GLOBAL ELECTIVE								
BASICS OF AEROSPACE ENGINEERING								
Course Code: 16G5B13 CIE Marks: 100								
Credits: L:T:P:S: 4:0:0:0	SEE Marks: 100							
Hours: 42	SEE Duration: 3Hrs							

Course Learning Objectives: To enable the students to:

1	Understand the history and basic principles of aviation
2	Demonstrate and explain foundation of flight, aircraft structures, material, aircraft propulsion
3	Comprehend the importance of all the systems and subsystems incorporated on a air vehicle
4	Appraise the significance of all the subsystems in achieving a successful flight

Unit-I			
Introduction to Aircraft : History of aviation, International Standard atmosphere, Atmosphere and its properties, Temperature, pressure and altitude relationships, Classification of aircrafts, Anatomy of an aircraft & Helicopters, Basic components and their functions, Introduction to Unconventional and Autonomous Air vehicles.	08 Hrs		
Unit – II			
Basics of Aerodynamics : Bernoulli's theorem, Aerodynamic forces and moments on an Airfoil, Lift and drag, Types of drag, Centre of pressure and its significance, Aerodynamic centre, Aerodynamic Coefficients, Wing Planform Geometry, Airfoil nomenclature, Basic characteristics of airfoils, NACA nomenclature, Simple problems on lift and drag.			
Unit -III			
Aircraft Propulsion : Introduction, Classification of powerplants, Piston Engine: Types of reciprocating engines, Principle of operation of turbojet, turboprop and turbofan engines, Introduction to ramjets and scramjets, Comparative merits and demerits of different types Engines.	08 Hrs		

Unit -IV					
Introduction to Space Flight : History of space flight, Evolution of Indian Space					
Technology, The upper atmosphere, Introduction to basic orbital mechanics,					
some basic concepts, Kepler's Laws of planetary motion, Orbit equation, Space					
vehicle trajectories.					
Rocket Propulsion : Principles of operation of rocket engines, Classification of					
Rockets, Types of rockets.					
Unit -V					

Aerospace Structures and Materials : Introduction, General types of
construction, Monocoque, Semi-Monocoque and Geodesic structures, Typical
wing and fuselage structure; Metallic and non-metallic materials for aircraft
application. Use of aluminum alloy, titanium, stainless steel and composite
materials, Low temperature and high temperature materials.08Hrs

Course Outcomes:

At the end of this course the student will be able to :

1 Appreciate and apply the basic principles of aviation

2 Apply the concepts of fundaments of flight, basics of aircraft structures, aircraft propulsion and aircraft materials during the development of an aircraft

3 Comprehend the complexities involved during development of flight vehicles.

4 Evaluate and criticize the design strategy involved in the development of airplanes

Reference Books

ſ	1	John D. Anderson, "Introduction to Flight", McGraw-Hill Education, 2011. ISBN
	1	9780071086059.
	c	Sutton G.P., "Rocket Propulsion Elements", John Wiley, New York, 8th Ed., 2011;
	2	ISBH:1118174208, 9781118174203.
	3	Yahya, S.M. "Fundamentals of Compressible Flow-5th Edition", New Age
	3	International, 2016, ISBN: 8122440223
ſ	4	Aircraft structural Analysis, T.H.G Megson, Butterworth-Heinemann Publications,
	4	2007. ISBN: 978-1-85617-932-4

SCHEME OF EVALUATION

Continuous Internal Evaluation (CIE) (Theory – 100 Marks)							
Evaluation method	Course with Assignment						
Quiz -1	10						
Test -1	30						
Quiz -2	10						
Quiz -3	10						
Test -2	30						
Assignment	10						
Total	100						

Semester End Evaluation				
Theory (100)				
Part- –A	20			
Objective type questions				
Part –B				

Total	100
taxonomy level.	
Both the questions should be of the same complexity in terms of COs and Bloom's	
The UNIT-2 and UNIT-3 should have an internal choice.	
The UNIT-1, UNIT-4 and UNIT-5 should not have any choice.	80
of 16 Marks.	
There should be five questions from five units. Each question should be for maximum	

		What	To whom	Frequenc y of conductio n	Max Mark s	Evidence		tributio rse Outo	
ods		Quiz Test		Three Two	30 60/50	Answer Scripts	80 %	- 100 90 % %	
Direct Assessment Methods	CIE	Assignment/Self -study	~ .	2 phases	10/20	Reports / Record Books			
	SE E	Semester End Examination	Student s	End of every semester Consisting of Part-A and Part-B	100	Answer Scripts	20 %		
Indirect Assessment	Course End Survey		Student s	End of course		Questionnair e Based on COs		10%	

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	3	2	2				1
CO2	2	2	2	3	2	1	1	1				1
CO3	1		3	3								1
CO4	2	2	3	3		2	2	2				1

High-3 : Medium-2 : Low-1