

Institution Affiliated to Visvesvarava Technological University, Belagavi Approved by AICTE, New Delhi

Scheme and Syllabus of I – IV semester

(Autonomous System of 2022 Scheme)

Master of Technology (M. Tech.)

HIGHWAY TECHNOLOGY (MHT)

DEPARTMENT OF CIVIL ENGINEERING

Academic Year 2022-23

RV COLLEGE OF ENGINEERING

(An Autonomous Institution Affiliated to VTU, Belagavi) RV Vidyaniketan Post, 8th Mile, Mysuru Road, Bengaluru - 560 059.

2022 Ranked 89th in Engineering Category

One of the most preferred Technical Institutions

PROGRAMS OFFERED

Accredited by **NBA**

B.E. Programs AI, AS, BT, CH, CS, CV, CD, CY, EC, EE, EI, ET, IM, IS, ME

M. Tech (13) MCA, M.Sc. (Engg.)

All Departments are recognized as Ph.D. Programs:

Research Centres by VTU Except AI & AS

Five RVCE Alumni cleared Civil Services Exam in 2020-21

Ranked in top 10 Pvt. College in the Country by various magazines

Ranked 3rd in Sports & Cultural Activities under VTU (2019-20)

Use of ICT in Teaching Learning Process

e-Journals e-books

QEE 48 Courses

NPTEL 9.300+ Enrolled **SWAYAM** 68th place in

Wikispace the country (Jul-Oct-2019)

MOOCS

MODULE

Journal Conference **Patents Publications Publications** Filed 1020 1325 55 **Patents** Patents **Publised** Granted 48 16

Holistic development of students through NCC, NSS Cultural activities, Community service & Sports.

16 Centres of Excellences 07 Centres of Competence

MoUs: 90+with Industries / Academic Institutions in India & abroad

Executed more than Rs. 40 crores worth sponsored research projects & consultancy works sicnce 3 years

UPSC Results (2020): RVCE-Alumni

Name: Kushal Jain

Rank : 40 ISE-2016 Pass out

Name: Naveen Kumar

Rank : 62 ME - Pass out

Name: Deepak R. Shet

Rank : 311

ECE - 2013 Pass out

Faculty with Industrial

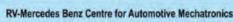
Total Number of **Faculty**

Human Resource

Visiting

Adjunct Faculty

Faculty **Pursuing** Ph.D.


Faculty with Ph D Qualification

& Admin Staff 221

RVCE - Greaves Cotton Ltd Centre of excellence in e-mobility

Glossary of Abbreviations

1.	AS	Aerospace Engineering
2.	BS	Basic Sciences
3.	BT	Biotechnology
4.	CH	Chemical Engineering
5.	CHY	Chemistry
6.	CIE	Continuous Internal Evaluation
7.	CS	Computer Science & Engineering
8.	CV	Civil Engineering
9.	EC	Electronics & Communication Engineering
10.	EE	Electrical & Electronics Engineering
11.	EI	Electronics & Instrumentation Engineering
12.	ET	Electronics & Telecommunication Engineering Electronics & Telecommunication Engineering
13.	GE	Global Elective
14.	HSS	Humanities and Social Sciences
15.	IM	
16.	IS	Industrial Engineering & Management
		Information Science & Engineering
17.	L	Laboratory
18.	MA	Mathematics M. Taala in Bistoplands
19.	MBT	M. Tech in Biotechnology
20.	MCE	M. Tech. in Computer Science & Engineering
21.	MCN	M. Tech. in Computer Network Engineering
22.	MCS	M. Tech. in Communication Systems
23.	MDC	M. Tech. in Digital Communication
24.	ME	Mechanical Engineering
25.	MHT	M. Tech. in Highway Technology
26.	MIT	M. Tech. in Information Technology
27.	MMD	M. Tech. in Machine Design
28.	MPD	M. Tech in Product Design & Manufacturing
29.	MPE	M. Tech. in Power Electronics
30.	MSE	M. Tech. in Software Engineering
31.	MST	M. Tech. in Structural Engineering
32.	MVE	M. Tech. in VLSI Design & Embedded Systems
33.	N	Internship
34.	Р	Projects (Minor / Major)
35.	PHY	Physics
36.	SDA	Skill Development Activity
37.	SEE	Semester End Examination
38.	Т	Theory
39.	TL	Theory Integrated with Laboratory
40.	VTU	Visvesvaraya Technological University

POSTGRADUATE PROGRAMS

Sl. No	Core Department	Program	Code
1.	BT	M. Tech in Biotechnology	MBT
2.	CS	M. Tech in Computer Science & Engineering	MCE
3.	CS	M. Tech in Computer Network Engineering	MCN
4.	CV	M. Tech in Structural Engineering	MST
5.	CV	M. Tech in Highway Technology	MHT
6.	EC	M. Tech in VLSI Design & Embedded Systems	MVE
7.	EC	M. Tech in Communication Systems	MCS
8.	EE	M. Tech in Power Electronics	MPE
9.	ET	M. Tech in Digital Communication	MDC
10.	IS	M. Tech in Software Engineering	MSE
11.	IS	M. Tech in Information Te <mark>chno</mark> logy	MIT
12.	ME	M. Tech in Product Design & Manufacturing	MPD
13.	ME	M. Tech in Machine Design	MMD

DEPARTMENT OF CIVIL ENGINEERING

VISION

Excel in Education, Research and Consultancy in Civil Engineering with emphasis on Sustainable development

MISSION

- 1. Disseminating and integrating the knowledge of civil engineering and allied fields.
- 2. Enhancing industry-institute interaction leading to interdisciplinary research
- 3. Imbibing wide-range of skills in cutting-edge technology for sustainable development
- 4. Motivate entrepreneurship and professional ethics to serve the society.

PROGRAMME OUTCOMES (PO)

- M. Tech in **Highway Technology** graduates will be able to:
- PO1: Independently carryout research / investigation and development work to solve practical problems related to highway technology
- PO2: Write and present a substantial technical report /document in the field of Highway technology
- PO3: Demonstrate a degree of mastery over materials, analysis, design, construction, maintenance and management of highways
- PO4: Use modern tool for design, analysis and management of highways
- PO5: Adopt safe, economical, ethical and sustainable factors in design, construction and management of highways.
- PO6: Exhibit multi-disciplinary and management skills with commitment to lifelong learning

MHT., M. Tech. 2022 SCHEME Page 4 of 82

INDEX

Sl. No.	Course Code	Course Title	Page No.
1	22MAT11AT	Computational Mathematics	09 – 10
2	22MHT12TL	Pavement Materials	11 – 12
3	22MHT13T	Traffic Engineering and Design	13 – 14
4	22MHT14L	Applications of MATLAB and Python in Pavement Engineering	15
	22MHT1A1T	Geographical Information Systems for Transportation	16 – 17
5	22MHT1A2T	Ground Improvement Techniques	18 – 19
	22MHT1A3T	Reinforced Earth Panel Walls	20 - 21
	22MHT1B1T	Highway Geometric Design	22 – 23
	22MHT1B2T	Road Safety Engineering	24 – 25
6	22MHT1B3T	Environmental Impact Assessment for Road Projects	26 – 27
7	22IM21T	Research Methodology	28 – 29
8	22MHT22TL	Pavement Analysis and Design	30 – 31
9	22MHT23T	Transportation Systems and Planning	32 – 33
	22MST2C1T	Design of Concrete Bridges	34 – 35
10	22MHT2C2T	Pavement Detoriation and Evaluation	36 – 37
	22MHT2C3T	Road Construction Equipments	38 – 39
	22BT2D01T	Bioinspired Engineering	40 – 41
	22BT2D02T	Health Informatics	42 – 43
	22CS2D03T	Business Analytics	44 – 45
	22CV2D04T	Industrial and Occupational Health and Safety	46 – 47
	22CV2D05T	Intelligent Transportation Systems	48 – 49
	22EC2D06T	Electronic System Design	50 – 51
11	22EC2D07T	Evolution of Wireless Technologies	52 - 53
	22ET2D08T	Tracking and Navigation Systems	54 – 55
	22IM2D09T	Project Management	56 – 57
	22IS2D10T	Database and Information Systems	58 – 59
	22IS2D11T	Management Information Systems	60 - 61
	22MAT2D12T	Statistical and Optimization Methods	62 – 63
2 2 2 2 2 2	22ME2D13T	Industry 4.0	64 – 65
12	22MHT24L	Differential Global Positioning Systems and AutoCAD for Highways	66
13	22HSS25T	Professional Skills Development-I	67 – 68
14	22MHT31T	Highway Construction and Maintenance	69 – 70
	22MHT3E1T	Pavement Management Systems	71 – 72
15	22MHT3E2T	Highway Economics	73 – 74
	22MHT3E3T	Road Project Reports	75 – 76
16	22MHT32N	Internship	77
17	22MHT33P	Minor Project	78

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

18	22MHT41P	Major Project	79
19	22HSS42	Professional Skills Development-II	-

	University, Belagavi											
M. 1	rech in Highwa	y Technology MHT										
I SE	I SEMESTER M.Tech											
S1.				edit A	lloc	ation			CIE	Max	SEE	Max
No.	('Olirge ('Ode	Course Title	т	T/	Р	Total	BoS	Category	Duration	Marks	Duration	Marks
110.		11.0	Ъ	SDA	Г	Total			(H)	CIE	(H)	SEE
1	22MAT11AT	Computational Mathematics	3	1	0	4	MA	Theory	1.5	100	3	100
2	22MHT12TL	Pavement Materials	3	0	1	4	CV	Theory+Lab	1.5	100	3	100
3	22MHT13T	Traffic Engineering and Design	3	1	0	4	CV	Theory	1.5	100	3	100
1	22MHT14L	Applications of MATLAB and Python in Pavement					77.7					
4	22 VIT114L	Engineering	1	0	1	2	CV	Lab	1.5	50	3	50
5	22MHT1AXT	Elective A (Professional Elective)	3	0	0	3	CV	Theory	1.5	100	3	100
6	22MHT1BXT	Elective B (Professional Elective)	3	0	0	3	CV	Theory	1.5	100	3	100
Note	For the course	code 22HSS42 Students need to select one ONLINE	MO	OC cc	nire	o as ro	commende	d by HSS Bos	This cour	rse can	he selecter	d

Note: For the course code 22HSS42, Students need to select one ONLINE MOOC course as recommended by HSS BoS. This course can be selected anytime between I to III semester and it will be evaluated during IV semester.

20

Code	Elective A (Professional Elective)	Code	Elective B (Professional Elective)
22MHT1A1T (Geographical Information Syst <mark>ems for Transportation</mark>	22MHT1B1T	Highway Geometric Design
22MHT1A2T	Ground Improvement Techniques	22MHT1B2T	Road Safety Engineering
22MHT1A3T	Reinforced Earth Panel Walls	22MHT1B3T	Environmental Impact Assessment for Road Projects

II SEMESTER M.Tech

01				edit A	lloc	ation	1		CIE	Max	SEE	Max
S1.	Course Code	Course Title	т	T/	D	Total	BoS	Category	Duration	Marks	Duration	Marks
110.		10.5	Ъ	SDA	Г	Total	3/		(H)	CIE	(H)	SEE
1	22IM21T	Research Methodology	3	0	0	3	IM	Theory	1.5	100	3	100
2	22MHT22TL	Pavement Analysis and Design	3	0	1	4	CV	Theory+Lab	1.5	100	3	100
3	22MHT23T	Transportation Systems and Planning	3	0	0	3	CV	Theory	1.5	100	3	100
4	22MHT2CXT	Elective C (Professional Elective)	3	0	0	3	CV	Theory	1.5	100	3	100
5	22XXX2DXXT	Elective D (Global Elective)	3	0	0	3	Res. BoS	Theory	1.5	100	3	100
6	22MHT24L	Differential Global Positioning Systems and										
0	22WIII124L	AutoCAD for Highways	1	0	1	2	CV	Lab	1.5	50	3	50
7	22HSS25T	Professional Skills Development-I	0	0	2	2	HSS	Theory*	1.5	50	2	50
4.7	1 1 1	11.1	•11	1	1	, 11	41 A					

* External Agency will be conducting the classes and both CIE and SEE will be evaluated by the Agency.

		20
Code	Elective C (Professional Elective)	
22MST2C1T	Design of Concrete Bridges	
22MMPPC.7M. Tec	Pavement Detoriation and Evaluation 2022 SCHEME	
22MHT2C3T	Road Construction Equipments	

Institution Affiliated
to Visvesvaraya
Technological
University, Belagavi

Elective D (Global Elective)								
22BT2D01T	Bioinspired Engineering	22ET2D08T	Tracking and Navigation Systems					
22BT2D02T	Health Informatics	22IM2D09T	Project Management					
22CS2D03T	Business Analytics	22IS2D10T	Database and Information Systems					
22CV2D04T	Industrial and Occupational Health and Safety	22IS2D11T	Management Information Systems					
22CV2D05T	Intelligent Transportation Systems	22MAT2D12T	Statistical and Optimization Methods					
22EC2D06T	Electronic System Design	22ME2D13T	Industry 4.0					
22EC2D07T	Evolution of Wireless Technologies	7777.						

III S	SEMESTER M.1	`ech					120	\ .				
01		/ 30		edit A	lloc	ation			CIE	Max	SEE	Max
S1.	Abo') Aprillo')	Course Title	т	T/	D	T 1	BoS	Category	Duration	Marks	Duration	Marks
INO.		(6)	L	SDA	Р	Total			(H)	CIE	(H)	SEE
1	22MHT31T	Highway Construction and Maintenance	3	1	0	4	CV	Theory	1.5	100	3	100
2	22MHT3EXT	Elective E (Professional Elective)	3	1	0	4	CV	Theory	1.5	100	3	100
3	22MHT32N	Internship	0	0	6	6	CV	Project	1.5	50	3	50
4	22MHT33P	Minor Project	0	0	6	6	CV	Project	1.5	50	3	50

Code Elective E (Professional Elective)

22MHT3E1T Pavement Management Systems

22MHT3E2T Highway Economics

22MHT3E3T Road Project Reports

IV S	SEMESTER M.T	'ech			- 1		7/					
Sl. No.	Course Code	Course Title	Cr L	edit A T/ SDA		ation Total	BoS	Category	CIE Duration (H)	Max Marks CIE	SEE Duration (H)	Max Marks SEE
1	22MHT41P	Major Project	0	0	18	18	CV	Project	1.5	100	3	100
2	22HSS42	Professional Skills Development-II	0	0	2	2	HSS	NPTEL		50	ONLINE	50
Stu	lent need to sub	omit the certificate for the evaluation of Course code 2	2HS	SS42				•	•			

20

		SEMESTER: I				
Course Code : 22M	AT11A	COMPUTATIONAL MATHEMATICS		CIE Marks		100
Credits L-T-P : 3 - 1	0	COMPUTATIONAL MATHEMATICS		SEE Marks	:	100
Hours : 42L+	+28T Comm	on Course (MPD, MMD, MPE, MBT, MST	, MHT)	SEE Durations		3 Hrs
Faculty Coo	ordinator: Dr. A S	Sujatha				
		UNIT - I			\Box	09 Hrs

Vector Spaces and Orthogonality: Vector spaces and subspaces, linear independence, basis and dimension, four fundamental subspaces, change of basis. Inner product, orthogonal vectors, orthogonal projections, orthogonal bases. Eigen subspaces, Gram-Schmidt orthogonalization process, QR factorization and singular value decomposition.

UNIT - II 09 Hrs

Multiple Random variables: Joint probability mass functions and probability density functions, marginal density function, conditioning of random variables, statistical independence, correlation and covariance functions, covariance and correlation matrices, transformation of random variables, Markov and Chebyshev inequalities, Gaussian distribution-Multivariate normal density and its properties.

UNIT - III 08 Hrs

Principal component analysis and Factor analysis:

Overview of principal component analysis and factor analysis, eigen structure of covariance or correlation matrix. Principal component-standardized variables, covariance matrices. Factor model-principal component method, maximum likelihood method, factor scores, factor rotation.

UNIT - IV 08 Hrs

Engineering optimization: Engineering applications of optimization, statement of an optimization problem-design vector, design constraints, constraint surface, objective function and objective function surface. Multivariable optimization with inequality constraints-Kuhn-Tucker conditions, constraint qualification.

UNIT - V 08 Hrs

Numerical solution of differential equations:

Boundary value problems-finite difference method for linear and nonlinear problems, shooting method and Galerkin method. Finite difference methods for parabolic, elliptic and hyperbolic partial differential equations.

Course Outcomes:

After going through this course the student will be able to:

CO1	:	Illustrate the fundamental concepts of distributions, linear algebra, differential equations and
		optimization arising in various fields engineering.
CO2	:	Derive the solution by applying the acquired knowledge and skills of
		statistical/numerical/optimization techniques to solve problems of probability distributions,
		linear algebra and differential equations.
CO3	:	Evaluate the solution of the problems using appropriate statistical numerical and optimization
		techniques to the real world problems arising in many practical situations.
CO4	:	Compile the overall knowledge of probability distributions, linear algebra and optimization
		methods gained to engage in life – long learning.

Reference Books

- 1. Richard A Johnson and Dean W Wichern, "Applied Multivariate Statistical Analysis", Pearson Prentice Hall, 6th Edition, 2007, , ISBN-13: 978-0-13-187715-3, ISBN-10: 0-13-187715-1.
- 2. Gilbert Strang, "Linear Algebra and its Applications", Cengage Learning, 4th Edition, 2006, ISBN 97809802327.
- 3. Edgar G. Goodaire "Linear Algebra: Pure & Applied Kindle Edition", World Scientific, 1st Edition, 2013, ISBN-13: 978-9814508360.
- 4. M K Jain, S. R. K. Iyengar, R. K. Jain; Numerical methods for scientific and engineering computation; New Age International Publishers; 6th edition; 2012; ISBN-13: 978-81-224-2001-2.
- 5. Singiresu S. Rao, Engineering Optimization Theory and Practice, New Age International (P)Ltd., 3rd edition, ISBN: 81-224-1149-5.

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

	RUBRIC for CIE			RUBRIC for SEE	
SLNo	Content	Marks	Q. No	Contents	Marks
1	Quizzes - Q1 & Q2	20	Each u	mit consists of TWO questions of 20 Marks each. Answ	ver FIVE
2	Tests - T1 & T2	40	1110	full questions selecting ONE from each unit (1 to 5).	
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20
	/ .05		5 & 6	Unit-3: Question 5 or 6	20
			7 & 8	Unit-4: Question 7 or 8	20
			9 & 10	Unit-5: Question 9 or 10	20
				Total Marks	100

MHT., M. Tech. 2022 SCHEME Page 10 of 82

			SEMESTER: I			
Course Code	:	22MHT12TL	Pavement Materials CIE Marks	;	:	100
Credits L-T-P	:	3-0-1	(Theory & Practice) SEE Mark	s	:	100
Hours	:	42L + 28P	(Professional Core - 1) SEE Dura	tions	:	3 Hrs
Facu	lt:	y Coordinator:	Dr. Archana M R		-	
			UNIT - I			9 Hrs

Soil – types, source, functions, requirements, properties, tests and specifications for use in various components of road. Soil compaction- factors and methods, Alternate and new materials- characteristics and application in highways.

UNIT - II 8 Hrs

Aggregates–Natural and Manufactured Aggregates, Tests and specifications on road aggregates for flexible and rigid pavements. Importance of aggregate gradation, shape factors

UNIT - III 9 Hrs

Bituminous binders and mixes – different types, properties and uses, physical tests on bitumen, Rheological and pavement performance related properties, Modified binders, requirements of ideal pavement binders, characteristics and applications in road construction, criteria for selection of different binders. Bituminous mixes, types, requirements, properties, tests, Marshall Method of mix design, Criteria and super pave mix design, Additives & Modifiers in Bituminous mixes, problems on mix design

UNIT - IV 8 Hrs

Cement and Cement concrete mixes – requirements, design of mix for CC pavement, use of additives, different types of concrete mixes, IRC specifications & Tests, joint filler and sealer materials, special concrete mixes

UNIT - V 8 Hrs

Alternate materials – GGBS, Silica Fumes, construction and demolition waste, flyash, admixture – plasticizers, super plasticizers, retarders, other admixtures.

LABORATORY 28 Hrs

1. Tests on materials i. Penetration on aged binders ii. Viscosity using rotational viscometer iii. Elastic recovery iv. Separation test 2. Tests on mixes v. Bitumen extraction and gradation vi. Mix design by Marshall Method for dense bituminous mixes, vii. Temperature susceptibility and Moisture susceptibility using indirect tensile strength test for bituminous mixes viii. Indirect tensile repeated load tests

Course Outcomes:

After going through this course the student will be able to:

CO1	:	Explain properties and requirements of materials and mixes used for pavements
CO2	:	Analyze properties of different materials and mixes used for pavements
CO3	:	Evaluate suitability of different materials and mixes for pavements.
CO4	:	Propose suitable materials and mixes for pavements.

Reference Books

- 1. Hot Mix Asphalt Materials, mixture design and construction, Freddy L Roberts, Prithvi S Kandhal, Brown, E R, Lee, D-Y, Kennedy, T W, 2nd Edition, National Asphalt Pavement Association Research and Education Foundation, Maryland, USA, ISBN-10: 0914313010
- 2. Soil Mechanics for Road Engineers- Her Majesty's Stationary Office, 1952 Publication, ISBN 10: 0115502785, ISBN 13: 9780115502781
- 3. Pavement Analysis and Design, Huang, 2004, Pearson Publications, ISBN-13:9780131424739.
- 4. Highway Hand Book of Highway Engineering, T F Fwa, September 28, 2005, CRC Press, ISBN 9780849319860

MHT., M. Tech. 2022 SCHEME Page 11 of 82

Scheme of Continuous Internal Evaluation (CIE): 10 + 30 + 30 + 30 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The average of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 30 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (10), Video based seminar /presentation /demonstration (20) adding upto 30 marks.

Laboratory: Conduction of laboratory exercises, Lab report & observation & analysis (30 Marks), Lab Test (10 Marks) & Innovative Experiment/Concept Design & Implementation (10 Marks) adding up to 50 Marks. The final marks will be reduced to 30 Marks.

Scheme of Semester End Examination (SEE) for 100 marks: Each unit consists of TWO Questions of 16 Marks each. Answer FIVE full questions selecting one from each unit (from 1 to 5). Question No. 11 is compulsory (Laboratory component) for 20 Marks.

Rubric for CIE & SEE for Integrated Theory courses with Laboratory

	RUBRIC of CIE			RUBRIC of SEE	
SLNo	Content	Marks	Q. No	Contents	Marks
1	Quizzes - Q1 & Q2	10	Each u	nit consists of TWO questions of 16 Marks each. Answ	er FIVE
2	Tests - T1 & T2	30	Questi	full questions selecting ONE from each unit (1 to 5). on No. 11 is compulsory (Laboratory component) for 20	Marks.
3	Experiential Learning - EL1 & EL2	30	1 & 2	Unit-1: Question 1 or 2	16
4	Laboratory	30	3 & 4	Unit-2: Question 3 or 4	16
	Total Marks	100	5 & 6	Unit-3: Question 5 or 6	16
			7 & 8	Unit-4: Question 7 or 8	16
	NO SEE for I shouther		9 & 10	Unit-5: Question 9 or 10	16
	NO SEE for Laboratory		11	Laboratory Component (Compulsory)	20
				Total Marks	100

			SEMESTER: I	•		
Course Code	:	22MHT13T	Troffic Engineering and Design	CIE Marks	:	100
Credits L-T-P	:	3 - 1 - 0	Traffic Engineering and Design	SEE Marks	:	100
Hours	:	42L + 28T	(Professional Core - 1)	SEE Durations	:	3 Hrs
Facı	ılt	y Coordinator:	Dr. L Durga Prashanth			,
			UNIT - I			9 Hrs

Introduction to Traffic Engineering:Traffic engineering as a profession, Elements of traffic enginering, modern problems for the traffic engineer,Reasons for data collection and frequency of data collection.Traffic components, characteristics of driver, pedestrain, bicyclist, the vehicle and the road. Traffic Engineering Studies:Volume studies and characteristics, speed travel time and delay studies, origin and destination studies, sampling in traffic studies- techniques,theory, accuracy and sample size, Parking Studies.

UNIT - II 8 Hrs

Fundamental principles of traffic flow:Traffic stream parameters- headway, occupancy, capacity, density, flow-density relationship, shockwaves in traffic stream, level of service- highway segments and intersesctions, Equivalency factors, Design service volume.Introduction to queuing theory

UNIT - III 8 Hrs

Intersection design:Classification of intersection - at grade and grade seperated intersections, factors and design principles - at grade and grade seperated intersections. Intersection Control: Concepts of traffic control,conflict pioints at intersection, warrants, signal design elements, data collection, concepts, performance measurements, design of pretimed signals.

UNIT - IV 8 Hrs

Traffic regulation, control and safety: Regulation on vehicles, drivers and traffic flow, Parking studies, Traffic control devices – Types & objectives of markings, signs, signals and islands, delineators. Highway traffic safety-approaches to safety, accident data collection and record system, accident statistics, site analysis and development of counter measures.

UNIT - V 9 Hrs

Traffic management techniques - Local area management. Low cost measures. Various types of medium and long term traffic demand management & measures and their uses, ITS and its applications. Environmental Issues - Air and Noise pollution due to road traffic, measurement, control of environmental deterioration.

Management of environmental pollution due to road traffic.

Course Outcomes:

After going through this course the student will be able to:

0 0	, O
CO1	: Obtain an understanding of the fundamentals of traffic engineering
CO2	: learn quantitative techniques to understand and solve basic traffic engineering problems
CO3	: Apply the principles of traffic engineering to evaluate, analyse and design timing plans for
	signalised intersection
CO4	: Demanstrate the capability to assess and recommend suitable measures for safe and efficient
	management of road traffic flow.

Reference Books

- 1. Nicholas J. Garber and Lester A. Hoel, Traffic and Highway Engineering, 5th edition, CL Engineering, 2019, ISBN:978-1337631044
- 2. R Srinivasa Kumar,Introduction to traffic engineering, South Asian Edition, The Orient Blackswan, 2018, ISBN-978-9386235473
- 3. Roger P. Roess, Elena S. Prassas and William R. McShane, Traffic Engineering, Fifth Edition, Pearson Education, 2019, ISBN-978-9353434854
- 4. L R Kadyali, Traffic Engineering and Transportation Planning, , Khanna Publishers, 2016, ISBN

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

	RUBRIC for	CIE			RUBRIC for SEE	
SLNo	Content		Marks	Q. No	Contents	Marks
1	Quizzes - Q1 & Q2		20	Each u	nit consists of TWO questions of 20 Marks each. Answ	ver FIVE
2	Tests - T1 & T2	/ -	40	1110	full questions selecting ONE from each unit (1 to 5).	
3	Experiential Learning -	EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20
		Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20
	7.0			5 & 6	Unit-3: Question 5 or 6	20
				7 & 8	Unit-4: Question 7 or 8	20
				9 & 10	Unit-5: Question 9 or 10	20
					Total Marks	100

MHT., M. Tech. 2022 SCHEME Page 14 of 82

		SEMESTER: I		
Course Code	: 22MHT14L	Applications of MATLAB and Python in	CIE Marks	: 50
Credits L-T-P	: 1 - 0 - 1	Pavement Engineering	SEE Marks	: 50
Hours	: 14L + 28P	(Coding / Skill Laboratory)	SEE Durations	: 3 Hrs
Facu	lty Coordinator:	Dr. Archana M R / Dr. Sunil S		-
		Content		28 Hrs

The following algorithms will be executed using Matlab and Python language

- 1. Introduction to basic tools of coding language
- 2. Application of coding in pavement engineering
- 3. Developing an algorithm to interpret the current scenarios on road projects.
- 4. Application of coding for performance prediction models in pavement engineering
- 5. Application of coding for Pavement layer moduli prediction and analysis for highways
- 6. Analysis and prediction of moduli and performance for alternate Pavement composition

Course Outcomes:

After going through this course the student will be able to:

CO1:	Understand the coding language for pavement engineering
CO2 :	Design the algorithms for pavement analysis
CO3 :	Develop the algorithms for pavement performance modelling
CO4 :	Validation of the algorithms for pavement analysis, performance and modelling

Reference Books

- 1. Sherif Sakr, Albert Y. Zomaya, Encyclopedia of Big Data Technologies, ISBN: 978-3-319-77525-8, 2019
- 2. Matlab An introduction with applications, Amos Gilat, Wiley Publications, ISBN-13: 978-8126537204, 4th edit
- 3. Vittorio Lora, Python for Civil and Structural Engineers, ISBN 10. 1698951019, 30 September 2019
- 4. Getting started with MatLab ,Rudra Pratap, 2010,Oxford University Press, ISBN: -13:978-0-19-806919-5

Scheme of Continuous Internal Evaluation (CIE- Laboratory): Only LAB Course 30 + 10 + 10 = 50. The Laboratory session is held every week as per the timetable and the performance of the student is evaluated in every session. The average of marks over number of experiments conducted over the weeks is considered for 30 Marks i.e (Lab Report, Observation & Analysis). The students are encouraged to implement additional innovative experiments in the lab (10 marks). At the end of the semester a test is conducted for 10 Marks (Lab Test). This adds to 50 Marks.

Scheme of Semester End Examination (SEE- Laboratory) : Only LAB Course 40 + 10 = 50. Students will be evaluated for Write-up, Experimental Setup, Experiment Conduction with Results, Analysis & Discussions for 40 Marks and Viva will be conducted for 10 Marks adding to 50 Marks.

Only LAB Courses with 50 Marks

	Only LAB	Courses	WILLI DO MAINS	
	RUBRIC FOR CIE		RUBRIC FOR SEE	
S1.No	Content	Marks	Content	Marks
1	Write Up, Setup, Conduction Results, Analysis & Discussions	30	1. Write Up, Setup, Conduction	40
2	Innovative Experiment/Concept Design & Implementation	10	2. Results, Analysis & Discussions	40
3	Laboratory Internal	10	Viva Voce	10
	Total Marks	50	Total Marks	50

MHT., M. Tech. 2022 SCHEME Page 15 of 82

SEMESTER: I					
Course Code	: 22MHT1A1T	Geographical Information Systems for	CIE Marks	:	100
Credits L-T-P	: 3 - 0 - 0	Transportation	SEE Marks	:	100
Hours	: 42L	Elective A (Professional Elective)	SEE Durations	:	3 Hrs
Faculty Coordinator: Prof. Ramthilak					

Faculty Coordinator: Prof. Ramthilak

UNIT - I 8 Hrs

Introduction to GIS: Basic Concept and Components – Hardware, Software – Data Spatial and non-spatial –Geo-referencing – Map Projection – Typ es of Projection – Simple Analysis – Data retrieval and querying

UNIT - II 9 Hrs

Data structures and analysis: Database – Raster and Vector data structures – Data storage – Run length, Chain and Block coding – Vector data sto rage – Topology – GIS Modeling - Raster and Vector data analysis – Buffering and overlaying techniques – Network Analysis – Spatial Analysis

UNIT - III 8 Hrs

Shortest Paths and Routing: Fundamental network properties, fundamental properties of algorithms, Shortest Path Algorithms - Generic shortest path algorithm, Dijkstra's algorithm, A* algorithm (Concepts and numericals) Routing vehicles within networks: The Traveling salesman problem (concept and numericals), Vehicle routing problems (Only concepts, no numericals)

UNIT - IV 8 Hrs

Network Flows and Facility Location: Flow through uncongested networks - Minimum cost flow problem - Transportation problem and maximum flow problem (concepts and numericals), Flow through congested networks (Concepts, no numericals) Facility location within networks: Median problems, centers problem and requirements problems (Concepts, no numericals)

UNIT - V 9 Hrs

Intelligent Transportaion Systems: ITS Development, ITS Architectures - Case studies from US, Japan and Europe, Integrating GIS and ITS - In-vehicle navigation systems, Advanced Traveler Information Systems, Advanced Vehicle Location Systems, ITS Applications - Travel and Transportation management, Travel demand management, Public transportation operations, Electronic payment systems, Commercial vehicle operations, Emergency management, Advanced vehicle control and safety systems

Course Outcomes:

After going through this course the student will be able to:

CO1	: Apply principles of GIS in Raster and Vector Analysis
CO2	: Analyze various network problems
CO3	: Evaluate different types of flow through networks
CO4	: Demonstrate the application of GIS and ITS in Transportation

Reference Books

- 1. Principles of Geographical Information System, Burrough P A, 1998, Oxford Publication
- 2. Concepts and Techniques of Geographic Information System, Lo C P & Yeung A K W, 2006, Prentice Hall of India, New Delhi
- 3. Remote Sensing and Geographical Information Systems, Anji Reddy M, 2001, B S Publications, Hyderabad
- 4. Getting started with Geographical Information Systems, Clarke K ,2002, John Wiley & Sons, New York

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE & SEE Theory courses

	RUBRIC for CIE		RUBRIC for SEE				
SLNo	Content	Marks	Q. No	Contents	Marks		
1	Quizzes - Q1 & Q2	20	Each u	nit consists of TWO questions of 20 Marks each. Answ	er FIVE		
2 Tests - T1 & T2 4				full questions selecting ONE from each unit (1 to 5).			
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20		
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20		
			5 & 6	Unit-3: Question 5 or 6	20		
			7 & 8	Unit-4: Question 7 or 8	20		
			9 & 10	Unit-5: Question 9 or 10	20		
				Total Marks	100		

MHT., M. Tech. 2022 SCHEME Page 17 of 82

SEMESTER: I							
Course Code	:	22MHT1A2T	Ground Improvement Techniques	CIE Marks		100	
Credits L-T-P	:	3 - 0 - 0	Ground improvement rechniques	SEE Marks	:	100	
Hours	:	42L	Elective A (Professional Elective)	SEE Durations	:	3 Hrs	
Facu	Faculty Coordinator: Dr. M S Nagakumar						
IINIT - I						9 Hrs	

Ground Improvement: Introduction to soil improvement, Classification of ground improvement techniques, Factors to be considered in the selection of the best soil improvement technique.

Grouting: Introduction, Effects of grouting, Chemicals and materials used, Types of grouting, Grouting procedure, Applications of grouting

UNIT - II 9 Hrs

Mechanical Modification: Type of mechanical-modification, Aim of modification, compaction, Principle of modification for various types of soils, Effect of grain size distribution on compaction for various soil types like BC soil. Lateritic soil, coarse-grained soil, micaceous soil, Field compaction - static, dynamic, impact and vibratory type, Specification of compaction

UNIT - III 8 Hrs

Hydraulic Modification: principle, techniques, gravity drain, lowering of water table, multistage well point, vacuum dewatering, discharge equations, design of dewatering system including pipe line effects of dewatering. Drainage of slopes, preloading, vertical drains, sand drains.

UNIT - IV 8 Hrs

Chemical Modification: Special effects, and methods. Techniques, admixtures, stabilization. hydration -effect of cement stabilization on permeability, Swelling and shrinkage. Criteria for cement stabilization, Artificial neural network model for determining the strength of soil –cement mixtures

UNIT - V 8 Hrs

Geosynthetics: Introduction, Soil reinforcement, Properties of geosynthetics, Applications of geosynthetics, Soil nailing technique

Course Outcomes:

After going through this course the student will be able to:

0 0		.0
		Describe the in-situ methods of soil improvement
CO2	:	Acquire knowledge of ground improvement methods and its application
CO3	:	Analyze the behavior of soil with the ground improvement methods
CO4	:	Summarize the methods of stabilization and its suitability for various problematic soils

Reference Books

- 1. Purushothama Raj. P. Ground Improvement Techniques Firewall Media Publisher, 2004 ISBN 8170088372
- 2. G. L. Shivkumar Babu An introduction to soil reinforcement and geosynthetics, Universities Press (India) Pvt. Ltd. ISBN 9788173718489
- 3. Manfied Hausmann Engineering principles of ground modification, McGraw Hill Pub. Co., New York.,2008 ISBN 0070272794
- 4. Bell, F.G. Methods of treatment of unstable ground, Butterworths, London. 2007 ISBN0408001666

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

MHT., M. Tech. 2022 SCHEME Page 18 of 82

	RUBRIC for CIE			RUBRIC for SEE	
SLNo	Content	Marks	Q. No	Contents	Marks
1	Quizzes - Q1 & Q2	20	Each u	nit consists of TWO questions of 20 Marks each. Ans	wer FIVE
2				full questions selecting ONE from each unit (1 to 5)	-
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20
			5 & 6	Unit-3: Question 5 or 6	20
			7 & 8	Unit-4: Question 7 or 8	20
			9 & 10	Unit-5: Question 9 or 10	20
				Total Mark	s 100

SEMESTER: I						
Course Code :	22MHT1A3T	Reinforced Earth Panel Walls	CIE Marks :			
Credits L-T-P : 3 - 0 - 0		Reimorced Earth Fanel Wans	SEE Marks	: 100		
Hours :	42L	Elective A (Professional Elective)	SEE Durations	: 3 Hrs		
Faculty Coordinator: Dr. M S Nagakumar						
UNIT - I						

Earth Pressure Theories: Introduction – State of stress in retained soil mass – Earth pressure theories – Classical and graphical techniques – Active and passive cases – Earth pressure due to external loads, empirical methods, Wall movement

UNIT - II 9 Hr

Compaction, Drainage and Stability of retaining Structures Retaining structure – Selection of soil parameters, Lateral pressure due to compaction, strain softening, wall flexibility, drainage arrangements and its influence. Earth pressure due to earthquake forces, Stability of retaining structure

UNIT - III 8 Hrs

Sheet Pile Walls Retaining structure – Selection of soil parameters – Analysis and design of cantilever and anchored sheet pile walls. Dead man and continuous anchor. Diaphragm and bored pile walls – Design requirements

UNIT - IV 8 Hrs

Supported Excavations Lateral pressure on sheeting in braced excavation, stability against piping and bottom heaving. Earth pressure around tunnel lining, shaft and silos ,Soil anchors, Soil pinning , Soil nailing – Basic design concepts

UNIT - V 9 Hrs

Design Of Reinforced Earth Retaining Wall Reinforced earth retaining wall – principles, Concepts and mechanism of reinforced Earth – Design consideration of reinforced earth – Materials used in reinforced earth - Geotextile – Geogrids, Metal strips, facing elements.

Course Outcomes:

After going through this course the student will be able to:

CO1	Enumerate the types of earth retention system
CO2	: Predict the Suitability of earth system for a particular project
CO3	: Quantify the lateral earth pressures associated with different earth systems
CO4	: Select the most technically appropriate and cost-effective type of retaining wall for the application

Reference Books

- 1. R F Craig, "Soil Mechanics", Van Nostrand Reinhold International publication, ISBN 10: 0278000193 ISBN 13: 9780278000193
- 2. Chris R.I. Clayton, Rick I. Woods, Andrew J. Bond, Jarbas Milititsky "Earth pressure and Earth retaining structures", Third edition, CRC Press, 2014 ISBN 9781466552111
- 3. Koerner, R.M., "Design with Geosynthetics" Sixth Edition, Prentice Hall, 2012. ISBN-13: 978-1462882892, 10: 1462882897
- 4. Das, B.M.," Principles of Geotechnical Engineering" Fourth Edition, The PWS series in Civil Engineering, 1998 ISBN-10: 0534951791, ISBN-13: 978-0534951795

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

MHT., M. Tech. 2022 SCHEME Page 20 of 82

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric	for CIE	& SEE	Theory	courses
--------	---------	-------	--------	---------

	RUBRIC for CIE		RUBRIC for SEE			
SLNo	Content	Marks	Q. No	Contents	Marks	
1	Quizzes - Q1 & Q2	20	Each u	nit consists of TWO questions of 20 Marks each. Answ	er FIVE	
2 Tests - T1 & T2				full questions selecting ONE from each unit (1 to 5).		
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20	
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20	
			5 & 6	Unit-3: Question 5 or 6	20	
			7 & 8	Unit-4: Question 7 or 8	20	
			9 & 10	Unit-5: Question 9 or 10	20	
				Total Marks	100	

MHT., M. Tech. 2022 SCHEME Page 21 of 82

SEMESTER: I						
Course Code	••	22MHT1B1T	Highway Geometric Design	CIE Marks :		100
Credits L-T-P : 3 - 0 - 0		3 - 0 - 0	Highway Geometric Design	SEE Marks	:	100
Hours	:	42L	Elective B (Professional Elective)	SEE Durations	:	3 Hrs
Faculty Coordinator: Dr. Anjaneyappa						
UNIT - I						8 Hrs

Introduction: Importance, Factors governing geometric design, route selection,, geometric design consistency, capacity of rural and urban roads, Cross Section Elements: Right of way and width consideration, roadway, shoulders, kerbs, traffic barriers, medians, service roads, pavement surface characteristics, cross slope ,skid resistance, unevenness,

UNIT - II 9 Hrs

Geometric Design Elements: Sight distances-SSD, ISD, OSD, factors governing sight distances, Design of horizontal alignment-overturning and skidding, super elevation, extra widening, transition curves, Design of vertical alignment – gradient, vertical curves

UNIT - III 8 Hrs

Intersection Design: At grade intersections – sight distance consideration and principles of design, Channelization, mini round – about, layout of round – about, Inter – Changes – major and minor interchanges, entrance and exit ramps, acceleration and deceleration lanes

UNIT - IV 9 Hrs

Road way facilities and Road safety Furniture: Pedestrian facilities, busbay, truck lay bays, frontage roads, parking areas, cattle crossings, lighting, toll plazas, operation and maintenance centre, landscaping and tree plantation, Road Safety furniture- signage, markings, road humps, speed calming measure

UNIT - V 8 Hrs

Road accidents, Trends, causes, Collision and Condition diagrams,, Road Safety Audits, Mitigation Measures, Black spots

Course Outcomes:

After going through this course the student will be able to:

- 1	0 0	.0
	CO1	: Explain the geometrical design elements.
	CO2	: Plan the geometric elements for varying conditions of roads.
	CO3	: Examine the geometric elements and propose appropriate geometry
	CO4	: Examine and design mitigative measures for safety

Reference Books

- 1. A Policy on Geometric Design of Highways and Streets, (The Green Book) 6th Edition, American Association of State Highway and Transportation Officials (AASHTO) Publishers, 2011,ISBN Number: 978-1-56051-508-1.
- 2. Khanna S.K, Justo CEG, Veeraragavan A "Highway Engineering" Khanna Publishers, 10th Edition, 2015,ISBN: 9788185240800
- 3. John G Schoon "Geometric design projects for Highways: An Introduction" 2nd Edition, American Society of Civil Engineers Press, ISBN: 978-0-7844-7042-8, 2000.
- 4. Relevant Indian Roads Congress Code

Books(IRC) IRC011-1962,IRC012-2009,IRC032-1969,IRC064-1990,IRC066-1976,IRC073-1990,IRC080-1981,IR C086-1983,ITC092-1985,IRCSP023-1993.,IRCSP88 2010,IRCSP99 2013.Publisher Indian Roads Congress, New Delhi.

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

MHT., M. Tech. 2022 SCHEME Page 22 of 82

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE & SEE Theory courses

	RUBRIC for CIE		RUBRIC for SEE				
SLNo	Content	Marks	Q. No	Contents	Merks		
1	Quizzes - Q1 & Q2	20	Each u	nit consists of TWO questions of 20 Marks each. Answ	er FIVE		
2	Tests - T1 & T2	40		full questions selecting ONE from each unit (1 to 5).			
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20		
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20		
		•	5 & 6	Unit-3: Question 5 or 6	20		
			7 & 8	Unit-4: Question 7 or 8	20		
			9 & 10	Unit-5: Question 9 or 10	20		
				Total Marks	100		

MHT., M. Tech. 2022 SCHEME Page 23 of 82

	•	SEMESTER: I		
Course Code	: 22MHT1B2T	Road Safety Engineering	CIE Marks :	100
Credits L-T-P	: 3 - 0 - 0	Road Salety Engineering	SEE Marks :	100
Hours	: 42L	Elective B (Professional Elective)	SEE Durations :	3 Hrs
Facul	lty Coordinator:	Dr. Anjaneyappa		
		UNIT - I		8 Hrs

Introduction to safety Road accidents, Trends, causes, , Highway safety, human factors, Vehicle factors Road Safety, systems approach to safety, road safety improvement strategies, elements of a road safety plan, Safety Data Needs.

UNIT - II 8 Hrs

Data Collection and analysis Collision and Condition diagrams, Analysis of Crash Data: Before-after methods in crash analysis, Black Spot Identification & Investigations, Case Studies.

UNIT - III 9 Hrs

Road Safety Audits Key elements of a road safety audit, Road Safety Audits & Investigations, Describe methods for identifying hazardous road locations, Case Studies.

UNIT - IV 9 Hrs

Crash Reconstruction Concepts of crash reconstruction interpretation of data obtained from the roadway surface, speed for various skid, friction, drag, and acceleration scenarios, variables involved in jump and flip crashes, variables involved in pedestrian crashes, Case Studies.

UNIT - V 8 Hrs

Mitigation Measures Accident prevention by better planning, Accident prevention by better design of roads, Crash Countermeasures, Highway operation and accident control measures, Highway Safety Measures during construction, Highway geometry and safety.

Course Outcomes:

After going through this course the student will be able to:

CO1	Explain the various aspects of road safety.	٠
CO2	: Identify the factors affecting road safety.	
CO3	Examine the engineering factors for safety	
CO4	: Recommend and design mitigative measures for safety.	

Reference Books

- 1. IRC SP 088:The manual on Road SafetyAudit', Indian Road Congress, New Delhi.
- 2. Belche Mr, Proctor and Cook P" Practical Road safety auditing", 2nd Edition, 2008, Publishers-Thomas Telford Limited, London, ISBN: 9780727735157
- 3. Leonard Evans "Traffic Safety", Science Serving Society of Bloomfield Hills, Michigan, 2004,ISBN-10: 0975487108
- 4. Ezra Hauer," Observational Before-After Studies in Road Safety", Emerald Group

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

	RUBRIC for CIE			RUBRIC for SEE	
SLNo	Content	Marks	Q. No	Contents	Marks
1	Quizzes - Q1 & Q2	20	Each u	nit consists of TWO questions of 20 Marks each. Ans	wer FIVE
2	Tests - T1 & T2	40		full questions selecting ONE from each unit (1 to 5).	•
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20
			5 & 6	Unit-3: Question 5 or 6	20
			7 & 8	Unit-4: Question 7 or 8	20
			9 & 10	Unit-5: Question 9 or 10	20
				Total Marks	s 100

	•	SEMESTER: I			
Course Code	: 22MHT1B3T	Environmental Impact Assessment for Road	CIE Marks	: 100	
Credits L-T-P	: 3 - 0 - 0	Projects	SEE Marks	: 100	
Hours :	: 42L	Elective B (Professional Elective)	SEE Durations	: 3 Hr	s
Facul	ty Coordinator:	Dr. M S Nagakumar/Dr.Jayanthi.N			
		UNIT - I		8 Hr	s

Concepts, objectives, scope of EIA, EIA Procedures, Screening, Scoping, Baseline Data, Impact Prediction, Assessment of Alternatives, Delineation of Mitigation Measure and EIA Report, Public Hearing, Decision Making, Monitoring the Clearance Conditions, Components of EIA and their Roles in the EIA Process; Composition of Expert Committee and International agreements

UNIT - II 8 Hrs

Environmental Legislation and Clearances Key Environmental Regulations: Indian Policies, Constitutional provisions - powers and functions of Central and State government, The Environment (Protection) Act 1986, Ministry of Environment and Forest and Climate Change (MOEF&CC) Notifications (EIA Notifications), NHAI Act, Land Acquisition Acts and other relevant Policies/laws and protection acts, and Awareness on World Bank and ADB Environmental Safeguards Legal Frame Work to obtain Clearances: Flow Charts for Environmental Clearance, Forest Clearance, Wild Life Clearance, Coastal Zone Regulations Clearance and PCB Clearances and Permissions to obtain quarrying and borrowing Operations

UNIT - III 8 Hrs

Baseline Studies Baseline Survey and Analysis: Project Categorisation, Environmental attributes - Criteria for the selection of EIA parameters, Base line survey and Socio-economic Survey; Ecologically Sensitive locations; Sensitive receptors, Historical, Archaeological and Cultural Heritages, Baseline Environmental Monitoring and Conceptual approach for addressing Ambient Air Quality and Noise levels with Modelling. Public Consultation: Methods of Public Consultation, Conceptual approach for Analysis and interpretation of public comments/reviews.

UNIT - IV 9 Hrs

Environmental Impact and Risk Assessment with Mitigation Measures Assessment Methods: Brief notes on Ad hoc method, Overlays method, Battelle's Environmental Evaluation System (EES), Checklists method, Matrices method and Networks methods/diagrams. Impact Prediction and Assessment: Potential Environmental Impact prediction and Assessment during Pre-Construction, Construction and Post-Construction Stages – Impact prediction, impact analysis, impact Evaluation and impact communication; Analysis of Positive Environmental Impacts/Project Benefits, Socio-economic Assessment – Conceptual approach for Project impact on Socio-economic life, Indigenous people, Community and Occupational health and Safety; and Impact Rating/Ranking. Mitigation Measures: Provision of Mitigation measures for predicted impacts and Risks on environment such as Air, water, land/Soil, Noise, flora, fauna, ecologically sensitive locations, sensitive receptors, Socio-economic life, health and Safety. Alternatives: Analysis, Evaluation and ranking/rating of Alternatives

UNIT - V 9 Hrs

Environmental Management Plan: EMP overview, Preparation of Monitoring of Environmental Management Action Plan (EMAP) including Identification of Significant or Unacceptable Impacts requiring Mitigation, Mitigation Plans and Relief & Rehabilitation, Stipulating the Conditions and responsibilities; Preparation of Environmental Pollution Monitoring Plan (EMoP), Disaster Management Plan (DMP), Emergency Response Plans (ERP), Occupational Health and Safety Assessment (OHSA) Plans and Community Health and Safety Assessment (CHS) Plans, Check lists, Capacity Building for EMP Implementation, Grievance Mechanism, conceptual approach for Public participation / Stake holder Engagement in decision making and mechanisms for conflict management; Information Disclosure; Public Hearing and Guidelines for Preparation of Project Report, Environmental Auditing and Bill of Quantities (BoQ) in bidding contract. Case Studies: Preparation of EIA for developmental projects - Factors to be considered in making assessment decisions for Highway project – Visit to Construction Site/s to study project impacts on Environment, Community and Occupational Health and Safety

MHT., M. Tech. 2022 SCHEME Page 26 of 82

Course	Outcomes:
Course	Outcomes.

After going time	ugh this course the student will be able to.
CO1 :	Explain the Environmental and Social Legal Framework and Environmental Clearances of
	Road Projects
CO2 :	Analyze Impact on Air water and Noise for Road Projects
CO3 :	Examine the Prediction and assessment on Environment of Road Projects
CO4 :	Evaluate Environmental Mitigation measures for Road Projects

Reference Books

- 1. Environmental impact assessment, Canter, L.W.; McGraw-Hill, 1997, ISBM 9780070097674
- 2. Methods of Environmental impact assessment ,Peter Morris & Riki Therivel, Rouledge,2001.ISBN 9780203892909
- 3. Environmental Assessment, R K Jain, L V Urban, G S Stacey, H E Balbach, Mc Graw Hill Professional, 2001,ISBN 9780070323698
- 4. IRC SP-1993-2011: Guidelines on Requirements for Environmental clearance of highway projects, Indian Roads Congress, New Delhi

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE & SEE Theory courses

RUBRIC for CIE				RUBRIC for SEE		
SLNo	Content	Marks	Q. No	Contents	Marks	
1	Quizzes - Q1 & Q2	20	Each u	nit consists of TWO questions of 20 Marks each. Ans	wer FIVE	
2	Tests - T1 & T2	40		full questions selecting ONE from each unit (1 to 5).		
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20	
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20	
			5 & 6	Unit-3: Question 5 or 6	20	
			7 & 8	Unit-4: Question 7 or 8	20	
			9 & 10	Unit-5: Question 9 or 10	20	
				Total Mark	s 100	

MHT., M. Tech. 2022 SCHEME Page 27 of 82

SEMESTER: II 100 Course Code 22IM21T CIE Marks RESEARCH METHODOLOGY Credits L-T-P 100 3-0-0 SEE Marks SEE Durations : Hours 42L Common Course to all M.Tech Programs 3 Hrs Faculty Coordinator: Dr. Rajeswara Rao K V S UNIT - I 8 Hrs

Research Problem: Problem Solving – General Problem Solving, Logical Approach, Soft System Approach, Creative Approach, Group Problem Solving Techniques for Idea Generation. Formulation of Research Problems – Approaches to Research Problem, Exploration for Problem Identification, Hypothesis Generation and Formulation of the problem.

UNIT - II 9 Hrs

Research Design: Experimental Design – Principles of Experiment, Laboratory Experiment, Experimental Design, Quasi Experimental Design, Action. Research, Validity and Reliability of Experiment and Quasi Experiments. Ex Post Facto Research – Exploratory Research, Historical Research, Descriptive Research, Field Studies, Survey Research, Qualitative Research Methods.

UNIT - III 8 Hrs

Research Design for Data Acquisition: Measurement Design – Primary types of Measurement scales, Validity and Reliability Measurement, Sample Design – Non-Probability Sampling, Probability Sampling. Data Collection Procedures – Sources of secondary data, Primary data collection methods, Validity and Reliability of data collection procedures.

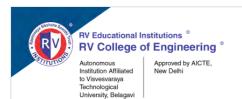
UNIT - IV 9 Hrs

Data Analysis: Exploratory Data Analysis, Statistical Estimation, Hypothesis Testing, Parametric Tests, Non-Parametric Tests, Multiple Regression, Factor Analysis, Cluster Analysis

UNIT - V 8 Hrs

Research Proposal: Purpose, Types, Development of Proposal, Evaluation of Research Proposal.

Report Writing: Pre-writing consideration, Format of Reporting, Briefing, Best practices for Journal writing.


Course Outcomes:

After going through this course the student will be able to:

CO1	Recognize the principles and concepts of research types, data types and analysis
	: procedures.
CO2	Apply appropriate method for data collection and analyze the data using statistical principles.
CO3	Express research output in a structured report as per the technical and ethical standards.
CO4	: Develop a research design for the given engineering and management problem context.

Reference Books:

- 1. Krishnaswami, K.N., Sivakumar, A. I. and Mathirajan, M., Management Research Methodology, Integration of Principles, Methods and Techniques, 17th Impression, Pearson India Education Services Pvt. Ltd, 2018. ISBN: 978-81-7758-563-6
- 2. William M. K. Trochim, James P. Donnelly, The Research Methods Knowledge Base, 3rd Edition, Atomic Dog Publishing, 2006, ISBN: 978-1592602919
- 3. Kothari C.R., Research Methodology Methods and Techniques, 4th Edition, New Age International Publishers, 2019, ISBN: 978-93-86649-22-5.
- 4. Levin, R.I. and Rubin, D.S., Statistics for Management, 8th Edition, Pearson Education: New Delhi, 2017, ISBN-13-978-8184957495.

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

RUBRIC for CIE			RUBRIC for SEE				
SLNo	Content	Marks	Q. No	Contents	Marks		
1	Quizzes - Q1 & Q2	20	Each u	nit consists of TWO questions of 20 Marks each. Ans	wer FIVE		
2	Tests - T1 & T2	40		full questions selecting ONE from each unit (1 to 5).			
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20		
	Total <mark>M</mark> arks	100	3 & 4	Unit-2: Question 3 or 4	20		
			5 & 6	Unit-3: Question 5 or 6	20		
			7 & 8	Unit-4: Question 7 or 8	20		
1 22			9 & 10	Unit-5: Question 9 or 10	20		
				Total Mark	s 100		

MHT., M. Tech. 2022 SCHEME Page 29 of 82

8 Hrs

			SEMESTER: II			
Course Code	:	22MHT22TL	Pavement Analysis and Design	CIE Marks	:	100
Credits L-T-P	:	3-0-1	(Theory & Practice)	SEE Marks	:	100
Hours	:	42L + 28P	(Professional Core - 3)	SEE Durations	:	3 Hrs

Faculty Coordinator: Dr. Archana M R

UNIT - I

Pavements-types, functions, choice ,Factors affecting design and performance of flexible and rigid pavements-Pavement design factors, loads-axle load distribution, ESWL,EWL, VDF

UNIT - II 8 Hrs

Subgrade support-CBR and plate bearing tests, Resilient Modulus, fatigue tests, permanent deformation, factors affecting design and performance of highway and airport pavements – pavement material Characteristics, climatic, drainage and environmental factors, their effects and evaluation

UNIT - III 8 Hrs

Stresses and Deflection/strain in flexible pavements: Application of elastic theory, stresses, deflections/strains in single, two and three and multi – layer system, Applications in pavement design. Visco elastic theory

UNIT - IV 9 Hrs

Flexible pavement design: Empirical, mechanistic- empirical and theoretical design approaches, principle, advantages and application. Design steps by CBR method as per IRC 2001 and 2012, outline of other common design methods such as AASHTO and Asphalt Institute and Shell methods

UNIT - V 9 Hrs

Rigid pavement design: Determination of ESWL, EWL for dual and dual tandem wheel loads in Rigid pavements, General design principle, Stresses in rigid pavements, stresses due to wheel loads and temperature variations, design of cement concrete pavements as per IRC -58-2015 guidelines, KENSLAB, KENLAYER

LABORATORY 28 Hrs

Axle load survey, Transverse distribution studies, commercial vehicle traffic survey, stress analysis, flexible pavement design based on IRC, Shell and AASHTO method, rigid pavement design IRC method

Reference Books:

- 1. "Principles of Pavement Design", Yoder and Witczak, (second edition) 1975, -John Wiley and sons Inc, ISBN: 978-81-265-3072-4
- 2. "Pavement Analysis and Design", Huang, 2004-PearsonPublications, ISBN-13:9780131424739.
- 3. "Design & Performance of Road Pavements", David Croney, Paul Croney, (Third Edition), 1997, -McGrawhill Book Co. ISBN-13:9780070144514.
- 4. IRC37-2001, 2012, IRC81-1997, IRC58-2002, 2015. IRC59-1976, IRC101-1988,

Course Outcomes:

After going through this course the student will be able to:

Three Some control	ASI this course the student will be use to:
CO1:	Explain parameters and methods of pavement design
CO2:	Analyze the parameters for pavement design
CO3 :	Select suitable parameters for design of pavements
CO4 :	Design flexible and rigid pavements

Scheme of Continuous Internal Evaluation (CIE): 10 + 30 + 30 + 30 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The average of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 30 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (10), Video based seminar /presentation /demonstration (20) adding upto 30 marks.

Laboratory: Conduction of laboratory exercises, Lab report & observation & analysis (30 Marks), Lab Test (10 Marks) & Innovative Experiment/Concept Design & Implementation (10 Marks) adding up to 50 Marks. The final marks will be reduced to 30 Marks.

MHT., M. Tech. 2022 SCHEME Page 30 of 82

Scheme of Semester End Examination (SEE) for 100 marks: Each unit consists of TWO Questions of 16 Marks each. Answer FIVE full questions selecting one from each unit (from 1 to 5). Question No. 11 is compulsory (Laboratory component) for 20 Marks.

Rubric for CIE & SEE for Integrated Theory courses with Laboratory

	RUBRIC of CIE		RUBRIC of SEE			
SLNo	Content	Marks	Q. No	Contents	Marks	
1	Quizzes - Q1 & Q2	10	Each u	nit consists of TWO questions of 16 Marks each. Answ	er FIVE	
2	Tests - T1 & T2	30	Questic	full questions selecting ONE from each unit (1 to 5). on No. 11 is compulsory (Laboratory component) for 20	Marks.	
3	Experiential Learning - EL1 & EL2	30	1 & 2	Unit-1: Question 1 or 2	16	
4	Laboratory	30	3 & 4	Unit-2: Question 3 or 4	16	
	Total Marks	100	5 & 6	Unit-3: Question 5 or 6	16	
			7 & 8	Unit-4: Question 7 or 8	16	
	WO 5777 5 T 4		9 & 10	Unit-5: Question 9 or 10	16	
	NO SEE for Laboratory		11	Laboratory Component (Compulsory)	20	
				Total Marks	100	

8 Hrs

	SEMESTER: II								
Course Code : 22MHT23T		Transportation System and Planning CIE Marks		:	100				
Credits L-T-P	: 3 - 0 - 0	Transportation System and Flamming	SEE Marks	:	100				
Hours :	edits L-T-P : 3 - 0 - 0	(Professional Core - 4)	SEE Durations	:	3 Hrs				
Facul	ty Coordinator:	Prof. Varuna M							

Introduction: Elements in urban transit system, NUTP, MPO plan. Transportation Planning Process: Problem Definition, Land use transportation planning; Systems approach, integration of transport planning, traffic and land use planning, Corridor Management and Preservation.

UNIT - I

UNIT - II 9 Hr

Transportation Surveys: Definition of study area, zoning, various types of surveys and interpretation, travel demand and forecasting. Trip Generation and Distribution: Trip generation - regression, category analysis. Gravity model, calibration of Gravity model, intervening opportunities model, competing opportunities model.

UNIT - III 8 Hrs

Modal Split: Factors affecting modal split; Modal split in transport planning, Trip interchange Modal split model, Disaggregate mode- Choice model, Logit model of mode choice. Traffic Assignment: Description of transport network, route choice behavior. Assignment techniques- All-or-Nothing assignment, multipath traffic assignment, capacity restrained traffic assignment.

IT - IV 8 Hrs

Transportation Survey-Types, importance and procedure. Transport Related Land-use Models-Development of Land-use Models, The Lowry Model, Application of Lowry Model.

UNIT - V 9 Hrs

Urban Structure: Types of Urban Structure, Centripetal - Type Urban Structure, Grid-Type Urban Structure, Linear Type Urban Structure. Case Studies: Case studies on metropolitan transportation planning, integration of multimodal transport systems, best practices and emerging technologies in transportation planning.

Course Outcomes:

After going through this course the student will be able to:

CO1	:	Explain planning process for an effective transportation system
CO2	:	Compare the characteristics of mass transit system and methods of collecting traffic data to
		propose an effective transport facility
CO3	:	Calculate zonal trip generation and attraction for inter-zonal trip distribution methods
CO4	:	Evaluate transport system for assigning travel trips to various routes for effective management
		and economic sustainability

Reference Books

- 1. L R Kadiyali, Traffic Engineering and Transport Planning,9th Edition, Khanna Publishers, 1999, ISBN 139788174092205
- 2. Ponnuswamy S and Johnson Victor, Urban Transportation: Planning, Operation and Management, 1st Edition, McGraw Hill Education (India) Private Limited, 2012, ISBN-9781259002731.
- 3. JotinKhisty and Kent Lall B, Transportation Engineering An Introduction, 3rd Indian Edition, PHI learning New Delhi, 2013, ISBN-13: 978-0130335609
- 4. Hutchinson, B.G, Principles of Urban Transport System Planning, McGraw-Hill Inc., US, 1974, ISBN-13: 978-0070315396,1974

MHT., M. Tech. 2022 SCHEME Page 32 of 82

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

RUBRIC for CIE				RUBRIC for SEE			
SLNo	Content	Marks	Q. No	Contents	Marks		
1	Quizzes - Q1 & Q2	20	Each u	Each unit consists of TWO questions of 20 Marks each. Answer FIV			
2	Tests - T1 & T2	40	1116	full questions selecting ONE from each unit	t (1 to 5).		
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20		
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20		
			5 & 6	Unit-3: Question 5 or 6	20		
			7 & 8	Unit-4: Question 7 or 8	20		
			9 & 10	Unit-5: Question 9 or 10	20		
				То	tal Marks 100		

MHT., M. Tech. 2022 SCHEME Page 33 of 82

		SEMESTER: II		
Course Code	: 22MST2C1T	DESIGN OF CONCRETE BRIDGES	CIE Marks	: 100
Credits L-T-P	: 3 - 0 - 0	DESIGN OF CONCRETE BRIDGES	SEE Marks	: 100
Hours	: 42L	Elective C (Professional Elective)	SEE Durations	: 3 Hrs
Facu	ilty Coordinator:	Er.B.V.Nagesh/DR.B.C.Udayashankar	-	-
		UNIT - I		8 Hrs

Classification of Bridges, IRC Loading and vehicular load combinations Impact factor and congestion factors. Partial safety factor for – verification of equilibrium, Structural strength and serviceability limit state. Design of RCC solid slab bridge.

UNIT - II 9 Hr

Design of Box culverts. RCC T-Beam Girder & Slab Bridge :Transverse Analysis and Design, Longitudinal Analysis - Courbon method Ultimate Design for Long bending and Shear and Limit state of serviceability

UNIT - III 9 Hrs

Grillage Analysis for T-Beam Girder super structure . Design of post tensioned PSC Girders - losses in presstressing , cable profile, end block design and ultimate strength design .

UNIT - IV 8 Hrs

Design of composite Girder Bridge -- Limit state of strength and Servicibility . Types of bearings and expansion joints .

UNIT - V 8 Hrs

Bridge Sub Structure And Foundation: Calculation of various forces on Substructure & Foundation as Per IRC, Methodology for design of substructure and foundation, Design of Substructure for simply supported Girder Bridge.

Course Outcomes:

After going through this course the student will be able to:

CO1: Explain the components of a Highway bridges and specifications.	
CO2: Analyse the IRC loading conditions for the design of bridges.	
CO3: Design Aspects of RCC, PSC and Composite Bridge Super structure and understanding th	ie .
types of Bridge Bearings and Expansion joints	
CO4: Design Bridge Substructure by analysing the forces acting on it.	

Reference Books

- 1.Concrete Bridge Practice: Analysis, Design and Economics, V. K. Raina; Publisher, Tata McGraw-Hill, 1991; ISBN, 0074603086, 9780074603086
- 2. ,Bridge Engineering, Ponnuswamy,McGraw-Hill Education (India) Pvt Limited, 2007,ISBN 0070656959, 9780070656956
- 3 Bridge Deck Behaviour, Hambly EC, December 12, 2019 by CRC Press, ISBN 9780367863425
- 4.Bridge Super Structure, N.Rajgopalan "Narosa Publishing House Pvt. Ltd., New Delhi, 2013,ISBN 13: 9788173196478. IRC CODES: IRC -6, IRC-112, IRC -24, IRC -78

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE & SEE Theory courses

MHT., M. Tech. 2022 SCHEME Page 34 of 82

	RUBRIC for CIE			RUBRIC for SEE			
SLNo	Content	Marks	Q. No	Contents	Marks		
1	Quizzes - Q1 & Q2	20	Each u	nit consists of TWO questions of 20 Marks each. Answ	er FIVE		
2	Tests - T1 & T2	40	CH C 1 COMP C 1 COMP				
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20		
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20		
			5 & 6	Unit-3: Question 5 or 6	20		
			7 & 8	Unit-4: Question 7 or 8	20		
			9 & 10	Unit-5: Question 9 or 10	20		
				Total Marks	100		

8 Hrs

		SEMESTER: II			
Course Code	: 22MHT2C2T	Pavement Deterioration and Evaluation	CIE Marks	:	100
Credits L-T-P	: 3 - 0 - 0	Favement Deterioration and Evaluation	SEE Marks	:	100
Hours	: 42L	Elective C (Professional Elective)	SEE Durations	:	3 Hrs
Facul	lty Coordinator:	Dr. Anjaneyappa	-		

Introduction: Structural and functional requirements of flexible and rigid pavements, different types, causes and remedial measures of failures in flexible and rigid pavements.

UNIT - I

UNIT - II 8 Hrs

Pavement surface condition evaluation – requirements, Causes, effects, methods of measurement / evaluation and treatment of: Pavement slipperiness, Riding quality and unevenness, Rating techniques, use of modern equipments for equipment for pavement surface condition measurements, analysis of data, interpretation and application

UNIT - III 9 Hrs

Structural evaluation of pavements: requirements, factors affecting structural condition, causes, effects, methods of structural evaluation of flexible pavements by Benkelman beam deflection method, FWD, analysis of data, importance of deflection bowl measurements, interpretation and applications, design of overlay. Use of FWD and other methods for evaluation of flexible and rigid pavements and their application. Problems

UNIT - IV 9 Hrs

Overlay design: as per IRC:81-1997, choice of overlay type and pavement materials over existing flexible and rigid pavements, use of white topping, ultra thin white topping, thin white topping and ICBP as overlays

UNIT - V 8 Hrs

Model pavement studies, pavement testing Under controlled conditions, accelerated testing and evaluation methods. Test track studies. Instrumentation for pavement testing

Course Outcomes:

After going through this course the student will be able to:

CO1	:	Explain structural and functional adequacies of flexible and rigid pavements
CO2	:	Analyze functional and structural deterioration of pavements, overlay types, semifield studies
CO3	:	Categorize pavement condition, distress and overlay techniques
CO4	:	Summarize different pavement deterioration and evaluation techniques

Reference Books

- 1. E.J.Yoder & Witczak M.W. "Principles of Pavement Design"- 2nd Edition John Willey and Sons Inc., New York, 1975, ISBN: 978-0-471-97780-3
- 2. Hass R., Hudson. W. R., Zaniewisti .J. "Modern Pavement Management" Krieger Publishing Company, Florida, 1994, ISBN: 9780070308954
- 3. William D. O. Paterson, 'Road Deterioration and Maintenance Effects, Models for Planning and Management', The Highway Design and Maintenance Standards series, A World Bank Publication, June 1990, ISBN-10: 0801835909;ISBN-13: 978-0801835902
- 4. David and Paul Croney, "Design and performance of road pavements"- third edition, Mc Graw hill, 1998, ISBN-10: 0070144516; ISBN-13: 978-0070144514

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE & SEE Theory courses

RUBRIC for CIE				RUBRIC for SEE			
SLNo	Content	Marks	Q. No	Contents	Marks		
1	Quizzes - Q1 & Q2	20	Each u	nit consists of TWO questions of 20 Marks each. Answ	ver FIVE		
2	Tests - T1 & T2	40		full questions selecting ONE from each unit (1 to 5).			
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20		
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20		
			5 & 6	Unit-3: Question 5 or 6	20		
			7 & 8	Unit-4: Question 7 or 8	20		
			9 & 10	Unit-5: Question 9 or 10	20		
				Total Marks	100		

MHT., M. Tech. 2022 SCHEME Page 37 of 82

	•	SEMESTER: II	•		
Course Code	: 22MHT2C3T	Bood Construction Favinment	CIE Marks	:	100
Credits L-T-P	: 3 - 0 - 0	Road Construction Equipment	SEE Marks	:	100
Hours	: 42L	Elective C (Professional Elective)	SEE Durations	:	3 Hrs
Facul	tv Coordinator:	Dr. Anjaneyappa/ Prof. Varuna M	-		

Introduction Importance of plants and equipments – advantages and limitations, types of construction equipment used in road construction

UNIT - II 8 Hrs

Equipment for earthwork, hauling and spreading Dozers, excavators, loaders, hauling units, graders – application, types, production, factors effecting the production

UNIT - III 9 Hrs

Plants for productions of aggregates and mixes Crushers- types, factors effecting the production, Pug mill for production wet mix macadam, Hot bituminous mix plants – types, production process, Concrete batching plant- cement concrete production process

UNIT - IV 8 Hrs

Paving and Compacting Equipment Pavers – components, types of pavers, factors influencing paving quality, , Compactors – types, application, Miscellaneous equipment – Kerb casting equipment, road marking equipment, bitumen sprayers

UNIT - V 9 Hrs

Equipment Management Forecasting equipment requirement, maintenance of equipment, selection of construction equipment- task considerations, cost considerations, equipment acquisition options

Course Outcomes:

After going through this course the student will be able to:

CO1	Explain the broad features of road construction equipment
CO2	: Select constr <mark>uction equipments for road construction</mark>
CO3	Evaluate the productivity of the equipments
CO4	: Optimize the equipment productivity for road construction

Reference Books

- 1. Peurifoy RL and Clifford JS 'Construction Planning Equipment and Method' (8th Edition) 2010, McGraw Hill Book Co Inc, ISBN:13:978-0073401126.
- 2. SC Sharma 'Construction Equipment and its Management' 2002, Khanna Publishers, ISBN-13:978-8174091376
- 3. K K Chitkara 'Construction project management planning, scheduling and controlling' (Third Edition) June 2014, Tata Mc Graw hill Publications. ISBN-13: 978-9339205447
- 4. IRC SP:96-2012, IRC -97-2013, IRC-SP:86:2010, IRC SP:39-1192

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

	RUBRIC for CIE			RUBRIC for SEE		
SLNo	Content	Marks	Q. No	Contents	Marks	
1	Quizzes - Q1 & Q2	20	Each unit consists of TWO questions of 20 Marks each. Answer FIVE			
2	Tests - T1 & T2	40	1	full questions selecting ONE from each unit (1 to 5).		
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20	
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20	
			5 & 6	Unit-3: Question 5 or 6	20	
			7 & 8	Unit-4: Question 7 or 8	20	
			9 & 10	Unit-5: Question 9 or 10	20	

		-			
			SEMESTER: II		
Course Code	:	22BT2D01T	BIOINSPIRED ENGINEERING CIE Marks	:	100
Credits L-T-P	:	3-0-0	SEE Marks	:	100
Hours	:	42L	Elective D (Global Elective) SEE Durations	:	3 Hr
Facu	ılt	ty Coordinator:	Dr Nagashree Rao and Dr Ashwani Sharma		

Introduction to Bio-inspired Engineering: Macromolecules, Stem cells; types and applications. Synthetic Biology; Bottom-up' and 'top-down' engineering approaches. Synthetic/ artificial life. Biological Clock, Genetic Algorithms.

UNIT - II 9 Hrs

Principles of bioinspired materials: Biological and synthetic materials, Self-assembly, hierarchy and evolution. Biopolymers, Bio-steel, Bio-composites, multi-functional biological materials. Thermal Properties. Antireflection and photo-thermal biomaterials, Microfluidics in biology, Invasive and non-invasive thermal detection inspired by skin

UNIT - III 9 Hrs

Lessons from Nature:Bioinspired Materials and mechanism: Firefly-Bioluminescence, Cockleburs -Velcro, Lotus leaf - Self-cleaning materials, Gecko - Gecko tape, Whale fins - Turbine blades, Box Fish / Bone - Bionic car, Shark skin - Friction reducing swim suits, Kingfisher beak - Bullet train, Coral - Calera cement, Forest floor / Ecosystem functioning - Flooring tiles, Morpho butterfly- Structural color, Namib beetle- Water collecting, Termite mound passive cooling, Birds/Insects-flights/ aerodynamics, Mosquito inspired micro needle.

UNIT - IV 8 Hrs

Biomedical Inspiration-Concept and applications: Organ system- Circulatory- artificial blood, artificial heart, pacemaker. Respiratory- artificial lungs. Excretory- Artificial kidney and skin. Artificial Support and replacement of human organs: artificial liver and pancreas. Total joint replacements- artificial limbs. Visual prosthesis -artificial eye/ bionic eye.

UNIT - V 8 Hrs

Biomimetics: Inventions in nature for Human Innovation: Photosynthesis and Photovoltaic cells, Bionic/Artificial leaf. Bio-ink and 3D-Bioprinting. Cellular automata. Biosensors: Artificial tongue and nose. Biomimetic echolation. Insect foot adaptations for adhesion. Thermal insulation and storage materials. Bees and Honeycomb Structure. Artificial Intelligence, Neural Networking and bio-robotics.

Course Outcomes:

After going through this course the student will be able to:

88	- 1-0-1 - 1-1-1 - 1-1-1 - 1-1
CO1	: Elucidate the concepts and phenomenon of natural processes
CO2	: Apply the basic principles for design and development of bioinspired structures
CO3	: Analyse and append the concept of bio-mimetics for diverse applications
CO4	Designing technical solutions by utilization of bio-inspiration modules

Reference Books:

- 1. D. Floreano and C. Mattiussi, Bio-Inspired Artificial Intelligence: Theories, Methods and Technologies, 1st edition, MIT Press, 2008, ISBN: 9780262062718
- 2. Guang Yang, Lin Xiao, and Lallepak Lamboni. Bioinspired Materials Science and Engineering. 1st edition, John Wiley, 2018, ISBN: 978-1-119-3903362
- 3. M.A. Meyers and P.Y. Chen. Biological Materials, Bioinspired Materials, and Biomaterials, 1st edition, Cambridge University Press, 2014, ISBN 978-1-107-01045.
- 4. Tao Deng. Bioinspired Engineering of Thermal Materials, 1st edtion, Wiley-VCH Press, 2018. ISBN: 978-3-527-33834-4.

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

MHT., M. Tech. 2022 SCHEME Page 40 of 82

				RUBRIC for SEE		
- -	Content	Marks	Q. No	Contents	Marks	
T	Quizzes - Q1 & Q2	20	Each unit consists of TWO questions of 20 Marks each. Answer FIVE			
2 1	Tests - T1 & T2	40		full questions selecting ONE from each unit (1 to 5).		
3 I	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20	
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20	
			5 & 6	Unit-3: Question 5 or 6	20	
			7 & 8	Unit-4: Question 7 or 8	20	
			9 & 10	Unit-5: Question 9 or 10	20	

			SEMESTER: II		
Course Code	:	22BT2D02T	HEALTH INFORMATICS CIE Marks	:	100
Credits L-T-P	:	3-0-0	SEE Marks	:	100
Hours	:	42L	Elective D (Global Elective) SEE Durations	:	3 Hrs
Facu	ılt	v Coordinator:	Dr A H Maniunatha Reddy		

Introduction, Healthcare data, information and knowledge: Data types, data conversion, clinical data warehouse, data analytics, challenges, role of informatics in analytics, future trends

UNIT - II 8 Hrs

Electronic health records: Introduction, scope for the e health records, challenges, examples, logical steps to selecting and implementing EHR

UNIT - III 8 Hrs

Data standards and medical coding: Introduction, medical content standards, termonology standards, transport standards, medical coding and reimbursement, future trends,

UNIT - IV 9 Hrs

Healthcare Enterprise: Overview of Health Informatics: Introduction, Key players in HI, organizations involved, barriers, programs, organizations and career, HI Resoruces

UNIT - V 9 Hrs

Health Information privacy and security: Introduction, basic security principles, authentication and identity management, data security in the cloud and client/server management

Course Outcomes:

After going through this course the student will be able to:

CO1	:	Understand the basic principles of Health informatics
CO2	:	Data capture to data transformation and to analysis
CO3	:	Creation of E health records, identify the challenges
CO4		Improvise the significant factors as per the spatio-temporal requirements

Reference Books:

- 1. Robert E. Hoyt Ann K. Yoshihashi, Health Informatics, Practical guide for Healthcare and Information Technology Professionals, 6th edition, Informatics Education, 2014, ISBN: 978-0-9887529-2-4
- 2. Kathryn J. Hannah Marion J. Ball, Health Informatics, Springer Series edition, Springer, 2005, ISBN: 1-85233-826-1
- 3. William R Hersh, Health Informatics, a Practical guide, 8th edition. 2022, ISBN 978-1-387-85475-2
- 4. Pentti Nieminen. Medical informatics and data analysis 1st edition, MDPI AG, 2021, ISBN-13: 978-3036500980

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

MHT., M. Tech. 2022 SCHEME Page 42 of 82

	RUBRIC for CIE			RUBRIC for SEE		
SLNo	Content	Marks	Q. No	Contents	Marks	
1	Quizzes - Q1 & Q2	20	Each unit consists of TWO questions of 20 Marks each. Answer FIVE			
2	Tests - T1 & T2	40	1	full questions selecting ONE from each unit (1 to 5).		
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20	
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20	
			5 & 6	Unit-3: Question 5 or 6	20	
			7 & 8	Unit-4: Question 7 or 8	20	
			9 & 10	Unit-5: Question 9 or 10	20	
				Total Marks	100	

	SEMESTER: II			
Course Code : 22CS2D03T	BUSINESS ANALYTICS	CIE Marks	:	100
Credits L-T-P : 3-0-0	BUSINESS ANALITICS	SEE Marks	:	100
Hours : 42L	Elective D (Global Elective)	SEE Durations	:	3 Hrs
Faculty Coordinate	r: Dr. Azra Nasreen and Dr. Badarinath K	_		

UNIT - I

Overview of Business analytics, Scope of Business analytics, Business Analytics Process, Relationship of Business Analytics Process and organization, competitive advantages of Business Analytics. Statistical Tools: Statistical Notation, Descriptive Statistical methods, Review of probability distribution and data modelling.

UNIT - II 9 Hrs

Trendiness and Regression Analysis Modelling Relationships and Trends in Data, simple Linear Regression. Important Resources, Business Analytics Personnel, Data and models for Business analytics, problem solving, Visualizing and Exploring Data, Business Analytics Technology.

UNIT - III 8 Hrs

Organization Structures of Business analytics Team management, Management Issues, Designing Information Policy, Outsourcing, Ensuring Data Quality, Measuring contribution of Business analytics, Managing Changes. Descriptive Analytics, Predictive Analytics, Predictive Modelling, Predictive analytics analysis.

UNIT - IV 8 Hrs

Forecasting Techniques Qualitative and Judgmental Forecasting, Statistical Forecasting Models, Forecasting Models for Stationary Time Series, Forecasting Models for Time Series with a Linear Trend, Forecasting Time Series with Seasonality, Regression Forecasting with Casual Variables, Selecting Appropriate Forecasting Models.

UNIT - V 8 Hrs

Decision Analysis Formulating Decision Problems, Decision Strategies with and without Outcome, Probabilities, Decision Trees, The Value of Information, Utility and Decision Making.

Course Outcomes:

After going through this course the student will be able to:

CO1	: Apply the concepts and methods of business analytics to solve business problems
CO2	: Analyse, model and solve decision problems in different settings
CO3	: Interpret results/solutions and identify appropriate courses of action for a given business scenario
CO4	: Demonstrate skills like investigation, effective communication, working in team/Individual and following
	ethical practices by implementing solutions to decision making problems

Reference Books:

- 1. Business analytics Principles, Concepts, and Applications FT Press Analytics, Marc J. Schniederjans, Dara G. Schniederjans, Christopher M. Starkey, 1st Edition, 2014, ISBN-13: 978-0133989403, ISBN-10: 0133989402
- 2. The Value of Business Analytics: Identifying the Path to Profitability, Evan Stubs , John Wiley & Sons, |DOI:10.1002/9781118983881,1st Edition 2014, ISBN:978111898388
- 3. Business Analytics, James Evans, Pearsons Education 2nd Edition, ISBN-13: 978-0321997821 ISBN-10: 0321997824
- 4. Predictive Business Analytics Forward Looking Capabilities to Improve Business, Gary Cokins and Lawrence Maisel, Wiley; 1st Edition, 2013, ISBN: 978-1-118-17556-9.

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 marks. Final test marks will be reduced to 40 Marks.


EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

MHT., M. Tech. 2022 SCHEME Page 44 of 82

	RUBRIC for CIE			RUBRIC for SEE	
SLNo	Content	Marks	Q. No	Contents	Marks
1	Quizzes - Q1 & Q2	20	Each u	nit consists of TWO questions of 20 Marks each. Answ	ver FIVE
2	Tests - T1 & T2	40	1	full questions selecting ONE from each unit (1 to 5).	
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20
			5 & 6	Unit-3: Question 5 or 6	20
			7 & 8	Unit-4: Question 7 or 8	20
			9 & 10	Unit-5: Question 9 or 10	20
				Total Marks	100

,					
		SEMESTER: II			
Course Code :	22CV2D04T	INDUSTRIAL AND OCCUPATIONAL HEALTH AND SAFETY	CIE Marks	:	100
Credits L-T-P :	3-0-0	INDUSTRIAL AND OCCUPATIONAL HEALTH AND SAFETT	SEE Marks	••	100
Hours :	42L	Elective D (Global Elective)	SEE Durations	••	3 Hrs
Facult	ty Coordinator:	Dr.V.AnanthaRam			

Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and fire fighting, equipment and methods.

UNIT - II 09Hrs

Occupational health and safety: Introduction, Health, Occupational health: definition, Interaction between work and health, Health hazards, workplace, economy and sustainable development, Work as a factor in health promotion. Health protection and promotion Activities in the workplace: National governments, Management, Workers, Workers' representatives and unions, Communities, Occupational health professionals. Potential health hazards: Air contaminants, Chemical hazards, Biological hazards, Physical hazards, Ergonomic hazards, Psychosocial factors, Evaluation of health hazards: Exposure measurement techniques, Interpretation of findings recommended exposure limits. Controlling hazards: Engineering controls, Work practice controls, Administrative controls. Occupational diseases: Definition, Characteristics of occupational diseases, Prevention of occupational diseases.

UNIT - III 09Hrs

Hazardous Materials characteristics and effects on health: Introduction, Chemical Agents, Organic Liquids, Gases, Metals and Metallic Compounds, Particulates and Fibers, Alkalies and Oxidizers, General Manufacturing Materials, Chemical Substitutes, Allergens, Carcinogens, Mutagens, Reproductive Hazards, Sensitizers and Teratogens, Recommended Chemical Exposure Limits. Physical Agents, Noise and Vibration, Temperature and Pressure, Carcinogenicity, Mutagenicity and Teratogenicity. Ergonomic Stresses: Stress-Related Health Incidents, Eyestrain, Repetitive Motion, Lower Back Pain, Video Display Terminals.

UNIT - IV 08 Hrs

Wear and Corrosion and their prevention: Wear- types, causes, effects, wear reduction methods, lubricants-types and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.

UNIT - V 08 Hrs

Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, over hauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets, Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance.

Course Outcomes:

After going through this course the student will be able to:

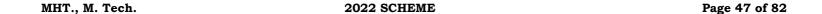
CO1	Explain the Industrial and Occupational health and safety and its importance.	
CO2	Demonstrate the exposure of different materials, occupational environment to which the employee ca	an
	expose in the industries.	
CO3	Characterize the different type materials, with respect to safety and health hazards of it.	
CO4	Analyze the different processes with regards to safety and health and the maintenance required in th	ne
	industries to avoid accidents	

Reference Books:

- 1.Maintenance Engineering Handbook, Higgins & Morrow, SBN 10: 0070432015 / ISBN 13: 9780070432017, Published by McGraw-Hill Education. Da Information Services.
- 2. H. P. Garg, Maintenance Engineering Principles, Practices & Management, 2009,S. Chand and Company, New Delhi, ISBN:9788121926447
- 3. Fundamental Principles of Occupational Health and Safety, Benjamin O. ALLI, Second edition, 2008 International Labour Office Geneva: ILO, ISBN 978-92-2-120454-1
- 4. Foundation Engineering Handbook, 2008, Winterkorn, Hans, Chapman & Hall London. ISBN:8788111925428.

MHT., M. Tech. 2022 SCHEME Page 46 of 82

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100


QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

	RUBRIC for CIE			RUBRIC for SEE	
SLNo	Content	Marks	Q. No	Contents	Marks
1	Quizzes - Q1 & Q2	20	Each u	nit consists of TWO questions of 20 Marks each. Answ	er FIVE
2	Tests - T1 & T2	40		full questions selecting ONE from each unit (1 to 5).	
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20
			5 & 6	Unit-3: Question 5 or 6	20
			7 & 8	Unit-4: Question 7 or 8	20
			9 & 10	Unit-5: Question 9 or 10	20
				Total Marks	100

		SEMESTER: II			
Course Code :	22CV2D05T	INTELLIGENT TRANSPORT SYSTEMS	CIE Marks	:	100
Credits L-T-P :	3-0-0	INTELLIGENT TRANSPORT STSTEMS	SEE Marks	:	100
Hours :	42L	Elective D (Global Elective)	SEE Durations	:	3 Hrs
Faculty Coordin	ator:	Dr Sunil S			

Introduction: –Historical Background, Definition, Future prospectus, ITS training and educational needs. Fundamentals of Traffic Flow and Control- Traffic flow elements, Traffic flow models, Shock waves in Traffic streams, Traffic signalization and control principles, Ramp metering, Traffic simulation

UNIT - II 9 Hrs

ITS User services-User services bundles, Travel and Traffic management, Public Transportation Operations, Electronic Payment, Commercial Vehicles Operations, Emergency Management, Advanced Vehicle Control and safety systems, Information Management, Maintenance and construction Management. ITS Architecture-Regional and Project ITS Architecture, Need of ITS architecture, concept of Operations, National ITS Architecture, Architecture development tool

UNIT - III 9 Hrs

Technology Building Blocks for ITS-Introduction, Data acquisition, Communication Tools, Data Analysis, and Traveller Information. Various detection, identification and collection methods for ITS. ITS Applications and their benefits-Freeway and incident management systems, Advanced arterial traffic control systems, Advanced Public Transportation Systems, Multimodal Traveller Information systems

UNIT - IV 8 Hrs

ITS Planning-Transportation planning and ITS, Planning and the National ITS Architecture, Planning for ITS, Integrating ITS into Transportation Planning, relevant case studies. ITS Standards-Standard development process, National ITS architecture and standards, ITS standards application areas, National Transportation Communications for ITS Protocol, Standards testing

UNIT - V 8 Hrs

ITS Evaluation – Project selection at the planning level, Deployment Tracking, Impact Assessment, Benefits by ITS components, Evaluation Guidelines, Challenges and Opportunities. ITS for Law Enforcement: Introduction, Enhance and support the enforcement traffic rules and regulations, ITS Funding options and ITS case studies

Course Outcomes:

After going through this course the student will be able to:

CO1:	Identify and apply ITS applications at different levels
CO2 :	Illustrate ITS architecture for planning process
CO3 :	Examine the significance of ITS for various levels
CO4 :	Compose the importance of ITS in implimentions

Reference Books:

- 1. Pradip Kumar Sarkar and Amit Kumar Jain, "Intelligent Transport Systems", PHI Learning Private Limited, Delhi,2018, ISBN-9789387472068
- 2. Choudury M A and Sadek A, "Fundamentals of Intelligent Transportation Systems Planning" Artech House publishers (31 March 2003); ISBN-10: 1580531601
- 3. Bob Williams, "Intelligent transportation systems standards", Artech House, London, 2008. ISBN-13: 978-1-59693-291-3
- 4. Asier Perallos, Unai Hernandez-Jayo, Enrique Onieva, Ignacio Julio García Zuazola "Intelligent Transport Systems: Technologies and Applications" Wiley Publishing ©2015, ISBN:1118894782 9781118894781

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

MHT., M. Tech. 2022 SCHEME Page 48 of 82

	RUBRIC for CIE			RUBRIC for SEE	
SLNo	Content	Marks	Q. No	Contents	Marks
1	Quizzes - Q1 & Q2	20	Each u	nit consists of TWO questions of 20 Marks each. Answ	ver FIVE
2	Tests - T1 & T2	40	1	full questions selecting ONE from each unit (1 to 5).	
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20
			5 & 6	Unit-3: Question 5 or 6	20
			7 & 8	Unit-4: Question 7 or 8	20
			9 & 10	Unit-5: Question 9 or 10	20

		SEMESTER: II		
Course Code	: 22EC2D06T	ELECTRONIC SYSTEM DESIGN CIE Marks	:	100
Credits L-T-P	: 3-0-0	SEE Marks	:	100
Hours	: 42L	Elective D (Global Elective) SEE Durations	:	3 Hrs
Facu	alty Coordinator:	Prof. Ravishankar Holla		

Design Process & its Fundamentals: Life Cycle of Electronic Products, Design and Development Process, Guidance for Product Planning, Design and Development, Technical Drawings, Circuit Diagrams, Computer-Aided Design (CAD)

UNIT - II 9 Hrs

System Architecture and Protection Requirements: Introduction - Terminology, Functions and Structures, Systems Design Architecture, Electronic System Levels, System Protection

Experiential Learning: (4 quizzes on the below mentioned topics other than CIE) Reliability Analysis: Introduction, Calculation Principles, Exponential Distribution, Failure of Electronic, Components, Failure of Electronic Systems, Reliability Analysis of Electronic Systems, Recommendations for Improving Reliability of Electronic Systems

UNIT - III 8 Hrs

Thermal Management and Cooling: Introduction - Terminology, Temperatures and Power Dissipation, Calculation Principles, Heat Transfer, Methods to Increase Heat Transfer, Application Examples in Electronic Systems, Recommendations for Thermal Management of Electronic Systems, Cooling systems, liquid, air and non cooling systems.

UNIT - IV 8 Hrs

Electromagnetic Compatibility (EMC):

Introduction, Coupling Between System Components, Grounding Electronic Systems, Shielding from Fields, Electrostatic Discharge (ESD), Recommendations for EMC-compliant Systems Design

UNIT - V 8 Hrs

Recycling Requirements and Design for Environmental Compliance: Introduction - Motivation and the Circular Economy, Manufacture, Use, and Disposal of Electronic Systems in the Circular Economy, Product Recycling in the Disposal Process, Material Recycling in the Disposal Process, Design and Development for Disassembly, Material Suitability in Design and Development, Recommendations for Environmentally Compliant Systems

Course Outcomes:

After going through this course the student will be able to:

CO1	:	Realize the fundamentals of Design, Architecture, thermal management, EMC and Recycling requirements of
		Electronic System Design
CO2	:	Analyze the various application wise design requirements in Electronic systems along with the related
		concepts of implementations, standards and Compliances.
CO3	:	Use modern open source tools to realize the various concepts of Electronic system design
CO4	:	Engage in self-study through assignments, simulations, case studies and projects

Reference Books:

- 1. Fundamentals of Electronic Systems Design, Jens Lienig, Hans Brümmer 2017, Springer International Publishing, ISBN 978-3-319-55839-4, DOI:10.1007/978-3-319-55840-0
- 2. "Embedded System Design", Marwedel, Peter, Springer Nature, 10.1007/978-3-030-60910-8
- 3. "Electromagnetic Compatibility Engineering", Henry W. Ott, WILEY Publication, ISBN: 978-0-470-18930-6
- 4. "Handbook of Electronic Systems Design" by Charles A. Harper, McGraw-Hill Inc., US, 0070266832, 978-0070266834

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

MHT., M. Tech. 2022 SCHEME Page 50 of 82

	Rub	ric for	CIE &	SEE Theory courses	
	RUBRIC for CIE			RUBRIC for SEE	
SLNo	Content	Marks	Q. No	Contents	Marks
1	Quizzes - Q1 & Q2	20	Each u	nit consists of TWO questions of 20 Marks each. Answ	ver FIVE
2	Tests - T1 & T2	40		full questions selecting ONE from each unit (1 to 5).	
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20
			5 & 6	Unit-3: Question 5 or 6	20
			7 & 8	Unit-4: Question 7 or 8	20
			9 & 10	Unit-5: Question 9 or 10	20
				Total Marks	100

MHT., M. Tech. 2022 SCHEME Page 51 of 82

SEMESTER: II									
Course Code	:	22EC2D07T	EVOLUTION OF WIRELESS TECHNOLOGIES	CIE Marks	:	100			
Credits L-T-P	:	3-0-0	EVOLUTION OF WIRELESS TECHNOLOGIES	SEE Marks	:	100			
Hours	:	42L	Elective D (Global Elective)	SEE Durations	:	3 Hrs			
Facı	11t	v Coordinator:	Dr. Mahesh A						

UNIT - I

Introduction to cellular systems: Overview of Cellular Systems and evolution 2G/3G/4G/5G, Cellular Concepts - Frequency

channel and Adjacent channel Interference, C/I, Handoff, Blocking, Erlang Capacity, Bluetooth, WiFi, WWAN and PAN.

UNIT - II

Fundamentals of wireless communication: Wireless Channel, Wireless propagation, Link budget, Free-space path loss, Noise figure of receiver, Multipath fading, Shadowing, Fading margin, Shadowing margin, Wireless Channel Capacity, OFDM and LTE, Large Scale Propagation effects and Channel Models

UNIT - III

Fundamentals of 5G architecture: Difference between 4G and 5G, 5G Architecture, Planning of 5G Network, Quality of Service, Radio

Network, Requirements, Security, SIM in 5G Era, Specifications, Standardization, Terminal States

UNIT - IV

8 Hrs mmWave and Visible Light Communications: Back ground and concept of mmWave Communications, Frequency bands, propagation characteristics, channel models, applications and challenges in 5G

> UNIT - V 8 Hrs

Future Generations: Future Generations (where is the 6G?), Health Considerations, Identifiers, Interfaces, ,Key Derivation, Location Based Services, Massive Internet of Things, Measurements, Network Functions Virtualization, Network Slicing, Open Source, , User Equipment, Vehicle-to-Vehicle communications (V2V), Virtual Reality (VR/AR/XR). Case study- Bharath Stack

Course Outcomes:

After going through this course the student will be able to:

CO1	Ι.	Demonstrate their understanding on functioning of wireless communication system and evolution of
(01		
		different wireless communication systems and standards
CO2	:	Compare different technologies used for wireless communication systems.
	-	1 0
CO3	:	Demonstrate an ability explain recent techniques for Wireless Communication systems
CO4	:	Update the latest trends in wireless communications

Reference Books:

- 1. Theodore S. Rappaport, "Wireless Communications: Principles and Practice", Pearson, 2nd Edition.
- 2. Aditya K Jagannatham, "Principles of Modern Wireless Communications", McGraw Hill, 2017
- 3. Robin Chataut, Robert Akl, "Massive MIMO Systems for 5G and beyond Networks—Overview, Recent Trends, Challenges, and Future Research Direction" Sensors, May 2020
- 4. A. N. Uwaechia and N. M. Mahyuddin, A Comprehensive Survey on Millimeter Wave, Communications for Fifth-Generation Wireless Networks: Feasibility and Challenges, in IEEE, Access, vol. 8, pp. 62367-62414, 2020

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

MHT., M. Tech. 2022 SCHEME Page 52 of 82

	Rub	ric for	CIE &	SEE Theory courses				
RUBRIC for CIE				RUBRIC for SEE				
SLNo	Content	Marks	Q. No	Contents	Marks			
1	Quizzes - Q1 & Q2	20	Each u	nit consists of TWO questions of 20 Marks each. Answ	Marks each. Answer FIVE			
2	2 Tests - T1 & T2 40 full questions selecting ONE from each unit (1 to 5).							
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20			
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20			
			5 & 6	Unit-3: Question 5 or 6	20			
			7 & 8	Unit-4: Question 7 or 8	20			
			9 & 10	Unit-5: Question 9 or 10	20			
				Total Marks	100			

MHT., M. Tech. 2022 SCHEME Page 53 of 82

	SEMESTER: II		
Course Code : 22ET2D08T	TRACKING AND NAVIGATION SYSTEMS	CIE Marks	: 100
Credits L-T-P : 3-0-0	TRACKING AND NAVIGATION SISTEMS	SEE Marks	: 100
Hours : 42L	Elective D (Global Elective)	SEE Durations	: 3 Hrs
Faculty Coordinator:	Prof. Shambulinga .M, Dr. B. Roja Reddy		
	UNIT - I		9 Hrs

An Introduction to Radar: Basic Radar, The simple form of the Radar Equation, Radar Block Diagram, Radar Frequencies, Application of radar, Types of Radars. Detection of signals in Noise, Receiver Noise and the Signal-to Noise Ratio, Probability of Detection and False alarm, Introduction to Doppler, MTI, UWB Radars

UNIT - II 8 Hrs

Terrestrial Network based positioning and navigation: General Issues of wireless positions location, Fundamentals, positioning in cellular networks, positioning in WLANs, Positioning in Wireless sensor networks.

UNIT - III 8 Hrs

Satellite-based navigation systems: Global Navigation satellite systems (GNSS), GNSS receivers.

UNIT - IV 9 Hrs

LiDAR: Introduction to LiDAR, context and conceptual discussion of LiDAR, Types of LiDARS, LiDARS Detection modes, Flash LiDAR versus Scanning LiDAR, Monostatic versus Bistatic LiDAR, Major Devices in a LiDAR, LiDAR remote sensing, Basic components and physical principles of LiDAR, LiDAR accuracy and data formats.

UNIT - V 8 Hrs

SONAR: Underwater acoustics, applications, comparison with radar, submarine detection and warfare, overcoming the effects of the ocean, sonar and information processing. Transmission of the acoustic signal: Introduction, detection contrast and detection index, transmission equation, equation of passive and active sonar.

Course Outcomes:

After going through this course the student will be able to:

CO1	:	Understand the concepts of Radar, LiDAR, Sonar, terrestrial and satellite based navigation system
CO2		Apply the concepts of radars, LiDAR, Sonar, cellular networks, WLAN, sensor networks and satellites in
		determining the user position and navigation.
		Analyze the different parameters of satellite and terrestrial networks for navigation systems.
CO4	:	Evaluate the Radar, LiDAR, Sonar systems and satellite and terrestrial network based navigation and
		tracking systems

Reference Books:

- 1. M. L Skolnik, Introduction to RADAR Systems, 3rd edition, 2017, TATA Mcgraw-Hill, ISBN: 978-0070445338
- 2. Mark A Richards, James A Scheer, William A Holam, Principles of Modern Radar Basic Principles, 2010, 1st edition, SciTech Publishing Inc, ISBN:978-1891121524.
- 3. Davide dardari, Emanuela Falletti, Marco Luise, Satellite and Terrestrial Radio Positioning techniques- A signal processing perspective, 1st Edition, 2012, Elsevier Academic Press, ISBN: 978-0-12-382084-6.
- 4. Paul McManamon, LiDAR Technologies and Systems, SPIE press, 2019.
- 5. Pinliang Dong and Qi Chen, LiDAR Remote Sensing and Applications, CRC Press, 2018, ISBN: 978-1-4822-4301-7
- 6. Jean-Paul Marage, Yvon Mori, Sonar and Underwater Acoustics, Wiley, 2013, ISBN: 9781118600658

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.


Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

MHT., M. Tech. 2022 SCHEME Page 54 of 82

RUBRIC for CIE				RUBRIC for SEE			
SLNo	Content	Marks	Q. No	Contents	Marks		
1	Quizzes - Q1 & Q2	20	Each unit consists of TWO questions of 20 Marks each. Answer F				
2 Tests - T1 & T2 40 full questions selecting ONE from each unit (1 to 5).							
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20		
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20		
			5 & 6	Unit-3: Question 5 or 6	20		
			7 & 8	Unit-4: Question 7 or 8	20		
			9 & 10	Unit-5: Question 9 or 10	20		

MHT., M. Tech. 2022 SCHEME Page 55 of 82

SEMESTER: II											
Course Code	:	22IM2D09T	PROJECT MANAGEMENT	CIE Marks	:	100					
Credits L-T-P	:	3-0-0	PROJECT MANAGEMENT	SEE Marks	:	100					
Hours	:	42L	Elective D (Global Elective)	SEE Durations	:	3 Hrs					
Facı	ılt	ty Coordinator:	Dr. Vikram N Bahadurdesai								

Introduction: Project Planning, Need of Project Planning, Project Life Cycle, Roles, Responsibility and Team Work, Project Planning Process, Work Breakdown Structure (WBS), Introduction to Agile Methodology.

UNIT - II 8 Hrs

Capital Budgeting: Capital Investments: Importance and Difficulties, phases of capital budgeting, levels of decision making, facets of project analysis, feasibility study – a schematic diagram, objectives of capital budgeting

UNIT - III 9 Hrs

Project Costing: Cost of Project, Means of Finance, Cost of Production, Working Capital Requirement and its Financing, Profitability Projections, Projected Cash Flow Statement, Projected Balance Sheet, Multi-year Projections, Financial Modeling, Social Cost Benefit Analysis

UNIT - IV 8 Hrs

Tools & Techniques of Project Management: Bar (GANTT) chart, bar chart for combined activities, logic diagrams and networks, Project evaluation and review Techniques (PERT) Critical Path Method (CPM), Computerized project management

UNIT - V

9 Hrs

Project Management and Certification: An introduction to SEI, CMMI and project management institute USA – importance of the same for the industry and practitioners. PMBOK 6 - Introduction to Agile Methodology, hemes / Epics / Stories, Implementing Agile.

Domain Specific Case Studies on Project Management: Case studies covering project planning, scheduling, use of tools & techniques, performance measurement.

Course Outcomes:

After going through this course the student will be able to:

		ough this course the student will be usic to:
CO1	:	Explain project planning activities that accurately forecast project costs, timelines, and quality.
CO2	:	Evaluate the budget and cost analysis of project feasibility.
CO3	:	Analyze the concepts, tools and techniques for managing projects.
CO4	:	Illustrate project management practices to meet the needs of Domain specific stakeholders from multiple
		sectors of the economy (i.e. consulting, government, arts, media, and charity organizations).

Reference Books:

- 1. Prasanna Chandra, Project Planning Analysis Selection Financing Implementation & Eview, Tata McGraw Hill Publication, 8th Edition, 2010, ISBN 0-07-007793-2.
- 2. Project Management Institute, A Guide to the Project Management Body of Knowledge (PMBOK Guide), 5th Edition, 2013, ISBN: 978-1-935589-67-9
- 3. Harold Kerzner, Project Management A System approach to Planning Scheduling & Emp; Controlling, John Wiley & Emp; Sons Inc., 11th Edition, 2013, ISBN 978-1-118-02227-6.
- 4. Rory Burke, Project Management Planning and Controlling Techniques, John Wiley & Sons, 4th Edition, 2004, ISBN: 9812-53-121-1

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.


Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

MHT., M. Tech. 2022 SCHEME Page 56 of 82

1 Quizzes - Q1 & Q2 20 Each unit consists of TWO questions of 20 Marks each. Answer F 2 Tests - T1 & T2 40 full questions selecting ONE from each unit (1 to 5). 3 Experiential Learning - EL1 & EL2 40 1 & 2 Unit-1: Question 1 or 2 2 Total Marks 100 3 & 4 Unit-2: Question 3 or 4 5 & 6 Unit-3: Question 5 or 6		RUBRIC for CIE			RUBRIC for SEE		
2 Tests - T1 & T2 40 full questions selecting ONE from each unit (1 to 5). 3 Experiential Learning - EL1 & EL2 40 1 & 2 Unit-1: Question 1 or 2 2 Total Marks 100 3 & 4 Unit-2: Question 3 or 4 2 5 & 6 Unit-3: Question 5 or 6 2	SLNo	Content	Marks	Q. No	Contents	Marks	
3 Experiential Learning - EL1 & EL2	1	Quizzes - Q1 & Q2	20	Each unit consists of TWO questions of 20 Marks each. Answer Fl			
Total Marks 100 3 & 4 Unit-2: Question 3 or 4 2 5 & 6 Unit-3: Question 5 or 6 2	2 Tests - T1 & T2 40				full questions selecting ONE from each unit (1 to 5).		
5 & 6 Unit-3: Question 5 or 6	3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20	
		Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20	
7 & 8 Unit-4: Question 7 or 8				5 & 6	Unit-3: Question 5 or 6	20	
				7 & 8	Unit-4: Question 7 or 8	20	
9 & 10 Unit-5: Question 9 or 10				9 & 10	Unit-5: Question 9 or 10	20	

8 Hrs

SEMESTER: II										
Course Code : 22	2IS2D10T	DATABASE AND INFORMATION SYSTEMS CIE Marks	:	100						
Credits L-T-P: 3-	-0-0	SEE Marks	:	100						
Hours : 42	2L	Elective D (Global Elective) SEE Durations	:	3 Hrs						
Faculty (Coordinator:	Prof.Smitha G R								

Advanced Database Models, Systems, and Applications: Enhanced Data Models: Introduction to Active, Temporal, Spatial, Multimedia, and Deductive Databases. Distributed Database Concepts: Distributed Database Concepts, Data Fragmentation, Replication, and Allocation Techniques for Distributed Database Design, Overview of Concurrency Control and Recovery in Distributed Databases

UNIT - I

UNIT - II 8 Hrs

Introduction to Information Retrieval and Web Search: Information Retrieval (IR) Concepts Retrieval Models, Types of Queries in IR Systems, Text Preprocessing, Inverted Indexing, Evaluation Measures of Search Relevance, Web Search and Analysis, Trends in Information Retrieval.

UNIT - III 8 Hrs

Information Systems, Organizations and Strategy: Organizations and information systems, How information systems impact organization and business firms, Using information systems to gain competitive advantage, management issues, Ethical and Social issues in Information Systems: Understanding ethical and Social issues related to Information Systems, Ethics in an information society, The moral dimensions of information society. A Case study on business planning.

UNIT - IV 9 Hrs

Achieving Operational Excellence and Customer Intimacy: Enterprise systems, Supply chain management(SCM) systems, Customer relationship management(CRM) systems, Enterprise application. E-commerce: Digital Markets Digital Goods: E-commerce and the internet, E-commerce-business and technology, The mobile digital platform and mobile E-commerce, Building and E-commerce web site. A Case study on ERP.

UNIT - V 9 Hrs

Managing Knowledge:

The knowledge management landscape, Enterprise-wide knowledge management system, Knowledge work systems, Intelligent techniques. Enhancing Decision Making: Decision making and information systems, Business intelligence in the enterprise. Business intelligence constituencies. Building Information Systems: Systems as planned organizational change, Overview of systems development.

Course Outcomes:

After going through this course the student will be able to:

CO1	: Understand the different models for Infromation Retrieval.
CO2	: Appricieate the technology of Information Retrieval and Web Search
CO3	To understand the basic principles and working of information technology.
CO4	Describe the role of information technology and information systems in business.

Reference Books:

- 1. Kenneth C. Laudon and Jane P. Laudon: Management Information System, Managing the Digital Firm, Pearson Education, 14th Global edition, 2016, ISBN:9781292094007.
- 2. Fundamentals of Database Systems, Ramez Elmasri, Shamkant B. Navathe, 7th Edition, 2016, Published by Pearson, Copyright $\mathbb O$, ISBN-10: 0133970779
- 3. James A. O'Brien, George M. Marakas: Management Information Systems, Global McGraw Hill, 10th Edition, 2011, ISBN: 978-0072823110.
- 4. Database Management Systems, Raghu Ramakrishnan and Johannes Gehrke, 3rd Edition, 2003, McGraw-Hill, ISBN: 9780071231510

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE & SEE Theory courses

MHT., M. Tech. 2022 SCHEME Page 58 of 82

	RUBRIC for CIE			RUBRIC for SEE			
SLNo	Content	Marks	Q. No	Contents	Marks		
1	Quizzes - Q1 & Q2	20	Each u	nit consists of TWO questions of 20 Marks each. Answ	er FIVE		
2	Tests - T1 & T2	40	full questions selecting ONE from each unit (1 to 5).				
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20		
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20		
			5 & 6	Unit-3: Question 5 or 6	20		
			7 & 8	Unit-4: Question 7 or 8	20		
			9 & 10	Unit-5: Question 9 or 10	20		
				Total Marks	100		

		SEMESTER: II		
Course Code	: 22IS2D11T	MANAGEMENT INFORMATION SYSTEMS CIE Marks	: 1	.00
Credits L-T-P	: 3-0-0	SEE Marks	: 1	.00
Hours	: 42L	Elective D (Global Elective) SEE Durations	: 3	Hrs
Facu	ılty Coordinator:	Prof. Vanishree K		
		UNIT - I	8	Hrs

Overview: Introduction:

Professional Software Development, Software Engineering Ethics, Case studies. Software Processes: Models, Process activities, Coping with Change, Process improvement. The Rational Unified Process. Computer Aided Software Engineering. Agile Software Development: Introduction to agile methods, Agile development techniques, Agile project management and scaling agile methods. Information Systems in Global Business Today: The role of information systems in business today, Perspectives on information systems, Contemporary approaches to information systems

UNIT - II 9 Hrs

Requirements Engineering and System Modeling:

Software Requirements: Functional and Non-functional requirements. Requirements Elicitation, Specification, Validation and Change. System Modeling: Context models, Interaction models, Structural models, Behavioural models, Model driven architecture. Information Systems, Organizations and Strategy: Organizations and information systems, How information systems impact organization and business firms, Using information systems to gain competitive advantage, management issues

UNIT - III 9 Hrs

Development and Testing:

Design and implementation: Object oriented design using UML, Design patterns, Implementation issues, Open-source development. Software Testing: Development testing, Test-driven development, Release testing, User testing. Securing Information Systems: System vulnerability and abuse, Business value of security and control, Establishing framework for security and control, Technology and tools for protecting information resources. A case study on cybercrime.

UNIT - IV 8 Hrs

Advanced Software Engineering:

Dependable systems: Dependability properties, Sociotechnical systems, dependable processes, formal methods and dependability, A15 Availability and reliability, reliability requirements, Reliability measurements E-commerce: Digital Markets Digital Goods: E-commerce and the internet, E-commerce-business and technology, A Case study on ERP.

UNIT - V 8 Hrs

Software Management:

Project Management: Risk Management, Managing People, Teamwork, Project Planning: Software Pricing, Plan driven development, Project Scheduling, Agile planning, Estimation Techniques, COCOMO cost modeling. Building Information Systems: Systems as planned organizational change, Overview of systems development.

Course Outcomes:

After going through this course the student will be able to:

CO1	: Understand and apply the fundamental concepts of software engineering for information systems.
CO2	: Develop the knowledge about software engineering for management of information systems.
CO3	: Interpret and recommend the use information technology to solve business problems.
CO4	Apply a framework and process for aligning organization's IT objectives with business strategy.

Reference Books:

- 1. Kenneth C. Laudon and Jane P. Laudon: Management Information System, Managing the Digital Firm, Pearson Education, 14th Global edition, 2016, ISBN:9781292094007.
- 2. Ian Sommerville,— Software Engineering, 9th Edition, Pearson Education, 2013, ISBN: 9788131762165
- 3. W.S. Jawadekar: Management Information Systems, Tata McGraw Hill, 2006, ISBN: 9780070616349.
- 4. James A. O'Brien, George M. Marakas: Management Information Systems, Global McGraw Hill, 10th Edition, 2011, ISBN: 978-0072823110

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE & SEE Theory courses

	RUBRIC for CIE			RUBRIC for SEE	
SLNo	Content	Marks	Q. No	Contents	Marks
1	Quizzes - Q1 & Q2	20	Each u	nit consists of TWO questions of 20 Marks each. Answ	ver FIVE
2	Tests - T1 & T2	40		full questions selecting ONE from each unit (1 to 5).	
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20
			5 & 6	Unit-3: Question 5 or 6	20
			7 & 8	Unit-4: Question 7 or 8	20
			9 & 10	Unit-5: Question 9 or 10	20
				Total Marks	100

		SEMESTER: II		
Course Code	: 22MAT2D12T	STATISTICAL AND OPTIMIZATION METHODS CIE Marks	:	100
Credits L-T-P	: 3-0-0	SEE Marks	:	100
Hours	: 42L	Elective D (Global Elective) SEE Durations	:	3 Hrs
Faculty Coord	inator:	Dr. PRAKASH R		

Random Vectors:

Probability models of N random variables, Vector notation, Marginal probability functions, Independence of random variables and random vectors, Functions of random vectors, Expected value vector and Correlation matrix, Gaussian random vectors, Expected values of sums, Probability density function of the sum of two random variables, Moment Generating Functions (MGF), MGF of the sum of independent random variables, Characteristic function and Probability generating function.

UNIT - II 8 Hrs

Estimation: Point estimation, Estimator and estimate, Criteria for good estimates - unbiasedness, consistency, efficiency and sufficiency, Variance of a point estimator, Methods of point estimation - Method of moments and Method of maximum likelihood, Bayesian estimation of parameters.

UNIT - III 9 Hrs

Inferential Statistics: Principles of Statistical Inference, Formulation of the problems with examples. Test of hypothesis - Null and alternative hypothesis, Procedure for statistical testing, Type I and Type II errors: level of significance, Rejection regions and power, Standard Normal null distribution (Z-test), Z-tests for means and proportions, Duality: two-sided tests and two-sided confidence intervals, P-value, Inference about variances, Special tests of significance for large and small samples (F, Chi – square, Z, t – test).

UNIT - IV 8 Hrs

Fuzzy Optimization:

Basic concepts of fuzzy sets - Operations on fuzzy sets, Fuzzy relation equations, Fuzzy logic control, Fuzzification, Defuzzification, Knowledge base, Decision making logic, Membership functions, Rule base.

Artificial Neural Networks: Introduction - Neuron model, Multilayer perceptions - Back propagation algorithm and its variants, Loss functions in artificial neural networks, Stochastic gradient descent method.

UNIT - V 8 Hrs

Machine Learning Algorithms:

Data mining, Hierarchy Clustering, k-Means Clustering, Distance Metric, Data mining for Big data, Characteristics of Big data, Statistical nature of Big data, Support Vector Machines, Statistical Learning Theory, Linear Support Vector Machine, Kernel functions and Nonlinear Support Vector Machines.

Course Outcomes:

After going through this course the student will be able to:

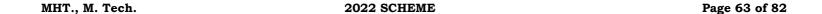
CO1	:	Illustrate the fundamental concepts of statistics, random variables, estimation, inferential statistics, fuzzy
		optimization and machine learning algorithms.
CO2	T:	Derive the solution by applying the acquired knowledge of random variables, estimation, inferential
		statistics, fuzzy optimization and machine learning algorithms to the problems of engineering applications.
CO3	:	Evaluate the solution of the problems using appropriate statistical and probability techniques to the real
		world problems arising in many practical situations.
CO4	:	Compile the overall knowledge of statistics, probability distributions and estimation, tests of hypothesis and
		optimization gained to engage in life – long learning.

Reference Books:

- 1. Roy D. Yates, David J. Goodman, "Probability and Stochastic Processes", 3rd Edition, An Indian Adaptation, Wiley, 2021, ISBN: 9789354243455.
- 2. Douglas C. Montgomery and George C. Runger, "Applied Statistics and Probability for Engineers", 7th Edition, John Wiley & Sons, 2019, ISBN: 9781119570615.
- 3. Trevor Hastie Robert Tibshirani Jerome Friedman, "The Elements of Statistical Learning Data Mining, Inference, and Prediction", 2nd Edition, Springer, 2009 (Reprint 2017), ISBN-10: 0387848576, ISBN-13: 9780387848570.
- 4. Michael Baron, "Probability and Statistics for Computer Scientists", 2nd Edition, CRC Press, 2014, ISBN- 13: 978-1-4822-1410-9.
- 5. Shai Shalev-Shwartz and Shai Ben-David "Understanding Machine Learning: From Theory to Algorithms", 1st Edition, Cambridge University Press, 2014, ISBN: 978-1-107-05713-5.

MHT., M. Tech. 2022 SCHEME Page 62 of 82

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100


QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

	Rub	ric for (CIE & S	SEE Theory courses	
	RUBRIC for CIE			RUBRIC for SEE	
SLNo	Content	Marks	Q. No	Contents	Marks
1	Quizzes - Q1 & Q2	20	Each u	nit consists of TWO questions of 20 Marks each. Answ	er FIVE
2	Tests - T1 & T2	40		full questions selecting ONE from each unit (1 to 5).	
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20
			5 & 6	Unit-3: Question 5 or 6	20
			7 & 8	Unit-4: Question 7 or 8	20
			9 & 10	Unit-5: Question 9 or 10	20
				Total Marks	100

University, E	Selagavi			
		SEMESTER: II		
Course Code	: 22ME2D13T	INDUSTRY 4.0	:	100
Credits L-T-P	: 3-0-0	SEE Marks	:	100
Hours	: 42L	Elective D (Global Elective) SEE Durations	:	3 Hrs
Facu	ılty Coordinator:	Dr. Gopalakrishna H D		
		UNIT - I		8 Hrs

Fundamentals of Industry 4.0

Introduction, Industry 4.0, RAMI 4.0 (Reference Architecture Model Industry 4.0), Servitization, Product Service-System (PSS) Industry 4.0 across the Sectors Introduction, Transportation 4.0: Multimodal Transportation Systems, Rail 4.0, Digital Transformation of Railways, Logistics 4.0 (Implications), Fundamentals of Industry 4.0, Introduction, Industry 4.0, RAMI 4.0 (Reference Architecture Model Industry 4.0), Servitization, Product Service-System (PSS)

Industry 4.0 across the Sectors

Introduction, Transportation 4.0: Multimodal Transportation Systems, Rail 4.0, Digital Transformation of Railways, Logistics 4.0 (Implications)

UNIT - II 8 Hrs

The Concept of the IIoT: Modern Communication Protocols, Wireless Communication Technologies, Proximity Network Communication Protocols, TCP/IP, API: A Technical Perspective, Middleware Architecture.

UNIT - III 8 Hr

Data Analytics in Manufacturing: Introduction, Power Consumption in manufacturing, Anomaly Detection in Air Conditioning, Smart Remote Machinery Maintenance Systems with Komatsu, Quality Prediction in Steel Manufacturing. Internet of Things and New Value Proposition, Introduction, Internet of Things Examples, IoTs Value Creation Barriers: Standards, Security and Privacy Concerns.

Advances in Robotics in the Era of Industry 4.0, Introduction, Recent Technological Components of Robots, Advanced Sensor Technologies, Artificial Intelligence, Internet of Robotic Things, Cloud Robotics.

UNIT - IV 9 Hrs

Additive Manufacturing Technologies and Applications: Introduction, Additive Manufacturing (AM) Technologies, Stereo lithography, 3DP, Fused Deposition Modeling, Selective Laser Sintering, Laminated Object Manufacturing, Laser Engineered Net Shaping, Advantages of Additive Manufacturing, Disadvantages of Additive Manufacturing.

Advances in Virtual Factory Research and Applications, The State of Art, The Virtual Factory Software, Limitations of the Commercial Software.

UNIT - V 9 Hrs

Augmented Reality: Definitions and application of AR, VR, MR, Limitations of AR, VR, Hardware devices and Software systems, Technical issues and challenges in AR, Industrial applications, IoT and the Need for Data Rationalization Internet of Things (IoT), Internet of Things Vision, Internet of Things (IoT) Frameworks, Architecture of Internet of Things (IoT), Visualizing the Internet of Things (IoT), Essential Technologies of the Internet of Things (IoT), Key Technologies Involved in Internet of Things, Enablers of IoT, Collaborative Operations, Training.

Smart Factories: Introduction, Smart factories in action, Importance, Real world smart factories, The way forward.

A Roadmap: Digital Transformation, Transforming Operational Processes, Business Models, Increase Operational Efficiency, Develop New Business Models.

Course Outcomes:

After going through this course the student will be able to:

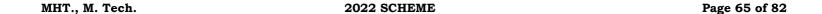
CO1		Understand the opportunities, challenges brought about by Industry 4.0 for benefits of organizations and individuals
CO2	:	Analyze the effectiveness of Smart Factories, Smart cities, Smart products and Smart services
CO3	:	Apply the Industrial 4.0 concepts in a manufacturing plant to improve productivity and profits
CO4	<u> </u>	Evaluate the effectiveness of Cloud Computing in a networked economy

Reference Books:

- 1. Alasdair Gilchrist, Industry 4.0 The Industrial Internet Of Things, Apress Publisher, ISBN-13 (pbk): 978-1-4842-2046-7
- 2. Alp Ustundag, Emre Cevikcan, Industry 4.0: Managing The Digital Transformation, Springer, 2018 ISBN 978-3-319-57869-9.
- 3.Ovidiu Vermesan and Peer Friess, Designing the industry Internet of things connecting the physical, digital and virtual worlds, Rivers Publishers, 2016 ISBN 978-87-93379-81-7
- 4.Christoph Jan Bartodziej, The concept Industry 4.0- An Empirical Analysis of Technologies and Applications in Production Logistics, Springer Gabler, 2017 ISBN 978-3-6581-6502-4.

MHT., M. Tech. 2022 SCHEME Page 64 of 82

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100


QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

	Rub	ric for	CIE &	SEE Theory courses	
	RUBRIC for CIE			RUBRIC for SEE	
SLNo	Content	Marks	Q. No	Contents	Marks
1	Quizzes - Q1 & Q2	20	Each u	nit consists of TWO questions of 20 Marks each. Answ	ver FIVE
2	Tests - T1 & T2	40		full questions selecting ONE from each unit (1 to 5).	
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20
			5 & 6	Unit-3: Question 5 or 6	20
			7 & 8	Unit-4: Question 7 or 8	20
			9 & 10	Unit-5: Question 9 or 10	20
				Total Marks	100

			SEMESTER: II			
Course Code	:	22MHT24L	Differential Global Positioning Systems and	CIE Marks	:	50
Credits L-T-P	:	1 - 0 - 1	AutoCAD for Highways	SEE Marks	:	50
Hours	:	14L + 28P	(Coding / Skill Laboratory)	SEE Durations	:	3 Hrs
Facu	lt:	y Coordinator:	Dr. Anjaneyappa/Dr. Archana M R/Dr. Sunil S			-
			Content			28 Hrs

Part A: 1. Fundamentals of DGPS Instruments 2. Setting up of Instrument 3. Conducting Longitudinal Section Survey using DGPS 4. Conducting Cross Section Survey using DGPS 5. Conducting Topographical Survey for Green field Highway Project 6. Downloading the data from DGPS Data and Preparation of Topographical drawings using AutoCAD

Part B: 1. Introduction to Highway design Package (Autocad Civil 3D)

- 2. Preparation of Alignment Plan
- 3. Generation of Existing Cross Section and Longitudinal Section
- 4. Designing Horizontal and Vertical Alignments
- 5. Preparation of BOQ

Course Outcomes:

After going through this course the student will be able to:

L	Arter going timot	ign this course the student win be able to.
	CO1:	Apply advanced surveying equipment for data collection for road projects
Ī	CO2:	Extract data and plot topographical drawings
	CO3:	Design horizontal and vertical alignment using AutoCad
	CO4 :	Generate plan, longitudinal and cross sectional drawings using AutoCAD
г	-	

Scheme of Continuous Internal Evaluation (CIE- Laboratory): Only LAB Course 30 + 10 + 10 = 50. The Laboratory session is held every week as per the timetable and the performance of the student is evaluated in every session. The average of marks over number of experiments conducted over the weeks is considered for 30 Marks i.e (Lab Report, Observation & Analysis). The students are encouraged to implement additional innovative experiments in the lab (10 marks). At the end of the semester a test is conducted for 10 Marks (Lab Test). This adds to 50 Marks.

Scheme of Semester End Examination (SEE- Laboratory) : Only LAB Course 40 + 10 =50. Students will be evaluated for Write-up, Experimental Setup, Experiment Conduction with Results, Analysis & Discussions for 40 Marks and Viva will be conducted for 10 Marks adding to 50 Marks.

Only LAB Courses with 50 Marks

	RUBRIC FOR CIE		RUBRIC FOR SEE	
S1.No	Content	Marks	Content	Marks
1	Write Up, Setup, Conduction Results, Analysis & Discussions	30	1. Write Up, Setup, Conduction	40
2	Innovative Experiment/Concept Design & Implementation	10	2. Results, Analysis & Discussions	40
3	Laboratory Internal	10	Viva Voce	10
	Total Marks	50	Total Marks	50

MHT., M. Tech. 2022 SCHEME Page 66 of 82

SEMESTER: II						
Course Code	•	22HSS25T	PROFESSIONAL SKILL	CIE Marks	:	50
Credits L-T-P	:	2-0-0	DEVELOPMENT- I	SEE Marks	:	50
Hours	:	28L	Common Course to all M.Tech Programs	SEE Durations	:	2 Hrs
Faculty Coordinator: Dr. C.Bindu Ashwini						
UNIT - I 4 Hrs						4 Hrs

Communication Skills: Basics of Communication, Personal Skills & Development, Presentation Skills – Introduction, Application, Simulation, Attitudinal Development, Self Confidence, SWOC analysis. Resume Writing: Understanding the basic essentials for a resume, Resume writing tips Guidelines for better presentation of facts. Theory and Applications.

UNIT - II 8 Hrs

Quantitative Aptitude and Data Analysis: Number Systems, Math Vocabulary, fraction decimals, digit places etc. Simple equations – Linear equations, Elimination Method, Substitution method, Inequalities. Reasoning – a. Verbal - Blood Relation, Sense of Direction, Arithmetic & Samp; Alphabet. b. Non- Verbal reasoning - Visual Sequence, Visual analogy and classification. Analytical Reasoning - Single & Samp; Multiple comparisons, Linear Sequencing.

Logical Aptitude, - Syllogism, Venn-diagram method, Three statement syllogism, Deductive and inductive reasoning. Introduction to puzzle and games organizing information, parts of an argument, common flaws, arguments and assumptions.

Verbal Analogies/Aptitude – introduction to different question types – analogies, Grammar review, sentence completions, sentence corrections, antonyms/synonyms, vocabulary building etc. Reading Comprehension, Problem Solving,

UNIT - III 6 Hrs

Interview Skills: Questions asked & Drofessional, Dress code in interview, Professional attire and Grooming, Behavioral and technical interviews, Mock interviews - Mock interviews with different Panels. Practice on Stress Interviews, Technical Interviews, and General HR interviews

UNIT - IV 5 Hrs

Interpersonal and Managerial Skills: Optimal co-existence, cultural sensitivity, gender sensitivity; capability and maturity model, decision making ability and analysis for brain storming; Group discussion(Assertiveness) and presentation skills;

UNIT - V

5 Hrs

Motivation: Self-motivation, group motivation, Behavioral Management, Inspirational and motivational speech with conclusion. (Examples to be cited). Leadership Skills: Ethics and Integrity, Goal Setting, leadership ability.

Course Outcomes:

After going through this course the student will be able to:

	CO1	:	Develop professional skill to suit the industry requirement.
	CO2	:	Analyze problems using quantitative and reasoning skills
Ī	CO3	:	Develop leadership and inter personal working skills.
	CO4	:	Demonstrate verbal communication skills with appropriate body language.

Reference Books:

- 1. The 7 Habits of Highly Effective People, Stephen R Covey Free Press, 2004 Edition, ISBN: 0743272455
- 2. How to win friends and influence people, Dale Carnegie General Press, 1st Edition, 2016, ISBN: 9789380914787
- 3. Crucial Conversation: Tools for Talking When Stakes are High, Kerry Patterson, Joseph Grenny, Ron Mcmillan 2012 Edition, McGraw-Hill Publication ISBN: 9780071772204
- 4. Ethnus, Aptimithra: Best Aptitude Book ,2014 Edition, Tata McGraw Hill ISBN: 9781259058738

MHT., M. Tech. 2022 SCHEME Page 67 of 82

Phase *	Activity					
	Test 1 is conducted after completion 9 of hours of training program (3 Class) for 50					
т	marks					
1	Part A- Quiz for 15 Marks and Part B for 50 Marks (Descriptive answers). Part B – 50					
	Marks is consolidated to 35 and total marks on 50 is 15 + 35 = 50 Marks.					
	Test 2 is conducted after completion 18 hours of training program (6 Class) for 50 mark					
II	Part					
11	A- Quiz for 15 Marks and Part B for 50 Marks (Descriptive answers). Part B – 50 Marks					
	is consolidated to 35 and total marks on 50 is 15 + 35 = 50 Marks.					
	Average of 2 tests is considered as final CIE marks					
emester E	mester End Examination: SEE is conducted for 50 Marks for a duration of 2 hours.					

SEMESTER: III						
Course Code	: 22MHT31T	Highway Construction and Maintenance	CIE Marks	:	100	
Credits L-T-P	: 3 - 1 - 0	Highway Construction and Maintenance	SEE Marks	:	100	
Hours	: 42L + 28T	(Professional Core - 5)	SEE Durations	: ;	3 Hrs	
Faculty Coordinator: Dr. Anjaneyappa						
UNIT - I					8 Hrs	

Plants and Equipments: Components of pavement structure, functions and requirements, Plants and Equipments: Excavators, graders, compactors, crushers, bituminous hot mix plants, cement concrete mixers, pavers - uses in road construction

UNIT - II 9 Hr

Construction of Subgrade and Subbase: Specifications and steps for construction of subgrade, subbase, quality control tests Construction of granular layers: Specifications and steps of construction , WBM, WMM, CRM, quality control tests Construction of Bituminous Layers: Different types of bituminous layers, specifications and construction of bituminous layers, quality control tests

UNIT - III 9 Hr

Construction of Cement Concrete Pavements: Specifications and steps for construction of DLC, Paving Quality Concrete pavements, quality control tests Specifications and steps for construction of White topping, Interlocking concrete block pavements, quality control tests Safety during Construction: Safety aspects during construction and maintenance works, road safety furniture

UNIT - IV 8 Hrs

Drainage: Assessment of drainage requirements for the road, design of various drainage components, drainage materials, surface and sub surface drainage system for roads, drainage of urban roads

UNIT - V 8 Hrs

Maintenance: Routine and periodic maintenance, preventive and reactive maintenance for drainage and pavements, Preparation of existing pavement for patching, profile correction, special measures to deal with reflection cracks in pavement overlays, requirements for rehabilitation, recycling.

Course Outcomes:

After going through this course the student will be able to:

	7 22 00 2 00 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Abricano contro directorio in in se desirete.
		Explain the specifications and steps for construction of Embankment, subgrade, subbase,
		granular, Bituminous and concrete layers
	CO2 :	Select the specifications for construction and maintenance of pavement layers.
	CO3 :	Examine the quality of pavement layers during construction and maintenance
	CO4 :	Construct and maintain the pavements.
1	-	

Reference Books

- 1. MoRTH 'Specifications for Road and Bridge works' 2013, fifth revision, Indian roads Congress, New Delhi
- 2. Construction Planning, Equipment, and Methods: Robert L.Peurifoy, Clifford J. Schexnayder, Aviad Shapira, Robert Schmitt, 2013 McGraw-Hill, ISBN-13: 978-0073401126
- 3. Freddy L Roberts, Prithvi S kandhal et.al 'Hot Mix Asphalt Materials, Mixture Design and Construction' (2nd Edition) National Asphalt Pavement Association, Research and Education Foundation, Maryland, USA, ISBN-10: 0914313010
- 4. IRC :15-2011, IRC :14-2004, IRC :35-2015, IRC:67-2012, IRC:109-2015, IRC:111-2009, IRC:120 -2015, IRC:SP:11-1984, IRC:SP:42-2014, IRC:SP:50-2013, IRC :SP: 6-2004, IRC:SP:68-2005, IRC:SP:76-2015,

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

MHT., M. Tech. 2022 SCHEME Page 69 of 82

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE & SEE Theory courses

	RUBRIC for CIE			RUBRIC for SEE		
SLNo	Content	Marks	Q. No	Contents	Marks	
1	Quizzes - Q1 & Q2	20	Each u	nit consists of TWO questions of 20 Marks each. Answ	er FIVE	
2	Tests - T1 & T2	40		full questions selecting ONE from each unit (1 to 5).		
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20	
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20	
			5 & 6	Unit-3: Question 5 or 6	20	
			7 & 8	Unit-4: Question 7 or 8	20	
			9 & 10	Unit-5: Question 9 or 10	20	
				Total Marks	100	

MHT., M. Tech. 2022 SCHEME Page 70 of 82

		•	SEMESTER: III			
Course Code : 22MHT3I Credits L-T-P : 3 - 1 - 0		22MHT3E1T	Power Management Systems CIE Marks		:	100
		3 - 1 - 0	Pavement Management Systems	SEE Marks	:	100
Hours	:	42L + 28T	Elective E (Professional Elective)	SEE Durations	:	3 Hrs
Facı	Faculty Coordinator: Dr. Archana M R					
UNIT - I				8 Hrs		

Introduction: components and principles of pavement management systems, pavement maintenance measures, planning investment, research management Pavement performance evaluation: general concepts, serviceability, pavement distress survey systems, performance evaluation

UNIT - II 9 Hr

Pavement Performance Prediction: concepts, modeling techniques, structural condition deterioration models, mechanistic and empirical models, HDM and other models, comparison of different deterioration models. Functional condition deterioration models, unevenness prediction models and other models, comparison. Modeling in rehabilitation, budget planning, problems.

UNIT - III 9 Hrs

Design alternatives and selection: Design objectives and constraints, basic structural response models, physical design inputs, alternate pavement design strategies and economic evaluation, reliability concepts in pavement engineering, life cycles costing, analysis of alternate pavement strategies based on distress and performance and problems.

UNIT - IV 8 Hrs

Ranking and optimization methodologies: recent developments, sample size selection, economic optimization of pavement maintenance and rehabilitation. Expert Systems in Pavement Management: applications of expert systems for managing pavements, expert system for pavement evaluation and rehabilitation, knowledge-based expert systems.

UNIT - V 8 Hrs

Implementation and application of Pavement Management Systems. - Introduction-major steps-Maintenance Management. and Scheduling, case studies

Course Outcomes:

After going through this course the student will be able to:

CO1	: Explain the need of PMS in planning and maintaining the pavements
CO2	: Analyse the performance of pavements, causes of failure, rating methods
CO3	: Evaluate the of models for pavement management.
CO4	: Develop the PMS for different levels

Reference Books

- 1. Pavement Management System, Ralph Haas and Ronald W. Hudson, McGraw Hill Book Co. 1978, ISBN. 0070253919
- 2. Modern Pavement Management Ralph Haas, Ronald Hudson Zanieswki., Kreiger Publications, New York, 1992, ISBN, 0894645889, 9780894645884
- 3. Proceedings of International Conference on Structural Design of Asphalt Pavements NCHRP, TRR and TRB Special Reports, USA, 2006
- 4. Pavement Analysis, Per Ulitz, Elsevier Amsterdam, ISBN: 0-620-22376-6

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

MHT., M. Tech. 2022 SCHEME Page 71 of 82

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE & SEE Theory courses

RUBRIC for CIE				RUBRIC for SEE	
SLNo	Content	Marks	Q. No	Contents	Merks
1	Quizzes - Q1 & Q2	20	Each u	nit consists of TWO questions of 20 Marks each. Answ	er FIVE
2	Tests - T1 & T2	40		full questions selecting ONE from each unit $(1 \text{ to } 5)$.	
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20
			5 & 6	Unit-3: Question 5 or 6	20
			7 & 8	Unit-4: Question 7 or 8	20
			9 & 10	Unit-5: Question 9 or 10	20
				Total Marks	100

MHT., M. Tech. 2022 SCHEME Page 72 of 82

SEMESTER: III							
Course Code	: 22MHT3E2T	Highway Faanamiaa	CIE Marks	: 100			
Credits L-T-P	: 3 - 1 - 0	Highway Economics	SEE Marks	: 100			
Hours	: 42L + 28T	Elective E (Professional Elective)	SEE Durations	: 3 Hrs			
Facu	Faculty Coordinator: Dr. Archana M R						
TINIT I OT							

UNIT - I 8 Hrs

Introduction- Principle, supply and demand models, equilibrium, sensitivity of travel demand, Elasticities- types, models (Kraft demand model) consumer surplus cost – cost elasticity pricing and subsidy policies, rates of interest, Vehicle operation cost, direct and indirect benefits due to road improvement, Total transportation cost, fixed and variable costs. Road user cost studies in India

UNIT - II 9 Hrs

Economic analysis- Different methods, determination of annual cost, benefit cost ratio, IRR, FYRR, NPV. Sensitivity of economic analysis, Examples of economic analysis for different types of road improvement measures, pavement options, construction of bypasses and upgrading of intersections. Project priorities, methods of dealing with uncertainties

UNIT - III 8 Hrs

Financing of road projects- Methods, Public Private Partnership(PPP), environmental economics, Toll collection, economic viability PPP projects, risk analysis, case studies

UNIT - IV 8 Hrs

Life cycle cost analysis – Introduction, notation, simple and compound interest, uniform series of payments, uniform continuous cash flow and capitalized cost, discrete compound interest factors

UNIT - V 9 Hrs

Application of probability and statistics – Introduction, data analysis and evaluation, sampling, significance testing, regression analysis, queing models.

Course Outcomes:

After going through this course the student will be able to:

CO1:	Explain the principles of highway economics and finance.
CO2:	Solve the highway projects for varying techno – economical conditions.
CO3:	Compare economical and financial feasibility for different alternatives of highway projects
CO4 :	Justify techno-economic feasibility of highway projects

Reference Books

- 1. Transportation Economics, McCarthy, 2001, P Blackwell, ISBN: 978-0-631-22180-7.
- 2. Transportation Engineering an Introduction, JotinChisty.C and Kent Lall,B Prentice hall of India Private limited, New Delhi, ISBN-81-203-2212-6
- 3. Manual on economic analysis of highway projects, special publication 30, New Delhi , 2007, Indian Roads Congress
- 4. Manual for road investment decision model, special publication 38, New Delhi, 1992, Indian Roads Congress

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

MHT., M. Tech. 2022 SCHEME Page 73 of 82

	RUBRIC for CIE			RUBRIC for SEE	
SLNo	Content	Marks	Q. No	Contents	Marks
1	Quizzes - Q1 & Q2	20	Each u	nit consists of TWO questions of 20 Marks each. Ans	wer FIVE
2	Tests - T1 & T2	40	1	full questions selecting ONE from each unit (1 to 5).	
3	Experiential Learning - EL1 & EL2	40	1 & 2	Unit-1: Question 1 or 2	20
	Total Marks	100	3 & 4	Unit-2: Question 3 or 4	20
			5 & 6	Unit-3: Question 5 or 6	20
			7 & 8	Unit-4: Question 7 or 8	20
			9 & 10	Unit-5: Question 9 or 10	20

SEMESTER: III							
Course Code	: 22MHT3E3T	Dood Brainet Deports	CIE Marks	: 100			
Credits L-T-P : 3 - 1 - 0		Road Project Reports	SEE Marks	: 100			
Hours	: 42L + 28T	Elective E (Professional Elective)	SEE Durations	: 3 Hrs			
Facu	Faculty Coordinator: Dr. Anjaneyappa						
	UNIT - I						

Road Project Reports: Salient features of ongoing road projects in India, Objects and Scope of Prefeasibility, feasibility and detailed project report for road projects, typical HR structure for preparation of project reports and implementation of road projects, key acts related road projects

UNIT - II 8 Hr

Surveys and Investigations for Road Improvement Projects: Traffic surveys and forecasting, topographical surveys, geotechnical and material surveys, Pavement surveys and investigations, Cross drainage structure and drainage surveys, Interpretation of survey results

UNIT - III 9 Hrs

Geometric Design and General elements: Geometrical elements of rural and urban roads – cross sectional elements, horizontal and vertical alignment, Intersections-requirements, capacity of roads Road way facilities: pedestrian facilities, bus bays, truck lay byes, traffic, medical and vehicle rescue aid posts, street lighting, Road safety audit, road safety furniture, Mx Roads

UNIT - IV 8 Hrs

Environmental Impact Assessment: Objectives, procedure of environmental impact assessment, socio economic survey, mitigation measures, Landscaping and tree plantation, implementation of environment management plan, Key environmental legislations, clearances required for road project- environmental, forest, CRZ, wild life, air, noise quality standards

UNIT - V 9 Hrs

Contract Documents and Tender Evaluation: preparation of BOQ, Types of tender documents, salient clauses of tender document, tender evaluation –technical and financial,

Course Outcomes:

After going through this course the student will be able to:

0 0		.0
CO1	••	Explain the components and need of different types of road project reports.
CO2	••	Choose and execute various surveys and investigations for the road projects
CO3	:	Analyze the surveys and investigations and select geometry of road
CO4	:	Understand the contract document, evaluation and contract management for road projects

Reference Books

- 1. IRC:SP:19-2001 'Manual for Survey, investigation and Preparation of Road Project' 2001, Indian Roads Congress, New Delhi
- 2. IRC-73: Guidelines for Geometric Design Standards of Rural Highways, Indian Roads Congress, New Delhi
- 3. IRC:86: Guidelines for Geometric Design standards of Urban roads, Indian Roads Congress, New Delhi
- 4. MoRTH 'Model Concession Agreement for Small Road Projects-2000, Indian Road Congress, New Delhi

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted & Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.

TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.

EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

MHT., M. Tech. 2022 SCHEME Page 75 of 82

Rubric for CIE & SEE Theory courses RUBRIC for CIE RUBRIC for SEE SLNo Content Marks Q. No Contents Marks Quizzes - Q1 & Q2 20 Each unit consists of TWO questions of 20 Marks each. Answer FIVE full questions selecting ONE from each unit (1 to 5). Tests - T1 & T2 40 Experiential Learning - EL1 & EL2 40 1 & 2 Unit-1: Question 1 or 2 20 3 & 4 Unit-2: Question 3 or 4 20 **Total Marks** 100 5 & 6 Unit-3: Question 5 or 6 20 7 & 8 Unit-4: Question 7 or 8 20 9 & 10 Unit-5: Question 9 or 10 20 Total Marks 100

	SEMESTER III		
Course Code : 22MHT32	1	CIE Marks	: 50
Credits L-T-P : 0 - 0 - 6	INTERNSHIP	SEE Marks	: 50
Hours/Week : 12		SEE Durations	: 3 Hrs

Guidelines:

- 1. The duration of the internship shall be for a period of 6 weeks on full time basis after II semester final exams and before the commencement of III semester.
- 2. The student must submit letters from the industry clearly specifying his / her name and the duration of the internship on the company letter head with authorized signature.
- 3. Internship must be related to the field of specialization of the respective PG programme in which the student has enrolled.
- 4. Students undergoing internship training are advised to report their progress and submit periodic progress reports to their respective guides.
- 5. Students have to present the internship activities carried out to the departmental committee and only upon approval by the committee, the student can proceed to prepare and submit the hard copy of the final internship report. 6. The reports shall be printed on A4 size with 1.5 spacing and Times New Roman with font size 12, outer cover of the report (wrapper) has to be softbound in Ivory color for PG circuit Programs and Light Blue for Non-Circuit Programs.

Course Outcomes: After going through the internship the student will be able to

- CO1: Apply Engineering and Management principles to solve the problems
- CO2: Analyze real-time problems and suggest alternate solutions
- CO3: Communicate effectively and work in teams
- CO4: Imbibe the practice of professional ethics and lifelong learning

Scheme of Continuous Internal Evaluation (CIE):

The evaluation committee shall consist of Guide, Professor, Associate Professor/Assistant Professor. The committee shall assess the presentation and the progress reports.

The evaluation criteria shall be as per the rubrics given below:

Reviews	Activity	Weightage
т	Application of Engineering knowledge in industries, ability to comprehend the	40%
1	functioning of the Organization/ Departments.	7070
II	Importance of Resource Management, Environment and Sustainability.	600/
111	Demonstration and Presentation of Internship work with Report Submission	60%

Scheme for Semester End Evaluation (SEE):

The SEE examination shall be conducted by an external examiner (domain expert) and an internal examiner. Evaluation shall be done in batches, not exceeding 6 students per batch.

MHT., M. Tech. 2022 SCHEME Page 77 of 82

	SEMESTER III							
Course Code	:	22MHT33P		CIE Marks	:	50		
Credits L-T-P	:	0 - 0 - 6	MINOR PROJECT	SEE Marks	:	50		
Hours/Week	:	12		SEE Durations	:	3 Hrs		

Guidelines:

- 1. Each project group will consist of maximum of two students.
- 2. Each student / group has to select a contemporary topic that will use the technical knowledge of their program of study after intensive literature survey.
- 3. Allocation of the guides preferably in accordance with the expertise of the faculty.
- 4. The minor project would be performed in-house.
- 5. The implementation of the project must be preferably carried out using the resources available in the department/college.

Course Outcomes: After completing the course, the students will be able to

- CO1: Conceptualize, design and implement solutions for specific problems.
- CO2: Communicate the solutions through presentations and technical reports.
- CO3: Apply resource managements skills for projects.
- CO4: Synthesize self-learning, team work and ethics.

Scheme of Continuous Internal Examination

Evaluation shall be carried out in three reviews. The evaluation committee shall consist of Guide, Professor and Associate Professor/Assistant Professor.

Phase *	Phase * Activity			
I	Approval of the selected topic, formulation of Problem Statement and Objectives with Synopsis submission	20 %		
II	Mid-term seminar to review the progress of the work with documentation	40 %		
III	Oral presentation, demonstration and submission of project report	40 %		

^{*} Phase wise rubrics to be prepared by the respective departments

CIE Evaluation shall be done with weightage / distribution as follows:

• Selection of the topic & formulation of Problem Statement and Objectives 10	.0 %
• Design and simulation/ Algorithm development/ Experimental setup 2	25 %
• Conducting experiments/ Implementation / Testing 2	25 %
• Demonstration & Presentation 2	25 %
• Report writing	.5 %

Scheme of Semester End Examination (SEE):

The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.

- Brief write up about the project 05%
- Methodology and Experimental Results & Discussion 20%
- Presentation / Demonstration of the Project 25%
- Report 20%
- Viva Voce 30%

MHT., M. Tech. 2022 SCHEME Page 78 of 82

SEMESTER IV							
Course Code :	22MHT41P		CIE Marks	:	100		
Credits L-T-P:	0 - 0 - 18	MAJOR PROJECT	SEE Marks	:	100		
Hours/Week :	36		SEE Durations	:	3 Hrs		

Guidelines:

- 1. Major Project is to be carried out for a duration of 18 weeks
- 2. Students must adhere to the Project Presentation Schedule, report to their guide on a weekly basis and get their Project diary signed by their guide 4. Students must execute the Major Project individually and not in teams.
- 5. It is mandatory for the students to present/publish their project work in National/International Conferences or Journals
- 6. The reports shall be printed on A4 size with 1.5 spacing and Times New Roman with font size 12, outer cover of the report (wrapper) has to be soft bound and in Ivory color for PG circuit Programs and Light Blue for Non-Circuit Programs

Course Outcomes: After completing the course, the students will be able to

- CO1: Conceptualize, Design and Implement solutions for specific problems.
- CO2: Communicate the solutions through presentations and technical reports.
- CO3: Apply project and resource managements skills, professional ethics and societal concerns
- CO4: Synthesize self-learning, sustainable solutions and demonstrate life-long learning

Scheme of Continuous Internal Examination

Evaluation shall be carried out in three reviews. The evaluation committee shall consist of Guide, Professor, Associate Professor/Assistant Professor.

Phase *	Activity	Weightage
I	Selection of Project Title, Formulation of Problem Statement and Objectives	20 %
II	Design, Implementation and Testing	40 %
II	Experimental Result & Analysis, Conclusions and Future Scope of Work,	
	Report Writing and Paper Publication	40 %

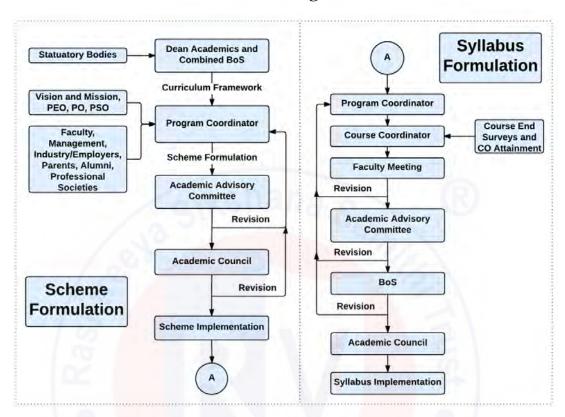
^{*} Phase wise rubrics to be prepared by the respective departments

Scheme for Semester End Evaluation (SEE):

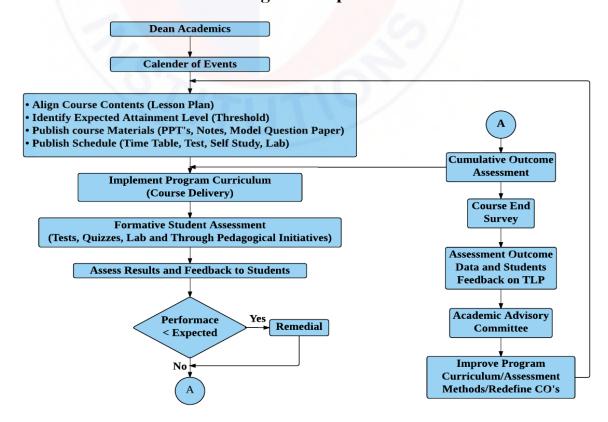
Major Project SEE evaluation shall be conducted in two stages. This is initiated after fulfilment of submission of Project Report and CIE marks.

Stage-1 Report Evaluation: Evaluation of Project Report shall be done by the Guide and an External examiner.

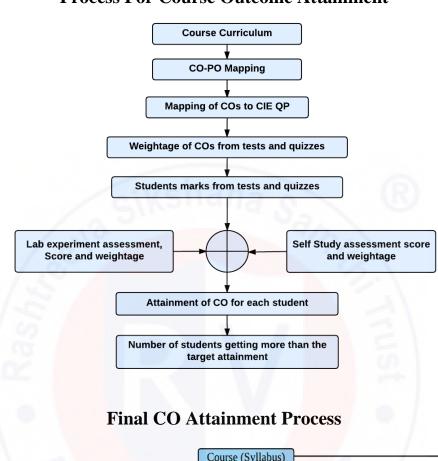
Stage-2 Project Viva-voce: Major Project Viva-voce examination is conducted after receipt of evaluation reports from Guide and External examiner.

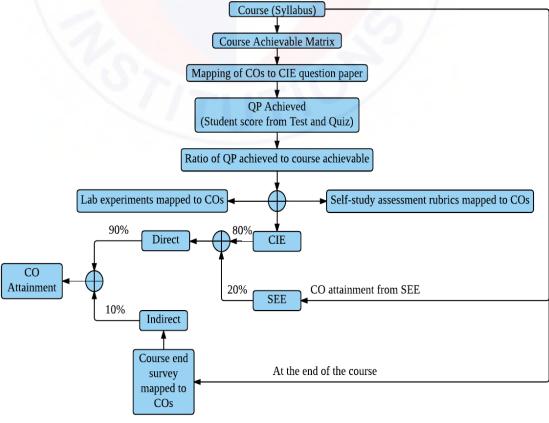

SEE procedure is as follows:					
Report	Internal Examiner: 100 Marks	= 200			
Evaluation	External Examiner: 100 Marks	200 / 2 = 100	A		
Viva-Voce	Jointly evaluated by Internal Guide & External Evaluator	= 100	В		
	Total Marks = (A + B) / 2 =	100			

MHT., M. Tech. 2022 SCHEME Page 79 of 82



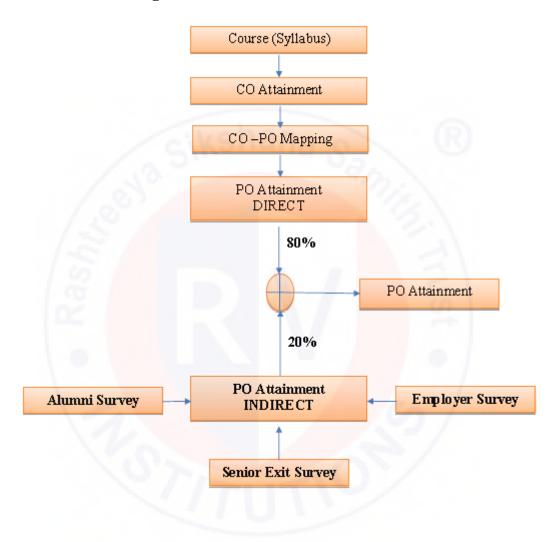
Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi


Curriculum Design Process



Academic Planning And Implementation

Process For Course Outcome Attainment



Technological University, Belagavi

Program Outcome Attainment Process

MHT., M. Tech. 2022 SCHEME Page 82 of 82

Innovative Clubs of RVCE

6-	1	
1	Ashwa Racing	Ashwa Mobility Foundation (AMF) is a student R&D platform that designs and fabricates Formula theme race cars and future mobility solutions to tackle urban transportation problems.
2	Astra Robites	Team involved in the design, fabrication and building application specific robots.
3	Coding Club	To facilitate students the skills, confidence, and opportunity to change their world using coding and help them become successful in GSoC, ACM-ICPC, and other recognized coding competitions.
4	Entrepreneurship Development Cell	E-Cell is a student run body that aims to promote entrepreneurship by conducting workshops, speaker sessions and discussions on business and its aspects. We possess a mentor board to help startups grow.
5	Frequency Club	Team aims at contributing in both software and hardware domains mainly focusing on Artificial Intelligence, Machine Learning and it's advances.
6	Garuda	Design and development of supermileage urban concept electric car. Indigenous development of E-mobility products.
7	Jatayu	Build a low cost Unmanned Aerial Vehicle capable of Autonomous Navigation, Obstacle Avoidance, Object Detection, Localization, Classification and Air Drop of a package of optimum weight.
8	Solar Car	Build a roadworthy solar electric vehicle in order to build a green and sustainable environment.
9	Team Antariksh	Team Antariksh is a Space Technology Student Club whose goal is to understand, disseminate and apply the engineering skills for innovation in the field of Space technology, designing Nano-Satellite payload for ISRO PS4 Orbital platform, RVSAT-1 along with developing experimental rockets of various altitude.
10	Team Chimera	Building a Formula Electric Car through Research and Development in E-Mobility. Electrifying Formula Racing.
11	Helios Racing	Team involved in design, manufacturing and testing of All-Terrain Vehicles and other supportive tasks for the functioning of the team. Participating in BAJA competitions organized by SAE in India and the USA.
12	Team Hydra	Developing autonomous underwater vehicles and use it for various real world applications such as water purification, solid waste detection and disposal etc.
13	Team Krushi	Develop low cost equipments, which help farmers in cultivating and harvesting the crops. Use new technology applications to reduce the labour time hand cost for farmers. Aims at developing implants for Tractors.
14	Team vyoma	Design, fabrication and testing of radio controlled aircrafts and research on various types of unmanned aerial vehicles.
15	Team Dhruva	Organizing activities like quizzes based on astronomy. Stargazing and telescope handling sessions. Construction of a standard observatory. working on small projects with organizations like ICTS, IIA, ARIES etc.
16	Ham club	To popularize Amateur Radio as a hobby among students, alongside exploring technical innovations in the communications domain. Intended to provide human capital for service to the nation at times of natural calamities.

NCC

NSS

"Not me but you"

"Education through
Community Service &
Community Service through education"

Cultural Activity Teams

- 1. AALAP (Music club)
- 2. DEBSOC (Debating society)
- 3. CARV (Dramatics club)
- 4. FOOTPRINTS (Dance club)
- 5. QUIZCORP (Quizzing society)
- 6. ROTARACT (Social welfare club)
- 7. RAAG (Youth club)
- 8. EVOKE (Fashion team)
- 9. f/6.3 (Photography club)
- 10. CARV ACCESS (Film-making club)

VISION

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

MISSION

- To deliver outcome based Quality education, emphasizing on experiential learning with the state of the art infrastructure.
- To create a conducive environment for interdisciplinary research and innovation.
- To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

QUALITY POLICY

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

CORE VALUES

Professionalism, Commitment, Integrity, Team Work, Innovation

RV Vidyaniketan Post, 8th Mile, Mysuru Road, Bengaluru - 560 059. www.rvce.edu.in