Autonomous	Approved by AICTE,

Institution Affiliated to Visvesvaraya Technological University, Belagavi

Approved by AICTE
 New Delhi

Scheme and Syllabus of I - IV semester (Autonomous System of 2022 Scheme) Master of Technology (M. Tech.) in

VLSI DESIGN AND EMBEDDED SYSTEMS

DEPARTMENT OF ELECTRONICS \& COMMUNICATION ENGINEERING
UPSC Results (2020): RVCE-Alumni
Name : Kushal Jain
Rank : 40
ISE-2016 Pass out
Name : Naveen Kumar
Rank : 62
ME - Pass out
Name : Deepak R. Shet
Rank : 311
ECE - 2013 Pass out

RVCE - Greaves Cotton Ltd Centre of excellence in e-mobility

Executed more than Rs. 40 crores worth sponsored research projects \& consultancy works sicnce 3 years

RV-Mercedes Benz Centre for Automotive Mechatronics

Autonomous

Approved by AICTE, New Delhi

Glossary of Abbreviations

1.	AS	Aerospace Engineering
2.	BS	Basic Sciences
3.	BT	Biotechnology
4.	CH	Chemical Engineering
5.	CHY	Chemistry
6.	CIE	Continuous Internal Evaluation
7.	CS	Computer Science \& Engineering
8.	CV	Civil Engineering
9.	EC	Electronics \& Communication Engineering
10.	EE	Electrical \& Electronics Engineering
11.	EI	Electronics \& Instrumentation Engineering
12.	ET	Electronics \& Telecommunication Engineering
13.	GE	Global Elective
14.	HSS	Humanities and Social Sciences
15.	IM	Industrial Engineering \& Management
16.	IS	Information Science \& Engineering
17.	L	Laboratory
18.	MA	Mathematics
19.	MBT	M. Tech in Biotechnology
20.	MCE	M. Tech. in Computer Science \& Engineering
21.	MCN	M. Tech. in Computer Network Engineering
22.	MCS	M. Tech. in Communication Systems
23.	MDC	M. Tech. in Digital Communication
24.	ME	Mechanical Engineering
25.	MHT	M. Tech. in Highway Technology
26.	MIT	M. Tech. in Information Technology
27.	MMD	M. Tech. in Machine Design
28.	MPD	M. Tech in Product Design \& Manufacturing
29.	MPE	M. Tech. in Power Electronics
30.	MSE	M. Tech. in Software Engineering
31.	MST	M. Tech. in Structural Engineering
32.	MVE	M. Tech. in VLSI Design \& Embedded Systems
33.	N	Internship
34.	P	Projects (Minor / Major)
35.	PHY	Physics
36.	SDA	Skill Development Activity
37.	SEE	Semester End Examination
38.	T	Theory
39.	TL	Theory Integrated with Laboratory
40.	VTU	Visvesvaraya Technological University

RV Educational Institutions ${ }^{\text {a }}$
RV College of Engineering ${ }^{\text {a }}$

Sl. No	Core Department	Program	Code
1.	BT	M. Tech in Biotechnology	MBT
2.	CS	M. Tech in Computer Science \& Engineering	MCE
3.	CS	M. Tech in Computer Network Engineering	MCN
4.	CV	M. Tech in Structural Engineering	MST
5.	CV	M. Tech in Highway Technology	MHT
6.	EC	M. Tech in VLSI Design \& Embedded Systems	MVE
7.	EC	M. Tech in Communication Systems	MCS
8.	EE	M. Tech in Power Electronics	MPE
9.	ET	M. Tech in Digital Communication	MDC
10.	IS	M. Tech in Software Engineering	MSE
11.	IS	M. Tech in Information Technology	MIT
12.	ME	M. Tech in Product Design \& Manufacturing	MPD
13.	ME	M. Tech in Machine Design	MMD

DEPARTMENT OF ELECTRONICS \& COMMUNICATION ENGINEERING

VISION

Imparting quality technical education through interdisciplinary research, innovation and teamwork for developing inclusive \& sustainable technology in the area of Electronics and Communication Engineering

MISSION

1. To impart quality technical education to produce industry-ready engineers with a research outlook.
2. To train the Electronics \& Communication Engineering graduates to meet future global challenges by inculcating a quest for modern technologies in the emerging areas.
3. To create centres of excellence in the field of Electronics \& Communication Engineering with industrial and university collaborations.
4. To develop entrepreneurial skills among the graduates to create new employment opportunities

PROGRAMME OUTCOMES (PO)

M. Tech in VLSI Design and Embedded Systems graduates will be able to:

PO1: Independently carry out research/investigation and development work to solve the practical problems related to VLSI Design and Embedded Systems.

PO2: Write and present a substantial technical report/document in the field of VLSI Design and Embedded Systems

PO3: Demonstrate a degree of mastery over the area of VLSI Design and Embedded Systems. The mastery should be level higher than the requirements of bachelor's in Electronics \& Communication Engineering program.

PO4: Design and develop solutions with current technologies and tools to meet the global challenges in the field of VLSI Design and Embedded Systems.

PO5: Abstract the requirements for modern microelectronics and smart devices with good economics and business practices.

PO6: Acquire professional and intellectual integrity, research ethics and execute socioconcern projects related to modern large scale integrated circuits and Embedded Systems.

INDEX

S1. No.	Course Code	Course Title	Page No.
1	22MVE11T	Digital System Design with FPGA	09-10
2	22MVE12TL	Digital IC Design	11-12
3	22MVE13T	Advanced Embedded System Design	13-14
4	22MVE14L	ARM CPUs Programming Lab	15-16
5	22MVE1A1T	Low Power VLSI Design	17-18
	22MVE1A2T	ASIC Design	19-20
	22MVE1A3T	VLSI Digital Signal Processing	21-22
	22MVE1A4T	Real Time Embedded Systems	23-24
	22MVE1A5T	Semiconductor Device Modelling	25-26
6	22MVE1B1T	Static Timing Analysis	27-28
	22MVE1B2T	System On Chip Design	29-30
	22MVE1B3T	IC Technology	31-32
	22MVE1B4T	IOT System Design \& Architecture	33-34
	22MVE1B5T	VLSI for Data Conversion Circuits	35-36
7	22IM21T	Research Methodology	37-38
8	22MVE22TL	Analog IC Design	39-40
9	22MVE23T	System Verilog for Design \& Verification	41-42
10	22MCS2C1T	Development of Modem SoCs for Wireless, Wireline and IOT applications	43-44
	22MVE2C2T	VLSI Memory Chip Design	45-46
	22MVE2C3T	Robotics and Industrial Automation	47-48
	22MVE2C4T	Automotive Electronics	49-50
	22MVE2C5T	High Performance Computing	51-52
11	22BT2D01T	Bioinspired Engineering	53-54
	22BT2D02T	Health Informatics	55-56
	22CS2D03T	Business Analytics	57-58
	22CV2D04T	Industrial and Occupational Health and Safety	59-60
	22CV2D05T	Intelligent Transportation Systems	61-62
	22EC2D06T	Electronic System Design	63-64
	22EC2D07T	Evolution of Wireless Technologies	65-66
	22ET2D08T	Tracking and Navigation Systems	67-68
	22IM2D09T	Project Management	69-70
	22IS2D10T	Database and Information Systems	71-72
	22IS2D11T	Management Information Systems	73-74
	22MAT2D12T	Statistical and Optimization Methods	75-76
	22ME2D13T	Industry 4.0	77-78
12	22MVE24L	Analog Layout Design Lab	79
13	22HSS25T	Professional Skills Development-I	80-81
14	22MVE31T	Algorithms for VLSI Design Automation	82-83
15	22MVE3E1T	VLSI Testing	84-85

Autonomous \quad Approved by AICTE,
Institution Affiliated
to Visvesvaraya
Technological
University, Belagavi

	22MVE3E2T	High Speed Digital Design	$86-87$
	22MVE3E3T	RFIC Design	$88-89$
	22MVE3E4T	Signal Processing \& ML on Microcontrollers	$90-91$
	22MVE3E5T	MEMS and Smart Systems	$92-93$
16	22MVE32N	Internship	94
17	22MVE33P	Minor Project	95
18	22MVE41P	Major Project	96
19	22HSS42	Professional Skills Development-II	-

M.Tech in VLSI Design \& Embedded Systems: MVE

I SEMESTER M.Tech

$\begin{array}{\|l\|} \hline \text { Sl. } \\ \text { No. } \end{array}$	Course Code	Course Title	Credit Allocation				BoS	Category	CIE Duration (H)	Max Marks CIE	SEE Duration (H)	
			L	$\begin{array}{\|c\|} \hline \text { T/ } \\ \text { SDA } \end{array}$	P							
1	22MVE11T	Digital System Design with FPGA	3	1	0	4	EC	Theory	1.5	100	3	100
2	22MVE12TL	Digital IC Design	3	0	1	4	EC	Theory+Lab	1.5	100	3	100
3	22MVE13T	Advanced Embedded System Design	3	1	0	4	EC	Theory	1.5	100	3	100
4	22MVE14L	ARM CPUs Programming Lab	1	0	1	2	EC	Lab	1.5	50	3	50
5	22MVE1AXT	Elective A (Professional Elective)	3	0	0	3	EC	Theory	1.5	100	3	100
6	22MVE1BXT	Elective B (Professional Elective)	3	0	0	3	EC	Theory	1.5	100	3	100

Note: For the course code 22HSS42, Students need to select one ONLINE MOOC course as recommended by HSS BoS. This course can be selected anytime between I to III semester and it will be evaluated during IV semester.

Code	Elective A (Professional Elective)	Code	Elective B (Professional Elective)
22MVE1A1T	Low Power VLSI Design	22MVE1B1T	Static Timing Analysis
22MVE1A2T	ASIC Design	22MVE1B2T	System On Chip Design
22MVE1A3T	VLSI Digital Signal Processing	22MVE1B3T	IC Technology
22MVE1A4T	Real Time Embedded Systems	22MVE1B4T	IOT System Design \& Architecture
22MVE1A5T	Semiconductor Device Modelling	22MVE1B5T	VLSI for Data Conversion Circuits

Code	Elective C (Professional Elective)
22MCS2C1T	Development of Modem SoCs for Wireless, Wireline and IOT applications
22MVEAC2T	V. Tech
VLSI Memory Chip Design	2022 SCHEME
22MVE2C3T	Robotics and Industrial Automation
	Automotive Electronics

RV Educational Institutions ${ }^{\circ}$
RV College of Engineering *

$\begin{array}{l}\text { Autonomous } \\ \text { instlulon Arilileted }\end{array}$	$\begin{array}{l}\text { Approved by AICTE, } \\ \text { New Dehi }\end{array}$

Tectinological
University, Beagavi

Elective D (Global Elective)			
22BT2D01T	Bioinspired Engineering	22ET2D08T	Tracking and Navigation Systems
22BT2D02T	Health Informatics	22IM2D09T	Project Management
22CS2D03T	Business Analytics	22IS2D10T	Database and Information Systems
22CV2D04T	Industrial and Occupational Health and Safety	22IS2D11T	Management Information Systems
22CV2D05T	Intelligent Transportation Systems	22MAT2D12T	Statistical and Optimization Methods
22EC2D06T	Electronic System Design	22ME2D13T	Industry 4.0
22EC2D07T	Evolution of Wireless Technologies		

III SEMESTER M.Tech

$\begin{array}{\|l\|} \text { Sl. } \\ \text { No. } \end{array}$	Course Code	Course Title	Credit Allocation				BoS	Category	CIE Duration (H)		SEE Duration (H)	Max Marks SEE
			L	$\left\|\begin{array}{c} \mathrm{T} / \\ \mathrm{SDA} \end{array}\right\|$	P	Total						
1	22MVE31T	Algorithms for VLSI Design Automation	3	1	0	4	EC	Theory	1.5	100	3	100
2	22MVE3EXT	Elective E (Professional Elective)	3	1	0	4	EC	Theory	1.5	100	3	100
3	22MVE32N	Internship	0	0	6	6	EC	Internship	1.5	50	3	50
4	22MVE33P	Minor Project	0	0	6	6	EC	Project	1.5	50	3	50

Code	Elective E (Professional Elective)
$22 \mathrm{MVE3E1T}$	VLSI Testing
22MVE3E2T	High Speed Digital Design
$22 \mathrm{MVE} 3 E 3 T$	RFIC Design
$22 M V E 3 E 4 T$	Signal Processing \& ML on Microcontrollers
$22 M V E 3 E 5 T$	MEMS and Smart Systems

IV SEMESTER M.Tech

	Course Code	Course Title	Credit Allocation				BoS	Category	CIE	Max	SEE	Max
No.			L	$\left\lvert\, \begin{gathered} \mathrm{T} / \\ \mathrm{SDA} \end{gathered}\right.$	P	Total			Duration (H)	Marks CIE	Duration (H)	Marks SEE
1	22MVE41P	Major Project	0	0	18	18	EC	Project	1.5	100	3	100
2	22HSS42	Professional Skills Development-II	2	0	0	2	HSS	NPTEL	--	50	ONLINE	50
Stud	dent need to su	bmit the certificate for the evaluatio	22	HSS								

SEMESTER: I

Introduction to Verilog and Design Methodology: Verilog IEEE standards, Verilog Data Types: Net, Register and Constant. Verilog Operators, Number representation and Verilog ports,Simulation and Synthesis, Test-benches. Verilog Primitives. Logic Simulation, Design Verification, and Test Methodology: Four-Value Logic and Signal Resolution in Verilog, Test Methodology Signal Generators for Test benches, Sized Numbers.
Introduction to Design Methodology: Digital Systems and Embedded Systems, Real-world circuits. Design Methodology: Design Flow-Architecture, Functional design and verification, Synthesis, Physical design. Design Optimization-Area, Timing and Power, System representation.

UNIT - II
Number Basics and Verilog Modelling Styles: Number Basics: Unsigned and Signed Integers, Fixed-point and Floating-point Numbers. Boolean Functions and Boolean Algebra, Verilog models for Boolean switching function, Binary Coding.
Behavioural Modelling: Latches and Level-Sensitive Circuits in Verilog, Cyclic Behavioural Models of Flip-Flops and Latches, Behavioural Models of Multiplexers, Encoders, Decoders and Arithmetic circuits. Dataflow Modelling: Boolean Equation-Based Models of Combinational Logic, Propagation Delay and Continuous Assignments. Linear-Feedback Shift Register. Tasks \& Functions.
Structural Modelling: Design of Combinational Logic, Verilog Structural Models, Top-Down Design and Nested Modules. (Hands on using Xilinx Vivado tool)

UNIT - III
8 Hrs
Synthesis of Digital Sub-systems: Synthesis of Combinational Sub-systems: Introduction to Synthesis, Synthesis of Combinational Logic, Synthesis of Sequential Logic with Latches, Synthesis of Three-state Devices and Bus Interfaces. Synthesis of Sequential Sub-systems: Synthesis of Sequential Logic with Flip-Flops, Synthesis of Explicit State Machines, Registered Logic, State Encoding, Synthesis of Implicit State Machines, Registers and Counters. (Hand on using Xilinx Vivado)

UNIT - IV
8 Hrs
System Implementation and Fabrics:CPLD vs FPGA Architecture - Programming Technologies-Chip I/OProgrammable Logic Blocks- Fabric and Architecture of FPGA. Xilinx Virtex 5.0 Architecture - Xilinx Virtex VI Architecture - ALTERA Cyclone II Architecture - ALTERA Stratix IV Architecture, Hardcore and Softcore FPGA. (Examples such as counter, sequence detector, sequence generated etc are implemented on Airtex-7 FPGA board)

UNIT - V

8 Hrs
Processor Design and System Development: Design of Processor Architectures: Functional Units for Addition, Subtraction and Multiplication (overview). Design: Hierarchical Decomposition STG-Based Controller Design, Efficient STG-Based Sequential Binary Multiplier. Interfacing Concepts: Embedded Computer Organization, Instruction and Data, Memory Interfacing. I/O Interfacing: I/O devices, I/O controllers, Parallel Buses, Serial Transmission.

Course Outcomes:

After going through this course the student will be able to:
CO1 \mid : Define IEEE-1364 standard and identify different styles of modelling to build digital systems.
CO 2 : Analyze digital systems and build small scale applications using Interfacing concepts.
CO3 : Design and verify the behavior of digital circuits using digital flow.
CO4 : Demonstrate the skill on cost-effective system designs through proper selection of implementation.

Reference Books

1. Advanced Digital Design With the Verilog HDL, Michael D. Ciletti, 2nd Edition, 2015, PHI, ISBN: 978-0-07-338054-4.
2. Digital Design: An Embedded Systems Approach Using VERILOG, Peter J. 1st Edition, 2010, Ashenden, Elsevier, ISBN: 978-0-12-369527-7
3. Digital Systems Design Using Verilog, 1st Edition, 2015, Charles Roth, Lizy K. John, ByeongKil Lee,Cengage Learning, ISBN-10: 1285051076
4. Fundamentals ofDigital Logic with Verilog Design, Stephen Brown and ZvonkoVranesic, 6th Edition, 2014, McGraw Hill publication, ISBN: 978-0-07-338054-4

Scheme of Continuous Internal Evaluation (CIE): 20 + $\mathbf{4 0}+\mathbf{4 0}=\mathbf{1 0 0}$

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted \& Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.
TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.
EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.
Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE \& SEE Theory courses

Rubric for CIE \& SEE Theory courses						
RUBRIC for CIE			RUBRIC for SEE			
SLHo	Content	Marlss	Q. Mo	Contents		Marks
1	Quizzes - Q1 \& Q2	20	Each unit consists of TWO questions of $\mathbf{2 0}$ Marks each. Answer FIVE full questions selecting ONE from each unit (1 to 5).			
2	Tests - T1 \& T2	40				
3	Experiential Learning - EL1 \& EL2	40	1 \& 2	Unit-1: Question 1 or 2		20
	Total Marks	100	384	Unit-2: Question 3 or 4		20
			$5 \% 6$	Unit-3: Question 5 or 6		20
			788	Unit-4: Question 7 or 8		20
			9 \& 10	Unit-5: Question 9 or 10		20
					Total Marks	100

SEMESTER: I

CMOS inverter:MOSFET- static \& dynamic behavior, Static CMOS Inverter: static and dynamic Behavior, Components of Energy and Power CMOS Combinational Logic Circuit Design: Static CMOS Design: Complementary CMOS, Ratioed Logic, Pass Transistor Logic. Dynamic CMOS Design: Dynamic Logic Design Considerations. Speed and Power Dissipation of Dynamic logic, Signal integrity issues, Cascading Dynamic gates.

UNIT - II
CMOS Sequential Logic Circuit Design: Static Latches and Registers. Dynamic Latches and Registers. Pulse Based Registers. Sense Amplifier based registers. Pipelining concepts. Memory \& Array structures design: Memory core - ROM, SRAM, DRAM, Sense amplifiers, CAM

> UNIT - III

8 Hrs
Arithmetic building blocks design: Data paths in digital processor architectures - Adder, binary adder, static adder, mirror adder, TG based adder, carry bypass adder, linear and square root carry select adder, carry lookahead adder, Multiplier- array, carry save multiplier, Barrel shifter and Logarithmic shifter.

UNIT - IV

8 Hrs
Interconnects: Interconnect Impact, Resistive, Capacitive and Inductive Parasitics, Crosstalk Control, Timing Issues: Timing classification of digital systems - Synchronous Design - Origins of Clock
Skew/Jitter and Impact on Performance.
UNIT - V
8 Hrs
Clock Distribution and Self-Timed Circuit Design: Clock Distribution techniques, Latch based clocking. Self-Timed Circuit Design: Self-Timed Logic - An Asynchronous Technique, Completion-Signal Generation, Self-Timed Signaling.Synchronizers and Arbiters, Clock Synthesis and Synchronization Using a Phase-Locked Loop.

LABORATORY

28 Hrs

- MOS device Characterization
- CMOS Static Inverter Characteristics
- CMOS Inverter Dynamic Characteristics
- CMOS 2 Input NAND Gate, CMOS 2 Input NOR Gate, Compound/Complex Gates \& Pre-Layout Simulation
- CMOS Inverter, NAND and NOR Layout \& Post-Layout Simulation
- Realize 2-bit multiplier circuit using Half adder and AND gate.
- Realize 6T and 8T SRAM. Pre-Layout Simulation and Post layout simulation • Realization of N Bit counter
- Analysis of Timing reports of a given design
- Case Study: ASIC Design flow

Course Outcomes:

After going through this course the student will be able to:
CO1 : \mid Investigate device, circuit $\&$ system aspects of digital IC design
CO 2 : Analyze the functionality of digital integrated circuits \& systems
CO3 : Design digital integrated circuit \& systems
CO4 : Evaluate the different performance parameters of a digital integrated circuits $\&$ systems

Reference Books

1. Jan M.Rabaey, Anantha Chadrakasan, Borivoje Nikolic, "Digital Integrated Circuits: A Design Perspective", (2/e), Pearson 2016, ISBN-13: 978-0130909961
2. Erik Brunvand, "Digital VLSI Chip Design with Cadence and Synopsys CAD Tools", 1st Edition, Pearson 2009, ISBN: 9780321547996
3. CMOS VLSI Design, Neil H.E. Weste, David Harris, Ayan Banerjee, 3rd Edition, 2006, Pearson Education, ISBN: 0321149017
4. Sung MO Kang, Yousuf Leblebici, "CMOS Digital Integrated Circuits"; Tata McGrawHill, (3/e), 2003, ISBN 0-7923-7246-8

Scheme of Continuous Internal Evaluation (CIE): 10 + 30 + 30 + 30 = $\mathbf{1 0 0}$
QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted \& Each Quiz will be evaluated for 10 Marks. The average of two quizzes will be the Final Quiz marks.
TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 30 Marks.
EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (10), Video based seminar /presentation /demonstration (20) adding upto 30 marks.
Laboratory: Conduction of laboratory exercises, Lab report \& observation \& analysis (30 Marks), Lab Test (10 Marks) \& Innovative Experiment/Concept Design \& Implementation (10 Marks) adding up to 50 Marks. The final marks will be reduced to 30 Marks.
Scheme of Semester End Examination (SEE) for 100 marks: Each unit consists of TWO Questions of 16 Marks each. Answer FIVE full questions selecting one from each unit (from 1 to 5). Question No. 11 is compulsory (Laboratory component) for 20 Marks.

Rubric for CIE \& SEE for Integrated Theory courses with Laboratory

RUBRIC of CEE			RUBRIC of SEE			
SLHo	Content	Marks	Q. No	Contents		Marks
1	Quizzes - Q1 \& Q2	10	Each unit consists of TWO questions of 16 Marks each. Answer FIVE full questions selecting ONE from each unit (1 to 5). Question No. 11 is compulsory (Laboratory component) for 20 Marks.			
2	Tests - T1 \& T2	30				
3	Experiential Learning - EL1 \& EL2	30	182	Unit-1: Question 1 or 2		16
4	Laboratory	30	3\&4	Unit-2: Question 3 or 4		16
	Total Marks	100	$5 \% 6$	Unit-3: Question 5 or 6		16
NO SEE for Laboratory			788	Unit-4: Question 7 or 8		16
			$9 \% 10$	Unit-5: Question 9 or 10		16
			11	Laboratory Component (C)		20
					Total Marks	100

Course Code	: 22MVE13T	Advanced Embedded System Design	CIE Marks	100
Credits L-T-P	: 3-1-0		SEE Marks	100
Hours	: $42 \mathrm{~L}+28 \mathrm{~T}$	(Professional Core - 3)	SEE Durations	3 Hrs
Faculty Coordinator: Dr. Govinda Raju M				
		UNIT - I		9 Hrs

Introduction to Embedded System Design
Introduction, Characteristics of Embedding Computing Applications, Concept of Real time Systems, Challenges in Embedded System Design, Design Process: Requirements, Specifications, Hardware Software Partitioning, Embedded System Architecture
Instruction Set Architectures with examples, Memory system Architecture: caches, Virtual Memory, Memory Management, I/O sub system: Busy wait I/O, DMA, Interrupt Driven I/O, Co-Processor \& Hardware Accelerators, Processor performance Enhancement: Pipelining, Superscalar Execution, Multi Core CPUs, CPU Power Consumption, Benchmarking Standards: MIPS, MFLOPS, Coremark

UNIT - II

9 Hrs

Designing Embedded System Hardware -I
CPU Bus: Bus Protocols, Bus Organization, Introduction to SATA,PCI,PCI-e, Memory Devices and their Characteristics: RAM, EEPROM, Flash Memory, DRAM,DDR,; I/O Devices: Timers and Counters, Watchdog Timers, Interrupt, Controllers, DMA Controllers, A/D and D/A Converters, LEDs, OLEDs

UNIT - III
8 Hrs
Designing Embedded System Hardware -II Programmed IO, Memory Mapped IO, Interfacing Protocols: SPI, I2C, CAN, Reset Circuits, Designing with Processors: System Architecture, FPGA based Design, Processor Selection Criteria

UNIT - IV

Designing Embedded System Software -I Application Software, System Software, Use of High-Level Languages, Integrated Development Environment tools: Editor, Compiler, Linker, Automatic Code Generators, Debugger, Board Support Library, Chip Support Library, Analysis and Optimization: Execution Time, Energy \& Power, Program Size; Program Validation \& Verification, Embedded System Coding Standards: MISRA C 2012/CERT
UNIT - V

8 Hrs
Designing Embedded System Software -II OS based Design, Real Time Kernel, Process\& Thread, Inter Process Communications, Synchronization, Case Study: RTX-ARM/FreeRTOS, Evaluating and Optimizing Operating System Performance: Response time Calculation, Interrupt Latency, Time Loading, Memory, Loading, Case Study: Embedded Control Applications-Software Coding of a PID Controller, PID Tuning, IoT based Resource Monitoring

Course Outcomes:

After going through this course the student will be able to:
CO1 : : Interpret hardware \& software of an embedded systems for real time applications with suitable processor architecture, memory and communication interface.
CO 2 : Design embedded software \& hardware to meet given constraints pertaining to both operational and non operational attributes.
CO3 : Demonstrate the concurrent execution of different operations with support of real time operating systems.
CO4 : Engage in usage tools to formulate, design and analyze different Applications realized with embedded processors.

Reference Books

1. Embedded Systems - A contemporary Design Tool, James K Peckol, 2nd edition, John Weily, 2008, ISBN: 0-444-51616-6
2. Introduction to Embedded Systems, Shibu K V, 1st edition, Tata McGraw Hill Education Private Limited, 2009, ISBN: 10: 0070678790
3. Embedded Software Primer, David E.Simon, Addison Wesley, 2nd edition, John Weily, 2002, ISBN-13: 978-0201615692
4. The Intel Micro-processors, Architecture, Programming and Interfacing, Barry B.Brey, 6th Edition, Pearson Education, 2008, ISBN-10: 8131726223

Scheme of Continuous Internal Evaluation (CIE): $\mathbf{2 0 + 4 0 + 4 0 = 1 0 0}$

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted \& Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.
TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.
EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.
Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE \& SEE Theory courses

RUBRIC for CIE			RUBRIC for SEES			
SLMo	Content	Marlss	Q. Mo	Contents		Marlss
1	Quizzes - Q1 \& Q2	20	Each unit consists of TWO questions of 20 Marks each. Answer FIVE full questions selecting ONE from each unit (1 to 5).			
2	Tests - T1 \& T2	40				
3	Experiential Learning - EL1 \& EL2	40	1 \& 2	Unit-1: Question 1 or 2		20
	Total Marks	100	3 \& 4	Unit-2: Question 3 or 4		20
			5 \& 6	Unit-3: Question 5 or 6		20
			788	Unit-4: Question 7 or 8		20
			$9 \% 10$	Unit-5: Question 9 or 10		20
					Total Marks	100

			Go, change the world	
SEMESTER: I				
Course Code	22MVE14L	ARM CPUs Programming Lab	CIE Marks	50
Credits L-T-P	1-0-1		SEE Marks	50
Hours	$14 \mathrm{~L}+28 \mathrm{P}$	(Coding / Skill Laboratory)	SEE Durations	3 Hrs
Faculty Coordinator: Dr. Govinda Raju M				
Content 28 Hrs				

Experiments on bare metal programming:

1. Write application program to interface LEDs and push buttons to GPIOs of LPC 1857 cortex M3 evaluation board and demonstrate polling-based IO operation.
2. Write Systick_handler to accurately control the delay between toggling of LEDs to support interrupt driven IO.
3. Write driver for ADC0 in LPC 1857 MCU. Display digital value on GLCD and demonstrate analog sensor interface. 4. Write I2C driver for LPC1857. Develop APIs to support I2C. 5. Write driver to support LM75a digital temperature sensor through I2C. Test the functionality by displaying temperature values on GLCD.
4. Write application program to realize FIR filter on STM32F4 cortex M4 development board. Test the filtering operation on signal generated from function generator and interfaced to STM32F4 development board through WolfsonPI codec.

Experiments using RTOS

1. Create a multitasking application program to demonstrate creation of tasks. Task1 is expected to control the blinking two LEDs and Task2 is to change font and colour of the textual display on GLCD concurrently. 2. Create multitasking program to demonstrate task synchronization. Task1 is expected to display LED blinking pattern and Task2 display textual message on GLCD. 3. Create a multitasking program to demonstrate event flags to synchronize task execution. Create four tasks to simulate the operation of stepper motor driver. 4. Create multitasking program to demonstrate IPC using mailbox. Create a task to read a digital value from ADC and send to another task executing concurrently through mailbox. Synchronize the execution of tasks. 5 . Create a 'Blinky' project using RL-ARM real time Kernel to simulate the operations of step-motor driver. Use four LEDs blinking to simulate the activation of the four output driver stages. Create other two tasks executing concurrently and competing for GLCD. The first task displays status of LEDs blinking on GLCD and second task displays a string with changing colour of font and background.

Course Outcomes:

After going through this course the student will be able to:

| CO1 | $:$Interpret the information provided in data sheets and schematic diagram to write driver code
 for different interfaces for micorocontorllers. |
| :---: | :--- | :--- |
| CO 2 | $:$Design embedded software to meet given constraints pertaining to both operational and non
 operational attributes. |
| CO 3 | $:$Demonstrate the use of real time operating system to support multitasking for concurrent
 execution of different operations. |
| CO 4 | $:$Engage in usage of tools to code application programs by using constructs provided by
 compiler and middleware software packages. |

Reference Books

1. Embedded Systems - A contemporary Design Tool, James K Peckol, 2nd edition, John Weily, 2008, ISBN: 0-444-51616-6
2. Introduction to Embedded Systems, Shibu K V, 1st edition, Tata McGraw Hill Education Private Limited, 2009, ISBN: 10: 0070678790
3. Embedded Software Primer, David E.Simon, Addison Wesley, 2nd edition, John Weily, 2002, ISBN-13: 978-0201615692
4. The Intel Micro-processors, Architecture, Programming and Interfacing, Barry B.Brey, 6th Edition, Pearson Education, 2008, ISBN-10: 8131726223

Scheme of Continuous Internal Evaluation (CIE- Laboratory) : Only LAB Course $30+10+10=50$. The Laboratory session is held every week as per the timetable and the performance of the student is evaluated in every session. The average of marks over number of experiments conducted over the weeks is considered for 30 Marks i.e (Lab Report, Observation \& Analysis). The students are encouraged to implement additional innovative experiments in the lab (10 marks). At the end of the semester a test is conducted for 10 Marks (Lab Test). This adds to 50 Marks.
Scheme of Semester End Examination (SEE- Laboratory) : Only LAB Course $40+10=50$. Students will be evaluated for Write-up, Experimental Setup, Experiment Conduction with Results, Analysis \& Discussions for 40 Marks and Viva will be conducted for 10 Marks adding to 50 Marks.

Only LAB Courses with 50 Marks

	ege of Engineering		Go, change the world	
SEMESTER: I				
Course Code	: 22MVE1A1T	Low Power VLSI Design	CIE Marks	100
Credits L-T-P	: 3-0-0		SEE Marks	100
Hours	: 42 L	Elective A (Professional Elective)	SEE Durations	3 Hrs
Faculty Coordinator: Dr. Srividya P				
UNIT - I				9 Hrs

Introduction to Low power:Need for low power VLSI chips, Sources of power dissipation on Digital Integrated circuits. Emerging Low power approaches, Physics of power dissipation in CMOS devices. Device \& Technology Impact on Low Power:
Dynamic dissipation in CMOS, Transistor sizing \& gate oxide thickness, Impact of technology Scaling, Technology \& Device innovation.

UNIT - II

Power estimation methods

Simulation Power analysis: SPICE circuit simulators, gate level logic simulation, capacitive power estimation, static state power, gate level capacitance estimation, architecture level analysis, data correlation analysis in DSP systems, Monte Carlo simulation.
Probabilistic power analysis: Random logic signals, probability \& frequency, probabilistic power analysis techniques, signal entropy.

UNIT - III

8 Hrs

Low Power Design at Circuit level and Logic Level:

Low Power Design at Circuit level: Transistor and gate sizing, equivalent pin ordering, network restructuring and reorganization, Flip Flops \& Latches design, high capacitance nodes, low power digital cells library. Low Power Design at Logic level: Gate reorganization, signal gating, logic encoding, state machine encoding, pre-computation logic.

UNIT - IV

8 Hrs

Low power Design at Architecture/System Level and Clock distribution:

Low power Architecture $\&$ Systems: Architectural level estimation $\&$ synthesis, Power $\&$ performance management, switching activity reduction, parallel architecture with voltage reduction, flow graph transformation, low power arithmetic components, low power memory design. Low power Clock Distribution: Power dissipation in clock distribution, single driver Vs distributed buffers, Zero skew Vs tolerable skew, chip \& package co design of clock network

UNIT - V

8 Hrs
Algorithm Level low power Methods: Introduction, design flow, Algorithmic level analysis \& optimization. Low power memory design: Introduction, sources and reductions of power dissipation in memory subsystem, sources of power dissipation in DRAM and SRAM

Course Outcomes:

After going through this course the student will be able to:

CO1	$:$Acquire the knowledge of the device physics, principles of analysis tools, circuits levels, logic levels and clock distribution techniques for low power designs.	
CO 2	$:$Identify, formulate, and solve engineering system design problems using low power VLSI design approaches and engineering tools.	
CO 3	$:$Use the techniques and skills in system designing through modern engineering tools such as Logic works SPICE and description languages such as Verilog.	
CO 4	$:$	Design a digital system to meet the desired performance with realistic constraints.

Reference Books

1. Low Power Design Methodologies, Jan M. Rabaey and MassoudPedram, Kluwer Academic Publishers, 5th reprint, ISBN 978-1-46 13-5975-3, 2002.
2. Practical Low Power Digital VLSI Design, Gary K. Yeap, Kluwer Academic Publishers, ISBN 978-1-4613-7778-8, 2002.
3. Low-Power CMOS VLSI Circuit DesignKaushik Roy and Sharat Prasad, John Wiley, 2000. ISBN 13 9788126520237
4. Low-Power VLSI Circuits and Systems,Ajit Pal, Springer publications, ISBN: ISBN 978-81-322-1936-1, 2015

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = $\mathbf{1 0 0}$
QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted \& Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.
TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.
EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.
Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE \& SEE Theory courses

Course Code	: 22MVE1A2T	ASIC Design	CIE Marks	100
Credits L-T-P	: 3-0-0		SEE Marks	100
Hours	: 42L	Elective A (Professional Elective)	SEE Durations	3 Hrs
Faculty Coordinator: Prof. Sujatha Hiremath				
		UNIT - I		9 Hrs

Introduction to ASICs: ASIC Design Flow, Introduction to ASICs, Types of ASICs: Full Custom ASIC, Semi-custom based ASIC, Standard Cell based ASIC, Gate array based ASIC, Channeled gate array, Channelless gate array, Structured gate array, Programmable logic devices, Combinational Logic Cell Sequential logic cell

UNIT - II

9 Hrs
Datapath logic cells: Data Path Elements, Adders, Multipliers, Arithmetic operators. I/O Cell, Cell Compilers. ASIC Library Design: Transistors as Resistors, Transistor parasitic Capacitance. Logical effort: Predicting delay, logical area, logical efficiency, logical paths, multistage cells, optimum delay, and optimum no. of stages. Library cell design.

UNIT - III

8 Hrs
ASIC Construction:
Physical Design, CAD Tools, System Partitioning, Estimating ASIC size, partitioning methods. Floor-planning tools, Measurement of Delay in Floor-planning, Floor-planning Tools, Channel Definition, I/O and power planning, and clock planning. Placement Terms and Definitions, Measurement of Placement Goals and Objectives, Placement algorithms, iterative placement improvement, Time driven placement methods.

UNIT - IV
8 Hrs

Clock Tree Synthesis and Routing: Goals of CTS, Brief introduction to CTS optimization process, Global Routing, Measurement of Interconnect Delay, Global Routing between blocks, Global Routing inside Flexible Blocks, Back annotation. Detailed Routing: Measurement of Channel Density, Algorithms, Left-Edge Algorithm, Area-Routing Algorithms, Special Routing, Circuit Extraction and DRC.

UNIT - V

8 Hrs
Programmable ASICs: Programmable Asics, Programmable ASIC Logic Cells \& Programmable ASIC I/O Cells Anti fuse - static RAM - EPROM and EEPROM technology - PREP benchmarks - Actel ACT 1 Module - Xilinx LCA - Altera FLEX - Altera MAX Logic expanders, Power Dissipation in Complex PLDs.

Course Outcomes:

After going through this course the student will be able to:

CO1	$:$	Acquire the knowledge of logic design, physical design design including technology choice, constraints, tool-flow etc.
CO 2	$:$	Apply the optimization techniques in terms of speed and area.
CO	$:$	Develop the algorithms required physical design of ASIC flow and implementing the design using FPGA
CO 4	$:$	Create a constrain file required for the back end process of ASIC design.

Reference Books

1.J.S.Smith, " Application - Specific Integrated Circuits", Pearson,2003
2. Douglas J. Smith, HDL Chip Design, Madison, AL, USA: Doone Publications, 1996
3. Wayne Wolf, FPGA-Based System Design, Prentice Hall PTR, 2004
4. Andrew B. Kahng, Jens Lienig Igor L. Markov, Jin Hu, VLSI Physical Design: From Graph Partitioning to Timing Closure, Springer Dordrecht Heidelberg London New York, 2011

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = $\mathbf{1 0 0}$
QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted \& Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.
TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.
EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.
Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE \& SEE Theory courses

	onal Institutions ${ }^{\circ}$ ge of Engineering $\begin{array}{l\|l} & \text { Approved by AICTE, } \\ \text { ated } & \text { New Dehi } \\ \text { a } & \end{array}$		Go, change the zoorld	
SEMESTER: I				
Course Code	: 22MVE1A3T	VLSI Digital Signal Processing	CIE Marks	100
Credits L-T-	3-0-0		SEE Marks	100
Hours	: 42L	Elective A (Professional Elective)	SEE Durations	3 Hrs
Faculty Coordinator: Dr. Abhay Deshpande				
UNIT - I				

Introduction to Digital Signal Processing Systems Introduction, Typical DSP algorithms, DSP Application demands, Scaled CMOS Technologies, Representations of DSP algorithms.

UNIT - II	9 Hrs

Pipelining and Parallel Processing Introduction, Pipelining of FIR Digital Filters, Parallel Processing, Pipelining and Parallel processing for low power using Candence tool.

UNIT - III
8 Hrs
Algorithmic strength reduction in filters and transforms Introduction, Parallel FIR filters, Discrete Cosine Transform and Inverse DCT, Parallel Architectures for Rank-Order Filters.

UNIT - IV
8 Hrs
Pipelined and parallel Recursive and Adaptive Filters Introduction, Combined pipelining and parallel processing for IIR filters, Low power IIR digital filter design using pipelining and parallel processing on Cadence, pipelined Adaptive Digital filter design.

UNIT - V
8 Hrs
Programmable Digital Signal Processor Introduction, Evaluation and important features of programmable VLSI-DSP processor, application of VLSI-DSP processor in the field of Wireless Communication, Multimedia Signal Processing etc.

Course Outcomes:

After going through this course the student will be able to:

| CO1 | $:$ Analyze DSP architectures and CMOS technologies. |
| :--- | :--- | :--- |
| CO2 | $:$ Apply pipelining, parallel processing and retiming in DSP. |
| CO3 | $:$ Design pipelined and parallel recursive adaptive filters. |
| CO4 | Develop applications using general purpose digital signal processors. |

Reference Books

1. Keshab K. Parthi , "VLSI Digital Signal Processing Systems :Design and implementation" Wiley 1999, 3rd Edition, ISBN: 81-265-1098-6
2. Rulph chasseing, "Digital Signal Processing and Applications " with C6713 and C6416 DSK, Wiley 2005, 2nd edition, ISBN: 978-0470138663
3. Nasser Kehtarnavaz, "Digital Signal Processing System Design: Lab view based hybrid programming", Academic press 2008, 2nd edition, ISBN: 978-0123744906.
4. Naim Dahnoun "Digital Signal Processing Implementation" Prentice Hall, 2000, ISBN: 978-0201619164

Scheme of Continuous Internal Evaluation (CIE): 20 +40 + 40 = $\mathbf{1 0 0}$

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted \& Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.
TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.
EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.
Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE \& SEE Theory courses

| RUBRIC for CIE | | RUBRIC for SEEF | | | |
| :---: | :--- | :---: | :---: | :--- | :---: | :---: |
| SLMo | Content | Marks | Q. Mo | Contents | Marlks |
| 1 | Quizzes - Q1 \& Q2 | 20 | Each unit consists of TWO questions of 20 Marks each. Answer FIVE | | |
| full questions selecting ONE from each unit (1 to 5). | | | | | |

Introduction: Overview, Architecture of Real Time Systems: Hardware and Software, Real Time Services. System Resources: Resource Analysis, Real Time Service Utility, Cyclic Executives, Timing Constraints and Modelling of Timing Constraints, Applications of Real Time System.

UNIT - II	9 Hrs

Processing: Scheduling Classes, Scheduler Concepts, Pre-emptive Fixed Priority Policy, Feasibility, Rate Monotonic LUB, Necessary \& Sufficient Feasibility, Dead Line Monotonic, Dynamic Priority Policies. I/O Resources: WCET, Intermediate I/O, Execution Efficiency.

UNIT - III	8 Hrs

RTOS Services: Task Creation, Inter Task Communication: Pipes, Message Queues, Mail Box, Memory Mapped Objects; Critical Section, Shared Data Problem, Synchronization: Semaphores, Mutex; Remote Procedure and Sockets.
Real Time Memory Management: Process Stack Management, Dynamic Allocation
UNIT - IV
8 Hrs
Handling Resource Sharing and Dependencies Among Real-Time Tasks Resource Sharing among Real-Time Tasks, Priority Inversion, Priority Ceiling Protocol (PCP), Priority Inheritance Protocol (PIP), Highest Locker Protocol (HLP), Types of Priority Inversion Under PCP, Racing, Deadlock, Live lock, Starvation.

> | UNIT - V | 8 Hrs |
| :--- | :--- |

Examples of Real Time OS: VxWorks: Task Management, Scheduling, Primitive Kernel Services, Application Program development using APIs, Introduction to AI for scheduling

Course Outcomes:

After going through this course the student will be able to:
CO1 $:$: Aquire the concepts of real-time system and real-time operating system.
CO 2 : Analyse the given requirements, design hardware $\&$ software for real time systems.
CO3 : Apply tools for real time firm ware development \& performance analysis.
CO4 : Design real time applications using RTOS to meet timing Constraints.

Reference Books

1. Real-Time Embedded Systems and Components, Sam Siewert, 2007, Cengage Learning India Edition, ISBN: 97881315025322
2. Real-Time Systems: Theory and Practice, Rajib Mall, 2007, Pearson, ISBN 978-81-317-0069-3
3. Real-Time Concepts for Embedded Systems, Qing Li and Carolyn Yao, 2003 CMP Books, ISBN: 1578201241
4. Technical Reference Manuals: VxWorks, Posix.

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = $\mathbf{1 0 0}$

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted \& Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.
TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.
EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.
Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE \& SEE Theory courses

| RUBRIC for CIE | | RUBRIC for SEEF | | | |
| :---: | :--- | :---: | :---: | :--- | :---: | :---: |
| SLMo | Content | Marks | Q. Mo | Contents | Marlks |
| 1 | Quizzes - Q1 \& Q2 | 20 | Each unit consists of TWO questions of 20 Marks each. Answer FIVE | | |
| full questions selecting ONE from each unit (1 to 5). | | | | | |

	nal Institutions ${ }^{\circ}$ ge of Engineering Approved by AICTE New Dehi New Dehi		Go, change the world	
SEMESTER: I				
Course Code	22MVE1A5T	Semiconductor Device Modelling	CIE Marks	100
Credits L-T-P	3-0-0		SEE Marks	100
Hours	42L	Elective A (Professional Elective)	SEE Durations	3 Hrs
Faculty Coordinator: Dr. Ramavenkateswaran N				

Charge Carriers and Transport Modelling

Crystal Structure, Semiconductor Models, Carrier Properties, State and Carrier Distributions, Equilibrium Carrier Concentrations, Drift, Diffusion, Recombination-Generation, Equations of State, Modelling \& Simulation examples.

UNIT - II

9 Hrs
PN Junction Diodes:pn Junction Electrostatics, Preliminaries, Quantitative Electrostatic Relationships, I-V Characteristics, The Ideal Diode Equation, Deviations from the Ideal, Small-Signal Admittance, Reverse-Bias Junction Capacitance, Forward-Bias Diffusion Admittance, MS Contacts and Schottky Diodes, Solar cells and LEDs.

UNIT - III

8 Hrs

BJT: Electrostatics, Performance Parameters, Ideal Transistor Analysis, General Solution, Simplified Relationships, Ebers-Moll Equations and Model, Deviations from the Ideal, Modern BJT Structures.

$$
\begin{array}{l|l|}
\hline \text { UNIT - IV } & 8 \mathrm{Hrs} \\
\hline
\end{array}
$$

MOS: Electrostatics, Capacitance-Voltage Characteristics, Quantitative ID/VD Relationships, Square-Law Theory, Bulk-Charge Theory, a.c. Response, Small-Signal Equivalent Circuits, Cutoff Frequency, Small-Signal Characteristics

$$
\begin{array}{|l|l|}
\hline \text { UNIT - V } & 8 \text { Hrs } \\
\hline
\end{array}
$$

Emerging electron devices (Qualitative approach): Introduction, HEMT, HBT, Fin-FET. Nanowire-FET, quantum and molecular devices, energy storage and harvesting Electronics devices

Course Outcomes:

After going through this course the student will be able to:
CO1 $: \mid$ Apply semiconductor models to analyse carrier densities and carrier transport.
CO 2 : Analyse basic governing equations to analyse semiconductor devices.
CO3: Design the p-n junction, Schottky barrier diodes and emerging semiconductor devices.
CO4 $:$ Model \& Simulate microelectronic devices using software tools.

Reference Books

1. Robert F. Pierret, "Semiconductor Device Fundamentals", Pearson, 2006, ISBN 9780201543933.
2. Y.P. Tsividis, Colin McAndrew, "Operation and modelling of the MOS Transitor", 3rd Edition, 2014, Oxford Univ Press, ISBN:978-0195170153.
3. Yuan Taur, Tak H. Ning, "Fundamentals of Modern VLSI Devices", 2ndedition, 2013Cambridge University Press, ISBN: 978-1107635715.
4. Semiconductor Simulation Tools, "https://nanohub.org/groups/semiconductors"

Scheme of Continuous Internal Evaluation (CIE): 20 +40 +40 = $\mathbf{1 0 0}$

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted \& Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.
TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.
EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.
Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE \& SEE Theory courses

| RUBRIC for CIE | | RUBRIC for SEEF | | | |
| :---: | :--- | :---: | :---: | :--- | :---: | :---: |
| SLMo | Content | Marks | Q. Mo | Contents | Marlks |
| 1 | Quizzes - Q1 \& Q2 | 20 | Each unit consists of TWO questions of 20 Marks each. Answer FIVE | | |
| full questions selecting ONE from each unit (1 to 5). | | | | | |

	ge of Engineering Approved by AICTE. New Dehi		Go, change the world	
SEMESTER: I				
Course Code	22MVE1B1T	Static Timing Analysis	CIE Marks	100
Credits L-T-P	3-0-0		SEE Marks	100
Hours	42L	Elective B (Professional Elective)	SEE Durations	3 Hrs
Faculty Coordinator: Dr. Shylashree N				
UNIT - I				9 Hrs
Introduction:Basicsoftimingconcepts-Propagationdelay,slew,timingarcs,minandmaxtimingpaths,clockdomains. Delay Concepts for Digital Designing: Types of Delays in Digital Circuits, Different Cause for DelayTimingparametersofdigitalcircuits:TimingParametersforCombinationalLogicGates,TimingParametersfor SequentialCircuits,ConceptofDelayPathinaDesign,ClockConcepts TheSTAEnvironment- timingpath groups,modelingofexternalattributes,virtualclocks,refining thetiminganalysis, point-to-pointspecification				
UNIT - II				9 Hrs
Resources for Static Timing Analysis Flow:Libraries,Netlist, Parasitics for Delay Calculation:Device Parasitics, Interconnects, Parasitic Extraction Formats, linear v/s. non-linear delay model. ClockNetworkOptimization:Metrics, clockskew-scheduling,handlingvariability. ParallelTimingOptimization:Circuitpartitioningforindependent timingregions. Post-SiliconTimingValidation:Introduction,sourcesofpost-silicontimingfailure, post-silicontuning				

4. Constraining Designs for Synthesis and Timing Analysis - A Practical Guide to Synopsys Design Constraints (SDC), Sridhar Gangadharan and Sanjay Churiwala, Springer Science, Business Media, LLC, Library of Congress Cataloging-in-PublicationData,2013,ISBN:978-1-4614-3269-2

Scheme of Continuous Internal Evaluation (CIE): $20+40+40=100$

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted \& Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.
TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.
EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.
Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE \& SEE Theory courses

Course Code	: 22MVE1B2T	System on Chip Design	CIE Marks	100
Credits L-T-P	3-0-0		SEE Marks	100
Hours	42L	Elective B (Professional Elective)	SEE Durations	3 Hrs
Faculty Coordinator: Dr. Kiran V				
		UNIT - I		9 Hrs

Review of Moore's law and CMOS scaling, benefits of System On Chip integration in terms of cost, power, and performance. Comparison on System on Board, System on Chip, and System-in-Package. Typical goals in SoC design cost reduction, power reduction, design effort reduction, performance maximization. Productivity gap issues and the ways to improve the gap - IP based design and design reuse.

UNIT - II

9 Hrs
System On Chip Design Process: A canonical SoC Design, SoC Design flow, waterfall vs spiral, top down vs bottom up, Specification requirement, Types of Specification, System Design Process, System level design issues, Soft IP vs Hard IP, IP verification and Integration, Hardware-Software co design, Design for timing closure, Logic design issues, Verification strategy, On chip buses and interfaces, Low Power, Hardware Accelerators in Soc

UNIT - III
8 Hrs
Embedded Memories, cache memories, flash memories, embedded DRAM. Topics related to cache memories. Cache coherence. MESI protocol and Directory-based coherence.

UNIT - IV
8 Hrs
Interconnect architectures for SoC. Bus architecture and its limitations. Network on Chip (NOC) topologies. Mesh-based NoC. Routing in anNoC. Packet switching and wormhole routing.

UNIT - V

8 Hrs
MPSoCs: What, Why, How MPSoCs, Techniques for designing MPSoCs,Multichip Packages and chipset based design, Performance and flexibility for MPSoCs design Case Study: A Low Power Open Multimedia Application Platform for LTE.

Course Outcomes:

After going through this course the student will be able to:

CO1 | : | Learn about the blocks in the system on chip design and its performance. |
| :--- | :--- |

CO 2 : Analyze the design flow and verification of IPs used in system on chip.
CO3 : Exposure the concepts of different memory and interconnection methods in SoC
CO4 : Design \& Develop the algorithms required for the design of IP and SoC and Exposure to the concept of MPSoCs

Reference Books

1. SudeepPasricha and NikilDutt, "On-Chip Communication Architectures: System on Chip Interconnect", Morgan Kaufmann Publishers © 2008.
2. Rao R. Tummala, MadhavanSwaminathan, "Introduction to system on package sopMiniaturization of the Entire Syste", McGraw-Hill, 2008.
3. James K. Peckol, "Embedded Systems: A Contemporary Design Tool", Wiley Student Edition.
4. Michael Keating, Pierre Bricaud, "Reuse Methodology Manual for System on Chip designs", Kluwer Academic Publishers, 2nd edition, 2008.

Scheme of Continuous Internal Evaluation (CIE): $\mathbf{2 0 + 4 0 + 4 0 = 1 0 0}$

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted \& Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.
TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.
EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

An Introduction to Microelectronic Fabrication: Semiconductor Substrates, Crystallography and Crystal Structure, Crystal Defects, Czochralski Growth, Bridgman Growth of GaAs, Float Zone Growth, Wafer Preparation and Specifications

UNIT - II $\quad \mathbf{9}$ Hrs
Hot Processingand Ion Implantation: Diffusion, Fick's Diffusion Equation in One Dimension, Atomistic Models of Diffusion, Analytic Solutions of Fick's Law, Diffusion Coefficients for Common Dopants, Analysis of Diffused Profiles, Diffusion in SiO2, Simulations of Diffusion Profiles

UNIT - III
8 Hrs
Thermal Oxidation: The Deal-Grove Model of Oxidation, The Linear and Parabolic Rate Coefficients, The Initial Oxidation Regime, The Structure of SiO 2 , Oxide Characterization, The Effects of Dopants During Oxidation and PolysiliconOxidation, Silicon Oxynitrides, Alternative Gate Insulators, Oxidation Systems, Numeric Oxidations

UNIT - IV

8 Hrs
Ion Implantation: Idealized Ion Implantation Systems, Coulomb Scattering,Vertical Projected Range, Channeling and Lateral Projected Range, Implantation Damage, Shallow Junction Formation, Buried Dielectrics, Ion Implantation Systems: Problems and Concerns, Numerical Implanted Profiles

UNIT - V
8 Hrs
Resistivity: Two-Point Versus Four-Point Probe, Wafer Mapping, Resistivity Profiling, Contactless Methods, Conductivity Type, Contact Resistance and Schottky Barriers, Metal-Semiconductor Contacts, Contact Resistance, Measurement Techniques, Schottky Barrier Height,Comparison of Methods

Course Outcomes:
After going through this course the student will be able to:
CO1 : \mid Aquire the concepts of fabrication process and characterization techniques of IC technology.
CO2 : Analysis of different process parameters in IC fabrications.
CO3 : Define different standard operating procedure in IC fabrication.
CO4

Reference Books

1. Stephen A. Campbell, "Fabrication Engineering at the Micro and Nanoscale", Third Edition, University of Minnesota, Oxford University Press, 2008.
2. Dieter K. Schroder, "Semiconductor Material and Device Characterization", Wiley - IEEE, 2006.
3. Yuan Taur, Tak H. Ning, "Fundamentals of Modern VLSI Devices", 2ndedition, 2013 Cambridge University Press, ISBN: 978-1107635715.
4. Richard Jaeger, "Introduction to Microelectronic Fabrication": Volume 5, Modular Series on Solid State Deviced, 13 November 2001.

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + $40=100$

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted \& Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.
TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.
EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.
Scheme of Semester End Examination (SEE) for $\mathbf{1 0 0}$ marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE \& SEE Theory courses

| RUBRIC for CIE | | RUBRIC for SEEF | | | |
| :---: | :--- | :---: | :---: | :--- | :---: | :---: |
| SLMo | Content | Marks | Q. Mo | Contents | Marlks |
| 1 | Quizzes - Q1 \& Q2 | 20 | Each unit consists of TWO questions of 20 Marks each. Answer FIVE | | |
| full questions selecting ONE from each unit (1 to 5). | | | | | |

	ege of Engineering		Go, change	he world
SEMESTER: I				
Course Code	: 22MVE1B4T	IOT System Design and Architecture	CIE Marks	100
Credits L-T-P	3-0-0		SEE Marks	100
Hours	: 42 L	Elective B (Professional Elective)	SEE Durations	3 Hrs
Faculty Coordinator: Dr. Govinda Raju M				
		UNIT - I		9 Hrs

IOT Essentials Evolution of IoT, IoT characteristics, IoT enabling technologies, Planning for an IoT solution, IoT use case development - Need and goals, IoT Architecture reference model, Functional blocks of IoT-
Communication and security Model, Service oriented architecture, Event-driven architecture, Applications and standards.
IoT Communication Architecture and Protocols
Communication models for IoT, 6LoWPAN, IPv4/IPv6, IoT communication protocols - MQTT,
CoAP, LoRaWAN, RTLS, RPL, Communication APIs
UNIT - II
9 Hrs
IoT Security and Privacy
IoT risks and security challenges, IoT security architecture - A trust model, Restricting network access through security groups- Specific user access control, Data confidentiality and availability, User Authentication/Authorization methods, Block chain for IoT security and privacy.

UNIT - III

8 Hrs
Data Analytics Need for data analytics, Data generation, Data pre-processing, Handling imbalanced data sets, Missing values, Outliers, Intelligent IoT systems -Supervised and Unsupervised machine learning algorithms, Deep learning for IoT- Predictive analytics, Python functions and modules for data analytics, Big Data analytics and frameworks.

UNIT - IV
8 Hrs
Data Analytics in Cloud Layered cloud architecture for data analytics, Elasticity in cloud for data warehousing, Virtualization for Data-center automation, Real-time cloud data analytics tools, AI Services-Data based decisions, Cloud data lake, Exploratory data analysis, Open source cloud platforms and services. Edge Computing Introduction to Edge/Fog computing, Edge nodes and gateway, Node to edge interfaces, Protocol and standards for edge devices, IoT edge architecture, IoT supported hardware- Raspberry pi, ARM Cortex Processors, Software Platforms for IoT Edge - Raspbian Pi OS, RIOT, Python packages for edge computing, Edge security, Real time applications of edge computing.

UNIT - V
8 Hrs
IoT Architecture: Use Cases Roadmap for complete IoT solution, Open source IoT platforms, IoT solution to Health care, Automotive applications, Smart IoT architecture for Retail, Logistics and Farming, Intelligent IoT architecture for Home automation, Industry applications, Smart city and other applications to cater the societal requirements.

Course Outcomes:

After going through this course the student will be able to:

CO1	$:$Assimilate the technologies that enable IoT and interpret the different components in IoT architecture.	
CO2	$:$Envision the IoT communication architecture models and the protocol stack for the cost- effective design of IoT applications on different platforms.	
CO3	$:$	Analyze cloud platform services to perform IoT data analytics and make the system intelligent.
CO4	$:$	Perceive the data analytics tools and gain knowledge to devise an intelligent IoT system.

Reference Books

1. Internet of Things- A hands-on approach, Arshdeep Bahga, Vijay Madisetti, Universities Press, 2015.
2. Cloud Computing Security: Foundations and Challenges, John R. Vacca, CRC Press, 2016.
3. Internet of Things and Big Data Analytics towards Next-Generation Intelligence, Dey, Hassanien, Bhatt, Ashour and Satapathy, Springer, 2018.
4. Designing the Internet of Things, Adrian McEwen \& Hakim Cassimally, Wiley, 2013.

Scheme of Continuous Internal Evaluation (CIE): $\mathbf{2 0 + 4 0 + 4 0 = 1 0 0}$
QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted \& Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.
TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.
EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.
Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE \& SEE Theory courses

	nal Institutions * ge of Engineering Approved by AICTE New Dehi New Dehi		Go, change the world	
SEMESTER: I				
Course Code	22MVE1B5T	VLSI for Data Conversion Circuits	CIE Marks	100
Credits L-T-P	3-0-0		SEE Marks	100
Hours	42L	Elective B (Professional Elective)	SEE Durations	3 Hrs
Faculty Coordinator: Dr. Chinmaye R				
UNIT - I 9 Hrs				

Basic Sampling Circuits NMOS, PMOS and Transmission Gate switch, Distortion due to switch, Speed and Precision considerations, Charge injection, Clock feedthrough, Thermal noise in sample and holds, Charge injection cancellation - Dummy switch, complementary switches, differential circuits, Bottom plate sampling, Gate bootstrapped switch.

UNIT - II

9 Hrs
Building Blocks of Data Conversion Systems - Operational Amplifiers Two stage Opamp, design of buffer stage, Operational Transconductance Amplifier, compensating the Opamp for stability, characterizing the Opamp open loop gain, common mode range, common mode rejection ratio, power supply rejection ratio. CMOS Comparators: Regenerative latch, comparator metastability, Strong-ARM Latch Design

Switched Capacitor Amplifiers
Common mode feedback (CMFB) - resistive CM detector, CMFB compensation, singlestage differential opamp. Switched Capacitor (SC) circuits- Parasitic Insensitive Switched Capacitor amplifiers, Non idealities in SC Amplifiers - Finite gain, DC offset, Gain- Bandwidth Product. Fully differential SC circuits, DC negative feedback in SC circuits. Switched-capacitor CMFB: design, analysis.

UNIT - IV
Analog to Digital Converter- Static specifications: INL, DNL; Dynamic specifications: SNDR, DR, SFDR, linearity.Flash ADC, SAR ADC, Pipelined ADC, Sigma Delta ADC.

Digital to Analog Converter

Static performance of DAC - DAC transfer characteristics, Ideal DAC transfer curve, offset, gain error, monotonicity, DNL and INL. Nyquist DAC architectures - Binary-weighted DAC, Unitelement (or thermometer-coded) DAC, Segmented DAC, Resistor-string, current-steering, Current cell design in current steering DAC, charge-redistribution DACs, High speed DACs.

Course Outcomes:

After going through this course the student will be able to: CO1|: Analyse and Design Sample and Hold circuits
CO2: Analyse Switched Capacitor Amplifiers and its non idealities.
CO3 : Design various types of ADC/DAC for a given specification
CO4:: Evaluate the different performance parameters of ADC/ DAC

Reference Books

1. Behzad Razavi, "Principles of Data Conversion System Design" Wiley-IEEE Press, 1994
2. Fundamentals of Microelectronics, Behzad Razavi, 2nd Edition, 2013, Wiley, ISBN-10: 1118156323
3. Electronic Devices and Circuits, Jacob Millman, Christos C Halkias\&Satyabrata Jit, 2nd edition, 2008, Tata

McGraw Hill publication,. ISBN: 0070634556
4. David A.Johns, Ken Martin, "Analog Integrated Circuit Design" John Wiley \& Sons Inc. 1997

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = $\mathbf{1 0 0}$
QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted \& Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.
TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.
EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.
Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE \& SEE Theory courses						
RUBRIC for CIS			RUBRIC for SEF			
SLMo	Content	Marks	Q. Mo	Contents		Marlss
1	Quizzes - Q1 \& Q2	20	Each unit consists of TWO questions of $\mathbf{2 0}$ Marks each. Answer FIVE full questions selecting ONE from each unit (1 to 5).			
2	Tests - T1 \& T2	40				
3	Experiential Learning - EL1 \& EL2	40	182	Unit-1: Question 1 or 2		20
	Total Marks	100	$3 \& 4$	Unit-2: Question 3 or 4		20
			$5 \% 6$	Unit-3: Question 5 or 6		20
			788	Unit-4: Question 7 or 8		20
			9810	Unit-5: Question 9 or 10		20
					Total Marks	100

RV Educational Institutions ${ }^{\circ}$ Go, change the world
RV College of Engineering *

Scheme of Continuous Internal Evaluation (CIE): $\mathbf{2 0}+\mathbf{4 0}+\mathbf{4 0}=\mathbf{1 0 0}$

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted \& Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.
TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.
EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.
Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE \& SEE Theory courses

4. CMOS Analog Circuit Design, Phillip E. Allen and Douglas R. Holberg, 2ndEdition Oxford University Press, February 2002,ISBN:9780199765072

Scheme of Continuous Internal Evaluation (CIE): 10 + 30 + 30 + 30 = $\mathbf{1 0 0}$
QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted \& Each Quiz will be evaluated for 10 Marks. The average of two quizzes will be the Final Quiz marks.
TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 30 Marks.
EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (10), Video based seminar /presentation /demonstration (20) adding upto 30 marks.
Laboratory: Conduction of laboratory exercises, Lab report \& observation \& analysis (30 Marks), Lab Test (10 Marks) \& Innovative Experiment/Concept Design \& Implementation (10 Marks) adding up to 50 Marks. The final marks will be reduced to 30 Marks.
Scheme of Semester End Examination (SEE) for 100 marks: Each unit consists of TWO Questions of 16 Marks each. Answer FIVE full questions selecting one from each unit (from 1 to 5). Question No. 11 is compulsory (Laboratory component) for 20 Marks.

Rubric for CIE \& SEE for Integrated Theory courses with Laboratory

RUBRIC of CEE			RUBRIC of SEE			
SLMo	Content	Mariks	Q. ${ }^{\text {Mo }}$	Contents		Marks
1	Quizzes - Q1 \& Q2	10	Each unit consists of TWO questions of 16 Marks each. Answer FIVE full questions selecting ONE from each unit (1 to 5). Question No. 11 is compulsory (Laboratory component) for 20 Marks.			
2	Tests - T1 \& T2	30				
3	Experiential Learning - EL1 \& EL2	30	$1 \& 2$	Unit-1: Question 1 or 2		16
4	Laboratory	30	3\&4	Unit-2: Question 3 or 4		16
	Total Marks	100	$5 \% 6$	Unit-3: Question 5 or 6		16
NO SEE for Laboratory			788	Unit-4: Question 7 or 8		16
			$9 \% 10$	Unit-5: Question 9 or 10		16
			11	Laboratory Component (Compulsory)		20
					Total Marks	100

Introduction to SystemVerilog as a Verification Lamguage(HDVL): SystemVerilog standards, SystemVerilog key enhancements for hardware design. Advantages of System Verilog over Verilog, Data Types: Verilog data types, System Verilog data types, integer type and Non-integer type. Integer Type: 2 - State Data types, Bit, byte, shortint, int, longint; 4 - State data types, reg, logic, integer. Non-Integer Type: time, shortreal, real, realtime. Enumerated data types, User Defined data types, Struct data types, Interfaces, Packages, Type Conversion: Dynamic casting, Static Casting, Strings, Memories: Arrays, Dynamic Arrays, Multidimensional Arrays, Packed Arrays, Associative Arrays, Queues, Array Methods, Tasks and Functions: Verilog Tasks and Functions, Enhancements in S.V, Void Functions, Return Statement, Passing Arguments, Arguments Passing by Name, Default Arguments, Passing Arguments by Value, Passing Arguments by Reference.

UNIT - II

9 Hrs
Testbench building and Connecting to DUT: Verilog interface signals - Limitations of Verilog interface signals, SystemVerilog interfaces, SystemVerilog port connections, Interface instantiation 2.4. Interfaces Arguments, Interface Modports, Interface References, Tasks and functions in interface, Verilog Event Scheduler, SystemVerilog Event Scheduler, Clocking Block, Input and Output Skews, Typical Testbench Environment, Verification plan.

UNIT - III
8 Hrs
OOPs Concepts, Constrained Randomization\&Threads and Inter-process Communication:
OOP Concepts
Overview of Classes, Properties and Methods in the Classes, Instance/Object Creation, New Constructor, Null Object handles, Accessing Members, this Keyword, Creating an Object, Objects
Assignments, Copying an Object: Shallow Copy, Deep Copy.
Inheritance: Concept of Inheritance, Super Keyword, Static properties, Overriding Methods, Polymorphism \$cast, Virtual Classes, Parameterized Classes. Constrained Randomization
Random Variables - rand and randc, Randomize() Method - Pre/Post Randomize() methods, Constraints in the class, Rand_mode and constraint_mode, Constraint and Inheritance, Constraint Overriding, Set Membership, Distribution Constraints, Conditional Constraints - . implication (->),. if/else, Inline Constraints.
Threads and Inter-process Communication
Threads, Fork-Join/Join_any/Join_none, Communication -BuildingaTestbenchwithThreadsandIPC.
UNIT - IV
8 Hrs
Universal Verification Methodology and Formal Verification
Introduction to Open Verification Methodology and Universal Verification Methodology, Overview of OVM, UVM Base Classes and Simulation Phases in OVM and UVM macros. Environment structure of OVM and UVM, Connecting DUT and Testbench. Introduction to Formal verification andTypes of Formal techniques, Formal equivalence checking and Formal property checking, Class based Verification.

UNIT - V

8 Hrs
Functional Coverage andAssertion Based Verification: Functional Coverage
Coverage Definition, Code Coverage, Functional Coverage: Cover Group, Creating Cover Group Instances, Coverpoints, Bins - . implicit bins, . Explicit bins, Bin creation, Vector and Scalar bins, Cross products, Intersect, Select Expressions, Conditional Expression (iff), Illegal bins, Ignore bins, Coverage Analysis, Covergroup Built-in Methods-.Sample(), .get_coverage(),
.get_instance_coverage(), .set_instance_name(string), .start(), . stop() Assertion Based Verification Introduction, Types of Assertions - . Immediate, . Concurrent, Assertion Properties - . Writing Properties, Sequences - . Sequence Composition, . and, or, intersect, Advanced SVA Features - . Expect, Binding, Assertion Coverage

Course Outcomes:

After going through this course the student will be able to:

| CO 1 | $:$Demonstrate the use SystemVerilog data types for digital system design and functional
 verification. |
| ---: | :--- | :--- |
| CO 2 | $:$Demonstrate the skill on writing test-benches for design digital systems and connecting them
 with the design. |

MVE., M. Tech.

| CO | $:$Verify and Analyze the complete systems through robust verification method such as assertion
 based verification and class based verification. |
| ---: | :--- | :--- |
| CO 4 | $:$Design and verify the digital systems such as FIFOs, memories, ATM interfaces, etc. using the
 learnt methods and demonstrate the skills. |

Reference Books

1. C Spear, "SystemVerilog for Verification-A Guide to Learning the Testbench Language Features," Springer Science, IEEE press, ISBN-13: 978-0387-2703-64, 2006.
2. Stuart Sutherland, Simon Davidmann and Peter Flake, "SystemVerilog for Design - A Guide to Using SystemVerilog for Hardware Design and Modeling," 2E, Springer Science, ISBN-13: 978-0387-3339-91, 2006.
3. IEEE Computer Society, "IEEE Standard for SystemVerilog-Unified Hardware Design, Specification and Verification," IEEE Press, ISBN: 978-0-7381-6129-7, 2009
4. Doulos, "SystemVerilog golden reference guide-A concise guide to SystemVerilog IEEE Standard-1800-2009," Version 5.0, ISBN: 0-9547345-9-9, 2012.

Scheme of Continuous Internal Evaluation (CIE): $\mathbf{2 0 + 4 0 + 4 0 = 1 0 0}$

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted \& Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.
TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.
EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.
Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE \& SEE Theory courses

	nal Institutions ${ }^{\circ}$ ge of Engineering Approved by AICTE. New Dehi		Go, change the world	
SEMESTER: II				
Course Code	22MCS2C1T	Development of Modem SoCs for Wireless,	CIE Marks	100
Credits L-T-P	3-0-0	Wireline and IOT Applications	SEE Marks	100
Hours	42 L	Elective C (Professional Elective)	SEE Durations	3 Hrs
Faculty Coordinator: Dr. S Ravishankar				
UNIT - I ${ }^{\text {a Hrs }}$				

Algorithms forsingle carrier communications and Multicarrier Communication modems Algorithms for MIMO Applications, Single carrierChannel estimation for DSL, Wi-Fi and cellular standards

UNIT - II
9 Hrs
DSL standards for Transreceiver, Synchronization, Channel estimation, Mapping standards to Modem SoC hardware and firmware, DSL standards for Testing

UNIT - III
8 Hrs
802.11 standards for Transreceiver, Synchronization,Channel estimation, Mapping standards to Modem SoC hardware and firmware, 802.11 standards for Testing

UNIT - IV
8 Hrs
LTE standards for Transreceiver, Synchronization,Channel estimation, Protocol Stacks Mapping standards to Modem SoC hardware and firmware, LTE standards for Testing

UNIT - V
8 Hrs
Development Life Cycle for a Modem, Three case studies of SoCfor Modem Implementation. Scenarios for Mobility management in networks, Session initialization management and in-service monitoring in networks, IOT Applications

Course Outcomes:

After going through this course the student will be able to:

CO 1	$:$	Aquire the concepts of synchronization and channel estimation algorithms for DSL, WiFi and LTE.
CO 2	$:$Associate the standards sections to Training, Initialization and show time with in-service monitoring algorithms	
CO 3	$:$Analyse typical SoC platforms in terms of their hardware and software capabilities to implement algorithms with task scheduling.	
CO 4	$:$Develop runtime code to evaluate performance of a training, Initialization and showtime on the lypical SoCs.	

Reference Books

1. ITU-T TELECOMMUNICATION STANDARDIZATION SECTOR , "Asymmetric digital subscriber line transceivers 2 (ADSL2) G.992.3 , April 2009.
2. IEEE Standard for Information Technology Telecommunications and Information Exchange between Systems Local and Metropolitan Area Networks- Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Std 802.11 ${ }^{\text {TM }}$-2020
3. European Telecommunications Standards Institute (ETSI), " 5G; NR;Base Station (BS) radio transmission and reception (3GPP TS 38.104 version 16.4.0 Release 16)", July 2020
4. ADSL: Standards, Implementation, and Architecture, by Charles K. Summers CRC Press, CRC Press LLC, ISBN: 084939595x Pub Date: 06/21/99

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = $\mathbf{1 0 0}$

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted \& Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.
TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.
EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE \& SEE Theory courses						
RUBRIC for CIE			RUBRIC for SEE			
SLMo	Content	Marlss	Q. Mo	Contents		Marks
1	Quizzes - Q1 \& Q2	20	Each unit consists of TWO questions of 20 Marks each. Answer FIVE full questions selecting ONE from each unit (1 to 5).			
2	Tests - T1 \& T2	40				
3	Experiential Learning - EL1 \& EL2	40	1 \& 2	Unit-1: Question 1 or 2		20
	Total Marks	100	3 \& 4	Unit-2: Question 3 or 4		20
			$5 \% 6$	Unit-3: Question 5 or 6		20
			788	Unit-4: Question 7 or 8		20
			9810	Unit-5: Question 9 or 10		20
				Total Marks		100

	onal institutions ${ }^{\circ}$ ege of Engineering ${ }^{\text {a }}$ Approved by AICTE, ated New Dehi New Dehi		Go, change	he world
SEMESTER: II				
Course Code	: $22 \mathrm{MVE2C2T}$	VLSI Memory Chip Design	CIE Marks	100
Credits L-T-P	: 3-0-0		SEE Marks	100
Hours	: 42 L	Elective C (Professional Elective)	SEE Durations	3 Hrs
Faculty Coordinator: Dr.Shylashree N				
		UNIT - I		9 Hrs

An Introduction to Memory Chip Design:The Internal Organization of Memory Chips, Categories of Memory Chip,General Trends in DRAM Design and Technology,General Trends in SRAM Design and Technology. Non-Volatile Memory Design:Main Features of Non-Volatile Memories, Program, Erase, Distributions and Cycles, Read Mode Architecture, Write Mode Architecture, Erase Mode Architecture, Elements of Reliability, Influence of Temperature and Supply Voltage.

UNIT - II
9 Hrs
DRAM Circuits:Introduction, The catalog Specifications of the Standard DRAM, The Basic Configuration and Operation of the DRAM Chip, Fundamental Chip Technologies, The Multidivided Data Line and Word Line, Read and Relevant Circuits, Write and Relevant Circuits, Refresh-Relevant Circuits, Redundancy Techniques, On-Chip Testing Circuits.

UNIT - III

8 Hrs
Low-Power Memory Circuits:Introduction, Sources and Reduction of Power Dissipation in a RAM Subsystem, Sources of Power Dissipation in the RAM Chip, Low-Power DRAM Circuits, Low-Power SRAM Circuits. The Organization of the Memory Array:Introduction: EPROM Memories, Flash Memory Organization: The Sectors,An Array of Sectors, Other Types of Array.

UNIT - IV
8 Hrs
Program and Erase Algorithms:Memory Architecture from the Program-Erase Functionality Point of View, User Command to Program and Erase, Program Algorithm for Bi-Level Memories, Program Algorithm for Multilevel Memories, Erase Algorithm, Test Algorithms. Circuits Used in Program and Erase Operations:Introduction, Dual Voltage Devices, Charge Pumps, Different Types of Charge Pumps, High Voltage Limiter, Charge Pumps for Negative Voltages, Voltage Regulation Principles, Gate Voltage Regulation, Drain Voltage Regulation and Temperature Dependence.

UNIT - V

8 Hrs
Program and Erase Controller:FSM Controller, STD Cell Implementation of the FSM, PLA Implementation of the FSM, Microcontroller. Redundancy and Error Correction Codes:Redundancy, Redundancy \& Read Path, Yield, UPROM Cells, The First Read After Power On Reset, Error Correction Codes.

Course Outcomes:

After going through this course the student will be able to:
CO1 : \mid Aquire the knowledge about memory chip design and its technology
CO2 : Explore various design strategies to be followed for designing DRAM circuits
CO3 : D Design and optimize semiconductor memory cell for a given specification
CO4 : Design memory array of a given size and measure various performance metrics.

Reference Books

1. VLSI-Design of Non-Volatile Memories: G.Campardo, R.Micheloni and D.Novosel, 2007, Springer, ISBN-10:8181288076, ISBN-13 : 978-8181288073
2. VLSI Memory Chip Design, KiyooItoh, Soft cover reprint of hardcover 1st ed. 2001 edition, Springer, ISBN-10 : 3642087361, ISBN-13 : 978-3642087363
3. Embedded Memory Design for Multi-core and system on chip, Baker Mohammad,Softcover reprint of the original 1st ed. 2014 edition,Springer, ISBN-10 : 1493948016, ISBN-13 : 978-1493948017.
4. Cache and Memory Hierarchy Design: A Performance Directed Approach, StevenPrzyblylski, Morgan Kaufmann (30 June 1990), ISBN-10 : 1558601368, ISBN-13 : 978-1558601369.

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = $\mathbf{1 0 0}$
QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted \& Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.
TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.
EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.
Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE \& SEE Theory courses

	ege of Engineering Approved by AICTE. New Dehi		Go, change the world	
SEMESTER: II				
Course Code	: 22MVE2C3T	Robotics and Industrial Automation	CIE Marks	100
Credits L-T-P	: 3-0-0		SEE Marks	100
Hours	: 42 L	Elective C (Professional Elective)	SEE Durations	3 Hrs
Faculty Coordinator: Dr. Abhay Deshpande				
(UNIT - I				9 Hrs
Introduction: Automation and Robotics, Historical Development, Definitions, Basic Structureof Robots, Robot Anatomy, Complete Classification of Robots, Fundamentals about Robot Technology, Factors related to use Robot Performance, Basic Robot Configurations and their Relative Merits and Demerits, the Wrist \& Gripper Subassemblies. Kinematics of Robot Manipulator: Introduction, General Mathematical Preliminaries onVectors\& Matrices, Direct Kinematics problem, Geometry Based Direct kinematics problem, Co-ordinate and vector transformation using matrices, Rotation matrix, Inverse Transformations, Problems.				
UNIT - II				9 Hrs
Trajectory Planning: - Introduction, Trajectory Interpolators, Basic Structure of TrajectoryInterpolators, Cubic Joint Trajectories. General Design Consideration on Trajectories:- 4-3-4 \& 3-5-3 Trajectories. (SLE: Admissible Motion Trajectories) Dynamics of Robotic Manipulators: Introduction,. Preliminary Definitions, GeneralizedRobotic Coordinates, Jacobian for a Two link Manipulator, Euler Equations, TheLagrangian Equations of motion.				

UNIT - III

Robot Sensing \& Vision: Various Sensors and their Classification, Use of Sensors and SensorBased System in Robotics, Machine Vision System, Description, Sensing, Digitizing, Image Processing and Analysis and Application of Machine Vision System, Robotic Assembly Sensors and Intelligent Sensors. Industrial Applications: Objectives, Automation in Manufacturing, Robot Application inIndustry, Task Programming, Robot Intelligence and Task Planning, Modern Robots, Future Application and Challenges and Case Studies. (SLE: Goals of AI Research, AI Techniques)

UNIT - IV
8 Hrs
Modeling and control: Kinematic modeling of multi-link flexible robots, Dynamics and control of flexible link manipulators. Overview of PLC Hardware, numeric data handling, system addressing, and programming software. Robot Manipulator Control Using PLC with Position Based and Image Based Algorithm. Case Study.

UNIT - V

8 Hrs
Programmable Digital Signal Processor Introduction, Evaluation and important features of programmable VLSI-DSP processor, application of VLSI-DSP processor in the field of Wireless Communication, Multimedia Signal Processing etc.

Course Outcomes:

After going through this course the student will be able to:
CO1 \mid : Analyze the process Modeling hierarchies, theoretical and empirical models.
CO2 : Apply different Feedback \& feed forward control techniques for theoretical and empirical models.
CO3 : Comprehend the Decoupling controller, Instrumentation for process monitoring and preparation of P\&I diagrams
CO4 : Develop Statistical process control, supervisory control, direct digital control, distributed control, PC based automation.

Reference Books

1. Fu, Lee and Gonzalez , "Robotics, control vision and intelligence". McGraw Hill International, 2007,2nd edition, ISBN: 978-0071004213.
2. John J. Craig, "Introduction to Robotics"- Addison Wesley Publishing, 2010, 3rd edition, ISBN: 978-0201543612
3. Ghosal A, "Fundamental concepts and Analysis", Oxford University Press2008, 2nd edition, ISBN: 978-0195673913
4. Sebastian Thrun, "Probabilistic Robotics", The MIT Press, 2005, 2nd edition, ISBN:978-0262201629

Scheme of Continuous Internal Evaluation (CIE): $\mathbf{2 0 + 4 0 + 4 0 = 1 0 0}$
QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted \& Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.
TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.
EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.
Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE \& SEE Theory courses

SEMESTER: II				
Course Code	22MVE2C4T	Automotive Electronics	CIE Marks	100
Credits L-T-P	3-0-0		SEE Marks	100
Hours	42 L	Elective C (Professional Elective)	SEE Durations	3 Hrs
Faculty Coordinator: Dr. Usha Rani K R				
UNIT - I ${ }^{\text {a Hrs }}$				

Fundamentals of Automotive: Evolution and Use of Electronics in Automotive, Automotive Systems, The Engine, Engine Control, Internal Combustion Engines, Spark Ignition Engines and Alternative Engines. Ignition System, Ignition Timing, Drivetrain, Suspensions, Brakes and Steering Systems. Basics of electronic engine control: Motivation for Electronic Engine Control, Concept of an Electronic Engine control system, Definition of General terms, Definition of Engine performance terms, Engine mapping, Effect of Air/Fuel ratio, spark timing and EGR on performance, Control Strategy, Electronic Fuel control system, Analysis of intake manifold pressure, Electronic Ignition.

UNIT - II

Automotive Sensors and Actuators: Automotive Control System Applications of Sensors and Actuators, Sensors: Air Flow Sensor, Engine Crankshaft Angular Position Sensor, Throttle Angle Sensor, Temperature Sensor, Sensors for Feedback Control, Sensors for Driver Assistance System: Radar, Lidar, Video Technology. Actuators: Solenoids, Piezo Electric Force Generators, Fluid mechanical Actuators, Electric Motors and Switches.

UNIT - III

8 Hrs
Digital Engine Control Systems: Digital Engine control features, Control modes for fuel Control (Seven Modes), EGR Control, Electronic Ignition Control - Closed Loop Ignition timing, Spark Advance Correction Scheme, Integrated Engine Control System. Vehicle Motion Control: Typical Cruise Control System, Digital Cruise Control System, Digital Speed Sensor, Throttle Actuator, Digital Cruise Control configuration, Cruise Control Electronics (Digital only), Antilock Brake System (ABS), Electronic Suspension System, Electronic Steering Control.

UNIT - IV

8 Hrs
Automotive Communication Systems: Automotive networking: Bus systems, Technical principles, network topology. Buses in motor vehicles: CAN, Flex Ray, LIN, Ethernet, IP, PSI5, MOST, D2B and DSI. Automotive Embedded Software Development Fundamentals of Software and software development lifecycles. Overview of AUTOSAR methodology and principles of AUTOSAR Architecture. Introduction Internet of Vehicles, V2V.

UNIT - V	8 Hrs

Diagnostics and Safety in Automotive: Timing Light, Engine Analyzer, Electronic Control System Diagnostics: Onboard diagnostics, Off-board diagnostics, Expert Systems, Occupant Protection Systems - Accelerometer based Air Bag systems, Case study on ON-BOARD, OFF-BOARD diagnostics. Battery- types and maintenance, Alternators in vehicles, Starting motor systems, Electrical circuits and wiring in vehicles, vehicle network and communication buses - Digital engine control systems, Introduction to automotive controllers, On-Board Diagnostics (OBD). Introduction to electric vehicles. Experiential Learning Topics: Advances in Automotive Electronic Systems: Alternative Fuel Engines, Electric and Hybrid vehicles, Fuel cell powered cars, Collision Avoidance Radar warning Systems, Navigation: Navigation Sensors, Radio Navigation, dead reckoning navigation, Video based driver assistance systems, Night vision Systems.

Course Outcomes:

After going through this course the student will be able to:

| CO1 | $:$Acquire the knowledge of automotive domain fundamentals, need of Electronics and
 communication interfaces in Automotive systems. |
| ---: | :--- | :--- |
| CO2 | $:$Apply various types of sensors, actuators and Motion Control techniques in Automotive
 systems |
| CO3 | $:$Analyze digital engine control systems and Embedded Software's and ECU's used in
 automotive systems. |
| CO4 | $:$ Evaluate the concepts of Diagnostics, safety and advances in Automotive electronic Systems. |

Reference Books

1. Bosch,"Automotive Electrics and Automotive Electronics. System and components ,Networking and Hybrid drive", Fifth edition, Springer view 2014
2. Understanding Automotive Electronics, Williams. B. Ribbens, 6th Edition, 2003, Elsevier science, Newness publication, ISBN-9780080481494.
3. NajamuzZaman, " Automotive Electronics Design Fundamental" first edition, Springer 2015.
4. Hillier's, "Fundamentals of Motor Vehicle Technology on Chassis and Body Electronics", Fifth Edition, Nelson Thrones, 2007

Scheme of Continuous Internal Evaluation (CIE): 20 + $\mathbf{4 0} \boldsymbol{+ 4 0 = 1 0 0}$

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted \& Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.
TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.
EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.
Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE \& SEE Theory courses						
RUBRIC for CIE			RUBRIC for SEE			
Slivo	Content	Mariks	Q. Mo	Contents		Marliss
1	Quizzes - Q1 \& Q2	20	Each unit consists of TWO questions of $\mathbf{2 0}$ Marks each. Answer FIVE full questions selecting ONE from each unit (1 to 5).			
2	Tests - T1 \& T2	40				
3	Experiential Learning - EL1 \& EL2	40	182	Unit-1: Question 1 or 2		20
	Total Marks	100	$3 \% 4$	Unit-2: Question 3 or 4		20
			$5 \% 6$	Unit-3: Question 5 or 6		20
			7 \& 8	Unit-4: Question 7 or 8		20
			9810	Unit-5: Question 9 or 10		20
					Total Marks	100

	onal Institutions ${ }^{\circ}$ ge of Engineering Approved by AICTE New Dehi		Go, change the zorld	
SEMESTER: II				
Course Code	22MVE2C5T	High Performance Computing	CIE Marks	100
Credits L-T-P	3-0-0		SEE Marks	100
Hours	42 L		SEE Durations	3 Hrs
Faculty Coordinator: Praveen S				
UNIT - I $\quad 9 \mathrm{Hrs}$				

Multiprocessors and Thread level parallelism: Introduction, Symmetric shared memory architectures; Performance of symmetric shared-memory multiprocessors, Distributed shared memory and directory-based coherence, Basics of synchronization, Models of memory consistency.
UNIT - II

Data-Level Parallelism in Vector, SIMD, and GPU Architectures: Introduction, Vector Architecture, SIMD Instruction Set Extensions for Multimedia, Graphics Processing Units, Detecting and Enhancing Loop-Level Parallelism, Mobile versus Server GPUs and Tesla versus Core i7.

UNIT - III	8 Hrs

Introduction to Parallel Programming:
Motivation, Scope of Parallel Computing, Principles of Parallel Algorithm design: Preliminaries, Decomposition Techniques, Characteristics of Tasks and Interactions, Mapping Techniques for Load Balancing, Methods for containing Interaction Overheads, Parallel Algorithms Models.

UNIT - IV
8 Hrs
Programming Using the Message Passing Paradigm: Principles of Message Passing Programming, Building Blocks, MPI, Topologies and Embedding, Overlapping Communication with computation, Collective Communication and computation operations, Groups and Communicators.

UNIT - V

8 Hrs
GPU Programming using OpenACC: Serial to parallel programming using OpenACC: A Simple Data-Parallel Loop, Task-Parallel Example, Amdahl's Law and Scaling, Parallel Execution and Race Conditions, Lock-Free Programming, Controlling Parallel Resources. Pipelining data transfers with OpenACC: Introduction to Pipelining, Mandelbrot Generator, Pipelining Across Multiple Devices.

Course Outcomes:

After going through this course the student will be able to:
CO1 $1: \mid$ Apply the fundamental concepts for high performance computing.
CO2 $:$: Analyze the performance of parallel programming.

| CO3 | $:$Evaluate the different decomposition mapping techniques required for achieving high
 performance for suitable applications. |
| :--- | :--- | :--- |
| CO4 $:$ | Formulate communication model to attain successful transfer in parallel computing. |

Reference Books

1. Ananth Grama, Anshul Gupta, George Karypis, Vipin Kumar, Introduction to Parallel Computing, 2nd Edition, 2013, Pearson Education, ISBN 13: 9788131708071.
2. Shane Cook, CUDA Programming: A Developers Guide to Parallel Computing with GPUs, 1st Edition, 2013, Morgan Kaufmann, ISBN:9780124159334.
3. Rob Farber, Parallel Programming with Open ACC, 1st Edition, 2016, Morgan Kaufmann (MK) Publication, ISBN :9780124103979.
4. Thomas Sterling, Maciej Brodowicz, Matthew, High Performance Computing: Modern Systems and Practices, 2017, ist edition, Elsevier, ISBN-13. 978-0124201583

Scheme of Continuous Internal Evaluation (CIE): $\mathbf{2 0 + 4 0 + 4 0 = 1 0 0}$
QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted \& Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.
TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.
EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.
Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE \& SEE Theory courses						
RUBRIC for CIE			RUBRIC for SESE			
SLMo	Content	Marks	Q. Mo	Contents		Marics
1	Quizzes - Q1 \& Q2	20	Each unit consists of TWO questions of $\mathbf{2 0}$ Marks each. Answer FIVE full questions selecting ONE from each unit (1 to 5).			
2	Tests - T1 \& T2	40				
3	Experiential Learning - EL1 \& EL2	40	182	Unit-1: Question 1 or 2		20
	Total Marks	100	$3 \% 4$	Unit-2: Question 3 or 4		20
			$5 \% 6$	Unit-3: Question 5 or 6		20
			788	Unit-4: Question 7 or 8		20
			9\%10	Unit-5: Question 9 or 10		20
					Total Marks	100

		nal Institutions ${ }^{\circ}$ ge of Engineering		Go, change		world
SEMESTER: II						
Course Code	:	22BT2D01T	BIOINSPIRED ENGINEERING	CIE Marks		100
Credits L-T-P	:	3-0-0		SEE Marks		100
Hours	:	42L	Elective D (Global Elective)	SEE Durations		3 Hr
Faculty Coordinator: Dr Nagashree Rao and Dr Ashwani Sharma $^{\text {a }}$						
UNIT - I				8 Hrs		

Introduction to Bio-inspired Engineering: Macromolecules, Stem cells; types and applications. Synthetic Biology; Bottom-up' and 'top-down' engineering approaches. Synthetic/ artificial life. Biological Clock, Genetic Algorithms.

UNIT - II
9 Hrs
Principles of bioinspired materials: Biological and synthetic materials, Self-assembly, hierarchy and evolution. Biopolymers, Bio-steel, Bio-composites, multi-functional biological materials. Thermal Properties. Antireflection and photo-thermal biomaterials, Microfluidics in biology, Invasive and non-invasive thermal detection inspired by skin

UNIT - III	9 Hrs

Lessons from Nature:Bioinspired Materials and mechanism: Firefly-Bioluminescence, Cockleburs -Velcro, Lotus leaf -Self-cleaning materials, Gecko - Gecko tape, Whale fins - Turbine blades, Box Fish / Bone - Bionic car, Shark skin - Friction reducing swim suits, Kingfisher beak - Bullet train, Coral - Calera cement, Forest floor / Ecosystem functioning - Flooring tiles, Morpho butterfly- Structural color, Namib beetle- Water collecting, Termite mound passive cooling, Birds/Insectsflights/ aerodynamics, Mosquito inspired micro needle.

UNIT - IV
8 Hrs
Biomedical Inspiration-Concept and applications: Organ system- Circulatory- artificial blood, artificial heart, pacemaker. Respiratory- artificial lungs. Excretory- Artificial kidney and skin. Artificial Support and replacement of human organs: artificial liver and pancreas. Total joint replacements- artificial limbs. Visual prosthesis -artificial eye/ bionic eye.

UNIT - V
8 Hrs
Biomimetics: Inventions in nature for Human Innovation: Photosynthesis and Photovoltaic cells, Bionic/Artificial leaf. Bio-ink and 3D-Bioprinting. Cellular automata. Biosensors: Artificial tongue and nose. Biomimetic echolation. Insect foot adaptations for adhesion. Thermal insulation and storage materials. Bees and Honeycomb Structure. Artificial Intelligence, Neural Networking and bio-robotics.

Course Outcomes:

After going through this course the student will be able to:
CO1 $: \mid$ Elucidate the concepts and phenomenon of natural processes
CO2 : Apply the basic principles for design and development of bioinspired structures
CO3 : Analyse and append the concept of bio-mimetics for diverse applications
CO4 : Designing technical solutions by utilization of bio-inspiration modules.

Reference Books:

1. D. Floreano and C. Mattiussi, Bio-Inspired Artificial Intelligence: Theories, Methods and Technologies, 1st edition, MIT Press, 2008, ISBN: 9780262062718
2. Guang Yang, Lin Xiao, and Lallepak Lamboni. Bioinspired Materials Science and Engineering. 1st edition, John Wiley, 2018, ISBN: 978-1-119-3903362
3. M.A. Meyers and P.Y. Chen. Biological Materials, Bioinspired Materials, and Biomaterials, 1st edition, Cambridge University Press, 2014, ISBN 978-1-107-01045.
4. Tao Deng. Bioinspired Engineering of Thermal Materials, 1st edtion, Wiley-VCH Press, 2018. ISBN: 978-3-527-33834-4.

Scheme of Continuous Internal Evaluation (CIE): $20+40+40=100$

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted \& Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.
TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 marks. Final test marks will be reduced to 40 Marks.
EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.
Scheme of Semester End Examination (SEE) for $\mathbf{1 0 0}$ marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE \& SEE Theory courses

RUBRIC for CIE			RUBRIC for SESE			
SLMo	Content	Mariks	Q. Mo	Contents		Marks
1	Quizzes - Q1 \& Q2	20	Each unit consists of TWO questions of $\mathbf{2 0}$ Marks each. Answer FIVE full questions selecting ONE from each unit (1 to 5).			
2	Tests - T1 \& T2	40				
3	Experiential Learning - EL1 \& EL2	40	182	Unit-1: Question 1 or 2		20
	Total Marks	100	384	Unit-2: Question 3 or 4		20
			586	Unit-3: Question 5 or 6		20
			7 \& 8	Unit-4: Question 7 or 8		20
			$9 \% 10$	Unit-5: Question 9 or 10		20
					Total Marks	100

	ional Institutions ${ }^{\circ}$ ege of Engineering Approved by AICTE New Deh		Go, change the world		
SEMESTER: II					
Course Code	22BT2D02T	HEALTH INFORMATICS	CIE Marks	100	
Credits L-T-P	3-0-0		SEE Marks	100	
Hours	42L	Elective D (Global Elective)	SEE Durations	3 Hrs	
Faculty Coordinator: ${ }^{\text {Dr A H Manjunatha Reddy }}$					
UNIT - I $\mathbf{8}^{8} \mathrm{Hrs}$					
Introduction, Healthcare data, information and knowledge: Data types, data conversion, clinical data warehouse, data analytics, challenges, role of informatics in analytics, future trends					
UNIT - II				8 Hrs	
Electronic health records: Introduction, scope for the e health records, challenges, examples, logical steps to selecting and implementing EHR					
UNIT - III				8 Hrs	
Data standards and medical coding: Introduction, medical content standards, termonology standards, transport standards, medical coding and reimbursement, future trends,					
UNIT - IV				9 Hrs	
Healthcare Enterprise: Overview of Health Informatics: Introduction, Key players in HI, organizations involved, barriers, programs, organizations and career, HI Resoruces					
UNIT - V				9 Hrs	
Health Information privacy and security: Introduction, basic security principles, authentication and identity management, data security in the cloud and client/server management					
Course Outcomes: After going through this course the student will be able to:					
CO1	Understand the basic principles of Health informatics				
CO2	Data capture to data transformation and to analysis				
CO3	Creation of E health records, identify the challenges				
CO4: Improvise the significant factors as per the spatio-temporal requirements					
Reference Books:					
1. Robert E. Hoyt Ann K. Yoshihashi, Health Informatics, Practical guide for Healthcare and Information Technology Professionals, 6th edition, Informatics Education, 2014, ISBN: 978-0-9887529-2-4					
2. Kathryn J. Hannah Marion J. Ball, Health Informatics, Springer Series edition, Springer, 2005, ISBN: 1-85233-826-1					
3. William R Hersh, Health Informatics, a Practical guide, 8th edition. 2022, ISBN 978-1-387-85475-2					
4. Pentti Nieminen. Medical informatics and data analysis 1st edition, MDPI AG, 2021, ISBN-13: 978-3036500980					
Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = $\mathbf{1 0 0}$ QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted \& Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks. TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 marks. Final test marks will be reduced to 40 Marks. EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.					
Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.					

Rubric for CIE \& SEE Theory courses

RUBRIC for CIE			RUBRIC for SESE			
SLMo	Content	Mariks	Q. Mo	Contents		Marks
1	Quizzes - Q1 \& Q2	20	Each unit consists of TWO questions of $\mathbf{2 0}$ Marks each. Answer FIVE full questions selecting ONE from each unit (1 to 5).			
2	Tests - T1 \& T2	40				
3	Experiential Learning - EL1 \& EL2	40	182	Unit-1: Question 1 or 2		20
	Total Marks	100	384	Unit-2: Question 3 or 4		20
			586	Unit-3: Question 5 or 6		20
			7 \& 8	Unit-4: Question 7 or 8		20
			$9 \% 10$	Unit-5: Question 9 or 10		20
					Total Marks	100

Rubric for CIE \& SEE Theory courses

RUBRIC for CIE			RUBRIC for SESE			
SLMo	Content	Mariks	Q. Mo	Contents		Marks
1	Quizzes - Q1 \& Q2	20	Each unit consists of TWO questions of $\mathbf{2 0}$ Marks each. Answer FIVE full questions selecting ONE from each unit (1 to 5).			
2	Tests - T1 \& T2	40				
3	Experiential Learning - EL1 \& EL2	40	182	Unit-1: Question 1 or 2		20
	Total Marks	100	384	Unit-2: Question 3 or 4		20
			586	Unit-3: Question 5 or 6		20
			7 \& 8	Unit-4: Question 7 or 8		20
			$9 \% 10$	Unit-5: Question 9 or 10		20
					Total Marks	100

			Go, change the world	
SEMESTER: II				
Course Code	22CV2D04T	INDUSTRIAL AND OCCUPATIONAL HEALTH AND SAFETY	CIE Marks	100
Credits L-T-P	3-0-0		SEE Marks	100
Hours	42L	Elective D (Global Elective)	SEE Durations	3 Hrs
Faculty Coordinator: ${ }^{\text {Dr.V.AnanthaRam }}$				
UNIT - I 0 O8Hrs				
Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and fire fighting, equipment and methods.				
UNIT - II ${ }^{\text {a }}$				
Occupational health and safety: Introduction, Health, Occupational health: definition, Interaction between work and health, Health hazards, workplace, economy and sustainable development, Work as a factor in health promotion. Health protection and promotion Activities in the workplace: National governments, Management, Workers, Workers' representatives and unions, Communities, Occupational health professionals. Potential health hazards: Air contaminants, Chemical hazards, Biological hazards, Physical hazards, Ergonomic hazards, Psychosocial factors, Evaluation of health hazards: Exposure measurement techniques, Interpretation of findings recommended exposure limits. Controlling hazards: Engineering controls, Work practice controls, Administrative controls. Occupational diseases: Definition, Characteristics of occupational diseases, Prevention of occupational diseases.				

UNIT - III

09Hrs
Hazardous Materials characteristics and effects on health: Introduction, Chemical Agents, Organic Liquids, Gases, Metals and Metallic Compounds, Particulates and Fibers, Alkalies and Oxidizers, General Manufacturing Materials, Chemical Substitutes, Allergens, Carcinogens, Mutagens, Reproductive Hazards, Sensitizers and Teratogens, Recommended Chemical Exposure Limits. Physical Agents, Noise and Vibration, Temperature and Pressure, Carcinogenicity, Mutagenicity and Teratogenicity. Ergonomic Stresses: Stress-Related Health Incidents, Eyestrain, Repetitive Motion, Lower Back Pain, Video Display Terminals.

UNIT - IV

08 Hrs
Wear and Corrosion and their prevention: Wear- types, causes, effects, wear reduction methods, lubricants-types and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.

UNIT - V
08 Hrs
Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, over hauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets, Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance.

Course Outcomes:

After going through this course the student will be able to:

CO1 $:$: Explain the Industrial and Occupational health and safety and its importance.
$\mathrm{CO} 2:$ Demonstrate the exposure of different materials, occupational environment to which the employee can expose in the industries.
CO3 : Characterize the different type materials, with respect to safety and health hazards of it.
CO4 : Analyze the different processes with regards to safety and health and the maintenance required in the industries to avoid accidents.

Reference Books:

1.Maintenance Engineering Handbook, Higgins \& Morrow, SBN 10: 0070432015 / ISBN 13: 9780070432017, Published by McGraw-Hill Education. Da Information Services.
2. H. P. Garg, Maintenance Engineering Principles, Practices \& Management, 2009,S. Chand and Company, New Delhi, ISBN:9788121926447
3.Fundamental Principles of Occupational Health and Safety, Benjamin O. ALLI, Second edition,2008 International Labour Office - Geneva: ILO, ISBN 978-92-2-120454-1
4.Foundation Engineering Handbook, 2008, Winterkorn, Hans, Chapman \& Hall London. ISBN:8788111925428.

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = $\mathbf{1 0 0}$

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted \& Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.
TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 marks. Final test marks will be reduced to 40 Marks.
EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem.
Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.
Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE \& SEE Theory courses

Reference Books:

1. Pradip Kumar Sarkar and Amit Kumar Jain, "Intelligent Transport Systems", PHI Learning Private Limited, Delhi,2018, ISBN-9789387472068
2. Choudury M A and Sadek A, "Fundamentals of Intelligent Transportation Systems Planning" Artech House publishers (31 March 2003); ISBN-10: 1580531601
3. Bob Williams, "Intelligent transportation systems standards", Artech House, London, 2008. ISBN-13: 978-1-59693-291-3
4. Asier Perallos, Unai Hernandez-Jayo, Enrique Onieva, Ignacio Julio García Zuazola "Intelligent Transport Systems:

Technologies and Applications" Wiley Publishing ©2015, ISBN:1118894782 9781118894781
Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = $\mathbf{1 0 0}$
QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted \& Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.
TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 marks. Final test marks will be reduced to 40 Marks.
EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.
Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE \& SEE Theory courses

RUBRIC for CIE			RUBRIC for SESE			
SLMo	Content	Mariks	Q. Mo	Contents		Marks
1	Quizzes - Q1 \& Q2	20	Each unit consists of TWO questions of $\mathbf{2 0}$ Marks each. Answer FIVE full questions selecting ONE from each unit (1 to 5).			
2	Tests - T1 \& T2	40				
3	Experiential Learning - EL1 \& EL2	40	182	Unit-1: Question 1 or 2		20
	Total Marks	100	384	Unit-2: Question 3 or 4		20
			586	Unit-3: Question 5 or 6		20
			7 \& 8	Unit-4: Question 7 or 8		20
			$9 \% 10$	Unit-5: Question 9 or 10		20
					Total Marks	100

			Go, change the world		
SEMESTER: II					
Course Code	22EC2D06T	ELECTRONIC SYSTEM DESIGN	CIE Marks	100	
Credits L-T-P	3-0-0		SEE Marks	100	
Hours	42L	Elective D (Global Elective)	SEE Durations	3 Hrs	
Faculty Coordinator: Prof. Ravishankar Holla					
UNIT - I ${ }^{\text {a }}$					
Design Process \& its Fundamentals: Life Cycle of Electronic Products, Design and Development Process, Guidance for Product Planning, Design and Development, Technical Drawings, Circuit Diagrams, Computer-Aided Design (CAD)					
UNIT - II				9 Hrs	
System Architecture and Protection Requirements: Introduction - Terminology, Functions and Structures, Systems Design Architecture, Electronic System Levels, System Protection Experiential Learning: (4 quizzes on the below mentioned topics other than CIE) Reliability Analysis: Introduction, Calculation Principles, Exponential Distribution, Failure of Electronic, Components, Failure of Electronic Systems, Reliability Analysis of Electronic Systems, Recommendations for Improving Reliability of Electronic Systems					
UNIT - III				8 Hrs	
Thermal Management and Cooling: Introduction - Terminology, Temperatures and Power Dissipation, Calculation Principles, Heat Transfer, Methods to Increase Heat Transfer, Application Examples in Electronic Systems, Recommendations for Thermal Management of Electronic Systems, Cooling systems, liquid, air and non cooling systems.					
UNIT - IV				8 Hrs	
Electromagnetic Compatibility (EMC): Introduction, Coupling Between System Components, Grounding Electronic Systems, Shielding from Fields, Electrostatic Discharge (ESD), Recommendations for EMC-compliant Systems Design					
UNIT - V				8 Hrs	
Recycling Requirements and Design for Environmental Compliance: Introduction - Motivation and the Circular Economy, Manufacture, Use, and Disposal of Electronic Systems in the Circular Economy, Product Recycling in the Disposal Process, Material Recycling in the Disposal Process, Design and Development for Disassembly, Material Suitability in Design and Development, Recommendations for Environmentally Compliant Systems					
Course Outcomes: After going through this course the student will be able to:					
CO1	Realize the fundamentals of Design, Architecture, thermal management, EMC and Recycling requirements of Electronic System Design				
CO 2	Analyze the various application wise design requirements in Electronic systems along with the related concepts of implementations, standards and Compliances.				
Reference Books:					
1. Fundamentals of Electronic Systems Design, Jens Lienig, Hans Brümmer 2017, Springer International Publishing, ISBN 978-3-319-55839-4, DOI:10.1007/978-3-319-55840-0					
2. "Embedded System Design", Marwedel, Peter, Springer Nature, 10.1007/978-3-030-60910-8					
3. "Electromagnetic Compatibility Engineering", Henry W. Ott, WILEY Publication, ISBN: 978-0-470-18930-6					
4. "Handbook of Electronic Systems Design" by Charles A. Harper, McGraw-Hill Inc.,US , 0070266832, 978-0070266834					
Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = $\mathbf{1 0 0}$ QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted \& Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks. TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 marks. Final test marks will be reduced to 40 Marks. EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.					
Scheme of Semester End Examination (SEE) for $\mathbf{1 0 0}$ marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.					

Rubric for CIE \& SEE Theory courses

RUBRIC for CIE			RUBRIC for SESE			
SLMo	Content	Mariks	Q. Mo	Contents		Marks
1	Quizzes - Q1 \& Q2	20	Each unit consists of TWO questions of $\mathbf{2 0}$ Marks each. Answer FIVE full questions selecting ONE from each unit (1 to 5).			
2	Tests - T1 \& T2	40				
3	Experiential Learning - EL1 \& EL2	40	182	Unit-1: Question 1 or 2		20
	Total Marks	100	384	Unit-2: Question 3 or 4		20
			586	Unit-3: Question 5 or 6		20
			7 \& 8	Unit-4: Question 7 or 8		20
			$9 \% 10$	Unit-5: Question 9 or 10		20
					Total Marks	100

RUBRIC for CIE			RUBRIC for SERE			
SLHo	Content	Marks	Q. Mo	Contents		Marks
1	Quizzes - Q1 \& Q2	20	Each unit consists of TWO questions of 20 Marks each. Answer FIVE full questions selecting ONE from each unit (1 to 5).			
2	Tests - T1 \& T2	40				
3	Experiential Learning - EL1 \& EL2	40	$1 \% 2$	Unit-1: Question 1 or 2		20
	Total Marks	100	$3 \% 4$	Unit-2: Question 3 or 4		20
			$5 \% 6$	Unit-3: Question 5 or 6		20
			788	Unit-4: Question 7 or 8		20
			$9 \% 10$	Unit-5: Question 9 or 10		20
			Total Marks			100

			Go, change the world	
SEMESTER: II				
Course Code	22ET2D08T	TRACKING AND NAVIGATION SYSTEMS	CIE Marks	100
Credits L-T-P	3-0-0		SEE Marks	100
Hours	42L	Elective D (Global Elective)	SEE Durations	3 Hrs
Faculty Coordinator: \quad Prof. Shambulinga .M, Dr. B. Roja Reddy				
UNIT - I ${ }^{\text {a Hr }}$				
An Introduction to Radar: Basic Radar, The simple form of the Radar Equation, Radar Block Diagram, Radar Frequencies, Application of radar, Types of Radars. Detection of signals in Noise, Receiver Noise and the Signal-to Noise Ratio, Probability of Detection and False alarm, Introduction to Doppler, MTI, UWB Radars				
UNIT - II $\mathbf{l l}^{8} \mathbf{~ H r s}$				
Terrestrial Network based positioning and navigation: General Issues of wireless positions location, Fundamentals, positioning in cellular networks, positioning in WLANs, Positioning in Wireless sensor networks.				
UNIT - III $\mathbf{8 l \| l}^{8} \mathbf{H r s}$				
Satellite-based navigation systems: Global Navigation satellite systems (GNSS), GNSS receivers.				
LiDAR: Introduction to LiDAR, context and conceptual discussion of LiDAR, Types of LiDARS, LiDARS Detection modes, Flash LiDAR versus Scanning LiDAR, Monostatic versus Bistatic LiDAR, Major Devices in a LiDAR, LiDAR remote sensing, Basic components and physical principles of LiDAR, LiDAR accuracy and data formats.				
		UNIT - V		8 Hrs
SONAR: Underwater acoustics, applications, comparison with radar, submarine detection and warfare, overcoming the effects of the ocean, sonar and information processing.Transmission of the acoustic signal: Introduction, detection contrast and detection index, transmission equation, equation of passive and active sonar.				
Course Outcomes: After going through this course the student will be able to:				
CO1	Understand the concepts of Radar, LiDAR, Sonar, terrestrial and satellite based navigation system			
CO2	Apply the concepts of radars, LiDAR, Sonar, cellular networks, WLAN, sensor networks and satellites in determining the user position and navigation.			
CO3	Analyze the different parameters of satellite and terrestrial networks for navigation systems.			
CO4	Evaluate the Radar, LiDAR, Sonar systems and satellite and terrestrial network based navigation andtracking systems			
Reference Books:				
1. M. L Skolnik,Introduction to RADAR Systems,3rd edition, 2017,TATA Mcgraw-Hill, ISBN: 978-0070445338				
2. Mark A Richards, James A Scheer, William A Holam, Principles of Modern Radar Basic Principles, 2010, 1st edition,SciTech Publishing Inc, ISBN:978-1891121524 .				
3. Davide dardari, Emanuela Falletti, Marco Luise, Satellite and Terrestrial Radio Positioning techniques- A signal processing perspective, 1st Edition, 2012, Elsevier Academic Press, ISBN: 978-0-12-382084-6.				
4. Paul McManamon,LiDAR Technologies and Systems, SPIE press, 2019.				
5. Pinliang Dong and Qi Chen,LiDAR Remote Sensing and Applications, CRC Press, 2018, ISBN: 978-1-4822-4301-7				
6. Jean-Paul Marage, Yvon Mori, Sonar and Underwater Acoustics, Wiley, 2013, ISBN: 9781118600658				
Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = $\mathbf{1 0 0}$ QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted \& Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks. TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 marks. Final test marks will be reduced to 40 Marks. EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.				
Scheme of Semester End Examination (SEE) for $\mathbf{1 0 0}$ marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.				

Rubric for CIE \& SEE Theory courses

RUBRIC for CIE			RUBRIC for SESE			
SLMo	Content	Mariks	Q. Mo	Contents		Marks
1	Quizzes - Q1 \& Q2	20	Each unit consists of TWO questions of $\mathbf{2 0}$ Marks each. Answer FIVE full questions selecting ONE from each unit (1 to 5).			
2	Tests - T1 \& T2	40				
3	Experiential Learning - EL1 \& EL2	40	182	Unit-1: Question 1 or 2		20
	Total Marks	100	384	Unit-2: Question 3 or 4		20
			586	Unit-3: Question 5 or 6		20
			7 \& 8	Unit-4: Question 7 or 8		20
			$9 \% 10$	Unit-5: Question 9 or 10		20
					Total Marks	100

			, change	roorld
SEMESTER: II				
Course Code	22IM2D09T	PROJECT MANAGEMENT	CIE Marks	100
Credits L-T-P	3-0-0		SEE Marks	100
Hours	42L	Elective D (Global Elective)	SEE Durations	3 Hrs
Faculty Coordinator: Dr. Vikram N Bahadurdesai $^{\text {a }}$				
Introduction: Project Planning, NT - I				8 Hrs
Introduction: Project Planning, Need of Project Planning, Project Life Cycle, Roles, Responsibility and Team Work, Project Planning Process, Work Breakdown Structure (WBS), Introduction to Agile Methodology.				
UNIT - II				8 Hrs
Capital Budgeting: Capital Investments: Importance and Difficulties, phases of capital budgeting, levels of decision making, facets of project analysis, feasibility study - a schematic diagram, objectives of capital budgeting				
UNIT - III				9 Hrs
Project Costing: Cost of Project, Means of Finance, Cost of Production, Working Capital Requirement and its Financing,Profitability Projections, Projected Cash Flow Statement, Projected Balance Sheet, Multi-year Projections, FinancialModeling, Social Cost Benefit Analysis				
UNIT - IV				$\begin{aligned} & \hline \mathbf{8} \mathbf{~ H r s} \\ & \hline \text { and } \\ & \text { gement } \end{aligned}$
Tools \& Techniques of Project Management: Bar (GANTT) chart, bar chart for combined activities, logic diagrams and networks, Project evaluation and review Techniques (PERT) Critical Path Method (CPM), Computerized project management				
UNIT - V				9 Hrs portance es, ols
Project Management and Certification: An introduction to SEI, CMMI and project management institute USA - importance of the same for the industry and practitioners. PMBOK 6 - Introduction to Agile Methodology, hemes / Epics / Stories, Implementing Agile. Domain Specific Case Studies on Project Management: Case studies covering project planning, scheduling, use of tools \& techniques, performance measurement.				
Course Outcomes: After going through this course the student will be able to:				
CO1	Explain project planning activities that accurately forecast project costs, timelines, and quality.			
CO2	Evaluate the budget and cost analysis of project feasibility.			
CO3	Analyze the concepts, tools and techniques for managing projects.			
CO4	Illustrate project management practices to meet the needs of Domain specific stakeholders from multiple sectors of the economy (i.e. consulting, government, arts, media, and charity organizations).			
Reference Books:				
1. Prasanna Chandra, Project Planning Analysis Selection Financing Implementation \& Review, Tata McGraw Hill Publication, 8th Edition, 2010, ISBN 0-07-007793-2.				
2. Project Management Institute, A Guide to the Project Management Body of Knowledge (PMBOK Guide), 5th Edition, 2013, ISBN: 978-1-935589-67-9				
3. Harold Kerzner, Project Management A System approach to Planning Scheduling \& Controlling, John Wiley \& Sons Inc., 11th Edition, 2013, ISBN 978-1-118-02227-6.				
4. Rory Burke, Project Management - Planning and Controlling Techniques, John Wiley \& Sons, 4th Edition, 2004, ISBN: 9812-53-121-1				
Scheme of Continuous Internal Evaluation (CIE): $20+40+40=100$ QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted \& Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks. TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 marks. Final test marks will be reduced to 40 Marks. EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.				
Scheme of Semester End Examination (SEE) for $\mathbf{1 0 0}$ marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.				

Rubric for CIE \& SEE Theory courses

RUBRIC for CIE			RUBRIC for SESE			
SLMo	Content	Mariks	Q. Mo	Contents		Marks
1	Quizzes - Q1 \& Q2	20	Each unit consists of TWO questions of $\mathbf{2 0}$ Marks each. Answer FIVE full questions selecting ONE from each unit (1 to 5).			
2	Tests - T1 \& T2	40				
3	Experiential Learning - EL1 \& EL2	40	182	Unit-1: Question 1 or 2		20
	Total Marks	100	384	Unit-2: Question 3 or 4		20
			586	Unit-3: Question 5 or 6		20
			7 \& 8	Unit-4: Question 7 or 8		20
			$9 \% 10$	Unit-5: Question 9 or 10		20
					Total Marks	100

Univers			Go, change the world		
SEMESTER: II					
Course Code	22IS2D10T	DATABASE AND INFORMATION SYSTEM	CIE Marks	100	
Credits L-T-P	3-0-0		SEE Marks	100	
Hours	42L	Elective D (Global Elective)	SEE Durations	3 Hrs	
Faculty Coordinator: Prof.Smitha G R					
UNIT - I					
Advanced Database Models, Systems, and Applications : Enhanced Data Models: Introduction to Active, Temporal, Spatial, Multimedia, and Deductive Databases . Distributed Database Concepts : Distributed Database Concepts, Data Fragmentation, Replication, and Allocation Techniques for Distributed Database Design, Overview of Concurrency Control and Recovery in Distributed Databases					
UNIT - II $\mathbf{8 l}^{8} \mathbf{H r s}$					
Introduction to Information Retrieval and Web Search : Information Retrieval (IR) Concepts Retrieval Models, Types of Queries in IR Systems, Text Preprocessing , Inverted Indexing, Evaluation Measures of Search Relevance ,Web Search and Analysis, Trends in Information Retrieval .					
UNIT - III $\mathbf{8}^{\text {Hrs }}$					
Information Systems, Organizations and Strategy: Organizations and information systems, How information systems impact organization and business firms, Using information systems to gain competitive advantage, management issues, Ethical and Social issues in Information Systems: Understanding ethical and Social issues related to Information Systems, Ethics in an information society, The moral dimensions of information society. A Case study on business planning.					
UNIT - IV ${ }^{\text {a Hrs }}$					
Achieving Operational Excellence and Customer Intimacy: Enterprise systems, Supply chain management(SCM) systems, Customer relationship management(CRM) systems, Enterprise application. E-commerce: Digital Markets Digital Goods: E-commerce and the internet, E-commerce-business and technology, The mobile digital platform and mobile E-commerce, Building and E-commerce web site. A Case study on ERP.					
UNIT - V					
Managing Knowledge: The knowledge management landscape, Enterprise-wide knowledge management system, Knowledge work systems, Intelligent techniques. Enhancing Decision Making: Decision making and information systems, Business intelligence in the enterprise. Business intelligence constituencies. Building Information Systems: Systems as planned organizational change, Overview of systems development.					
Course Outcomes: After going through this course the student will be able to:					
CO1	Understand the different models for Infromation Retrieval.				
CO2	Appricieate the technology of Information Retrieval and Web Search				
CO3	To understand the basic principles and working of information technology.				
CO4 : Describe the role of information technology and information systems in business. Reference					
1. Kenneth C. Laudon and Jane P. Laudon: Management Information System, Managing the Digital Firm, Pearson Education, 14th Global edition, 2016, ISBN:9781292094007.					
2. Fundamentals of Database Systems, Ramez Elmasri, Shamkant B. Navathe, 7th Edition, 2016, Published by Pearson, Copyright © , ISBN-10: 0133970779					
3. James A. O’ Brien, George M. Marakas: Management Information Systems, Global McGraw Hill, 10th Edition, 2011, ISBN: 978-0072823110.					
4. Database Management Systems, Raghu Ramakrishnan and Johannes Gehrke, 3rd Edition, 2003, McGraw-Hill, ISBN: 9780071231510					
Scheme of Continuous Internal Evaluation (CIE): $\mathbf{2 0 + 4 0 + 4 0 = 1 0 0}$ QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted \& Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks. TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 marks. Final test marks will be reduced to 40 Marks. EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.					
Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.					

Rubric for CIE \&\% SEE Theory courses

	RV Educat RV Coll Autonomous Insitution Af to Visvesvara Technological Universily, Be		stitutions ${ }^{\circ}$ Engineering * Approved by AICTE New Dehi				Go, change the world		
	RUBRIC for CIS				RUBRIC for SEE				
	SLMo	Con	tent	Mariks	Q. Mo	Contents		Marks	
	1	Quizzes - Q1 \& Q2		20	Each unit consists of TWO questions of 20 Marks each. Answer FIVE full questions selecting ONE from each unit (1 to 5).				
	2	Tests - T1 \& T2		40					
	3	Experiential Learning - EL1 \& EL2		40	182	Unit-1: Question 1 or 2		20	
			Total Marks	100	384	Unit-2: Question 3 or 4		20	
					586	Unit-3: Question 5 or 6		20	
					788	Unit-4: Question 7 or 8		20	
					9810	Unit-5: Question 9 or 10		20	
						Total Marks		100	

			Go, change the world	
SEMESTER: II				
Course Code	22IS2D11T	MANAGEMENT INFORMATION SYSTEMS	CIE Marks	100
Credits L-T-P	3-0-0		SEE Marks	100
Hours	42L	Elective D (Global Elective)	SEE Durations	3 Hrs
Faculty Coordinator: ${ }^{\text {Prof. Vanishree K }}$				
UNIT - I 88 Hrs				
Overview: Introduction: Professional Software Development, Software Engineering Ethics, Case studies. Software Processes: Models, Process activities, Coping with Change, Process improvement. The Rational Unified Process. Computer Aided Software Engineering. Agile Software Development: Introduction to agile methods, Agile development techniques, Agile project management and scaling agile methods. Information Systems in Global Business Today: The role of information systems in business today, Perspectives on information systems, Contemporary approaches to information systems				

UNIT - II
9 Hrs
Requirements Engineering and System Modeling:
Software Requirements: Functional and Non-functional requirements. Requirements Elicitation, Specification, Validation and Change. System Modeling: Context models, Interaction models, Structural models, Behavioural models, Model driven architecture. Information Systems, Organizations and Strategy: Organizations and information systems, How information systems impact organization and business firms, Using information systems to gain competitive advantage, management issues

UNIT - III	9 Hrs

Development and Testing:
Design and implementation: Object oriented design using UML, Design patterns, Implementation issues, Open-source development. Software Testing: Development testing, Test-driven development, Release testing, User testing. Securing Information Systems: System vulnerability and abuse, Business value of security and control, Establishing framework for security and control, Technology and tools for protecting information resources. A case study on cybercrime.

UNIT - IV	$\mathbf{8}$ Hrs

Advanced Software Engineering:
Dependable systems: Dependability properties, Sociotechnical systems, dependable processes, formal methods and dependability, A15 Availability and reliability, reliability requirements, Reliability measurements E-commerce: Digital Markets Digital Goods: E-commerce and the internet, E-commerce-business and technology, A Case study on ERP.

UNIT - V

Software Management:
Project Management: Risk Management, Managing People, Teamwork, Project Planning: Software Pricing, Plan driven development, Project Scheduling, Agile planning, Estimation Techniques, COCOMO cost modeling. Building Information Systems: Systems as planned organizational change, Overview of systems development.

Course Outcomes:

After going through this course the student will be able to:

CO1	Understand and apply the fundamental concepts of software engineering for information systems.	
CO2	$:$	Develop the knowledge about software engineering for management of information systems.
CO3	$:$ Interpret and recommend the use information technology to solve business problems.	
CO4	:	Apply a framework and process for aligning organization's IT objectives with business strategy.

Reference Books:

1. Kenneth C. Laudon and Jane P. Laudon: Management Information System, Managing the Digital Firm, Pearson Education, 14th Global edition, 2016, ISBN:9781292094007.
2. Ian Sommerville,- Software Engineering, 9th Edition, Pearson Education, 2013, ISBN: 9788131762165
3. W.S. Jawadekar: Management Information Systems, Tata McGraw Hill, 2006, ISBN: 9780070616349.
4. James A. O' Brien, George M. Marakas: Management Information Systems, Global McGraw Hill, 10th Edition, 2011, ISBN: 978-0072823110

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = 100

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted \& Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.
TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 marks. Final test marks will be reduced to 40 Marks.
EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.
Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE \& SEE Theory courses

	RV Educat RV Coll Autonomous Insitution Af to Visvesvara Technological Universily, Be		stitutions ${ }^{\circ}$ Engineering * Approved by AICTE New Dehi				Go, change the world		
	RUBRIC for CIS				RUBRIC for SEE				
	SLMo	Con	tent	Mariks	Q. Mo	Contents		Marks	
	1	Quizzes - Q1 \& Q2		20	Each unit consists of TWO questions of 20 Marks each. Answer FIVE full questions selecting ONE from each unit (1 to 5).				
	2	Tests - T1 \& T2		40					
	3	Experiential Learning - EL1 \& EL2		40	182	Unit-1: Question 1 or 2		20	
			Total Marks	100	384	Unit-2: Question 3 or 4		20	
					586	Unit-3: Question 5 or 6		20	
					788	Unit-4: Question 7 or 8		20	
					9810	Unit-5: Question 9 or 10		20	
						Total Marks		100	

Unin			Go, change the world	
SEMESTER: II				
Course Code	22MAT2D12T	STATISTICAL AND OPTIMIZATION METHODS	CIE Marks	100
Credits L-T-P	3-0-0		SEE Marks	100
Hours	42L	Elective D (Global Electiv	SEE Durations	3 Hrs
Faculty Coordinator: Dr. PRAKASH R $^{\text {a }}$				
UNIT - I				9 Hrs
Random Vectors: Probability models of N random variables, Vector notation, Marginal probability functions, Independence of random variables and random vectors, Functions of random vectors, Expected value vector and Correlation matrix, Gaussian random vectors, Expected values of sums, Probability density function of the sum of two random variables, Moment Generating Functions (MGF), MGF of the sum of independent random variables, Characteristic function and Probability generating function.				
UNIT - II				8 Hrs
Estimation: Point estimation, Estimator and estimate, Criteria for good estimates - unbiasedness, consistency, efficiency and sufficiency, Variance of a point estimator, Methods of point estimation - Method of moments and Method of maximum likelihood, Bayesian estimation of parameters.				
UNIT - III				9 Hrs
Inferential Statistics: Principles of Statistical Inference, Formulation of the problems with examples. Test of hypothesis Null and alternative hypothesis, Procedure for statistical testing, Type I and Type II errors: level of significance, Rejection regions and power, Standard Normal null distribution (Z-test), Z-tests for means and proportions, Duality: two-sided tests and two-sided confidence intervals, P-value, Inference about variances, Special tests of significance for large and small samples (F, Chi - square, Z, t - test).				
UNIT - IV				8 Hrs
Fuzzy Optimization: Basic concepts of fuzzy sets - Operations on fuzzy sets, Fuzzy relation equations, Fuzzy logic control, Fuzzification, Defuzzificatiuon, Knowledge base, Decision making logic, Membership functions, Rule base. Artificial Neural Networks: Introduction - Neuron model, Multilayer perceptions - Back propagation algorithm and its variants, Loss functions in artificial neural networks, Stochastic gradient descent method.				
UNIT - V				8 Hrs
Machine Learning Algorithms: Data mining, Hierarchy Clustering, k-Means Clustering, Distance Metric, Data mining for Big data, Characteristics of Big data, Statistical nature of Big data, Support Vector Machines, Statistical Learning Theory, Linear Support Vector Machine, Kernel functions and Nonlinear Support Vector Machines.				
Course Outcomes: After going through this course the student will be able to:				
CO1	Illustrate the fundamental concepts of statistics, random variables, estimation, inferential statistics, fuzzy optimization and machine learning algorithms.			
CO 2	Derive the solution by applying the acquired knowledge of random variables, estimation, inferential statistics, fuzzy optimization and machine learning algorithms to the problems of engineering applications.			
CO3	Evaluate the solution of the problems using appropriate statistical and probability techniques to the real world problems arising in many practical situations.			
CO4	Compile the overall knowledge of statistics, probability distributions and estimation, tests of hypothesis and optimization gained to engage in life - long learning.			
Reference Books:				
1. Roy D. Yates, David J. Goodman, "Probability and Stochastic Processes", 3rd Edition, An Indian Adaptation, Wiley, 2021, ISBN: 9789354243455.				
2. Douglas C. Montgomery and George C. Runger, "Applied Statistics and Probability for Engineers", 7th Edition, John Wiley \& Sons, 2019, ISBN: 9781119570615.				
3. Trevor Hastie Robert Tibshirani Jerome Friedman, "The Elements of Statistical Learning - Data Mining, Inference, and Prediction", 2nd Edition, Springer, 2009 (Reprint 2017), ISBN-10: 0387848576, ISBN-13: 9780387848570.				
4. Michael Baron, "Probability and Statistics for Computer Scientists", 2nd Edition, CRC Press, 2014, ISBN- 13: 978-1-4822-1410-9.				
5. Shai Shalev-Shwartz and Shai Ben-David "Understanding Machine Learning: From Theory to Algorithms", 1st Edition, Cambridge University Press, 2014, ISBN: 978-1-107-05713-5.				

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = $\mathbf{1 0 0}$

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted \& Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.
TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 marks. Final test marks will be reduced to 40 Marks.
EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem.
Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.
Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE \& SEE Theory courses

RUBRIC for CIE			RUBRIC for SEE			
SLMo	Content	Marks	Q. Mo Contents			Marks
1	Quizzes - Q1 \& Q2	20	Each unit consists of TWO questions of $\mathbf{2 0}$ Marks each. Answer FIVE full questions selecting ONE from each unit (1 to 5).			
2	Tests - T1 \& T2	40				
3	Experiential Learning - EL1 \& EL2	40	182	Unit-1: Question 1 or 2		20
	Total Marks	100	$3 \% 4$	Unit-2: Question 3 or 4		20
			$5 \% 6$	Unit-3: Question 5 or 6		20
			788	Unit-4: Question 7 or 8		20
			$9 \% 10$	Unit-5: Question 9 or 10		20
					Total Marks	100

			Go, change the world	
SEMESTER: II				
Course Code	22ME2D13T	INDUSTRY 4.0	CIE Marks	100
Credits L-T-P	3-0-0		SEE Marks	100
Hours	42L	Elective D (Global Elective)	SEE Durations	3 Hrs
Faculty Coordinator: Dr. Gopalakrishna H D				
UNIT - I				8 Hrs
Fundamentals of Industry 4.0 Introduction, Industry 4.0, RAMI 4.0 (Reference Architecture Model Industry 4.0), Servitization, Product Service-System (PSS) Industry 4.0 across the Sectors Introduction, Transportation 4.0: Multimodal Transportation Systems, Rail 4.0, Digital Transformation of Railways, Logistics 4.0 (Implications), Fundamentals of Industry 4.0, Introduction, Industry 4.0, RAMI 4.0 (Reference Architecture Model Industry 4.0), Servitization, Product Service-System (PSS) Industry 4.0 across the Sectors Introduction, Transportation 4.0: Multimodal Transportation Systems, Rail 4.0, Digital Transformation of Railways, Logistics 4.0 (Implications)				
UNIT - II				8 Hrs
The Concept of the IIoT: Modern Communication Protocols, Wireless Communication Technologies, Proximity Network Communication Protocols, TCP/IP, API: A Technical Perspective, Middleware Architecture.				
UNIT - III				8 Hrs
Data Analytics in Manufacturing: Introduction, Power Consumption in manufacturing, Anomaly Detection in Air Conditioning, Smart Remote Machinery Maintenance Systems with Komatsu, Quality Prediction in Steel Manufacturing. Internet of Things and New Value Proposition, Introduction, Internet of Things Examples, IoTs Value Creation Barriers: Standards, Security and Privacy Concerns. Advances in Robotics in the Era of Industry 4.0, Introduction, Recent Technological Components of Robots, Advanced Sensor Technologies, Artificial Intelligence, Internet of Robotic Things, Cloud Robotics.				

UNIT - IV

Additive Manufacturing Technologies and Applications: Introduction, Additive Manufacturing (AM) Technologies, Stereo lithography, 3DP, Fused Deposition Modeling, Selective Laser Sintering, Laminated Object Manufacturing, Laser Engineered Net Shaping, Advantages of Additive Manufacturing, Disadvantages of Additive Manufacturing.
Advances in Virtual Factory Research and Applications, The State of Art, The Virtual Factory Software , Limitations of the Commercial Software.
UNIT - V $\quad 9$ Hrs

Augmented Reality: Definitions and application of AR, VR, MR, Limitations of AR, VR, Hardware devices and Software systems, Technical issues and challenges in AR, Industrial applications, IoT and the Need for Data Rationalization Internet of Things (IoT), Internet of Things Vision, Internet of Things (IoT) Frameworks, Architecture of Internet of Things (IoT), Visualizing the Internet of Things (IoT), Essential Technologies of the Internet of Things (IoT), Key Technologies Involved in Internet of Things, Enablers of IoT, Collaborative Operations, Training.
Smart Factories: Introduction, Smart factories in action, Importance, Real world smart factories, The way forward. A Roadmap: Digital Transformation, Transforming Operational Processes, Business Models, Increase Operational Efficiency, Develop New Business Models.

Course Outcomes:

After going through this course the student will be able to:

CO1	$:$Understand the opportunities, challenges brought about by Industry 4.0 for benefits of organizations and individuals	
CO2	$:$	Analyze the effectiveness of Smart Factories, Smart cities, Smart products and Smart services
CO3	$:$	Apply the Industrial 4.0 concepts in a manufacturing plant to improve productivity and profits
CO4	$:$	Evaluate the effectiveness of Cloud Computing in a networked economy

Reference Books:

1. Alasdair Gilchrist, Industry 4.0 The Industrial Internet Of Things, Apress Publisher, ISBN-13 (pbk): 978-1-4842-2046-7
2. Alp Ustundag, Emre Cevikcan, Industry 4.0: Managing The Digital Transformation, Springer, 2018 ISBN

978-3-319-57869-9.
3.Ovidiu Vermesan and Peer Friess, Designing the industry - Internet of things connecting the physical, digital and virtual worlds, Rivers Publishers, 2016 ISBN 978-87-93379-81-7
4.Christoph Jan Bartodziej, The concept Industry 4.0- An Empirical Analysis of Technologies and Applications in Production Logistics, Springer Gabler, 2017 ISBN 978-3-6581-6502-4.

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = $\mathbf{1 0 0}$

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted \& Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.
TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 marks. Final test marks will be reduced to 40 Marks.
EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem.
Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.
Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE \& SEE Theory courses

8 Hrs

1. Design a standard cell layout of Inverter andAND gate using 45nm CMOS technology.
2. Design a standard cell layout of AOI/OAI using 45nm CMOS technology
3. Design a current mirror circuit and perform post layout simulation using 45 nm CMOS technology.
4. Design a single stage differential amplifier and perform post layout simulation using 45 nm CMOS technology.
5. Design a band gap reference circuit and perform post layout simulation using 45 nm CMOS technology.
6. Designs a five stage single ended VCO and perform post layout simulation using 45nm CMOS technology.
7. Design a 6T Bit cell circuit and perform post layout simulation using 45 nm CMOS technology.
8. Design a two stage op-amp and perform post layout simulation using 45 nm CMOS technology.

Course Outcomes:

After going through this course the student will be able to:

CO1	$:$	Apply the knowledge in layout design concepts such as antenna effect, latch-up, Electro-Migration, IR drop and self heat.
CO 2	$:$Analyze the challenges in deep sub micron process using well proximity effect, LOD and Shallow trench isolation.	
CO 3	$:$	Verify chip layout design using all physical verification concepts and tools.
CO 4	$:$	Design optimized analog circuit layouts of VCO, Memory, BGR and current mirror.

Scheme of Continuous Internal Evaluation (CIE- Laboratory) : Only LAB Course $30+10+10=50$. The Laboratory session is held every week as per the timetable and the performance of the student is evaluated in every session. The average of marks over number of experiments conducted over the weeks is considered for 30 Marks i.e (Lab Report, Observation \& Analysis). The students are encouraged to implement additional innovative experiments in the lab (10 marks). At the end of the semester a test is conducted for 10 Marks (Lab Test). This adds to 50 Marks.
Scheme of Semester End Examination (SEE- Laboratory) : Only LAB Course $40+10=50$. Students will be evaluated for Write-up, Experimental Setup, Experiment Conduction with Results, Analysis \& Discussions for 40 Marks and Viva will be conducted for 10 Marks adding to 50 Marks.

Only LAB Courses with 50 Marks

RUBRIC FOR CIE			RUBRIC FOR SEE	
S1.No	Content	Marks	Content	Marks
1	Write Up, Setup, Conduction Results, Analysis \& Discussions	30	1. Write Up, Setup, Conduction	40
2	Innovative Experiment/Concept Design \& Implementation	10	2. Results, Analysis \& Discussions	40
3	Laboratory Internal	10	Viva Voce	10
	Total Marks	50	Total Marks	50

SEMESTER: II				
Course Code	22HSS25T	PROFESSIONAL SKILL DEVELOPMENT- I	CIE Marks	50
Credits L-T-P	2-0-0		SEE Marks	50
Hours	28L	Common Course to all M.Tech Programs	SEE Durations	2 Hrs
Faculty Coordinator: ${ }^{\text {Dr }}$ (C.Bindu Ashwini				
UNIT - I				4 Hrs
Communication Skills: Basics of Communication, Personal Skills \& Presentation Skills Introduction, Application, Simulation, Attitudinal Development, Self Confidence, SWOC analysis. Resume Writing: Understanding the basic essentials for a resume, Resume writing tips Guidelines for better presentation of facts. Theory and Applications.				

UNIT - II
8 Hrs
Quantitative Aptitude and Data Analysis: Number Systems, Math Vocabulary, fraction decimals, digit places etc. Simple equations - Linear equations, Elimination Method, Substitution method, Inequalities. Reasoning - a. Verbal - Blood Relation, Sense of Direction, Arithmetic \& Alphabet. b. Non- Verbal reasoning - Visual Sequence, Visual analogy and classification. Analytical Reasoning Single \& Multiple comparisons, Linear Sequencing.
Logical Aptitude, - Syllogism, Venn-diagram method, Three statement syllogism, Deductive and inductive reasoning. Introduction to puzzle and games organizing information, parts of an argument, common flaws, arguments and assumptions.
Verbal Analogies/Aptitude - introduction to different question types - analogies, Grammar review, sentence completions, sentence corrections, antonyms/synonyms, vocabulary building etc. Reading Comprehension, Problem Solving,

UNIT - III

6 Hrs
Interview Skills: Questions asked \& how to handle them, Body language in interview, and Etiquette - Conversational and Professional, Dress code in interview, Professional attire and Grooming, Behavioral and technical interviews, Mock interviews - Mock interviews with different Panels. Practice on Stress Interviews, Technical Interviews, and General HR interviews

UNIT - IV

5 Hrs
Interpersonal and Managerial Skills: Optimal co-existence, cultural sensitivity, gender sensitivity; capability and maturity model, decision making ability and analysis for brain storming; Group discussion(Assertiveness) and presentation skills;

UNIT - V
5 Hrs
Motivation: Self-motivation, group motivation, Behavioral Management, Inspirational and motivational speech with conclusion. (Examples to be cited). Leadership Skills: Ethics and Integrity, Goal Setting, leadership ability.

Course Outcomes:

After going through this course the student will be able to:

| CO1 | Develop professional skill to suit the industry requirement. |
| ---: | :--- | :--- |
| CO2 | $:$ Analyze problems using quantitative and reasoning skills |
| CO3 | $:$ Develop leadership and inter personal working skills. |
| CO4 | Demonstrate verbal communication skills with appropriate body language. |

Reference Books:

1. The 7 Habits of Highly Effective People, Stephen R Covey Free Press, 2004 Edition, ISBN: 0743272455
2. How to win friends and influence people, Dale Carnegie General Press, 1st Edition, 2016, ISBN: 9789380914787
3. Crucial Conversation: Tools for Talking When Stakes are High, Kerry Patterson, Joseph Grenny, Ron Mcmillan 2012 Edition, McGraw-Hill Publication ISBN: 9780071772204
4. Ethnus, Aptimithra: Best Aptitude Book,2014 Edition, Tata McGraw Hill ISBN: 9781259058738

Phase *	Activity
I	Test 1 is conducted after the completion of 9 hours of training programme (3 Classes). Question paper will have two parts. Part A will be Quiz for 10 Marks and Part B for 50 Marks Descriptive answers.
II	Test 2 is conducted after the completion of 18 hours of training programme (6 Classes). Question paper will have two parts. Part A will be Quiz for 10 Marks and Part B for 50 Marks Descriptive answers. Total test marks will be reduced to 30 Marks and Total Quiz marks will be 20 Marks. Final CIE would be 50 Marks

CIE marks 20 Quiz + 30 Test = 50 Marks

Semester End Examination: SEE is conducted for 50 Marks for a duration of 2 hours.

	ege of Engineerin		Go, change the world	
SEMESTER: III				
Course Code	: 22 MVE31T	Algorithms for VLSI Design Automation	CIE Marks	100
Credits L-T-P	: 3-1-0		SEE Marks	100
Hours	: $42 \mathrm{~L}+28 \mathrm{~T}$	Professional Core - 5	SEE Durations	3 Hrs
Faculty Coordinator: ${ }^{\text {Dr. }}$ Shilpa D.R				
UNIT - I				9 Hrs

Architectural level design \&Scheduling Algorithms:Introduction to architectural level design, A model for scheduling problems, Scheduling without and with resource constraints, Scheduling algorithms for extended sequencing models, Scheduling pipelined circuits, Resource sharing and binding.

UNIT - II

9 Hrs
Data Structure and Basic Algorithms: Basic Terminology, Graph Search Algorithms, Computational Geometry Algorithms, Basic Data structures. Partitioning: Problem Formulation, Classification of Partitioning Algorithms, Group migration Algorithms, Simulated Annealing and evolution algorithm, other partitioning algorithms

Floor Planning and Pin Assignment: Problem formulation, classification, Constraint based, Integer programming based, rectangular Dualization, simulated evolution floor planning algorithms. Placement: Problem formulation, Classification, Simulation based, Partitioning based Placement Algorithms

UNIT - IV 8 Hrs

Global Routing: Problem formulation, Classification, Maze routing Algorithms, Line Probe Algorithms, shortest path-based Algorithms, Steiner tree-based Algorithms Detailed Routing: Problem formulation, Classification single Layer routing, General river routing, Single row routing

UNIT - V

8 Hrs
Channel, Clock and Power Routing: Two-layer channel routing Algorithms, Design considerations for the clocking system, delay calculation for clock trees, Problem formulation, Clock routing Algorithms, H-tree based Algorithms, MMM Algorithms, Geometric matching based Algorithms, Introduction to compaction, shadow propagation algorithm.

Course Outcomes:

After going through this course the student will be able to:
CO1 \mid : Analyze each stage of VLSI design flow to develop a CAD tool for physical design.
CO2 : Apply design knowledge to develop algorithms for VLSI design automation.
CO3 : Evaluate the algorithms for optimizing VLSI design with respect to speed, power and area.
CO4 : Create an optimized VLSI IC design technique using various algorithms.

Reference Books

1. Synthesis and Optimization of Digital Circuit, 1994, Giovanni De Micheli, McGraw- Hill, ISBN: 100070163332
2. Algorithms for VLSI Physical Design Automation, N.A. Sherwani, 2002, Kluwar Academic Publishers, ISBN: 0-7923-8393-1
3. An Introduction to VLSI Physical Design, M Sarraf Zadeh, C K Wong, 1996, McGraw Hill, ISBN:0070571945
4. Algorithms for VLSI Design Automation, S.H. Gerez, 1998, John Wiley \& Sons, ISBN: 978-0-471-98489-4

Scheme of Continuous Internal Evaluation (CIE): $\mathbf{2 0 + 4 0 + 4 0 = 1 0 0}$

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted \& Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.
TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.
EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.
Scheme of Semester End Examination (SEE) for $\mathbf{1 0 0}$ marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE \& SEE Theory courses

| RUBRIC for CIE | | RUBRIC for SEEF | | | |
| :---: | :--- | :---: | :---: | :--- | :---: | :---: |
| SLMo | Content | Marks | Q. Mo | Contents | Marlks |
| 1 | Quizzes - Q1 \& Q2 | 20 | Each unit consists of TWO questions of 20 Marks each. Answer FIVE | | |
| full questions selecting ONE from each unit (1 to 5). | | | | | |

	ege of Engineering ${ }^{\text {* }}$		Go, change	he world
SEMESTER: III				
Course Code	: 22MVE3E1T	VLSI Testing	CIE Marks	100
Credits L-T-P	: 3-1-0		SEE Marks	100
Hours	: $42 \mathrm{~L}+28 \mathrm{~T}$	Elective E (Professional Elective)	SEE Durations	3 Hrs
Faculty Coordinator: Prof. Sujatha Hiremath				
		UNIT - I		9 Hrs

Introduction to Testing: Role of testing VLSI circuits, VLSI trends affecting testing, Importance of testing, Testing Philosophy, yield and Reject ratio. Fault Modeling- Functional Testing, Structural Testing, Types of Fault Models, Stuck-at Faults, Bridging Faults, cross point faults, Fault Equivalence, Fault Dominance and checkpoint theorem.

UNIT - II
9 Hrs
Combinational Circuit Test Generation: A Basic ATPG Algorithm, Boolean Difference, Path Sensitization Methods, Roth's D- Algorithm, PODEM. Sequential ATPG: Time Frame Expansin. Testability Measure Controllability, Observability, and SCOAP measures for combinational and sequential circuits, Probability-based Testability Analysis.

UNIT - III

8 Hrs
Fault Simulation- Fault Simulation algorithm- Serial, Parallel, Deductive and Concurrent Fault Simulation, Comparison of fault simulation. Design for Testability- Ad-hoc, Structured DFT- Scan method, Scan Design Rules, Overheads of Scan Design, partial scan methods, multiple chain scan methods.

$$
\begin{array}{|l|l|}
\hline \text { UNIT - IV } & 8 \text { Hrs }
\end{array}
$$

Built in self-test: BIST Design rules, Test pattern generation for BIST, Output response analysis, BIST Architectures: Without scan chains, with scan chains and using Register reconfiguration. Boundary Scan Standard - TAP Controller, Test Instructions, IEEE 1149.1 standard

UNIT - V
8 Hrs
Memory Testing \& BIST: Introduction, RAM functional fault models \& Test Algorithms, March Test. Memory BIST. Fault Diagnosis Logical Level Diagnosis, Diagnosis by UUT reduction, Fault Diagnosis for Combinational Circuits

Course Outcomes

After going through this course the student will be able to:
CO1 $:$: Apply the knowledge of testing, fault modeling \& fault coverage.
$\mathrm{CO} 2:$ Analysis of various fault simulation methods, different testability analysis and self testing Digital circuits.
CO3 : Develop an algorithm for fault detection and analysis of scan design and its limitations.
CO4 : Design of different ATPG, and knowledge about different methods of BIST and Memory BIST associated with testing.

Reference Books

1. M. L. Bushnell and V. D. Agrawal, Essentials of Electronic Testing for Digital, Memoryand Mixed-Signal VLSI Circuits, Kluwer Academic Publishers, 2000, ISBN:0-7923-7991-8. 2
2. L. T. Wang, C. W. Wu, and X. Wen, VLSI Test Principles and Architectures, Morgan Kaufmann, 2006, ISBN-13: 978-0-12-370597-6
3. Parag.K.Lala, Digital Circuit Testing and Testability, Academic Press
4. M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital Systems Testing andTestable Design, Computer Science Press, 1990, ISBN: 0-7167-8179-4

Scheme of Continuous Internal Evaluation (CIE): $\mathbf{2 0 + 4 0 + 4 0 = 1 0 0}$
QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted \& Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.
TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.
EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.
Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE \& SEE Theory courses						
RUBRIC for CIE			RUBRIC for ske			
SLMo	Content	Marks	Q. Mo	Contents		Marles
1	Quizzes - Q1 \& Q2	20	Each unit consists of TWO questions of $\mathbf{2 0}$ Marks each. Answer FIVE full questions selecting ONE from each unit (1 to 5).			
2	Tests - T1 \& T2	40				
3	Experiential Learning - EL1 \& EL2	40	122	Unit-1: Question 1 or 2		20
	Total Marks	100	$3 \% 4$	Unit-2: Question 3 or 4		20
			$5 \% 6$	Unit-3: Question 5 or 6		20
			788	Unit-4: Question 7 or 8		20
			9810	Unit-5: Question 9 or 10		20
					Total Marks	100

	ege of Engineering *		Go, change the world	
SEMESTER: III				
Course Code	: 22 MVE3E2T	High Speed Digital Design	CIE Marks	100
Credits L-T-P	: 3-1-0		SEE Marks	100
Hours	: $42 \mathrm{~L}+28 \mathrm{~T}$	Elective E (Professional Elective)	SEE Durations	3 Hrs
Faculty Coordinator: Dr. Srividya P				
UNIT - I				9 Hrs
Introduction to high speed digital design: Frequency, time and distance issues in digital VLSI design. Capacitance and inductance effects, high speed properties of logic gates, speed and power. Modeling of wires, geometry and electrical properties of wires, Electrical models of wires, transmission lines, lossless LC transmission lines, lossy RLC transmission lines and special transmission lines.				

UNIT - II

9 Hrs
Power distribution and Noise: Power supply network, local power regulation, IR drops, area bonding. On-chip bypass capacitors and symbiotic bypass capacitors. Power supply isolation. Noise sources in digital systems, power supply noise, crosstalk and inter symbol interference. Power distribution on chips, Transient Power analysis,cross talk and Ground bounce.

UNIT - III

8 Hrs
Signaling convention and circuits: Signaling modes for transmission lines, signaling over lumped transmission media, signaling over RC interconnect, driving lossy LC lines, simultaneous bi-directional signaling terminations, transmitter and receiver circuits.

UNIT - IV
8 Hrs
Non Clocked \& Clocked Logic styles: (i) Non clocked Logic Styles: Static CMOS structures: Static Combinatorial CMOS Logic, Pulsed Static Logic. DCVS Logic: Differential Cascode Voltage-Switched Logic, Differential Split Level Logic, Cascode Non-Threshold Logic. Non-Clocked Pass Gate Families: CMOS Pass Gate and Transmission Gate Logic, DCYS Logic with the Pass Gate, Complementary Pass Gate Logic, Swing-Restored Pass Gate Logic, Energy-Economized Pass Transistor Logic. (ii) Clocked Logic Styles: Single-Rail Domino Logic: Domino CMOS, Multiple Output Domino Logic, Compound Domino Logic, Noise Tolerant Precharge Logic. Dual-Rail Domino Structures: Differential Domino, Cross-Coupled Domino, Modified Dual-Rail Domino.

> UNIT - V

8 Hrs
Latching Strategies: Basic Latch Design: Storage Elements, Static and Dynamic Latches, Latch, Noise/Robust Design, Latch Implementation Latching single-ended logic: pseudo Inverter Latch, True Single Phase Clocking, Double-Edge-Triggered Flip-Flops Differential Logic: DCVS Latches, Static Ram Latches, Ratio Insensitive Differential Latch, Differential Flip-Flops

Course Outcomes:
After going through this course the student will be able to:
CO1 \mid : Analyse the special requirements that are imposed on high speed digital design.
CO2 : Analyze the characteristics of transmission lines, Power supply network and Noise sources in digital systems.
CO3 : Apply different Clocked \& non clocked digital Logics in designs
CO4 : Evaluate the performance of various transmission lines and digital circuits.

Reference Books

1. William S. Dally \& John W. Poulton, "Digital Systems Engineering", Cambridge University Press, 1998. ISBN 0-521-59292-5.
2. Kerry Bernstein, Keith M. Carrig, Christopher M. Durham, Patrick R. Hansen, David Hogenmiller, Edward J. Nowak, Norman J. Rohrer., "High Speed CMOS Design Styles", Kluwer Academic Publishers in 1999, ISBN 978-1-4613-7549-4.
3. Masakazu Shoji, "High Speed Digital Circuits", Addison Wesley Publishing Company, 1996. ISBN 978-0201634839.
4. Howard Johnson \& Martin Graham, "High Speed Digital Design" A Handbook of Black Magic, Prentice Hall PTR, 1993.

Scheme of Continuous Internal Evaluation (CIE): $\mathbf{2 0 + 4 0 + 4 0 = 1 0 0}$

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted \& Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.
TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.
EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.
Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE \& SEE Theory courses

RUBRIC for CIE			RUBRIC for sers			
SLMo	Content	Mariks	Q. Mo	Contents		Mariks
1	Quizzes - Q1 \& Q2	20	Each unit consists of TWO questions of $\mathbf{2 0}$ Marks each. Answer FIVE full questions selecting ONE from each unit (1 to 5).			
2	Tests - T1 \& T2	40				
3	Experiential Learning - EL1 \& EL2	40	1 \& 2	Unit-1: Question 1 or 2		20
	Total Marks	100	$3 \% 4$	Unit-2: Question 3 or 4		20
			5 \& 6	Unit-3: Question 5 or 6		20
			7 \& 8	Unit-4: Question 7 or 8		20
			$9 \& 10$	Unit-5: Question 9 or 10		20
					Total Marks	100

	ege of Engineering		Go, change the world	
SEMESTER: III				
Course Code	: 22 MVE3E3T	RFIC Design	CIE Marks	100
Credits L-T-P	: 3-1-0		SEE Marks	100
Hours	: $42 \mathrm{~L}+28 \mathrm{~T}$	Elective E (Professional Elective)	SEE Durations	3 Hrs
Faculty Coordinator: Dr. Chinmaye R				
UNIT - I				9 Hrs

Basic concepts in RF design - Units in RF design, Nonlinearity and Time Variance, Effects of nonlinearity harmonic distortion, gain compression - 1 dB compression point, desensitization, blocking, cross modulation, intermodulation - third intercept point, cascaded nonlinear stages - IM spectra in a cascade. Noise in RF circuits - Representation of noise in circuits - input referred noise, Noise figure, Noise figure of cascaded stages, Noise figure of lossy circuits, Sensitivity, dynamic range - spurious free dynamic range (SFDR).
UNIT - II $\quad 9$ Hrs

Transceiver architectures - channel selection and band selection, Heterodyne - constant LO and constant IF downconversion, problem of image, image rejection vs channel selection, dual IF topology, Homodyne - simple homodyne and homodyne with quadrature down conversion, issues in homodyne receivers, Image Reject Hartley \& Weaver architecture. Transmitter architectures - Direct conversion and two-step transmitters. Review of two port parameters and their significance. Nanoscale MOSFETs - Parasitic resistances (Rs, Rd, Rg), parasitic capacitances (Cgs, Cgd,), simplified and extrinsic small-signal models. High-frequency figures of merit: fT and fMAX

UNIT - III
8 Hrs
Matching networks - Passive RLC circuits, impedance transformation - Quality factor, series to parallel conversion, basic matching networks- L, Pi-match networks - design example. Low noise Amplifier Performance parameters, Problem of Input matching, CS stage with inductive load, Cascode CS stage with inductive degeneration (MOSFET circuits only), Noise figure calculation, Amplifier bandwidth extension techniques, Millimeter Wave LNAs

UNIT - IV

8 Hrs
Mixer - Performance parameters, Mixer noise figures, single balanced and double balanced (active and passive) - working (MOSFET circuits only), Millimeter Wave Mixers. Oscillators - Performance parameters, Feedback view and one port view of oscillators, Cross coupled oscillator, three point oscillators, (MOSFET circuits only), Ring oscillators.

UNIT - V
8 Hrs
Phase Locked Loops - Basic concepts - Phase detector, Type I PLL, Dynamics of simple PLL, Drawbacks of simple PLL, Type II PLLs - PFD, charge pump, charge pump PLL, PFD/CP Nonidealities (concepts only) - Up and Down Skew and Width Mismatch, Charge Injection and clock feedthrough.

Course Outcomes:

After going through this course the student will be able to:
CO1 $: \left\lvert\, \begin{array}{ll}\text { Investigate the functionality of a typical RF system. }\end{array}\right.$
CO2 : Analyze CMOS circuits and its impact on Radio frequency and Millimeter Wave IC design.
CO3 : Design and implement various circuit blocks for RF transceiver chain with specification.
CO4 : Evaluate the different performance parameters used in RF design.

Reference Books

1. Behzad Razavi, "RF Microelectronics ", 2nd Edition Pearson Education, 2012, ISBN : 13:9780137134731
2.Thomas H Lee, "The Design of CMOS Radio Frequency Integrated Circuits",2nd Edition, Cambridge University Press, 2004, ISBN : 9780511817281
2. John Rogers ,CalvinPlett, "Radio Frequency Integrated Circuits Design", Artech House, 2003, ISBN : 1-58053-502-x
3. S. Voinigescu, "High-Frequency Integrated Circuits", The Cambridge RF and Microwave Engineering Series, 1st edition, 2013, ISBN : 978-0521873024

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = $\mathbf{1 0 0}$
QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted \& Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.
TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.
EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.
Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE \& SEE Theory courses

	ege of Engineering		Go, change the world	
SEMESTER: III				
Course Code	: 22MVE3E4T	Signal Processing 8\% ML on Microcontrollers	CIE Marks	100
Credits L-T-P	: 3-1-0		SEE Marks	100
Hours	: 42L+28T	Elective E (Professional Elective)	SEE Durations	3 Hrs
Faculty Coordinator: Prof. Mahendra B M				
UNIT - I ${ }^{\text {a Hrs }}$				

Introduction: ARM Profiles, ARM Cortex M Family, Digital Signal Controller Vs Digital Signal Processor, CMSIS, TI Math and DSP Libraries Analog Input and Output Digital Signal Processing System, Data Representation, Stereo Codecs Input and Output, Data communication using Polling, Interrupts, DMA Practice: STM32F407 Discovery, WM5102 Codecs Programming Examples: Configuration of Codecs, Real Time Input and Output, Demonstration of Polling, Interrupts and DMA based IO. Fixed point tool box in MATLAB.

UNIT - II

9 Hrs
Sampling, Reconstruction and Aliasing - Time and Frequency Domains, Fast Fourier Transform - Derivation of Radix-2 Practice: Sampling and Aliasing - Generating Sinusoids of Arbitrary Frequency, Step Response of the WM5102 Antialiasing Filter, Discrete Fourier Transform of a Sequence of Real Numbers, FFT of A Signal in Real-Time, Spectral Leakage

UNIT - III
8 Hrs
Introduction: Overview of Linear Regression model and model estimations, Neural Network Model, Decision tree and Random Forests (Signal processing Perspective), Introduction to TinyML, Tensor Flow, Keras.

UNIT - IV
8 Hrs
Model \& Application development: ML/ DL work flow, Building and training a model, Machine Learning Tool chain, Building and training an application, Deployment on Microcontrollers.

UNIT - V	$\mathbf{8}$ Hrs

Tensor flow Lite for Microcontrollers: Building and training the models for applications, Optimizing Latency, Optimizing Energy Usage, Optimizing Model and Binary Size, Debugging, Privacy, Security and Deployment.

Course Outcomes:

After going through this course the student will be able to:
CO1 $:$: Identify different blocks of signal processing chain and constructs of tiny ML.
CO2 : Evaluate the architecture of ARM CPUs to identify their suitability for realizing signal processing and ML applications.
CO3 : Realize signal processing operations and ML applications on different architectures by making use of software libraries.
CO4: Design and analyze the applications to realize on embedded development boards.

Reference Books

1.Donald S Reay, Digital Signal Processing on using ARM Cortex M4, 2016, John Wiley \& Sons, ISBN 978-1-118-85904-9
2. ARM-based Digital Signal Processing Lab-in-a-Box, ARM University Program, World Wide Education Program, ISBN- 10: 9780470936863
3. Technical reference manual for ARM processor cores including Cortex M, Wolfson PI Codec, Keil Products
4. Pete Warden, TinyML: Machine Learning with TensorFlow Lite on Arduino and Ultra-Low-Power

Microcontrollers, O'Reilly Media; 1st edition, ISBN-10 : 1492052043, ISBN-13: 978-1492052043

Scheme of Continuous Internal Evaluation (CIE): $\mathbf{2 0 + 4 0 + 4 0 = 1 0 0}$

QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted \& Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.
TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.
EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.

Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE \& SEE Theory courses						
RUBRIC for CIE			RUBRIC for sEs			
SLMo	Content	Marles	Q. Mo	Contents		Marks
1	Quizzes - Q1 \& Q2	20	Each unit consists of TWO questions of $\mathbf{2 0}$ Marks each. Answer FIVE full questions selecting ONE from each unit (1 to 5).			
2	Tests - T1 \& T2	40				
3	Experiential Learning - EL1 \& EL2	40	182	Unit-1: Question 1 or 2		20
	Total Marks	100	$3 \% 4$	Unit-2: Question 3 or 4		20
			$5 \% 6$	Unit-3: Question 5 or 6		20
			788	Unit-4: Question 7 or 8		20
			9 \& 10	Unit-5: Question 9 or 10		20
				Total Marks		100

			Go, change the world	
SEMESTER: III				
Course Code	22MVE3E5T	MEMS and Smart Systems	CIE Marks	100
Credits L-T-	3-1-0		SEE Marks	100
Hours	42L+28T	Elective E (Professional Elective)	SEE Durations	3 Hrs
Faculty Coordinator: Dr. Ramavenkateswaran N				

Introduction to Micro and Smart Systems: Introduction, Microsystem vs MEMS, Smart Materials, structures and system, Integrated Microsystems, Application of Smart Materials and Microsystems. Feynman's vision, Evolution of micro-manufacturing. Multi-disciplinary aspects. Applications areas. Commercial products.
Modelling: Scaling issues, Scaling in geometry, Scaling in rigid body dynamics, scaling in electrostatic forces, scaling in electromagnetic forces, scaling in electricity, scaling in fluid dynamics. scaling effects in the optical domain, scaling in biochemical phenomena

UNIT - II
9 Hrs
Micro and Smart Devices and Systems: Principles Definitions and salient features of sensors, actuators, and systems. Sensors: silicon capacitive
accelerometer, piezo-resistive pressure sensor, Actuators: silicon micro-mirror arrays, magnetic micro relay, piezo-electric based inkjet print head, electro-thermal actuator. portable blood analyzer, fiber optic sensors, Electrostatic Comb drive, Microsystems at Radio frequency

UNIT - III
8 Hrs
Materials: Introduction, Substrates and Wafers, Active substrate materials, Si as a substrate material, Si compounds, Si Piezoresistors, Gallium Arsenide, Quartz, Piezoelectric Crystals and Polymers. Micro Manufacturing and Material Processing: Silicon wafer processing, Oxidation, CVD, PVD , lithography, thin-film deposition, etching (wet and dry), wafer-bonding, and metallization, Silicon micromachining: surface, bulk , bonding based process flows.

UNIT - IV

8 Hrs
Electronics Circuits for Micro and Smart Systems: Electronic Amplifiers, Signal Conditioning Circuits:
Differential Amplifier, Instrumentation Amplifier, Wheatstone Bridge, Phase Locked Loop,Analog to Digital Conversion, Practical Signal Conditioning Circuits: Differential Charge Measurement, Switched Capacitor circuits, Circuits for frequency measurement shifts.

> | UNIT - V | 8 Hrs |
| :--- | :--- |

Electronics, Circuits and Packaging: Micro Systems Packaging, objectives and special issues in micro system packaging, Types of Microsystem Packages ,Packaging Technologies Case study of devices Cantilevers, Pressure sensors, accelerometers, micro heater.

Course Outcomes:

After going through this course the student will be able to:
CO1: $:$ Describe working principles and packaging techniques in MEMS and smarts stems.

| CO2 | $:$ Analyze various sensors and actuator circuits for MEMS and smart systems. |
| ---: | :--- | :--- |
| CO3 | $:$ Design of electronic circuits, sensor and actuators for MEMS and smart systems. |

Reference Books

1.MEMS \& Microsystems: Design and Manufacture, Tai-Ran Tsu, Tata Mc-Graw-Hill.ISBN- 13:9780070487093
2. Micro and Smart Systems, K.J.Vinoy, G.K.Ananthasuresh, S.Gopalakrishnan, K.N.Bhat, Wiley India, ISBN: 9788126527151
3. Microsystems Design, S. D. Senturia, Kluwer Academic Publishers, Boston, USA, 2001, ISBN 0-7923-7246-8.
4. Analysis and Design Principles of MEMS Devices, Minhang Bao, Elsevier, Amsterdam, Netherlands, ISBN 0-444-51616-6.

Scheme of Continuous Internal Evaluation (CIE): 20 + 40 + 40 = $\mathbf{1 0 0}$
QUIZZES: Quizzes will be conducted in online/offline mode. Two quizzes will be conducted \& Each Quiz will be evaluated for 10 Marks. The sum of two quizzes will be the Final Quiz marks.
TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. Final test marks will be reduced to 40 Marks.
EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning and Program specific requirements (15), Video based seminar/presentation/demonstration (25) adding upto 40 marks.
Scheme of Semester End Examination (SEE) for 100 marks: The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Rubric for CIE \& SEE Theory courses

	ational Institutions 。 Ilege of Engineerin		Go, change the world	
SEMESTER III				
Course Code	: 22 MVE32N	INTERNSHIP	CIE Marks	50
Credits L-T-P	: 0 - 0-6		SEE Marks	50
Hours/Week	12		SEE Durations	3 Hrs
Guidelines: 1. The duration of the internship shall be for a period of 6 weeks on full time basis after II semester final exams and before the commencement of III semester. 2. The student must submit letters from the industry clearly specifying his / her name and the duration of the internship on the company letter head with authorized signature. 3. Internship must be related to the field of specialization of the respective PG programme in which the student has enrolled. 4. Students undergoing internship training are advised to report their progress and submit periodic progress reports to their respective guides. 5. Students have to present the internship activities carried out to the departmental committee and only upon approval by the committee, the student can proceed to prepare and submit the hard copy of the final internship report. 6. The reports shall be printed on A4 size with 1.5 spacing and Times New Roman with font size 12, outer cover of the report (wrapper) has to be softbound in Ivory color for PG circuit Programs and Light Blue for Non-Circuit Programs.				
Course Outcomes: After going through the internship the student will be able to CO1: Apply Engineering and Management principles to solve the problems CO2: Analyze real-time problems and suggest alternate solutions CO3: Communicate effectively and work in teams CO4: Imbibe the practice of professional ethics and lifelong learning				
Scheme of Continuous Internal Evaluation (CIE): The evaluation committee shall consist of Guide, Professor, Associate Professor/Assistant Professor. The committee shall assess the presentation and the progress reports.				
The evaluation criteria shall be as per the rubrics given below:				
Reviews		Activity		Weightage
I	Application o functioning o	wledge in indus / Departments	mprehend the	40\%
II	Importance of Demonstratio	ement, Environ n of Internship	nability. t Submission	60\%
Scheme for Semester End Evaluation (SEE): The SEE examination shall be conducted by an external examiner (domain expert) and an internal examiner. Evaluation shall be done in batches, not exceeding 6 students per batch.				

	ational Institutions lege of Engineering		Go, change the world	
SEMESTER IV				
Course Code	22MVE41P	MAJOR PROJECT	CIE Marks	100
Credits L-T-P	0-0-18		SEE Marks	100
Hours/Week	36		SEE Durations	3 Hrs
Guidelines: 1. Major Project is to be carried out for a duration of 18 weeks 2. Students must adhere to the Project Presentation Schedule, report to their guide on a weekly basis and get their Project diary signed by their guide 4. Students must execute the Major Project individually and not in teams. 5. It is mandatory for the students to present/publish their project work in National/International Conferences or Journals 6. The reports shall be printed on A4 size with 1.5 spacing and Times New Roman with font size 12, outer cover of the report (wrapper) has to be soft bound and in Ivory color for PG circuit Programs and Light Blue for Non-Circuit Programs				
Course Outcomes: After completing the course, the students will be able to CO1: Conceptualize, Design and Implement solutions for specific problems. CO2: Communicate the solutions through presentations and technical reports. CO3: Apply project and resource managements skills, professional ethics and societal concerns CO4: Synthesize self-learning, sustainable solutions and demonstrate life-long learning				
Scheme of Continuous Internal Examination Evaluation shall be carried out in three reviews. The evaluation committee shall consist of Guide, Professor, Associate Professor/Assistant Professor.				
Phase *		Activity		Weightage
I	Selection of Pro	rmulation of Problem	d Objectives	20 \%
II	Design, Implem	d Testing		40 \%
II	Experimental R Report Writing	lysis, Conclusions an ublication	e of Work,	40 \%

* Phase wise rubrics to be prepared by the respective departments

Scheme for Semester End Evaluation (SEE):

Major Project SEE evaluation shall be conducted in two stages. This is initiated after fulfilment of submission of Project Report and CIE marks.
Stage-1 Report Evaluation: Evaluation of Project Report shall be done by the Guide and an External examiner.
Stage-2 Project Viva-voce: Major Project Viva-voce examination is conducted after receipt of evaluation reports from Guide and External examiner.

SEE procedure is as follows:

Report Evaluation	Internal Examiner: 100 Marks	$=\mathbf{2 0 0}$	
	External Examiner: 100 Marks	$200 / 2=\mathbf{1 0 0}$	A
Viva-Voce	Jointly evaluated by Internal Guide \& External Evaluator	$=\mathbf{1 0 0}$	B
Total Marks = (A + B) $/ 2=100$			

RV Educational Institutions ${ }^{\text {® }}$
RV College of Engineering ${ }^{\circ}$
Autonomous
Institution Affiliated to Visvesvaraya
Technological University, Belagavi

Approved by AICTE, New Delhi

Curriculum Design Process

Academic Planning And Implementation

RV Educational Institutions

RV College of Engineering

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Approved by AICTE, New Delhi

Process For Course Outcome Attainment

RV Educational Institutions ${ }^{\text {® }}$
RV College of Engineering

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Approved by AICTE, New Delhi

Program Outcome Attainment Process

Innovative Clubs of RVCE

1 Ashwa Racing
 2 Astra Robitcs
 3 Coding Club
 4 Entrepreneurship Development Cell

5 Frequency Club

Ashwa Mobility Foundation (AMF) is a student R\&D platform that designs and fabricates Formula theme race cars and future mobility solutions to tackle urban transportation problems.

6 Garuda

7 Jatayu Obstacle Avoidance, Object Detection, Localization, Classification and Air Drop of a
Team involved in the design, fabrication and building application specific robots.
To facilitate students the skills, confidence, and opportunity to change their world using coding and help them become successful in GSoC, ACM-ICPC, and other recognized coding competitions.
E-Cell is a student run body that aims to promote entrepreneurship by conducting workshops, speaker sessions and discussions on business and its aspects. We possess a mentor board to help startups grow.
Team aims at contributing in both software and hardware domains mainly focusing on Artificial Intelligence, Machine Learning and it's advances.
Design and development of supermileage urban concept electric car. Indigenous development of E-mobility products. package of optimum weight.

| 8 Solar Car | Build a roadworthy solar electric vehicle in order to build a green and sustainable
 environment. |
| :--- | :--- | :--- |
| 9 Team AntarikshTeam Antariksh is a Space Technology Student Club whose goal is to understand,
 disseminate and apply the engineering skills for innovation in the field of Space
 technology, designing Nano-Satellite payload for ISRO PS4 Orbital platform,
 RVSAT-1 along with developing experimental rockets of various altitude. | |

10 Team Chimera Building a Formula Electric Car through Research and Development in E-Mobility. Electrifying Formula Racing.

11	Helios Racing	Team involved in design, manufacturing and testing of All-Terrain Vehicles and other supportive tasks for the functioning of the team. Participating in BAJA competitions organized by SAE in India and the USA.
12 Team Hydra	Developing autonomous underwater vehicles and use it for various real world applications such as water purification, solid waste detection and disposal etc.	
13 Team Krushi	Develop low cost equipments, which help farmers in cultivating and harvesting the crops. Use new technology applications to reduce the labour time hand cost for farmers. Aims at developing implants for Tractors.	
14	Team vyoma	Design, fabrication and testing of radio controlled aircrafts and research on various types of unmanned aerial vehicles.
15 Team Dhruva	Organizing activities like quizzes based on astronomy.Stargazing and telescope handling sessions.Construction of a standard observatory. working on small projects with organizations like ICTS, IIA, ARIES etc.	
16	Ham club	To popularize Amateur Radio as a hobby among students, alongside exploring technical innovations in the communications domain. Intended to provide human capital for service to the nation at times of natural calamities.

NCC

NSS

"Not me but you"
"Education through
Community Service \& Community Service through education"

1. AALAP (Music club)
2. DEBSOC (Debating society)
3. CARV (Dramatics club)
4. FOOTPRINTS (Dance club)
5. QUIZCORP (Quizzing society)
6. ROTARACT (Social welfare club)
7. RAAG (Youth club)
8. EVOKE (Fashion team)
9. $f / 6.3$ (Photography club)
10. CARV ACCESS (Film-making club)

VISION

Leadership in Quality Technical Education, Interdisciplinary Research \& Innovation, with a Focus on Sustainable and Inclusive Technology

MISSION

* To deliver outcome based Quality education, emphasizing on experiential learning with the state of the art infrastructure.
* To create a conducive environment for interdisciplinary research and innovation.

* To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
\& To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
* To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

QUALITY POLICY

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

CORE VALUES

Professionalism, Commitment, Integrity, Team Work, Innovation

RV COLLEGE OF ENGINEERING®

