

RV COLLEGE OF ENGINEERING®

(Autonomous Institution Affiliated to VTU, Belagavi) R.V.Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Scheme and Syllabus of I & II Semesters (Autonomous System of 2018 Scheme)

Master of Technology (M.Tech) in HIGHWAY TECHNOLOGY

DEPARTMENT OF CIVIL ENGINEERING

RV COLLEGE OF ENGINEERING®

(Autonomous Institution Affiliated to VTU, Belagavi) R.V.Vidyaniketan Post, Mysore Road Bengaluru – 560 059

VISION

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

MISSION

- To deliver outcome based Quality education, emphasizing on experiential learning with the state of the art infrastructure.
- To create a conducive environment for interdisciplinary research and innovation.
- To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

RV COLLEGE OF ENGINEERING®

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Scheme and Syllabus of I & II Semesters (Autonomous System of 2018 Scheme)

Master of Technology (M.Tech) In HIGHWAY TECHNOLOGY

DEPARTMENT OF CIVIL ENGINEERING

ABBREVIATIONS

Sl. No.	Abbreviation	Meaning	
1.	VTU	Visvesvaraya Technological University	
2.	BS	Basic Sciences	
3.	CIE	Continuous Internal Evaluation	
4.	SEE	Semester End Examination	
5.	CE	Professional Core Elective	
6.	GE	Global Elective	
7.	HSS	Humanities and Social Sciences	
8.	CV	Civil Engineering	
9.	ME	Mechanical Engineering	
10.	EE	Electrical & Electronics Engineering	
11.	EC	Electronics & Communication Engineering	
12.	IM	Industrial Engineering & Management	
13.	EI	Electronics & Instrumentation Engineering	
14.	СН	Chemical Engineering	
15.	CS	Computer Science & Engineering	
16.	TE	Telecommunication Engineering	
17.	IS	Information Science & Engineering	
18.	BT	Biotechnology	
19.	AS	Aerospace Engineering	
20.	PHY	Physics	
21.	CHY	Chemistry	
22.	MAT	Mathematics	

INDEX

	I Semester			
Sl. No.	Course Code	Course Title	Page No.	
1.	18MAT 11A	Applied Mathematics	1-2	
2.	18MHT 12	Pavement Materials	3-4	
3.	18MHT 13	Traffic Engineering and Design	5-6	
4.	18HSS 14	Professional Skills Development	7-8	
5.	18MHT 1AX	Elective – A	9-14	
6.	18MHT 1BX	Elective - B	15-20	
	GROUP A: CORE ELECTIVES			
1.	18MHT 1A1	Soil Mechanics for Highway Engineering	9-10	
2.	18MHT 1A2	Road Safety Engineering	11-12	
3.	18MHT 1A3	Infrastructure Finance	13-14	
		GROUP B: CORE ELECTIVES	•	
1.	18MHT 1B1	Highway Geometric Design	15-16	
2.	18MHT 1B2	Remote Sensing and GIS in Transportation Planning	17-18	
3.	18MHT 1B3	Transportation Planning	19-20	

II Semester			
Sl. No.	Course Code	Course Title	Page No.
1.	18MHT 21	Pavement Analysis and Design	21-22
2.	18MHT 22	Highway Construction and Maintenance	23-24
3.	18IM 23	Research Methodology	25-26
4.	18MHT 24	Minor project	27
5.	18MHT 2CX	Elective -C	28-33
6.	18MHT/ MST 2DX	Elective -D	34-39
7.	18XX2G XX	Elective -G (Global Elective)	40-59
	•	GROUP C: CORE ELECTIVES	•
1.	18MHT 2C1	Road Projects	28-29
2.	18MHT 2C2	Road Construction Equipments	30-31
3.	18MHT 2C3	Advanced Traffic Engineering	32-33
	1	GROUP D: CORE ELECTIVES	
1.	18MHT 2D1	Special Problems in Road Construction	34-35
2.	18MST 2D2	Design of Bridges and Grade Separators	36-37
3.	18MHT 2D3	Intelligent Transportation Systems	38-39
	<u> </u>	GROUP G: GLOBAL ELECTIVES	
1	18CS2G01	Business Analytics	40-41
2	18CV2G02	Industrial & Occupational Health and Safety	42-43
3	18IM2G03	Modelling using Linear Programming	44-45
4	18IM2G04	Project Management	46-47
5	18CH2G05	Energy Management	48-49
6	18ME2G06	Industry 4.0	50-51
7	18ME2G07	Advanced Materials	52-53
8	18CHY2G08	Composite Materials Science and Engineering	54-55
9	18PHY2G09	Physics of Materials	56-57
10	18MAT2G10	Advanced Statistical Methods	58-59

RV COLLEGE OF ENGINEERNG, BENGALURU-560 059 (Autonomous Institution Affiliated to VTU, Belagavi)

DEPARTMENT OF CIVIL ENGINEERING M.Tech in HIGHWAY TECHNOLOGY

	FIRST SEMESTER CREDIT SCHEME						
Sl.				Credit Allocation			
No ·	Course Code	Course Title	BoS	L	T	P	Total Credits
1	18MAT 11A	Applied Mathematics	Maths	4	0	0	4
2	18MHT 12	Pavement Materials	CV	4	0	1	5
3	18MHT 13	Traffic Engineering and Design	CV	4	0	1	5
4	18HSS 14	Professional Skills Development	HSS	0	0	0	0
5	18MHT 1AX	Elective - A	CV	4	0	0	4
6	18MHT 1BX	Elective - B	CV	4	0	0	4
	Total number of Credits			20	0	2	22
	Total Number of Hours / Week			22		4	

	SECOND SEMESTER CREDIT SCHEME						
Sl.			BoS		Credit	Allocation	n
No ·	Course Code	Course Title		L	T	P	Total Credits
1	18MHT 21	Pavement Analysis and Design	CV	4	0	1	5
2	18MHT 22	Highway Construction and Maintenance	CV	4	0	0	4
3	18IM 23	Research Methodology	IEM	3	0	0	3
4	18MHT 24	Minor project	CV	0	0	2	2
5	18MHT 2CX	Elective -C	CV	4	0	0	4
6	18MHT/MS T 2DX	Elective -D	CV	4	0	0	4
7	18XX2G XX	Elective -G (Global Elective)	Respective boards	3	0	0	3
	T	otal number of Credits		22	0	3	25
	Total Number of Hours / Week			22		6	

	I Semester				
	GROUP A: CORE ELECTIVES				
Sl. No.	Course Code	Course Title			
1.	18MHT 1A1	Soil Mechanics for Highway Engineering			
2.	18MHT 1A2	Road Safety Engineering			
3.	18MHT 1A3	Infrastructure Finance			
		GROUP B: CORE ELECTIVES			
1.	18MHT 1B1	Highway Geometric Design			
2.	18MHT 1B2	Remote Sensing and GIS in Transportation Planning			
3.	18MHT 1B3	Transportation Planning			
	l	II Semester			
	GROUP C: CORE ELECTIVES				
1.	18MHT 2C1	Road Projects			
2.	18MHT 2C2	Road Construction Equipments			
3.	18MHT 2C3	Advanced Traffic Engineering			
GROUP D: CORE ELECTIVES					
1.	18MHT 2D1	Special Problems in Road Construction			
2.	18MST 2D2	Design of Bridges and Grade Separators			
3.	18MHT 2D3	Intelligent Transportation Systems			

		GRO	UP E: GLOBAL ELECTIVES	
Sl. No.	Host Dept	Course Code	Course Title	Credits
1.	CS	18CS2G01	Business Analytics	3
2.	CV	18CV2G02	Industrial & Occupational Health and Safety	3
3.	IM	18IM2G03	Modeling using Linear Programming	3
4.	IM	18IM2G04	Project Management	3
5.	СН	18CH2G05	Energy Management	3
6.	ME	18ME2G06	Industry 4.0	3
7.	ME	18ME2G07	Advanced Materials	3
8.	CHY	18CHY2G08	Composite Materials Science and Engineering	3
9.	PHY	18PHY2G09	Physics of Materials	3
10.	MAT	18MAT2G10	Advanced Statistical Methods	3

	Semester: I Semester	
	APPLIED MATHEMATICS	
	(Theory)	
Course Code: 18MAT11A		CIE Marks: 100
Credits: L:T:P: 4:0:0		SEE Marks: 100
Hours: 47L		SEE Duration: 3Hrs

Course Learning Objectives:

- 1. Adequate exposure to learn statistical techniques, random phenomena for analyzing data to find the suitable mathematical/probability models for solving practical situation in engineering applications.
- 2. To learn fundamentals of linear algebra, solution of system of linear equations and eigen value problems used in various fields of engineering and science.
- 3. Explore the possibility of finding approximate solutions using numerical methods in the absence of analytical solutions of various systems.
- 4. Apply the concepts of optimization to solve engineering applications of optimization which have great importance in the field of engineering.

great importance in the field of engineering.	
Unit-I	
STATISTICS Method of least squares, fitting of straight line, linearization of nonlinear laws, curve fitting by polynomials, correlation, coefficient of correlation, lines of regression, Spearman rank correlation.	09 Hrs
Unit -II	
PROBABILITY DISTRIBUTIONS Introduction to probability, Random variables-discrete and continuous random variables, important measures and moment generating functions, Standard distributions-Binomial, Exponential, Normal and Gamma distributions.	09 Hrs
Unit -III	
SYSTEM OF LINEAR EQUATIONS AND EIGEN VALUE PROBLEMS System of linear equations-LU decomposition and Gauss-Jordan method, Eigen value problems-bounds on eigen values, Power method and Inverse Power method, Eigen values and eigen vectors of real symmetric matrices-Jacobi method.	09 Hrs
Unit -IV	•
NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS Boundary value problems (BVP's)—finite difference method for linear and nonlinear problems, Shooting method and Galerkin method. Finite differences-implicit and explicit scheme, Finite difference methods for parabolic, elliptic and hyperbolic partial differential equations, Finite element method and simple problems.	10 Hrs
Unit -V	•
CONCEPTS OF ENGINEERING OPTIMIZATION Engineering applications of optimization, statement of an optimization problem-design vector, design constraints, constraint surface, objective function and objective function surface. Multivariable optimization with inequality constraints-Kuhn-Tucker conditions, Constraint qualification, Genetic operators, Neural-Network-based Optimization. Optimization of Fuzzy systems.	10 Hrs
Expected Course Outcomes	1

Expected Course Outcomes:

CO1: Identify and interpret the fundamental concepts of statistics, distributions, linear algebra, differential equations and optimization arising in various fields engineering.

CO2: Apply the knowledge and skills of statistical/numerical/optimization techniques to solve

problems of least squares, probability distributions, linear equations, eigen value problems and differential equations.

CO3: Analyze the physical problem to establish statistical/mathematical model and use appropriate method to solve and optimize the solution.

CO4: Distinguish the overall mathematical knowledge gained to demonstrate the problems of least squares, probability distributions, linear equations, eigen value problems, differential equations and optimization arising in practical situations

Reference Books:

- Theory and Problems of probability, Seymour Lipschutz and Marc lars Lipson, 2nd edition, Schaum's Outline Series, ISBN: 0-07-118356-6.
- 2 Introductory method of numerical analysis, S. S. Sastry, 4th edition, 2009, Prentice-Hall India Pvt. Ltd ISBN: 81-203-1266-X.
- Numerical methods for scientific and Engineering computation, M K Jain, S. R. K. Iyengar, R. K. Jain, 6th edition; 2012, New Age International Publishers, ISBN-13: 978-81-224-2001-2.
- **4** Engineering Optimization Theory and Practice, Singiresu S. Rao, 3rd edition, New Age International (P) Ltd., ISBN: 81-224-1149-5.

Continuous Internal Evaluation (CIE): Total marks: 100

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Semester End Evaluation (SEE): Total marks: 100 Theory (100 Marks) = Total Marks (100)

Scheme of Semester End Examination (SEE) for 100 marks:

	PAVEMENT MATERIALS (Theory & Practice)	
Course Code: 18MHT12	-	CIE Marks:100+50
Credits: L:T:P : 4:0:1		SEE Marks:100+50
Hours:48L:24P		SEE Duration: 3 Hrs+3Hrs

Student will be able to

- 1. Understand the specifications requirements and properties of materials used for road construction.
- 2. Analyze the properties and requirements of different types of mixes used for road construction.
- 3. Evaluate different materials and mixes for pavements.
- 4. Propose suitable materials and mixes for pavements.

Unit – I 09Hrs

Soil – types, source, functions, requirements, properties, tests and specifications for use in various components of road. Soil compaction- factors and methods, Alternate and new materials-characteristics and application in highways

Unit – II 10Hrs

Aggregates–Natural and Manufactured Aggregates, Tests and specifications on road aggregates for flexible and rigid pavements. Importance of aggregate gradation, shape factors

Unit – III 09Hr

Bituminous binders and mixes – different types, properties and uses, physical tests on bitumen, Rheological and pavement performance related properties, Modified binders, requirements of ideal pavement binders, characteristics and applications in road construction, criteria for selection of different binders.

Bituminous mixes, types, requirements, properties, tests, Marshall Method of mix design, Criteria and super pave mix design, Additives & Modifiers in Bituminous mixes, problems on mix design.

Unit – IV 10Hrs

Cement and Cement concrete mixes – requirements, design of mix for CC pavement, use of additives, different types of concrete mixes, IRC specifications & Tests, joint filler and sealer materials, special concrete mixes

Unit – V 10Hrs

Alternate materials – GGBS, Silica Fumes, construction and demolition waste, flyash, admixture – plasticizers, super plasticizers, retarders, other admixtures.

Unit – VI (Lab Component)

1. Tests on materials

- i. Penetration on aged binders
- ii. Viscosity using rotational viscometer
- iii. Elastic recovery
- iv. Separation test

2. Tests on mixes

- v. Bitumen extraction and gradation
- vi. Mix design by Marshall Method for dense bituminous mixes.
- vii. Temperature susceptibility and Moisture susceptibility using indirect tensile strength test for bituminous mixes
- viii. Indirect tensile repeated load tests

Expected Course Outcomes:

After successful completion of this course the student will be able to:

CO1: Explain properties and requirements of materials and mixes used for pavements

CO2: Analyze properties of different materials and mixes used for pavements

CO3: Evaluate suitability of different materials and mixes for pavements.

CO4: Propose suitable materials and mixes for pavements.

Reference Books:

- 1. "Hot Mix Asphalt Materials, mixture design and construction", Freddy L Roberts, Prithvi S Kandhal, Brown, E R, Lee, D-Y, Kennedy, T W, 2nd Edition, National Asphalt Pavement Association Research and Education Foundation, Maryland, USA, ISBN-10: 0914313010
- 2. "Soil Mechanics for Road Engineers"- Her Majesty's Stationary Office, 1952 Publication, ISBN 10: 0115502785, ISBN 13: 9780115502781
- 3. "Pavement Analysis and Design", Huang, 2004, Pearson Publications, ISBN-13:9780131424739.
- 4. Highway Hand Book of Highway Engineering, T F Fwa, September 28, 2005, CRC Press, ISBN 9780849319860
- 5. 'Specifications for Roads and Bridges Works'- MoRTH V Revision, April 2013, Indian Roads Congress.

Continuous Internal Evaluation (CIE): Total marks: 100+50=150

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Continuous Internal Evaluation (CIE); Practical (50 Marks)

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150 Theory (100 Marks) + Practical (50 Marks) = Total Marks (150)

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Scheme of Semester End Examination (SEE); Practical (50 Marks)

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

TRAFFIC ENGINEERING AND DESIGN (Theory & Practice)		
Course Code: 18MHT13		CIE Marks:100+50
Credits: L:T:P: 4:0:1		SEE Marks:100+50
Hours: 48L:24P		SEE Duration:3Hrs+3Hrs

Student will be able to

- 1. Understand traffic, traffic flow characteristics, regulations and management of traffic.
- 2. Identify traffic characteristics for design and management.
- 3. Analyze the traffic parameters
- 4. Evaluate traffic and design the signals.

Unit – I 10Hrs

Traffic and road user characteristics – human factors including reaction time and vehicular characteristics affecting road design and traffic flow, motor vehicle act

Traffic studies - data collection, analysis and interpretation of results of classified traffic volume, spot speed, speed and delay, origin and destination. Sampling in traffic studies – sampling techniques, sampling theory, accuracy and sample size. Accident characteristics, causes, studies, investigations and analysis of individual accidents, statistical analysis, measures to improve road safety. Problems on above.

Unit – II 10Hrs

Traffic flow characteristics, traffic flow variables - speed – flow – density relationship, PCU values, level of service, factors influencing roadway capacity, capacity of roads at various levels of service, capacity of intersections.

Introduction to Queuing theory: vehicle arrivals, delays at intersections, -Problem.

Unit – III

10Hrs

Traffic regulations and control - Regulation on vehicles, drivers and traffic flow, Parking studies, Traffic control devices - Types & objectives of markings, signs, signals and islands, delineators.

Unit – IV 10Hrs

Design of signalized intersections including signal timings as per IRC guidelines. Signal system, use of software. Problems. Design of other types of intersections at grade such as intersections with markings, channelized intersections and traffic rotary. Traffic design of grade separated intersections and interchange facilities.

Unit – V 08Hrs

Traffic management techniques - Local area management. Low cost measures. Various types of medium and long term traffic demand management & measures and their uses, ITS and its applications.

Environmental Issues – Air and Noise pollution due to road traffic, measurement, control of environmental deterioration. Management of environmental pollution due to road traffic.

Laboratory components

Data collection and interpretation: Road Inventory for safety studies, Volume Studies, Speed and Headway Studies, Speed and delay studies, Pedestrian surveys, Parking Surveys. traffic Forecasting.

Expected Course Outcomes:

After successful completion of this course the student will be able to:

- 1. Explain traffic, traffic flow characteristics, regulations and management of traffic.
- 2. Analyze traffic, traffic flow characteristics, regulations and management of traffic
- 3. Evaluate traffic characteristics for design and management.
- 4. Design and recommend solutions for traffic problems.

Ref	erence Books:		
1.	"Traffic Engineering and Transportation Planning" Kadiyali L.R., 2011, Khanna		
	Publication, New Delhi. ISBN-13:9788174092205.		
2.	"Traffic Engineering, Matson T M, Smith W S, Hurd F W, Mc graw Hill Book Co, NY,		
	USA, ISBN 0131424718		
3.	Traffic Flow Theory and Control, Drew D R ,McGraw Hill Book Co, NY, USA. ISBN-13:		
	978-0070178311.		
4.	"Traffic and Highway Engineering", N J Garber & L A Hoel, 5 th Edition, 2015, ISBN-		
	13:9781133605157.		
5.	IRC3-1983,9-1972,62-1976,64-1990,65-1976,66-1976,67-2001,69-1977,70-1977,73-		
	1980,79-1981,80-1981,86-1983,92-1985,93-1985,99-1988,102-1988,103-1988,106-		
	1990,110-1996 Indian Roads Congress.		

Continuous Internal Evaluation (CIE): Total marks: 100+50=150

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks.. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Continuous Internal Evaluation (CIE); Practical (50 Marks)

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150 Theory (100 Marks) + Practical (50 Marks) = Total Marks (150)

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Scheme of Semester End Examination (SEE); Practical (50 Marks)

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester: I						
PROFESSIONAL SKILL DEVELOPMENT						
	(Common to all Programs)					
Course Code	:	18HSS14		CIE Marks	:	50
Credits L: T: P	:	0:0:0		SEE Marks	:	Audit Course
Hours	:	24 L				

Unit – I	03 Hrs

Communication Skills: Basics of Communication, Personal Skills & Presentation Skills – Introduction, Application, Simulation, Attitudinal Development, Self Confidence, SWOC analysis. **Resume Writing:** Understanding the basic essentials for a resume, Resume writing tips Guidelines for better presentation of facts. Theory and Applications.

Unit – II 08 Hrs

Quantitative Aptitude and Data Analysis: Number Systems, Math Vocabulary, fraction decimals, digit places etc. Simple equations – Linear equations, Elimination Method, Substitution Method, Inequalities.

Reasoning – a. **Verbal** - Blood Relation, Sense of Direction, Arithmetic & Alphabet.

b. Non- Verbal reasoning - Visual Sequence, Visual analogy and classification.

Analytical Reasoning - Single & Multiple comparisons, Linear Sequencing.

Logical Aptitude - Syllogism, Venn-diagram method, Three statement syllogism, Deductive and inductive reasoning. Introduction to puzzle and games organizing information, parts of an argument, common flaws, arguments and assumptions.

Verbal Analogies/Aptitude – introduction to different question types – analogies, Grammar review, sentence completions, sentence corrections, antonyms/synonyms, vocabulary building etc. Reading Comprehension, Problem Solving

Unit – III 03 Hrs

Interview Skills: Questions asked & how to handle them, Body language in interview, and Etiquette – Conversational and Professional, Dress code in interview, Professional attire and Grooming, Behavioral and technical interviews, Mock interviews - Mock interviews with different Panels. Practice on Stress Interviews, Technical Interviews, and General HR interviews

Unit – IV 03 Hrs

Interpersonal and Managerial Skills: Optimal co-existence, cultural sensitivity, gender sensitivity; capability and maturity model, decision making ability and analysis for brain storming; Group discussion (Assertiveness) and presentation skills

Unit – V 07 Hrs

Motivation: Self-motivation, group motivation, Behavioral Management, Inspirational and motivational speech with conclusion. (Examples to be cited).

Leadership Skills: Ethics and Integrity, Goal Setting, leadership ability.

Course Outcomes: After going through this course the student will be able to:			
CO1	Develop professional skill to suit the industry requirement.		
CO2	Analyze problems using quantitative and reasoning skills		
CO3	Develop leadership and interpersonal working skills.		
CO4	Demonstrate verbal communication skills with appropriate body language.		

Refere	ence Books:
1.	The 7 Habits of Highly Effective People, Stephen R Covey, 2004 Edition, Free Press, ISBN:
	0743272455
2.	How to win friends and influence people, Dale Carnegie, 1st Edition, 2016, General Press,
	ISBN: 9789380914787
3.	Crucial Conversation: Tools for Talking When Stakes are High, Kerry Patterson, Joseph
	Grenny, Ron Mcmillan 2012 Edition, McGraw-Hill Publication ISBN: 9780071772204
4.	Ethnus, Aptimithra: Best Aptitude Book, 2014 Edition, Tata McGraw Hill ISBN:
	9781259058738

Scheme of Continuous Internal Examination (CIE)

Evaluation of CIE will be carried out in TWO Phases.

Phase	Activity			
I	After the completion of Unit 1 and Unit 2, students are required to undergo a test set for a total of 50 marks. The structure of the test will have two parts. Part A will be quiz based, evaluated for 15 marks and Part B will be of descriptive type, set for 50 Marks and reduced to 35 marks. The total marks for this phase will be 50 (15 + 35).			
II	Students will have to take up second test after the completion Unit 3, Unit 4 and Unit 5. The structure of the test will have two parts. Part A will be quiz based evaluated for 15 marks and Part B will be of descriptive type, set for 50 Marks and reduced to 35 marks. The total marks for this phase will be $50 (15 + 35)$.			
FINAL CIE COMPUTATION				

Continuous Internal Evaluation for this course will be based on the average of the score attained through the two tests. The CIE score in this course, which is a mandatory requirement for the award of degree, must be greater than 50%. The attendance will be same as other courses.

SOIL MECHANICS FOR HIGHWAY ENGINEERS (Group A: Core Elective) (Theory) Course Code: 18MHT 1A1 Credits: L:T:P: 4:0:0 Hours:48L SEE Duration:03Hrs

Course Learning Objectives (CLO):

Student will be able to

- 1. Understand the strength and behavior of soil as a highway material.
- 2. Apply the properties of soils for design of embankments/cuts and pavements.
- 3. Analyze the strength, stability of soil for embankments/cuts and pavements.
- 4. Evaluate and design the slopes, drainage and retaining structures.

Unit – I 9Hrs

Site Investigation: Planning and exploration Methods of Sampling, SPT, Subsoil investigation, Geophysical methods.

Soil Mechanics applications to Highway Engineering. Index properties, , various soil classification systems, HRB classification,

Unit – II 10Hrs

Shear strength of soil: Introduction, Importance, Measurements, shear strength of clay, Sand, Elastic properties of soil – Tangent, Secant modulus, Stress – Strain curves, Poisson's ratio, Shear Modulus.

Stability of slopes: Introduction, Types, Different methods of analysis of slopes for Øu=0 & C-Ø soil, Location of most critical circle, Earth dam slopes stability, Taylor's stability number. Effect of Earthquake Force

Unit – III 10Hrs

Permeability of soil: Darcy's Law, Validity, Soil-water system, Types, Determination of permeability, problems.

Soil Compaction: Theories of compaction, factors affecting compaction, Method of Compaction-Laboratory and Field

Unit – IV 10Hrs

Highway Drainage: Importance, Surface drainage, Sub-surface drainage, Design of Surface and subsurface drainage system, Road construction in water logged and coastal areas, Landslides – Types, factors and remedial measures.

Unit – V 9Hrs

Reinforced Earth structures Definition, Components, Advantages, Types of stability – external, Internal, (No problems), Geo textiles – types, Functions, their uses in road embankments and railway works, other uses.

Expected Course Outcomes:

After successful completion of this course the student will be able to:

CO1: Explain the properties of soil as a highway material.

CO2: Analyze soils for their application in pavements, embankment/cuts.

CO3: Examine the suitability of soil for embankments/cuts and subgrade.

CO4: Design geotechnical solutions for embankments/cuts and subgrade.

- 1. "Foundation Engineering", G A Leonards, McGraw-Hill, Kogakusha, 1962, ISBN: 0750908203
- 2. "Drainage of Highway and Airfield Pavements" Harry R Cedegren, Wiley; 1 edition, 1974, ISBN-13: 978-0471141815
- 3. "Highway Engg", S.K. Khanna, C.E.G. Justo,and Veeraragavan A 10th edition. Nem Chand Bros Rookee ISBN 978-81-85240-72-5

4.	"Soil Mechanics for Road Engineers" – HMSO, London. ISBN 10: 0115502785										
5.	"Designing	With	Geosynthetics",	Robert	M	Koerner,	6th	edition,	Vol	2,	ISBN:
	97814653452	240, 14	165345248, 1986								

Continuous Internal Evaluation (CIE): Total marks: 100

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Semester End Evaluation (SEE): Total marks: 100 Theory (100 Marks) = Total Marks (100)

Scheme of Semester End Examination (SEE) for 100 marks:

ROAD SAFETY ENG (Group A: Core (Theory	Elective)
Course Code: 18MHT 1A2	CIE Marks:100
Credits: L:T:P : 4:0:0	SEE Marks :100
Hours:48L	SEE Duration: 03 Hrs

Graduates shall be able to

- 1. Understand the various aspects of road safety.
- 2. Identify the factors affecting road safety.
- 3. Apply and analyze the engineering factors for safety.
- 4. Evaluate and propose mitigate measures for safety.

Unit – I 09Hrs

Introduction to safety

Road accidents, Trends, causes, , Highway safety, human factors, Vehicle factors Road Safety, systems approach to safety, road safety improvement strategies, elements of a road safety plan, Safety Data Needs.

Unit – II 10Hrs

Data Collection and analysis

Collision and Condition diagrams, Analysis of Crash Data: Before-after methods in crash analysis, Black Spot Identification & Investigations, Case Studies.

Unit – III 10Hrs

Road Safety Audits

Key elements of a road safety audit, Road Safety Audits & Investigations, Describe methods for identifying hazardous road locations, Case Studies.

Unit – IV 10Hrs

Crash Reconstruction

Concepts of crash reconstruction interpretation of data obtained from the roadway surface, speed for various skid, friction, drag, and acceleration scenarios, variables involved in jump and flip crashes, variables involved in pedestrian crashes, Case Studies.

Unit – V 09Hrs

Mitigation Measures

Accident prevention by better planning, Accident prevention by better design of roads, Crash Countermeasures, Highway operation and accident control measures, Highway Safety Measures during construction, Highway geometry and safety.

Expected Course Outcomes:

After going through this course the student will be able to:

- 1. Explain the various aspects of road safety.
- 2. Identify the factors affecting road safety.
- 3. Examine the engineering factors for safety.
- 4. Recommend and design mitigate measures for safety.

- 1. Practical Road SafetyAuditing, Martin Belcher, Steve Proctor, and Phil Cook, 3rdEdition, 2015, ICE Publishing,USA, ISBN: 9780727760166.
- 2. Practical Road safety auditing, Belche Mr, Proctor and Cook P, 2nd Edition, 2008, Publishers-Thomas Telford Limited, London, ISBN: 9780727735157.
- 3. Traffic Safety, Leonard Evans, 2004, Science Serving Society of Bloomfield Hills, Michigan, ISBN-10: 0975487108.
- 4. Observational Before-After Studies in Road Safety, Ezra Hauer, February 1, 1997, Emerald Group Publishing Limited ,ISBN-13: 978-0080430539.

5. Traffic Engineering: Theory and Practice, Louis J. Pignataro, Edmund J. Cantilli, Prentice-Hall, 1973, ISBN (Print), 9780139262203

Continuous Internal Evaluation (CIE): Total marks: 100

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks.. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Semester End Evaluation (SEE): Total marks: 100 Theory (100 Marks) = Total Marks (100)

Scheme of Semester End Examination (SEE) for 100 marks:

INFRASTRUCTU (Group A: Cor (Theor	re Elective)
Course Code: 18MHT 1A3	CIE Marks:100
Credits: L:T:P: 4:0:0	SEE Marks :100
Hours:48L	SEE Duration:03Hrs

Student will be able to

- 1. Understand the principles of highway economics and finance.
- 2. Apply economics for different types of highway projects.
- 3. Analyze for economical and financial feasibility of highway projects.
- 4. Evaluate techno-economic feasibility of highway projects

Unit – I 10Hrs

Introduction- Principle, supply and demand models, equilibrium, sensitivity of travel demand, Elasticities—types, models (Kraft demand model) consumer surplus cost — cost elasticity pricing and subsidy policies, rates of interest, Vehicle operation cost, direct and indirect benefits due to road improvement, Total transportation cost, fixed and variable costs. Road user cost studies in India

Unit – II 10Hrs

Economic analysis- Different methods, determination of annual cost, benefit cost ratio, IRR, FYRR, NPV. Sensitivity of economic analysis, Examples of economic analysis for different types of road improvement measures, pavement options, construction of bypasses and upgrading of intersections. Project priorities, methods of dealing with uncertainties.

Unit – III 08Hrs

Financing of road projects- Methods, Public Private Partnership(PPP), environmental economics, Toll collection, economic viability PPP projects, risk analysis, case studies

Unit – IV 10Hrs

Life cycle cost analysis – Introduction, notation, simple and compound interest, uniform series of payments, uniform continuous cash flow and capitalized cost, discrete compound interest factors.

Unit – V 10Hrs

Application of probability and statistics – Introduction, data analysis and evaluation, sampling, significance testing, regression analysis, queing models.

Expected Course Outcomes:

After successful completion of this course the student will be able to:

CO1: Explain the principles of highway economics and finance.

CO2: Solve the highway projects for varying techno – economical conditions.

CO3: Compare economical and financial feasibility for different alternatives of highway projects.

CO4: Justify techno-economic feasibility of highway projects

- 1. Transportation Economics, Mc Carthy, 2001, P, Blackwell, ISBN: 978-0-631-22180-7.
- 2. Transportation Engineering An Introduction, Jotin Chisty.C and Kent Lall ,B Prentice hall of India Private limited, New Delhi, ISBN-81-203-2212-6
- 3. Manual on economic analysis of highway projects, special publication 30, New Delhi, 2007, Indian Roads Congress,
- 4. Manual for road investment decision model, special publication 38, New Delhi, 1992, Indian Roads Congress,
- 5. Traffic Engineering and Transportation Planning, L R Kadiyali, Khanna Publishers, New Delhi, 2008, ISBN: 9780471632658. 3

Continuous Internal Evaluation (CIE): Total marks: 100

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks.. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Semester End Evaluation (SEE): Total marks: 100 Theory (100 Marks) = Total Marks (100)

Scheme of Semester End Examination (SEE) for 100 marks:

HIGHWAY GEOMETRIC DESIGN (Group B: Core Elective) (Theory)				
Course Code: 18MHT 1B1		CIE Marks:100		
Credits: L:T:P : 4:0:0		SEE Marks:100		
Hours :48L		SEE Duration:03Hrs		

Graduates shall be able to

- 1. Identify the geometrical design elements.
- 2. Apply the geometric elements for varying conditions of roads.
- 3. Analyze the geometric elements for highway geometric design.
- 4. Design and evaluate the geometric element facilities for varying highway conditions.

Unit – I 10Hrs

Introduction: Importance, Factors governing geometric design, route selection,, geometric design consistency, capacity of rural and urban roads,

Cross Section Elements: Right of way and width consideration, roadway, shoulders, kerbs, traffic barriers, medians, service roads, pavement surface characteristics, cross slope ,skid resistance, unevenness,

Unit – II 10Hrs

Geometric Design Elements: Sight distances-SSD, ISD, OSD, factors governing sight distances, Design of horizontal alignment-overturning and skidding, super elevation, extra widening, transition curves, Design of vertical alignment – gradient, vertical curves,

Unit – III 10Hrs

Intersection Design : At grade intersections – sight distance consideration and principles of design, Channelization, mini round – about, layout of round – about, Inter – Changes – major and minor interchanges, entrance and exit ramps, acceleration and deceleration lanes

Unit – IV 09Hrs

Road way facilities and Road safety Furniture: Pedestrian facilities, busbay, truck lay bays, frontage roads, parking areas, cattle crossings, lighting, toll plazas, operation and maintenance centre, landscaping and tree plantation,

Road Safety furniture- signage, markings, road humps, speed calming measures

Unit – V 09Hrs

Geometry of Hill Roads: Classification, width of road land, roadway, carriageway, design speed, sight distances, horizontal alignment, vertical alignment, hairpin bends, passing places, lateral and vertical clearances

Expected Course Outcomes:

After going through this course the student will be able to:

- 1. Explain the geometrical design elements.
- 2. Plan the geometric elements for varying conditions of roads.
- 3. Examine the geometric elements for highway geometric design.
- 4. Judge and propose the geometric element facilities for varying highway conditions.

- 1. Highway Engineering, Khanna S.K, Justo CEG, Veeraragavan A, 10th Edition, 2015, , Khanna Publishers, ISBN: 9788185240800.
- 2. A Policy on Geometric Design of Highways and Streets, (The Green Book) 6th Edition, American Association of State Highway and Transportation Officials (AASHTO) Publishers, 2011.ISBN Number: 978-1-56051-508-1.

- 3. Geometric design projects for Highways: An Introduction, John G Schoon, 2nd Edition, American Society of Civil Engineers Press, ISBN: 978-0-7844-7042-8, 2000.
- 4. Relevant Indian Roads Congress Code Books(IRC) IRC011-1962,IRC012-2009,IRC032-1969,IRC064-1990,IRC066-1976,IRC073-1990,IRC080-1981,IRC086-1983,ITC092-1985,IRCSP023-1993.,IRCSP99 2013.Publisher Indian Roads Congress, New Delhi.

Continuous Internal Evaluation (CIE): Total marks: 100

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks.. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Semester End Evaluation (SEE): Total marks: 100 Theory (100 Marks) = Total Marks (100)

Scheme of Semester End Examination (SEE) for 100 marks:

REMOTE SENSING AND GIS IN TRANSPORT PLANNING (Group B: Core Elective) (Theory) Course Code: 18MHT 1B2 Credits: L:T:P: 4:0:0 Hours:48L SEE Duration: 3 Hrs

Course Learning Objectives (CLO):

Student will be able to

- 1. Explain the purpose of accurate mapping of all features under different spatial and temporal scales of all kinds of terrain and land under water bodies.
- 2. Discuss on the advantages of remote sensing compared to traditional surveying techniques in terms of time, accuracy and output.
- 3. Explain the purpose and methods of obtaining abstract data both spatial and temporally.
- 4. Illustrate the application of GIS and remote sensing in solving real world transportation problems

Unit – I	09Hrs
----------	-------

Introduction to remote sensing: Definition – Components of Remote Sensing – Energy, Sensor, Interacting Body –Active and Passive Remote Sensing – Platforms – Aerial and Space Platforms – Balloons, Helicopters, Aircraft and Satellites – Electromagnetic Radiation – EMR Spectrum

Unit – II 10Hrs

Introduction to GIS: Basic Concept and Components – Hardware, Software – Data Spatial and non-spatial –Geo-referencing – Map Projection – Typ es of Projection – Simple Analysis – Data retrieval and querying

Unit – III 10Hrs

Data structures and analysis: Database – Raster and Vector data structures – Data storage – Run length, Chain and Block coding – Vector data sto rage – Topology – GIS Modeling - Raster and Vector data analysis – Buffering and overlaying techniques – Network Analysis – Spatial Analysis

Unit – IV 10Hrs

Basic applications in transportation: Highway and Railway Alignment, location of transport terminals and roadside facilities, bus stops – Route optimization – Bus route rationalization – Accident analysis – Applications of Aerial Photography and Satellite Imageries

Unit – V 09Hrs

Advanced applications: GIS as an integration technology – Integration of G IS, GPS and Remote Sensing Techniques – Advanced Traveller Information System (ATIS) – Automatic Vehicle Location System (AVLS).

Expected Course Outcomes:

After successful completion of this course the student will be able to:

- 1. Choose the remote sensing image from different sensors, resolutions, spatial and temporal scales.
- 2. Explain and to comprehend large tracks of earth surface with less time and cost but more accuracy.
- 3. Communicate to the common man his analysis of different problems developments, benefits by preparing different thematic maps.
- 4. Apply GIS and remote sensing techniques in solving real world transportation problems

Reference Books:

1. Concepts and Techniques of Geographic Information System, Lo C P & Yeung A K W, 2006,

	Prentice Hall of India, New Delhi,
2.	Remote Sensing and Geographical Information Systems, Anji Reddy M, 2001, B S Publications,
	Hyderabad,
3.	Principles of Geographical Information System, Burrough P A, 1998, Oxford Publication,
4.	Getting started with Geographical Information Systems, Clarke K, 2002, John Wiley & Sons,
	New York.

Continuous Internal Evaluation (CIE): Total marks: 100

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Semester End Evaluation (SEE): Total marks: 100 Theory (100 Marks) = Total Marks (100)

Scheme of Semester End Examination (SEE) for 100 marks:

TRANSPORTATION PLANNING (Group B: Core Elective) (Theory)				
Course Code: 18MHT 1B3		CIE Marks: 100		
Credits: L:T:P : 4:0:0		SEE Marks: 100		
Hours:48L		SEE Duration: 03 Hrs		

Student will be able to

- 1. Describe the planning process for an effective transportation system.
- 2. Discuss the characteristics of mass transit system and methods of collecting traffic data to propose an effective transport facility
- 3. Analyze transport system for assigning travel trips to various routes for effective management.
- 4. Compare the mass transportation options and evaluation of the systems for economic sustainability.

PART-A	
UNIT – I	10Hrs
Introduction: Elements in urban transit system, NUTP, MPO plan.	
Transportation Planning Process: Land use transportation planning; Systems approach,	
integration of transport planning, traffic and land use planning, Corridor Management and	
Preservation.	
UNIT – II	10Hrs
Transportation Surveys: Definition of study area, zoning, various types of surveys and	
interpretation, travel demand and forecasting.	
Trip Generation and Distribution: Trip generation - regression, category analysis Trip	
distribution - growth factor, Fratar and Furness methods, calibration of Gravity model,	
intervening opportunities model, competing Opportunities model, Gravity model.	
UNIT – III	10Hrs
Modal Split: Factors affecting modal split; Modal split in transport planning.	
Traffic Assignment: Description of transport network, route choice behavior.	
Assignment techniques- All-or-Nothing assignment, multipath traffic assignment, capacity	
restrained traffic assignment.	
UNIT – IV	09Hrs
Evaluation: Identification of corridor; Formulation of plans; Economic Evaluation.	
Mass Transit Systems: capacity, operation and management of Fleet planning and Scheduling.	
UNIT – V	09Hrs
Case Studies: Case studies on metropolitan transportation planning, integration of multimodal	
transport systems, best practices and emerging technologies in transportation planning.	

Course outcomes:

After studying this course, students will be able to:

- 1. Explain planning process for an effective transportation system
- 2. Compare the characteristics of mass transit system and methods of collecting traffic data to propose an effective transport facility
- 3. Calculate zonal trip generation and attraction for inter-zonal trip distribution methods
- 4. Evaluate transport system for assigning travel trips to various routes for effective management and economic sustainability

- 1. Traffic Engineering and Transport Planning, L R Kadiyali, Khanna Publishers, ISBN 139788174092205, 2011.
- 2. "Urban Transportation: Planning, Operation and Management", Ponnuswamy S, Johnson Victor D, 1st Edition, 2012, McGraw Hill Education (India) Private Limited, ISBN- 9781259002731.

- 3. "Transportation Engineering –An Introduction, JotinKhisty and Kent Lall B, 3rd Indian Edition, 2006, PHI, New Delhi, ISBN-13: 978-0130335609.
- 4. "Transportation Engineering and planning", Papacostas, C.A, Prevedouros P D, 3rd Edition, 2000, Pearson Education India, ISBN-13: 978-0130814197, 2000.
- 5. Principles of Urban Transport System Planning, Hutchinson, B.G., McGraw-Hill Inc.,US, ISBN-13: 978-0070315396,1974.

Continuous Internal Evaluation (CIE): Total marks: 100

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks.. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Semester End Evaluation (SEE): Total marks: 100 Theory (100 Marks) = Total Marks (100)

Scheme of Semester End Examination (SEE) for 100 marks:

II Semester				
PAVEMENT ANALYSIS AND DESIGN (Theory &Practice)				
Course Code: 18MHT 21	CIE Marks:100+50			
Credits: L:T:P: 4:0:1	SEE Marks :100+50			
Hours:48L:24P	SEE Duration:3Hrs+3Hrs			

Student will be able to

- 1. Discuss the factors influencing design of pavements
- 2. Analyze the stresses and strains in pavements
- 3. Understand AASHTO, Asphalt institute and shell method of design
- 4. Design flexible and rigid pavements as per IRC guidelines

Unit – I 09Hrs

Pavements-types, functions, choice ,Factors affecting design and performance of flexible and rigid pavements—Pavement design factors, loads—axle load distribution, ESWL,EWL, VDF.

Unit – II 10Hrs

Subgrade support-CBR and plate bearing tests, Resilient Modulus, fatigue tests, permanent deformation, factors affecting design and performance of highway and airport pavements – pavement material Characteristics, climatic, drainage and environmental factors, their effects and evaluation.

Unit – III 09Hrs

Stresses and Deflection/strain in flexible pavements: Application of elastic theory, stresses, deflections/strains in single, two and three and multi – layer system, Applications in pavement design. Visco elastic theory

Unit – IV 10Hrs

Flexible pavement design: Empirical, mechanistic- empirical and theoretical design approaches, principle, advantages and application. Design steps by CBR method as per IRC 2001 and 2012, outline of other common design methods such as AASHTO and Asphalt Institute and Shell methods.

Unit – V 10Hrs

Rigid pavement design: Determination of ESWL, EWL for dual and dual tandem wheel loads in Rigid pavements, General design principle, Stresses in rigid pavements, stresses due to wheel loads and temperature variations, design of cement concrete pavements as per IRC -58-2015 guidelines, KENSLAB, KENLAYER

Laboratory Components

Axle load survey, Transverse distribution studies, commercial vehicle traffic survey, stress analysis, flexible pavement design based on IRC, Shell and AASHTO method, rigid pavement design IRC method

Expected Course Outcomes:

After successful completion of this course the student will be able to:

- 1. Explain parameters and methods of pavement design.
- 2. Analyze the parameters for pavement design
- 3. Select suitable parameters for design of pavements.
- 4. Design flexible and rigid pavements.

- "PrinciplesofPavementDesign", Yoder and Witczak, (secondedition) 1975, JohnWileyandsonsInc, ISBN: 978-81-265-3072-4
 "PavementAnalysis and Design", Huang, 2004 -PearsonPublications, ISBN-
- 2. "PavementAnalysis and Design", Huang, 2004 -PearsonPublications, ISBN-13:9780131424739.

- 3. "Design & Performance of Road Pavements", DavidCroney, PaulCroney, (Third Edition), 1997, -McGrawhill BookCo. ISBN-13:9780070144514.
- 4. IRC37-2001, 2012, IRC81-1997, IRC58-2002, 2015. IRC59-1976, IRC101-1988,

Continuous Internal Evaluation (CIE): Total marks: 100+50=150

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Continuous Internal Evaluation (CIE); Practical (50 Marks)

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150 Theory (100 Marks) + Practical (50 Marks) = Total Marks (150)

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Scheme of Semester End Examination (SEE); Practical (50 Marks)

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

HIGHWAY CONSTRUCTION AND MAINTENANCE (Theory)			
Course Code: 18MHT 22	CIE Marks:100		
Credits: L:T:P: 4:0:0	SEE Marks:100		
Hours:48L	SEE Duration: 03 Hrs		

Graduates shall be able to

- 1. Understand the specifications and steps for construction of Embankment, subgrade, subbase, granular, Bituminous and concrete layers
- 2. Apply the specifications for construction and maintenance of pavement layers.
- 3. Test for quality of pavement layers during construction and maintenance.
- 4. Plan the construction and maintenance of pavements.

Unit – I 09Hrs

Plants and Equipments: Components of pavement structure, functions and requirements,

Plants and Equipments: Excavators, graders, compactors, crushers, bituminous hot mix plants, cement concrete mixers, pavers - uses in road construction.

Unit – II 10Hrs

Construction of Subgrade and Subbase: Specifications and steps for construction of subgrade, subbase, quality control tests

Construction of granular layers: Specifications and steps of construction , WBM, WMM, CRM, quality control tests

Construction of Bituminous Layers: Different types of bituminous layers, specifications and construction of bituminous layers, quality control tests

Unit – III 10Hrs

Construction of Cement Concrete Pavements: Specifications and steps for construction of DLC, Paving Quality Concrete pavements, quality control tests

Specifications and steps for construction of White topping, Interlocking concrete block pavements, quality control tests

Safety during Construction: Safety aspects during construction and maintenance works, road safety furniture

Unit – IV 10Hrs

Drainage: Assessment of drainage requirements for the road, design of various drainage components, drainage materials, surface and sub-surface drainage system for roads, drainage of urban roads.

Unit – V 09Hrs

Maintenance: Routine and periodic maintenance, preventive and reactive maintenance for drainage and pavements, Preparation of existing pavement for patching, profile correction, special measures to deal with reflection cracks in pavement overlays, requirements for rehabilitation, recycling.

Expected Course Outcomes:

After going through this course the student will be able to:

- 1. Explain the specifications and steps for construction of Embankment, subgrade, subbase, granular, Bituminous and concrete layers
- 2. Select the specifications for construction and maintenance of pavement layers.
- 3. Examine the quality of pavement layers during construction and maintenance.
- 4. Construct and maintain the pavements.

- 1. "Specifications for Road and Bridge works", MoRTH, fifth revision, 2013, Indian roads Congress, New Delhi
- 2. "Construction Planning, Equipment, and Methods" Robert L.Peurifoy, Clifford J. Schexnayder,

	Aviad Shapira, Robert Schmitt, 2013 McGraw-Hill, ISBN-13: 978-0073401126
3.	"Hot Mix Asphalt Materials, Mixture Design and Construction", Freddy L Roberts, Prithvi S
	kandhal et.al (2nd Edition) National Asphalt Pavement Association, Research and Education
	Foundation, Maryland, USA, ISBN-10: 0914313010
4.	IRC :15-2011, IRC :14-2004, IRC :35-2015, IRC:67-2012, IRC:109-2015, IRC:111-2009,
	IRC:120 -2015, IRC:SP:11-1984, IRC:SP:42-2014, IRC:SP:50-2013, IRC :SP: 6-2004,
	IRC:SP:68-2005, IRC:SP:76-2015,
5.	"Drainage of Highway and Airfield Pavements" Harry R Cedegren, Wiley; 1 edition, 1974,
	ISBN-13: 978-0471141815

Continuous Internal Evaluation (CIE): Total marks: 100

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Semester End Evaluation (SEE): Total marks: 100 Theory (100 Marks) =Total Marks (100)

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II					
	RESEARCH METHODOLOGY				
	(Common to all programs)				
Course Code	:	18IM23	CIE Marks	:	100
Credits L: T: P	:	3:0:0	SEE Marks	:	100
Hours	:	36L	SEE Duration	:	3 hours

Unit – I	
Overview of Research: Research and its types, identifying and defining research problem and introduction to different research designs. Essential constituents of Literature Review. Basic principles of experimental design, completely randomized, randomized block, Latin Square, Factorial.	07 Hrs
Unit – II	
Data and data collection: Overview of probability and data types Primary data and Secondary Data, methods of primary data collection, classification of secondary data, designing questionnaires and schedules. Sampling Methods: Probability sampling and Non-probability sampling	08 Hrs
Unit – III	07.11
Processing and analysis of Data: Statistical measures of location, spread and shape, Correlation and regression, Hypothesis Testing and ANOVA. Interpretation of output from statistical software tools	07 Hrs
Unit – IV	
Advanced statistical analyses: Non parametric tests, Introduction to multiple regression, factor analysis, cluster analysis, principal component analysis. Usage and interpretation of output from statistical analysis software tools.	07 Hrs
Unit-V	
Essentials of Report writing and Ethical issues: Significance of Report Writing, Different Steps in Writing Report, Layout of the Research Report, Ethical issues related to Research, Publishing, Plagiarism Case studies: Discussion of case studies specific to the domain area of specialization	07 Hrs

Cours	Course Outcomes: After going through this course the student will be able to				
CO1	Explain the principles and concepts of research types, data types and analysis procedures.				
CO2	Apply appropriate method for data collection and analyze the data using statistical principles.				
CO3	Present research output in a structured report as per the technical and ethical standards.				
CO4	Create research design for a given engineering and management problem situation.				

R	Reference Books:							
1	Kothari C.R., Research Methodology Methods and techniques by, New Age International							
	Publishers, 4th edition, ISBN: 978-93-86649-22-5							
2	Krishnaswami, K.N., Sivakumar, A. I. and Mathirajan, M., Management Research Methodology,							
	Pearson Education: New Delhi, 2006. ISBN: 978-81-77585-63-6							
3	William M. K. Trochim, James P. Donnelly, The Research Methods Knowledge Base, 3 rd Edition,							
	Atomic Dog Publishing, 2006. ISBN: 978-1592602919							
4	Levin, R.I. and Rubin, D.S., Statistics for Management, 7th Edition, Pearson Education: New Delhi.							

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II						
	MINOR PROJECT					
Course Code	:	18MHT24		CIE Marks	:	100
Credits L: T: P	:	0:0:2		SEE Marks	:	100
Credits	:	48P		SEE Duration	:	3 hrs

GUIDELINES

- 1. Each project group will consist of maximum of two students.
- 2. Each student / group has to select a contemporary topic that will use the technical knowledge of their program of study after intensive literature survey.
- 3. Allocation of the guides preferably in accordance with the expertise of the faculty.
- 4. The number of projects that a faculty can guide would be limited to four.
- 5. The minor project would be performed in-house.
- 6. The implementation of the project must be preferably carried out using the resources available in the department/college.

	Course Outcomes: After completing the course, the students will be able to				
CO1	Conceptualize, design and implement solutions for specific problems.				
CO2	Communicate the solutions through presentations and technical reports.				
CO3	Apply resource managements skills for projects.				
CO4	Synthesize self-learning, team work and ethics.				

Scheme of Continuous Internal Examination

Evaluation will be carried out in 3 phases. The evaluation committee will comprise of 4 members: Guide, Two Senior Faculty Members and Head of the Department.

Phase	Activity	Weightage
I	Synopsys submission, Preliminary seminar for the approval of selected topic and	20%
	objectives formulation	
II	Mid term seminar to review the progress of the work and documentation	40%
III	Oral presentation, demonstration and submission of project report	40%

^{**} Phase wise rubrics to be prepared by the respective departments

CIE Evaluation shall be done with weightage / distribution as follows:

•	Selection of the topic & formulation of objectives	10%
•	Design and simulation/ algorithm development/ experimental setup	25%
•	Conducting experiments/ implementation / testing	25%
•	Demonstration & Presentation	15%
•	Report writing	25%

Scheme of Semester End Examination (SEE):

The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.

•	Brief write up about the project	05%
•	Presentation / Demonstration of the Project	20%
•	Methodology and Experimental results & Discussion	25%
•	Report	20%
•	Viva Voce	30%

ROAD PROJECTS (Group C: Core Elective) (Theory)				
Course Code: 18MHT 2C1	CIE Marks:100			
Credits:L:T:P: 4:0:0	SEE Marks :100			
Hours :48L	SEE Duration:03Hrs			

Graduates shall be able to

- 1. Understand the components of road project reports.
- 2. Identify and carry out the various surveys and investigations for the road projects.
- 3. Design the geometry of road
- 4. Formulate the report for road projects.

Unit – I 09Hrs

Road Project Reports: Salient features of ongoing road projects in India, Objects and Scope of Prefeasibility, feasibility and detailed project report for road projects, typical HR structure for preparation of project reports and implementation of road projects, key acts related road projects

Unit – II 10Hrs

Surveys and Investigations for Road Improvement Projects: Traffic surveys and forecasting, topographical surveys, geotechnical and material surveys, Pavement surveys and investigations, Cross drainage structure and drainage surveys, Interpretation of survey results

Unit – III 10Hrs

Geometric Design and General elements: Geometrical elements of rural and urban roads – cross sectional elements, horizontal and vertical alignment, Intersections-requirements, capacity of roads Road way facilities: pedestrian facilities, bus bays, truck lay byes, traffic, medical and vehicle rescue aid posts, street lighting, Road safety audit, road safety furniture, Mx Roads

Unit – IV 10Hrs

Environmental Impact Assessment: Objectives, procedure of environmental impact assessment, socio economic survey, mitigation measures, Landscaping and tree plantation, implementation of environment management plan, Key environmental legislations, clearances required for road project-environmental, forest, CRZ, wild life, air, noise quality standards

Unit – V 09Hrs

Contract Documents and Tender Evaluation: preparation of BOQ, Types of tender documents, salient clauses of tender document, tender evaluation –technical and financial,

Expected Course Outcomes:

After going through this course the student will be able to:

- 1. Explain the components and need of different types of road project reports.
- 2. Choose and execute various surveys and investigations for the road projects.
- 3. Analyze the surveys and investigations and select geometry of road
- 4. Understand the contract document, evaluation and contract management for road projects

- 1. IRC:SP:19-2001 "Manual for Survey, investigation and Preparation of Road Project" 2001, Indian Roads Congress, New Delhi
- 2. IRC-73: Guidelines for Geometric Design Standards of Rural Highways, Indian Roads Congress, New Delhi
- 3. IRC:86: Guidelines for Geometric Design standards of Urban roads, Indian Roads Congress, New Delhi
- 4. MoRTH Model Concession Agreement for Small Road Projects-2000, Indian Road Congress,

	New Delhi
5	Relevant IRC Guidelines

Continuous Internal Evaluation (CIE): Total marks: 100

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks.. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Semester End Evaluation (SEE): Total marks: 100 Theory (100 Marks) =Total Marks (100)

Scheme of Semester End Examination (SEE) for 100 marks:

ROAD CONSTRUCTION EQUIPMENTS (Group C: Core Elective) (Theory) Course Code: 18MHT 2C2 Credits: L:T:P: 4:0:0 Hours: 48L SEE Marks: 100 SEE Duration:03Hrs

Course Learning Objectives (CLO):

Graduates shall be able to

- 1. Understand the broad features of road construction equipment
- 2. Plan construction equipments for road construction
- 3. Analyze and estimate the productivity of the equipments
- 4. Develop equipment spread for road construction

Unit – I	09Hrs

Introduction

Importance of plants and equipments – advantages and limitations, types of construction equipment used in road construction.

Unit – II 10Hrs

Equipment for earthwork, hauling and spreading

Dozers, excavators, loaders, hauling units, graders – application, types, production, factors effecting the production

Unit – III 10Hrs

Plants for productions of aggregates and mixes

Crushers- types, factors effecting the production, Pug mill for production wet mix macadam, Hot bituminous mix plants – types, production process, Concrete batching plant- cement concrete production process

Unit – IV 10Hrs

Paving and Compacting Equipment

Pavers – components, types of pavers, factors influencing paving quality, , Compactors – types, application, Miscellaneous equipment – Kerb casting equipment, road marking equipment, bitumen sprayers

Unit – V 9 Hrs

Equipment Management

Forecasting equipment requirement, maintenance of equipment, selection of construction equipment- task considerations, cost considerations, equipment acquisition options

Expected Course Outcomes:

After going through this course the student will be able to:

- 1. Explain the broad features of road construction equipment
- 2. Select construction equipments for road construction
- 3. Evaluate the productivity of the equipments.
- 4. Optimize equipment productivity for road construction

- 1 "Construction Planning Equipment and Method", Peurifoy RL and Clifford JS (8th Edition) 2010, McGraw Hill Book Co Inc, ISBN:13:978-0073401126.
- 2 "Construction Equipment and its Management", SC Sharma 2002, Khanna Publishers, ISBN-13:978-8174091376
- 3 "Construction project management planning, scheduling and controlling", K K Chitkara (Third Edition) June 2014, Tata Mc Graw hill Publications. ISBN-13: 978-9339205447.
- 4 IRC SP:96-2012, IRC -97-2013, IRC-SP:86:2010, IRC SP:39-1192

Continuous Internal Evaluation (CIE): Total marks: 100

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Semester End Evaluation (SEE): Total marks: 100 Theory (100 Marks) =Total Marks (100)

Scheme of Semester End Examination (SEE) for 100 marks:

ADVANCED TRAFFIC ENGINEERING (Group C: Core Elective) (Theory) Course Code: 18MHT 2C3 Credits: L:T:P: 4:0:0 Credits: 48L SEE Marks:100 SEE Duration:03Hrs

Course Learning Objectives (CLO):

Student will be able to

- 1. Understand traffic flow, its forecast and management techniques.
- 2. Identify the factors governing the traffic growth and causes for accidents.
- 3. Analyze the traffic trends, accidents and traffic management techniques
- 4. Evaluate the impact of traffic on environment.

Unit – I 09Hrs

Traffic flow theory – scope, relationship between flow variables, bottle necks, Problems. Queuing theory and applications; vehicle arrivals, delays at intersections, Elements of simulation technique in traffic Engineering, Problems

Unit – II 10Hrs

Traffic Forecast – objects, factors governing traffic growth, estimation of traffic growth from past trends, econometric models. Common methods of traffic forecast, Problems.

Unit – III 10Hrs

Road accident - causes, scientific investigations and data collection. Analysis of individual accidents to arrive at causes; statistical methods of analysis of accident data, computer analysis. Road safety issues, various measures for road safety - engineering, educational and enforcement measures, Short term and long term measures. Road safety education and training. Economic evaluation of improvement measures by "before and after studies". Problems.

Unit – IV 10Hrs

Traffic management techniques - Local area management. Transportation system management. Low cost measures. Various types of medium and long term traffic management measures and their uses. Evaluation of the effectiveness and benefits of different traffic management measures, Elements of area traffic control and Intelligent transportation systems

Unit – V 09Hrs

Environmental issues – air and noise pollution due to road traffic, measurement, control of environmental deterioration. Management of environmental pollution due to road traffic.

Expected Course Outcomes:

After successful completion of this course the student will be able to:

- 1. Explain traffic flow, forecast, accidents, traffic and environment management.
- 2. Analyze trends of traffic flow, forecast, accidents, traffic and environment management
- 3. Evaluate traffic flow, forecast, accidents and environment for traffic management.
- 4. Design and recommend solutions for better traffic management.

L		
	1	"Traffic Engineering & Transport Planning", L.R Kadiyali, - reprint 2004, khanna publishers
	2	"Road conditions and Traffic Safety", Babkov V.F 1975 - MIR publications.
	3	"Safer Roads – A Guide to Road Safety Engg", K.W. Ogden, -Aver bury Technical, 1996 Ashgate Publishing Ltd., Alder shot, England,
	4	"Traffic Engineering"- Theory and Practice', Pignataro, Louis, John Wiley.
ĺ	5	Relevant IRC Codes.

Continuous Internal Evaluation (CIE): Total marks: 100

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks.. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Semester End Evaluation (SEE): Total marks: 100 Theory (100 Marks) =Total Marks (100)

Scheme of Semester End Examination (SEE) for 100 marks:

SPECIAL PROBLEMS IN ROAD CONSTRUCTION (Group D: Core Elective)			
(Theory			
Course Code: 18MHT 2D1	CIE Marks: 100		
Credits: L:T:P: 4:0:0	SEE Marks: 100		
Hours:48L	SEE Duration :3 Hrs		

Course objectives: This course will enable students to

- 1. Discuss the problems encountered during road construction along unstable soils
- 2. Describe the methods of strengthening soil fills and embankments to improve their performance as pavement component layer.
- 3. Identify the difficulties associated with construction of high embankments and maintaining stability of hill slopes with precautions to be taken.
- 4. Discover the use of recycled materials in road construction including milled bituminous waste with necessary design methodology.

UNIT – I 09 Hours

Construction of roads in problematic soils and water logged areas Various effective measures for solving the problems, machinery required and method of construction. Control of water table, capillary cut offandseepageflowinroadconstruction. Designandconstruction offilterdrains.

UNIT – II 10 Hours

Methods of strengthening weak foundation soil- acceleration of consolidation and settlement of compressible embankment foundation using verticals and drains-application, design and construction method.

UNIT – III 10 Hours

Problems in construction of high embankments- settlement and stability of embankment, foundation. Stability of hill slopes, control of erosion. Types of Failure of slopes, Methods of analysis of slope stability – Slip Circle and Taylors methods, Total and Effective Stress Methods, Determination of Stresses in Foundation for settlement Analysis, Analysis of Consolidation settlements of Embankments

UNIT – IV 10 Hours

Use of special materials-geo-synthetics for drainage and in pavement layers. Use of reinforced earth retaining walls, Nailing Technique, Techniques of pavement construct ion using recycled materials—cold and hot mix recycling of bituminous materials. **Soil stabilization** — Types, materials, design and Construction of various stabilization techniques like lime, cement, bituminous and flyash.

UNIT – V 09 Hours

Special construction techniques-construction techniques of cell filled concrete pavements—design, economics and construction method, and its application. Road construction on desert region and coastal areas, alternative methods, road construction on high altitudes, hilly and mountainous terrain.

Course outcomes:

After studying this course, students will be able to:

- 1. Explain the difficulties of road construction in weak and marshy soils and the precautions to be taken.
- 2. Choose improvement methods of strengthening soil fills and embankments for pavement layers.
- 3. Analyze the difficulties associated with construction of high embankments and maintaining hill slopes stability.
- 4. Evaluate the use of recycled materials in road construction with appropriate design methods, construction methods for roads in coastal and desert environment.

- 1. "Designing with Geosynthetics", R.M.Koerner 4th Edition 1997 Prentice Hall, New Jerssey, ISBN-13: 978-0131454156, ISBN-10: 0131454153
- 2. IRC-75 "Guidelines for the design of High embankments" -IRC,1979
- 3. DSIR–HMSO,London,1954, ISBN: 9780115502781
- 4. "Foundation Engineering", Leonards G.A-McGraw 1962 Hill Book Company, New York, ISBN-10: 0070371989; ISBN-13: 978-0070371989

- 5. "Drainage of Highway and Airfield Pavement", CedgreenH.R. 1974 –John WilleyandSons. Inc, New York, ISBN: 1560512636
- 6. "Pavements on Expansive clays", G.Kassiff M.Livnet. G.Wisemen, 1969 –Jerusalem Academy Press, Jerusalem .Israel.

Continuous Internal Evaluation (CIE): Total marks: 100

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Semester End Evaluation (SEE): Total marks: 100 Theory (100 Marks) =Total Marks (100)

Scheme of Semester End Examination (SEE) for 100 marks:

DESIGN OF BRIDGES AND GRADE SEPARATORS (Group D: Core Elective) (Theory) Course Code: 18MST 2D2 Credits: L:T:P: 4:0:0 Hours:48L SEE Marks: 100 SEE Duration: 3 Hrs

Course objectives: This course will enable students to

- 1. Describe the types and components of a bridge with specifications for designing them for highways.
- 2. Discuss the use of different types of bridge bearings, their installation and maintenance aspects under the action of vehicular loads.
- 3. Examine the design aspects of bridge approaches for RCC, PSC and Steel bridges.
- 4. Analyze the loading conditions on the bridges and design the elements as per IRC load specifications.
- **5.** Identify the quality control measures during the execution of bridges both for substructure and super structure portions of the bridge.

UNIT – I 09 Hours

Introduction: Historical Developments, Site Selection for Bridges, Classification of Bridges and Forces on Bridges. Bridge substructures: Abutments, Wing walls, Approaches.

. UNIT – II 10 Hours

Box Culvert: Different Loading Cases IRC Class AA Tracked, Wheeled and Class A Loading, working out the worst combination of loading, Moment Distribution, Calculation of BM & SF, Structural Design of Slab Culvert, with Reinforcement Details.

UNIT-III 10 Hours

T Beam Bridge Slab Design: Proportioning of Components Analysis of interior Slab & Cantilever Slab Using IRC Class AA Tracked, Wheeled Class A Loading, Structural Design of Slab, with Reinforcement Detail. T Beam Bridge Cross Girder Design: Analysis of Cross Girder for Dead Load & Live Load Using IRC Class AA Tracked, Wheeled Class A Loading A Loads, Structural Design of beam with Reinforcement Detail.

UNIT – IV 10 Hours

Bearings – Types of bearings, Bearings for slab bridges – Bearings for girder bridges – Design of Elastomeric bearing – Joints – Expansion joints, repair and rehabilitation of concrete bridges.

UNIT – V 09 Hours

PSC Bridges: Introduction to Pre and Post Tensioning, Proportioning of Components, Analysis and Structural Design of Slab, Analysis of Main Girder using COURBON's Method for IRC Class AA tracked vehicle, Calculation of pre-stressing force and eccentricity, cable profile and calculation of stresses, Design of End block and detailing of main girder.

Course outcomes:

After studying this course, students will be able to:

- CO1: Explain the components of a bridge following the specifications for highways.
- CO2: Compare different types of bridge bearings, their installation and maintenance aspects under the action of vehicular loads.
- CO3: Analyse the IRC loading conditions for the design of bridges.
- CO4: Evaluate the design aspects of bridge approaches for RCC, PSC and Steel bridges.

- 1 "Essentials of bridge Engineering", D.Johnson Victor,-Oxford, IBH publishing company, ISBN, 8120417178, 9788120417175
- 2 "Bridge Engineering", Ponnuswamy-,1989, McGraw Hill Publication, ISBN-10: 0070656959
- "Design of Concrete Bridges", Vazirani Ratwani & M.G.Aswani, 2004 –Khanna Publishers, New Delhi, ISBN-13. 978-81-7409-117-3. ISBN-10

4 "Design of Bridges"- Dr. Krishna Raju, Oxford, 2001 IBH Publishing company Limited, ISBN 978-81-204-1741-0 788120 114 17410

Continuous Internal Evaluation (CIE): Total marks: 100

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks.. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Semester End Evaluation (SEE): Total marks: 100 Theory (100 Marks) =Total Marks (100)

Scheme of Semester End Examination (SEE) for 100 marks:

INTELLIGENT TRANSPORTATION SYSTEMS (Group D: Core Elective) (Theory) Course Code: 18MHT 2D3 CIE Marks:100 Credits: L:T:P: 4:0:0 SEE Marks:100 Hours:48L SEE Duration:03Hrs

Course Learning Objectives (CLO):

Graduates shall be able to

- 1. Study the fundamental concepts of ITS
- 2. Understand the design and implementation,
- 3. To know functional areas, user needs and services in ITS.
- 4. To learn the concepts of ITS standards and applications.

Unit – I 8 Hrs

History of ITS: Definition of ITS and Identification of ITS Objectives, Historical Background, Benefits of ITS - ITS technological elements, Definitions/Functions, Purpose.

Unit – II 10Hrs

Design and implementation: Selection of methodologies, data collection and processing, control, decision systems, simulation, real-time systems, car for the future, intelligent vehicle sensor technologies, microcontrollers and micro-electronic technology, vehicle optical sensor, radio frequency technologies for vehicle information systems, global positioning technology, intelligent vehicle detection and control technologies, Case Studies.

Unit – III 10Hrs

ITS functional areas: 1. Advanced traffic management systems (ATMS); 2. Advanced traveller information systems (ATIS); 3. Commercial vehicle operations (CVO); 4. Advanced public transportation systems (APTS); 5. Advanced rural transportation systems (ARTS); 6. Advanced vehicle control systems (AVCS), Case Studies.

Unit – IV 10Hrs

ITS User Needs and Services: Travel and Traffic management, Public Transportation Management, Electronic Payment, Commercial Vehicle Operations, Emergency Management, Advanced Vehicle safety systems, Information Management

Unit – V 10Hrs

ITS Standards and Applications: ITS architecture and standards -Automated Highway Systems - Vehicles in Platoons – Integration of Automated Highway Systems. ITS Programs in the World – Overview of ITS implementations in developed countries, ITS in developing countries.

Expected Course Outcomes:

After going through this course the student will be able to:

- CO1: Select appropriate ITS technology depending upon site specific conditions.
- CO2: Design and implement ITS components
- CO3: Differentiate different ITS user services
- CO4: Understand ITS architecture and standards

- 1. "Fundamentals of Intelligent Transportation Systems Planning", Choudury M A and Sadek A, (31 March 2003); Artech House publishers, ISBN-10: 1580531601
- 2. "Intelligent Transport Systems: Technologies and Applications", Asier Perallos, Unai Hernandez-Jayo, Enrique Onieva, ©2015, Ignacio Julio García Zuazola Wiley Publishing, ISBN:1118894782 9781118894781
- 3. ITS Hand Book 2000 Recommendations for World Road Association (PIARC) by Kan Paul Chen, John Miles.
- 4. "Intelligent Transport Systems", Dominique Luzeaux "Jean-René Ruault, Michel Chavret 7 MAR

	2013 Copyright © 2010 by John Wiley & Sons, Inc DOI: 10.1002/9781118557495.ch6	
5	"Perspective on Intelligent Transport Systems", Sussman, J. M, 2005 Artech House Publishers,	
	ISBN-13: 978-0387232577.	

Continuous Internal Evaluation (CIE): Total marks: 100

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Semester End Evaluation (SEE): Total marks: 100 Theory (100 Marks) =Total Marks (100)

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II						
	BUSINESS ANALYTICS					
		(Gr	oup G: Global Elective)		
Course Code	:	18CS2G01		CIE Marks	:	100
Credits L: T: P	Credits L: T: P : 3:0:0 SEE Marks : 100					
Hours	Hours : 36L SEE Duration : 3 hrs					

Course Learning Objectives:

Graduates shall be able to

- 1. Formulate and solve business problems to support managerial decision making.
- 2. Explore the concepts, processes needed to develop, report, and analyze business data.
- 3. Use data mining techniques concepts to identify specific patterns in the data
- 4. Interpret data appropriately and solve problems from various sectors such as manufacturing, service, retail, software, banking and finance.

Unit – I	
Business analytics: Overview of Business analytics, Scope of Business analytics, Business	07 Hrs
Analytics Process, Relationship of Business Analytics Process and organization,	
competitive advantages of Business Analytics.	
Statistical Tools: Statistical Notation, Descriptive Statistical methods, Review of probability	
distribution and data modelling.	
Unit – II	
Trendiness and Regression Analysis: Modelling Relationships and Trends in Data, simple	07 Hrs
Linear Regression. Important Resources, Business Analytics Personnel, Data and models	
for	
Business analytics, problem solving, Visualizing and Exploring Data, Business Analytics	
Technology.	
Unit – III	
Organization Structures of Business analytics, Team management, Management Issues,	07 Hrs
Designing Information Policy, Outsourcing, Ensuring Data Quality, Measuring	
contribution of Business analytics, Managing Changes. Descriptive Analytics, Predictive	
Analytics, Predicative Modelling, Predictive analytics analysis.	
Unit – IV	
Forecasting Techniques: Qualitative and Judgmental Forecasting, Statistical Forecasting	08 Hrs
Models, Forecasting Models for Stationary Time Series, Forecasting Models for Time	
Series with a Linear Trend, Forecasting Time Series with Seasonality, Regression	
Forecasting with Casual Variables, Selecting Appropriate Forecasting Models.	
Unit –V	
Decision Analysis: Formulating Decision Problems, Decision Strategies with and without	07 Hrs
Outcome, Probabilities, Decision Trees, The Value of Information, Utility and Decision	
Making.	

Course	Course Outcomes: After going through this course the student will be able to:				
CO1	CO1 Explore the concepts, data and models for Business Analytics.				
CO2 Analyze various techniques for modelling and prediction.					
CO3 Design the clear and actionable insights by translating data.					
CO4	CO4 Formulate decision problems to solve business applications				

Reference Books:

Marc J. Schniederjans, Dara G. Schniederjans, Christopher M. Starkey, Business analytics Principles, Concepts, and Applications FT Press Analytics, 1st Edition, 2014, ISBN-13: 978-0133989403, ISBN-10: 0133989402

2	Evan Stubs , The Value of Business Analytics: Identifying the Path to Profitability, John Wiley & Sons, ISBN:9781118983881 DOI:10.1002/9781118983881,1st edition 2014
3	James Evans, Business Analytics, Pearsons Education 2 nd edition, ISBN-13: 978-0321997821 ISBN-10: 0321997824
4	Gary Cokins and Lawrence Maisel, Predictive Business Analytics Forward Looking Capabilities to Improve Business, Wiley; 1 st edition, 2013.

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

	Semester: II					
	INDUSTRIAL AND OCCUPATIONAL HEALTH AND SAFETY					
		(Group G :Global Elective)				
Cou	Course Code: 18CV2G02 CIE Marks:100					
Cred	lits: L: T: P: 3:0:0	SEE Mark	s:100			
Hou	Hours: 36L SEE Duration:3Hrs					
Cou	rse Learning Objectives	:				
1	To understand the Indus	strial and Occupational health and safety and its importance.				
2	2 To understand the different materials, occupations to which the employee can exposed to.					
3	3 To know the characteristics of materials and effect on health.					
4	4 To evaluate the different processes and maintenance required in the industries to avoid accidents.					
	UNIT – I 7Hrs					

Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and fire fighting, equipment and methods.

UNIT – II 7Hrs

Occupational health and safety: Introduction, Health, Occupational health: definition, Interaction between work and health, Health hazards, workplace, economy and sustainable development, Work as a factor in health promotion. Health protection and promotion Activities in the workplace: National governments, Management, Workers, Workers' representatives and unions, Communities, Occupational health professionals. Potential health hazards: Air contaminants, Chemical hazards, Biological hazards, Physical hazards, Ergonomic hazards, Psychosocial factors, Evaluation of health hazards: Exposure measurement techniques, Interpretation of findings recommended exposure limits. Controlling hazards: Engineering controls, Work practice controls, Administrative controls. Occupational diseases: Definition, Characteristics of occupational diseases, Prevention of occupational diseases.

UNIT – III 8Hrs

Hazardous Materials characteristics and effects on health: Introduction, Chemical Agents, Organic Liquids, Gases, Metals and Metallic Compounds, Particulates and Fibers, Alkalies and Oxidizers, General Manufacturing Materials, Chemical Substitutes, Allergens, Carcinogens, Mutagens, Reproductive Hazards, Sensitizers and Teratogens, Recommended Chemical Exposure Limits. Physical Agents, Noise and Vibration, Temperature and Pressure, Carcinogenicity, Mutagenicity and Teratogenicity. Ergonomic Stresses: Stress-Related Health Incidents, Eyestrain, Repetitive Motion, Lower Back Pain, Video Display Terminals.

UNIT – IV 7Hrs

Wear and Corrosion and their prevention: Wear- types, causes, effects, wear reduction methods, lubricants-types and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.

UNIT – V 7Hrs

Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components,

over hauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps,

iii. Air compressors, iv. Diesel generating (DG) sets, Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance.

Expected Course Outcomes:

After successful completion of this course the student will be able to:

CO1	Explain the Industrial and Occupational health and safety and its importance.				
CO2	Demonstrate the exposure of different materials, occupational environment to which the employee				
	can expose in the industries.				
CO3	Characterize the different type materials, with respect to safety and health hazards of it.				
CO4	Analyze the different processes with regards to safety and health and the maintenance required in				
	the industries to avoid accidents.				
Refer	rence Books:				
6.	Maintenance Engineering Handbook, Higgins & Morrow, SBN 10: 0070432015 / ISBN 13: 9780070432017, Published by McGraw-Hill Education. Da Information Services.				
7.	H. P. Garg, Maintenance Engineering Principles, Practices & Management, 2009,S. Chand and Company, New Delhi, ISBN:9788121926447				
8.	Fundamental Principles of Occupational Health and Safety, Benjamin O. ALLI, Second edition, 2008 International Labour Office – Geneva: ILO, ISBN 978-92-2-120454-1				
9.	Foundation Engineering Handbook, 2008, Winterkorn, Hans, Chapman & Hall London. ISBN:8788111925428.				

Continuous Internal Evaluation (CIE): Total marks: 100 Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Semester End Evaluation (SEE): Total marks: 100 Scheme of Semester End Examination (SEE) for 100 marks:

	Semester: II					
	MODELING USING LINEAR PROGRAMMING					
			(Group G: Global Elective)			
Course Code	Course Code : 18IM2G03 CIE Marks : 100				100	
Credits L: T: P	:	3:0:0	SEE Marks		:	100
Hours	:	36L	SEE Durat	on	:	3 hrs

Unit – I	
Linear Programming: Introduction to Linear Programming problem	07 Hrs
Simplex methods: Variants of Simplex Algorithm – Use of Artificial Variables	
Unit – II	
Advanced Linear Programming: Two Phase simplex techniques, Revised simplex method	07 Hrs
Duality: Primal-Dual relationships, Economic interpretation of duality	
Unit – III	
Sensitivity Analysis: Graphical sensitivity analysis, Algebraic sensitivity analysis - changes	07 Hrs
in RHS, Changes in objectives, Post optimal analysis - changes affecting feasibility and	
optimality	
Unit – IV	
Transportation Problem: Formulation of Transportation Model, Basic Feasible Solution using North-West corner, Least Cost, Vogel's Approximation Method, Optimality Methods,	08 Hrs
Unbalanced Transportation Problem, Degeneracy in Transportation Problems, Variants in	
Transportation Problems.	
Unit –V	
Assignment Problem: Formulation of the Assignment problem, solution method of	07 Hrs
assignment problem-Hungarian Method, Variants in assignment problem, Travelling	
Salesman Problem (TSP).	

Cours	Course Outcomes: After going through this course the student will be able to:		
CO1	Explain the various Linear Programming models and their areas of application.		
CO2	Formulate and solve problems using Linear Programming methods.		
CO3	Develop models for real life problems using Linear Programming techniques.		
CO4	Analyze solutions obtained through Linear Programming techniques.		

R	Reference Books:				
1	Taha H A, Operation Research An Introduction, PHI, 8 th Edition, 2009, ISBN: 0130488089.				
2	Philips, Ravindran and Solberg - Principles of Operations Research – Theory and Practice, John Wiley & Sons (Asia) Pvt Ltd, 2 nd Edition, 2000, ISBN 13: 978-81-265-1256-0				
3	Hiller, Liberman, Nag, Basu, Introduction to Operation Research, Tata McGraw Hill 9 th Edition, 2012, ISBN 13: 978-0-07-133346-7				
4	J K Sharma, Operations Research Theory and Application, Pearson Education Pvt Ltd, 4 th Edition, 2009, ISBN 13: 978-0-23-063885-3.				

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II						
	PROJECT MANAGEMENT					
	(Group G: Global Elective)					
Course Code	:	18IM2G04		CIE Marks	:	100
Credits L: T: P	:	3:0:0		SEE Marks	:	100
Hours	:	36L		SEE Duration	:	3 hrs

Unit – I	
Introduction: Project Planning, Need of Project Planning, Project Life Cycle, Roles,	07 Hrs
Responsibility and Team Work, Project Planning Process, Work Breakdown Structure	
(WBS), Introduction to Agile Methodology.	
Unit – II	
Capital Budgeting: Capital Investments: Importance and Difficulties, phases of capital	07 Hrs
budgeting, levels of decision making, facets of project analysis, feasibility study - a	
schematic diagram, objectives of capital budgeting	
Unit – III	
Project Costing: Cost of Project, Means of Finance, Cost of Production, Working Capital	08 Hrs
Requirement and its Financing, Profitability Projections, Projected Cash Flow Statement,	
Projected Balance Sheet, Multi-year Projections, Financial Modeling, Social Cost Benefit	
Analysis	
Unit – IV	
Tools & Techniques of Project Management: Bar (GANTT) chart, bar chart for combined	07Hrs
activities, logic diagrams and networks, Project evaluation and review Techniques (PERT)	
Critical Path Method (CPM), Computerized project management	
Unit-V	
Project Management and Certification: An introduction to SEI, CMMI and project	07 Hrs
management institute USA – importance of the same for the industry and practitioners.	
PMBOK 6 - Introduction to Agile Methodology, Themes / Epics / Stories, Implementing	
Agile.	
Domain Specific Case Studies on Project Management: Case studies covering project	
planning, scheduling, use of tools & techniques, performance measurement.	

Cours	Course Outcomes: After going through this course the student will be able to:				
CO1	Explain project planning activities that accurately forecast project costs, timelines, and quality.				
CO2	Evaluate the budget and cost analysis of project feasibility.				
CO3	Analyze the concepts, tools and techniques for managing projects.				
CO4	Illustrate project management practices to meet the needs of Domain specific stakeholders from multiple sectors of the economy (i.e. consulting, government, arts, media, and charity organizations).				

Re	Reference Books:				
1	Prasanna Chandra, Project Planning Analysis Selection Financing Implementation & Review, Tata McGraw Hill Publication, 8 th Edition, 2010, ISBN 0-07-007793-2.				
2	Project Management Institute, A Guide to the Project Management Body of Knowledge (PMBOK Guide), 5 th Edition, 2013, ISBN: 978-1-935589-67-9				
3	Harold Kerzner, Project Management A System approach to Planning Scheduling & Controlling, John Wiley & Sons Inc., 11 th Edition, 2013, ISBN 978-1-118-02227-6.				
4	Rory Burke, Project Management – Planning and Controlling Techniques, John Wiley & Sons, 4 th Edition, 2004, ISBN: 9812-53-121-1				

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

	II Semester	
	ENERGY MANAGEMENT	
	(Group G: Global Elective)	
Course Code: 18CH2G05		CIE Marks: 100
Credits: L:T:P: 3:0:0		SEE Marks: 100
Hours: 36L		SEE Hrs: 3

Course Learning Objectives(CLO):

Students are able to:

- 1. Explain the importance of energy conservation and energy audit.
- 2. Understand basic principles of renewable sources of energy and technologies.
- 3. Outline utilization of renewable energy sources for both domestics and industrial application.
- 4. Analyse the environmental aspects of renewable energy resources.

Unit-I	08 Hrs

Energy conservation:

Principles of energy conservation, Energy audit and types of energy audit, Energy conservation approaches, Cogeneration and types of cogeneration, Heat Exchangers and classification.

Unit-II 07 Hrs

Wet Biomass Gasifiers:

Introduction, Classification of feedstock for biogas generation, Biomass conversion technologies: Wet and dry processes, Photosynthesis, Biogas generation, Factors affecting bio-digestion, Classification of biogas plants, Floating drum plant and fixed dome plant their advantages and disadvantages.

Unit -III 07 Hrs

Dry Biomass Gasifiers:

Biomass energy conversion routes, Thermal gasification of biomass, Classification of gasifiers, Fixed bed systems: Construction and operation of up draught and down draught gasifiers.

Unit -IV 07 Hrs

Solar Photovoltaic:

Principle of photovoltaic conversion of solar energy, Types of solar cells and fabrication.

Wind Energy:

Classification, Factors influencing wind, WECS & classification.

Unit -V 07 Hrs

Alternative liquid fuels:

Introduction, Ethanol production: Raw materials, Pre-treatment, Conversion processes with detailed flow sheet. Gasification of wood: Detailed process, Gas purification and shift conversion, Biofuel from water hyacinth.

Course outcomes (CO):

On completion of the course, the student should have acquired the ability to

CO1: Understand the use alternate fuels for energy conversion

CO2: Develop a scheme for energy audit

CO3: Evaluate the factors affecting biomass energy conversion

CO4: Design a biogas plant for wet and dry feed

- Nonconventional energy, Ashok V Desai, 5th Edition, 2011, New Age International (P) Limited, ISBN 13: 9788122402070.
- Biogas Technology A Practical Hand Book, Khandelwal K C and Mahdi S S, Vol. I & II, 1986, McGraw-Hill Education, ISBN-13: 978-0074517239.

- Biomass Conversion and Technology, Charles Y Wereko-Brobby and Essel B Hagan, 1st Edition, 1996, John Wiley & Sons, ISBN-13: 978-0471962465.
- 4 Solar Photovoltaics: Fundamental Applications and Technologies, C. S. Solanki, 2nd Edition, 2009, Prentice Hall of India, ISBN:9788120343863.

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks):

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/ field work 4) mini project.

Total CIE is 20+50+30 = 100 marks.

Scheme of Semester End Examination (SEE) for 100 marks:

	Semester: II					
	INDUSTRY 4.0					
	(Group G: Global Elective)					
Course Code	:	18ME2G06		CIE Marks	:	100
Credits L: T: P	:	3:0:0		SEE Marks	:	100
Hours	:	36L		SEE Duration	:	3 hrs

TT '4 T	
Unit – I	07 II
Introduction: Industrial, Internet, Case studies, Cloud and Fog, M2M Learning and	07 Hrs
Artificial Intelligence, AR, Industrial Internet Architecture Framework (IIAF), Data	
Management.	
Unit - II The Concent of the HeT: Medern Communication Protectle Windows Communication	07 II
The Concept of the HoT: Modern Communication Protocols, Wireless Communication	07 Hrs
Technologies, Proximity Network Communication Protocols, TCP/IP, API: A Technical	
Perspective, Middleware Architecture.	
Unit – III	00 TT
Data Analytics in Manufacturing: Introduction, Power Consumption in manufacturing,	08 Hrs
Anomaly Detection in Air Conditioning, Smart Remote Machinery Maintenance Systems	
with Komatsu, Quality Prediction in Steel Manufacturing.	
Internet of Things and New Value Proposition, Introduction, Internet of Things Examples,	
IoTs Value Creation Barriers: Standards, Security and Privacy Concerns.	
Advances in Robotics in the Era of Industry 4.0, Introduction, Recent Technological	
Components of Robots, Advanced Sensor Technologies, Artificial Intelligence, Internet of	
Robotic Things, Cloud Robotics.	
Unit – IV	0= 11
Additive Manufacturing Technologies and Applications: Introduction, Additive	07 Hrs
Manufacturing (AM) Technologies, Stereo lithography, 3DP, Fused Deposition Modeling,	
Selective Laser Sintering, Laminated Object Manufacturing, Laser Engineered Net	
Shaping, Advantages of Additive Manufacturing, Disadvantages of Additive	
Manufacturing.	
Advances in Virtual Factory Research and Applications, The State of Art, The Virtual	
Factory Software , Limitations of the Commercial Software	
Unit –V	05.11
Augmented Reality: The Role of Augmented Reality in the Age of Industry 4.0,	07 Hrs
Introduction, AR Hardware and Software Technology, Industrial Applications of AR,	
Maintenance, Assembly, Collaborative Operations, Training.	
Smart Factories: Introduction, Smart factories in action, Importance, Real world smart	
factories, The way forward.	
A Roadmap: Digital Transformation, Transforming Operational Processes, Business	
Models, Increase Operational Efficiency, Develop New Business Models.	

K	Reference Books:					
1	Alasdair Gilchrist, INDUSTRY 4.0 THE INDUSTRIAL INTERNET OF THINGS, Apress					
	Publisher, ISBN-13 (pbk): 978-1-4842-2046-7					
2	Alp Ustundag, Emre Cevikcan, Industry 4.0: Managing The Digital Transformation, Springer, 2018					
	ISBN 978-3-319-57869-9.					
	Ovidiu Vermesan and Peer Friess, Designing the industry - Internet of things connecting the					
3	physical, digital and virtual worlds, Rivers Publishers, 2016 ISBN 978-87-93379-81-7					

4 Christoph Jan Bartodziej, The concept Industry 4.0- An Empirical Analysis of Technologies and Applications in Production Logistics, Springer Gabler, 2017 ISBN 978-3-6581-6502-4.

Cours	Course Outcomes: After going through this course the student will be able to:					
CO1	Understand the opportunities, challenges brought about by Industry 4.0 for benefits of					
	organizations and individuals					
CO2	Analyze the effectiveness of Smart Factories, Smart cities, Smart products and Smart services					
CO3	Apply the Industrial 4.0 concepts in a manufacturing plant to improve productivity and profits					
CO4	Evaluate the effectiveness of Cloud Computing in a networked economy					

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II						
ADVANCED MATERIALS						
	(Group G: Global Elective)					
Course Code	:	18ME2G07		CIE Marks	:	100
Credits L: T: P	:	3:0:0		SEE Marks	:	100
Hours	:	36L		SEE Duration	:	3 hrs

Unit – I			
Classification and Selection of Materials: Classification of materials. Properties required	07 Hrs		
in Engineering materials, Criteria of selection of materials. Requirements / needs of			
advance materials.			
Unit – II			
Non Metallic Materials: Classification of n on metallic materials, Rubber: Properties,	07 Hrs		
processing and applications. Plastics: Thermosetting and Thermoplastics, Applications and			
properties. Ceramics: Properties and applications. Adhesives: Properties and applications.			
Optical fibers: Properties and applications. Composites: Properties and applications.			
Unit – III			
High Strength Materials: Methods of strengthening of alloys, Materials available for			
high strength applications, Properties required for high strength materials, Applications of			
high strength materials			
Unit – IV			
Low & High Temperature Materials	07 Hrs		
Properties required for low temperature applications, Materials available for low			
temperature applications, Requirements of materials for high temperature applications,			
Materials available for high temperature applications, Applications of low and high			
temperature materials.			
Unit –V			
Nanomaterials: Definition, Types of nanomaterials including carbon nanotubes and			
nanocomposites, Physical and mechanical properties, Applications of nanomaterials			

Cours	Course Outcomes: After going through this course the student will be able to:		
CO1	Describe metallic and non metallic materials		
CO2	Explain preparation of high strength Materials		
CO3	Integrate knowledge of different types of advanced engineering Materials		
CO4	Analyse problem and find appropriate solution for use of materials.		

R	Reference Books:				
1	Donald R. Askeland, and Pradeep P. Fulay, The Science & Engineering of Materials, 5th Edition,				
	Thomson, 2006, ISBN-13-978-0534553968				
2	Gregory L. Timp, Nanotechnologym 1999th Editionmm Springer, 1999 ISBN-13: 978-0387983349				
	Dr. VD Kodgire and Dr. S V Kodgire, Material Science and Metallurgym 42nd Edition 2018,				
3	Everest Publishing House ISBN NO: 81 86314 00 8				
4	N Bhatnagar, T S Srivatsan, Processing and Fabrication of Advanced Materials, 2008, IK International, ISBN: 978819077702				

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each

and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

	Semester: II			
	COMPOSITE MATERIALS SCIENCE AND ENGINEERING			
	(Common to AS, BT, CH, CV, IM, ME)			
Cou	Course Code: 18CHY2G08 CIE Marks: 100			
Credits: L:T:P: 3:1:0 SEE Marks: 100		SEE Marks: 100		
Hou	Hours: 36L +12T SEE Duration: 3Hrs		SEE Duration: 3Hrs	
Cou	Course Learning Objectives:			
1	Understand the properties of composite materials.			
2	Apply the basic concepts of Chemistry to develop futuristic composite materials for high-tech			
	applications in the area of Engineering.			
3	3 Impart knowledge in the different fields of material chemistry so as to apply it to the problems			
	in engineering field.			
4	Develop analytical capabilities of students so that they can characterize, transform and use			
	materials in engineering and apply knowledge gained in solving related engineering problems.			

materials in engineering and apply knowledge gained in solving related engineering problems.			
Unit-I			
Introduction to composite materials	07 Hrs		
Fundamentals of composites - need for composites - Enhancement of properties -			
Classification based on matrix- Polymer matrix composites (PMC), Metal matrix			
composites (MMC), Ceramic matrix composites (CMC) – Constituents of composites,			
Interfaces and Interphases, Distribution of constituents, Types of Reinforcements, Particle			
reinforced composites, Fibre reinforced composites. Fiber production techniques for glass,			
carbon and ceramic fibers Applications of various types of composites.			
Unit – II			
Polymer matrix composites (PMC)	08 Hrs		
Polymer resins – Thermosetting resins, Thermoplastic resins & Elastomers,			
Reinforcement fibres-Types, Rovings, Woven fabrics. PMC processes – Hand Layup			
Processes, Spray up processes – Compression Moulding – Injection Moulding – Resin			
Transfer Moulding – Pultrusion – Filament winding – Injection moulding. Glass fibre and			
carbon fibre reinforced composites (GFRP & CFRP). Laminates- Balanced Laminates,			
Symmetric Laminates, Angle Ply Laminates, Cross Ply Laminates. Mechanical Testing of			
PMC- Tensile Strength, Flexural Strength, ILSS, Impact Strength- As per ASTM Standard.			
Applications of PMC in aerospace, automotive industries.			
Unit –III			
Ceramic matrix composites and special composites	07 Hrs		
Engineering ceramic materials – properties – advantages – limitations – monolithic			
ceramics – need for CMC – ceramic matrix – various types of ceramic matrix composites-			
oxide ceramics – non oxide ceramics – Aluminium oxide – silicon nitride – reinforcements			
- particles- fibres- whiskers. Sintering - Hot pressing - Cold Isostatic Pressing (CIPing) -			
Hot isostatic pressing (HIPing). Applications of CMC in aerospace, automotive industries-			
Carbon /carbon composites – advantages of carbon matrix – limitations of carbon matrix			
carbon fibre – chemical vapour deposition of carbon on carbon fibre perform. Sol-gel			
technique- Processing of Ceramic Matrix composites.			
Unit –IV			
Metal matrix composites	07 Hrs		
Characteristics of MMC, various types of metal matrix composites alloy vs. MMC,			
advantages of MMC, limitations of MMC, Reinforcements – particles – fibres. Effect of			
reinforcement – volume fraction – rule of mixtures. Processing of MMC – powder			
metallurgy process – diffusion bonding – stir casting – squeeze casting, a spray process,			
Liquid infiltration In-situ reactions-Interface-measurement of interface properties-			
applications of MMC in aerospace, automotive industries.			

Unit –V			
Polymer nano composites			
Introduction and Significance of polymer Nano composites. Intercalated And Exfoliated			
Nanocomposites. Classification of Nano fillers- nanolayers, nanotubes, nanoparticles.			
Preparation of Polymer Nano composites by Solution, In-situ Polymerization and melt			
mixing techniques. Characterization Of polymer nanocomposites- XRD, TEM, SEM and			
AFM. Mechanical and Rheological properties of Polymer Nano composites. Gas barrier,			
Chemical-Resistance, Thermal and Flame retardant properties of polymer nanocomposites.			
Optical properties and Biodegradability studies of Polymer nanocomposites, Applications			
of polymer nano-composites			

Course	Course Outcomes: After completing the course, the students will be able to				
CO1:	Understand the purpose and the ways to develop new materials upon proper combination of				
	known materials.				
CO2:	Identify the basic constituents of a composite materials and list the choice of materials				
	available				
CO3:	Will be capable of comparing/evaluating the relative merits of using alternatives for important				
	engineering and other applications.				
CO4:	Get insight to the possibility of replacing the existing macro materials with nano-materials.				

Refere	Reference Books				
1	Composite Materials Science and Engineering, Krishan K Chawla, 3 rd Edition Springerverlag Gmbh, , ISBN: 9780387743646, 0387743642				
2	The Science and Engineering of Materials, K Balani, Donald R Askeland,6 th Edition-Cengage, Publishers, ISBN: 9788131516416				
3	Polymer Science and Technology, Joel R Fried, 2 nd Edition, Prentice Hall, ISBN: 9780137039555				
4	Nanomaterials and nanocomposites, Rajendra Kumar Goyal, 2 nd Edition, CRC Press-Taylor & Francis, ISBN: 9781498761666, 1498761666				

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

Semester : II			
PHYSICS OF MATERIALS			
(Group G: Global Elective)			
Course Code: 18PHY2G09		CIE Marks: 100	
Credits: L:T:P:: 3:0:0		SEE Marks: 100	
Hours: 36L		SEE Duration: 3Hrs	

Course Learning Objectives (CLO):

Student are able to

- 1. Classify the crystals based on lattice parameters.
- 2. Explain the behavior of Dielectrics with change in frequency.
- 3. Classify the magnetic materials based on Quantum theory as well understand superconductors.
- 4.Explain direct and indirect bandgap semiconductors, polymer semiconductors and Photoconductive polymers.
- 5.Describe the behavior of Smart materials and its phases and apply to Engineering applications.

Crystal Structure:

Symmetry elements-seven crystals systems-Reciprocal lattice-Packing fraction, Lattice Vibration-Brillouin zones, Analysis of Crystal structure using XRD, Thermal properties.

Unit-II 07 Hrs

Dielectric Materials:

Basic concepts-Langevin's Theory of Polarisation-Clausius-Mossotti Relation-Ferro electricity-Piezoelectricity-Properties of Dielectric in alternating fields-The complex Dielectric Constant and Dielectric Loss, Polarizability as a function of frequency-Complex dielectric constant of non-polar solids-Dipolar relaxation, Applications.

Unit -III 07Hrs

Magnetic Materials:

Dia and Paramagnetic materials-Quantum theory of paramagnetic materials-Paramagnetic susceptibility of conduction electrons-Ferro-anti ferromagnetic materials-Superconductors and Applications..

Unit -IV 07 Hrs

Semiconducting Materials

Semiconductor-Direct and Indirect bonding characteristics-Importance of Quantum confinement-quantum wires and dots-Ferro electric semiconductors-applications-Polymer semiconductors-Photo conductive polymers, Applications.

Unit -V 08 Hrs

Novel Materials

Smart materials-shape memory alloys-shape memory effects-Martensitia Transformation functional properties-processing-texture and its nature.

- 1. Solid State Physics, S O Pillai, 6th Edition, New Age International Publishers, ISBN 10-8122436978.
- 2. Introduction to Solid State Physics, C.Kittel, 7th Edition, 2003, John Wiley & Sons, ISBN 9971-51-180.
- 3. Material Science, Rajendran V and Marikani, 1st Edition, Tata McGraw Hill, ISBN 10-0071328971.
- 4. The Science and Engineering of Materials, Askeland, Fulay, Wright, Balanai, 6th Edition, Cengage Learning, ISBN-13:978-0-495-66802-2.

Course Outcomes (CO's):

CO1: Analyse crystals using XRD technique.

CO2: Explain Dielectric and magnetic materials.

CO3:Integrate knowledge of various types of advanced engineering Materials.

CO4: Use materials for novel applications.

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks):

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/ field work 4) mini project.

Total CIE is 20+50+30 = 100 marks.

Scheme of Semester End Examination (SEE) for 100 marks:

II Semester			
ADVANCED STATISTICAL METHODS			
(Global Elective)			
Course Code: 18MAT2G10	CIE Marks: 100		
Credits: L:T:P:: 3:0:0	SEE Marks: 100		
Hours: 36L	SEE Duration: 3Hrs		

Course Learning Objectives (CLO):

Students are able to:

- 1. Adequate exposure to learn sampling techniques, random phenomena for analyzing data for solving real world problems.
- 2. To learn fundamentals of estimation and problems used in various fields of engineering and science.
- 3. Explore the fundamental principles of statistical inference and tests of hypothesis.
- 4. Apply the concepts of regression and statistical models to solve the problems of engineering applications.

Unit-I	07 Hrs
--------	--------

Sampling Techniques:

Random numbers, Concepts of random sampling from finite and infinite populations, Simple random sampling (with replacement and without replacement). Expectation and standard error of sample mean and proportion.

Unit-II 07 Hrs

Estimation:

Point estimation, Estimator and estimate, Criteria for good estimates - unbiasedness, consistency, efficiency and sufficiency, Method of moment's estimation and maximum likelihood estimation, Properties of maximum likelihood estimator (no proofs), Confidence intervals-population mean (large sample), population proportion.

Unit -III 07Hrs

Tests of Hypothesis:

Principles of Statistical Inference, Formulation of the problems with examples, Simple and composite hypothesis, Null and alternative hypothesis, Tests - type I and type II error, Testing of mean and variance of normal population (one sample and two samples), Chi squared test for goodness of fit.

Unit -IV 07 Hrs

Linear Statistical Models:

Definition of linear model and types, One way ANOVA and two way ANOVA models-one observation per cell, multiple but equal number of observation per cell.

Unit -V 08 Hrs

Linear Regression:

Simple linear regression, Estimation of parameters, Properties of least square estimators, Estimation of error variance, Multivariate data, Multiple linear regressions, Multiple and partial correlation, Autocorrelation-introduction and plausibility of serial dependence, sources of autocorrelation, Durbin-Watson test for auto correlated variables.

Reference Books:

Fundamentals of Statistics (Vol. I and Vol. II), A. M. Goon, M. K. Gupta and B. Dasgupta, 3rd Edition, 1968, World Press Private Limited, ISBN-13: 978-8187567806.

- 2 Applied Statistics and Probability for Engineers, John Wiley & Sons, Inc., 3rd Edition, 2003, ISBN 0-471-20454-4.
- 3 S.C. Gupta, V.K. Kapoor, Fundamentals of Mathematical Statistic, D. C. Montgomery and G. C. Runger, 10th Edition, 2000, A Modern Approach, S Chand Publications, ISBN 81-7014-791-3.
- 4 Regression Analysis: Concepts and Applications , F. A. Graybill and H. K. Iyer, Belmont, Calif, 1994, Duxbury Press, ISBN-13: 978-0534198695.

Course outcomes (CO's):

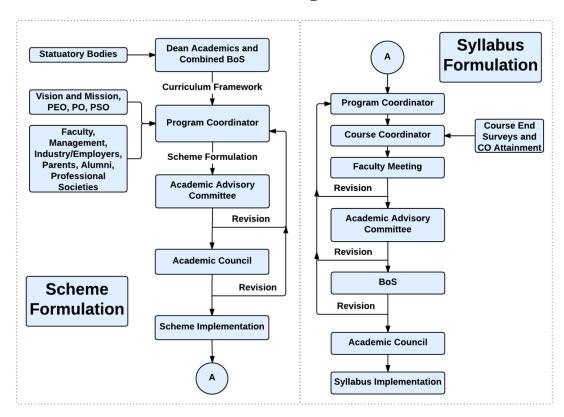
On completion of the course, the student should have acquired the ability to

CO1: Identify and interpret the fundamental concepts of sampling techniques, estimates and types, hypothesis, linear statistical models and linear regression arising in various fields engineering.

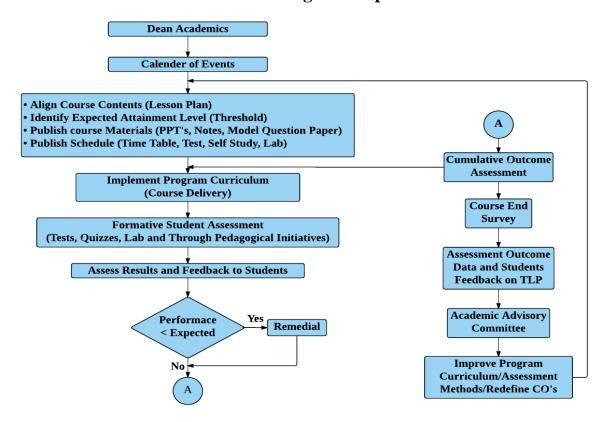
CO2: Apply the knowledge and skills of simple random sampling, estimation, null and alternative hypotheses, errors, one way ANOVA, linear and multiple linear regressions.

CO3: Analyze the physical problem to establish statistical/mathematical model and use appropriate statistical methods to solve and optimize the solution.

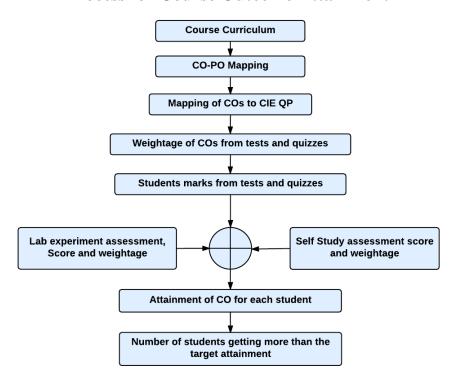
CO4: Distinguish the overall mathematical knowledge gained to demonstrate the problems of sampling techniques, estimation, tests of hypothesis, regression and statistical model arising in many practical situations.

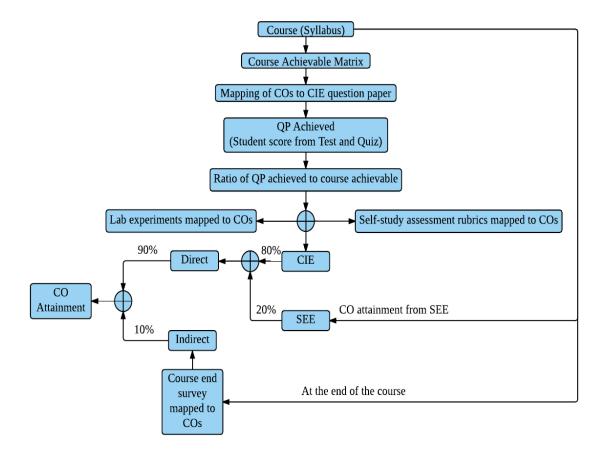

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks):

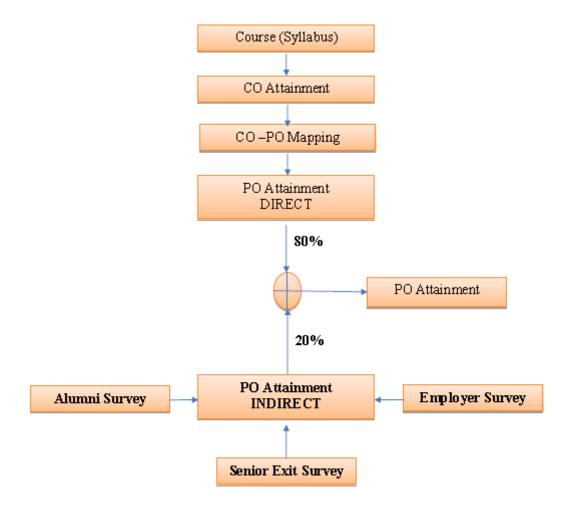
CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/ field work 4) mini project.


Total CIE is 20+50+30 = 100 marks.

Scheme of Semester End Examination (SEE) for 100 marks:


Curriculum Design Process


Academic Planning and Implementation


Process for Course Outcome Attainment

Final CO Attainment Process

Program Outcome Attainment Process

PROGRAM OUTCOMES (PO)

PO1: Independently carryout research / investigation and development work to solve practical problems related to highway technology

PO2: Write and present a substantial technical report /document in the field of Highway technology

PO3: Demonstrate a degree of mastery over materials, analysis, design, construction, maintenance and management of highways

PO4: Use modern tool for design, analysis and management of highways

PO5: Adopt safe, economical, ethical and sustainable factors in design, construction and management of highways.

PO6: Exhibit multi-disciplinary and management skills with commitment to lifelong learning.

RV COLLEGE OF ENGINEERING®

(Autonomous Institution Affiliated to VTU, Belagavi) RV Vidyaniketan Post, Mysuru Road Bengaluru – 560059

Scheme and Syllabus of III & IV Semester (Autonomous System of 2018 Scheme)

Master of Technology (M.Tech) in HIGHWAY TECHNOLOGY

DEPARTMENT OF CIVIL ENGINEERING

VISION

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

MISSION

- 1. To deliver outcome based Quality education, emphasizing on experiential learning with the state of the art infrastructure.
- 2. To create a conducive environment for interdisciplinary research and innovation.
- 3. To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- 4. To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- 5. To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

QUALITY POLICY

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

CORE VALUES

Professionalism, Commitment, Integrity, Team Work and Innovation

RV COLLEGE OF ENGINEERING®

(Autonomous Institution Affiliated to VTU, Belagavi) RV Vidyaniketan Post, Mysore Road Bengaluru – 560059

Scheme and Syllabus of III & IV Semester

(Autonomous System of 2018 Scheme)

Master of Technology (M.Tech) in HIGHWAY TECHNOLOGY

DEPARTMENT OF CIVIL ENGINEERING

DEPARTMENT OF CIVIL ENGINEERING

VISION

Excel in Education, Research and Consultancy in Civil Engineering with Emphasis on Sustainable Development

MISSION

- 1. Disseminating and integrating the knowledge of Civil Engineering and Allied Fields
- 2. Enhancing Industry-Institute Interaction leading to Interdisciplinary Research.
- 3. Imbibing wide-range of Skills in Cutting-Edge Technology for Sustainable Development.
- 4. Motivate Entrepreneurship and Professional Ethics to serve the Society.

PROGRAMME OUTCOMES (PO)

M.Tech in Highway Technology graduates will be able to:

PO1: Independently carryout research / investigation and development work to solve practical problems related to highway technology

PO2: Write and present a substantial technical report /document in the field of Highway technology

PO3: Demonstrate a degree of mastery over materials, analysis, design, construction, maintenance and management of highways

PO4: Use modern tool for design, analysis and management of highways

PO5: Adopt safe, economical, ethical and sustainable factors in design, construction and management of highways.

PO6: Exhibit multi-disciplinary and management skills with commitment to lifelong learning.

ABBREVIATIONS

Sl. No.	Abbreviation	Acronym
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	SEE	Semester End Examination
5.	CE	Professional Elective
6.	GE	Global Elective
7.	HSS	Humanities and Social Sciences
8.	CV	Civil Engineering
9.	ME	Mechanical Engineering
10.	EE	Electrical & Electronics Engineering
11.	EC	Electronics & Communication Engineering
12.	IM	Industrial Engineering & Management
13.	EI	Electronics & Instrumentation Engineering
14.	СН	Chemical Engineering
15.	CS	Computer Science & Engineering
16.	TE	Telecommunication Engineering
17.	IS	Information Science & Engineering
18.	BT	Biotechnology
19.	AS	Aerospace Engineering
20.	PY	Physics
21.	CY	Chemistry
22.	MA	Mathematics
23.	MCA	Master of Computer Applications
24.	MST	Structural Engineering
25.	MHT	Highway Technology
26.	MPD	Product Design & Manufacturing
27.	MCM	Computer Integrated & Manufacturing
28.	MMD	Machine Design
29.	MPE	Power Electronics
30.	MVE	VLSI Design & Embedded Systems
31.	MCS	Communication Systems
32.	MBS	Bio Medical Signal Processing & Instrumentation
33.	МСН	Chemical Engineering
34.	MCE	Computer Science & Engineering
35.	MCN	Computer Network Engineering
36.	MDC	Digital Communication
37.	MRM	Radio Frequency and Microwave Engineering
38.	MSE	Software Engineering
39.	MIT	Information Technology
40.	MBT	Biotechnology
	MBI	Bioinformatics
41.	MIDI	Diomormatics

CONTENTS

	SEMESTER : III						
Sl. No.	Course Code	Course Title	Page No.				
1.	18MHT31	Pavement Deterioration and Evaluation	1				
2.	18MHT32	Internship	3				
3.	18MHT33	Major Project: Phase I	5				
4.	18MHT3EX	Professional Elective-E					
	GROUP E: PROFESSIONAL ELECTIVES						
1.	18MHT 3E1	Pavement Management Systems.	6				
2.	18MHT 3E2	Environment Impact Assessment of Road Projects	8				
3.	18MHT 3E3	Road Construction Planning and Management	10				
	SEMESTER : IV						
Sl. No.	Course Code	Course Title	Page No.				
1.	18MHT41	Major Project: Phase II	11				
2.	18MHT42	Technical Seminar	12				

RV COLLEGE OF ENGINEERING®, BENGALURU - 560059 (Autonomous Institution Affiliated to VTU, Belagavi)

DEPARTMENT OF CIVIL ENGINEERING

M.Tech Program in HIGHWAY TECHNOLOGY

	THIRD SEMESTER CREDIT SCHEME						
Sl. No.	G G 1	Course Title	BoS		Credit A	llocation	
	Course Code			L	T	P	Credits
1	18MHT31	Pavement Deterioration and Evaluation	CV	4	0	1	5
2	18MHT32	Internship	CV	0	0	5	5
3	18MHT33	18MHT33 Major Project : Phase I		0	0	5	5
4	18MHT3EX	Professional Elective-E	CV	4	0	0	4
	Total number of Credits				0	11	19
		Total Number of Hours	8	0	22		

		SEMESTER : III				
	GROUP E: PROFESSIONAL ELECTIVES					
Sl. No.	Course Code	Course Title				
1	18MHT 3E1	Pavement Management Systems.				
2	18MHT 3E2	Environment Impact Assessment of Road Projects				
3	18MHT 3E3	Road Construction Planning and Management				

FOURTH SEMESTER CREDIT SCHEME							
Cl. No.	Course Code	Course Title	BoS	Credit Allocation			
Sl. No.	Course Code	Course Title		L	Т	P	Credits
1	18 MHT41	Major Project: Phase II	CV	0	0	20	20
2	18 MHT42 Technical Seminar		CV	0	0	2	2
		0	0	22	22		
		Total Number of Hou	0	0	44		

SEMESTER: III PAVEMENT DETERIORATION AND EVALUATION (Theory and Practice) 18MHT31 **Course Code CIE Marks** 100 + 50Credits: L:T:P 4:0:1 **SEE Marks** 100+50 Hours 52L+26P **SEE Duration** 3 Hrs+3Hrs Unit – I 10Hrs

Introduction: Structural and functional requirements of flexible and rigid pavements, different types, causes and remedial measures of failures in flexible and rigid pavements.

Unit – II 10Hrs

Pavement surface condition evaluation – requirements, Causes, effects, methods of measurement / evaluation and treatment of: Pavement slipperiness, Riding quality and unevenness, Rating techniques, use of modern equipments for equipment for pavement surface condition measurements, analysis of data, interpretation and application.

Unit – III 12Hrs

Structural evaluation of pavements: requirements, factors affecting structural condition, causes, effects, methods of structural evaluation of flexible pavements by Benkelman beam deflection method, FWD, analysis of data, importance of deflection bowl measurements, interpretation and applications, design of overlay. "Use of FWD and other methods for evaluation of flexible and rigid pavements and their application. Problems

Unit – IV 10Hrs

Overlay design: as per IRC:81-1997, choice of overlay type and pavement materials over existing flexible and rigid pavements, use of white topping, ultra thin white topping, thin white topping and ICBP as overlays

Unit – V 10Hrs

Model pavement studies, pavement testing Under controlled conditions, accelerated testing and evaluation methods. Test track studies. Instrumentation for pavement testing

Laboratory

- 1. Determination of Roughness using fifth wheel bump integrator and MERLIN
- 2. Pavement distress surveys to evaluate pavement condition through PCI ,PSI and PSR
- 3. Determination of texture Depth and skid resistance of pavements
- 4. Structural evaluation of pavements using Benkelman Bump Integrator.

Course Outcomes:

After successful completion of this course the student will be able to:

- CO1: Explain structural and functional adequacies of flexible and rigid pavements
- CO2: Analyze functional and structural deterioration of pavements, overlay types, semi-field studies
- CO3: Categorize pavement condition, distress and overlay techniques
- CO4: Summarize different pavement deterioration and evaluation techniques

Reference Books:

- 1. Principles of Pavement Design, E.J. Yoder & Witczak M.W. 2nd Edition John Willey and Sons Inc., New York, 1975, ISBN: 978-0-471-97780-3
- 2. Modern Pavement Management, Hass R., Hudson. W. R., Zaniewisti J.– Krieger Publishing Company, Florida, 1994, ISBN: 9780070308954
- 3. Pavement Analysis, Per Ulitz Elsevier Amsterdam, ISBN: 0-620-22376-6
- 4. Road Deterioration and Maintenance Effects, Models for Planning and Management, William D. O. Paterson, The Highway Design and Maintenance Standards series, A World Bank Publication, June 1990, ISBN-10: 0801835909;ISBN-13: 978-0801835902.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Continuous Internal Evaluation (CIE); Practical (50 Marks)

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Scheme of Semester End Examination (SEE); Practical (50 Marks)

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Total marks: 100+50=150

Theory (100 Marks) + Practical (50 Marks) = Total Marks (150)

		Sl	EMESTER: III		
]	NTERNSHIP		
Course Code	:	18MHT32	CIE Marks	:	100
Credits L:T:P	:	0:0:5	SEE Marks	:	100
Hours/week	:	10	SEE Duration	:	3 Hrs
			CHIDELINES		

- GUIDELINES
- 1) The duration of the internship shall be for a period of 8 weeks on full time basis after II semester final exams and before the commencement of III semester.
- 2) The student must submit letters from the industry clearly specifying his / her name and the duration of the internship on the company letter head with authorized signature.
- 3) Internship must be related to the field of specialization of the respective PG programme in which the student has enrolled.
- 4) Students undergoing internship training are advised to report their progress and submit periodic progress reports to their respective guides.
- 5) Students have to present the internship activities carried out to the departmental committee and only upon approval by the committee, the student can proceed to prepare and submit the hard copy of the final internship report. However, interim or periodic reports as required by the industry / organization can be submitted as per the format acceptable to the respective industry /organizations.
- 6) The reports shall be printed on A4 size with 1.5 spacing and Times New Roman with font size 12, outer cover of the report (wrapper) has to be Ivory color for PG circuit Programs and Light Blue for Non-Circuit Programs.
- 7) The broad format of the internship final report shall be as follows
 - Cover Page
 - Certificate from College
 - Certificate from Industry / Organization
 - Acknowledgement
 - Synopsis
 - Table of Contents
 - Chapter 1 Profile of the Organization : Organizational structure, Products, Services, Business Partners, Financials, Manpower, Societal Concerns, Professional Practices,
 - Chapter 2 Activities of the Department
 - Chapter 3 Tasks Performed: summaries the tasks performed during 8 week period
 - Chapter 4 Reflections : Highlight specific technical and soft skills that you acquired during internship
 - References & Annexure

Course Outcomes:

After going through the internship the student will be able to:

CO1: Apply engineering and management principles

CO2: Analyze real-time problems and suggest alternate solutions

CO3: Communicate effectively and work in teams

CO4: Imbibe the practice of professional ethics and need for lifelong learning.

Scheme of Continuous Internal Evaluation (CIE):

The evaluation committee shall consist of Guide, Professor/Associate Professor and Assistant Professor. The committee shall assess the presentation and the progress reports in two reviews.

RV College of Engineering®

The evaluation criteria shall be as per the rubrics given below:

Reviews	Activity	Weightage
Review-I	Explanation of the application of engineering knowledge in industries, ability to comprehend the functioning of the organization/ departments,	45%
Review-II	Importance of resource management, environment and sustainability	
	presentation skills and report writing	55%

Scheme for Semester End Evaluation (SEE):

The SEE examination shall be conducted by an external examiner (domain expert) and an internal examiner. Evaluation will be done in batches, not exceeding 6 students per batch.

SEMESTER: III						
		MAJOR	PROJECT : PHA	SE-I		
Course Code	:	18MHT33		CIE Marks	:	100
Credits L:T:P	:	0:0:5		SEE Marks	:	100
Hours/week	:	10		SEE Duration	:	3 Hours

GUIDELINES

- 1. The Major Project work comprises of Phase-I and Phase-II. Phase-I is to be carried out in third semester and Phase-II in fourth semester.
- 2. The total duration of the Major project Phase-I shall be for 16 weeks.
- 3. Major project shall be carried out on individual student basis in his/her respective PG programme specialization. Interdisciplinary projects are also considered.
- 4. The allocation of the guides shall be preferably in accordance with the expertise of the faculty.
- 5. The project may be carried out on-campus/industry/organization with prior approval from the Head of the Department.
- 6. Students have to complete Major Project Phase-I before starting Major Project Phase-II.
- 7. The reports shall be printed on A4 size with 1.5 spacing and Times New Roman with font size 12, outer cover of the report (wrapper) has to be Ivory color for PG circuit Programs and Light Blue for Non-Circuit Programs.

Course Outcomes:

After going through this course the students will be able to:

- CO1: Conceptualize, design and implement solutions for specific problems.
- CO2: Communicate the solutions through presentations and technical reports.
- CO3: Apply project and resource managements skills, professional ethics, societal concerns
- CO4: Synthesize self-learning, sustainable solutions and demonstrate life-long learning

Scheme of Continuous Internal Examination (CIE)

Evaluation shall be carried out in two reviews. The evaluation committee shall consist of Guide, Professor/Associate Professor and Assistant Professor.

The evaluation criteria shall be as per the rubrics given below:

Reviews	Activity	Weightage
Review-I	Selection of the topic, Literature Survey, Problem Formulation and Objectives	45%
Review-II	Methodology and Report writing	55%

Scheme for Semester End Evaluation (SEE):

Major Phase-I evaluation shall be done by an external examiner (domain expert) and respective guide as per the schedule. Maximum of four candidates per batch shall be allowed to take examination. The batches are to be formed based on specific domain of work.

				SEMESTER : III			
			PAV	EMENT MANAGEMENT			
Cours	se Code	:	18MHT3E1	(Professional Elective-E	CIE Marks	:	100
	its L:T:P	:	4:0:0		SEE Marks	:	100
Hours	s	:	52L		SEE duration	:	3 Hrs
		1	1	Unit – I	-		•
Intro	duction:	con	nponents and p	rinciples of pavement mana	agement systems, paven	nent	10 Hrs
				estment, research managemen			
				on: general concepts, servi	ceability, pavement dist	ress	
survey	y systems,	pei	formance evalua	tion Unit – II			
Paver	nent Per	fori	mance Prediction	on: concepts, modeling tech	niques structural condi	tion	11 Hrs
				nd empirical models, HDM a			
				Functional condition deteri			
predic	ction mod	lels	and other mod	lels, comparison. Modelin	ng in rehabilitation, bu	dget	
planni	ing, proble	ems	•				
D	14	4.		Unit – III		1	11 11
				n: Design objectives and nputs, alternate pavement des			11 Hrs
				pavement engineering, life			
				on distress and performance a		, 01	
	are parein		sururegies euseu-	Unit – IV	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Rank	ing and	opt	imization meth	odologies: recent developm	ents, sample size select	ion,	10 Hrs
				maintenance and rehabilitation			
_	•			nagement: applications of e		_	
•		ert s	system for paven	ent evaluation and rehabilitat	tion, knowledge-based ex	pert	
systen	ns.			Unit – V			
Imple	ementatio	n a	nd application o	of Pavement Management S	Systems Introduction-m	aior	10 Hrs
_				d Scheduling, case studies		5	
Cours	se outcom	es:					•
After	studying	thi	s course, studen	ts will be able to:			
CO1:	Explain th	ne n	eed of PMS in pl	anning and maintaining the p	avements.		
CO2:	Analyse tl	he p	performance of pa	avements, causes of failure, ra	ating methods.		
CO3:	Evaluate t	he	of models for pav	ement management.			
CO4:	Develop t	he l	PMS for differen	levels			
Refer	ence Bool	ks:					
1			Management Sys 0070253919	tem, Ralph Haas and Ronal	d W. Hudson, McGraw	Hill	Book Co.
2				nent Ralph Haas, Ronald Hu 4645889, 9780894645884	udson Zanieswki., Kreigo	er Pi	ublications,
3	Pavemen	t A	nalysis, Per Ulitz	, Elsevier Amsterdam, ISBN	I: 0-620-22376-6		
4	Proceedi	ngs	of International	Conference on Structural I	Design of Asphalt Paver	nent	s NCHRP,
	TRR and	TF	RB Special Repor	ts, USA, 2006			
5	Paterson	,		anagement The Highway D es, A World Bank F 0801835902.		Wil 90,	

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

SEMESTER: III ENVIRONMENTAL IMPACT ASSESSMENT OF ROAD PROJECTS (Professional Elective-E2) **Course Code: 18MHT3E2 CIE Marks** 100 Credits L:T:P 4:0:0 **SEE Marks** 100 : : **SEE Duration** Hours 52L 3 Hrs : Unit – I 10 Hrs

Introduction: concepts, Objectives, approach for environmental impact studies,, socio economic survey, mitigation measures, clearances required for road projects, Flow chart for obtaining environmental clearance, standards – liquid effluents air quality, noise

Unit – II 11 Hrs

Environmental and Social Legal Framework:

Enforcement agencies-MOEF,CPCB, state pollution control boards, Coastal Management regulatory authority, Central ground water board, key environmental legislations- Environmental act, air acts, forest act, wild life protection act, water acts, coastal zone act, key legislations to road projects-national highways acts, NHAI act, land acquisition act, rehabilitation and resettlement policy, building and construction workers welfare act

Unit – III 11 Hrs

Environmental Clearances: General conditions, procedure for obtaining environmental clearances-screening, scoping, public consultation, appraisal, grant or rejection, post environmental clearance monitoring,

Forest and CRZ clearance: procedure for obtaining clearance forest ,CRZ , wild life clearance, other clearances from – state / central water authority, irrigation/ water resources dept, archeological dept, permission for quarrying and borrowing operations,

Unit – IV 10 Hrs

Prediction and Assessment – impact on air environment, conceptual approach for addressing air environment impact, prediction approach, identification and incorporation of mitigation measures, Impact of noise, conceptual approach for addressing noise environment impact, impact prediction methods, assessment of significance of impacts, mitigation measures

Unit – V 10 Hrs

Socio Economic Assessment: conceptual approach for socio economic impact, traffic impacts,

Evaluation of Alternatives: Weighing of decision factors, rating / ranking of alternatives, public participation in decision making, techniques for conflict management

Expected Course Outcomes:

After successful completion of this course the student will be able to:

- CO1: Explain the Environmental and Social Legal Framework and Environmental Clearances of Road Projects.
- CO2: Analyze Impact on Air water and Noise for Road Projects.
- CO3: Examine the Prediction and assessment on Environment of Road Projects
- CO4: Evaluate Environmental Mitigation measures for Road Projects

Reference Books:

- 1. Environmental Impact Assessment, Canter, L.W, Second Edition, McGraw-Hill Inc, International Edition, 1997, ISBN 0-07-114103-0
- 2. Methods of Environmental Impact Assessment, Peter Morris & Riki Therive, Rouledge,2009. ISBN 0415441749,9780415441742
- 3. Environmental Assessment, R K Jain, L V Urban, G S Stacey, H E Balbach, Mc Graw Hill Professional, 2001, ISBN: 9780071370080,0071370080
- 4. Highway Impact Assessment, Denver Tolliver, Greenwood publishing group, 1993.
- 5. IRC SP-1993-2011: Guidelines on Requirements for Environmental clearance of highway projects, Indian Roads Congress, New Delhi

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

SEMESTER : III							
		ROAD CONSTR	UCTION PLANNING AND (Professional Elective-E3)				
Course Code	:	18MHT3E3		CIE Marks	:	100	
Credits L:T:P	:	4:0:0		SEE Marks	:	100	
Hours	:	52L		SEE Duration	:	3 Hrs	
	Unit – I					10Hrs	
	Project Management Framework: Types and Scope of highway development projects, project management						
framework, scope and project objectives, project development process, causes of project failure.							
			Unit – II				11Hrs

Project Scheduling: Project work breakdown, determining activities involved, assessment involved, CPM/ PERT network analysis, work scheduling, methods of work scheduling, factors affecting work scheduling, optimization, overview of MS project, PRIMAVERA.

Unit – III 11Hrs

Resource Planning: human resources, project man power grouping, structuring site organisation, construction materials – provisioning process, inventory management, cost and budget planning

Unit – IV 10Hrs

Construction Equipment: task, cost and engineering considerations,- crushing and mixing plants, rollers, pavers ,equipment acquisition options, selection site for site office, ,

Unit – V 10Hrs

Planning control system: Resource production, scheduling, codification, project management information system, value management.

Expected Course Outcomes:

After going through this course the student will be able to:

CO1: Outline broad features of road construction planning and management.

CO2: Choose appropriate resources for road construction.

CO3: Evaluate the resources required for road construction.

CO4: Propose the planning and management for road construction

Reference Books:

1	Construction Project Management Planning, Scheduling and Controlling, K K Chitkara, (Third Edition)
	June 2014, Tata Mc Graw hill Publications. ISBN-13: 978-9339205447.
2	Construction Planning Equipment and Method, Peurifoy R L and Clifford J S ' (8th Edition) 2010,
	McGraw Hill Book Co Inc, ISBN:13:978-0073401126.
3	Construction Equipment and its Management, S C Sharma '2002, Khanna Publishers, ISBN-13:978-
	8174091376.
1	IDC.CD.04 2012 IDC.CD.07 2012 IDC.CD.06 2012 IDC.CD.07 2012

4 | IRC:SP:84-2012, IRC:SP:87-2012, IRC:SP:96-2012, IRC:SP:97-2013

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

SEMESTER: IV						
MAJOR PROJECT : PHASE-II						
Course Code	:	18MHT41		CIE Marks	:	100
Credits L:T:P	:	0:0:20		SEE Marks	:	100
Hours/Week	:	40		SEE Duration	:	3 Hrs

GUIDELINES

- 1. Major Project Phase-II is continuation of Phase-I.
- 2. The duration of the Phase-II shall be of 16 weeks.
- 3. The student needs to complete the project work in terms of methodology, algorithm development, experimentation, testing and analysis of results.
- 4. It is mandatory for the student to present/publish the work in National/International conferences or Journals
- 5. The reports shall be printed on A4 size with 1.5 spacing and Times New Roman with font size 12, outer cover of the report (wrapper) has to be Ivory color for PG circuit Programs and Light Blue for Non-Circuit Programs.

Course Outcomes

After going through this course the students will be able to:

- CO1: Conceptualize, design and implement solutions for specific problems.
- CO2: Communicate the solutions through presentations and technical reports.
- CO3: Apply project and resource managements skills, professional ethics, societal concerns
- CO4: Synthesize self-learning, sustainable solutions and demonstrate life-long learning.

Scheme of Continuous Internal Examination (CIE)

Evaluation shall be carried out in three reviews. The evaluation committee shall consist of Guide, Professor/Associate Professor and Assistant Professor.

The evaluation criteria shall be as per the rubrics given below:

Reviews	Activity	Weightage	
Review-I	Review and refinement of Objectives, Methodology and Implementation	20%	
Review-II	Design, Implementation and Testing	40%	
Review-III	Experimental Result & Analysis, Conclusions and Future Scope of Work,	40%	
	Report Writing and Paper Publication	40%	

Scheme for Semester End Evaluation (SEE):

Major Project Phase-II SEE shall be conducted in two stages. This is initiated after fulfilment of submission of project report and CIE marks.

Stage-1 Report Evaluation

Evaluation of Project Report shall be done by guide and an external examiner.

Stage-2 Project Viva-voce

Major Project Viva-voce examination is conducted after receipt of evaluation reports from guide and external examiner.

Both Stage-1 and Stage-2 evaluations shall be completed as per the evaluation formats.

SEE procedure is as follows:

_	Internal Guide	E	xternal E	xaminei	•	TOTAL		
SEE Report Evaluation	100 marks	100 marks				200 marl		
						(A)	(200/2) = 100 marks	
Viva-Voce	Jointly evaluated External Evaluator	•	Internal	Guide	&	(B)	100 marks	
Total Marl			larks	[(A)+(B)]/2 = 100				

SEMESTER : IV						
TECHNICAL SEMINAR						
Course Code	:	18MHT42	CIE Marks	:	50	
Credits L:T:P	:	0:0:2	SEE Marks	:	50	
Hours/Week	:	4	SEE Duration	:	30 Mins	

GUIDELINES

- 1) The presentation shall be done by individual students.
- 2) The seminar topic shall be in the thrust areas of respective PG programs
- 3) The seminar topic could be complementary to the major project work
- 4) The student shall bring out the technological developments with sustainability and societal relevance.
- 5) Each student must submit both hard and soft copies of the presentation along with the report.
- 6) The reports shall be printed on A4 size with 1.5 spacing and Times New Roman with font size 12, outer cover of the report (wrapper) has to be Ivory color for PG circuit Programs and Light Blue for Non-Circuit Programs.

Course Outcomes

After going through this course the student will be able to:

CO1: Identify topics that are relevant to the present context of the world

CO2: Perform survey and review relevant information to the field of study.

CO3: Enhance presentation skills and report writing skills.

CO4: Develop alternative solutions which are sustainable.

Scheme of Continuous Internal Evaluation (CIE): Evaluation shall be carried out in two reviews. The evaluation committee shall consist of Guide, Professor/Associate Professor and Assistant Professor.

The evaluation criteria shall be as per the rubrics given below:

Reviews	Activity	Weightage
Review-I	Selection of Topic, Review of literature, Technical Relevance,	45%
	Sustainability and Societal Concerns, Presentation Skills	4370
Review-II	Technological Developments, Key Competitors, Report writing	55%

Scheme for Semester End Evaluation (SEE):

The SEE examination shall be conducted by an external examiner and an internal examiner. Evaluation shall be done in batches, not exceeding 6 students per batch.