Potential Fields, Nonlinear Optimization.

Course Outcomes:

After going through this course the student will be able to:

The Song through the course the student will be use to.
CO1: Analyze the manipulator design including actuator, drive and sensor issues
CO2: Calculate the forward kinematics, inverse kinematics and Jacobian industrial robots
CO3: Solve trajectory and dynamic related robotic problems
CO4: Evaluate the different configurations, stability and motion concept of autonomous robots

Reference Books

- 1. F. C. Park and K. M. Lynch, Modern Robotics Mechanics, planning, and control, Cambridge University Press-2017, 4th Edition SBN 978110715630
- 2. Mohsen Shahinpoor, A Robot Engineering Textbook, Harper & Row publishers, New York. ISBN:006045931X., 3rd Edition, 2017
- 3. Fu, Lee and Gonzalez, Robotics, control vision and intelligence, McGraw Hill International. ISBN:0070226253, 4th Edition, 2010
- 4. John J. Craig, Introduction to Robotics, Addison Wesley Publishing, 3rd Edition, 2013, ISBN:0201543613

MPD., M. Tech 2022 SCHEME Page 31 of 100

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

RUBRIC for CIE			RUBRIC for SEE				
SLNo	Content	Marks	Q. No	Contents	Morks		
1	Quizzes - Q1 & Q2	20	Each u	nit consists of TWO questions of 20 Marks each. Answ	er FIVE		
2	Tests - T1 & T2	40		full questions selecting ONE from each unit (1 to 5).			
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20		
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20		
			5 & 6	Unit-3: Question 5 or 6	20		
			7 & 8	Unit-4: Question 7 or 8	20		
			9 & 10	Unit-5: Question 9 or 10	20		
				Total Marks	100		

MPD., M. Tech 2022 SCHEME Page 32 of 100

SEMESTER: I						
Course Code	: 22MPD1B4T	Sheet Metal Forming and Plastic Design	CIE Marks :	100		
Credits L-T-P : 3- 0 - 0		Sheet Metal Forming and Plastic Design	SEE Marks :	100		
Hours	: 42L	Elective B (Professional Elective)	SEE Durations :	3 Hrs		
Faculty Coordinator: Dr Gangadhar Angadi						
	UNIT - I					

Sheet Metal Operations: Classification of presses, sheet metal operations, shearing theory, cutting force, clearance between punch and die.

Bending Die: Theory of bending, development of bend, U bending, V bending, Air Bending Process, bending force, spring back and its compensation

Drawing: Theory of drawing, blank development, factors considered for designing a draw die (simple Numerical), defects in drawing

UNIT - II 8 Hrs

Elements of Press Tool: Design of die plates, punches, punch holder plates, stripper plates, and calculation of stripping force, bolster plates, pilots, ejectors, shedders, pillar, bush, slender punches, stock guides and feeding device and die sets

Types of Press Tools: Stage tools, progressive tools, compound tools, and combination tools

UNIT - III

9 Hrs

Mould construction: Design of various injection mould elements, cores, cavities, and Inserts, fitting core and cavity inserts, guide pillars and bushes

Feed systems: Design of gates, runners, impressions, layout, sprue, sprue pullers Parting Surfaces: Straight, stepped, curved parting surface

Ejector System: Types of ejection, ejector pin, sleeve ejection, plate ejection, blade ejection, air ejection from fixed half, double ejection, delayed ejection

Cooling System: Need for cooling, cooling solid cores and cavities, insert cooling, cooling long cores, cooling elements, Bubblers and baffles cooling system

UNIT - IV 8 Hrs

Compression & Transfer Moulding: General description of Compression and Transfer moulding and its application in the processing of thermosetting materials, Faults, Causes and Remedies. Blow moulding: Introduction to blow moulding, types of blow moulding operations, concept of extrusion blow moulding and injection blow moulding. Multi daylight moulds: Single, double and triple daylight moulds

UNIT - V 8 Hrs

Product design: Product design concepts – size, shape, function, aesthetics, life, tooling aspects on product design, process variables Vs product design, product design thumb rules for plastics, cost reduction through product design concepts, design of external, internal undercuts, side openings, hinges, design of ribs, bosses, molded holes, case studies

Course Outcomes:

After going through this course the student will be able to:

CO1	:	Explain the necessity of press tool and mould for manufacturing of different tools
CO2	:	Analyse the design constraints in the given problem
CO3	:	Apply the design rule for manufacturing of press tools and moulds
CO4		Design of press tools and mould for considering real time issues of Manufacturing, Testing
		and Assembly

Reference Books

- 1. Paquin J.R. and Crowley, Die Design Fundamentals, 3rd Edition, Industrial Press Inc. 2006. ISBN 13: 912-345-768
- 2. Ivana Suchy, "Handbook of Die Design", 2nd Edition, New York-Mc GRAW-HILL, 2005, ISBN: 9780071462716,

0071462716

3. R. G. W Pye, Injection Mould Design, , 4th Edition, East-West Press Pvt. Ltd.-New Delhi, 2000, ISBN: 9788176710107, 4th Edition, 2010.

MPD., M. Tech 2022 SCHEME Page 33 of 100

4. Harold Belofsky, Plastic product design and process engineering, Carl Hanser Verlag GmbH & Co, 1995, ISBN-13:

978-3446174177, 3rd edition, 2013.

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

	RUBRIC for CIE		RUBRIC for SEE		
SLNo	Content	Marks	Q. No	Contents	Marks
1	Quizzes - Q1 & Q2	20	Each u	Each unit consists of TWO questions of 20 Marks each. Answer FIV	
2	Tests - T1 & T2	40	full questions selecting ONE from each unit (1 to 5).		unit (1 to 5).
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20
			5 & 6	Unit-3: Question 5 or 6	20
			7 & 8	Unit-4: Question 7 or 8	20
			9 & 10	Unit-5: Question 9 or 10	20

MPD., M. Tech 2022 SCHEME Page 34 of 100

SEMESTER: I					
Course Code	: 22MPD1B5T	CIE Marks		:	100
Credits L-T-P	: 3-0-0	Surface Engineering	SEE Marks	:	100
Hours	: 42L	Elective B (Professional Elective)	SEE Durations	:	3 Hrs
Faculty Coordinator: Dr H N Narasimha Murthy					
UNIT - I					9 Hrs

Introduction: Purpose and need of surface engineering, surface and subsurface regions, properties for enhanced life and performance of mechanical components, classification of surface modification techniques, scope of surface engineering, role of surface properties which affect wear and friction behavior

Surface Damage, Causes and Mechanisms: Material properties and its effect on performance of components, common factors leading to the deterioration of surfaces, types of wear and mechanisms and classical governing laws, techniques to evaluate damage of wear surfaces.

UNIT - II 8 Hrs

Materials for Controlling the Wear: Materials properties and wear, materials properties required for better wear resistance, selection of materials for surface engineering, materials for surface modifications for specific applications

Surface cleaning – Classification and selection of cleaning processes-alkaline cleaning, Solvent cold cleaning and vapour degreasing, Emulsion cleaning, Pickling and descaling.

UNIT - III 9 Hrs

Surface Engineering by Changing the Surface Metallurgy: Hardening methods, re-melting of base metal or modified surfaces using laser and TIG, plastic deformation-based approaches

Surface Engineering by Changing the Composition: Carburizing, nitriding, plasma carburizing and plasma nitriding, Surface modification by changing chemical composition, Surface modification using diffusion-based processes, ion beam-assisted deposition, boronizing.

UNIT - IV 8 Hrs

Surface Modification by Developing Coating and Cladding: Metals for developing, coating, and cladding, weld surfacing, laser cladding, thermal spraying, electroplating, electroless process.

UNIT - V 8 Hrs

Testing and Characterization of Engineered Surfaces: Surface properties, thickness, bond strength of coating by non-destructive testing (NDT), destructive testing of modified surfaces, XRD, SEM, EDAX, compositional analysis, visual inspection, optical and macroscopic examination.

Course Outcomes:

After going through this course the student will be able to:

- 1	3 3 3 3	0
	CO1	Explain various forms of corrosion and basic concepts of surface engineering
	CO2	Evaluate the different surface engineering processes with respect to industrial practices
	CO3	: Apply the knowledge of different spraying techniques in surface engineering
	CO4	: Analyze tests for assessment of wear and corrosion behaviour

Reference Books

- 1. Dheerendra Kumar Dwivedi, Surface Engineering, Spinger, 3rd edition, 2013, ISBN 978-81-322-3777-8 (2018)
- 2. Mathews, A., Advanced Surface Coatings: A Hand book of Surface Engineering, Spinger (2013), ISBN 322-3777-8
- 3. Sudarshan T S, 'Surface modification technologies An Engineer's guide', Marcel Dekker, Newyork, (2010), ISBN 978-84251656
- 4. Strafford, K.N., Datta, P.K., and Gray, J.S., Surface Engineering Practice, Processes, Fundamentals and Applications in Corrosion and Wear, Ellis Harwood (2015). ISBN 324-346578

MPD., M. Tech 2022 SCHEME Page 35 of 100

Total Marks

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

RUBRIC for CIE				RUBRIC for SEE		
SLNo	Content	Marks	Q. No	Contents	Marks	
1	Quizzes - Q1 & Q2	20	Each unit consists of TWO questions of 20 Marks each. Answer		ch. Answer FIVE	
2	Tests - T1 & T2	40	1110	full questions selecting ONE from each unit (1 to 5).		
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20	
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20	
			5 & 6	Unit-3: Question 5 or 6	20	
			7 & 8	Unit-4: Question 7 or 8	20	
			9 & 10	Unit-5: Question 9 or 10	20	

MPD., M. Tech 2022 SCHEME Page 36 of 100

SEMESTER: II 100 Course Code 22IM21T CIE Marks RESEARCH METHODOLOGY Credits L-T-P 100 3-0-0 SEE Marks SEE Durations : Hours 42L Common Course to all M.Tech Programs 3 Hrs Faculty Coordinator: Dr. Rajeswara Rao K V S UNIT - I 8 Hrs Research Problem: Problem Solving - General Problem Solving, Logical Approach, Soft System Approach, Creative Approach, Group Problem Solving Techniques for Idea Generation. Formulation of Research

Problems – Approaches to Research Problem, Exploration for Problem Identification, Hypothesis Generation and Formulation of the problem.

> UNIT - II 9 Hrs

Research Design: Experimental Design - Principles of Experiment, Laboratory Experiment, Experimental Design, Quasi Experimental Design, Action. Research, Validity and Reliability of Experiment and Quasi Experiments. Ex Post Facto Research - Exploratory Research, Historical Research, Descriptive Research, Field Studies, Survey Research, Qualitative Research Methods.

> UNIT - III 8 Hrs

Research Design for Data Acquisition: Measurement Design - Primary types of Measurement scales, Validity and Reliability Measurement, Sample Design - Non-Probability Sampling, Probability Sampling. Data Collection Procedures - Sources of secondary data, Primary data collection methods, Validity and Reliability of data collection procedures.

> **UNIT - IV** 9 Hrs

Data Analysis: Exploratory Data Analysis, Statistical Estimation, Hypothesis Testing, Parametric Tests, Non-Parametric Tests, Multiple Regression, Factor Analysis, Cluster Analysis

> UNIT - V 8 Hrs

Research Proposal: Purpose, Types, Development of Proposal, Evaluation of Research Proposal. Report Writing: Pre-writing consideration, Format of Reporting, Briefing, Best practices for Journal writing.

Course Outcomes:

After going through this course the student will be able to:

CO1	Recognize the principles and concepts of research types, data types and analysis
	: procedures.
CO2	Apply appropriate method for data collection and analyze the data using statistical
	: principles.
CO3	Express research output in a structured report as per the technical and ethical
	: standards.
CO4	: Develop a research design for the given engineering and management problem context.

Reference Books:

- 1. Krishnaswami, K.N., Sivakumar, A. I. and Mathirajan, M., Management Research Methodology, Integration of Principles, Methods and Techniques, 17th Impression, Pearson India Education Services Pvt. Ltd, 2018. ISBN: 978-81-7758-563-6
- 2. William M. K. Trochim, James P. Donnelly, The Research Methods Knowledge Base, 3rd Edition, Atomic Dog Publishing, 2006, ISBN: 978-1592602919
- 3. Kothari C.R., Research Methodology Methods and Techniques, 4th Edition, New Age International Publishers, 2019, ISBN: 978-93-86649-22-5.
- 4. Levin, R.I. and Rubin, D.S., Statistics for Management, 8th Edition, Pearson Education: New Delhi, 2017, ISBN-13- 978-8184957495.

MPD., M. Tech 2022 SCHEME Page 37 of 100

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric	for C	IE &	SEE	Theory	courses
--------	-------	------	-----	--------	---------

	RUBRIC for CIE		RUBRIC for SEE						
SLNo	Content	Marks	Q. No	Contents	Marks				
1	Quizzes - Q1 & Q2	20	Each u	ach unit consists of TWO questions of 20 Marks each. Answer FIVE					
2	Tests - T1 & T2	40		full questions selecting ONE from each unit (1 to 5).					
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20				
	Total <mark>M</mark> arks	100	3 & 4	Unit-2: Question 3 or 4	20				
			5 & 6	Unit-3: Question 5 or 6	20				
			7 & 8	Unit-4: Question 7 or 8	20				
			9 & 10	Unit-5: Question 9 or 10	20				
				Total Marks	100				

MPD., M. Tech 2022 SCHEME Page 38 of 100

	SEMESTER: II							
Course Code	: 22MPD22TL	Industrial Ergonomics and Biomechanics	CIE Marks	:	100			
Credits L-T-P	: 3-0-1	(Theory & Practice)	SEE Marks	:	100			
Hours	: 42L+28P	(Professional Core - 3)	SEE Durations	:	3 Hrs			
Foor	Faculty Coordinator, Dr. Pharatish A							

Faculty Coordinator: Dr Bharatish A

UNIT - I 8 Hrs

Ergonomic Workspace Design: Contribution of ergonomics to work station design, ergonomic approach to work station design, work surface design, visual display terminals, case studies.

UNIT - II 8 Hrs

Anthropometric Principles: Anthropometry and its use, types of anthropometric data, principles of applied anthropometry in ergonomics, application of anthropometry in product design, case studies.

UNIT - III 9 Hrs

Introduction to Biomechanics: Qualitative and Quantitative analysis, Principles and Laws, forms of motion, Directional terms, Anatomical Reference Planes, Anatomical Reference Axes, joint movement terminology, muscle actions, Hill Muscle Model, force-motion principle

UNIT - IV 8 Hrs

Kinetic Concepts for Human Motion: Basic Concepts, mechanical loads, effects of loading, tools for Measuring Kinetic Quantities, Vector Algebra, torque, static and dynamic equilibrium, anatomical levers, centre of gravity

UNIT - V 9 Hrs

Biomechanics of Human Bone and muscle: Composition and Structure of Bone Tissue, Bone Growth and Development, bone response to stress, bone injuries, behavioural properties, structural organisation, skeletal muscle function, force-velocity relationship, length-tension relationship, stretch-shortening cycle, muscular strength, power, and endurance

LABORATORY 28 Hrs

- 1.Fatigue Measurement in Humans: Perform Fatigue measurement in human being using Blood pressure, SpO2 and CO2 parameters 2.Anthropometry: Measure and analyze of anthropometric data in sitting and standing position
- 3. Human actuator Response: Assessment of force exerted by human actuators
- 4.Local Muscle Activity: Measurement of local muscle activity using EMG
- 5.Structural analysis of compression bone plate: Perform static Structural analysis of compression bone plate in ANSYS Workbench 6.Bending Behavior of Femur Bone: Analyze 3 point bending configuration of Femur bone in ANSYS Workbench 7.Analysis of Hip Implant: Static Structural analysis of hip implant made up of Titanium Alloy
- 8.Intervertebral Disc Analysis: Simulation of the creep deformation of an intervertebral disc 9.SMA for spinal Space: Static structural analysis of Spinal space made of Shape memory alloy (SMA) with thermal effect 10.Balloon-angioplasty of a Stent Analysis: Simulate mechanical responses as a result of expanding the balloon-stent assembly

Course Outcomes:

After going through this course the student will be able to:

CO1	: Recognize the role of biomechanics and ergonomics and its areas of application in the work
	system.
CO2	Explain and apply the concepts of biomechanics and ergonomics in the evaluation of existing
	systems and design of new systems
CO3	: Demonstrate an understanding of concepts of ergonomics and biomechanics
CO4	: Design, develop, conduct and analysis ergonomic related experiments.

Reference Books

- 1 Susan J Hall, Basic Biomechanics, Sixth Edition, Tata McGraw hill, 2013, ISBN: 978-0-07-337644-8, 2013
- 2 Duane Knudson, Fundamentals of Biomechanics, Second Edition, Springer, ISBN 978-0-387-49311-4, 2012, 2014
- 3. Authors, Title, Editions, Publisher, Year, ISBN3 R S Bridger, Introduction to Ergonomics, Taylor & Francis, 2nd

Edition, 2003, ISBN: 0415273781.

MPD., M. Tech 2022 SCHEME Page 39 of 100

4.Andreas C. Müller, Sarah Guido, Introduction to Machine Learning with Python, O'Reilly Media, Inc., First edition.

ISBN: 04345-15-215, 2014

Scheme of Continuous Internal Evaluation (CIE): 10 + 30 + 30 + 30 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The average of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 30 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (10), Video based seminar /presentation /demonstration (20) adding upto 30 marks.

Laboratory: Conduction of laboratory exercises, Lab report & observation & analysis (30 Marks), Lab Test (10 Marks) & Innovative Experiment/Concept Design & Implementation (10 Marks) adding up to 50 Marks. The final marks will be reduced to 30 Marks.

Scheme of Semester End Examination (SEE) for 100 marks: Each unit consists of TWO Questions of 16 Marks each. Answer FIVE full questions selecting one from each unit (from 1 to 5). Question No. 11 is compulsory (Laboratory component) for 20 Marks.

Rubric for CIE & SEE for Integrated Theory courses with Laboratory

	RUBRIC of CIE		RUBRIC of SEE						
SLNo	Content	Marks	Q. No	Contents	Marks				
1	1 Quizzes - Q1 & Q2			nit consists of TWO questions of 16 Marks each. Answ					
2	Tests - T1 & T2	30	Questi	full questions selecting ONE from each unit (1 to 5). Question No. 11 is compulsory (Laboratory component) for 20 Marks.					
3	Experiential Learning - EL1 & EL2	30	1 & 2	Unit-1: Question 1 or 2	16				
4	Laboratory	30	3 & 4	Unit-2: Question 3 or 4	16				
	Total Marks	100	5 & 6	Unit-3: Question 5 or 6	16				
			7 & 8	Unit-4: Question 7 or 8	16				
	NO SEE for Laboratory			Unit-5: Question 9 or 10	16				
				Laboratory Component (Compulsory)	20				
	15.0			Total Marks	100				

MPD., M. Tech 2022 SCHEME Page 40 of 100

	SEMESTER: II							
Course Code	: 22MPD23T	PRODUCT AND COST ANALYSIS	CIE Marks	:	100			
Credits L-T-P	: 3- 1 - 0	PRODUCT AND COST ANALTSIS	SEE Marks	:	100			
Hours	: 42L+28T	(Professional Core - 4)	SEE Durations	:	3 Hrs			
Facul	Faculty Coordinator: Dr B W Shivaraj							

UNIT - I 8 Hrs

Introduction: New product strategies, Decision Process, Market definition and entry strategy, Idea generation, Design process.

UNIT - II 8 Hrs

Consumer Measurement process: Research Methods, Sampling, Attitude Scaling Perceptual Mapping: Perceptual Maps and Value Maps, Analytical methods to Perceptual Maps, Product Positioning.

UNIT - III 9 Hrs

Manufacturing Planning: Selection of optimum process, Standardization, Break even analysis- application and area of use -problems -multi - product analysis and Process planning. Value Analysis: Types of value, Objectives and Steps, Case studies.

UNIT - IV 9 Hrs

Cost Accounting: Cost estimation -difference -types -steps involved in cost estimation. Types of Cost: Cost Centres, Material cost-direct indirect, Overhead cost. Elements in overheads: Preparation of cost sheet, machine hour rate, apportioning methods Variance Analysis – Labour variance, Material variance and Overhead variance, Activity based costing - Introduction to target costing

UNIT - V 8 Hrs

Cost Calculation: Cost calculation for machined components, welding, Sheet Metal and forged components - calculation of sales cost.

Course Outcomes:

After going through this course the student will be able to:

CO1	:	Describe the product strategy and Perceptual Maps for Product Positioning
CO2	:	Apply suitable manufacturing process based on material and product
CO3	:	Evaluate the parameters for design considerations based on manufacturing process
CO4	:	Analyzing the Cost Accounting machined components for a given material

Reference Books

1. Glen L Urban, John R Hauser, "Design and Marketing of New Products", Prentice Hall. New Jersey, 1993,

978-0132015677, 4th Edition

- 2. T.R.Ranga and S C Sharma, "Mechanical Estimating and Costing",- Khanna Publishers- 2015. ISBN: 40:0257-02-0001, 3rd edition
- 3. Miles Lewrence, "Technique for Value Analysis And Engineering", McGraw Hill, New york-2000, ISBN: 65:0257-22-0004, 5th edition
- 4. Yasuhiro Monden Cost management in the New Manufacturing Age -, Productivity Press-1992, 1980, ISBN: 90:0777-02-0001, 6th edition

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

MPD., M. Tech 2022 SCHEME Page 41 of 100

	RUBRIC for CIE			RUBRIC for SEE	
SLNo	Content	Marks	Q. No	Contents	Marks
1	Quizzes - Q1 & Q2	20	Each u	nit consists of TWO questions of 20 Marks each. An	swer FIVE
2	Tests - T1 & T2	40		full questions selecting ONE from each unit (1 to 5	i).
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20
			5 & 6	Unit-3: Question 5 or 6	20
			7 & 8	Unit-4: Question 7 or 8	20
			9 & 10	Unit-5: Question 9 or 10	20
				Total Mar	ks 100

SEMESTER: II							
Course Code	: 22MMD2C1T	Design for Tribology	CIE Marks	:	100		
Credits L-T-P	: 3- 0 - 0	Design for Tribology	SEE Marks	:	100		
Hours	: 42L	Elective C (Professional Elective)	SEE Durations	:	3 Hrs		
Facul	Faculty Coordinator: Dr Bharatish A						
UNIT - I							

Friction: Physico-Chemical Characteristics of Surface Layers, Analysis of Surface Roughness, Measurement of Surface Roughness, Contact Between Solid Surfaces, Friction: Basic Mechanisms of Sliding Friction, Friction Transitions During Sliding, Stick-Slip, Rolling Friction, Friction of Metals and Alloys, ceramics, polymers and solid lubricants

UNIT - II 8 Hrs

Wear: Types of Wear Mechanism, Adhesive Wear, abrasive wear, fatigue Wear, impact Wear, Chemical, Fretting and Fretting Corrosion, wear debris, wear of creamics, metals and polymers

UNIT - III 8 Hrs

Fluid Film Lubrication: Hydrostatic Lubrication, hydrodynamic lubrication, Reynolds equation, thrust bearings, jorunal bearings, Elastohydrodynamic Lubrication, forms of contact

UNIT - IV 9 Hrs

Tribological Components and Applications: Sliding-Contact Bearings, rolling bearings, gears, seals, Cams and Tappets, Piston Rings, Electrical Brushes, MEMS, NEMS, material processing and industrial applications

UNIT - V 8 Hrs

Nanotribology: SFA Studies, AFM/FFM Studies, Atomic-Scale Computer Simulations, Friction and Wear Screening Test Methods: Sliding Friction and Wear Tests, Abrasion Tests, Rolling-Contact Fatigue Tests, Solid-Particle Erosion Test, Corrosion Tests.

Course Outcomes:

After going through this course the student will be able to:

CO1	:	Demonstrate fundamentals of tribology, friction, wear and lubrication
CO2	:	Analyze bearings for load carrying capacity, frictional force and power loss
CO3	:	Simulate and illustrate the testing methods in nanotribology
CO4	:	Design the various tribological componenents for minimum wear and friction

Reference Books

- 1. Introduction to tribology, second edition, Bharat Bhushan, John Wiley & Sons, Ltd, 2013, ISBN 978-1-119-94453-9
- 2. Tribology in machine design, T A Stolarski, Buttworth Heinemann, ISBN: 978-1-119-94453-9
- 3. 3. Engineering Tribology, G W Stachowiak, A W Batchelor, Elsevier publication, ISBN:9780080875880, 1993
- 4. Lubrication of Bearings Theoretical principles and design, Radzimovsky, Oxford press Company, 2000

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE & SEE Theory courses

MPD., M. Tech 2022 SCHEME Page 43 of 100

	RUBRIC for CIE			RUBRIC for SEE				
SLNo	Content	Marks	Q. No	Contents	Marks			
1	Quizzes - Q1 & Q2	20	Each u	nit consists of TWO questions of 20 Marks each. Answ	er FIVE			
2 Tests - T1 & T2 40 full questions selecting ONE from each unit (1 to 5).								
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20			
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20			
			5 & 6	Unit-3: Question 5 or 6	20			
			7 & 8	Unit-4: Question 7 or 8	20			
			9 & 10	Unit-5: Question 9 or 10	20			
				Total Marks	100			

SEMESTER: II							
Course Code	:	22MPD2C2T	ADDITIVE MANUFACTURING TECHNOLOGY	CIE Marks			
Credits L-T-P	:	3-0-0	ADDITIVE MANUFACTURING TECHNOLOGY	SEE Marks	:	100	
Hours	:	42L	Elective C (Professional Elective)	SEE Durations	:	3 Hrs	
Faculty Coordinator: Dr Gopalakrishna H D							
UNIT - I						9 Hrs	

Design for Additive Manufacturing- Design for improved functionality, Design for material reduction, Design guidelines for AM in general, Design for Powder based systems, Design for Resign based systems, Design for Extrusion based systems, Design for Jetting based systems, Generative Design, Topology optimization, Analysis of DesignsBasic Principles and Development of AM Technology: Conventional Machining Processes, Development of CAD/CAM systems, Advantages and Limitations; Concurrent Engineering; Data Format; Rapid Prototyping Technologies, Laminated Object Manufacturing, Generic AM Process, Distinction between Am and CNC, CAD and other Technology, Classification of AM Process; Metal and Hybrid systems; Steps in AM process;

UNIT - II 8 Hrs

Powder Bed Fusion Processes: Introduction, Materials, Powder Fusion Mechanisms, Process Parameters and Modeling, Laser, UV and IR; Process Benefits and Drawbacks. Extrusion-Based Systems: Introduction, Basic Principles, Plotting and Path Control, Fused Deposition Modeling.

UNIT - III 9 Hrs

Stereo lithography: Materials, Processes parameters, advantages and limitations; Material and Binder Jetting: Evolution, Materials, Material Processing Fundamentals, Material Jetting Machines, Process Benefits, binding materials and systems. Laser Engineered Net Shaping (LENS): Materials, Process Parameters & Systems Post Processing of additive manufactured parts.

UNIT - IV 8 Hrs

Design for Additive Manufacturing: Design for Manufacturing and Assembly, AM Unique Capabilities, Core DFAM Concepts and Objectives, CAD Tools for AM.

Applications for Additive Manufacture: Introduction, The Use of AM to Support Medical Applications, Aerospace and Automotive Applications.

UNIT - V 8 Hrs

Rapid Tooling: Introduction, Direct and Indirect AM tooling process; Production of Injection Molding Inserts, EDM Electrodes, Investment Casting and Other Systems, RTV Silicone Tooling, Calcium silicate based castable tooling. Choosing the right AM process and materials, Construction of basic AM machines, Post-processing of AM parts

Course Outcomes:

After going through this course the student will be able to:

CO1	Explain the working process and technology development of Additive Manufacturing
CO2	: Apply the principles of AM in manufacturing industry advantage.
CO3	: Analyze the concepts of AM in Production Process
CO4	: Evaluating the techniques involved in AM

Reference Books

- 1. Ian Gibson, David Rosen, Brent Stucker, "Additive Manufacturing Technologies"- Springer, 2ndEdition. ISBN 978-1-4939-2112-6
- 2. Chee Kai Chua, Kah Fai Leong, "3D Printing and Additive Manufacturing, Principles and Applications", 4th Ed, ISBN 978-9-8145-7140-1
- 3. Amit Bandyopadhyay, Susmita Bose "Additive Manufacturing", CRC Press 2015 ISBN 9781482223590
- 4. Lihni Wang, Andrew Y.C. Nee "Collabarative design and planning for digital manufacturing" Springer Series, 2009, ISBN 998-1-84882-286-3

MPD., M. Tech 2022 SCHEME Page 45 of 100

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

	RUBRIC for CIE			RUBRIC for SEE			
SLNo	Content	Marks	Q. No	Contents	Marks		
1 Quizzes - Q1 & Q2		20	Each u	nit consists of TWO questions of 20 Marks each. Answ	ver FIVE		
2	Tests - T1 & T2	40	1110	full questions selecting ONE from each unit (1 to 5).			
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20		
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20		
			5 & 6	Unit-3: Question 5 or 6	20		
			7 & 8	Unit-4: Question 7 or 8	20		
			9 & 10	Unit-5: Question 9 or 10	20		
				Total Marks	100		

MPD., M. Tech 2022 SCHEME Page 46 of 100

SEMESTER: II						
Course Code	: 22MPD2C3T	GD&T and Digital Metrology	CD To and Digital Maturals To			
Credits L-T-P	: 3-0-0	GD&1 and Digital Metrology	SEE Marks :	100		
Hours	: 42L	Elective C (Professional Elective)	SEE Durations :	3 Hrs		
Faculty Coordinator: Dr Gangadhar Angadi						
UNIT - I						

Introduction to GD&T: Uses, Advantages over Coordinate dimensioning and tolerancing: Cylindrical tolerance zone, maximum material condition and Datums specified in order of precedence. Fundamental Drawing Rules, Units of Linear and Angular Measurement. Geometric characteristic symbols, Datum feature symbol, Feature control frame, Material conditions, GD&T terms, Fundamental Rules for drawing. Datums: Datum Feature Selection and Identification, Datum Features, Datum Targets.

UNIT - II 9 Hrs

Form and Orientation: Flatness tolerance and unit, Straightness tolerances, straightness of a median line and median plane, Circularity tolerance, Cylindricity tolerance, Free-State Variation. Orientation: Parallelism of a flat surface, parallelism of an axis, perpendicularity of a flat surface, Tangent plane, perpendicularity of an axis, angularity of a flat surface, angularity of an axis.

Position: Position Tolerance, Regardless of Feature Size, Maximum Material Condition, Shift Tolerance, Least Material Condition, Boundary Conditions, Zero Positional Tolerance at MMC.

UNIT - III 8 Hrs

Coaxiality and Concentricity: Comparison between Position, Runout, and Concentricity, Specifying Coaxiality at MMC, Composite Positional Control of Coaxial Features, Tolerancing a Plug and Socket.

Runout and Profile: Circular Runout, Total Runout, Specifying Runout and Partial Runout, Multiple Datum Features, Face and Diameter Datums, Profile: Application of Datums, Radius Refinement with Profile, Combing Profile Tolerances with Other Geometric Controls, Coplanarity, Profile of a Conical Feature, Composite Profile.

UNIT - IV 8 Hrs

Tolerance Stack-Up Analysis: Importance, Need, Manufacturing Considerations in Engineering Design, Technical Drawing, Converting Plus/Minus Dimensions and Tolerances into Equal-Bilaterally Toleranced Dimensions, Tolerance Stack Analysis, Worst-Case Tolerance Analysis, Rules for Assembly Shift, Worst-Case Tolerance Stack-Up in Symmetric and Asymmetric Dimensional Tolerance, Statistical Tolerance Analysis, Understanding Material Condition Modifiers

UNIT - V 8 Hrs

Digital Metrology: Metrology and Digitalization, Implementation Strategy, Data Acquisition, Setup Fundamentals for Measurement and Data Acquisition, Length Measurement in Open Loop, Thermal Measurement and Data-Acquisition Considerations, Data Transfer to Cloud, Internet of Things (IoT) Metrology, Closed-Loop Data Analysis- (In-Process Inspection), Digital Twin Metrology Inspection.

Advanced Methods for Optical Nondestructive Testing (ONDTs): Introduction, Principles, Material Properties, Application of Thermal or Mechanical Loads for NDT, Selected Measurement Techniques Suitable for Optical NDT, Optical Methods for NDT: Thermography, Fringe Reflection Technique (FRT), Digital Speckle Shearography, and Laser Ultrasound.

Course Outcomes:

After going through this course the student will be able to:

	CO1:	Demonstrate an understanding of all the symbols, terms and rules used in GD&T.
	CO2:	Analyse the acceptability of manufactured parts based on GD&T requirements.
		Apply the GD&T symbols on an engineering drawing to completely specify the form and limits of variation of features.
	CO4 :	Design the product/assembly for real time applications in manufacturing and inspection
ı	-	

MPD., M. Tech 2022 SCHEME Page 47 of 100

Reference Books

1. Gene Cogorno - Geometric Dimensioning and Tolerancing for Mechanical Design, , 2nd Edition, McGraw-Hill, 2006,

ISBN-13:978-0071772129

2. Georg Henzold - Geometrical Dimensioning and Tolerancing for Design, Manufacturing and Inspection, 2nd Edition,

Elsevier Ltd., 2006, ISBN-13: 978-0-7506-6738-8

3. Bob Campbell and Edward S. Roth- Integrated Product Design and Manufacturing Using Geometric Dimensioning

and Tolerancing, CRC Press, 3rd edition, 2003, ISBN: 0-8247-8890-7

4. Meadows, James D - Geometric dimensioning and tolerancing (ASME Y14.5-2009)-ASME Press 2009, 4th edition, ISBN:

978-0-9714401-6-6

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE & SEE Theory courses

	RUBRIC for CIE					RUBRIC for SEE			
SLNo	Content			Marks	Q. No	Contents	Marks		
1	Quizzes -	Q1 & Q2		20	Each u	nit consists of TWO questions of 20 Marks each. Answ	wer FIVE		
2	Tests - T1	& T2		40		full questions selecting ONE from each unit (1 to 5).			
3	Experienti	al Learning	EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20		
		14	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20		
					5 & 6	Unit-3: Question 5 or 6	20		
					7 & 8	Unit-4: Question 7 or 8	20		
					9 & 10	Unit-5: Question 9 or 10	20		
						Total Marks	s 100		

MPD., M. Tech 2022 SCHEME Page 48 of 100

SEMESTER: II							
Course Code	:	22MPD2C4T	Design for Wanufacture and Assambly	CIE Marks		100	
Credits L-T-P	:	3- 0- 0	Design for Manufacture and Assembly	SEE Marks	:	100	
Hours	:	42L	Elective C (Professional Elective)	SEE Durations	:	3 Hrs	
Facı	Faculty Coordinator: Dr Bharatish A						
UNIT - I						9 Hrs	

Introduction to Design for Manufacture & Assembly: Steps in DFMA, Advantages of DFMA, Limits, Fits and Tolerances, hole and shaft basis, Geometrical Dimensioning & Tolerances, , Three datum – functional, machining and manufacturing, numericals

UNIT - II 8 Hr

Design for Metal Casting – Compute the dimensions for Pattern, Mould, influence of parting line, cast holes, special sand cores, numericals, Pressure Die Casting: Die casting alloys, machine selection, operation, sub-systems, optimum number of cavities, design principles

UNIT - III 8 Hrs

Design for Injection Moulding – Injection moulding systems – injection subsystem, machine sizing, materials for injection moulding and its properties, injection mould design – cavity and core, operation and cycle time, Design for Sheet Metal Processing: Design of moulds for shearing, piercing, bending, deep drawing, progressive die operation

UNIT - IV 9 Hrs

Electrical Connections and Wire Harness Assembly, classification of electrical interconnection, types of electrical Connections, types of Wires and Cables, preparation and assembly times, assembly and installation, analysis method

UNIT - V 8 Hrs

Design for High-Speed Automatic Assembly and Robot Assembly, Design of Parts for High-Speed Feeding and Orienting, Additional Feeding Difficulties, High-Speed Automatic Insertion, General Rules for Product Design for Automation, Design of Parts for Feeding and Orienting, product design for robot assembly.

Course Outcomes:

After going through this course the student will be able to:

CO1	: Understand the basic manufacturing processes and electrical connections
CO2	: Develop the ass <mark>embly conditions and identify the datum</mark> s
CO3	: Design the parts for ease of pressure die casting, injection moulding and robot assembly
CO4	: Formulate the DFMA work analysis sheet for various manufacturing processes

Reference Books

- 1. Product Design for Manufacture and Assembly, Geoffrey Boothroyd, Peter Dewhurst, Winston Knight Marcel Dekker, Inc., New york Second Revision, ISBN O 8247-0584-X, 2013
- 2.Designing for Manufacturing, Harry Peck, Pitman Publications, 2nd edition, 2010, ISBN: 1-805233-810-5
- 3. Dimensioning and Tolerance for Quantity Production, Merhyle F Spotts, Englewood Cliffs, Prentice Hall, 5th edition, ISBN: 2-95433-956-6, 2012
- 4. Design for manufacturing a structured approach, Corrado Colig. BH publishers, 2012, ISBN: 2-95433-956-6

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

MPD., M. Tech 2022 SCHEME Page 49 of 100

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE & SEE Theory courses

	RUBRIC for CIE			RUBRIC for SEE	
SLNo	Content	Marks	Q. No	Contents	Marks
1	Quizzes - Q1 & Q2	20	Each u	nit consists of TWO questions of 20 Marks each. Answ	ver FIVE
2	2 Tests - T1 & T2 40 full questions selecting ONE from each unit (1 to 5).				
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20
			5 & 6	Unit-3: Question 5 or 6	20
			7 & 8	Unit-4: Question 7 or 8	20
			9 & 10	Unit-5: Question 9 or 10	20
				Total Marks	100

MPD., M. Tech 2022 SCHEME Page 50 of 100

SEMESTER: II							
Course Code	: 22MPD2C5T	ELECTRIC VEHICLE TECHNOLOGY	CIE Marks :				
Credits L-T-P	: 3- 0 - 0	ELECTRIC VEHICLE TECHNOLOGY	SEE Marks	: 100			
Hours	: 42L	Elective C (Professional Elective)	SEE Durations	: 3 Hrs			
Facul	Faculty Coordinator: Dr Gopalakrishna H D						
UNIT - I							

Overview of EVs and challenges: Components of EVs - architecture of EVs - EV market and promotion-infrastructure needs - EV makers - Comparison in reference of: Energy source, Pollution, Energy diversification, Efficiency, Capital & operating cost, Performance. Classifications: Classification of EVs in reference to: Propulsion devices, Energy sources, Energy carriers, Pure Electric Vehicles (PEV) - Hybrid Electric Vehicles (HEV) and Plug-in Hybrid Electric Vehicles (PHEV) - Configurations: BEV, FCEV.

UNIT - II 9 Hrs

Design Considerations: Aerodynamic Considerations, Rolling Resistance, Transmission Efficiency, Consideration of Vehicle Mass, Electric Vehicle Chassis and Body Design, Issues in Design. Design of Ancillary Systems: Heating and Cooling Systems, Design of the Controls, Power Steering, Choice of Tyres, Wing Mirrors, Aerials and Luggage Racks, Electric Vehicle Recharging and Refueling Systems. Electric Vehicle Modelling: Tractive Effort, Modelling Vehicle Acceleration, Modelling Electric Vehicle Range, Numerical.

UNIT - III 8 Hrs

Batteries, Flywheels and Supercapacitors: Battery Parameters, Lead Acid Batteries, Nickel-Based Batteries, Sodium-Based Batteries, Lithium Batteries, Metal-Air Batteries, Supercapacitors and Flywheels, Battery Charging, The Designer's Choice of Battery, Batteries in Hybrid Vehicles, Battery Modelling, Battery Management Systems.

Fuel Cells: Hydrogen Fuel Cells, Thermodynamics, Connecting Cells in Series, Water Management in the PEMFC, Thermal Management of the PEMFC, Fuel Cell System, Practical Efficiency of Fuel Cells, Hydrogen as a Fuel- Reforming, Efficiency, Storage.

UNIT - IV 8 Hrs

EV Drives: BEV, HEV, FCEV, EV motor drive technologies - IC engine vehicle force - speed characteristics (5-gears), BEV force - speed characteristics (fixed gears) - Comparison between ICE vehicles & BEV - Requirement of EV motor compared to industrial motors - classification of EV motors (DC, Induction, BLDC, PMSM) - Types, Principle, Construction, Control - Electric Drive Train and its types and Power Converters.

UNIT - V 8 Hrs

Types of Chargers: AC charging and DC charging - On board and off board charger specification - Type of Mode of charger Mode 2, Mode 3 and Mode 4 - EVSE associated charging time calculation - Selection and sizing of fast and slow charger (AC & DC) - AC Pile Charger, DC Pile Charger. Modelling and Vehicle Dynamic Control: Modelling and Characteristics of EV/HEV Powertrains Components - ICE Performance Characteristics - Electric Motor Performance Characteristics - Battery Performance Characteristics - Transmission and Drivetrain Characteristics - Regenerative Braking Characteristics. Control of Electric and Hybrid Electric Vehicle Dynamics - Fundamentals of Vehicle Dynamic Control (VDC) Systems - VDC Implementation on Electric and Hybrid Vehicles.

Course Outcomes:

After going through this course the student will be able to:

Three Some control	agir time course the student will be use to.
CO1 :	Explain the basics of electric and hybrid electric vehicles, their architecture, technologies and
	modelling.
CO2 :	Discuss and implement different energy storage technologies used for electric vehicles and
	their management system
CO3 :	Analyze various electric drives and its integration techniques with Power electronic circuits
	suitable for electric vehicles.
CO4 :	Analyse the requirement for model based EV designs and its infrastructure needs.
'	•

MPD., M. Tech 2022 SCHEME Page 51 of 100

Reference Books

- 1 James Larminie, John Lowry, "Electric Vehicle Technology Explained", Wiley Publisher, 2nd Edition, 2012, 2nd Edition ISBN:9781119942733.
- 2.Iqbal Hussain, "Electric & Hybrid Vehicles –Design Fundamentals", Second Edition, CRC Press, 2011, ISBN 0-8493-1466-5
- 3.Davide Andrea,"Battery Management system for large Lithium Battery Packs", ARTECH HOUSE 4th Edition 2010, ISBN-13 978-1-60807-104-3
- 4. F. BADIN, Ed, Hybrid Vehicles from Components to System", Editions Technip, Paris, 2013, 3rd Edition, ISBN 978-2-7108-0994-4.

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE & SEE Theory courses

RUBRIC for CIE					RUBRIC for SEE			
SLNo	Content		Marks	Q. No	Contents	Merks		
1	Quizzes - Q1 & Q2		20	Each u	nit consists of TWO questions of 20 M	Marks each. Answer FIVE		
2	Tests - T1 & T2		40		full questions s <mark>electing ONE</mark> from e	ach unit (1 to 5).		
3	Experiential Learning	- EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20		
		Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20		
				5 & 6	Unit-3: Question 5 or 6	20		
				7 & 8	Unit-4: Question 7 or 8	20		
				9 & 10	Unit-5: Question 9 or 10	20		
						Total Marks 100		

MPD., M. Tech 2022 SCHEME Page 52 of 100

SEMESTER: II						
Course Code	:	22BT2D01T	BIOINSPIRED ENGINEERING CIE Marks :		:	100
Credits L-T-P	:	3-0-0	bioinspired engineering	SEE Marks	:	100
Hours	:	42L	Elective D (Global Elective)	SEE Durations	:	3 Hr
Faculty Coordinator: Dr Nagashree Rao and Dr Ashwani Sharma						

UNIT - I 8 Hrs

Introduction to Bio-inspired Engineering: Macromolecules, Stem cells; types and applications. Synthetic Biology; Bottom-up' and 'top-down' engineering approaches. Synthetic/ artificial life. Biological Clock, Genetic Algorithms.

UNIT - II 9 Hrs

Principles of bioinspired materials: Biological and synthetic materials, Self-assembly, hierarchy and evolution. Biopolymers, Bio-steel, Bio-composites, multi-functional biological materials. Thermal Properties. Antireflection and photo-thermal biomaterials, Microfluidics in biology, Invasive and non-invasive thermal detection inspired by skin

UNIT - III 9 Hrs

Lessons from Nature:Bioinspired Materials and mechanism: Firefly-Bioluminescence, Cockleburs –Velcro, Lotus leaf - Self-cleaning materials, Gecko - Gecko tape, Whale fins - Turbine blades, Box Fish / Bone - Bionic car, Shark skin - Friction reducing swim suits, Kingfisher beak - Bullet train, Coral - Calera cement, Forest floor / Ecosystem functioning - Flooring tiles, Morpho butterfly- Structural color, Namib beetle- Water collecting, Termite mound passive cooling, Birds/Insects-flights/ aerodynamics, Mosquito inspired micro needle.

UNIT - IV 8 Hrs

Biomedical Inspiration-Concept and applications: Organ system- Circulatory- artificial blood, artificial heart, pacemaker. Respiratory- artificial lungs. Excretory- Artificial kidney and skin. Artificial Support and replacement of human organs: artificial liver and pancreas. Total joint replacements- artificial limbs. Visual prosthesis -artificial eye/ bionic eye.

UNIT - V 8 Hrs

Biomimetics: Inventions in nature for Human Innovation: Photosynthesis and Photovoltaic cells, Bionic/Artificial leaf. Bio-ink and 3D-Bioprinting. Cellular automata. Biosensors: Artificial tongue and nose. Biomimetic echolation. Insect foot adaptations for adhesion. Thermal insulation and storage materials. Bees and Honeycomb Structure. Artificial Intelligence, Neural Networking and bio-robotics.

Course Outcomes:

After going through this course the student will be able to:

Their going through the obtate the obtatent will be able to.						
	CO1	: Elucidate the concepts and phenomenon of natural processes				
	CO2	: Apply the basic principles for design and development of bioinspired structures				
	CO3	: Analyse and append the concept of bio-mimetics for diverse applications				
	CO4	Designing technical solutions by utilization of bio-inspiration modules.				

Reference Books:

- 1. D. Floreano and C. Mattiussi, Bio-Inspired Artificial Intelligence: Theories, Methods and Technologies, 1st edition, MIT Press, 2008, ISBN: 9780262062718
- 2. Guang Yang, Lin Xiao, and Lallepak Lamboni. Bioinspired Materials Science and Engineering. 1st edition, John Wiley, 2018, ISBN: 978-1-119-3903362
- 3. M.A. Meyers and P.Y. Chen. Biological Materials, Bioinspired Materials, and Biomaterials, 1st edition, Cambridge University Press, 2014, ISBN 978-1-107-01045.
- 4. Tao Deng. Bioinspired Engineering of Thermal Materials, 1st edition, Wiley-VCH Press, 2018. ISBN: 978-3-527-33834-4.

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

MPD., M. Tech 2022 SCHEME Page 53 of 100

Rubric for CIE & SEE Theory courses						
	RUBRIC for CIE			RUBRIC for SEE		
SLNo	Content	Marks	Q. No	Contents	Marks	
1	Quizzes - Q1 & Q2	20	Each u	nit consists of TWO questions of 20 Marks each. Answ	ver FIVE	
2	Tests - T1 & T2	40	1	full questions selecting ONE from each unit (1 to 5).		
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20	
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20	
			5 & 6	Unit-3: Question 5 or 6	20	
			7 & 8	Unit-4: Question 7 or 8	20	
			9 & 10	Unit-5: Question 9 or 10	20	
				Total Marks	100	

	SEMESTER: II						
Course Code	:	22BT2D02T	HEALTH INFORMATICS CIE Marks :		100		
Credits L-T-P	:	3-0-0		SEE Marks :		100	
Hours	:	42L	Elective D (Global Elective) SEE Durat	ions	:	3 Hrs	
Faculty Coordinator: Dr A H Manjunatha Reddy							

UNIT - I 8 Hrs

Introduction, Healthcare data, information and knowledge: Data types, data conversion, clinical data warehouse, data analytics, challenges, role of informatics in analytics, future trends

UNIT - II 8 Hrs

Electronic health records: Introduction, scope for the e health records, challenges, examples, logical steps to selecting and implementing EHR

UNIT - III 8 Hrs

Data standards and medical coding: Introduction, medical content standards, termonology standards, transport standards, medical coding and reimbursement, future trends,

UNIT - IV 9 Hrs

Healthcare Enterprise: Overview of Health Informatics: Introduction, Key players in HI, organizations involved, barriers, programs, organizations and career, HI Resoruces

UNIT - V 9 Hrs

Health Information privacy and security: Introduction, basic security principles, authentication and identity management, data security in the cloud and client/server management

Course Outcomes:

After going through this course the student will be able to:

CO1	••	Understand the basic principles of Health informatics
CO2	••	Data capture to data transformation and to analysis
CO3	:	Creation of E health records, identify the challenges
CO4	:	Improvise the significant factors as per the spatio-temporal requirements

Reference Books:

- 1. Robert E. Hoyt Ann K. Yoshihashi, Health Informatics, Practical guide for Healthcare and Information Technology Professionals, 6th edition, Informatics Education, 2014, ISBN: 978-0-9887529-2-4
- 2. Kathryn J. Hannah Marion J. Ball, Health Informatics, Springer Series edition, Springer, 2005, ISBN: 1-85233-826-1
- 3. William R Hersh, Health Informatics, a Practical guide, 8th edition. 2022, ISBN 978-1-387-85475-2
- 4. Pentti Nieminen. Medical informatics and data analysis 1st edition, MDPI AG, 2021, ISBN-13: 978-3036500980

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 marks. Final test marks will be reduced to 40 Marks.


EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

MPD., M. Tech 2022 SCHEME Page 55 of 100

Rubric for CIE & SEE Theory courses						
	RUBRIC for CIE			RUBRIC for SEE		
SLNo	Content	Marks	Q. No	Contents	Marks	
1	Quizzes - Q1 & Q2	20	Each u	nit consists of TWO questions of 20 Marks each. Answ	ver FIVE	
2	Tests - T1 & T2	40	1	full questions selecting ONE from each unit (1 to 5).		
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20	
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20	
			5 & 6	Unit-3: Question 5 or 6	20	
			7 & 8	Unit-4: Question 7 or 8	20	
			9 & 10	Unit-5: Question 9 or 10	20	
				Total Marks	100	

	SEMESTER: II								
Course Code	:	22CS2D03T	BUSINESS ANALYTICS CIE Marks		:	100			
Credits L-T-P	:	3-0-0	SEE Marks			100			
Hours	:	42L	Elective D (Global Elective) SEE Durati	ions	:	3 Hrs			
Faculty Coordinator: Dr. Azra Nasreen and Dr. Badarinath K									

UNIT - I 9 Hrs

Overview of Business analytics, Scope of Business analytics, Business Analytics Process, Relationship of Business Analytics Process and organization, competitive advantages of Business Analytics. Statistical Tools: Statistical Notation, Descriptive Statistical methods, Review of probability distribution and data modelling.

UNIT - II 9 Hrs

Trendiness and Regression Analysis Modelling Relationships and Trends in Data, simple Linear Regression. Important Resources, Business Analytics Personnel, Data and models for Business analytics, problem solving, Visualizing and Exploring Data, Business Analytics Technology.

UNIT - III 8 Hrs

Organization Structures of Business analytics Team management, Management Issues, Designing Information Policy, Outsourcing, Ensuring Data Quality, Measuring contribution of Business analytics, Managing Changes. Descriptive Analytics, Predictive Analytics, Predictive Modelling, Predictive analytics analysis.

UNIT - IV 8 Hrs

Forecasting Techniques Qualitative and Judgmental Forecasting, Statistical Forecasting Models, Forecasting Models for Stationary Time Series, Forecasting Models for Time Series with a Linear Trend, Forecasting Time Series with Seasonality, Regression Forecasting with Casual Variables, Selecting Appropriate Forecasting Models.

UNIT - V 8 Hrs

Decision Analysis Formulating Decision Problems, Decision Strategies with and without Outcome, Probabilities, Decision Trees, The Value of Information, Utility and Decision Making.

Course Outcomes:

After going through this course the student will be able to:

CO1	: Apply the concepts and methods of business analytics to solve business problems
CO2	: Analyse, model and solve decision problems in different settings
CO3	: Interpret results/solutions and identify appropriate courses of action for a given business scenario
CO4	: Demonstrate skills like investigation, effective communication, working in team/Individual and following
	ethical practices by implementing solutions to decision making problems

Reference Books:

- 1. Business analytics Principles, Concepts, and Applications FT Press Analytics, Marc J. Schniederjans, Dara G. Schniederjans, Christopher M. Starkey, 1st Edition, 2014, ISBN-13: 978-0133989403, ISBN-10: 0133989402
- 2. The Value of Business Analytics: Identifying the Path to Profitability, Evan Stubs , John Wiley & Sons, |DOI:10.1002/9781118983881,1st Edition 2014, ISBN:978111898388
- 3. Business Analytics, James Evans, Pearsons Education 2nd Edition, ISBN-13: 978-0321997821 ISBN-10: 0321997824
- 4. Predictive Business Analytics Forward Looking Capabilities to Improve Business, Gary Cokins and Lawrence Maisel, Wiley; 1st Edition, 2013, ISBN: 978-1-118-17556-9.

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

MPD., M. Tech 2022 SCHEME Page 57 of 100

	RUBRIC for CIE			RUBRIC for SEE	
SLNo	Content	Marks	Q. No	Contents	Marks
1	Quizzes - Q1 & Q2	20	Each u	nit consists of TWO questions of 20 Marks each. Answ	er FIVE
2	Tests - T1 & T2	40	1	full questions selecting ONE from each unit (1 to 5).	
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20
			5 & 6	Unit-3: Question 5 or 6	20
			7 & 8	Unit-4: Question 7 or 8	20
			9 & 10	Unit-5: Question 9 or 10	20
				Total Marks	100

SEMESTER: II							
Course Code :	22CV2D04T	INDUSTRIAL AND OCCUPATIONAL HEALTH AND SAFETY	CIE Marks	:	100		
Credits L-T-P:	3-0-0	INDUSTRIAL AND OCCUPATIONAL HEALTH AND SAFETT	SEE Marks	:	100		
Hours :	42L	Elective D (Global Elective)	SEE Durations	:	3 Hrs		
Faculty Coordinator: Dr.V.AnanthaRam							

Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and fire fighting, equipment and methods.

UNIT - I

UNIT - II 09Hrs

Occupational health and safety: Introduction, Health, Occupational health: definition, Interaction between work and health, Health hazards, workplace, economy and sustainable development, Work as a factor in health promotion. Health protection and promotion Activities in the workplace: National governments, Management, Workers, Workers' representatives and unions, Communities, Occupational health professionals. Potential health hazards: Air contaminants, Chemical hazards, Biological hazards, Physical hazards, Ergonomic hazards, Psychosocial factors, Evaluation of health hazards: Exposure measurement techniques, Interpretation of findings recommended exposure limits. Controlling hazards: Engineering controls, Work practice controls, Administrative controls. Occupational diseases: Definition, Characteristics of occupational diseases, Prevention of occupational diseases.

UNIT - III 09Hrs

Hazardous Materials characteristics and effects on health: Introduction, Chemical Agents, Organic Liquids, Gases, Metals and Metallic Compounds, Particulates and Fibers, Alkalies and Oxidizers, General Manufacturing Materials, Chemical Substitutes, Allergens, Carcinogens, Mutagens, Reproductive Hazards, Sensitizers and Teratogens, Recommended Chemical Exposure Limits. Physical Agents, Noise and Vibration, Temperature and Pressure, Carcinogenicity, Mutagenicity and Teratogenicity. Ergonomic Stresses: Stress-Related Health Incidents, Eyestrain, Repetitive Motion, Lower Back Pain, Video Display Terminals.

UNIT - IV 08 Hrs

Wear and Corrosion and their prevention: Wear- types, causes, effects, wear reduction methods, lubricants-types and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.

UNIT - V 08 Hrs

Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, over hauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets, Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance.

Course Outcomes:

After going through this course the student will be able to:

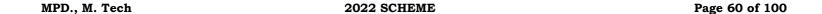
CO1	:	Explain the Industrial and Occupational health and safety and its importance.
CO2	:	Demonstrate the exposure of different materials, occupational environment to which the employee can
		expose in the industries.
CO3	:	Characterize the different type materials, with respect to safety and health hazards of it.
CO4	:	Analyze the different processes with regards to safety and health and the maintenance required in the
		industries to avoid accidents.

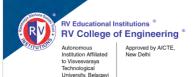
Reference Books:

- 1.Maintenance Engineering Handbook, Higgins & Morrow, SBN 10: 0070432015 / ISBN 13: 9780070432017, Published by McGraw-Hill Education. Da Information Services.
- 2. H. P. Garg, Maintenance Engineering Principles, Practices & Management, 2009,S. Chand and Company, New Delhi, ISBN:9788121926447
- 3. Fundamental Principles of Occupational Health and Safety, Benjamin O. ALLI, Second edition, 2008 International Labour Office Geneva: ILO, ISBN 978-92-2-120454-1
- 4. Foundation Engineering Handbook, 2008, Winterkorn, Hans, Chapman & Hall London. ISBN:8788111925428.

MPD., M. Tech 2022 SCHEME Page 59 of 100

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100


QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.


TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE & SEE Theory courses							
	RUBRIC for CIE			RUBRIC for SEE			
SLNo	Content	Marks	Q. No	Contents	Marks		
1	Quizzes - Q1 & Q2	20	Each u	nit consists of TWO questions of 20 Marks each. Answ	er FIVE		
2 Tests - T1 & T2 40 full questions selecting ONE from each unit (1 to 5).							
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20		
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20		
			5 & 6	Unit-3: Question 5 or 6	20		
			7 & 8	Unit-4: Question 7 or 8	20		
			9 & 10	Unit-5: Question 9 or 10	20		
				Total Marks	100		

,	,y.								
SEMESTER: II									
Course Code	: 22CV2D	005T	INTELLIGENT TRANSPORT SYSTEMS CIE Marks	:	100				
Credits L-T-P	: 3-0-0		SEE Marks	SEE Marks :					
Hours	: 42L		Elective D (Global Elective) SEE Durations	; :	3 Hrs	;			
Faculty Coordinator:			Dr.Sunil S						

UNIT - I 8 Hrs

Introduction: –Historical Background, Definition, Future prospectus, ITS training and educational needs. Fundamentals of Traffic Flow and Control- Traffic flow elements, Traffic flow models, Shock waves in Traffic streams, Traffic signalization and control principles, Ramp metering, Traffic simulation

UNIT - II 9 Hrs

ITS User services-User services bundles, Travel and Traffic management, Public Transportation Operations, Electronic Payment, Commercial Vehicles Operations, Emergency Management, Advanced Vehicle Control and safety systems, Information Management, Maintenance and construction Management. ITS Architecture-Regional and Project ITS Architecture, Need of ITS architecture, concept of Operations, National ITS Architecture, Architecture development tool

UNIT - III 9 Hrs

Technology Building Blocks for ITS-Introduction, Data acquisition, Communication Tools, Data Analysis, and Traveller Information. Various detection, identification and collection methods for ITS. ITS Applications and their benefits-Freeway and incident management systems, Advanced arterial traffic control systems, Advanced Public Transportation Systems, Multimodal Traveller Information systems

UNIT - IV 8 Hrs

ITS Planning-Transportation planning and ITS, Planning and the National ITS Architecture, Planning for ITS, Integrating ITS into Transportation Planning, relevant case studies. ITS Standards-Standard development process, National ITS architecture and standards, ITS standards application areas, National Transportation Communications for ITS Protocol, Standards testing

UNIT - V 8 Hrs

ITS Evaluation – Project selection at the planning level, Deployment Tracking, Impact Assessment, Benefits by ITS components, Evaluation Guidelines, Challenges and Opportunities. ITS for Law Enforcement: Introduction, Enhance and support the enforcement traffic rules and regulations, ITS Funding options and ITS case studies

Course Outcomes:

After going through this course the student will be able to:

CO1:	Identify and apply ITS applications at different levels
CO2:	Illustrate ITS architecture for planning process
CO3 :	Examine the significance of ITS for various levels
CO4 :	Compose the importance of ITS in implimentions

Reference Books:

- 1. Pradip Kumar Sarkar and Amit Kumar Jain, "Intelligent Transport Systems", PHI Learning Private Limited, Delhi, 2018, ISBN-9789387472068
- 2. Choudury M A and Sadek A, "Fundamentals of Intelligent Transportation Systems Planning" Artech House publishers (31 March 2003); ISBN-10: 1580531601
- 3. Bob Williams, "Intelligent transportation systems standards", Artech House, London, 2008. ISBN-13: 978-1-59693-291-3
- 4. Asier Perallos, Unai Hernandez-Jayo, Enrique Onieva, Ignacio Julio García Zuazola "Intelligent Transport Systems: Technologies and Applications" Wiley Publishing ©2015, ISBN:1118894782 9781118894781

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

MPD., M. Tech 2022 SCHEME Page 61 of 100

	RUBRIC for CIE			RUBRIC for SEE	
šLNo	Content	Marks	Q. No	Contents	Marks
1	Quizzes - Q1 & Q2	20	Each unit consists of TWO questions of 20 Marks each. Answer FIVE		
2 Tests - T1 & T2 40 full questions selecting ONE from each unit (1 to 5).					
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20
			5 & 6	Unit-3: Question 5 or 6	20
			7 & 8	Unit-4: Question 7 or 8	20
			9 & 10	Unit-5: Question 9 or 10	20
				Total Marks	100

SEMESTER: II								
Course Code	:	22EC2D06T	ELECTRONIC SYSTEM DESIGN CIE Marks					
Credits L-T-P	:	3-0-0	SEE Marks :					
Hours	:	42L	Elective D (Global Elective)	SEE Durations	:	3 Hrs		
Facı	Faculty Coordinator: Prof. Ravishankar Holla							

UNIT - I 9 Hrs

Design Process & its Fundamentals: Life Cycle of Electronic Products, Design and Development Process, Guidance for Product Planning, Design and Development, Technical Drawings, Circuit Diagrams, Computer-Aided Design (CAD)

UNIT - II 9 Hrs

System Architecture and Protection Requirements: Introduction - Terminology, Functions and Structures, Systems Design Architecture, Electronic System Levels, System Protection

Experiential Learning: (4 quizzes on the below mentioned topics other than CIE) Reliability Analysis: Introduction, Calculation Principles, Exponential Distribution, Failure of Electronic, Components, Failure of Electronic Systems, Reliability Analysis of Electronic Systems, Recommendations for Improving Reliability of Electronic Systems

UNIT - III 8 Hrs

Thermal Management and Cooling: Introduction - Terminology, Temperatures and Power Dissipation, Calculation Principles, Heat Transfer, Methods to Increase Heat Transfer, Application Examples in Electronic Systems, Recommendations for Thermal Management of Electronic Systems, Cooling systems, liquid, air and non cooling systems.

UNIT - IV 8 Hrs

Electromagnetic Compatibility (EMC):

Introduction, Coupling Between System Components, Grounding Electronic Systems, Shielding from Fields, Electrostatic Discharge (ESD), Recommendations for EMC-compliant Systems Design

UNIT - V 8 Hrs

Recycling Requirements and Design for Environmental Compliance: Introduction - Motivation and the Circular Economy, Manufacture, Use, and Disposal of Electronic Systems in the Circular Economy, Product Recycling in the Disposal Process, Material Recycling in the Disposal Process, Design and Development for Disassembly, Material Suitability in Design and Development, Recommendations for Environmentally Compliant Systems

Course Outcomes:

After going through this course the student will be able to:

CO1	:	Realize the fundamentals of Design, Architecture, thermal management, EMC and Recycling requirements of
		Electronic System Design
CO2	:	Analyze the various application wise design requirements in Electronic systems along with the related
		concepts of implementations, standards and Compliances.
CO3	:	Use modern open source tools to realize the various concepts of Electronic system design
CO4	:	Engage in self-study through assignments, simulations, case studies and projects

Reference Books:

- 1. Fundamentals of Electronic Systems Design, Jens Lienig, Hans Brümmer 2017, Springer International Publishing, ISBN 978-3-319-55839-4, DOI:10.1007/978-3-319-55840-0
- 2. "Embedded System Design", Marwedel, Peter, Springer Nature, 10.1007/978-3-030-60910-8
- 3. "Electromagnetic Compatibility Engineering", Henry W. Ott, WILEY Publication, ISBN: 978-0-470-18930-6
- 4. "Handbook of Electronic Systems Design" by Charles A. Harper, McGraw-Hill Inc., US, 0070266832, 978-0070266834

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

MPD., M. Tech 2022 SCHEME Page 63 of 100

RUBRIC for CIE				RUBRIC for SEE	
SLNo	Content	Marks	Q. No	Contents	Marks
1	Quizzes - Q1 & Q2	20	Each u	nit consists of TWO questions of 20 Marks each. Answ	ver FIVE
2	Tests - T1 & T2	40		full questions selecting ONE from each unit (1 to 5).	
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20
			5 & 6	Unit-3: Question 5 or 6	20
			7 & 8	Unit-4: Question 7 or 8	20
			9 & 10	Unit-5: Question 9 or 10	20
				Total Marks	100

8 Hrs

SEMESTER: II								
Course Code	:	22EC2D07T	EVOLUTION OF WIRELESS TECHNOLOGIES	CIE Marks	:	100		
Credits L-T-P	:	3-0-0	EVOLUTION OF WIRELESS TECHNOLOGIES	:	100			
Hours	:	42L	Elective D (Global Elective)	SEE Durations	:	3 Hrs		
Facı	Faculty Coordinator: Dr. Mahesh A							

UNIT - I 9 Hrs

Introduction to cellular systems: Overview of Cellular Systems and evolution 2G/3G/4G/5G, Cellular Concepts – Frequency reuse, Co

channel and Adjacent channel Interference, C/I, Handoff, Blocking, Erlang Capacity, Bluetooth, WiFi, WWAN and PAN.

UNIT - II 9 Hrs

Fundamentals of wireless communication: Wireless Channel, Wireless propagation, Link budget, Free-space path loss, Noise figure of receiver, Multipath fading, Shadowing, Fading margin, Shadowing margin, Wireless Channel Capacity, OFDM and LTE, Large Scale Propagation effects and Channel Models

UNIT - III 8 Hrs

Fundamentals of 5G architecture: Difference between 4G and 5G, 5G Architecture, Planning of 5G Network, Quality of Service, Radio

Network, Requirements, Security, SIM in 5G Era, Specifications, Standardization, Terminal States

UNIT - IV

mmWave and Visible Light Communications: Back ground and concept of mmWave Communications, Frequency bands, propagation characteristics, channel models, applications and challenges in 5G

UNIT - V 8 Hrs

Future Generations: Future Generations (where is the 6G?), Health Considerations, Identifiers, Interfaces, ,Key Derivation, Location Based Services, Massive Internet of Things, Measurements, Network Functions Virtualization, Network Slicing, Open Source, , User Equipment, Vehicle-to-Vehicle communications (V2V), Virtual Reality (VR/AR/XR). Case study- Bharath Stack

Course Outcomes:

After going through this course the student will be able to:

CO1		Demonstrate their understanding on functioning of wireless communication system and evolution of
		different wireless communication systems and standards
CO2	:	Compare different technologies used for wireless communication systems.
CO3	:	Demonstrate an ability explain recent techniques for Wireless Communication systems
CO4	:	Update the latest trends in wireless communications

Reference Books:

- 1. Theodore S. Rappaport, "Wireless Communications: Principles and Practice", Pearson, 2nd Edition.
- 2. Aditya K Jagannatham, "Principles of Modern Wireless Communications", McGraw Hill, 2017
- 3. Robin Chataut, Robert Akl, "Massive MIMO Systems for 5G and bey<mark>ond Netw</mark>orks—Overview, Recent Trends, Challenges, and Future Research Direction" Sensors, May 2020
- 4. A. N. Uwaechia and N. M. Mahyuddin, A Comprehensive Survey on Millimeter Wave, Communications for Fifth-Generation Wireless Networks: Feasibility and Challenges, in IEEE, Access, vol. 8, pp. 62367-62414, 2020

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

MPD., M. Tech 2022 SCHEME Page 65 of 100

RUBRIC for CIE				RUBRIC for SEE	
SLNo	Content	Marks	Q. No	Contents	Marks
1	Quizzes - Q1 & Q2	20	Each u	nit consists of TWO questions of 20 Marks each. Answ	wer FIVE
2 Tests - T1 & T2 40 full questions selecting ONE from each unit (1 to 5).					
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20
			5 & 6	Unit-3: Question 5 or 6	20
			7 & 8	Unit-4: Question 7 or 8	20
			9 & 10	Unit-5: Question 9 or 10	20
				Total Marks	100

9 Hrs

SEMESTER: II							
Course Code : 22ET2D08T TRACKING AND NAVIGATION SYSTEMS CIE Marks : 100							
Credits L-T-P	: 3-0-0	SEE Mar	ks	:	100		
Hours	: 42L	Elective D (Global Elective) SEE Dur	ations	:	3 Hrs		
Faculty Coord	inator:	Prof. Shambulinga .M, Dr. B. Roja Reddy					

An Introduction to Radar: Basic Radar, The simple form of the Radar Equation, Radar Block Diagram, Radar Frequencies, Application of radar, Types of Radars. Detection of signals in Noise, Receiver Noise and the Signal-to Noise Ratio, Probability of Detection and False alarm, Introduction to Doppler, MTI, UWB Radars

UNIT - II 8 Hrs

Terrestrial Network based positioning and navigation: General Issues of wireless positions location, Fundamentals, positioning in cellular networks, positioning in WLANs, Positioning in Wireless sensor networks.

UNIT - I

UNIT - III 8 Hrs

Satellite-based navigation systems: Global Navigation satellite systems (GNSS), GNSS receivers.

UNIT - IV 9 Hrs

LiDAR: Introduction to LiDAR, context and conceptual discussion of LiDAR, Types of LiDARS, LiDARS Detection modes, Flash LiDAR versus Scanning LiDAR, Monostatic versus Bistatic LiDAR, Major Devices in a LiDAR, LiDAR remote sensing, Basic components and physical principles of LiDAR, LiDAR accuracy and data formats.

UNIT - V 8 Hrs

SONAR: Underwater acoustics, applications, comparison with radar, submarine detection and warfare, overcoming the effects of the ocean, sonar and information processing. Transmission of the acoustic signal: Introduction, detection contrast and detection index, transmission equation, equation of passive and active sonar.

Course Outcomes:

After going through this course the student will be able to:

CO1:	Understand the concepts of Radar, LiDAR, Sonar, terrestrial and satellite based navigation system
CO2 :	Apply the concepts of radars, LiDAR, Sonar, cellular networks, WLAN, sensor networks and satellites in
	determining the user position and navigation.
CO3 :	Analyze the different parameters of satellite and terrestrial networks for navigation systems.
CO4:	Evaluate the Radar, LiDAR, Sonar systems and satellite and terrestrial network based navigation and
	tracking systems

Reference Books:

- 1. M. L Skolnik, Introduction to RADAR Systems, 3rd edition, 2017, TATA Mcgraw-Hill, ISBN: 978-0070445338
- 2. Mark A Richards, James A Scheer, William A Holam, Principles of Modern Radar Basic Principles, 2010, 1st edition, SciTech Publishing Inc, ISBN:978-1891121524.
- 3. Davide dardari, Emanuela Falletti, Marco Luise, Satellite and Terrestrial Radio Positioning techniques- A signal processing perspective, 1st Edition, 2012, Elsevier Academic Press, ISBN: 978-0-12-382084-6.
- 4. Paul McManamon, LiDAR Technologies and Systems, SPIE press, 2019.
- 5. Pinliang Dong and Qi Chen, LiDAR Remote Sensing and Applications, CRC Press, 2018, ISBN: 978-1-4822-4301-7
- 6. Jean-Paul Marage, Yvon Mori, Sonar and Underwater Acoustics, Wiley, 2013, ISBN: 9781118600658

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

MPD., M. Tech 2022 SCHEME Page 67 of 100

	RUBRIC for CIE			RUBRIC for SEE			
SLNo	Content	Marks	Q. No	Contents	Marks		
1	Quizzes - Q1 & Q2	20	Each u	nit consists of TWO questions of 20 Marks each. Answ	er FIVE		
2	Tests - T1 & T2	40		full questions selecting ONE from each unit (1 to 5).			
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20		
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20		
			5 & 6	Unit-3: Question 5 or 6	20		
			7 & 8	Unit-4: Question 7 or 8	20		
			9 & 10	Unit-5: Question 9 or 10	20		
				Total Marks	100		

SEMESTER: II							
Course Code : 22IM2D09T PROJECT MANAGEMENT					:	100	
Credits L-T-P : 3-0-0			SEE Marks		:	100	
Hours : 42L Elective D (Global Elective) SEE Durations				s	:	3 Hrs	
Facı	Faculty Coordinator: Dr. Vikram N Bahadurdesai						

UNIT - I 8 Hrs

Introduction: Project Planning, Need of Project Planning, Project Life Cycle, Roles, Responsibility and Team Work, Project Planning Process, Work Breakdown Structure (WBS), Introduction to Agile Methodology.

UNIT - II 8 Hrs

Capital Budgeting: Capital Investments: Importance and Difficulties, phases of capital budgeting, levels of decision making, facets of project analysis, feasibility study – a schematic diagram, objectives of capital budgeting

UNIT - III 9 Hrs

Project Costing: Cost of Project, Means of Finance, Cost of Production, Working Capital Requirement and its Financing, Profitability Projections, Projected Cash Flow Statement, Projected Balance Sheet, Multi-year Projections, Financial Modeling, Social Cost Benefit Analysis

UNIT - IV 8 Hrs

Tools & Techniques of Project Management: Bar (GANTT) chart, bar chart for combined activities, logic diagrams and networks, Project evaluation and review Techniques (PERT) Critical Path Method (CPM), Computerized project management

UNIT - V

9 Hrs

Project Management and Certification: An introduction to SEI, CMMI and project management institute USA – importance of the same for the industry and practitioners. PMBOK 6 - Introduction to Agile Methodology, hemes / Epics / Stories, Implementing Agile.

Domain Specific Case Studies on Project Management: Case studies covering project planning, scheduling, use of tools & techniques, performance measurement.

Course Outcomes:

After going through this course the student will be able to:

CO1	:	Explain project planning activities that accurately forecast project costs, timelines, and quality.
CO2	:	Evaluate the budget and cost analysis of project feasibility.
CO3	:	Analyze the concepts, tools and techniques for managing projects.
CO4	:	Illustrate project management practices to meet the needs of Domain specific stakeholders from multiple
		sectors of the economy (i.e. consulting, government, arts, media, and charity organizations).

Reference Books:

- 1. Prasanna Chandra, Project Planning Analysis Selection Financing Implementation & Eview, Tata McGraw Hill Publication, 8th Edition, 2010, ISBN 0-07-007793-2.
- 2. Project Management Institute, A Guide to the Project Management Body of Knowledge (PMBOK Guide), 5th Edition, 2013, ISBN: 978-1-935589-67-9
- 3. Harold Kerzner, Project Management A System approach to Planning Scheduling & Emp; Controlling, John Wiley & Sons Inc., 11th Edition, 2013, ISBN 978-1-118-02227-6.
- 4. Rory Burke, Project Management Planning and Controlling Techniques, John Wiley & Sons, 4th Edition, 2004, ISBN: 9812-53-121-1

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

MPD., M. Tech 2022 SCHEME Page 69 of 100

	Rub	ric for	CIE &	SEE Theory courses	
	RUBRIC for CIE			RUBRIC for SEE	
SLNo	Content	Marks	Q. No	Contents	Marks
1	Quizzes - Q1 & Q2	20	Each u	nit consists of TWO questions of 20 Marks each. Answ	ver FIVE
2	Tests - T1 & T2	40		full questions selecting ONE from each unit (1 to 5).	
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20
			5 & 6	Unit-3: Question 5 or 6	20
			7 & 8	Unit-4: Question 7 or 8	20
			9 & 10	Unit-5: Question 9 or 10	20
				Total Marks	100

8 Hrs

SEMESTER: II							
Course Code : 22IS2D10T DATABASE AND INFORMATION SYSTEMS CIE Marks :						100	
Credits L-T-P						100	
Hours : 42L Elective D (Global Elective) SEE Durations : 3 H					3 Hrs		
Faculty Coordinator: Prof.Smitha G R							

Advanced Database Models, Systems, and Applications: Enhanced Data Models: Introduction to Active, Temporal, Spatial, Multimedia, and Deductive Databases. Distributed Database Concepts: Distributed Database Concepts, Data Fragmentation, Replication, and Allocation Techniques for Distributed Database Design, Overview of Concurrency Control and Recovery in Distributed Databases

UNIT - I

UNIT - II 8 Hrs

Introduction to Information Retrieval and Web Search: Information Retrieval (IR) Concepts Retrieval Models, Types of Queries in IR Systems, Text Preprocessing, Inverted Indexing, Evaluation Measures of Search Relevance, Web Search and Analysis, Trends in Information Retrieval.

UNIT - III 8 Hrs

Information Systems, Organizations and Strategy: Organizations and information systems, How information systems impact organization and business firms, Using information systems to gain competitive advantage, management issues, Ethical and Social issues in Information Systems: Understanding ethical and Social issues related to Information Systems, Ethics in an information society, The moral dimensions of information society. A Case study on business planning.

UNIT - IV 9 Hrs

Achieving Operational Excellence and Customer Intimacy: Enterprise systems, Supply chain management(SCM) systems, Customer relationship management(CRM) systems, Enterprise application. E-commerce: Digital Markets Digital Goods: E-commerce and the internet, E-commerce-business and technology, The mobile digital platform and mobile E-commerce, Building and E-commerce web site. A Case study on ERP.

UNIT - V 9 Hrs

Managing Knowledge:

The knowledge management landscape, Enterprise-wide knowledge management system, Knowledge work systems, Intelligent techniques. Enhancing Decision Making: Decision making and information systems, Business intelligence in the enterprise. Business intelligence constituencies. Building Information Systems: Systems as planned organizational change, Overview of systems development.

Course Outcomes:

After going through this course the student will be able to:

CO1	:	Understand the different models for Infromation Retrieval.
CO2	:	Appricieate the technology of Information Retrieval and Web Search
CO3	:	To understand the basic principles and working of information technology.
CO4	:	Describe the role of information technology and information systems in business.

Reference Books:

- 1. Kenneth C. Laudon and Jane P. Laudon: Management Information System, Managing the Digital Firm, Pearson Education, 14th Global edition, 2016, ISBN:9781292094007.
- 2. Fundamentals of Database Systems, Ramez Elmasri, Shamkant B. Navathe, 7th Edition, 2016, Published by Pearson, Copyright © , ISBN-10: 0133970779
- 3. James A. O'Brien, George M. Marakas: Management Information Systems, Global McGraw Hill, 10th Edition, 2011, ISBN: 978-0072823110.
- 4. Database Management Systems, Raghu Ramakrishnan and Johannes Gehrke, 3rd Edition, 2003, McGraw-Hill, ISBN: 9780071231510

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE & SEE Theory courses

MPD., M. Tech 2022 SCHEME Page 71 of 100

	RUBRIC for CIE			RUBRIC for SEE			
SLNo	Content	Marks	Q. No	Contents	Marks		
1	Quizzes - Q1 & Q2	20	Each u	nit consists of TWO questions of 20 Marks each. Answ	ver FIVE		
2	Tests - T1 & T2	40		full questions selecting ONE from each unit (1 to 5).			
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20		
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20		
			5 & 6	Unit-3: Question 5 or 6	20		
			7 & 8	Unit-4: Question 7 or 8	20		
			9 & 10	Unit-5: Question 9 or 10	20		
				Total Marks	100		

8 Hrs

SEMESTER: II								
Course Code	: 22IS2D11T	MANAGEMENT INFORMATION SYSTEMS CIE Marks	:	100				
Credits L-T-P	: 3-0-0	SEE Marks	:	100				
Hours	: 42L	Elective D (Global Elective) SEE Durations	:	3 Hrs				
Faculty Coordinator: Prof. Vanishree K								

Overview: Introduction:

Professional Software Development, Software Engineering Ethics, Case studies. Software Processes: Models, Process activities, Coping with Change, Process improvement. The Rational Unified Process. Computer Aided Software Engineering. Agile Software Development: Introduction to agile methods, Agile development techniques, Agile project management and scaling agile methods. Information Systems in Global Business Today: The role of information systems in business today, Perspectives on information systems, Contemporary approaches to information systems

UNIT - I

UNIT - II 9 Hrs

Requirements Engineering and System Modeling:

Software Requirements: Functional and Non-functional requirements. Requirements Elicitation, Specification, Validation and Change. System Modeling: Context models, Interaction models, Structural models, Behavioural models, Model driven architecture. Information Systems, Organizations and Strategy: Organizations and information systems, How information systems impact organization and business firms, Using information systems to gain competitive advantage, management issues

UNIT - III 9 Hrs

Development and Testing:

Design and implementation: Object oriented design using UML, Design patterns, Implementation issues, Open-source development. Software Testing: Development testing, Test-driven development, Release testing, User testing. Securing Information Systems: System vulnerability and abuse, Business value of security and control, Establishing framework for security and control, Technology and tools for protecting information resources. A case study on cybercrime.

UNIT - IV 8 Hrs

Advanced Software Engineering:

Dependable systems: Dependability properties, Sociotechnical systems, dependable processes, formal methods and dependability, A15 Availability and reliability, reliability requirements, Reliability measurements E-commerce: Digital Markets Digital Goods: E-commerce and the internet, E-commerce-business and technology, A Case study on ERP.

UNIT - V 8 Hrs

Software Management:

Project Management: Risk Management, Managing People, Teamwork, Project Planning: Software Pricing, Plan driven development, Project Scheduling, Agile planning, Estimation Techniques, COCOMO cost modeling. Building Information Systems: Systems as planned organizational change, Overview of systems development.

Course Outcomes:

After going through this course the student will be able to:

Reference Books:

- 1. Kenneth C. Laudon and Jane P. Laudon: Management Information System, Managing the Digital Firm, Pearson Education, 14th Global edition, 2016, ISBN:9781292094007.
- 2. Ian Sommerville,— Software Engineering, 9th Edition, Pearson Education, 2013, ISBN: 9788131762165
- 3. W.S. Jawadekar: Management Information Systems, Tata McGraw Hill, 2006, ISBN: 9780070616349.
- 4. James A. O'Brien, George M. Marakas: Management Information Systems, Global McGraw Hill, 10th Edition, 2011, ISBN: 978-0072823110

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE & SEE Theory courses

MPD., M. Tech 2022 SCHEME Page 73 of 100

	RUBRIC for CIE		RUBRIC for SEE			
SLNo	Content	Marks	Q. No	Contents	Marks	
1	Quizzes - Q1 & Q2	20	Each u	nit consists of TWO questions of 20 Marks each. Answ	ver FIVE	
2	Tests - T1 & T2	40		full questions selecting ONE from each unit (1 to 5).		
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20	
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20	
			5 & 6	Unit-3: Question 5 or 6	20	
			7 & 8	Unit-4: Question 7 or 8	20	
			9 & 10	Unit-5: Question 9 or 10	20	
				Total Marks	100	

SEMESTER: II							
Course Code : 22MAT2D12T	STATISTICAL AND OPTIMIZATION METHODS CIE Marks : SEE Marks :						
Credits L-T-P : 3-0-0							
Hours : 42L	Elective D (Global Elective)	SEE Durations	: 3 Hrs				
Faculty Coordinator: Dr. PRAKASH R							
UNIT - I							

Random Vectors:

Probability models of N random variables, Vector notation, Marginal probability functions, Independence of random variables and random vectors, Functions of random vectors, Expected value vector and Correlation matrix, Gaussian random vectors, Expected values of sums, Probability density function of the sum of two random variables, Moment Generating Functions (MGF), MGF of the sum of independent random variables, Characteristic function and Probability generating function.

UNIT - II 8 Hrs

Estimation: Point estimation, Estimator and estimate, Criteria for good estimates - unbiasedness, consistency, efficiency and sufficiency, Variance of a point estimator, Methods of point estimation - Method of moments and Method of maximum likelihood, Bayesian estimation of parameters.

UNIT - III 9 Hrs

Inferential Statistics: Principles of Statistical Inference, Formulation of the problems with examples. Test of hypothesis - Null and alternative hypothesis, Procedure for statistical testing, Type I and Type II errors: level of significance, Rejection regions and power, Standard Normal null distribution (Z-test), Z-tests for means and proportions, Duality: two-sided tests and two-sided confidence intervals, P-value, Inference about variances, Special tests of significance for large and small samples (F, Chi – square, Z, t – test).

UNIT - IV 8 Hrs

Fuzzy Optimization:

Basic concepts of fuzzy sets - Operations on fuzzy sets, Fuzzy relation equations, Fuzzy logic control, Fuzzification, Defuzzification, Knowledge base, Decision making logic, Membership functions, Rule base.

Artificial Neural Networks: Introduction - Neuron model, Multilayer perceptions - Back propagation algorithm and its variants, Loss functions in artificial neural networks, Stochastic gradient descent method.

UNIT - V 8 Hrs

Machine Learning Algorithms:

Data mining, Hierarchy Clustering, k-Means Clustering, Distance Metric, Data mining for Big data, Characteristics of Big data, Statistical nature of Big data, Support Vector Machines, Statistical Learning Theory, Linear Support Vector Machine, Kernel functions and Nonlinear Support Vector Machines.

Course Outcomes:

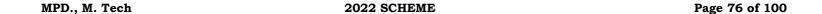
After going through this course the student will be able to:

CO1	:	Illustrate the fundamental concepts of statistics, random variables, estimation, inferential statistics, fuzzy
		optimization and machine learning algorithms.
CO2		Derive the solution by applying the acquired knowledge of random variables, estimation, inferential
		statistics, fuzzy optimization and machine learning algorithms to the problems of engineering applications.
CO3	:	Evaluate the solution of the problems using appropriate statistical and probability techniques to the real
		world problems arising in many practical situations.
CO4	:	Compile the overall knowledge of statistics, probability distributions and estimation, tests of hypothesis and
		optimization gained to engage in life – long learning.

Reference Books:

- 1. Roy D. Yates, David J. Goodman, "Probability and Stochastic Processes", 3rd Edition, An Indian Adaptation, Wiley, 2021, ISBN: 9789354243455.
- 2. Douglas C. Montgomery and George C. Runger, "Applied Statistics and Probability for Engineers", 7th Edition, John Wiley & Sons, 2019, ISBN: 9781119570615.
- 3. Trevor Hastie Robert Tibshirani Jerome Friedman, "The Elements of Statistical Learning Data Mining, Inference, and Prediction", 2nd Edition, Springer, 2009 (Reprint 2017), ISBN-10: 0387848576, ISBN-13: 9780387848570.
- 4. Michael Baron, "Probability and Statistics for Computer Scientists", 2nd Edition, CRC Press, 2014, ISBN- 13: 978-1-4822-1410-9.
- 5. Shai Shalev-Shwartz and Shai Ben-David "Understanding Machine Learning: From Theory to Algorithms", 1st Edition, Cambridge University Press, 2014, ISBN: 978-1-107-05713-5.

MPD., M. Tech 2022 SCHEME Page 75 of 100


QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

	Rub	ric for	CIE &	SEE Theory courses			
	RUBRIC for CIE			RUBRIC for SEE			
SLNo	Content	Marks	Q. No	Contents	Marks		
1	Quizzes - Q1 & Q2	20	Each u	ch unit consists of TWO questions of 20 Marks each. Answer FT			
2 Tests - T1 & T2 40 full question				full questions selecting ONE from each unit (1 to 5).			
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20		
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20		
			5 & 6	Unit-3: Question 5 or 6	20		
			7 & 8	Unit-4: Question 7 or 8	20		
			9 & 10	Unit-5: Question 9 or 10	20		
				Total Marks	100		

Oliffoldity, Bolugari							
SEMESTER: II							
Course Code : 22ME2D13T	INDUSTRY 4 0						
Credits L-T-P : 3-0-0							
Hours : 42L	Elective D (Global Elective)	SEE Durations :	: 3 Hrs				
Faculty Coordinator: Dr. Gopalakrishna H D							
UNIT - I							

Fundamentals of Industry 4.0

Introduction, Industry 4.0, RAMI 4.0 (Reference Architecture Model Industry 4.0), Servitization, Product Service-System (PSS) Industry 4.0 across the Sectors Introduction, Transportation 4.0: Multimodal Transportation Systems, Rail 4.0, Digital Transformation of Railways, Logistics 4.0 (Implications), Fundamentals of Industry 4.0, Introduction, Industry 4.0, RAMI 4.0 (Reference Architecture Model Industry 4.0), Servitization, Product Service-System (PSS)

Industry 4.0 across the Sectors

Introduction, Transportation 4.0: Multimodal Transportation Systems, Rail 4.0, Digital Transformation of Railways, Logistics 4.0 (Implications)

UNIT - II 8 Hrs

The Concept of the IIoT: Modern Communication Protocols, Wireless Communication Technologies, Proximity Network Communication Protocols, TCP/IP, API: A Technical Perspective, Middleware Architecture.

UNIT - III 8 Hrs

Data Analytics in Manufacturing: Introduction, Power Consumption in manufacturing, Anomaly Detection in Air Conditioning, Smart Remote Machinery Maintenance Systems with Komatsu, Quality Prediction in Steel Manufacturing. Internet of Things and New Value Proposition, Introduction, Internet of Things Examples, IoTs Value Creation Barriers: Standards, Security and Privacy Concerns.

Advances in Robotics in the Era of Industry 4.0, Introduction, Recent Technological Components of Robots, Advanced Sensor Technologies, Artificial Intelligence, Internet of Robotic Things, Cloud Robotics.

UNIT - IV 9 Hrs

Additive Manufacturing Technologies and Applications: Introduction, Additive Manufacturing (AM) Technologies, Stereo lithography, 3DP, Fused Deposition Modeling, Selective Laser Sintering, Laminated Object Manufacturing, Laser Engineered Net Shaping, Advantages of Additive Manufacturing, Disadvantages of Additive Manufacturing.

Advances in Virtual Factory Research and Applications, The State of Art, The Virtual Factory Software, Limitations of the Commercial Software.

UNIT - V 9 Hrs

Augmented Reality: Definitions and application of AR, VR, MR, Limitations of AR, VR, Hardware devices and Software systems, Technical issues and challenges in AR, Industrial applications, IoT and the Need for Data Rationalization Internet of Things (IoT), Internet of Things Vision, Internet of Things (IoT) Frameworks, Architecture of Internet of Things (IoT), Visualizing the Internet of Things (IoT), Essential Technologies of the Internet of Things (IoT), Key Technologies Involved in Internet of Things, Enablers of IoT, Collaborative Operations, Training.

Smart Factories: Introduction, Smart factories in action, Importance, Real world smart factories, The way forward.

A Roadmap: Digital Transformation, Transforming Operational Processes, Business Models, Increase Operational Efficiency, Develop New Business Models.

Course Outcomes:

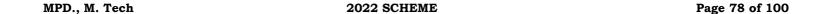
After going through this course the student will be able to:

CO1		Understand the opportunities, challenges brought about by Industry 4.0 for benefits of organizations and individuals
CO2	:	Analyze the effectiveness of Smart Factories, Smart cities, Smart products and Smart services
CO3	:	Apply the Industrial 4.0 concepts in a manufacturing plant to improve productivity and profits
CO4	:	Evaluate the effectiveness of Cloud Computing in a networked economy

Reference Books:

- 1. Alasdair Gilchrist, Industry 4.0 The Industrial Internet Of Things, Apress Publisher, ISBN-13 (pbk): 978-1-4842-2046-7
- 2. Alp Ustundag, Emre Cevikcan, Industry 4.0: Managing The Digital Transformation, Springer, 2018 ISBN 978-3-319-57869-9.
- 3.Ovidiu Vermesan and Peer Friess, Designing the industry Internet of things connecting the physical, digital and virtual worlds, Rivers Publishers, 2016 ISBN 978-87-93379-81-7
- 4.Christoph Jan Bartodziej, The concept Industry 4.0- An Empirical Analysis of Technologies and Applications in Production Logistics, Springer Gabler, 2017 ISBN 978-3-6581-6502-4.

MPD., M. Tech 2022 SCHEME Page 77 of 100


QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

	Rub	ric for	CIE & S	SEE Theory courses				
	RUBRIC for CIE			RUBRIC for SEE				
SLNo	Content	Marks	Q. No	Contents	Marks			
1 Quizzes - Q1 & Q2 20 2 Tests - T1 & T2 40			Each u	Cach unit consists of TWO questions of 20 Marks each. Answer FIVE full questions selecting ONE from each unit (1 to 5).				
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20			
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20			
			5 & 6	Unit-3: Question 5 or 6	20			
			7 & 8	Unit-4: Question 7 or 8	20			
			9 & 10	Unit-5: Question 9 or 10	20			
				Total Marks	100			

SEMESTER: II						
Course Code	:	22MPD24L	Advanced Bredvet Design Leh	CIE Marks		
Credits L-T-P	:	1 - 0 - 1	Advanced Product Design Lab	:	50	
Hours	:	14L + 28P	(Coding / Skill Laboratory) SEI	E Durations	:	3 Hrs
Faculty Coordinator: Dr. Bharatish A						
Content					28 Hrs	

- 1.Product disassembly Experiments- Disassemble a laptop and analyze the multiple standard parts 2.Design concept and Design synthesis- Generate a design layout, DFMA worksheet and design for disassembly
- 3.Alternative design: Generate Alternate Concepts using Adobe, Concept App and Figma tool 4.Animation: Animate the product disassembly using Autodesk Fusion 360
- 5. I design tool: Create Product User Interface using Figma and Framer tools
- 6. 3D prototyping: Prototype the standard parts using 3D printer

Course Outcomes:

After going through this course the student will be able to:

	0 0	
	CO1	Understand the programming concepts
	CO2	Formulate need statement and specifications
	CO3	Evaluate the CNC programs with testing
	CO4	Design and simulate the workstation
1		

Reference Books

- 1.Prashant Kumar, "Product Design", PHI Learning Pvt. Ltd.,2012, ISBN:978-81-203-4427-3
- 2.Karl.T.Ulrich, Steven D Eppinger, "Product Design and Development", McGrawHill ,2016, ISBN-13:978-0078029066
- 3.A C Chitale and R C Gupta, "Product Design and Manufacturing", PH1, 3rd Edition, 2003. ISBN-13:978-8120342828.
- 4.Sham Tickoo, "SOLIDWORKS 2018 for Designers", CADCIM Technologies, 16th revised Edition Paperback, 2018.ISBN-13: 567-8342828, 2013

Scheme of Continuous Internal Evaluation (CIE- Laboratory): Only LAB Course 30 + 10 + 10 = 50. The Laboratory session is held every week as per the timetable and the performance of the student is evaluated in every session. The average of marks over number of experiments conducted over the weeks is considered for 30 Marks i.e (Lab Report, Observation & Analysis). The students are encouraged to implement additional innovative experiments in the lab (10 marks). At the end of the semester a test is conducted for 10 Marks (Lab Test). This adds to 50 Marks.

Scheme of Semester End Examination (SEE- Laboratory) : Only LAB Course 40 + 10 = 50. Students will be evaluated for Write-up, Experimental Setup, Experiment Conduction with Results, Analysis & Discussions for 40 Marks and Viva will be conducted for 10 Marks adding to 50 Marks.

Only LAB Courses with 50 Marks

	RUBRIC FOR CIE	RUBRIC FOR SEE		
S1.No	Content	Marks	Content	Marks
1	Write Up, Setup, Conduction Results, Analysis & Discussions	30	1. Write Up, Setup, Conduction	40
2	Innovative Experiment/Concept Design & Implementation	10	2. Results, Analysis & Discussions	40
3	Laboratory Internal	10	Viva Voce	10
	Total Marks	50	Total Marks	50

MPD., M. Tech 2022 SCHEME Page 79 of 100

			SEMESTER: II			
Course Code	:	22HSS25T	PROFESSIONAL SKILL	CIE Marks	:	50
Credits L-T-P	:	2-0-0	DEVELOPMENT- I	SEE Marks	:	50
Hours	:	28L	Common Course to all M.Tech Programs	SEE Durations	:	2 Hrs
Facul	lty	Coordinator:	Dr. C.Bindu Ashwini			
			UNIT - I			4 Hrs

Communication Skills: Basics of Communication, Personal Skills & Development, Presentation Skills – Introduction, Application, Simulation, Attitudinal Development, Self Confidence, SWOC analysis. Resume Writing: Understanding the basic essentials for a resume, Resume writing tips Guidelines for better presentation of facts. Theory and Applications.

UNIT - II 8 Hrs

Quantitative Aptitude and Data Analysis: Number Systems, Math Vocabulary, fraction decimals, digit places etc. Simple equations – Linear equations, Elimination Method, Substitution method, Inequalities. Reasoning – a. Verbal - Blood Relation, Sense of Direction, Arithmetic & Samp; Alphabet. b. Non- Verbal reasoning - Visual Sequence, Visual analogy and classification. Analytical Reasoning - Single & Samp; Multiple comparisons, Linear Sequencing.

Logical Aptitude, - Syllogism, Venn-diagram method, Three statement syllogism, Deductive and inductive reasoning. Introduction to puzzle and games organizing information, parts of an argument, common flaws, arguments and assumptions.

Verbal Analogies/Aptitude – introduction to different question types – analogies, Grammar review, sentence completions, sentence corrections, antonyms/synonyms, vocabulary building etc. Reading Comprehension, Problem Solving,

UNIT - III 6 Hrs

Interview Skills: Questions asked & Drofessional, Dress code in interview, Professional attire and Grooming, Behavioral and technical interviews, Mock interviews - Mock interviews with different Panels. Practice on Stress Interviews, Technical Interviews, and General HR interviews

UNIT - IV 5 Hrs

Interpersonal and Managerial Skills: Optimal co-existence, cultural sensitivity, gender sensitivity; capability and maturity model, decision making ability and analysis for brain storming; Group discussion(Assertiveness) and presentation skills;

UNIT - V 5 H

Motivation: Self-motivation, group motivation, Behavioral Management, Inspirational and motivational speech with conclusion. (Examples to be cited). Leadership Skills: Ethics and Integrity, Goal Setting, leadership ability.

Course Outcomes:

After going through this course the student will be able to:

CO1	••	Develop professional skill to suit the industry requirement.
CO2	:	Analyze problems using quantitative and reasoning skills
CO3	:	Develop leadership and inter personal working skills.
CO4	:	Demonstrate verbal communication skills with appropriate body language.

Reference Books:

- 1. The 7 Habits of Highly Effective People, Stephen R Covey Free Press, 2004 Edition, ISBN: 0743272455
- 2. How to win friends and influence people, Dale Carnegie General Press, 1st Edition, 2016, ISBN: 9789380914787
- 3. Crucial Conversation: Tools for Talking When Stakes are High, Kerry Patterson, Joseph Grenny, Ron Mcmillan 2012 Edition, McGraw-Hill Publication ISBN: 9780071772204
- 4. Ethnus, Aptimithra: Best Aptitude Book ,2014 Edition, Tata McGraw Hill ISBN: 9781259058738

MPD., M. Tech 2022 SCHEME Page 80 of 100

Phase *	Activity
	Test 1 is conducted after completion 9 of hours of training program (3 Class) for 50
т	marks
1	Part A- Quiz for 15 Marks and Part B for 50 Marks (Descriptive answers). Part B – 50
	Marks is consolidated to 35 and total marks on 50 is 15 + 35 = 50 Marks.
	Test 2 is conducted after completion 18 hours of training program (6 Class) for 50 mark
TT	Part
II	A- Quiz for 15 Marks and Part B for 50 Marks (Descriptive answers). Part B – 50 Marks
	is consolidated to 35 and total marks on 50 is 15 + 35 = 50 Marks.
	Average of 2 tests is considered as final CIE marks
mester E	nd Examination: SEE is conducted for 50 Marks for a duration of 2 hours.

		SEMESTER: III			
Course Code	: 22MPD31TL	INDUSTRIAL IOT	CIE Marks	:	100
Credits L-T-P	: 3-0-1	INDUSTRIAL IOI	SEE Marks	:	100
Hours	: 42L+28P	Professional Core - 5	SEE Durations	: :	3 Hrs
Facu	ılty Coordinator:	Dr Gopalakishna H D			
		UNIT - I			8 Hrs

Fundamentals of Industry 4.0

Introduction, Industry 4.0, RAMI 4.0 (Reference Architecture Model Industry 4.0), Servitization, Product Service-System (PSS)

Industry 4.0 across the Sectors

Introduction, Transportation 4.0: Multimodal Transportation Systems, Rail 4.0,

Digital Transformation of Railways, Logistics 4.0 (Implications)

UNIT - II 9 Hrs

SMARTness and Pervasive Computing

Pervasive Computing, Problems of Pervasive Computing, Proposed Infrastructure for Pervasive (Ubiquitous) Computing: UbiCloud, Applications of Pervasive Computing, Healthcare, Two Stages of Pervasive Computing Development, Impact of Pervasive Computing, Differences between Traditional Networking and Pervasive Computing, . Typical Sensors needed in Pervasive Computing, Defining Smart Spaces, Attributes of Smart Spaces in Pervasive Computing, Pervasive Computing and Internet of Things (IoT) OPERATOR 4.0

Augmented Reality for O&M, Wearable Devices, Wearables and Localization Devices, Intelligent Health and Safety Devices for Operators, Sensors used in Wearable Devices, Collaborative Robotics in Industry 4.0, Human Factors in Industry 4.0: Ergonomic and Psychological Issues and Challenges

UNIT - III 9 Hrs

The Industry 4.0 architecture and Cyber Physical Systems

Cyber-Physical Systems (CPS), CPS 5C Level Architecture, Implementation of 5C CPS Architecture for Factories, Adaptive Clustering for Self-Aware Machine Analytics, Classic Applications of CPS, Classification of CPS in Context of Industry 4.0, Operational Technology (OT) and Information Technology (IT), IT and OT Convergence – Two Worlds Converging in Industrial IoT, Data and Optimization Across the Value Chain: Benefits and IT, OT and Cyber- Physical Systems in Smart Anything, Industry 4.0 Principles: Horizontal and Vertical Integration, Basic Functions and Uses of CPS, Practical Example of a Cyber Physical Systems: The Self-Modifying Machine, Digital Platforms

Cybersecurity and Risk

Cybersecurity in OT level, Cybersecurity in IT level, IT-OT Cybersecurity Convergence, Risks and threats of sharing data, Blockchains in cybersecurity

UNIT - IV 8 Hrs

Cloud computing, data sources and data centers

IT vs OT, CMMS, ERP, MES, EMS, PLM and other actors, Cloud Computing Taxonomies, Cloud Services, Data Repositories and Data Centers

Big Data Analytics as Service Provider

Connection: Sensors and Networks, Content or Context, Data Sharing and Collaboration, Big Data Analytics, Descriptive Analytics, Diagnostic Analytics, Prescriptive Analytics, What Types of Data Analytics Do Companies Choose

UNIT - V 8 Hrs

IoT and the Need for Data Rationalization

Internet of Things (IoT), Internet of Things Vision, Internet of Things (IoT) Frameworks, Architecture of Internet of Things (IoT), Visualizing the Internet of Things (IoT), Essential Technologies of the Internet of Things (IoT), Key Technologies Involved in Internet of Things, Enablers of IoT, Why the Internet of Things is Important?, The IoT Is Transforming Industry and Society, Types of Services of IoT, Internet of Things (IoT) Applications, The Internet of Things Today, The Internet of Things Tomorrow, Internet of Things (IoT) Ecosystem

MPD., M. Tech 2022 SCHEME Page 82 of 100

LABORATORY 28 Hrs

- 1. Familiarization with Arduino and perform necessary software installation
- 2. To interface LED/Buzzer with Arduino and write a program to turn ON LED for 1 sec after every 2 seconds
- 3. To interface Push button/Digital sensor (IR/LDR) with Arduino and write a program to turn ON LED when push button is pressed or at sensor detection
- 4. To interface DHT11 sensor with Arduino and write a program to print temperature and humidity readings
- 5. To interface motor using relay with Arduino and write a program to turn ON motor when push button is pressed
- 6. To interface OLED with Arduino and write a program to print temperature and humidity readings on it
- 7. To interface Bluetooth with Arduino and write a program to send sensor data to smartphone using Bluetooth
- 8. To interface Bluetooth with Arduino and write a program to turn LED ON/OFF when 10 is received from smartphone using Bluetooth
- 9. Write program on Arduino to upload temperature and humidity data to thingspeak cloud
- 10. Write a program on Arduino to retrieve temperature and humidity data from thingspeak cloud
- 11. Write a program to display temperature and humidity on BLYNK open-source platform.
- 12. Write a program to log the data to SD card acquired from the sensors
- 13. Design a fire alarm system that triggers a sprinkler and notifies the user when a fire is detected
- 14. Design a system to monitor the air pollution

Course Outcomes:

After going through this course the student will be able to:

rifter go	mig time	agn this course the stadent win be able to:
	CO1	: Understand the opportunities, challenges brought about by Industry 4.0 for benefits of
		: Analyze the effectiveness of Smart Factories, Smart cities, Smart products and Smart services
	CO3	: Apply the Industrial 4.0 concepts in a manufacturing plant to improve productivity and profits
	CO4	: Evaluate the effectiveness of Cloud Computing in a networked economy

Reference Books

- 1. Diego Galar Pascual, Pasquale Daponte, Uday Kumar "Handbook of Industry 4.0 and SMART Systems, Taylor & Francis Group, Reprint 2021, ISBN 978-1-032-10343-3
- 2. Alasdair Gilchrist, Industry 4.0 The Industrial Internet Of Things, Apress Publisher, ISBN-13 (pbk): 978-1-4842-2046-7
- 3. Alp Ustundag, Emre Cevikcan, Industry 4.0: Managing The Digital Transformation, Springer, 2018 ISBN 978-3-319-57869-9.
- 4. Ovidiu Vermesan and Peer Friess, Designing the industry Internet of things connecting the physical, digital and virtual worlds, Rivers Publishers, 2016 ISBN 978-87-93379-81-7

Scheme of Continuous Internal Evaluation (CIE): 10 + 30 + 30 + 30 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The average of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 30 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (10), Video based seminar /presentation /demonstration (20) adding upto 30 marks.

Laboratory: Conduction of laboratory exercises, Lab report & observation & analysis (30 Marks), Lab Test (10 Marks) & Innovative Experiment/Concept Design & Implementation (10 Marks) adding up to 50 Marks. The final marks will be reduced to 30 Marks.

Scheme of Semester End Examination (SEE) for 100 marks: Each unit consists of TWO Questions of 16 Marks each. Answer FIVE full questions selecting one from each unit (from 1 to 5). Question No. 11 is compulsory (Laboratory component) for 20 Marks.

Rubric for CIE & SEE for Integrated Theory courses with Laboratory

MPD., M. Tech 2022 SCHEME Page 83 of 100

Total Marks

100

RUBRIC of CIE RUBRIC of SEE SLNo Content Marks Q. No Contents Each unit consists of TWO questions of 16 Marks each. Answer FIVE Quizzes - Q1 & Q2 10 full questions selecting ONE from each unit (1 to 5). Tests - T1 & T2 2 30 Question No. 11 is compulsory (Laboratory component) for 20 Marks. 3 Experiential Learning - EL1 & EL2 30 1 & 2 Unit-1: Question 1 or 2 16 4 30 3 & 4 Unit-2: Question 3 or 4 16 Laboratory 5 & 6 Unit-3: Question 5 or 6 **Total Marks** 100 7 & 8 Unit-4: Question 7 or 8 16 9 & 10 Unit-5: Question 9 or 10 16 **NO SEE for Laboratory** 20 11 Laboratory Component (Compulsory)

	•	SEMESTER: III			
Course Code	: 22MPD3E1T	Duodyst Diaming and Manhating	CIE Marks	:	100
Credits L-T-P	: 3- 1 - 0	Product Planning and Marketing	SEE Marks	:	100
Hours	: 42L+28T	Elective E (Professional Elective)	SEE Durations	:	3 Hrs
Facul	ty Coordinator:	Dr T S Roopa	-		

UNIT - I 8 Hrs

Introduction: Product definition, characteristics of successful product development, who designs and develops product, organization structure, Morphology of product design, product development process.

UNIT - II 9 Hrs

Product planning: The product planning proces, Identifying opportunities, Evaluate and prioritize projects, allocate resources and plan timing complete pre-project planning, reflect all the results and process.

UNIT - III 9 Hrs

Opportunity Identification: Market definition and entry strategy, desirable characteristics of markets, market profile analysis, market segmentation, market selection, perceptual positioning - overview, core concept of marketing, emerging concepts in marketing

UNIT - IV 8 Hrs

Product Positioning: Preference analysis and benefits. Segmentation - Role of preference in product positioning, proactive product positioning, Analytic preference models and estimation methods, Benefit segmentation, managerial use of preferences model.

UNIT - V 8 Hrs

Forecasting sales potential - Role of purchase potential in design process, models of purchase potential, model of sales formation, managerial use of purchase models.

Lauching the products & strategy for testing new products. planning and tracking launch of durable and industrial products advertising testing and product quality testing.

Course Outcomes:

After going through this course the student will be able to:

THEOR SOMES CHILD	asi the course the stadent will be able to.
CO1	: Understand the concept of product and product development process understand the product
	planning process.
CO2	: Understand the project planning process
CO3	: Gain the knowledge about marketing and positioning of the product.
CO4	: Understand forecasting and launch of products.

Reference Books

- 1. Karl T. Ulrich, Steven & Eppinger product pregn and Development McGraw Hill publications 5th Edition 2012, ISBN 978-0-07-340477-6
- 2. Glem Urban. John't Hauser Ruga & marketing of New prodiute A prentice Hall Englewoodl cliffs New Jersey, 2010 3rd edition, ISBN 023-213-456-523
- 3.Kenneth B. Kahn, Product planning essentials, SAGE publications, 2015, ISBN: 9780761919995, 2013, 4th edition, ISBN 213-315-45698
- 4. William L. Moore & Edgar product planning Management A Pessemier, 2010, 5th edition, ISBN 203-321-203-142

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

MPD., M. Tech 2022 SCHEME Page 85 of 100

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE & SEE Theory courses

RUBRIC for CIE			RUBRIC for SEE				
SLNo	Content	Marks	Q. No	Contents	Marks		
1	Quizzes - Q1 & Q2	20	Each u	nit consists of TWO questions of 20 Marks each. Answ	er FIVE		
2	Tests - T1 & T2	40		full questions selecting ONE from each unit (1 to 5).			
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20		
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20		
			5 & 6	Unit-3: Question 5 or 6	20		
			Unit-4: Question 7 or 8	20			
			9 & 10	Unit-5: Question 9 or 10	20		
				Total Marks	100		

MPD., M. Tech 2022 SCHEME Page 86 of 100

		SEMESTER: III		•
Course Code	: 22MPD3E2T	Reliability Engineering	CIE Marks	: 100
Credits L-T-P	: 3- 1 - 0	Renability Engineering	SEE Marks	: 100
Hours	: 42L+28T	Elective E (Professional Elective)	SEE Durations	: 3 Hrs
Facu	lty Coordinator:	Dr G R Rajkumar	•	
		UNIT - I		8 Hrs

Basic Probability Theory: Parameters and Reliability concepts, Rules for combining Probabilities of events, Failure Density and Distribution functions, Bernoulli's trials, Binomial distribution, Expected value and standard deviation for binomial distribution. Numericals

Introduction to Probability Distributions: Normal, Poisson and Binomial distribution.

Control Charts: Variable Chart – X Bar chart, R-chart and Sigma chart. Attribute Chart: P – Chart, nP Chart, C-Chart and U – Chart, Numericals.

UNIT - II 8 Hrs

Network Reliability Evaluation: Basic concepts – Evaluation of network Reliability and Unreliability, Series systems, Parallel systems, Parallel systems, partially redundant systems – Types of redundancies - Evaluation of network Reliability Unreliability using conditional probability method – Paths based and cutset based approach – complete event tree and reduced event tree methods. Numericals

UNIT - III 8 Hrs

Failure Data Analysis: Introduction to Failure data analysis, Failure Data, Quantitative measures, MTTF, MTBF, Bathtub Curve, Mean Life, Life Testing, Problems, Introduction to Failure Mode and Effect Analysis. Numericals.

Reliability Improvement and Allocation: Difficulty in achieving reliability, Methods for improving reliability during design, Different techniques available to improve reliability, Optimization, Reliability-Cost trade off, Prediction and Analysis.

UNIT - IV 9 Hrs

Discrete Markov Chains & Continuous Markov Processes

Basic concepts, Stochastic transitional Probability matrix, time dependent probability evaluation, Limiting State Probability evaluation, Absorbing states, Markov Processes-Modelling concepts, State

space diagrams, time dependent reliability evaluation of single component repairable model, Evaluation of Limiting State Probabilities of TWO, two component repairable models – Frequency and duration concepts, Frequency balance approach. Numericals.

UNIT - V 9 Hrs

Reliability Life Testing Methods: Reliability Life Testing - Test time calculations, Burn-in testing, Acceptance testing, accelerated life testing and Experimental Design - Reliability Growth Testing - Growth process, Idealized growth curve and other growth modals. Goodness of Fit tests - Chi-square goodness of fit test, Bartlett's test for the exponential distribution, Mann's test for the weibull distribution, Kolmogorov, smirnov test for normal and lognormal distributions and tests for the power law process model.

Course Outcomes:

After going through this course the student will be able to:

7 22 20 22 20 22 20 2	Agri dina codi se dia sedicia (1111 se desic te)
CO1:	Explain the concepts of reliability and probability theory.
CO2 :	Evaluate network Reliability and Unreliability for systems.
CO3 :	Analyse the various sampling and failure data analysis for reliability improvement
CO4 :	Develop Reliability Life Testing Methods for a given model

Reference Books

- 1.Reliability Engineering A K Govil Prentice Hall 2010, ISBN: 012535487-10, 4th Edition
- 2. Reliability Engineering E. Balagurusamy, Tata McGraw Hill, 2012, ISBN: 1235845-254, 3rd edition
- 3.Reliability Evaluation of Engineering Systems Roy Billinton and Ronald N. Allan, Reprinted in India B. S. Publications, 2013, 5th edition, ISBN: 525-526-845-254
- 4.Concepts in Reliability Engineering- Srinath L S Affiliated East-West Press Private Limited, New Delhi, India. 2018, ISBN: 235-516-456, 4th edition

MPD., M. Tech 2022 SCHEME Page 87 of 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

	RUBRIC for CIE			RUBRIC for SEE				
SLNo	Content	Marks	Q. No	Contents	Marks			
1	Quizzes - Q1 & Q2	20	Each u	Each unit consists of TWO questions of 20 Marks each. Answer FIVE				
2	Tests - T1 & T2	40		full questions selecting ONE from each unit (1 to 5).				
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20			
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20			
			5 & 6	Unit-3: Question 5 or 6	20			
			7 & 8	Unit-4: Question 7 or 8	20			
			9 & 10	Unit-5: Question 9 or 10	20			

MPD., M. Tech 2022 SCHEME Page 88 of 100

SEMESTER: III							
Course Code	: 22MPD3E3T	Mechatronics in Manufacturing System	CIE Marks	:	100		
Credits L-T-P : 3- 1 - 0		mechatronics in Manufacturing System	SEE Marks		100		
Hours	: 42L	Elective E (Professional Elective)	SEE Durations	:	3 Hrs		
Faculty Coordinator: Dr S K Harish							
UNIT - I							

INTRODUCTION TO MECHATRONICS: Definition, Systems, Measurement systems, Control systems-open loop and closed loop control system, Basic elements of a closed loop system, Examples for mechatronic systemwater level controller, engine management system, digital camera, washing machine etc. Benefits of mechatronic system, Evolution of mechatronic system. TRANSDUCERS AND SENSORS: Sensors and transducers, Performance terminology, Sensors: Displacement, Position, Proximity sensor, Velocity, Force, Fluid pressure, Liquid flow, Liquid level, Temperature, Light, Selection of sensors, Input data by switches.

UNIT - II 9 Hrs

SIGNAL CONDITIONING: Operational amplifier, Protection, Filtering, Wheatstone bridge, Digital signals, Multiplexer, Data acquisition, Digital signal processing, Pulse modulation. MECHANICAL AND ELECTRICAL ACTUATION: types of motion, kinematic chains, cams, gear trains, ratchet and pawl, belt and chain drives, bearings, mechanical aspects of motor selection, mechanical switches, solid state switches, solenoids, DC motor, AC motor, stepper motors, servo motors, induction motors.

UNIT - III 9 Hrs

BASIC AND DYNAMIC SYSTEM MODELS: mathematic models, mechanical system building block, electrical system building block, fluid system building block, thermal system building blocks. SYSTEM MODELS: engineering system, rotational-translational systems, electromechanical systems, Hydro-Mechanical systems. Dynamic responses of systems: modelling dynamic systems, first-order system, second-order systems, performance measure for second order systems, system identification.

UNIT - IV 8 Hrs

SYSTEM TRANSFER FUNCTIONS: Transfer functions, first order systems, second order systems, system in series, system with feedback loops, effect of pole location on transient response. FREQUENCY RESPONSE: Sinusoidal input, phasors, frequency response, bode plots, performance specifications, stability.

UNIT - V 8 Hrs

CLOSED LOOP CONTROLLERS: Continuous and discrete processes, control modes, two step mode, proportional mode, derivative control, integral control, PID controller, digital controller, control system performance, controller tuning, velocity control, adaptive control. MICROPROCESSOR AND MICROCONTROLLER: Basic structure of a microprocessor system, architecture, technique used to find faults in microprocessor based system, basic structure of micro-controller, architecture, program development using flow charts.

Course Outcomes:

After going through this course the student will be able to:

CO1	: Understand the working principle of various types of sensors, signal conditioner, drives and
	control system.
CO2	: Apply the basic mathematical model to various stages of mechatronic system.
CO3	: Analyse the functioning of mechatronics system for real-time implementation.
CO4	: Evaluate the mechatronic system for reliability and better performance.

Reference Books

- 1. Mechatronics Electronic Control Systems in Mechanical and Electrical Engineering, W.Bolton, Pearson Education-2005, ISBN: 0273742868.
- 2.Mechatronics by HMT Ltd. Tata Mc GrawHill -2000. 2nd Edition, ISBN: 007463643X
- 3.Mechatronics-Principles, Nitaigour Premchand Mahalik, Concepts and Applications, Tata Mc Graw Hill –2003, 4th edition ISBN:0070483744
- 4. Fluid Power, Anthony Esposito, Pearson Education-Sixth Edition-2011, ISBN:0135136903

MPD., M. Tech 2022 SCHEME Page 89 of 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

RUBRIC for CIE				RUBRIC for SEE		
SLNo Content Marks			Q. No	Contents	Marks	
1 Quizzes - Q1 & Q2 20 Each unit consists of TWO questions of 20 Marks each. Answer FIVE						
2	Tests - T1 & T2	40	full questions selecting ONE from each unit (1 to 5).			
3	Experiential Learning - EL1 & EL2	40	1 & 2 Unit-1: Question 1 or 2 20			
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20	
			5 & 6	Unit-3: Question 5 or 6	20	
			7 & 8	Unit-4: Question 7 or 8	20	
			9 & 10	Unit-5: Question 9 or 10	20	
				Total Marks	100	

MPD., M. Tech 2022 SCHEME Page 90 of 100

SEMESTER: III							
Course Code	: 22MPD3E4T	Lean Manufacturing	CIE Marks	:	100		
Credits L-T-P	: 3- 1 - 0	Lean Manufacturing	SEE Marks	:	100		
Hours	: 42L	Elective E (Professional Elective)	SEE Durations	:	3 Hrs		
Faculty Coordinator: Dr S K Harisha							
UNIT - I					9 Hrs		

Framework of Toyota Production System: Just in time production system. JIT Logic -Pull system Japanese approach to production elimination of waste - JIT implementation requirements JIT application for job shops, Case studies.

Adaptable Kanban System: Kanban rules, supplier Kanban and sequence schedule used by supplier, Monthly information & daily information.

UNIT - II 8 Hrs

The rise of mass production: The rise & fall of Mass Production Mass production, work force, organization, tools, product –logical limits of Mass production, Sloan as a necessary compliment to Ford. Case study:- Rouge Production Plant.

The rise of lean production: - Birth place, concrete example, company as community, Final assembly plant, product development and engineering

UNIT - III 8 Hrs

Reduction of setup times- Concepts and Techniques: Setup Concepts, practical procedures for reducing setup time.

Standardization of operations: Machine layout, multi-function workers and job rotation. Improvement activities to reduce work force and increase worker morale -foundation for improvements.

UNIT - IV 8 Hrs

House of Lean -5S's and Waste Walks, Visual Management, Value Stream Mapping, Understanding the current state and designing the future state.

Managing lean enterprise: - Finance, Career ladders, geographic spread and advantages of global enterprise.

UNIT - V 9 Hrs

Six sigma concepts: History, definitions, Statistical definitions, quality levels, Technical aspects, Six sigma for all: benefits to organizations, customers, suppliers and employers, Design for Six Sigma, DMAIC principles, DMADV principles, merits and demerits.

Case Studies: Operation redesign program, Kaizen event-based lean program, High-volume focused factory project, Kaizen event based focused factory pilot, Assembly production unit project.

Course Outcomes:

After going through this course the student will be able to:

CO1	: Explain the concepts of Lean manufacturing
CO2	: Examine the causes of waste in the various organizational processes.
CO3	: Apply tools and practices of lean manufacturing system for process improvement
CO4	: Create plans and implementation techniques for the lean manufacturing system in
	businesses.

Reference Books

- 1.A Study of the Toyota Production System, Shigeo Shingo , Andrew P. Dillon, Productivity Press, 2012, ISBN 9780915299-17-8., 2nd edition
- 2.The Machine that changed the World. The Story of Lean Production, James P Womack, Daniel T Jones, and Daniel

Roos, Harper Perennial edition published 2013, ISBN 13: 9780060974176, 2nd Edition

- 3.A Commonsense Approach to a Continuous Improvement Strategy, Gemba Kaizen, Second Edition Hardcover, ISBN-10: 0071790357. 2012
- 4. Value Stream Mapping: How to Visualize Work and Align Leadership for Organizational Transformation Paperback 2016 by Karen Martin , Mike Osterling, ISBN-10: 9352601831. 5. Lean And Six Sigma Six Sigma Black Belt (2007

BOK): Enterprise-Wide Deployment Paper Back by Suvabrata Mitra, ASIN: B00H1XSLFA.

MPD., M. Tech 2022 SCHEME Page 91 of 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE & SEE Theory courses							
	RUBRIC for CIE			RUBRIC for SEE			
SLNo	Content	Marks	Q. No	Contents	Marks		
1	Quizzes - Q1 & Q2	20	Each unit consists of TWO questions of 20 Marks each. Answer FIVE				
2	Tests - T1 & T2	40	full questions selecting ONE from each unit (1 to 5).				
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20		
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20		
			5 & 6	Unit-3: Question 5 or 6	20		
			7 & 8	Unit-4: Question 7 or 8	20		
			9 & 10	Unit-5: Question 9 or 10	20		
				Total Marks	100		

MPD., M. Tech 2022 SCHEME Page 92 of 100

SEMESTER: III							
Course Code	: 22MPD3E5T	Creating Francisconing CIE Marks		: 100			
Credits L-T-P	: 3- 1 - 0	Creative Engineering	SEE Marks	: 100			
Hours	: 42L+28T	Elective E (Professional Elective)	SEE Durations	: 3 Hrs			
Faculty Coordinator: Girish Kumar R							
UNIT - I							

INTRODUCTION Need for design creativity – creative thinking for quality – essential theory about directed creativity. Creative thinking, blocks to creativity, factors that influence creative design, engineering design and creative design, influence of society, technology and business on creativity, force field analysis, market pull & technology push, attribute of a creative person, creative thinking in groups, creating a creative climate. CREATIVITY & PRODUCT DESIGN Need or identification of a problem, market survey, data collection, review & analysis, problem definition, Kipling method, challenge statement, problem statement initial specifications.

UNIT - II 8 Hrs

IDEA GENERATION Brain storming, analogy technique or synectics, check list, trigger words, morphological method, interaction matrix method, analysis of interconnected decision making, CREATIVE THINKING PROBLEM / OPPORTUNITY Pictures of situation, environment, quantification, Heros, boundary conditions, record-discuss-clarify-verify, recording of ideas, evaluation of ideas, detail design, prototyping, product deployment, useful life assessment, recycling.

UNIT - III 8 Hrs

EMOTIONAL DESIGN Emotional Design – Three levels of Design – Viceral, Behavioral and Reflective- design by individual and design in groups, designs with personality – machines that senses emotions and induce emotions- Robots, personality products, products for games, fun, people and places; Simulation – dimensional or mathematical, virtual simulation, physical simulation, scale down models.

UNIT - IV 9 Hrs

THEORY OF INVENTIVE PROBLEM SOLVING (TRIZ) Common features of good solutions – resolve contradiction, use available resource, increase the ideality, trade-off, inherent contradiction, 30 key TRIZ principles – multifunction, preliminary action, compensation, nested doll, blessing in disguise, segmentation, separation, regional influences, symmetry change, opaque & porous, inflate and deflate, color, recycle & recover, phase transformation, energy, imaging, environment, composition, economical, surface response, equipotential, static & dynamic, continuous & intermittent, servo systems, smart systems, dimensions.

UNIT - V 9 Hrs

Creative Engineering Design Assessment (CEDA)

Understanding CEDA, directions for administering CEDA, theoretical Framework, properties of CEDA, Sample Design problems.

Course Outcomes:

After going through this course the student will be able to:

_

Reference Books

- 1. Creative Engineering Design Synthesis, Amaresh Chakrabarti, Springer, 2009, ISBN 213-25475647
- 2. Rousing Creativity: Think New Now, Floyd Hurt, Crisp Publ Inc. ISBN 1560525479,2010, 2013
- 3. Emotional Design, Donald A. Norman, Perseus Books Group New York, ISBN 123-1-118-027-6, 2012
- 4. Creative Engineering- Design Assessment, Background, Directions, Manual, Scoring Guide and Uses, Christine

Charyton, , Springer publications, 2014. ISBN 1560525479,2010

MPD., M. Tech 2022 SCHEME Page 93 of 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

RUBRIC for CIE				RUBRIC for SEE		
SLNo	Content	Marks	Q. No	Contents	Marks	
1 Quizzes - Q1 & Q2 20 Each unit consists of TWO questions of 20 Marks each. Answer FIVE						
2	Tests - T1 & T2	40	full questions selecting ONE from each unit (1 to 5).			
3	Experiential Learning - EL1 & EL2	40	1 & 2 Unit-1: Question 1 or 2 20			
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20	
			5 & 6	Unit-3: Question 5 or 6	20	
			7 & 8	Unit-4: Question 7 or 8	20	
			9 & 10	Unit-5: Question 9 or 10	20	
				Total Marks	100	

MPD., M. Tech 2022 SCHEME Page 94 of 100

SEMESTER III							
Course Code : 22MPD32N		CIE Marks : 50					
Credits L-T-P : 0 - 0 - 6	INTERNSHIP	SEE Marks : 50					
Hours/Week : 12		SEE Durations : 3 Hrs					

Guidelines:

- 1. The duration of the internship shall be for a period of 6 weeks on full time basis after II semester final exams and before the commencement of III semester.
- 2. The student must submit letters from the industry clearly specifying his / her name and the duration of the internship on the company letter head with authorized signature.
- 3. Internship must be related to the field of specialization of the respective PG programme in which the student has enrolled.
- 4. Students undergoing internship training are advised to report their progress and submit periodic progress reports to their respective guides.
- 5. Students have to present the internship activities carried out to the departmental committee and only upon approval by the committee, the student can proceed to prepare and submit the hard copy of the final internship report. 6. The reports shall be printed on A4 size with 1.5 spacing and Times New Roman with font size 12, outer cover of the report (wrapper) has to be softbound in Ivory color for PG circuit Programs and Light Blue for Non-Circuit Programs.

Course Outcomes: After going through the internship the student will be able to

- CO1: Apply Engineering and Management principles to solve the problems
- CO2: Analyze real-time problems and suggest alternate solutions
- CO3: Communicate effectively and work in teams
- CO4: Imbibe the practice of professional ethics and lifelong learning

Scheme of Continuous Internal Evaluation (CIE):

The evaluation committee sha<mark>ll consi</mark>st of Guide, Professor, Ass<mark>ociate P</mark>rofessor/Assistant Professor. The committee shall assess the presentation and the progress reports.

The evaluation criteria shall be as per the rubrics given below:

Reviews	Activity	Weightage
I	Application of Engineering knowledge in industries, ability to comprehend the functioning of the Organization/ Departments.	40%
II	Importance of Resource Management, Environment and Sustainability. Demonstration and Presentation of Internship work with Report Submission	60%

Scheme for Semester End Evaluation (SEE):

The SEE examination shall be conducted by an external examiner (domain expert) and an internal examiner. Evaluation shall be done in batches, not exceeding 6 students per batch.

MPD., M. Tech 2022 SCHEME Page 95 of 100

SEMESTER III								
Course Code	:	22MPD33P		CIE Marks	:	50		
Credits L-T-P	:	0 - 0 - 6	MINOR PROJECT	SEE Marks	:	50		
Hours/Week	:	12		SEE Durations	:	3 Hrs		

Guidelines:

- 1. Each project group will consist of maximum of two students.
- 2. Each student / group has to select a contemporary topic that will use the technical knowledge of their program of study after intensive literature survey.
- 3. Allocation of the guides preferably in accordance with the expertise of the faculty.
- 4. The minor project would be performed in-house.
- 5. The implementation of the project must be preferably carried out using the resources available in the department/college.

Course Outcomes: After completing the course, the students will be able to

- CO1: Conceptualize, design and implement solutions for specific problems.
- CO2: Communicate the solutions through presentations and technical reports.
- CO3: Apply resource managements skills for projects.
- CO4: Synthesize self-learning, team work and ethics.

Scheme of Continuous Internal Examination

Evaluation shall be carried out in three reviews. The evaluation committee shall consist of Guide, Professor and Associate Professor/Assistant Professor.

Phase *	Activity	Weightage
I	Approval of the selected topic, formulation of Problem Statement and Objectives with Synopsis submission	20 %
II	II Mid-term seminar to review the progress of the work with documentation	
III	Oral presentation, demonstration and submission of project report	40 %

^{*} Phase wise rubrics to be prepared by the respective departments

CIE Evaluation shall be done with weightage / distribution as follows:

• Selection of the topic & formulation of Problem Statement and Objectives	10 %
• Design and simulation/ Algorithm development/ Experimental setup	25 %
Conducting experiments/ Implementation / Testing	25 %
Demonstration & Presentation	25 %
Report writing	15 %

Scheme of Semester End Examination (SEE):

The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.

- Brief write up about the project 05%
- Methodology and Experimental Results & Discussion 20%
- Presentation / Demonstration of the Project 25%
- Report 20%
- Viva Voce 30%

MPD., M. Tech 2022 SCHEME Page 96 of 100

SEMESTER IV					
Course Code :	22MPD41P		CIE Marks	••	100
Credits L-T-P:	0 - 0 - 18	MAJOR PROJECT	SEE Marks	:	100
Hours/Week:	36		SEE Durations	:	3 Hrs

Guidelines:

- 1. Major Project is to be carried out for a duration of 18 weeks
- 2. Students must adhere to the Project Presentation Schedule, report to their guide on a weekly basis and get their Project diary signed by their guide 4. Students must execute the Major Project individually and not in teams.
- 5. It is mandatory for the students to present/publish their project work in National/International Conferences or Journals
- 6. The reports shall be printed on A4 size with 1.5 spacing and Times New Roman with font size 12, outer cover of the report (wrapper) has to be soft bound and in Ivory color for PG circuit Programs and Light Blue for Non-Circuit Programs

Course Outcomes: After completing the course, the students will be able to

- CO1: Conceptualize, Design and Implement solutions for specific problems.
- CO2: Communicate the solutions through presentations and technical reports.
- CO3: Apply project and resource managements skills, professional ethics and societal concerns
- CO4: Synthesize self-learning, sustainable solutions and demonstrate life-long learning

Scheme of Continuous Internal Examination

Evaluation shall be carried out in three reviews. The evaluation committee shall consist of Guide, Professor, Associate Professor/Assistant Professor.

Phase *	Activity	Weightage
I	Selection of Project Title, Formulation of Problem Statement and Objectives	20 %
II	Design, Implementation and Testing	40 %
ΤΤ	Experimental Result & Analysis, Conclusions and Future Scope of Work,	
11	Report Writing and Paper Publication	40 %

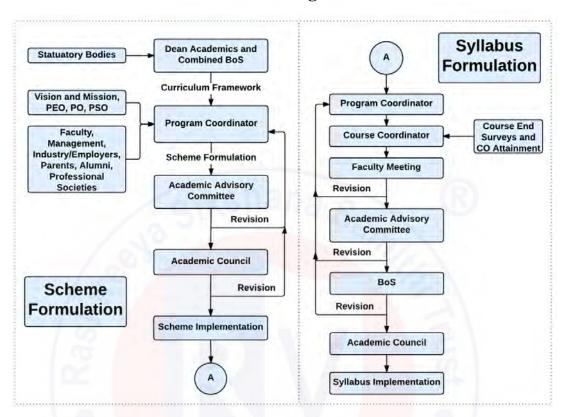
^{*} Phase wise rubrics to be prepared by the respective departments

Scheme for Semester End Evaluation (SEE):

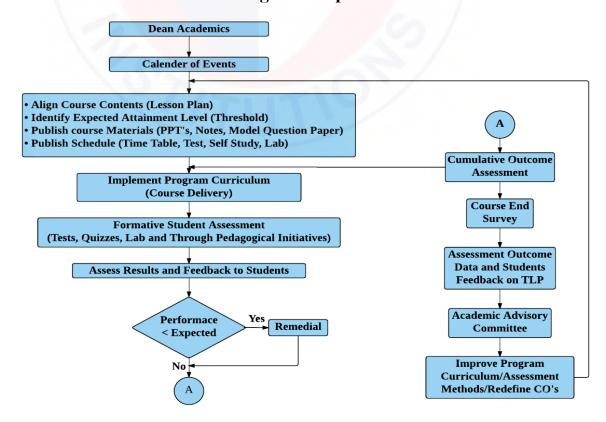
Major Project SEE evaluation shall be conducted in two stages. This is initiated after fulfilment of submission of Project Report and CIE marks.

Stage-1 Report Evaluation: Evaluation of Project Report shall be done by the Guide and an External examiner.

Stage-2 Project Viva-voce: Major Project Viva-voce examination is conducted after receipt of evaluation reports from Guide and External examiner.

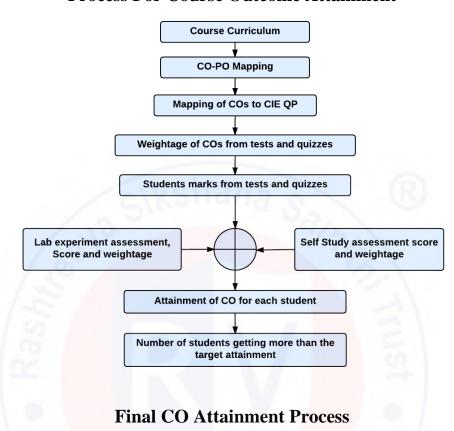

SEE procedure is as follows:				
Report	Internal Examiner: 100 Marks	= 200		
Evaluation	External Examiner: 100 Marks	200 / 2 = 100	A	
Viva-Voce	Jointly evaluated by Internal Guide & External Evaluator	= 100 B		
	Total Marks = (A + B) / 2 =	100		

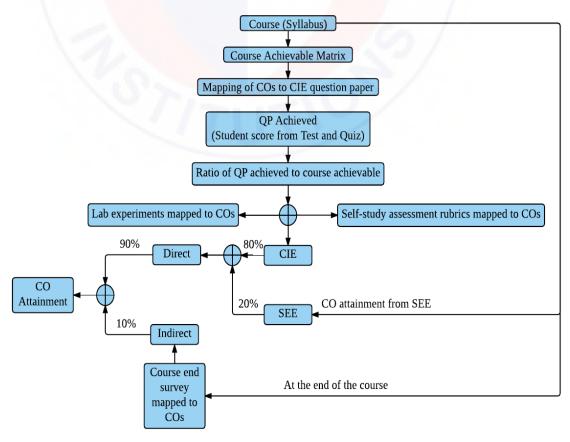
MPD., M. Tech 2022 SCHEME Page 97 of 100



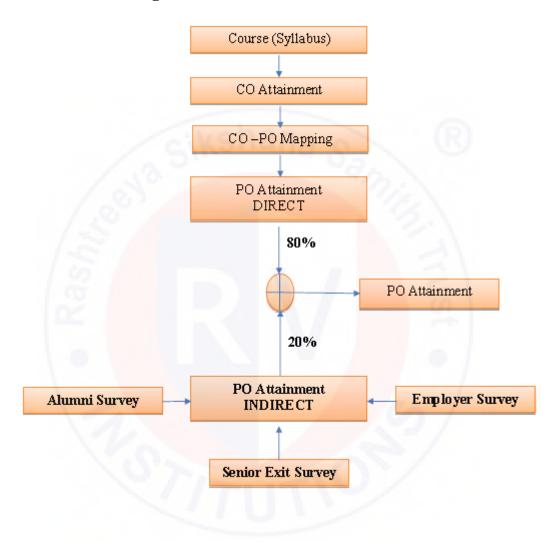
Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Curriculum Design Process




Academic Planning And Implementation

Process For Course Outcome Attainment



Technological University, Belagavi

Program Outcome Attainment Process

MPD., M. Tech 2022 SCHEME Page 100 of 100

Innovative Clubs of RVCE

6	1	
1	Ashwa Racing	Ashwa Mobility Foundation (AMF) is a student R&D platform that designs and fabricates Formula theme race cars and future mobility solutions to tackle urban transportation problems.
2	Astra Robites	Team involved in the design, fabrication and building application specific robots.
3	Coding Club	To facilitate students the skills, confidence, and opportunity to change their world using coding and help them become successful in GSoC, ACM-ICPC, and other recognized coding competitions.
4	Entrepreneurship Development Cell	E-Cell is a student run body that aims to promote entrepreneurship by conducting workshops, speaker sessions and discussions on business and its aspects. We possess a mentor board to help startups grow.
5	Frequency Club	Team aims at contributing in both software and hardware domains mainly focusing on Artificial Intelligence, Machine Learning and it's advances.
6	Garuda	Design and development of supermileage urban concept electric car. Indigenous development of E-mobility products.
7	Jatayu	Build a low cost Unmanned Aerial Vehicle capable of Autonomous Navigation, Obstacle Avoidance, Object Detection, Localization, Classification and Air Drop of a package of optimum weight.
8	Solar Car	Build a roadworthy solar electric vehicle in order to build a green and sustainable environment.
9	Team Antariksh	Team Antariksh is a Space Technology Student Club whose goal is to understand, disseminate and apply the engineering skills for innovation in the field of Space technology, designing Nano-Satellite payload for ISRO PS4 Orbital platform, RVSAT-1 along with developing experimental rockets of various altitude.
10	Team Chimera	Building a Formula Electric Car through Research and Development in E-Mobility. Electrifying Formula Racing.
11	Helios Racing	Team involved in design, manufacturing and testing of All-Terrain Vehicles and other supportive tasks for the functioning of the team. Participating in BAJA competitions organized by SAE in India and the USA.
12	Team Hydra	Developing autonomous underwater vehicles and use it for various real world applications such as water purification, solid waste detection and disposal etc.
13	Team Krushi	Develop low cost equipments, which help farmers in cultivating and harvesting the crops. Use new technology applications to reduce the labour time hand cost for farmers. Aims at developing implants for Tractors.
14	Team vyoma	Design, fabrication and testing of radio controlled aircrafts and research on various types of unmanned aerial vehicles.
15	Team Dhruva	Organizing activities like quizzes based on astronomy. Stargazing and telescope handling sessions. Construction of a standard observatory. working on small projects with organizations like ICTS, IIA, ARIES etc.
16	Ham club	To popularize Amateur Radio as a hobby among students, alongside exploring technical innovations in the communications domain. Intended to provide human capital for service to the nation at times of natural calamities.

NCC

NSS

"Not me but you"
"Education through
Community Service &
Community Service through education"

Cultural Activity Teams

- 1. AALAP (Music club)
- 2. DEBSOC (Debating society)
- 3. CARV (Dramatics club)
- 4. FOOTPRINTS (Dance club)
- 5. QUIZCORP (Quizzing society)
- 6. ROTARACT (Social welfare club)
- 7. RAAG (Youth club)
- 8. EVOKE (Fashion team)
- 9. f/6.3 (Photography club)
- 10. CARV ACCESS (Film-making club)

VISION

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

MISSION

- To deliver outcome based Quality education, emphasizing on experiential learning with the state of the art infrastructure.
- To create a conducive environment for interdisciplinary research and innovation.
- To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

QUALITY POLICY

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

CORE VALUES

Professionalism, Commitment, Integrity, Team Work, Innovation

RV Vidyaniketan Post, 8th Mile, Mysuru Road, Bengaluru - 560 059. www.rvce.edu.in