Department of Computer Science and Engineering

Master of Technology (M.Tech.) in Computer Science and Engineering

Scheme and Syllabus of Autonomous System w.e.f 2018
Department of Computer Science and Engineering

Vision: To achieve leadership in the field of Computer Science and Engineering by strengthening fundamentals and facilitating interdisciplinary sustainable research to meet the ever growing needs of the society.

Mission:
- To evolve continually as a center of excellence in quality education in computers and allied fields.
- To develop state-of-the-art infrastructure and create environment capable for interdisciplinary research and skill enhancement.
- To collaborate with industries and institutions at national and international levels to enhance research in emerging areas.
- To develop professionals having social concern to become leaders in top-notch industries and/or become entrepreneurs with good ethics.

Program Outcomes (PO)
The graduates of M. Tech. in Computer Science and Engineering (CSE) Program will be able to:

PO1 Independently carry out research and development work to solve practical problems related to Computer Science and Engineering domain.

PO2 Write and present a substantial technical report/document.

PO3 Demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program.

PO4 Acquire knowledge to evaluate, analyze complex problems by applying principles of Mathematics, Computer Science and Engineering with a global perspective.

PO5 Explore, select, learn and model applications through use of state-of-art tools.

PO6 Recognize opportunities and contribute synergistically towards solving engineering problems effectively, individually and in teams, to accomplish a common goal and exhibit professional ethics, competence and to engage in lifelong learning.
Program Specific Criteria for M.Tech in Computer Science and Engineering

Professional Bodies: IEEE-CS, ACM

The M.Tech in Computer Science and Engineering curriculum is designed to enable the students to (a) analyze the problem by applying design concepts, implement the solution, interpret and visualize the results using modern tools (b) acquire breadth and depth wise knowledge in computer science domain (c) be proficient in Mathematics and Statistics, Humanities, Ethics and Professional Practice, Computer Architecture, Analysis of Algorithms, Advances in Operating Systems, Computer Networks and Computer Security courses along with elective courses (d) critically think and solve problems, communicate with focus on team work.
<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>BoS</th>
<th>CREDIT ALLOCATION</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lecture</td>
<td>Tutorial</td>
</tr>
<tr>
<td>1.</td>
<td>18 MAT 11B</td>
<td>Probability Theory and Linear Algebra</td>
<td>MT</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>18 MCE 12</td>
<td>Advances in Algorithms and Applications</td>
<td>CS</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3.</td>
<td>18 MCE 13</td>
<td>Data Science</td>
<td>CS</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4.</td>
<td>18 MCE 14x</td>
<td>Elective-1</td>
<td>CS</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>18 MCE 15x</td>
<td>Elective-2</td>
<td>CS</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>6.</td>
<td>18 HSS 16</td>
<td>Professional Skills Development</td>
<td>HSS</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td>3</td>
</tr>
</tbody>
</table>

LIST OF ELECTIVE COURSES

Elective 1

- 18 MCE 141 Computer Network Technologies
- 18 MCE 142 Data Preparation and Analysis
- 18 MCE 143 / 18 MCN 143 Applied Cryptography

Elective 2

- 18 MCE 151 / 18 MCN 151 Cloud Computing Technology
- 18 MCE 152 / 18 MMD 152 / 18 MCM 152 Intelligent Systems
- 18 MCE 153 / 18 MCN 153 Wireless Network Security
Department of Computer Science and Engineering
M. Tech in Computer Science and Engineering

(An Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi)

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>BoS</th>
<th>CREDIT ALLOCATION</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>18 MCE 21</td>
<td>Big Data Analytics</td>
<td>CS</td>
<td>L 3, T 1, P 1</td>
<td>5</td>
</tr>
<tr>
<td>2.</td>
<td>18 MCE 22</td>
<td>Parallel Computer Architecture</td>
<td>CS</td>
<td>L 3, T 1, P 0</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>18 IEM 23</td>
<td>Research Methodology</td>
<td>IEM</td>
<td>L 3, T 0, P 0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>18 MCE 24x</td>
<td>Elective-3</td>
<td>CS</td>
<td>L 4, T 0, P 0</td>
<td>4</td>
</tr>
<tr>
<td>5.</td>
<td>18 MCE 25x</td>
<td>Elective-4</td>
<td>CS</td>
<td>L 4, T 0, P 0</td>
<td>4</td>
</tr>
<tr>
<td>6.</td>
<td>18 GXX 26x</td>
<td>Global Elective</td>
<td>CS</td>
<td>L 3, T 0, P 0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>18 MCE 27</td>
<td>Minor Project</td>
<td>CS</td>
<td>L 0, T 0, P 2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td>L 20, T 2, P 3</td>
<td>25</td>
</tr>
</tbody>
</table>

LIST OF ELECTIVE COURSES

Elective 3
- 18 MCE 241 Wireless and Mobile Networks
- 18 MCE 242 Natural Language Processing
- 18 MCE 243 / 18 MCN 243 Cloud Security

Elective 4
- 18 MCE 251 / 18 MCN 251 Internet of Things and Applications
- 18 MCE 252 / 18 MCS 252 Deep Learning
- 18 MCE 253 / 18 MCN 253 Security Engineering

Global Elective
- 18 GCS 261 Business Analytics
- 18 GCV 262 Industrial & Occupational Health And Safety
- 18 GIM 263 Modeling Using Linear Programming
- 18 GIM 264 Project Management
- 18 GCH 265 Energy Management
- 18 GME 266 Industry 4.0
- 18 GME 267 Advanced Materials

R. V. College of Engineering, Bengaluru – 59
THIRD SEMESTER

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>BoS</th>
<th>CREDIT ALLOCATION</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lecture (L)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tutorial (T)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Practical (P)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>18 MCE 31</td>
<td>Operating System Design</td>
<td>CS</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>18 MCE 32x</td>
<td>Elective-5</td>
<td>CS</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>18 MCE 33</td>
<td>Internship</td>
<td>CS</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>18 MCE 34</td>
<td>Dissertation Phase I</td>
<td>CS</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

LIST OF ELECTIVE COURSES

- Elective 5
 - 18 MCE 321 / 18 MCN 321: Software Defined Systems
 - 18 MCE 322: Web Analytics and Development
 - 18 MCE 323 / 18 MCN 323: Cyber Security

FOURTH SEMESTER

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>BoS</th>
<th>CREDIT ALLOCATION</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lecture (L)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tutorial (T)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Practical (P)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>18 MCE 41</td>
<td>Dissertation Phase II</td>
<td>CS</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>18 MCE 42</td>
<td>Technical Seminar</td>
<td>CS</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>22</td>
</tr>
</tbody>
</table>
FIRST SEMESTER

PROBABILITY THEORY AND LINEAR ALGEBRA

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18MAT11B</th>
<th>CIE Marks</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/Week</td>
<td>L:T:P 4:0:0</td>
<td>SEE Marks</td>
<td>100</td>
</tr>
<tr>
<td>Credits</td>
<td>4</td>
<td>SEE Duration</td>
<td>3 Hrs</td>
</tr>
</tbody>
</table>

Unit – I
09 Hrs

Matrices and Vector spaces:
Geometry of system of linear equations, vector spaces and subspaces, linear independence, basis and dimension, four fundamental subspaces, Rank-Nullity theorem (without proof), linear transformations.

Unit – II
09 Hrs

Orthogonality and Projections of vectors:
Orthogonal Vectors and subspaces, projections and least squares, orthogonal bases and Gram-Schmidt orthogonalization, Computation of Eigen values and Eigen vectors, diagonalization of a matrix, Singular Value Decomposition.

Unit – III
10 Hrs

Random Variables:
Definition of random variables, continuous and discrete random variables, Cumulative distribution Function, probability density and mass functions, properties, Expectation, Moments, Central moments, Characteristic functions.

Unit – IV
10 Hrs

Discrete and Continuous Distributions:
Binomial, Poisson, Exponential, Gaussian distributions.

Multiple Random variables:
Joint PMFs and PDFs, Marginal density function, Statistical Independence, Correlation and Covariance functions, Transformation of random variables, Central limit theorem (statement only).

Unit – V
09 Hrs

Random Processes:

Expected Course Outcomes:
After completion of the course, the students should have acquired the ability to:

CO1: Demonstrate the understanding of fundamentals of matrix theory, probability theory and random process.

CO2: Analyze and solve problems on matrix analysis, probability distributions and joint distributions.

CO3: Apply the properties of auto correlation function, rank, diagonalization of matrix, verify Rank - Nullity theorem and moments.

CO4: Estimate Orthogonality of vector spaces, Cumulative distribution function and characteristic function. Recognize problems which involve these concepts in Engineering applications.
Reference Books:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>

Scheme of Continuous Internal Evaluation (CIE) for 100 marks:
CIE will consist of THREE Tests, THREE Quizzes and TWO assignments. Each test will be for 50 marks, each quiz will be for 10 marks and each assignment for 10 marks each. The total marks of tests, quizzes, assignment will be divided by 2 for computing the CIE marks. All three tests, quizzes and assignments are compulsory.

Scheme of Semester End Examination (SEE) for 100 marks:
The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit.
ADVANCES IN ALGORITHMS AND APPLICATIONS
(Theory and Practice)

<table>
<thead>
<tr>
<th>Course Code:</th>
<th>18MCE12</th>
<th>CIE Marks: 100+50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/week</td>
<td>L:T:P</td>
<td>SEE Marks: 100+50</td>
</tr>
<tr>
<td>Credits:</td>
<td>5</td>
<td>SEE: 3 Hrs</td>
</tr>
</tbody>
</table>

Unit – I
07 Hrs

Analysis techniques:
- Growth of functions: Asymptotic notation, Standard notations and common functions,
- Substitution method for solving recurrences, Recursion tree method for solving recurrences, Master theorem.

Sorting in Linear Time
- Lower bounds for sorting , Counting sort, Radix sort, Bucket sort

Unit – II
08 Hrs

Advanced Design and Analysis Technique
- Matrix-chain multiplication, Longest common subsequence. An activity-selection problem, Elements of the greedy strategy

Amortized Analysis
- Aggregate analysis, The accounting method, The potential method

Unit – III
07 Hrs

Graph Algorithms
- Bellman-Ford Algorithm, Shortest paths in a DAG, Johnson’s Algorithm for sparse graphs.

Maximum Flow:
- Flow networks, Ford Fulkerson method and Maximum Bipartite Matching

Unit – IV
07 Hrs

Advanced Data structures
- Structure of Fibonacci heaps, Mergeable-heap operations, Decreasing a key and deleting a node, Disjoint-set operations, Linked-list representation of disjoint sets, Disjoint-set forests.

String Matching Algorithms:
- Naïve algorithm, Rabin-Karp algorithm, String matching with finite automata, Knuth-Morris-Pratt algorithm

Unit – V
07 Hrs

Multithreaded Algorithms
- The basics of dynamic multithreading, Multithreaded matrix multiplication, Multithreaded merge sort
Unit – VI (Lab Component) | 2 Hrs/Week
---|---
Solve case studies by applying relevant algorithms and calculate complexity. For example:
1. Applied example of graph Algorithm
2. Real world applications of Advanced Data Structures
3. Real applications of Maximum Flow
4. String matching algorithms

Sample Experiment:
1. Write code for an appropriate algorithm to find maximal matching.
Six reporters Asif (A), Becky (B), Chris (C), David (D), Emma (E) and Fred (F), are to be assigned to six news stories Business (1), Crime (2), Financial (3), Foreign (4), Local (5) and Sport (6). The table shows possible allocations of reporters to news stories. For example, Chris can be assigned to any one of stories 1, 2 or 4.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

2. The table shows the tasks involved in a project with their durations and immediate predecessors.

<table>
<thead>
<tr>
<th>Task</th>
<th>Duration (Days)</th>
<th>Immediate predecessors</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>A,B</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>B</td>
</tr>
<tr>
<td>E</td>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>F</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td>8</td>
<td>D</td>
</tr>
<tr>
<td>H</td>
<td>2</td>
<td>D,F</td>
</tr>
</tbody>
</table>

Find minimum duration of this project.
Course Outcome:
At the end of the course the student will be able to:

CO1: Explore the fundamentals in the area of algorithms by analysing various types of algorithms.
CO2: Analyze algorithms for time and space complexity for various applications
CO3: Apply appropriate mathematical techniques to construct robust algorithms.
CO4: Demonstrate the ability to critically analyze and apply suitable algorithm for any given problem.

REFERENCE BOOKS:

Scheme of Continuous Internal Evaluation (CIE) for Theory 100 marks:
CIE will consist of THREE Tests, THREE Quizzes and TWO assignments. Each test will be for 50 marks, each quiz will be for 10 marks and each assignment for 10 marks each. The total marks of tests, quizzes, assignment will be divided by 2 for computing the CIE marks. All three tests, quizzes and assignments are compulsory.

Scheme of Semester End Examination (SEE) for Theory 100 marks:
The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit.

Scheme of Continuous Internal Evaluation (CIE) for Practical 50 Marks:
CIE for the practical courses will be based on the performance of the student in the laboratory, every week. The laboratory records will be evaluated for 30 marks. One test will be conducted for 20 marks. The total marks for CIE (Practical) will be for 50 marks.

Scheme of Semester End Examination (SEE) for Practical 50 Marks:
SEE for the practical courses will be based on conducting the experiments and proper results for 40 marks and 10 marks for viva-voce. The total marks is 50.
DATA SCIENCE
(Theory and Practice)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>CIE Marks</th>
<th>Hrs/Week</th>
<th>SEE Marks</th>
<th>SEE Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>18MCE13</td>
<td>100+50</td>
<td>L:T:P</td>
<td>100+50</td>
<td>3 Hrs</td>
</tr>
<tr>
<td>3:2:2</td>
<td>Credits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unit – I 07 Hrs

Introduction to Data mining and machine learning: Describing structural patterns, Machine learning, Data mining, Simple examples, Fielded applications, Machine learning and statistics, Generalization as search, Enumerating the concept space, Bias.

Unit – II 08 Hrs

The data science process: The roles in a Data Science project, Project roles, Stages of a data science project, Defining the goal, Data collection and management, Modelling, Model evaluation and critique, Presentation and documentation, Model deployment and maintenance, Setting expectations, Determining lower and upper bounds on model performance, Choosing and evaluating models. Mapping problems to machine learning tasks, Solving classification problems, Solving scoring, Working without known targets, Problem-to-method mapping, Evaluating models, Evaluating classification models, Evaluating scoring, Evaluating probability models, Evaluating ranking models, Evaluating clustering models, Validating models.

Unit – III 07 Hrs

Output knowledge representation: Decision trees, association rule mining: Association rule mining, Apriori Algorithm, Statistical modeling, Divide-and-conquer: Constructing decision trees.

Unit – IV 07 Hrs

Linear Models: Linear regression, logistic regression, Extending linear models, Instance-based learning, Bayesian Networks, Combining multiple models.

Unit-V 07 Hrs

UNIT-VI (Lab Component) 2 Hrs/week
Using Open source tools(R/Python) design and execute for a given large dataset:
1. Principal Components Analysis
2. Decision Trees: Fitting Classification and Regression Trees, Bagging and Random Forests, Boosting.
4. Support Vector Machines: Support Vector Classifier, ROC Curves, SVM with Multiple Classes
5. Clustering: K-Means and Hierarchical Clustering

Course Outcomes:
After going through this course the student will be able to:
CO1: Explore and apply Machine Learning Techniques to real world problems.
CO2: Evaluate different mathematical models to construct algorithms.
CO3: Analyze and infer the strength and weakness of different machine learning models
CO4: Implement suitable supervised and unsupervised machine learning algorithms for various applications.

References:

Scheme of Continuous Internal Evaluation (CIE) for Theory 100 marks:
CIE will consist of THREE Tests, THREE Quizzes and TWO assignments. Each test will be for 50 marks, each quiz will be for 10 marks and each assignment for 10 marks each. The total marks of tests, quizzes, assignment will be divided by 2 for computing the CIE marks. All three tests, quizzes and assignments are compulsory.

Scheme of Semester End Examination (SEE) for Theory 100 marks:
The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit.

Scheme of Continuous Internal Evaluation (CIE) for Practical 50 Marks:
CIE for the practical courses will be based on the performance of the student in the laboratory, every week. The laboratory records will be evaluated for 30 marks. One test will be conducted for 20 marks. The total marks for CIE (Practical) will be for 50 marks

Scheme of Semester End Examination (SEE) for Practical 50 Marks:
SEE for the practical courses will be based on conducting the experiments and proper results for 40 marks and 10 marks for viva-voce. The total marks is 50.

COMPUTER NETWORK TECHNOLOGIES
(Elective-1)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>CIE Marks</th>
<th>Hrs/Week</th>
<th>SEE Marks</th>
<th>SEE Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>18MCE141</td>
<td></td>
<td>L:T:P</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>4:0:0</td>
<td>100</td>
<td></td>
<td>3 Hrs</td>
<td></td>
</tr>
</tbody>
</table>

Unit – I

Foundations and Internetworking
- Network Architecture- layering & Protocols, Internet Architecture, Implementing Network Software-Application Programming Interface (sockets), High Speed Networks, Ethernet and multiple access networks (802.3), Wireless-802.11/Wi-Fi, Bluetooth(802.15.1), Cell Phone Technologies.
- Switching and Bridging, Datagrams, Virtual Circuit Switching, Source Routing, Bridges and LAN Switches.

Unit – II

Internetworking
- Internetworking, Service Model, Global Addresses, Special IP addresses, Datagram Forwarding in IP, Subnetting and classless addressing-Classless Inter-domain Routing(CIDR), Address Translation(ARP), Host Configuration(DHCP), Error Reporting(ICMP), Routing, Routing Information Protocol(RIP), Routing for mobile hosts, Open Shortest Path First(OSPF), Switch Basics-Ports, Fabrics, Routing Networks through Banyan Network.

Unit – III

Advanced Internetworking

Unit – IV

End-to-End Protocols
- Simple Demultiplexer (UDP), Reliable Byte Stream(TCP), End-to-End Issues, Segment Format, Connecting Establishment and Termination, Sliding Window Revisited, Triggering Transmission-Silly Window Syndrome, Nagle’s Algorithm, Adaptive Retransmission-Karn/Partridge Algorithm, Jacobson Karels Algorithm, Record Boundaries, TCP Extensions, Real-time Protocols
Congestion Control/Avoidance and Applications

Course Outcomes:
After going through this course the student will be able to:
CO1: Gain knowledge on networking research by studying a combination of functionalities and services of networking.
CO2: Analyze different protocols used in each layer and emerging themes in networking research.
CO3: Design various protocols and algorithms in different layers that facilitates effective communication mechanisms.
CO4: Apply emerging networking topics and solve the challenges in interfacing various protocols in real world.

Reference Books:

Scheme of Continuous Internal Evaluation (CIE) for 100 marks:
CIE will consist of THREE Tests, THREE Quizzes and TWO assignments. Each test will be for 50 marks, each quiz will be for 10 marks and each assignment for 10 marks each. The total marks of tests, quizzes, assignment will be divided by 2 for computing the CIE marks. All three tests, quizzes and assignments are compulsory.

Scheme of Semester End Examination (SEE) for 100 marks:
The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit.
Data Preparation and Analysis
(Elective-1)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18MCE142</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIE Marks</td>
<td>100</td>
</tr>
<tr>
<td>Hrs/Week</td>
<td>L:T:P 4:0:0</td>
</tr>
<tr>
<td>SEE Marks</td>
<td>100</td>
</tr>
<tr>
<td>Credits</td>
<td>4</td>
</tr>
<tr>
<td>SEE Duration</td>
<td>3 Hrs</td>
</tr>
</tbody>
</table>

Unit – I

Data Objects and Attribute Types: Attributes, Nominal Attributes, Binary Attributes, Ordinal Attributes, Numeric Attributes, Discrete versus Continuous Attributes.

Basic Statistical Descriptions of Data:
- Measuring the Central Tendency: Mean, Median, and Mode
- Measuring the Dispersion of Data: Range, Quartiles, Variance, Standard Deviation, and Inter quartile Range
- Graphic Displays of Basic Statistical Descriptions of Data

Unit – II

Measuring Data Similarity and Dissimilarity:
- Data Matrix versus Dissimilarity Matrix
- Proximity Measures for Nominal Attributes
- Proximity Measures for Binary Attributes
- Dissimilarity of Numeric Data: Minkowski Distance
- Proximity Measures for Ordinal Attributes
- Dissimilarity for Attributes of Mixed Types
- Cosine Similarity

Unit – III

Data Preprocessing: An Overview
- Data Quality: Need of Preprocessing the Data
- Major Tasks in Data Preprocessing
- **Data Cleaning:** Missing Values, Noisy Data, Data Cleaning as a Process
- **Data Integration:** Entity Identification Problem, Redundancy and Correlation Analysis, Tuple Duplication, Data Value Conflict Detection and Resolution
- **Data Reduction:** Overview of Data Reduction Strategies, Wavelet Transforms, Principal Components Analysis, Attribute Subset Selection, Regression and Log-Linear Models: Parametric, Data Reduction, Histograms, Clustering, Sampling, Data Cube Aggregation

Unit – IV

Data Transformation and Data Discretization:
- Data Transformation Strategies Overview
- Data Transformation by Normalization, Discretization by Binning, Discretization by Histogram Analysis, Discretization by Cluster, Decision Tree, and Correlation Analyses, Concept Hierarchy Generation for Nominal Data
- **Data Visualization:** Pixel-Oriented Visualization Techniques, Geometric Projection Visualization Techniques, Icon-Based Visualization Techniques, Hierarchical Visualization Techniques, Visualizing Complex Data and Relations

Unit – V

Mining Complex Data Types: Mining Sequence Data: Time-Series, Symbolic Sequences, and Biological Sequences, Mining Graphs and Networks, Mining Other Kinds of Data

Other Methodologies of Data Mining: Statistical Data Mining, Views on Data Mining
Foundations, Visual and Audio Data Mining. **Data Mining Applications:** Data Mining for Financial Data Analysis, Data Mining for Retail and Telecommunication Industries, Data Mining in Science and Engineering, Data Mining for Intrusion Detection and Prevention, Data Mining and Recommender Systems, Data Mining and Society: Ubiquitous and Invisible Data Mining, Privacy, Security, and Social Impacts of Data Mining

Course Outcomes:
After going through this course the student will be able to:
CO1: Explore the data of various domains, for preprocessing
CO2: Analyze the various techniques of data cleaning performing data analysis.
CO3: Apply various techniques for data extraction from dataset
CO4: Visualize the data using different tools for getting better insight.

References:

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Author(s)</th>
<th>Publisher</th>
<th>ISBN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Data Mining – Concepts and Techniques</td>
<td>Jiawei Han and Micheline Kamber</td>
<td>Morgan Kaufmann, 2006</td>
<td>1-55860-901-6</td>
</tr>
<tr>
<td>2</td>
<td>Introduction to Data Mining</td>
<td>Pang-Ning Tan, Michael Steinbach, Vipin Kumar</td>
<td>Pearson Education, 2007</td>
<td>9788131714720</td>
</tr>
<tr>
<td>3</td>
<td>Insight into Data Mining, Theory & Practice</td>
<td>K. P. Soman, Shyam Diwaker, V. Ajay</td>
<td>PHI – 2006</td>
<td>978-81-203-2897-6</td>
</tr>
<tr>
<td>4</td>
<td>Data Mining: Practical Machine Learning Tools and Techniques</td>
<td>Ian H Witten & Eibe Frank</td>
<td>Elsevier Morgan Kaufmann Publishers, 2005</td>
<td>0-12-088407-0</td>
</tr>
</tbody>
</table>

Scheme of Continuous Internal Evaluation (CIE) for 100 marks:
CIE will consist of THREE Tests, THREE Quizzes and TWO assignments. Each test will be for 50 marks, each quiz will be for 10 marks and each assignment for 10 marks each. The total marks of tests, quizzes, assignment will be divided by 2 for computing the CIE marks. All three tests, quizzes and assignments are compulsory.

Scheme of Semester End Examination (SEE) for 100 marks:
The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit.
APPLIED CRYPTOGRAPHY
(Elective-1)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18MCE143/18MCN143</th>
<th>CIE Marks : 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/Week</td>
<td>L:T:P</td>
<td>SEE Marks : 100</td>
</tr>
<tr>
<td>Credits</td>
<td>4</td>
<td>SEE Duration : 3 Hrs</td>
</tr>
</tbody>
</table>

Unit – I
09 Hrs

Overview of Cryptography: Introduction, Information security and cryptography: Background on functions: Functions (1-1, one-way, trapdoor one-way), Permutations, and Involutions. Basic terminology and concepts, Symmetric-key encryption: Overview of block ciphers and stream ciphers, Substitution ciphers and transposition ciphers, Composition of ciphers, Stream ciphers, The key space. Classes of attacks and security models: Attacks on encryption schemes, Attacks on protocols, Models for evaluating security, Perspective for computational security.

Unit – II
09 Hrs

Unit – III
09 Hrs

Stream Ciphers: Introduction: Classification, Feedback shift registers: Linear feedback shift registers, Linear complexity, Berlekamp-Massey algorithm, Nonlinear feedback shift registers. Stream ciphers based on LFSRs: Nonlinear combination generators, Nonlinear filter generators, Clock-controlled generators. Other stream ciphers: SEAL.

Unit – IV
09 Hrs

Block Ciphers: Introduction and overview, Background and general concepts: Introduction to block ciphers, Modes of operation, Exhaustive key search and multiple encryption. Classical ciphers and historical development: Transposition ciphers (background), Substitution ciphers (background), Polyalphabetic substitutions and Vigenere ciphers (historical). Polyalphabetic cipher machines and rotors (historical), Cryptanalysis of classical ciphers (historical).

Unit – V
10 Hrs

Course Outcomes:

After going through this course the student will be able to:
CO1: Analyze background on functions, composition of ciphers and attacks on encryption schemes.
CO2: Evaluate mathematical background on cryptographic functions.
CO3: Identify stream cipher and block cipher algorithms and functionalities.
CO4: Evaluate identification and Entity authentication schemes.

<table>
<thead>
<tr>
<th>Reference Books:</th>
</tr>
</thead>
</table>

Scheme of Continuous Internal Evaluation (CIE) for 100 marks:
CIE will consist of THREE Tests, THREE Quizzes and TWO assignments. Each test will be for 50 marks, each quiz will be for 10 marks and each assignment for 10 marks each. The total marks of tests, quizzes, assignment will be divided by 2 for computing the CIE marks. All three tests, quizzes and assignments are compulsory.

Scheme of Semester End Examination (SEE) for 100 marks:
The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit.
CLOUD COMPUTING TECHNOLOGY
(Elective-2)

Course Code: 18MCE151/18MCN151 CIE Marks: 100
Hrs/Week: L:T:P 4:0:0 SEE Marks: 100
Credits: 4 SEE Duration: 3 Hrs

Unit – I 09 Hrs

Introduction, Cloud Infrastructure
Cloud computing, Cloud computing delivery models and services, Ethical issues, Cloud vulnerabilities, Major challenges faced by cloud computing; Cloud Infrastructure: Cloud computing at Amazon, Cloud computing the Google perspective, Microsoft Windows Azure and online services, Open-source software platforms for private clouds, Cloud storage diversity and vendor lock-in, Service- and compliance-level agreements, User experience and software licensing. Exercises and problems

Unit – II 09 Hrs

Cloud Computing: Application Paradigms
Challenges of cloud computing, Existing Cloud Applications and New Application Opportunities, Workflows: coordination of multiple activities, Coordination based on a state machine model: The ZooKeeper, The MapReduce Programming model, A case study: The Grep TheWeb application, HPC on cloud, Biology research

Unit – III 09 Hrs

Cloud Resource Virtualization.

Unit – IV 10 Hrs.

Cloud Resource Management and Scheduling
Policies and mechanisms for resource management, Application of control theory to task scheduling on a cloud, Stability of a two-level resource allocation architecture, Feedback control based on dynamic thresholds, Coordination of specialized autonomic performance managers; Scheduling algorithms for computing clouds, Fair queuing, Start-time fair queuing, Borrowed virtual time, Exercises and problems.

Unit – V 09 Hrs

Cloud Security, Cloud Application Development
Cloud security risks, Security: The top concern for cloud users, Privacy and privacy impact assessment, Trust, Operating system security, Virtual machine Security, Security of virtualization, Security risks posed by shared images, Security risks posed by a management OS, A trusted virtual machine monitor, Amazon web services: EC2 instances, Connecting clients to cloud instances through firewalls, Security rules for application and transport layer protocols in EC2, How to
launch an EC2 Linux instance and connect to it, How to use S3 in java, Cloud-based simulation of a distributed trust algorithm, A trust management service, A cloud service for adaptive data streaming, Cloud based optimal FPGA synthesis. Exercises and problems. Amazon Simple Notification services.

Latest topics:
Google messaging, Android Cloud to Device messaging, Isolation mechanisms for data privacy in cloud, Capability-oriented methodology to build private clouds.

Course Outcomes:
After going through this course the student will be able to:

- CO1: Explain industry relevance of cloud computing and its intricacies, in terms of various challenges, vulnerabilities, SLAs, virtualization, resource management and scheduling, etc.
- CO2: Examine some of the application paradigms, and Illustrate security aspects for building cloud-based applications.
- CO3: Conduct a research study pertaining to various issues of cloud computing.
- CO4: Demonstrate the working of VM and VMM on any cloud platforms(public/private), and run a software service on that.

Reference Books:

Scheme of Continuous Internal Evaluation (CIE) for 100 marks:
CIE will consist of THREE Tests, THREE Quizzes and TWO assignments. Each test will be for 50 marks, each quiz will be for 10 marks and each assignment for 10 marks each. The total marks of tests, quizzes, assignment will be divided by 2 for computing the CIE marks. All three tests, quizzes and assignments are compulsory.

Scheme of Semester End Examination (SEE) for 100 marks:
The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit.
INTELLIGENT SYSTEMS
(Elective-2)
(Common to CSE-CNE, MECH-MD, MECH-CIM)

Course Code: 18MCE152 / 18MMD152 / 18MCM152
CIE Marks: 100
Hrs/Week: L: T: P 4:0:0
SEE Marks: 100
Credits: 4
SEE Duration: 3 Hrs

Unit – I 09 Hrs

Overview of Artificial Intelligence: Artificial Intelligence and its Application areas;
Structures and strategies for state space search: Introduction, Structures for state space search, Strategies for State Space Search, Using the State Space to Represent Reasoning with the Predicate Calculus; And/Or Graphs;

Unit – II 09 Hrs

Unit – III 09 Hrs

Other Knowledge Representation Techniques: Semantic Networks, Conceptual Dependencies, Scripts and Frames, Conceptual Graphs.
Knowledge Intensive Problem Solving: Overview of Expert System Technology, Rule-Based Expert Systems, Model-Based, Case Based, and Hybrid Systems

Unit – IV 09 Hrs

Automated Reasoning: Introduction to Weak Methods in Theorem Proving, The General Problem Solver and Difference Tables, Resolution Theorem Proving;
Representing Knowledge in Uncertain Domain: Semantics of Bayesian Networks, Efficient Representation of Conditional Distributions, Exact Inference in Bayesian Network, Approximate Inference in Bayesian Network
Introduction to Learning: Forms of Learning: Supervised learning, Unsupervised Learning, Semi-Supervised and Reinforcement Learning; Parametric Models & Non-Parametric Models, Classification and Regression problems

Artificial Intelligence Current Trends: The Science of Intelligent Systems, AI: Current Challenges and Future Directions;

Course Outcome:
At the end of this course graduates will be able to:

CO1. Explore various Artificial Intelligence problem solving techniques.
CO2. Identify and describe the different AI approaches such as Knowledge representation, Search strategies, learning techniques to solve uncertain imprecise, stochastic and nondeterministic nature in AI problems.
CO3. Apply the AI techniques to solve various AI problems.
CO4. Analyze and compare the relative challenges pertaining to design of Intelligent Systems.

Reference Books

Scheme of Continuous Internal Evaluation (CIE) for 100 marks:
CIE will consist of THREE Tests, THREE Quizzes and TWO assignments. Each test will be for 50 marks, each quiz will be for 10 marks and each assignment for 10 marks each. The total marks of tests, quizzes, assignment will be divided by 2 for computing the CIE marks. All three tests, quizzes and assignments are compulsory.

Scheme of Semester End Examination (SEE) for 100 marks:
The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit.
WIRELESS NETWORKS SECURITY
(Elective-2)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>CIE Marks</th>
<th>Hrs/Week</th>
<th>SEE Marks</th>
<th>SEE Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>18MCE153/18MCN153</td>
<td>100</td>
<td>L:T:P 4:0:0</td>
<td>100</td>
<td>3 Hrs</td>
</tr>
</tbody>
</table>

Credits: 4

Course Learning Objectives:
Graduates shall be able to
1. Explore the principles of wireless networks security technology
2. Illustrate the secure design of wireless network with various protocols
3. Analyze and choose the suitable wireless security technology based on requirements.
4. Investigate the upcoming security trends and threats in the wireless applications

Unit – I 09 Hrs
Overview of wireless network security technology: Wireless network security fundamentals, Types of wireless network security Technology, Elements of wireless security, Available solutions and policies for wireless security, Perspectives- prevalence and issues for wireless security, Inverted security model

Unit – II 09 Hrs
Designing wireless network security: Wireless network security design issues, Cost justification and consideration –hitting where it hurts, assess your vulnerable point, security as Insurance, consequences of breach, Standard design issues- switches, flexible IP address assignment, router filtering, bandwidth management, firewalls and NAT, VLAN, VPN, Remote access security, third party solutions

Unit – III 09 Hrs
Installing and deploying wireless network security: Testing techniques- Phase I to IV, Internetworking Wireless Security - Operation modes of Performance Enhancing Proxy (PEP), Adaptive usage of PEPs over a Radio Access Network (RAN), Problems of PEP with IPSec, Problems of Interworking between PEP and IPsec, Solutions, Installation and Deployment

Unit – IV 10 Hrs

Unit – V 09 Hrs

Course Outcomes:

After going through this course the student will be able to:

CO1: Explore the existing threats in wireless networks and security issues

CO2: Design suitable security in wireless networks depending on context

CO3: Analyze the wireless installation and deployment techniques in real-world networks

CO4: Improve the security and energy management issues for the wireless devices

Reference Books:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4*</td>
<td>Technical Journal papers and manuals.</td>
</tr>
</tbody>
</table>

Scheme of Continuous Internal Evaluation (CIE) for 100 marks:

CIE will consist of THREE Tests, THREE Quizzes and TWO assignments. Each test will be for 50 marks, each quiz will be for 10 marks and each assignment for 10 marks each. The total marks of tests, quizzes, assignment will be divided by 2 for computing the CIE marks. All three tests, quizzes and assignments are compulsory.

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit.
SECOND SEMESTER

BIG DATA ANALYTICS
(Theory and Practice)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>CIE Marks</th>
<th>Hrs/Week</th>
<th>SEE Marks</th>
<th>Credits</th>
<th>SEE Duration</th>
<th>Unit – I</th>
</tr>
</thead>
<tbody>
<tr>
<td>18MCE21</td>
<td>100+50</td>
<td>3:2:2</td>
<td>100+50</td>
<td>5</td>
<td>3 Hrs</td>
<td>08 Hrs</td>
</tr>
</tbody>
</table>

INTRODUCTION TO NoSQL and BIG DATA

NoSQL: Where is it used?, What is it?, Types of NoSQL Databases, Why NoSQL?, Advantages of NoSQL, SQL versus NoSQL, NewSQL, Comparison of SQL, NoSQL and NewSQL,

Introduction to Big Data: Distributed file system – Big Data and its importance, Four Vs, Drivers for Big data, Big data analytics, Big data applications.

Unit – II

07 Hrs

HADOOP ARCHITECTURE

Hadoop Architecture, Hadoop Storage: HDFS, Common Hadoop Shell commands , Anatomy of File Write and Read, NameNode, Secondary NameNode, and DataNode, Hadoop MapReduce paradigm, Map and Reduce tasks, Job, Task trackers - Cluster Setup – SSH & Hadoop Configuration – HDFS Administering – Monitoring & Maintenance.

Unit – III

07 Hrs

HADOOP ECOSYSTEM AND YARN

Hadoop ecosystem components - SPARK, FLUME, Hadoop 2.0 New Features- NameNode High Availability, HDFS Federation, MRv2, YARN

Unit – IV

07 Hrs

Real-Time Applications in the Real World

Unit-V

07 Hrs
HIVE AND HIVEQL, HBASE
Hive Architecture and Installation, Comparison with Traditional Database, HiveQL - Querying Data - Sorting And Aggregating. HBase concepts- Advanced Usage, Schema Design, Advance Indexing - PIG, Zookeeper - how it helps in monitoring a cluster, HBase uses Zookeeper and how to Build Applications with Zookeeper

UNIT-VI (Lab Component) | 2 Hrs/Week

Exercise 1 --- Elastic Search

Build a platform to manage published journal papers:
Each journal document can have various attributes like,
1. Name
2. List of Author
3. Abstract
4. Content
5. Name of conference where the paper is published
6. Name of the journal where paper is published
7. Date of publication
8. List of references
9. Subject
An Author can have various attributes like
1. Name
2. Contact
3. University
4. Department
5. Designation

There are two types of users in the system
1. Author
2. Normal User
Authors are those who have published one or more papers. Author needs to register into the platform and upload his or her paper with the description fields as above. The system will store these details about the paper and also the paper document. It will parse the document to extract the “Abstract”, “Reference” and other keywords from the documents and store it.

“Normal Users” will also have to register to the platform. Once they login they can do the following
1. They can list all the papers based on various attributes
2. They can search the papers based on keywords in abstract, contents, tags etc

Exercise 2 --- HDFS
Start by reviewing HDFS. You will find that its composition is similar to your local Linux file system. You will use the hadoop fs command when interacting with HDFS.
1. Review the commands available for the Hadoop Distributed File System:
2. Copy file foo.txt from local disk to the user’s directory in HDFS
3. Get a directory listing of the user’s home directory in HDFS
4. Get a directory listing of the HDFS root directory
5. Display the contents of the HDFS file user/fred/bar.txt
6. Move that file to the local disk, named as baz.txt
7. Create a directory called input under the user’s home directory
8. Delete the directory input old and all its contents
9. Verify the copy by listing the directory contents in HDFS:

Exercise 3 --- MapReduce (Programs)
Using movie lens data
1. List all the movies and the number of ratings
2. List all the users and the number of ratings they have done for a movie
3. List all the Movie IDs which have been rated (Movie Id with at least one user rating it)
4. List all the Users who have rated the movies (Users who have rated at least one movie)
5. List of all the User with the max, min, average ratings they have given against any movie
6. List all the Movies with the max, min, average ratings given by any user

Exercise 4 – Extract facts using Hive
Hive allows for the manipulation of data in HDFS using a variant of SQL. This makes it excellent for transforming and consolidating data for load into a relational database. In this exercise you will use HiveQL to filter and aggregate click data to build facts about user’s movie preferences. The query results will be saved in a staging table used to populate the Oracle Database. The moveapp_log_json table contains an activity column. Activity states are as follows:
1. RATE_MOVIE
2. COMPLETED_MOVIE
3. PAUSE_MOVIE
4. START_MOVIE
5. BROWSE_MOVIE
6. LIST_MOVIE
7. SEARCH_MOVIE
8. LOGIN
9. LOGOUT
10. INCOMPLETE_MOVIE

hive> SELECT * FROM movieapp_log_json LIMIT 5;
hive> drop table movieapp_log_json;
hive> CREATE EXTERNAL TABLE movieapp_log_json (custId INT, moviefld INT, genrelld INT, time STRING, recommended STRING, activity INT, rating INT, price FLOAT)
ROW FORMAT SERDE 'org.apache.hadoop.hive.contrib.serde2.JsonSerde'
LOCATION '/user/oracle/moviework/applog/'
hive> SELECT * FROM movieapp_log_json LIMIT 20;
hive> SELECT MIN(time), MAX(time) FROM movieapp_log_json

Exercise 5 - Extract sessions using Pig
While the SQL semantics of HiveQL are useful for aggregation and projection, some analysis
is better described as the flow of data through a series of sequential operations. For these
situations, Pig Latin provides a convenient way of implementing data flows over data stored in
HDFS. Pig Latin statements are translated into a sequence of Map Reduce jobs on the
execution of any STORE or DUMP command. Job construction is optimized to exploit as
much parallelism as possible, and much like Hive, temporary storage is used to hold
intermediate results. As with Hive, aggregation occurs largely in the reduce tasks. Map tasks
handle Pig’s FOREACH and LOAD, and GENERATE statements. The EXPLAIN command
will show the execution plan for any Pig Latin script. As of Pig 0.10, the ILLUSTRATE
command will provide sample results for each stage of the execution plan. In this exercise you
will learn basic Pig Latin semantics and about the fundamental types in Pig Latin, Data Bags
and Tuples.

1. Start the Grunt shell and execute the following statements to set up a dataflow with the click
stream data. Note: Pig Latin statements are assembled into Map Reduce jobs which are
launched at execution of a DUMP or STORE statement.
2. Group the log sample by movie and dump the resulting bag.
3. Add a GROUP BY statement to the sessionize.pig script to process the click stream data into
user sessions.

Course Outcomes:
After going through this course the student will be able to:
CO1: Explore and apply the Big Data analytic techniques for business applications.
CO2: Apply non-relational databases, the techniques for storing and processing large volumes
of structured and unstructured data, as well as streaming data.
CO3: Analyze methods and algorithms, to compare and evaluate them with respect to time
and space requirements, make appropriate design choices when solving problems.
CO4: Develop and implement efficient big data solutions for various application areas using NoSQL database, Elastic Search and Emerging technologies.

<table>
<thead>
<tr>
<th>Reference Books:</th>
</tr>
</thead>
</table>

Scheme of Continuous Internal Evaluation (CIE) for Theory 100 marks:
CIE will consist of THREE Tests, THREE Quizzes and TWO assignments. Each test will be for 50 marks, each quiz will be for 10 marks and each assignment for 10 marks each. The total marks of tests, quizzes, assignment will be divided by 2 for computing the CIE marks. All three tests, quizzes and assignments are compulsory.

Scheme of Semester End Examination (SEE) for Theory 100 marks:
The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit.

Scheme of Continuous Internal Evaluation (CIE) for Practical 50 Marks:
CIE for the practical courses will be based on the performance of the student in the laboratory, every week. The laboratory records will be evaluated for 30 marks. One test will be conducted for 20 marks. The total marks for CIE (Practical) will be for 50 marks.

Scheme of Semester End Examination (SEE) for Practical 50 Marks:
SEE for the practical courses will be based on conducting the experiments and proper results for 40 marks and 10 marks for viva-voce. The total marks is 50.
PARALLEL COMPUTER ARCHITECTURE

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18MCE22</th>
<th>CIE Marks</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/Week</td>
<td>L: T: P</td>
<td>3:2:0</td>
<td></td>
</tr>
<tr>
<td>Credits</td>
<td>4</td>
<td>SEE Marks</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEE Duration</td>
<td>3 Hrs</td>
</tr>
</tbody>
</table>

Unit – I

07 Hrs

Fundamentals of computer design:
Introduction; Classes computers; Defining computer architecture; Trends in Technology; Trends in power in Integrated Circuits; Trends in cost; Dependability, Measuring, reporting and summarizing Performance attributes; Quantitative Principles of computer design

Unit – II

07 Hrs

Introduction to Parallel Programming:

Unit – III

08 Hrs

Programming Using the Using Message Passing Paradigm:
Principles of Message Passing Programming, Building Blocks, MPI, Topologies and Embedding, Overlapping Communication with computation, Collective Communication and computation operations, Groups and Communicators.

Unit – IV

07 Hrs

Data-Level Parallelism in Vector, SIMD, and GPU Architectures: Introduction, Vector Architecture, SIMD Instruction Set Extensions for Multimedia, Graphics Processing Units, Detecting and Enhancing Loop-Level Parallelism, Mobile versus Server GPUs and Tesla versus Core i7.
Unit-V	07 Hrs

Heterogeneous Computing
Heterogeneous Programming using Open ACC: Introduction, Execution Model, Memory Model, Features

Case Study: Vector dot product, Matrix multiplication, Graph algorithms, and molecular dynamics.

Course Outcome:
At the end of this course graduates will be able to:

- **CO1:** Explore the fundamental concepts of parallel computer architecture.
- **CO2:** Analyze the performance of parallel programming.
- **CO3:** Design parallel computing constructs for solving complex problems.
- **CO4:** Demonstrate parallel computing concepts for suitable applications.

Reference Books
4* http://hpac.rwth-aachen.de/people/springer/openacc_seminar.pdf

Scheme of Continuous Internal Evaluation (CIE) for 100 marks:
CIE will consist of THREE Tests, THREE Quizzes and TWO assignments. Each test will be for 50 marks, each quiz will be for 10 marks and each assignment for 10 marks each. The total marks of tests, quizzes, assignment will be divided by 2 for computing the CIE marks. All three tests, quizzes and assignments are compulsory.

Scheme of Semester End Examination (SEE) for 100 marks:
The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit.
RESEARCH METHODOLOGY

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18 IEM 23</th>
<th>CIE Marks</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/Week</td>
<td>L: T: P</td>
<td>3:0:0</td>
<td></td>
</tr>
<tr>
<td>Credits</td>
<td>3</td>
<td>SEE Marks</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEE Duration</td>
<td>3 Hrs</td>
</tr>
</tbody>
</table>

Unit – I

Overview of Research: Research and its types, identifying and defining research problem and introduction to different research designs. Essential constituents of Literature Review. Basic principles of experimental design, completely randomized, randomized block, Latin Square, Factorial.

Unit – II

Data and data collection: Overview of probability and data types
Primary data and Secondary Data, methods of primary data collection, classification of secondary data, designing questionnaires and schedules.

Sampling Methods: Probability sampling and Non-probability sampling

Unit – III

Processing and analysis of Data: Statistical measures of location, spread and shape, Correlation and regression, Hypothesis Testing and ANOVA. Interpretation of output from statistical software tools

Unit – IV

Advanced statistical analyses: Non parametric tests, Introduction to multiple regression, factor analysis, cluster analysis, principal component analysis. Usage and interpretation of output from statistical analysis software tools.

Unit-V

Course Outcomes:
After going through this course the student will be able to
CO1: Explain the principles and concepts of research types, data types and analysis procedures.
CO2: Apply appropriate method for data collection and analyze the data using statistical principles.
CO3: Present research output in a structured report as per the technical and ethical standards.
CO4: Create research design for a given engineering and management problem situation.

Reference Books:

Scheme of Continuous Internal Evaluation (CIE) for 100 marks:
CIE will consist of THREE Tests, THREE Quizzes and TWO assignments. Each test will be for 50 marks, each quiz will be for 10 marks and each assignment for 10 marks each. The total marks of tests, quizzes, assignment will be divided by 2 for computing the CIE marks. All three tests, quizzes and assignments are compulsory.

Scheme of Semester End Examination (SEE) for 100 marks:
The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit.
WIRELESS AND MOBILE NETWORKS
(Elective-3)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>CIE Marks</th>
<th>Hrs/Week</th>
<th>SEE Marks</th>
<th>SEE Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>18MCE241</td>
<td>100</td>
<td>L: T: P</td>
<td>100</td>
<td>3 Hrs</td>
</tr>
<tr>
<td>Credits</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unit – I
Unit – I

07 Hrs

Unit – II
Unit – II

07 Hrs

Fundamentals of cellular communications: Introduction, Cellular systems, Hexagonal cell geometry, Channel assignment strategies, Handoff strategies, Interference and System Capacity [Design problems], Co channel interference ratio, Frequency Reuse, Cellular system design in worst case scenario with omnidirectional antenna, Co-channel interference reduction, Directional antennas in seven cell reuse pattern, Cell splitting

Unit – III
Unit – III

07 Hrs

Wireless Local Area Network (WLAN): Network components, Design requirements, WLAN architecture, Standards, WLAN Protocols- Physical Layer and MAC Layer, IEEE 802.11p, Security (WPA), Latest developments of IEEE 802.11 standards

Unit – IV
Unit – IV

07 Hrs
Wireless Personal Area Network (WPAN): Network architecture and components, WPAN technologies and protocols, Application software; ZigBee (802.15.4): Stack architecture, Components, Topologies, Applications; Bluetooth (802.15.1): Protocol stack, Link types, security aspects, Network connection establishment, error correction and topology; LR-WPAN (IEEE 802.15.4)

<table>
<thead>
<tr>
<th>Unit-V</th>
<th>08 Hrs</th>
</tr>
</thead>
</table>

Course Outcome:

At the end of this course graduates will be able to:

CO1: Explore the existing wireless networks and connectivity issues
CO2: Analyze the range of signals and path loss models for real world scenarios
CO3: Evaluate the security and energy management issues for wireless devices
CO4: Design suitable wireless network for various applications

Reference Books

Open ended Lab experiments

1. Explore the scanning tools such as Wi-Fi Scanner, Aircrack, Kismet
2. Using QualNet simulator, design wireless networks such as IEEE 802.11, IEEE 802.15.5, UMTS
3. Review the features of LTE simulator and ONE (Opportunistic Network Environment)

Scheme of Continuous Internal Evaluation (CIE) for 100 marks:
CIE will consist of THREE Tests, THREE Quizzes and TWO assignments. Each test will be for 50 marks, each quiz will be for 10 marks and each assignment for 10 marks each. The total marks of tests, quizzes, assignment will be divided by 2 for computing the CIE marks. All three tests, quizzes and assignments are compulsory.
Scheme of Semester End Examination (SEE) for 100 marks:
The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18MCE242</th>
<th>CIE Marks</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/Week</td>
<td>L:T:P</td>
<td>3:1:0</td>
<td>SEE Marks</td>
</tr>
<tr>
<td>Credits</td>
<td>4</td>
<td></td>
<td>SEE Duration</td>
</tr>
</tbody>
</table>

Course Learning Objectives (CLO):
Students shall be able to
1. Demonstrate sensitivity to linguistic phenomena and an ability to model them with formal grammars.
2. Train and evaluate empirical NLP systems.
3. Manipulate probabilities, construct statistical models over strings and trees, and estimate parameters using supervised and unsupervised training methods.
4. Design, implement, and analyse NLP algorithms

<table>
<thead>
<tr>
<th>Unit – I</th>
<th>07 Hrs</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Unit – II</th>
<th>07 Hrs</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Unit – III</th>
<th>07 Hrs</th>
</tr>
</thead>
</table>
Hidden Markov and Maximum Entropy Models

Speech Recognition
Speech Recognition Architecture, Applying Hidden Markov models to speech

<table>
<thead>
<tr>
<th>Unit – IV</th>
<th>07 Hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine Translation</td>
<td></td>
</tr>
<tr>
<td>Introduction, Problems in machine translation, Characteristics of Indian languages, machine Translation approaches, Direct machine translation, Rule based machine translation, corpus based machine translation</td>
<td></td>
</tr>
<tr>
<td>NLP Applications</td>
<td></td>
</tr>
<tr>
<td>Information extraction, Machine Translation, Natural Language Generation, Discourse processing</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit – V</th>
<th>08 Hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information Retrieval and Lexical Resources</td>
<td></td>
</tr>
<tr>
<td>Case Study: Learning to classify text using NLTK- Supervised classification, Choosing the right features, Document classification, parts of speech tagging, Exploiting context, Evaluation, Accuracy, Precision and Recall, Confusion matrix, Cross- validation</td>
<td></td>
</tr>
</tbody>
</table>

Course Outcomes:
After going through this course the student will be able to:

CO1: Comprehend and compare different natural language processing models.
CO2: Analyse spelling errors and error detection techniques.
CO3: Extract dependency, semantics and relations from the text.
CO4: Differentiate various information retrieval models.

Reference Books

Open ended experiments / Tutorial Questions

1. Forming Sentences-1
2. Forming Sentences-2
3. Tokens and Types
4. Heap's Law
5. Dictionary Generation
6. Coarse-grained POS Tagging
7. Fine-grained POS Tagging
8. Chunking
9. Context Free Grammar

Scheme of Continuous Internal Evaluation (CIE) for 100 marks:
CIE will consist of THREE Tests, THREE Quizzes and TWO assignments. Each test will be for 50 marks, each quiz will be for 10 marks and each assignment for 10 marks each. The total marks of tests, quizzes, assignment will be divided by 2 for computing the CIE marks. All three tests, quizzes and assignments are compulsory.

Scheme of Semester End Examination (SEE) for 100 marks:
The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit.

<table>
<thead>
<tr>
<th>CLOUD SECURITY</th>
<th>(Elective-3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>18MCE243/18MCN243</td>
</tr>
<tr>
<td>Hrs/Week</td>
<td>L:T:P</td>
</tr>
<tr>
<td>Credits</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit – I</th>
<th>07 Hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to cloud computing and security - A brief primer on security, architecture, defense in depth, cloud is driving broad changes. Securing the cloud: architecture-requirements, patterns and architectural elements, cloud security architecture, key strategies for secure operations</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit – II</th>
<th>08 Hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Securing the cloud: data security - overview of data security in cloud computing, data encryption: applications and limits, sensitive data categorization, cloud storage, cloud lock-in Securing cloud : key strategies and best practises- Overall strategy, security controls</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit – III</th>
<th>07 Hrs</th>
</tr>
</thead>
</table>
Security criteria: Building an internal cloud, Security Criteria-private clouds: selecting an external cloud provide-Selecting CSP, overview of assurance, over view of risks, security criteria, Evaluating clouds security: An information security framework- evaluation cloud security, checklist for evaluating cloud security

<table>
<thead>
<tr>
<th>Unit – IV</th>
<th>07 Hrs</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Unit – V</th>
<th>07 Hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Privacy:</td>
<td>Privacy, Data Life Cycle, Key Privacy Concerns in the Cloud, Protecting Privacy, Changes to Privacy Risk Management and Compliance in Relation to Cloud Computing, Legal and Regulatory Implications, U.S. Laws and Regulations, International Laws and Regulations, Audit and compliance, Internal Policy Compliance, Governance, Risk, and Compliance (GRC) Illustrative Control Objectives for Cloud Computing</td>
</tr>
</tbody>
</table>

Course Outcomes:

After going through this course the student will be able to:

CO1. Explore compliance and security issues that arise from cloud computing architectures intended for delivering Cloud based enterprise IT services and business applications.

CO2. Identify the known threats, risks, vulnerabilities and privacy issues associated with Cloud based IT services.

CO3. Illustrate the concepts and guiding principles for designing and implementing appropriate safeguards and countermeasures for Cloud based IT services.

CO4. Design security architectures that assure secure isolation of physical and logical infrastructures of network and storage, comprehensive data protection at all layers, end-to-end identity and access management, monitoring and auditing processes and compliance with industry and regulatory mandates.

Reference Books:

Open ended experiments / Tutorial Questions

1. Cloud authentication and authorization techniques
2. Cloud identity and access management
3. Cloud key management
4. Cloud auditing
5. Credential management
6. Cloud DoS protection
7. Cloud traffic hijacking protection
8. Identifying malicious insider, malicious agent, malicious tenant
9. Virtualization attacks
10. Trust management and assurance
11. Resource Access Control schemes
12. Cloud data encryption and access
13. Cloud data integrity

Scheme of Continuous Internal Evaluation (CIE) for 100 marks:
CIE will consist of THREE Tests, THREE Quizzes and TWO assignments. Each test will be for 50 marks, each quiz will be for 10 marks and each assignment for 10 marks each. The total marks of tests, quizzes, assignment will be divided by 2 for computing the CIE marks. All three tests, quizzes and assignments are compulsory.

Scheme of Semester End Examination (SEE) for 100 marks:
The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>CIE Marks</th>
<th>SEE Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>18MCE251/18MCN251</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hrs/Week</th>
<th>SEE Marks</th>
<th>SEE Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>L:T:P</td>
<td>100</td>
<td>3 Hrs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credits</th>
<th>SEE Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

INTERNET OF THINGS AND APPLICATIONS
(Elective-4)

<table>
<thead>
<tr>
<th>Unit – I</th>
<th>09 Hrs</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Unit – II</th>
<th>10 Hrs</th>
</tr>
</thead>
</table>

Unit – III

9 Hrs

Unit – IV

9 Hrs

Wireless Embedded Internet - 6LoWPAN, 6LoWPAN history and standardization, Relation of 6LoWPAN to other trends, Applications of 6LoWPAN, Example: facility management, The 6LoWPAN Architecture, 6LoWPAN Introduction, The protocol stack, Link layers for 6LoWPAN, Addressing, Header format, Bootstrapping, Mesh topologies, Internet integration.

Unit – V

9 Hrs

The evolution of computing models towards edge computing - Shared and central resources versus exclusive and local computation, IoT disrupts the cloud, characteristics of the new computing model, Blueprint of edge computing intelligence Trend drivers and state of the art for edge intelligence Industry needs, Hardware evolution, Software evolution, Architecture

Course Outcomes:

After going through this course the student will be able to

CO1: Acquire knowledge of different use cases of IoT in real time scenarios
CO2: Explain key technologies for connectivity and communications in IoT
CO3: Examine different application protocols and their roles in IoT
CO4: Propose IoT-enabled applications for building smart spaces and services with security features, resource management and edge computing.

Reference Books:

Scheme of Continuous Internal Evaluation (CIE) for 100 marks:

CIE will consist of THREE Tests, THREE Quizzes and TWO assignments. Each test will be for 50 marks, each quiz will be for 10 marks and each assignment for 10 marks each. The total marks of tests, quizzes, assignment will be divided by 2 for computing the CIE marks. All three tests, quizzes and assignments are compulsory.
Scheme of Semester End Examination (SEE) for 100 marks:
The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit.

Course Details

<table>
<thead>
<tr>
<th>Course Code:</th>
<th>CIE Marks:</th>
<th>SEE Marks:</th>
<th>Credits:</th>
<th>SEE Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>18MCE252/18MCS252</td>
<td>100</td>
<td>100</td>
<td>4</td>
<td>3Hrs</td>
</tr>
</tbody>
</table>

Units

UNIT-I
Deep Feedforward Networks: Multilayer Perceptron, Example: Learning XOR, Gradient-Based Learning, Hidden Units, Architecture Design, Back-Propagation Algorithm

Duration: 08 Hrs

UNIT-II
Convolutional Networks: Convolution Operation, Motivation, Pooling, Convolution and Pooling as an Infinitely Strong Prior, Variants of the basic convolution function, Structured Outputs, Data types, Efficient Convolution Algorithms, Random or Unsupervised features, The Neuroscientific basis for convolutional networks

Duration: 10 Hrs

UNIT-III
Sequence Modeling: Recurrent and Recursive Nets: Unfolding Computational Graphs, Recurrent Neural Networks, Bidirectional RNNs, Encoder-Decoder Sequence-to-Sequence Architectures, Deep Recurrent Networks, Recursive Neural Networks, Echo State Networks, The Long Short-Term Memory and Other Gated RNNs

Duration: 10 Hrs

UNIT-IV
Autoencoders: Undercomplete Autoencoders, Regularized Autoencoders, Representational Power, Layer Size and Depth, Stochastic Encoders and Decoders, Denoising Autoencoders, Contractive Autoencoders, Applications of Autoencoders

Duration: 08 Hrs

UNIT-V
Structured Probabilistic Models For Deep Learning: The challenge of unstructured modelling, Using graphs to describe model structure: Directed, Undirected, Partition function, Energy-based models, Factor graphs; Sampling from graphical models, Advantages of structured modelling, learning about dependencies, Inference and approximate inference, The deep learning approach to structured probabilistic models

Duration: 10 Hrs

Course Outcomes:
After completing the course, the students will be able to:

- CO1 Describe basic concepts of neural network, its applications and various learning models
- CO2 Acquire the knowledge on Recurrent, Recursive Nets and Auto-encoder models
- CO3 Analyze different Network Architectures, learning tasks, Convolutional networks
- CO4 Evaluate and compare the solutions by various Neural Network approaches for a given problem.

Reference Books

2018 Scheme and Syllabi

Scheme of Continuous Internal Evaluation (CIE) for 100 marks:
CIE will consist of THREE Tests, THREE Quizzes and TWO assignments. Each test will be for 50 marks, each quiz will be for 10 marks and each assignment for 10 marks each. The total marks of tests, quizzes, assignment will be divided by 2 for computing the CIE marks. All three tests, quizzes and assignments are compulsory.

Scheme of Semester End Examination (SEE) for 100 marks:
The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit.
SECURITY ENGINEERING
(Elective-4)

Course Code : 18MCE253/18MCN253
Hrs/Week : L:T:P 4:0:0
Credits : 4

CIE Marks : 100
SEE Marks : 100
SEE Duration : 3 Hrs

Course Learning Objectives (CLO):

Graduates shall be able to:
1. Gain knowledge on security Engineering.
2. Acquire knowledge of password attacks and phishing counter measures.
3. Analyse access control mechanisms.
4. Identify network attack and relevant defence mechanism.
5. Evaluate exploiting the Edge for security threat.

Unit – I
09 Hrs

Unit – II
09 Hrs

Unit – III
09 Hrs

Unit – IV
09 Hrs
Worms and Rootkits, Defense Against Network Attack, Filtering: Firewalls, Spam Filters, Censor ware and Wiretaps, Intrusion Detection.

<table>
<thead>
<tr>
<th>Unit – V</th>
<th>10 Hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Bleeding Edge: Introduction, Computer Games, Types of Cheating, Aimbots and Other Unauthorized Software, Virtual Worlds, Virtual Economies, Web Applications e Bay, Google. Social Networking Sites, Privacy Technology: Anonymous Email — The Dining Cryptographers and Mixes, Anonymous Web Browsing — Tor, Confidential and Anonymous Phone Calls, Email Encryption, Steganography and Forensics Countermeasures.</td>
<td></td>
</tr>
</tbody>
</table>

Course Outcomes:

After going through this course the student will be able to:

CO1: Analyze attacks based on psychology, attacks on network and defense mechanisms
CO2: Identify password attacks and phishing counter measures.
CO3: Evaluate issues related to access control mechanisms.
CO4: Analyze exploiting the computing edge and countermeasures.

Reference Books:

Scheme of Continuous Internal Evaluation (CIE) for 100 marks:

CIE will consist of THREE Tests, THREE Quizzes and TWO assignments. Each test will be for 50 marks, each quiz will be for 10 marks and each assignment for 10 marks each. The total marks of tests, quizzes, assignment will be divided by 2 for computing the CIE marks. All three tests, quizzes and assignments are compulsory.

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit.
BUSINESS ANALYTICS
(Global Elective)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18GCS261</th>
<th>CIE Marks</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/Week</td>
<td>L: T: P</td>
<td>3:0:0</td>
<td>SEE Marks</td>
</tr>
<tr>
<td>Credits</td>
<td>3</td>
<td></td>
<td>SEE Duration</td>
</tr>
</tbody>
</table>

Course Learning Objectives:
Graduates shall be able to

1. Formulate and solve business problems to support managerial decision making.
2. Explore the concepts, processes needed to develop, report, and analyze business data.
3. Use data mining techniques concepts to identify specific patterns in the data
4. Interpret data appropriately and solve problems from various sectors such as manufacturing, service, retail, software, banking and finance.

Unit – I
07 Hrs
Statistical Tools: Statistical Notation, Descriptive Statistical methods, Review of probability distribution and data modelling.

Unit – II
07 Hrs

Unit – III
08 Hrs
Organization Structures of Business analytics, Team management, Management Issues, Designing Information Policy, Outsourcing, Ensuring Data Quality, Measuring contribution of Business analytics, Managing Changes. Descriptive Analytics, Predictive Analytics, Predicative Modelling, Predictive analytics analysis.

Unit – IV
07 Hrs
Unit-V	07 Hrs

Course Outcome:
At the end of this course graduates will be able to:

- CO1. Explore the concepts, data and models for Business Analytics.
- CO2. Analyze various techniques for modelling and prediction.
- CO3. Design the clear and actionable insights by translating data.
- CO4. Formulate decision problems to solve business applications

Reference Books

Scheme of Continuous Internal Evaluation (CIE) for 100 marks:
CIE will consist of THREE Tests, THREE Quizzes and TWO assignments. Each test will be for 50 marks, each quiz will be for 10 marks and each assignment for 10 marks each. The total marks of tests, quizzes, assignment will be divided by 2 for computing the CIE marks. All three tests, quizzes and assignments are compulsory.

Scheme of Semester End Examination (SEE) for 100 marks:
The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit.
INDUSTRIAL & OCCUPATIONAL HEALTH AND SAFETY
(Global Elective)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>CIE Marks</th>
<th>Hrs/Week</th>
<th>SEE Marks</th>
<th>SEE Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>18GCV262</td>
<td>100</td>
<td>3:0:0</td>
<td>100</td>
<td>3Hrs</td>
</tr>
<tr>
<td>Credits</td>
<td>03</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UNIT – I
07Hrs

Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and firefighting, equipment and methods.

UNIT – II
08Hrs

UNIT – III
08Hrs

Hazardous Materials characteristics and effects on health: Introduction, Chemical Agents, Organic Liquids: Introduction, Glycol Ethers (Cellosolve, Methyl Cellosolve, and Butyl Cellosolve) Esters: (Ethyl, Butyl, Amyl, and Cellosolve Acetates), Ketones (Acetone, Methyl Ethyl ketone, and Methyl Isobutyl Ketone), Aromatics (Toluene, Benzene, Xylene, Phenol, Styrene and Isocyanates), Polyaromatics (Chlorinated Compounds), Halogenated Hydrocarbons (Trichloroethylene, Trichloroethylene, Trichloroethane, Perchloroethylene, Methylene Chloride, Chloroform and Fluorocarbons), Alkyl Nitrites (Dimethylformamide), Aldehydes (Formaldehyde).Gases: Introduction, Boron (Boron Trichloride, Diborane and Boron Tribromide), Metal Hydrides (Arsine and Germane), Asphyxiants (Simple Asphyxiants, Carbon Monoxide and Cyanides), Silicon (Silane, Dichlorosilane, Trichlorosilane and Chlorosilane), Phosphine,

Ergonomic Stresses: Stress-Related Health Incidents, Eyestrain, Repetitive Motion, Lower Back Pain, Video Display Terminals.

<table>
<thead>
<tr>
<th>UNIT – IV</th>
<th>07Hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wear and Corrosion and their prevention:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT – V</th>
<th>07Hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periodic and preventive maintenance:</td>
<td></td>
</tr>
</tbody>
</table>

Expected Course Outcomes:
After successful completion of this course the student will be able to:

CO1	Explain the Industrial and Occupational health and safety and its importance.
CO2	Demonstrate the exposure of different materials, occupational environment to which the employee can expose in the industries.
CO3	Characterize the different type materials, with respect to safety and health hazards of it.
CO4	Analyze the different processes with regards to safety and health and the maintenance required in the industries to avoid accidents.

Reference Books:

3. WILL BE PROVIDED

Scheme of Continuous Internal Evaluation (CIE) for 100 marks:
CIE will consist of THREE Tests, THREE Quizzes and TWO assignments. Each test will be for 50 marks, each quiz will be for 10 marks and each assignment for 10 marks each. The total marks of tests, quizzes, assignment will be divided by 2 for computing the CIE marks. All three tests, quizzes and assignments are compulsory.

Scheme of Semester End Examination (SEE) for 100 marks:
The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit.

<table>
<thead>
<tr>
<th>MODELING USING LINEAR PROGRAMMING (Global Elective)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code : 18GIM263</td>
</tr>
<tr>
<td>Hrs/Week : L: T: P 3:0:0</td>
</tr>
<tr>
<td>Credits : 3</td>
</tr>
</tbody>
</table>

Unit – I
7 Hrs

Linear Programming: Introduction to Linear Programming problem
Simplex methods: Variants of Simplex Algorithm – Use of Artificial Variables

Unit – II
7 Hrs

Advanced Linear Programming: Two Phase simplex techniques, Revised simplex method
Duality: Primal-Dual relationships, Economic interpretation of duality

Unit – III
7 Hrs

Sensitivity Analysis: Graphical sensitivity analysis, Algebraic sensitivity analysis - changes in RHS, Changes in objectives, Post optimal analysis - changes affecting feasibility and optimality

Unit – IV
8 Hrs

Transportation Problem: Formulation of Transportation Model, Basic Feasible Solution using North-West corner, Least Cost, Vogel’s Approximation Method, Optimality Methods, Unbalanced Transportation Problem, Degeneracy in Transportation Problems, Variants in Transportation Problems.

Unit–V
7 Hrs

Course Outcomes:
After going through this course the student will be able to:
CO1: Explain the various Linear Programming models and their areas of application.
CO2: Formulate and solve problems using Linear Programming methods.
CO3: Develop models for real life problems using Linear Programming techniques.
CO4: Analyze solutions obtained through Linear Programming techniques.

Reference Books:

Scheme of Continuous Internal Evaluation (CIE) for 100 marks:
CIE will consist of THREE Tests, THREE Quizzes and TWO assignments. Each test will be for 50 marks, each quiz will be for 10 marks and each assignment for 10 marks each. The total marks of tests, quizzes, assignment will be divided by 2 for computing the CIE marks. All three tests, quizzes and assignments are compulsory.

Scheme of Semester End Examination (SEE) for 100 marks:
The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit.
PROJECT MANAGEMENT
(Global Elective)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>CIE Marks</th>
<th>Hrs/Week</th>
<th>SEE Marks</th>
<th>SEE Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>18GIM264</td>
<td>100</td>
<td>L: T: P 3:0:0</td>
<td>100</td>
<td>3 Hrs</td>
</tr>
<tr>
<td>Credits</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unit – I

Unit – II
Capital Budgeting: Capital Investments: Importance and Difficulties, phases of capital budgeting, levels of decision making, facets of project analysis, feasibility study – a schematic diagram, objectives of capital budgeting

Unit – III

Unit – IV
Tools & Techniques of Project Management: Bar (GANTT) chart, bar chart for combined activities, logic diagrams and networks, Project evaluation and review Techniques (PERT) Critical Path Method (CPM), Computerized project management

Unit-V
Project Management and Certification: An introduction to SEI, CMMI and project management institute USA – importance of the same for the industry and practitioners. PMBOK 6 - Introduction to Agile Methodology, Themes / Epics / Stories, Implementing Agile.

Domain Specific Case Studies on Project Management: Case studies covering project planning, scheduling, use of tools & techniques, performance measurement.

Course Outcomes:

After going through this course the student will be able to:

CO1: Explain project planning activities that accurately forecast project costs, timelines, and quality.

CO2: Evaluate the budget and cost analysis of project feasibility.
CO3: Analyze the concepts, tools and techniques for managing projects.
CO4: Illustrate project management practices to meet the needs of Domain specific stakeholders from multiple sectors of the economy (i.e. consulting, government, arts, media, and charity organizations)

Reference Books:

Scheme of Continuous Internal Evaluation (CIE) for 100 marks:
CIE will consist of THREE Tests, THREE Quizzes and TWO assignments. Each test will be for 50 marks, each quiz will be for 10 marks and each assignment for 10 marks each. The total marks of tests, quizzes, assignment will be divided by 2 for computing the CIE marks. All three tests, quizzes and assignments are compulsory.

Scheme of Semester End Examination (SEE) for 100 marks:
The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit.
Course Details

Course Code: 18GCH265
CIE Marks: 100
Hrs/Week: L:T:P 3:0:0
SEE Marks: 100
Credits: 3
SEE Duration: 3 Hrs

Unit – I

Energy conservation: Principles of energy conservation and energy audit, types of energy audit, Energy conservation approaches, Cogeneration and types of cogeneration, Heat recuperators- classification, liquid/gas and gas/liquid heat exchangers

08 Hrs

Unit – II

Wet Biomass gasifiers: Introduction, Classification of feedstock for biogas generation. Biomass conversion technologies: Wet and dry processes, Photosynthesis, Biogas generation, Factors affecting bio-digestion, Classification of biogas plants, Floating drum plant and fixed dome plant their advantages and disadvantages, Biogas from aquatic weed.

07 Hrs

Unit – III

Dry Biomass Gasifiers: Biomass energy conversion routes, Thermal gasification of biomass, Classification of gasifiers, Fixed bed systems: Construction and operation of up draught and down draught gasifiers. Pyrolysis.

08 Hrs

Unit – IV

Solar Photovoltaic: Principle of photovoltaic conversion of solar energy, types of solar cells and fabrication. Wind Energy: Atmospheric circulations, classification, factors influencing wind, wind shear, turbulence, wind speed monitoring, Betz limit, WECS: classification, characteristics, and applications

08 Hrs

Unit – V

08 Hrs
Course Outcomes:
After completion of the course student will be able to:
1. Understand the use alternate fuels for energy conversion
2. Develop a scheme for energy audit
3. Evaluate the factors affecting biomass energy conversion
4. Design a biogas plant for wet and dry feed

Reference Books:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>

Scheme of Continuous Internal Evaluation (CIE) for 100 marks:
CIE will consist of THREE Tests, THREE Quizzes and TWO assignments. Each test will be for 50 marks, each quiz will be for 10 marks and each assignment for 10 marks each. The total marks of tests, quizzes, assignment will be divided by 2 for computing the CIE marks. All three tests, quizzes and assignments are compulsory.

Scheme of Semester End Examination (SEE) for 100 marks:
The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit.
INDUSTRY 4.0

Course Code : 18GME266
CIE Marks : 100

Hrs/Week : L:T:P 3:0:0
SEE Marks : 100

Credits : 03
SEE Duration : 3 Hrs

Unit – I

Introduction: Industrial, Internet, Case studies, Cloud and Fog, M2M Learning and Artificial Intelligence, AR, Industrial Internet Architecture Framework (IIAF), Data Management.

Unit – II

Unit – III

Data Analytics in Manufacturing: Introduction, Power Consumption in manufacturing, Anomaly Detection in Air Conditioning, Smart Remote Machinery Maintenance Systems with Komatsu, Quality Prediction in Steel Manufacturing, Predicting Drilling Efficiency, Estimation of Manufacturing Cost of Jet Engine, Components, Techniques Used for Predictive Analytics, Forecast Accuracy Calculation

Unit – IV

2018 Scheme and Syllabi

Unit – V

Smart Factories: Introduction, Smart factories in action, Importance, Real world smart factories, The way forward.

Course Outcomes:
After going through this course the student will be able to:
CO1: Understand the opportunities, challenges brought about by Industry 4.0 for benefits of organizations and individuals
CO2: Analyze the effectiveness of Smart Factories, Smart cities, Smart products and Smart services
CO3: Apply the Industrial 4.0 concepts in a manufacturing plant to improve productivity and profits
CO4: Evaluate the effectiveness of Cloud Computing in a networked economy

Reference Books

Scheme of Continuous Internal Evaluation (CIE) for 100 marks:
CIE will consist of THREE Tests, THREE Quizzes and TWO assignments. Each test will be for 50 marks, each quiz will be for 10 marks and each assignment for 10 marks each. The total marks of tests, quizzes, assignment will be divided by 2 for computing the CIE marks. All three tests, quizzes and assignments are compulsory.

Scheme of Semester End Examination (SEE) for 100 marks:
The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit.
ADVANCED MATERIALS
(Global Elective)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18GME267</th>
<th>CIE Marks</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/Week</td>
<td>L:T:P</td>
<td>3:0:0</td>
<td>SEE Marks</td>
</tr>
<tr>
<td>Credits</td>
<td>3</td>
<td></td>
<td>SEE Duration</td>
</tr>
</tbody>
</table>

Unit – I
6 Hrs

Classification and Selection of Materials: Classification of materials. Properties required in Engineering materials, Criteria of selection of materials. Requirements / needs of advance materials

Unit – II
8 Hrs

Unit – III
8 Hrs

High Strength Materials: Methods of strengthening of alloys, Materials available for high strength applications, Properties required for high strength materials, Applications of high strength materials

Unit – IV
8 Hrs

Low & High Temperature Materials
Properties required for low temperature applications, Materials available for low temperature applications, Requirements of materials for high temperature applications, Materials available for high temperature applications, Applications of low and high temperature materials.

Unit – V
6 Hrs

2018 Scheme and Syllabi
Nanomaterials: Definition, Types of nanomaterials including carbon nanotubes and nanocomposites, Physical and mechanical properties, Applications of nanomaterials

Course Outcomes:
After going through this course the student will be able to
- CO1: Describe metallic and non-metallic materials
- CO2: Explain preparation of high strength Materials
- CO3: Integrate knowledge of different types of advanced engineering Materials
- CO4: Analyse problem and find appropriate solution for use of materials.

Reference Books:
3. Dr. VD Kodgire and Dr. S V Kodgire, Material Science and Metallurgy, 42nd Edition 2018, Everest Publishing House ISBN NO: 81 86314 00 8

Scheme of Continuous Internal Evaluation (CIE) for 100 marks:
CIE will consist of THREE Tests, THREE Quizzes and TWO assignments. Each test will be for 50 marks, each quiz will be for 10 marks and each assignment for 10 marks each. The total marks of tests, quizzes, assignment will be divided by 2 for computing the CIE marks. All three tests, quizzes and assignments are compulsory.

Scheme of Semester End Examination (SEE) for 100 marks:
The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit.
MINOR PROJECT

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18MCE27</th>
<th>CIE Marks</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/Week</td>
<td>L:T:P</td>
<td>0:0:4</td>
<td></td>
</tr>
<tr>
<td>Credits</td>
<td>2</td>
<td>SEE Marks</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEE Duration</td>
<td>30 min</td>
</tr>
</tbody>
</table>

GUIDELINES

1. Each project group will consist of maximum of two students.
2. Each student / group has to select a contemporary topic that will use the technical knowledge of their program of study after intensive literature survey.
3. Allocation of the guides preferably in accordance with the expertise of the faculty.
4. The number of projects that a faculty can guide would be limited to four.
5. The minor project would be performed in-house.
6. The implementation of the project must be preferably carried out using the resources available in the department/college.

Course Outcomes:

After going through this course the students will be able to

CO1: Conceptualize, design and implement solutions for specific problems.
CO2: Communicate the solutions through presentations and technical reports.
CO3: Apply resource managements skills for projects
CO4: Synthesize self-learning, team work and ethics.

Scheme of Continuous Internal Examination (CIE)

Evaluation will be carried out in THREE Phases. The evaluation committee will comprise of FOUR members: guide, two senior faculty members and Head of the Department.
Phase	Activity	Weightage
I | Synopsis submission, Preliminary seminar for the approval of selected topic and Objectives formulation | 20% |
II | Mid-term seminar to review the progress of the work and documentation | 40% |
III | Oral presentation, demonstration and submission of project report | 40% |

Phase wise rubrics to be prepared by the respective departments

CIE Evaluation shall be done with weightage / distribution as follows:

- Selection of the topic & formulation of objectives 10%
- Design and simulation/ algorithm development/experimental setup 25%
- Conducting experiments / implementation / testing 25%
- Demonstration & Presentation 15%
- Report writing 25%

Scheme for Semester End Evaluation (SEE):

The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.