	Semester: V(Global Elective-B)									
	Artificial Neural Networks & Deep Learning									
Cou	rse Code: 16G5B05		CIE Marks: 100							
Cree	dits: L:T:P:S: 4:0:0:0		SEE Marks: 100							
Hou	rs: 46		SEE Duration: 3Hrs							
Cou	rse Learning Objective	es: The students will be able to								
1	Define what is Neura	al Network and model a Neuro	on and Express both Artificial							
L	Intelligence and Neural	Intelligence and Neural Network								
2	Analyze ANN learning, Error correction learning, Memory-based learning, Hebbian									
4	learning, Competitive learning and Boltzmann learning									
	Implement Simple per	ception, Perception learning al	gorithm, Modified Perception							
3	learning algorithm, and Adaptive linear combiner, Continuous perception, learning in									
	continuous perception.									
4	Analyze the limitation	of Single layer Perceptron and	Develop MLP with 2 hidden							
	layers, Develop Delta	layers, Develop Delta learning rule of the output layer and Multilayer feed forward								
	neural network with co	ntinuous perceptions,								

Г

UNIT-I				
Introduction to Neural Networks: Neural Network, Human Brain, Models of	08			
Neuron, Neural networks viewed as directed graphs, Biological Neural Network,	Hrs			
Artificial neuron, Artificial Neural Network architecture, ANN learning, analysis				
and applications, Historical notes.				
UNIT-II				
Learning Processes: Introduction, Error correction learning, Memory-based	10			
learning, Hebbian learning, Competitive learning, Boltzmann learning, credit	Hrs			
assignment problem, Learning with and without teacher, learning tasks, Memory				
and Adaptation.				
UNIT-III				
Single layer Perception: Introduction, Pattern Recognition, Linear classifier,	10			
Simple perception, Perception learning algorithm, Modified Perception learning	Hrs			
algorithm, Adaptive linear combiner, Continuous perception, Learning in				
continuous perception. Limitation of Perception.				
UNIT-IV				
Multi-Layer Perceptron Networks: Introduction, MLP with 2 hidden layers,	10			
Simple layer of a MLP, Delta learning rule of the output layer, Multilayer feed	Hrs			
forward neural network with continuous perceptions, Generalized delta learning				
rule, Back propagation algorithm				
UNIT-V				
Introduction to Deep learning: Neuro architectures as necessary building blocks				
for the DL techniques, Deep Learning & Neocognitron, Deep Convolutional	Hrs			
Neural Networks, Recurrent Neural Networks (RNN), feature extraction, Deep				
Belief Networks, Restricted Boltzman Machines, Autoencoders, Training of Deep				
neural Networks, Applications and examples(Google, image/speech recognition)				

Course	Course Outcomes: After completing the course, the students will be able to										
CO1:	Model Neuron and Neural Network, and to analyze ANN learning, and its										
	applications.										
CO2:	Perform Pattern Recognition, Linear classification.										
CO3:	Develop different single layer/multiple layer Perception learning algorithms										

CO4:	Design of another	class of layered	networks using	deep	learning j	principles.
-------------	-------------------	------------------	----------------	------	------------	-------------

Ref	erence Books								
1.	Simon Haykins, "Neural Network- A Comprehensive Foundation", Pearson Prentice								
	Hall, 2nd Edition, 1999. ISBN-13: 978-0-13-147139-9/ISBN-10: 0-13-147139-2								
2.	Zurada and Jacek M, "Introduction to Artificial Neural Systems", West Publishing								
	Company, 1992, ISBN: 9780534954604								
3.	Vojislav Kecman,"Learning & Soft Computing", Pearson Education, 1st Edition, 2004,								
	ISBN:0-262-11255-8								
4.	M T Hagan, H B Demoth, M Beale, "Neural Networks Design", Thomson Learning,								
	2002. ISBN-10: 0-9717321-1-6/ ISBN-13: 978-0-9717321-1-7								

Continuous Internal Evaluation (CIE) (Theory – 100 Marks)								
Evaluation method	Marks							
Quiz -1	10							
Test -1	50							
Quiz -2	10							
Test-2	50							
Quiz -3	10							
Test -3	50							
Assignment	10							
Final Evaluation	Quiz 10+10+10=30; Test 50+50=150, Reduced to 60, Assignment 10							

Note:

- All the three tests and quiz are compulsory
- Individual faculty may adopt various methods for conducting effective quizzes and evaluate the same. The frequency of quizzes may be more than three also.

Semester End Evaluation						
Theory (100 Marks)						
Part- –A	20					
Objective type questions						
Part –B						
There should be five questions from five units. Each question should be for maximum of 16						
Marks.						
The UNIT-1, UNIT-4 and UNIT-5 should not have any choice.						
The UNIT-2 and UNIT-3 should have an internal choice.						
Both the questions should be of the same complexity in terms of COs and Bloom's taxonomy						
level.						
Total	100					

		WhatToFrequencyMaxwhomofMarksconductionconduction		Evidence	Contribution to Course Outcome				
nt	C I	Quiz Test	Students	Three Two	30 60/50	Answer Scripts	80%	100%	90%
essme ods	E	Assignment/Self- study		2 phases	10/20	Reports / Record Books			
Direct Ass Metho	S E E	Semester End Examination		End of every semester Consisting of Part-A and Part-B	100	Answer Scripts	20%		
Indirect Assessment methods	Course End Survey		Students	End of course		Questionnaire Based on COs		10%	

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	2	-	-	-	-	1	-	1
CO4	3	3	3	3	2	-	-	-	-	1	-	1

Low-1 Medium-2 High-3