Elective B – Global Elective							
Course Title: GRAPH THEORY							
Course Code:16G5B04	CIE Marks: 100						
Credits: L:T:P:S: 4:0:0:0	SEE Marks: 100						
Hours: 45	SEE Duration: 3 Hrs						

Cou	rse Learning Objectives: The students will be able to
1	Understand the basics of graph theory and their various properties.
2	Model problems using graphs and to solve these problems algorithmically.
3	Apply graph theory concepts to solve real world applications like routing, TSP/traffic
3	control, etc.
4	Optimize the solutions to real problems like transport problems etc.,

UNIT-I	
Introduction to graph theory	09 Hrs
Introduction, Mathematical preliminaries, definitions and examples of graphs,	
degrees and regular graphs, sub graphs, directed graphs, in degrees and out	
degrees in digraphs.	
Basic concepts in graph theory	
Paths and cycles, connectivity, homomorphism and isomorphism of graphs,	
connectivity in digraphs.	
UNIT-II	
Graph representations, Trees, Forests	09 Hrs
Adjacency matrix of a graph, Incidence matrix of a graph, Adjacency lists, Trees	
and properties of trees, Characterization of trees, Centers of trees, Rooted trees,	
Binary threes, Spanning trees and forests, Spanning trees of complete graphs, An	
application to electrical networks, Minimum cost spanning trees.	
UNIT-III	
Fundamental properties of graphs and digraphs	09 Hrs
Bipartite graphs, Eulerian graphs, Hamiltonian graphs, Hamiltonian cycles in	
weighted graphs, Eulerian digraphs.	
Planar graphs, Connectivity and Flows	
Embedding in surfaces, Euler's formula, Characterization of planar graphs,	
Kuratowski's theorem, Dual of a planar graphs.	
UNIT-IV	
Matchings and Factors	09 Hrs
Min-Max theorem, Independent sets and covers, Dominating sets, maximum	
bipartite matching.	
Coloring of graphs	
The chromatic number of a graph, Results for general graphs, The chromatic	
polynomial of a graph, Basic properties of chromatic polynomial, chordal graphs,	
powers of graphs, Edge coloring of graphs	
UNIT-V	
Graph algorithms	09 Hrs
Graph connectivity algorithms, Breadth first search and Depth first search,	
Shortest path algorithms, Dijikstra's shortest path algorithm, Minimum cost	
spanning tree algorithms, Algorithm of Kruskal's and Prim's.	

Course Outcomes: After completing the course, the students will be able to						
CO1.	Understand and explore the basics of graph theory.					
CO2.	Analyse the significance of graph theory in different engineering disciplines					
CO3.	Demonstrate algorithms used in interdisciplinary engineering domains.					
CO4.	Evaluate or synthesize any real world applications using graph theory.					

Ref	erence Books
1.	Douglas B. West, "Introduction to graph theory", 2 nd Edition, PHI, 2001,
	ISBN- 9780130144003, 0130144002.
2.	Geir Agnarsson, Raymond Greenlaw, "Graph Theory, modeling, Applications and
	Algorithms", Pearson Education, 1 st Edition, 2008, ISBN- 978-81-317-1728-8.
3.	Cormen T.H., Leiserson C. E, Rivest R.L., Stein C., Introduction to Algorithms, 3rd
	Edition, PHI 2010, ISBN:9780262033848

Continuous Internal Evaluation (CIE) (Theory – 100 Marks)								
Evaluation Method	Marks							
Quiz - 1	10							
Test - 1	50							
Quiz – 2	10							
Test - 2	50							
Quiz – 3	10							
Test - 3	50							
Assignment	10							
Final Evaluation – Quiz :10+10+10= 30 ; Test :	50+50+50=150 Reduced to 60 ; Assignment :10							
Total	100							

Semester End Evaluation				
Theory (100)				
Part- –A	20			
Objective type questions	20			
Part –B				
There should be five questions from five units. Each question should be for maximum of 16 Marks.				
The UNIT-1, UNIT-4 and UNIT-5 should not have any choice.				
The UNIT-2 and UNIT-3 should have an internal choice.				
Both the questions should be of the same complexity in terms of COs and Bloom's taxonomy level.				
Total	100			

Note: The faculty teaching the course may adapt additional methods for evaluation within the total maximum marks.

		What	To whom	Frequency of conduction	Max Marks	Evidence Contributi Course Out		on to come	
		Quiz		Three	30	Answer			
It		Test		Three	60	Scripts	80%	100 %	90%
Direct Assessmen	CIE	Assignment	Studente	2 phases	10	Reports / Record Books			
	SEE	Semester End Examination	Students	End of every semester Consisting of Part-A and Part-B	100	Answer Scripts	20%		
Indirect Assessment	Course End Survey		Students	End of course		Questionn aire Based on COs		10%	

Note: Individual faculty may adopt various methods for conducting effective quizzes and evaluate the same. The frequency of quizzes may be more than three also.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	-	-	-	-	-	-	1	1	-	-
CO2	2	3	2	1	-	-	-	-	2	2	-	1
CO3	2	2	3	2	-	-	-	-	2	2	-	1
CO4	2	2	3	2	-	1	-	-	2	2	-	1
Course - PO Mapping												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	2	2	2	1	-	1	-	-	2	2	-	1