	V Semester										
	Sensors & Applications										
	(Elective-B)										
Cou	rse Code:16G5B08		CIE Marks: 100								
Credits: L:T:P:S:4:0:0:0 SEE Marks: 100											
Hou	Hours:43 SEE Duration(Theory): 3 Hrs										
Cou	Course Learning Objectives: The students will be able to										
1	Impart the principles and working modes of various types of Resistive, Inductive,										
	Capacitive, Piezoelectric and Special transducers.										
2	Give an idea about the applications of various transducers and selection criteria of a										
	transducer for a particular app	olication.									
3	3 Give an insight into the static and dynamic characteristics of different orders of										
	instruments.										
4	Describe different data conve	rsion techniques a	nd their applications.								

UNIT-I	
Introduction: Definition of a transducer, Block Diagram, Active and Passive	09 Hrs
Transducers, Advantages of Electrical transducers.	
Resistive Transducers: Potentiometers: Characteristics, Loading effect, and	
problems.	
Strain gauge: Theory, Types, applications and problems.	
Thermistor, RTD: Theory, Applications and Problems.	
UNIT-II	
Thermocouple: Measurement of thermocouple output, compensating circuits,	10 Hrs
lead compensation, advantages and disadvantages of thermocouple.	
LVDT: Characteristics, Practical applications and problems.	
Capacitive Transducers: Capacitive transducers using change in area of plates,	
distance between plates and change of dielectric constants, Applications of	
Capacitive Transducers and problems.	
UNIT-III	
Piezo-electric Transducers: Principles of operation, expression for output	10 Hrs
voltage, Piezo-electric materials, equivalent circuit, loading effect, and Problems.	
Special Transducers: Hall effect transducers, Thin film sensors, and smart	
transducers: Principles and applications, Introduction to MEMS Sensors and Nano	
Sensors, Schematic of the design of sensor, applications.	
UNIT-IV	1
Chemical sensors: pH value sensor, dissolved oxygen sensor, oxidation-reduction	08 Hrs
potential sensor.	
Light sensors: Photo resistor, Photodiode, Phototransistor, Photocell, Photo-FET,	
Photocell, Charge coupled device.	
Tactile sensors: Construction and operation, types.	
UNIT-V	
Data Converters : Introduction to Data Acquisition System, types of DAC, Binary	06 Hrs
Weighted DAC, R-2R ladder DAC, DAC-0800, Types of ADC, Single Slope ADC	
and Dual-slope integrated type ADC, Flash ADC, 8-bit ADC-0808, Programmable	
Gain Amplifier.	
•	

Course Outcomes: After completing the course, the students will be able to											
1	Remember and understand the basic principles of transducers and smart sensors.										
2	Apply the knowledge of transducers and sensors to comprehend digital instrumentation systems.										
3											
4	Design and create a system using appropriate sensors for a particular application										

Refere	nce Books									
1	A.K. Sawhney "Electrical and Electronic Measurements and Instrumentation",									
	Dhanpat Rai and Sons, 18 th Edition, 2008, ISBN 81-7700-016-0.									
2	Clarence W.de Silva, "Sensor systems: Fundamentals and applications" CRC Press,									
	2016 Edition, ISBN 9781498716246.									
3	D.V.S. Murthy "Transducers and Instrumentation", PHI Publication, 2 nd Edition									
	2008, ISBN 978-81-203-3569-1.									
4	Arun K. Ghosh, "Introduction to Measurement and Instrumentation", PHI 3rd									
	Edition, 2009, ISBN: 978-81-203-3858-6.									

Continuous Internal Evaluation (CIE) (Theory – 100 Marks)									
Evaluation method	Marks								
Quiz -1	10								
Test -1	50								
Quiz -2	10								
Test -2	50								
Quiz -3	10								
Test -3	50								
Assignment	10								
Final Evaluation Quiz 10+10+10; Test 50+50=150 Reduced to 60; Assignment 10	100								

Semester End Evaluation Theory (100)							
	<u> </u>						
Part- –A	20						
Objective type questions	20						
Part –B							
There should be 5 questions from 5 units. Each question should be for maximum of							
16 Marks.							
The UNIT-1, UNIT-4 and UNIT-5 should not have any choice.							
The UNIT-2 and UNIT-3 should have an internal choice.							
Both the questions should be of the same complexity in terms of COs and Bloom's	80						
taxonomy level.							
Total	100						

		What	To whom	Frequency of conduction	Max Marks	Evidence		tributio rse Outo	
t	CIT	Quiz		Three	30	Answer	000/		
eni	CIE	Test		Three	60/50	Scripts	80%		
Ĕ		Assignment		2 phases	10	Reports			
Direct Assessment	SEE	Semester End Examination	Students	End of every semester Consisting of Part-A and Part-B	100	Answer Scripts	20%	100%	90%
Indirect Assessment	Course End Survey		Students	End of course		Questionnaire Based on COs		10%	

Note: The faculty teaching the course may adapt additional methods for evaluation within the total maximum marks.

	CO-PO MAPPING											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	-	-	-	-	-	-	-	-	-
CO2	2	3	-	-	2	2	-	-	-	-	-	-
CO3	1	2	2	-	1	1	-	-	-	-	-	2
CO4	-	-	-	-	1	1	-	-	-	3	-	1

Course - PO Mapping												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	2	2	1	-	1	1	-	-	-	-	1	1

Low-1 Medium-2 High-3