Semester: V Semester							
COMPUTATIONAL ADVANCED NUMERICAL METHODS							
(GLOBAL ELECTIVE)							
Course Code: 16G5B12	CIE Marks: 100						
Credits: L:T:P:S: 4:0:0:0	SEE Marks: 100						
Hours: 44	SEE Duration: 3Hrs						

Cou	rse Learning Objectives:							
1	Adequate exposure to learn alternative methods and analyze mathematical problems to							
	determine the suitable numerical techniques.							
2	Use the concepts of interpolation, eigen value problem techniques for mathematical							
	problems arising in various fields.							
3	Solve initial value and boundary value problems which have great significance in							
	engineering practice using ordinary and partial differential equations.							
4	Demonstrate elementary programming language, implementation of algorithms and							
	computer programs to solve mathematical problems.							

Unit-I					
ALGEBRAIC AND TRANSCENDENTAL EQUATIONS					
Roots of equations in engineering practice, Polynomials and roots of equations.					
Fixed point iterative method, Aitken's process, Muller's method, Chebychev	08 Hrs				
method.					
Unit -II					
INTERPOLATION					
Introduction to finite differences. Finite differences of a polynomial. Divided					
differences and Newton's divided difference interpolation formula. Hermite	08 Hrs				
interpolation. Spline interpolation - cubic spline interpolation.					
Unit -III					
DIFFERENTIAL EQUATIONS					
Solution of first and second order ODE using spline interpolation. Boundary					
value problems (BVP's)-Trapezoidal method and Shooting method. Finite					
difference method for linear and nonlinear problems, Rayleigh-Ritz method.	09 Hrs				
Unit -IV	•				
EIGEN VALUE PROBLEMS					
Eigen values and Eigen vectors, Power method, Inverse Power method. Bounds					
on Eigen values, Greschgorin circle theorem, Jacobi method for symmetric	09 Hrs				
matrices, Givens method.					
Unit -V					
COMPUTATIONAL TECHNIQUES					
Algorithms and computer programs for Fixed point iterative method, Aitken's -					
process, Muller's method, Chebychev method, Newton's divided difference	10 Hrs				
method. Hermite interpolation, Cubic spline interpolation, Power method,					
Inverse Power method. Trapezoidal method, Shooting method, Rayleigh-Ritz					
method, Jacobi method and Givens method.					

Cour	Course outcomes: On completion of the course, the student should have acquired the							
abilit	y to							
CO1	Identify and interpret the fundamental concepts of Polynomials and roots of							
	equations, Finite differences, Eigen values and Eigen vectors and corresponding							
	algorithms and computer programs.							
CO2	Apply the knowledge and skills of numerical methods to solve algebraic and transcendental equations, Solution of ODE using spline interpolation, Eigen value problems numerically using computer programs.							
CO3	Analyze the physical problem to establish mathematical model and use appropriate							
	method to solve and optimize the solution of roots of equations in engineering							
	practice, interpolating the polynomial, Boundary value problems of ODE and PDE,							
	Eigen value problems numerically using computer programs.							
CO4	Distinguish the overall mathematical knowledge gained to demonstrate and analyze							
	the problems of finding the roots of equations, Interpolation, Differential equations,							
	Eigen value problems arising in real-life situations.							

Ref	erence Books:
1	Steven C Chapra, Raymond P Canale; Numerical Methods for Engineers, Tata Mcgraw
	Hill;5 th edition; 2011; ISBN-10: 0-07-063416-5.
2	Richard L. Burden and J. Douglas Faires; Numerical Analysis; Cengage Learning; 9th
	edition; 2012; ISBN-13: 978-81-315-1654-6.
3	M K Jain, S. R. K. Iyengar, R. K. Jain; Numerical methods for scientific and engineering
	computation; New Age International Publishers; 6th edition; 2012; ISBN-13: 978-81-
	224-2001-2.
4	Curtis F. Gerald and G. Patrick; Applied Numerical Analysis, Wheately-Pearson
	Education Ltd; 7th Edition; 2004; ISBN-13: 978-0321133045.
e Bo	ooks and online learning materials:
1	http://books.google.co.in/books/about/Advanced_Engineering_Mathematics.html?
	<u>i</u> d=9nFDvk9yr3kC&redir_esc=y
2	http://ocw.mit.edu/courses/mathematics/
On	ine Courses and Video Lectures:
1	http://nptel.ac.in/courses.php?disciplineId=111
2	https://www.khanacademy.org/
3	https://www.class-central.com/subject/math (MOOCS)

Continuous Internal Evaluation (CIE) (Theory – 100 Marks)							
Evaluation	Marks						
Quiz -1	10						
Test -1	50						
Quiz -2	10						
Test -2	50						
Quiz -3	10						
Test -3	50						
Assignment	10						
Final evaluation Quiz $10+10+10 = 30$; Test $50+$	50+50 = 150 Reduced to 60; Assignment						
10							

		What	To whom	Frequency of conduction	Max Marks	Evidence	Contribution to Course Outcome		
sb		Quiz		Three	30	Answer			
hoe	CI	Test		Two	60	Scripts	80%		
Direct Assessment Methods	E	Assignment		2 phases	10	Reports			
	SE E	Semester End Examination	Students	End of every semester Consisting of Part-A and Part-B	100	Answer Scripts	20%	100%	90%
Indirect Assessment	Course End Survey		Students	End of course		Questionnaire Based on COs		10%	

Note: The faculty teaching the course may adapt additional methods for evaluation within the total maximum marks.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3