INDUSTRIAL AUTOMATION								
Cou	Course Code: 16G5B10 CIE Marks: 100							
Credits: L:T:P:S:: 4:0:0:0 SEE Marks: 100								
Hours: 44 SEE Duration: 3Hrs								
Cou	Course Learning Objectives: The students should be able to:							
1	Identify types of actuators, sensors and switching devices for industrial automation							
2	Explain operation and controls of Hydraulic and Pneumatic systems							
3	Understand fundamentals of CNC, PLC and Industrial robots							
4	Define switching elements and sensors which are interfaced in an automation system							
5	Describe functions of Industrial switching elements and Inspection technologies for							
3	automation							
6	Select sensors to automatically detect motion of actuators							
7	Develop manual part programs for CNC and Ladder logic for PLC							
8	Develop suitable industrial automation systems using all the above concepts							

UNIT-I	
Automation in Production Systems:	08 Hrs
Manufacturing support systems, Automation principles and strategies, Levels of	
Automation, Production Concepts and Mathematical models, Numericals	
Automated Production Lines:	
Fundamentals, Applications, Analysis with no storage, Analysis with storage	
buffer, Numericals	
UNIT-II	
Switching theory and Industrial switching elements	08 Hrs
Binary elements, binary variables, Basic logic gates, Theorems of switching	
algebra, Algebraic simplification of binary function, Karnough maps, Logic	
circuit design, problems. Electromechanical relays, Moving part logic elements,	
Fluidic elements, Timers, Comparisons between switching elements, Numericals	
Industrial Detection Sensors and Actuators:	
Introduction, Limit switches, Reed switches, Photoelectric sensors- methods of	
detection, Hall effect sensors, Inductive proximity sensors, Capacitive proximity	
sensors, Pneumatic back pressure sensors, Absolute encoder, Incremental	
encoder, Pressure switches and temperature switches; their working principles	
and applications, Brushless DC motors, Stepper motors and Servo motors	
UNIT-III	
Hydraulic Control circuits	10 Hrs
Components, Symbolic representations, Control of Single and Double Acting	
Cylinder, Regenerative Circuit application, Pump unloading circuit, Double	
Pump Hydraulic System, speed control circuits, accumulator circuits	
Pneumatic Control circuits	
Components, Symbolic representations as per ISO 5599, Indirect control of	
double acting cylinders, memory control circuit, cascading design, automatic	
return motion, quick exhaust valve circuit, and cyclic operation of a cylinder,	
pressure sequence valve and time delay valve circuits.	

UNIT-IV Introduction to CNC 08 Hrs Numerical control, components of CNC, classification, coordinate systems, motion control strategies, interpolation, programming concepts

Industrial Robotics Components of Robots, base types, classification of robots, end of arm tooling,	
robot precision of movement, programming, justifying the use of a robot, simple numericals	
UNIT-V	
Programmable logic control systems	10 Hrs
Difference between relay and PLC circuits, PLC construction, principles of operation, latching, ladder diagrams, programming instructions, types of timers, forms of counters, writing simple ladder diagrams from narrative description and	
Boolean logic.	
Programming exercises on PLC with Allen Bradley controller	
Programming exercises on motor control in two directions, traffic control, annunciator flasher, cyclic movement of cylinder, can counting, conveyor belt control, alarm system, sequential process, and continuous filling operation on a conveyor.	

Co	Course Outcomes: After completing the course, the students will be able to										
1	Illustrate applications of sensors actuators, switching elements and inspection										
	technologies in industrial automation										
2	Build circuit diagrams for fluid power automation, Ladder diagrams for PLC and										
	identify its application areas										
3	Evaluate CNC programs for 2D complex profiles performed on machining and turning										
	centres interfaced with Robots										
4	Develop suitable industrial automated system integrating all of the above advanced										
	automation concepts										

Reference Books

1.	David W. Pessen, 'Industrial automation; Circuit design and components', Wiley India,
1	1 st Edition, 2011, ISBN -13-978-8126529889

- 2. Joji P, 'Pneumatic Controls', Wiley India, 1st Edition, ISBN 978–81–265–1542–4
- **3.** Anthony Esposito, 'Fluid Power with Applications', 7th Edition, 2013, ISBN 13; 978–9332518544
- **4.** Mikell P. Groover 'Automation, Production systems and Computer Integrated Manufacturing, 3rd Edition, 2014, ISBN 978–81–203–3418–2

Continuous Internal Eva	
(Theory – 100 M	larks)
Evaluation method	Course with Assignment/
	Self-study
Quiz -1	10
Test -1	30
Quiz -2	10
Quiz -3	10
Test -2	30
Assignments	10
Total	100
Semester End Eva	luation
Theory (100	

Part- –A	20
Objective type questions Part –B There should be five questions from five units. Each question should be for maximu of 16 Marks. The UNIT-1, UNIT-4 and UNIT-5 should not have any choice. The UNIT-2 and UNIT-3 should have an internal choice. Both the questions should be of the same complexity in terms of COs and Bloom	
Part –B	
There should be five questions from five units. Each question should be for maximum of 16 Marks.	
The UNIT-1, UNIT-4 and UNIT-5 should not have any choice.	
The UNIT-2 and UNIT-3 should have an internal choice.	80
Both the questions should be of the same complexity in terms of COs and Bloom's taxonomy level.	
Total	100

		What	To whom	Frequency of conduction	Max Marks	Evidence	Contribution to Course Outcome		
ethods	CIE	Quiz Test		Three Two	30 60/50	Answer Scripts	80%	100%	90%
Direct Assessment Methods	CIE	Assignment/Self- study	Students	2 phases	10/20	Reports / Record Books			
Direct As	SEE	Semester End Examination		Consisting of Part-A and Part-B	100	Answer Scripts	20%		
Indirect Assessment methods	Co	urse End Survey	Students	End of course		Questionnaire Based on COs		10%	

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Η				Μ	L	Μ	L			L	Μ
CO2	L		Μ	Н	Μ	Μ	Μ			Μ		
CO3		L		Μ	L					Μ		
CO4			Н	Μ	Μ	L		Μ	Μ	Η	Μ	Μ

Low-1 Medium-2 High-3