		OPTIMIZATIO	N TECHNIQUES			
Course Code	:	16G5B07	CIE Marks	:	10	0
Credits	:	L: T: P: S:4:0:0:0	SEE Marks	:	10	0
Hours	:	44	SEE Duration	:	3	Hrs
Course Learning	0	bjectives:				
 To explain the techniques. To design and 	he de	velop optimization mode	for solving problems using o ls for real life situations.	ptii	niza	ation
•		ons obtained using optim				
5. To compare m	ode		us techniques for optimization.			
Introduction: 0	R	Unit – I Methodology Definition	on of OR, Application of O	R	to	09 Hr s
		•••	es of OR models, Limitations of			
			natical Formulation, Standard I			
0		0	Basic Feasible, Degenerate, Sol		ŕ	
_			Product Mix, Blending, Mark			
Finance, Agricultu					0,	
			orithm – Use of Artificial Variable	es.		
		Unit – I				09 Hr s
Duality and Se	nsi	tivity Analysis: Graph	nical sensitivity analysis, Alge	bra	ic	
			Changes in objectives, Primal			
• •		•	ality, Post optimal analysis - ch			
_		nd optimality, Revised si		-		
		Unit – II	I			08 Hrs
Transportation	Pro	blem: Formulation of 7	Transportation Model, Basic Fea	asib	le	
Solution using N	ort	h-West corner, Least Co	ost, Vogel's Approximation Me	etho	d,	
Optimality Meth	nod	s, Unbalanced Transp	ortation Problem, Degenerac	у	in	
Transportation Pro	oble	ems, Variants in Transpo	ortation Problems			
•	m-	Hungarian Method, Varia	signment problem, solution meth ints in assignment problem, Trave			
		Unit – I	V			09Hrs
• • •	ite j	performance analyzing of	characteristics, The M/M/I Qu M/M/1 queuing models. Introdu		U	
Game Theory : In without saddle p dominance		-	ro Sum game, Pure strategies, G d, Graphical Method, The rul			

Unit – V							
Markov chains: Definition, Absolute and n-step transition probabilities,							
Classification of the states, Steady state probabilities and mean return times of							
ergodic chains, First passage times, Absorbing states. Applications in weather							
prediction and inventory management.							
Over view of OR software's used in practice.							

Course Outcomes: After	r going through this course the student will be able to	
course outcomes. The	going unough this course the student will be usie to	

CO1: Understand the various optimization models and their areas of application.

CO2: Explain the process of formulating and solving problems using optimization methods.

CO3: Develop models for real life problems using optimization techniques.

CO4: Analyze solutions obtained through optimization techniques.

CO5: Create designs for engineering systems using optimization approaches.

Reference Books:

- 1. Taha H A, Operation Research An Introduction, PHI, 8th Edition, 2009, ISBN: 0130488089.
- 2. Philips, Ravindran and Solberg Principles of Operations Research Theory and Practice, John Wiley & Sons (Asia) Pte Ltd, 2nd Edition, 2000, ISBN 13: 978-81-265-1256-0
- 3. Hiller, Liberman, Nag, Basu, Introduction to Operation Research, Tata McGraw Hill 9th Edition, 2012, ISBN 13: 978-0-07-133346-7
- 4. J K Sharma, Operations Research Theory and Application, Pearson Education Pvt Ltd, 4th Edition, 2009, ISBN 13: 978-0-23-063885-3.
- 5. Prof. J Govardhan, Principles, Methodology and Applications of Operations Research, JEM Consultants, 3rd Edition, 2012

Continuous Internal Evaluation (CIE) (Theory – 100 Marks)									
Evaluation method	Marks								
Quiz -1	10								
Test -1	50								
Quiz-2	10								
Test -2	50								
Quiz-3	10								
Test-3	50								
Assignment	10								
Final evaluation quiz 10+10+10=30 Test 50+50+5	50=150 Reduced to 60, Assignment 10								

		What		To whom	Frequency of conduction	Max Marks	Evidence		tributio rse Outo	
2022	me	CIE	Quiz	Students	Three	30	Answer	80%	100%	90%

		Test		Two	60	Scripts			
		Assignment		2 phases	10	Reports			
	SEE	Semester End Examination		End of every semester Consisting of Part-A and Part-B	100	Answer Scripts	20%		
Assessment mathods	Course End Survey		Students	End of course		Questionnaire Based on COs		10%	

Note: All the three tests and quizzes are compulsory

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2											
CO2	2	2		1	1							
CO3							1	1				
CO4	2		3		1							
CO5			2			1						1

Low-1 Medium-2 High-3