

RV COLLEGE OF ENGINEERING®

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Scheme and Syllabus of I to VI Semesters 2018 SCHEME

MASTER OF COMPUTER APPLICATIONS

VISION

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

MISSION

- 1. To deliver outcome based Quality education, emphasizing on experiential learning with the state of the art infrastructure.
- 2. To create a conducive environment for interdisciplinary research and innovation.
- 3. To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- 4. To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- 5. To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

QUALITY POLICY

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

CORE VALUES

Professionalism, Commitment, Integrity, Team Work and Innovation

RV College of Engineering®

(Autonomous Institution affiliated to VTU, Belagavi)

Department of Master of Computer Applications

Scheme and Syllabus of V & VI Semesters

2018 SCHEME

DEPARTMENT OF MASTER OF COMPUTER APPLICATIONS

DEPARTMENT VISION

Pioneering in ICT Enabled Quality Education and Research with a focus on Sustainable and Inclusive Applications

DEPARTMENT MISSION

- 1. To adapt novel methodologies for quality education through experiential learning
- 2. To empower students with continuous, holistic education, emphasizing on discipline, ethics and social commitment
- 3. To become a vibrant knowledge center for research and software development.
- 4. To continuously build capacity steering towards industry- institute collaborative research and entrepreneurial competencies
- 5. To utilize and develop free and open source software tools for sustainable and inclusive growth

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **PEO1** Practice software engineering principles and standards to develop software to meet customer requirements across verticals
- **PEO2** Contribute to build sustainable and inclusive applications using mathematical, simulation and meta heuristic models
- **PEO3** Demonstrate entrepreneurial qualities through individual competence and team work
- **PEO4** Achieve successful professional career with integrity and societal commitments leading to lifelong learning

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO	Description
PSO1	Solve real world computing system problems of various industries by understanding and applying the principles of mathematics, computing techniques and business concepts
PSO2	Design, test, develop and maintain desktop, web, mobile and cross platform software applications using modern tools and technologies

ABBREVIATIONS

Sl. No.	Abbreviation	Acronym
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	SEE	Semester End Examination
5.	CE	Professional Elective
6.	GE	Global Elective
7.	HSS	Humanities and Social Sciences
8.	CV	Civil Engineering
9.	ME	Mechanical Engineering
10.	EE	Electrical & Electronics Engineering
11.	EC	Electronics & Communication Engineering
12.	IM	Industrial Engineering & Management
13.	EI	Electronics & Instrumentation Engineering
14.	СН	Chemical Engineering
15.	CS	Computer Science & Engineering
16.	ET	Electronics & Telecommunication Engineering
17.	IS	Information Science & Engineering
18.	BT	Biotechnology
19.	AS	Aerospace Engineering
20.	PY	Physics
21.	CY	Chemistry
22.	MA	Mathematics
23.	MCA	Master of Computer Applications
24.	MST	Structural Engineering
25.	MHT	Highway Technology
26.	MPD	Product Design & Manufacturing
27.	MCM	Computer Integrated & Manufacturing
28.	MMD	Machine Design
29.	MPE	Power Electronics
30.	MVE	VISI Design & Embedded Systems
31.	MCS	Communication Systems
32.	MBS	Bio Medical Processing Signal & Instrumentation
33.	MCH	Chemical Engineering
34.	MCE	Computer Science & Engineering
35.	MCN	Computer Network Engineering
36.	MDC	Digital Communication
37.	MRM	Radio Frequency and Microwave Engineering
38.	MSE	Software Engineering
39.	MIT	Information Technology
40.	MBT	Biotechnology
	MBI	Bioinformatics
41.	WIDI	Diomioimanes

INDEX

SEMESTER: I					
Sl. No.	Course Code	Course Title	Page No.		
1.	18MAT11	Discrete Mathematics	01		
2.	18MCA12	Computer Organization and Architecture	03		
3.	18MCA13	Data Structures using C	05		
4.	18MCA14	Object Oriented Programming	07		
5.	18MCA15	Web Programming	09		

SEMESTER: II					
Sl. No.	Course Code	Course Title	Page No.		
1	18MCA21	Software Engineering	12		
2	18MCA22	E-Commerce	14		
3	18MCA23	Data Base Systems	16		
4	18MCA24	Operating Systems	21		
5	18MCA25	Java Programming	23		

	SEMESTER: III					
Sl. No.	Course Code	Course Title	Page No.			
1.	18MCA31	Research Methodology	25			
2.	18MCA32	Analysis and Design of Algorithms	27			
3.	18MCA33	Computer Networks	30			
4.	18MCA34X	Elective –I	32			
5.	18MCA35X	Elective-II (With Practice)	38			
		ELECTIVES -I:				
1	18MCA341	Non-Relational Databases (NOSQL)	32			
2	18MCA342	Operations Research	34			
3	18MCA343	Machine Learning	36			
		ELECTIVES –II (With Practice)				
1.	18MCA351	Content Management System	38			
2.	18MCA352	Advanced OOPS	42			
3.	18MCA353	Model View Controller Programming	45			

	SEMESTER: IV					
Sl. No.	Course Code	Course Title	Page No.			
1.	18MCA41	Software Testing	48			
2.	18MCA42	Modern Application Development	51			
3.	18MCA43X	Elective-III	53			
4.	18MCA44X	Elective-IV	59			
5.	18MCA45X	Elective-V	65			
6.	18MCA46	Minor Project – I	72			
		ELECTIVES -III	<u>.</u>			
1	18MCA431	Information Retrieval	53			
2.	18MCA432	Pattern Recognition	55			
3.	18MCA433	Software Architecture	57			
		ELECTIVES -IV				
1.	18MCA441	Cyber Security	59			
2.	18MCA442	Soft Computing	61			
3.	18MCA443	Unified Modelling Language	63			
		ELECTIVES –V (With Practice)-				
1.	18MCA451	Computer Graphics	65			
2.	18MCA452	Advanced Computer Networks	67			
3.	18MCA453	Enterprise Application Programming	69			

	SEMESTER: V				
Sl. No.	Course Code	Course Title	Page No.		
1	18MCA51	Software Project Management	74		
2	18MCA52	Big Data Analytics	76		
3	18MCA53X	Elective – VI	80		
4	18MCA54X	Elective – VII (with Practice)	86		
5	18MCA55	Seminar-1	95		
6	18MCA56	Minor Project – II	97		

	ELECTIVE – VI					
1	18MCA531	Wireless Mobile Networks	80			
2	18MCA532	Software Performance Engineering	82			
3	18MCA533	Principles of UI/UX Design	84			

	ELECTIVE VII (With Practice)							
Sl. No.	Sl. No. Course Code Course Title Page No.							
1	18MCA541	Cloud Computing	86					
2	18MCA542	Internet of Things	89					
3	18MCA543	Virtual Reality	92					

SEMESTER: VI								
Sl. No.	Sl. No. Course Code Course Title Page No.							
1	18MCA61	Major Project	99					
2	18MCA62	Seminar-2	101					

RV COLLEGE OF ENGINEERING®

(Autonomous Institution Affiliated to VTU, Belagavi)

MASTER OF COMPUTER APPLICATIONS

Department of Master of Computer Applications

	FIRST SEMESTER CREDIT SCHEME							
Sl.No	Course Code	Course Title	BoS Credit Allocation		tion	Total		
				Lecture	Tutorial	Practic e	credits	
1	18MAT11	Discrete Mathematics	MAT	3	1	0	4	
2	18MCA12	Computer Organization and Architecture	MCA	3	0	0	3	
3	18MCA13	Data Structures using C	MCA	3	1	1	5	
4	18MCA14	Object Oriented Programming	MCA	3	1	1	5	
5	18MCA15	Web Programming	MCA	3	1	1	5	
		Total		15	4	3	22	
	Contact (Hrs.	week)+ Counselling		15	8	6	30	

	SECOND SEMESTER CREDIT SCHEME								
Sl.No	Course Code	Course Title	itle BoS	Cre	dit Alloca	ation	Total		
				Lecture	Tutorial	Practice	credits		
1	18MCA21	Software Engineering	MCA	3	0	0	3		
2	18MCA22	E-Commerce	MCA	3	1	0	4		
3	18MCA23	Data Base Systems	MCA	3	1	1	5		
4	18MCA24	Operating Systems	MCA	3	1	1	5		
5	18MCA25	Java Programming	MCA	3	1	1	5		
		Total		15	4	3	22		
	Contact (Hrs/week) +Counselling			15	8	6	30		

Sl.No	Course Code	Course Title	BoS	Cre	dit Alloca	ation	Total
				Lecture	Tutorial	Practice	credits
1	18MCA31	Research Methodology	MCA	3	0	0	3
2	18MCA32	Analysis and Design of Algorithms	MCA	3	1	1	5
3	18MCA33	Computer Networks	MCA	3	1	1	5
4	18MCA34X	Elective I	MCA	3	1	0	4
5	18MCA35X	Elective – II (With Practice)	MCA	4	0	1	5
		Total		16	3	3	22
	ct (Hrs./week) + ment Activity	Counselling+	•	16	6	6	30 (28+2)

III SEMESTER						
	ELECTIVE – I					
Sl. No.	Course Code	Course Title	Credits			
1.	18MCA341	Non-Relational Databases (NOSQL)	4			
2.	18MCA342	Operations Research	4			
3.	18MCA343	Machine Learning	4			

	III SEMESTER						
	ELECTIVE – II						
Sl. No.	Course Code	Course Title	Credits				
1.	18MCA351	Content Management System	5				
2.	18MCA352	Advanced OOPS	5				
3.	18MCA353	Model View Controller Programming	5				

	FOURTH SEMESTER CREDIT SCHEME								
Sl.No.	Course Code	Course Title	BoS Credit Allocation			ation	Total		
				Lecture Tutoria Pi		Practice	credits		
1	18MCA41	Software Testing	MCA	3	0	1	4		
2	18MCA42	Modern Application Development	MCA	3	0	1	4		
3	18MCA43X	Elective III	MCA	3	0	0	3		
4	18MCA44X	Elective – IV	MCA	3	0	0	3		
5	18MCA45X	Elective – V (with Practice)	MCA	3	1	1	5		
6	18MCA46	Minor Project- I	MCA	0	0	3	3		
		Total		15	1	6	22		
Contact (Hrs./week)+ Counselling+ Placement Activities				15	2	12	31 (29+2)		

IV SEMESTER							
	ELECTIVE – III						
Sl. No.	Course Code	Course Title	Credits				
1.	18MCA431	Information Retrieval	3				
2.	18MCA432	Pattern Recognition	3				
3.	18MCA433	Software Architecture	3				

	IV SEMESTER					
	ELECTIVE – IV					
Sl. No.	Course Code	Course Title	Credits			
1.	18MCA441	Cyber Security	3			
2.	18MCA442	Soft Computing	3			
3.	18MCA443	Unified Modelling Language	3			

IV SEMESTER						
ELECTIVE – V (With Practice)						
Sl. No.	Course Code	Course Title	Credits			
1.	18MCA451	Computer Graphics	5			
2.	18MCA452	Advanced Computer Networks	5			
3.	18MCA453	Enterprise Application Programming	5			

	FIFTH SEMESTER CREDIT SCHEME						
SI No	Course Code Course Title	BoS	Cred	it Allo	cation	Total	
51. 110.	Course Code	Course Title	B0S	L	T	P	Credits
1	18MCA51	Software Project Management	MCA	3	0	0	3
2	18MCA52	Big Data Analytics	MCA	3	1	1	5
3	18MCA53X	Elective – VI	MCA	3	0	0	3
4	18MCA54X	Elective – VII (with Practice)	MCA	3	1	1	5
5	18MCA55	Seminar-1	MCA	0	0	2	2
6	18MCA56	Minor Project – II	MCA	0	0	4	4
	Total Number of Credits			12	2	8	22
	Total number of Hours/Week + Counselling			12	4	16	32

V Semester						
	Elective – VI					
Sl. No.	Course Code	Course Title	Credits			
1.	18MCA531	Wireless Mobile Networks	3			
2.	18MCA532	Software Performance Engineering	3			
3.	18MCA533	Principles of UI/UX Design	3			

	V Semester						
	Elective VII (With Practice)						
Sl. No.	No. Course Course Title Credits						
	Code						
1.	18MCA541	Cloud Computing	5				
2.	18MCA542	Internet of Things	5				
3.	18MCA543	Virtual Reality	5				

	SIXTH SEMESTER CREDIT SCHEME							
Sl. Carrage Carlo		C T24	DOG	Credit Allocation			Total	
No	Course Code	Course Title	BOS	${f L}$	T	P	Credits	
1.	18MCA61	Major Project	MCA	1	-	20	20	
2.	18MCA62	Seminar-2	MCA	1	-	2	2	
					22	22		

Proposed Credits for the MCA Programme							
	Total Credits						
Semester	Core	Elective	Project /	Seminar	Total Credits		
			Industry internship				
I	22	00	00	00	22		
II	22	00	00	00	22		
III	13	09	00	00	22		
IV	08	11	03	00	22		
V	08	08	04	02	22		
VI	00	00	20	02	22		
Total	73	28	27	04	132		

SEMESTER: I									
		DISCRETE MATHEMATICS	5						
		(Theory)							
Course Code	:	18MAT11	CIE	:	100 Marks				
Credits: L:T:P	:	3:1:0	SEE	:	100 Marks				
Total Hours	:	39L+26T	SEE Duration	:	3:00 Hrs				

Cartesian Product and relations, Properties of Relations, Zero-one matrices and directed graphs, Has liagram, Equivalence relations and partitions, Functions-types of functions, Special Functions, Function omposition and Inverse function Unit - III	Unit – I	7 Hrs
Cartesian Product and relations, Properties of Relations, Zero-one matrices and directed graphs, Has liagram, Equivalence relations and partitions, Functions-types of functions, Special Functions, Function omposition and Inverse function Unit - III	Set Theory : Sets and subsets, Set operations and the laws of set theory, Principle of inclusion exclusion and Venn Diagrams, Generalization of principle of inclusion and exclusion	on and
Cartesian Product and relations, Properties of Relations, Zero-one matrices and directed graphs, Has liagram, Equivalence relations and partitions, Functions-types of functions, Special Functions, Function omposition and Inverse function Unit - III	Unit – II	8 Hrs
Trinciple of counting The rules of sum and product, Permutations and Combinations-Combinations with repetition overangements, Rook polynomials, Arrangements with Forbidden positions. Unit – IV Os Hrs Tundamentals of Logic Basic connectivity and Truth table, Logical equivalence, logical implications, Quantifiers – Definitions and Proofs of theorem. Unit – V Sundamentals of Logic Basic connectivity and Truth table, Logical equivalence, logical implications, Quantifiers – Definitions and Proofs of theorem.	Relations and Functions	
Omposition and Inverse function Unit – III 8 Hrs Principle of counting The rules of sum and product, Permutations and Combinations-Combinations with repetition Derangements, Rook polynomials, Arrangements with Forbidden positions. Unit – IV 08 Hrs Fundamentals of Logic Basic connectivity and Truth table, Logical equivalence, logical implications, Quantifiers – Definitions and Proofs of theorem. Unit – V 8 Hrs	Cartesian Product and relations, Properties of Relations, Zero-one matrices and directed	l graphs, Hasse
The rules of sum and product, Permutations and Combinations-Combinations with repetition Derangements, Rook polynomials, Arrangements with Forbidden positions. Unit – IV O8 Hrs Fundamentals of Logic Basic connectivity and Truth table, Logical equivalence, logical implications, Quantifiers – Definitions and Proofs of theorem. Unit – V 8 Hrs	diagram, Equivalence relations and partitions, Functions-types of functions, Special Func	ctions, Function
Principle of counting The rules of sum and product, Permutations and Combinations-Combinations with repetition Derangements, Rook polynomials, Arrangements with Forbidden positions. Unit – IV Os Hrs Fundamentals of Logic Basic connectivity and Truth table, Logical equivalence, logical implications, Quantifiers – Definitions and Proofs of theorem. Unit – V 8 Hrs	composition and Inverse function	
The rules of sum and product, Permutations and Combinations-Combinations with repetition Derangements, Rook polynomials, Arrangements with Forbidden positions. Unit - IV	Unit – III	8 Hrs
Derangements, Rook polynomials, Arrangements with Forbidden positions. Unit – IV O8 Hrs Fundamentals of Logic Basic connectivity and Truth table, Logical equivalence, logical implications, Quantifiers – Definitions are Proofs of theorem. Unit – V 8 Hrs	Principle of counting	
Unit – IV 08 Hrs Fundamentals of Logic Basic connectivity and Truth table, Logical equivalence, logical implications, Quantifiers – Definitions are Proofs of theorem. Unit – V 8 Hrs	The rules of sum and product, Permutations and Combinations-Combinations w	ith repetitions,
Fundamentals of Logic Basic connectivity and Truth table, Logical equivalence, logical implications, Quantifiers – Definitions are Proofs of theorem. Unit – V 8 Hrs	Derangements, Rook polynomials, Arrangements with Forbidden positions.	•
Basic connectivity and Truth table, Logical equivalence, logical implications, Quantifiers – Definitions are Proofs of theorem. Unit – V 8 Hrs	Unit – IV	08 Hrs
Proofs of theorem. Unit – V 8 Hrs	Fundamentals of Logic	
Unit – V 8 Hrs	Basic connectivity and Truth table, Logical equivalence, logical implications, Quantifiers -	Definitions and
	Proofs of theorem.	
Franh Theory	Unit – V	8 Hrs
	Croph Theory	1

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Understand fundamental concepts of sets, counting, logic, relations, functions and graph theory					
CO2:	Apply fundamental concepts of sets, counting, logic, relations, functions and graph theory for different domains in computer science					
CO3:	Analyze mathematical concepts like sets, counting, reasoning, relational algebra and graph theory to solve the problems and optimize the solution					
CO4:	Implement overall mathematical knowledge gained to demonstrate and analyze the problems arising in practical situation					

Definitions and Examples, Sub graphs, complements and Graph Isomorphism, Vertex Degree, Planar Graphs, Hamiltonian paths and circuits, Matrix representation-Incidence matrix and Adjacency matrix

Refere	nce Books
1	"Discrete and Combinatorial Mathematics. An applied Introduction", Ralph P Grimaldi, B.V.Ramana, 5 th Edition, Pearson Education, 2007, ISBN-10:8177584243, ISBN-13:9788177584240
2	"Discrete Mathematics", 3 rd Edition, 2007Seymour Lipschutz, Marc Lipson, Schaum's Outlines, McGraw-Hill, , ISBN: 978-0-161587-7.
3	" Discrete Mathematics & its Applications", Kenneth H Rosen, 7 th Edition, 2010, McGraw-Hill, , ISBN-10: 0073383090, ISBN-13: 978-0-073383095.
4	Geir Agnarsson & Raymond Greenlaw, "Graph Theory-Modeling, Applications and Algorithms", Pearson Education, 2008, ISBN - 978-81-317-1728-8.

Continuous Internal Evaluation (CIE): Theory (100 Marks)

Theory: CIE consists of three Tests (T) each for 50 marks, two quizzes (Q) of 10 marks each and Experiential Learning (EL) for 30 marks. All the tests and quizzes are compulsory. The test shall be conducted for 50 marks each and is then reduced to 50 marks. Two Quizzes are conducted for 10 marks each and consolidated to 20 marks and Experiential Learning s are given for 30 marks

Total CIE = 50 (T)+20(Q)+30(EL) = 100 Marks

Semester End Examination (SEE): Theory (100 Marks)

Theory: The question paper will be set for maximum of 100 marks and shall consist of TEN questions from FIVE units with 20 marks each. Out of the ten questions, students must answer FIVE questions; one from each unit. The questions will have Internal Choice with maximum 3 sub divisions. The duration of the SEE will be for 3 hours.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	M	-	L	L	-	L	-	L	-	-	-
CO2	Н	M	L	M	-	-	L	-	-	-	-	-
CO3	M	Н	L	M	-	-	L	-	-	-	-	-
CO4	Н	Н		M	L	-	L	-	-	-	-	-
Mapping	of Cou	rse Ou	tcomes	(CO) to	Progra	am Spec	ific Out	tcomes ((PSO)	1	•	1
CO/PSO				PS	O 1					PSO2		
CO1				N	<u>/I</u>					L		
CO2				I						L		
CO3 M H												
CO4 L M							M					
H-High, I	M-Med	ium, L.	Low									

	SEMESTER: I								
	COMPUTER ORGANIZATION AND ARCHITECTURE								
		(Theory)							
Course Code	:	18MCA12	CIE	:	100 Marks				
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks				
Total Hours	:	39L	SEE Duration	:	3:00 Hours				

Unit – I	08Hrs
Introduction to Boolean Algebra	.I
Number systems and Boolean Algebra: Number systems, binary codes, Axiomatic Definition of	f Boolean
Algebra, Basic Theorems and Properties of Boolean Algebra, Boolean Functions, Canonical and	Standard
Forms, Expression simplification using Boolean theorem and K-map.	
Unit – II	07 Hrs
Introduction to Digital Electronics	l .
Logic gates: Basic Gates, Universal Gate , the exclusive OR gate, Equivalence Gates. Con	nbinational
circuits: Adders, Sub tractor, Binary Parallel Adder, Decimal Adder, Decoders, Multiplexers.	Sequential
Circuits: Flip – Flops, Triggering of Flip- Flops.	_
Unit – III	08 Hrs
Basic Structure of Computer and Machine Instructions.	
Computer Types, Functional Units, Basic Operational Concepts Bus structures, Performance	, Memory
Location and Addresses, Machine Instruction and Program Memory Operations, Instructions,	Instruction
Sequencing, Basic Input/output Operations, Introduction to Microprocessor based computer systems	em.
Unit – IV	08Hrs
IA-32 Architecture	
IA-32 Register Structure, IA-32 Addressing modes, Machine Instructions format, IA-32 instructions	ons
Unit – V	08 Hrs
IA-32 Programming	.1
Program Flow Control: Conditional and Unconditional Jumps, Shift and Rotate Instructions Programples.	gramming

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Illustrate the concepts of digital system, its organization and architecture					
CO2:	Apply basic concepts of digital system and assembly language in solving problems					
CO3 :	Analyze the working of digital logic circuits and assembly language programs					
CO4 :	Justify the solutions selected for a problem					

Refere	ence Books
1.	"Digital Logic and Computer design", M. Morris Mano, 2016, Pearson Education Ltd., , ISBN: 13 9789332542525
2.	"Computer Organization", Carl Hamacher, Z Varnesic and S Zaky, 5th Edition 2012, Tata McGraw-Hill, ISBN: 13 9781259005275
3.	"Fundamentals of Logic Design", Charles H. Roth, Jr. and Larry L. Kinney, 7th Edition 2014Cengage Learning, ISBN: 10:1-133-62847-8
4.	"The Unabridged Pentium 4 IA32 Processor Genealogy", Bob Colwell and Tom Shanley, 2004, Addison-Wesley Professional, ISBN: 032124656X

Continuous Internal Evaluation (CIE): Theory (100 Marks)

Theory: CIE consists of three Tests (T) each for 50 marks, two quizzes (Q) of 10 marks each and Experiential Learning (EL) for 30 marks. All the tests and quizzes are compulsory. The test shall be conducted for 50 marks each and is then reduced to 50 marks. Two Quizzes are conducted for 10 marks each and consolidated to 20 marks and Experiential Learning s are given for 30 marks.

Total CIE = 50 (T)+20(Q)+30(EL) = 100 Marks

Semester End Evaluation (SEE): Theory (100 Marks)

Theory: The question paper will be set for maximum of 100 marks and shall consist of TEN questions from FIVE units with 20 marks each. Out of the ten questions, students must answer FIVE questions; one from each unit. The questions will have Internal Choice with maximum 3 sub divisions. The duration of the SEE will be for 3 hours.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	L	M	-	L	-	M	M	L	-	L	-
CO2	Н	M	M	-	M	-	L	L	L	-	L	-
CO3	M	L	M	L	L	-	L	L	L	-	-	-
CO4	CO4 L - M L L - L L							-				
Mapping	of Cou	rse Ou	tcomes	(CO) to	Progra	am Spec	ific Out	comes (PSO)			•
CO/PS	SO			PS	O 1					PSO2		
CO	[N	Л					M		
CO2	CO2 M M											
CO3 L M												
CO	CO4 L											
H-High, N	H-High, M-Medium, L-Low											

SEMESTER: I									
	DATA STRUCTURES USING C								
	(Theory & Practice)								
Course Code	:	18MCA13	CIE	:	100 + 50 Marks				
Credits: L:T:P	:	3:1:1	SEE	:	100 + 50 Marks				
Total Hours	:	39L+26T+26P	SEE Duration	:	03:00 Hrs (T)				
				:	03:00 Hrs (P)				

Unit – I	08 Hrs
Introduction to Data Structures and its types	
Types of Data Structures -Primitive, Composite and Abstract Data, Linear and Non-Li	near Data
Structures , Applications of Data Structures, Pointers and Dynamic Memory Allocation	
Linear Data Structures - Arrays: Static and Dynamic, Multi-Dimensional Arrays, Basic Ope	rations on
Linear Data Structures	
Unit – II	08 Hrs
Stacks and Queues	
Stacks, Applications of Stacks: Evaluations of Expressions, Queues, Circular Queues, Priority Q	ueues
Unit – III	08 Hrs
Linked Lists	
Singly Linked lists, Linked Stacks and Queues, Doubly Linked Lists, Circular Linked Lists	
Unit – IV	08 Hrs
Trees & Hashing	
Binary Trees, Binary Tree Traversals, Binary Search Trees, Heaps, Hashing: Static Hashing	
Unit – V	07 Hrs
Graphs and Sorting	<u> </u>

Graphs and Sorting

Graph Abstract Data Type: Definitions, and Representations, Elementary Graph Operations: Depth First Search , Breadth First Search

Sorting: Bubble Sort, Insertion Sort, Selection Sort

Laboratory Component

- 1. Searching techniques using arrays (Linear and Binary)
- 2. Operations for a String based Stack
- 3. Evaluate postfix expression in a compiler
- 4. Basic queue operations
- 5. Task Scheduling using Priority Queues
- 6. Working of a singly linked list
- 7. Binary Search Tree traversal techniques
- 8. Sorting techniques (Bubble Sort, Insertion Sort, Selection Sort)
- 9. Depth First Search Traversal to identify the connectivity of a graph
- 10. Breadth First Search to display the reachable nodes

Note:

- 1.Experiment No.6, students are required to demonstrate any two operations specified by the examiners during CIE and SEE with display operation as a mandatory
- 2.Experiment No.8, students are required to demonstrate any two sorting technique specified by the examiners during CIE and SEE

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Understand data abstraction and data structures					
CO2:	Identify relevant data structures to develop solutions for a particular problem					
CO3:	Apply relevant data structures for different applications					
CO4:	Examine the use of different data structures in various applications					

ŀ	Refere	nce Books
	1	"Fundamentals of Data Structures in C", Horowitz, Sahni, Anderson-Freed: 2nd Edition, University Press,2012 ISBN: 978-81-7371-605-8
	2	"Data Structures and Alogorithms in Python" 2013, Michael T. Goodrich, Roberto Tamassia, Michael H. Goldwasser, Wiely Publications ISBN-10: 1118290275
	3	"Data Structures Using C and C++", YedidyahLangsam, Moshe J. Augenstein, Aaron M. Tannenbaum, 2006, PHI publications, ISBN 10: 0130369977
	4	"The C Programming Language", Brian W. Kernighan, Dennis M. Ritchie, 2nd Edition, PHI Publications, ISBN-10: 0131103628 ISBN-13: 978-0131103627

Continuous Internal Evaluation (CIE): Theory (100 Marks)+ Practical (50 Marks)

Theory: CIE consists of three Tests (T) each for 50 marks, two quizzes (Q) of 10 marks each and Experiential Learning (EL) for 30 marks. All the tests and quizzes are compulsory. The test shall be conducted for 50 marks each and is then reduced to 50 marks. Two Quizzes are conducted for 10 marks each and consolidated to 20 marks and Experiential Learning s are given for 30 marks.

Total CIE = 50 (T) + 20 (Q) + 30 (EL) = 100 Marks

Practical: CIE for practical consists of continuous evaluation of the programmes in the lab during every lab hour. Every programme is evaluated for 10 marks and consolidated for 40 marks. One lab internal is conducted at the end of the semester for 50 marks and reduced to 10 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks)

Theory: The question paper will be set for maximum of 100 marks and shall consist of TEN questions from FIVE units with 20 marks each. Out of the ten questions, students must answer FIVE questions; one from each unit. The questions will have Internal Choice with maximum 3 sub divisions. The duration of the SEE will be for 3 hours.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	M	M	L	M	-	L	-	-	-	L	-
CO2	Н	Н	M	M	M	-	L		L	-	-	-
CO3	Н	Н	Н	M	Н	-	L	L	-	-	-	-
CO4	Н	Н	Н	Н	Н	-	L	-	-	-	-	-

Mapping of Course Outcomes (CO) to Program Specific Outcomes (PSO)					
CO/PSO	PSO1	PSO2			
CO1	M	L			
CO2	Н	Н			
CO3	Н	Н			
CO4	Н	Н			
H-High, M-Medium, L-Low					

	Semester: I								
	OBJECT ORIENTED PROGRAMMING								
		(Theory& Practice)							
Course Code	:	18MCA14	CIE	:	100+50 Marks				
Credits: L:T:P	:	3:1:1	SEE	:	100+50 Marks				
Total Hours	:	39L+26T+26P	SEE Duration	:	3:00 Hrs(T)				
					3:00 Hrs (P)				

			Uni	it – 1	I			08 Hrs	
~			 			-	• • •		

Object oriented programming: Introductions, OOP, classes, class attributes, instances, instance attributes, Encapsulation, Basics of polymorphism: Operator and function overloading, Constructor and Destructor

Unit – II 08 Hrs

Introduction to Python Programming Language, Introduction to python, program output, input, comments, operators, variables and Experiential Learning, numbers, if statement, while loop, for loop, and the range(), Data Types, Functions and Modules: Lists and tuples, working with strings, dictionaries, Functions and Functional programming,

Unit – III 08 Hrs

Modules: What are modules, modules and files, Importing modules, packages.

Inheritance: Introduction, types of inheritance, sub classing and scope, overriding methods

Unit – IV 07 Hrs

Error and Exceptions: Lists and tuples, Working with Strings, Dictionaries, Introduction to exceptions in python, detecting and handling exceptions, context management, exceptions as strings, raising exceptions, assertions, standard exceptions.

Unit – V 08 Hrs

Reading and Writing Files- Introduction to File operation, opening a File, Techniques for Reading Files, Writing Files.

Magic Methods - Magic method syntax, Available Methods

Laboratory Component

- 1. Implement importing of modules using OOPs concepts
- 2. Implement 10 operations on string and Tuple
- 3. Implement 10 operations on sets and dictionary
- 4. Design and develop pay band scale for N employees using dictionary
- 5. Implement Hierarchical Inheritance
- 6. Implement Multilevel Inheritance
- 7. Implement overriding concept
- 8. Demonstrate the magic methods usage: i) __getattr__ ii) __setattr__
- 9. Write a program to implement string manipulation using files

Demonstrate any five-exception handling mechanism

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Relate and recall object oriented and structured programming concepts						
CO2:	Demonstrate competency in object-oriented concepts						
CO3:	Utilize object-oriented concepts for real world problem						
CO4:	Analyze solutions using OOPs concepts for real world applications						

Refe	rence Books
1	"Beginning Python: from novice to professional". Hetland, Magnus Lie. 3rd Edition, , 2017 Apress, ISBN 978-1-4842-0029-2
2	"Professional Python", Sneeringer Luke, 2016, John Wiley & Sons, ISBN -978-1-119-07085-6,
3.	"Practical Programming", PaPaul Gries, Jennifer Campbell, Jason Montojo, 2nd Edition, 2014 Introduction to Computer Science Using Python 3, SHROFF Publishers and Distributors Pvt Ltd, ISBN: 13:978-93-5110-469-8,
4.	"C ore Python Programming", WWesley J Chun, 2 nd edition, 2007, Pearson Education, ISBN 81-317-1188-9

Continuous Internal Evaluation (CIE): Theory (100 Marks) + Practical (50 Marks)

Theory: CIE consists of three Tests (T) each for 50 marks, two quizzes (Q) of 10 marks each and Experiential Learning (EL) for 30 marks. All the tests and quizzes are compulsory. The test shall be conducted for 50 marks each and is then reduced to 50 marks. Two Quizzes are conducted for 10 marks each and consolidated to 20 marks and Experiential Learning s are given for 30 marks Total CIE = 50 (T) + 20 (Q) + 30 (EL) = 100 Marks

Semester End Examination (SEE): Theory (100 Marks) + Practical (50 Marks)

Theory: The question paper will be set for maximum of 100 marks and shall consist of TEN questions from FIVE units with 20 marks each. Out of the ten questions, students must answer FIVE questions; one from each unit. The questions will have Internal Choice with maximum 3 sub divisions. The duration of the SEE will be for 3 hours.

					CO-	PO Maj	oping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	L	L	M	-	M	-	M	-	-	L	M	-
CO2	M	M	M	-	M	-	M	-	-	L	M	-
CO3	M	M	M	-	M	-	Н	-	-	L	M	-
CO4	M	M	Н	L	Н	-	Н	-	-	L	M	-
Mapping	of Cou	rse Ou	tcomes	(CO) to	Progra	m Spec	ific Out	comes (PSO)			
CO/PS	SO			PS	O1					PSO2		
CO	1			I				M				
CO	2	L						M				
CO.		M						Н				
CO	CO4 M H											
H-High, N	H-High, M-Medium, L-Low											

		SEMESTER: I						
	WEB PROGRAMMING							
		(Theory & Practice)						
Course Code	:	18MCA15	CIE	:	100 +50Marks			
Credits: L:T:P	:	3:1:1	SEE	:	100 +50Marks			
Total Hours	:	39L+26T+26P	SEE Duration	:	3:00 Hrs(T)			
					3:00 Hrs (P)			

Unit – I 08 Hrs

Introduction to Web Technologies Internet, WWW, Web Browsers, Web Servers, URLs, MIME, HTTP, Security, the Web Programmers Toolbox. Multi-tier Application Architecture, Client-Side Scripting versus Server-Side Scripting.

Markup Language: HTML5 tags - Formatting, Commenting, Code, Anchors, Backgrounds, Images, Hyper-links, Lists, Tables, Multimedia, Forms

Unit – II 08 Hrs

Front End Design : Cascading Style Sheet (CSS): Introduction to CSS – Basic syntax and structure, Inline Styles, Embedding Style Sheets, Linking External Style Sheets, Backgrounds, manipulating text, Margins and Padding, Positioning using CSS.

XML: Introduction, syntax, Document structure, Document Type Definitions, Namespaces, XML schema, displaying raw XML documents, Displaying XML documents with CSS, XSLT style sheets

Unit – III 07 Hrs

Basics of JavaScript: Overview of JavaScript, Object orientation and JavaScript, Syntactic characteristics, Primitives, operations, and expressions, Screen output and keyboard input, Control statements, Object creation and modification, Arrays, Functions, Constructors, Pattern matching using regular expressions.

Unit – IV 08 Hrs

Document Object Model: The JavaScript Execution Environment, The Document Object Model, Elements Access in Java Script, Events and Event Handling, The DOM 2 Event Model, DOM Tree Traversal and Modification

Unit – V 08 Hrs

Introduction to PHP: Origins and Uses of PHP, Overview of PHP, General Syntactic Characteristics, Primitives, Operations and Expressions, Output, Control Statements, Arrays, Functions, Pattern Matching, Form Handling, Files, Cookies, Session Tracking

Laboratory Component

- 1. Create an HTML5 page to demonstrate the usage of :
 - a. Text Formatting tags
 - b. Links
 - c. Images
 - d. Tables
- 2. Create a web page with all types of selectors and Cascading style sheets
- 3. Design an XML document to store information about a student in an engineering college affiliated to VTU. The information must include USN, Name, Name of the College, Branch, Year of Joining, and e-mail id. Make up sample data for 3 students. Create a CSS style sheet and use it to display the document.
- 4. Develop and demonstrate a calculator using HTML5 file that includes JavaScript.
- 5. Write PHP code to change the background color of the page and display a welcome message including the given name submitted in the html form.
- 6. Write a Javascript program to display a digital clock which displays the current time of the server.
- 7. Develop and demonstrate, using JavaScript script, a HTML5 document that collects the USN (the valid format is: A digit from 1 to 4 followed by two upper-case characters followed by two digits followed by two upper-case characters followed by three digits; no embedded spaces allowed) of the user. Event handler must be included for the form element that collects this information to validate the input. Messages in the alert windows must be produced when errors are detected.
- 8. Write a PHP Program to demonstrate all the file operations
- 9. Demonstrate a login page using HTML5 and validate the username and password using PhP
- 10. Write a PHP program to store current date-time in a COOKIE and display the 'Last visited on' date-time on the web page upon reopening of the same page. Also, store page views count in SESSION, to increment the count on each refresh, and show the count on web page.

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Illustrate the fundamentals of web programming					
CO2:	Apply the mark-up and scripting language concepts to build web applications					
CO3:	Analyze appropriate content layout design and event handling techniques					
CO4:	Implement server side utilities for dynamic real world environment					

Refer	ences Books
1	"Programming the World Wide Web", Robert W. Sebesta, 8th Edition, 2015, Pearson Education, ISBN: 9780133775983
2	"Web Technology Theory and Practice", M. Srinivasan, 1st Edition, 2012, Pearson Education, ISBN: 9788131774199
3	"Internet and World Wide Web - How to Program", Harvey & Paul Deitel & Associates, Harvey Deitel and Abbey Deitel, 5th Edition, 2011, Pearson Education, ISBN: 9780132151009
4	"Web Programming Building Internet Applications", Chris Bates, 3rd Edition, 2006, Wiley India, ISBN: 9780470017753

Continuous Internal Evaluation (CIE): Theory (100 Marks) + Practical (50 Marks)

Theory: CIE consists of three Tests (T) each for 50 marks, two quizzes (Q) of 10 marks each and Experiential Learning (EL) for 30 marks. All the tests and quizzes are compulsory. The test shall be conducted for 50 marks each and is then reduced to 50 marks. Two Quizzes are conducted for 10 marks each and consolidated to 20 marks and Experiential Learning s are given for 30 marks

Total CIE = 50 (T)+20(Q)+30(EL) = 100 Marks

Practical: CIE for practical consists of continuous evaluation of the programmes in the lab during every lab hour. Every programme is evaluated for 10 marks and consolidated for 40 marks. One lab internal is conducted at the end of the semester for 50 marks and reduced to 10 marks

Semester End Examination (SEE): Theory (100 Marks) + Practical (50 Marks)

Theory: The question paper will be set for maximum of 100 marks and shall consist of TEN questions from FIVE units with 20 marks each. Out of the ten questions, students must answer FIVE questions; one from each unit. The questions will have Internal Choice with maximum 3 sub divisions. The duration of the SEE will be for 3 hours.

					CO	-PO Ma	nning					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	M	M	M	Н	M	M	M	Н	M	M	M
CO2	M	Н	Н	Н	M	L	L	L	L	L	M	L
CO3	M	Н	Н	Н	L	L	M	M	L	L	M	L
CO4	L	Н	Н	Н	L	L	L	L	L	L	M	L
Mapping	of Cou	rse Ou	tcomes	(CO) to	Progr	am Spec	cific Ou	tcomes ((PSO)	•		•
CO/P	SO			PS	SO1					PSO2		
CO	1]	M					Н		
CO	2				L			Н				
CO3 M						Н						
CO	CO4 L H											
H-High,	H-High, M-Medium, L-Low											

SEMESTER: II											
	SOFTWARE ENGINEERING										
		(Theory)									
Course Code	:	18MCA21	CIE	:	100 Marks						
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks						
Total Hours	:	39L	SEE Duration	:	3:00 Hrs						

10tti 110ti 15	. 071		DEE Duration	. 5.00	
		Unit – I			10 Hrs
Introduction &	Software Process N	Models			
Introduction: Pro	fessional Software 1	Development, Software engine	ering and the Web	, IEEE/ A	ACM code
		tware Process models: waterfa			
		driven and Agile Development			
study- Develop S	oftware Requiremen	nt Specification for any real wo	rld application (IEI	EE format	1
		Unit – II			08 Hrs
System Modeling	g, Design and imple	ementation			
System Modelin	g: Context mode	els, Interaction models, Stru	ctural models, H	3ehavioral	models:
	•	lesign decisions, Architectural	patterns; Case Stu	dy-Develo	op Object
oriented models f	or real world application				
		Unit – III			07 Hrs
Advanced Softw	are Engineering				
Component-based	l Software Engine	eering: Components and co	mponent models,	CBSE	processes,
	position; Distribu	ited Software Engineering:	Distributed syste	ems, Cli	ent-server
computing, SaaS					
		Unit – IV			07 Hrs
		and Management			
•		ing, Test driven development,	•		
•	•	anagement, Plan-driven develo		_	Estimation
techniques; Case	study-Generate test	cases, cost and effort estimatio	n for the problem i	dentified	
		Unit – V			07 Hrs
Software Quality	Assurance				· · · · · · · · · · · · · · · · · · ·
Elements of Soft	ware quality assurar	nce, SQA Tasks, Goals & Meta	rics, ISO 9001:201	5 standard	ds, quality
	u. u.				

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Interpret the basic concepts of Software Engineering and development process							
CO2:	Demonstrate the phases of software development Life cycle, Concept of professional ethics							
	using various system models							
CO3:	Analyze and apply various testing techniques and Software project management strategies to build							
	Quality Software products							
CO4:	Examine Emerging Software Engineering concepts and methods for construction of							
	efficient Software systems							

Refere	ence Books											
1.	"Software Engineering", Ian Summerville, 10th Edition, 2015, Pearson Education Ltd, ISBN: 9780133943030											
2.	"Software Engineering- A Practitioner's Approach", Roger S Pressman, Bruce R. Maxim, 8th											
	Edition, 2015, McGraw-Hill, ISBN: 9780078022128											
3.	E-Book: Guide to the Software Engineering body of Knowledge version 3.0											
	SWEBOK,2014,ISBN:9780769551661											
4.	"An Integrated Approach to Software Engineering", Pankaj Jalote, 3rd Edition, 2013, Narosa											
	Publishing House ISBN: 81-7319-702-4											

management resources, Six Sigma

Continuous Internal Evaluation (CIE): Theory (100 Marks)

Theory: CIE consists of three Tests (T) each for 50 marks, two quizzes (Q) of 10 marks each and Experiential Learning (EL) for 30 marks. All the tests and quizzes are compulsory. The test shall be conducted for 50 marks each and is then reduced to 50 marks. Two Quizzes are conducted for 10 marks each and consolidated to 20 marks and Experiential Learning s are given for 30 marks

Total CIE = 50 (T)+20(Q)+30(EL) = 100 Marks

Semester End Examination (SEE): Theory (100 Marks)

Theory: The question paper will be set for maximum of 100 marks and shall consist of TEN questions from FIVE units with 20 marks each. Out of the ten questions, students must answer FIVE questions; one from each unit. The questions will have Internal Choice with maximum 3 sub divisions. The duration of the SEE will be for 3 hours.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	CO1 M		M	L	L	-	M	M	Н	L	M	-	
CO2	CO2 M		Н	Н	M	M	M	M	M	L	M	-	
CO3	M	M	M	M	M	M	M	M	M	Н	M	L	
CO4	M	M	M	M	L	-	M	M	M	-	-	M	
Mapping	of Cou	rse Ou	tcomes	(CO) to	Progra	am Spec	ific Out	tcomes (PSO)				
CO/PSO				PS	SO1					PSO2			
CO1]	M					M			
CO2			M						Н				
CO3		M						Н					
CO4 H H													
H-High,	H-High, M-Medium, L-Low												

		SEMESTER: II			
		E-COMMERCE			
		(Theory)			
Course Code	:	18MCA22	CIE	:	100 Marks
Credits: L:T:P	:	3:1:0	SEE	:	100 Marks
Total Hours	:	39L+26T	SEE Duration	:	3:00 Hours (T)

Unit – I	08 Hrs
Introduction to E-Commerce	
Eight unique features of E-Commerce technology, Types of E-Commerce, E-Commerce Busi	iness Models,
B2C Business Model, B2B Business Model, Case studies	
Unit – II	08 Hrs
Technology Infrastructure for E-Commerce	
Building an E-Commerce presence, Software and Hardware requirement, Case studies on	Developing a
mobile web site and building mobile applications, Case studies	
Unit – III	08 Hrs
Marketing and advertising Concepts	
Digital commerce marketing and advertising strategies, Internet marketing technology, Cost	and benefits
of online marketing communications, Social mobile and local marketing, Case studies	
Unit – IV	08 Hrs
e-Commerce Security and Payments	
Security threats in the e-commerce environment, Management policies, business procedures,	E-commerce
payment systems, Social, Mobile and Local marketing, Case studies	
Unit – V	07 Hrs
Ethical and Social issues in E-Commerce	
Understanding Ethical and social issues in e-Commerce, Privacy and information rights	s, Intellectual
Property rights, Case studies	

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Understand the fundamentals of e-commerce in business						
CO2:	Apply e-commerce initiatives in various Business applications						
CO3:	Analyze challenges for e-commerce models						
CO4:	Evaluate E-commerce business applications						

Refer	ence Books
1.	"E-commerce BusinessTechnology Society. Kenneth C. Laudon, Carol Guercio Traver, 10 th
	edition,2016Pearson, ,ISBN 978-93-325-5673-7.
2.	Ecommerce strategy, Technology & Implementation, Gary P. Schneider, 2008, ISBN-13: 978-81-
	315-0533-5.
3.	"E-Commerce: Fundamentals and Applications", Henry Chan, Raymond Lee, Tharam Dillon,
	Elizabeth Chang, 2003, John Wiley & Sons, ISBN: 9780471493037
4.	"Management Information Systems", James A O'Brien and George M Marakas, 10th Edition,
	2008, Tata McGraw Hill, ISBN -13: 978-1-25-902671-3, ISBN-10: 1-25-902671-X

Continuous Internal Evaluation (CIE): Theory (100 Marks)

Theory: CIE consists of three Tests (T) each for 50 marks, two quizzes (Q) of 10 marks each and Experiential Learning (EL) for 30 marks. All the tests and quizzes are compulsory. The test shall be conducted for 50 marks each and is then reduced to 50 marks. Two Quizzes are conducted for 10 marks each and consolidated to 20 marks and Experiential Learning s are given for 30 marks.

Total CIE = 50 (T)+20(Q)+30(EL) = 100 Marks.

Semester End Evaluation (SEE): Theory (100 Marks)

Theory: The question paper will be set for maximum of 100 marks and shall consist of TEN questions from FIVE units with 20 marks each. Out of the ten questions, students must answer FIVE questions; one from each unit. The questions will have Internal Choice with maximum 3 sub divisions. The duration of the SEE will be for 3 hours.

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	M	L	M	L	L	L	M	M	L	M	L	-		
CO2	M	M	M	Н	M	M	M	M	L	M	L	-		
CO3	M	M	M	Н	M	M	M	M	M	M	M	L		
CO4	M	M	M	M	L	M	M	M	M	M	M	L		
Mapping	of Cou	irse Ou	itcomes	(CO) to	Progra	am Spe	cific Ou	tcomes	(PSO)					
CO/PSO				PS	01					PSO2				
CO1				H	I					M				
CO2				N	1			Н						
CO3 M					M									
CO4 M M							•							
H-High,	M-Med	lium, L	-Low				•							

SEMESTER: II											
		DATABASE SYSTEMS									
		(Theory & Practice)									
Course Code	:	18MCA23	CIE	:	150 Marks						
Credits: L:T:P	:	3:1:1	SEE	:	150 Marks						
Total Hours	:	39L+26T+26P	SEE Duration	:	3:00 Hrs (T)						
					3:00 Hrs (P)						

Unit – I	08 Hrs

Basic Concepts

Introduction to data, information, databases, database management system; Characteristics of database approach, Actors on the Scene, Advantages of using DBMS approach, Classification of Database Applications, Data models, Schema and instances, Three schema architecture and independence, DBMS Environment, Client/ Server Architectures of DBMS, E-R Model – E-R Diagrams

Unit – II 08 Hrs

Data Models and Basic SOL

Introduction to Data Models, Relational Model Concepts, Relational Model Constraints and Relational Database Schemas, Keys, Dealing with Constraint Violations, E-R to Relational Mapping, Advantages of SQL, Data Definition Language and Data Types

Unit – III 08 Hrs

Structured Query Language

Data Manipulation language, Data Control Language, Data Query Language and all related commands. Queries using Group by and Order by clause & Join, Operators, Aggregate Functions, Commit, Rollback, Save point. Views: Introduction

Unit – IV 08 Hrs

Database Design Theory and Normalization

Informal Design Guidelines for Relation Schemas, Functional Dependencies, Normal Forms Based on Primary Keys, General Definitions of Second and Third Normal Forms, Boyce-Codd Normal Form, Multivalued Dependency and Fourth Normal Form, Join Dependencies and Fifth Normal Form

Unit – V 07 Hrs

Transaction Processing and Concurrency Control

Introduction-Properties of Transaction, Serializability, Concurrency Control, Locking Mechanisms, Two Phase Commit Protocol, Dead lock

Laboratory Component

- 1. Consider a scenario on Employee Management Database and perform the following
 - i. Identify the Entities, attributes, relationships, cardinality and participation
 - ii. Design the ER diagram and map it to schema diagram
 - iii. Create the tables and populated them with appropriate data
 - iv. Design the solution for the following
 - a. List the employee name and salary is increased by 25% and expressed as Dollars.
 - b. Display the average salaries of all the employees who works as ANALYST
 - c. List the employees who are not working in the department FINANCE
 - d. List the details of the departments where maximum number of employees are working
 - e. List the name, salary, and commission for those employees whose net pay are greater than or equal to the salary of any other employee in the company.
 - f. List the department where there are no employees (use Join)

Additional queries

- 1. List the managers who are senior to ALEX and who are junior to ANDREW.
- 2. Display the unique department of the employees
- 3. List the details of the senior employees as on year 1991.
- 4. List the name and average salary of employees in department wise.
- 5. list the name and salary of ANEESA if her salary is equal to maximum salary of her grade
- 6. List the department number, name, designation, salary, and net salary (salary + commission) of the SALESMAN who are earning maximum net salary
- 7. Find the most recently hired employees in each department order by joining date
- 8. List the name of the employees for their manager LENIN and also the name of the manager of LENIN
- 9. List the name of the managers who is having maximum number of employees working under him
- 10. List the name of the departments where more than average number of employees are working
- 2. Consider a scenario on Movie Database and perform the following
 - i. Identify the Entities, attributes, relationships, cardinality and participation
 - ii. Design the ER diagram and map it to schema diagram
 - iii. Create the tables and populated them with appropriate data
 - iv. Design the solution for the following
 - a. Find the movies which was released before 1998
 - b. Find the name of the director (first and last names) who directed a movie that casted a role for 'Eyes Wide Shut'
 - c. Find the reviewer's name and the title of the movie for those reviewers who rated more than one movie
 - **d.** Find all the years which produced at least one movie and that received a rating of more than 3 stars

- e. List all the actors who acted in a movie before 1990 and also in a movie after 2000 (use Join)
- f. Compute a report which contains the genres of those movies with their average time and number of movies for each genre (use Join)

Additional Queries

- 1. Find the titles of all movies directed by the director whose first and last name are Ronnie William
- 2. Find the titles of all movies that have no ratings
- 3. Find the titles of all movies directed by carl Hamacher.
- 4. Find the names of all reviewers who have ratings with a NULL value
- 5. Retrieve the reviewer name, movie title, and stars for those movies which reviewed by a reviewer and must be rated. Sort the result by reviewer name
- 6. Find the movie title, and the highest number of stars that movie received and arranged the result according to the group of a movie and the movie title appear alphabetically in ascending order
- 7. Find the titles of all movies which have been reviewed by anybody except by Allen Timpson
- 8. list all the information of the actors who played a role in the movie 'SILVER LINE'
- 9. Find the movie title, actor first and last name, and the role for those movies where one or more actors acted in two or more movies
- 10. Retrieve the reviewer name, movie title, and stars in an order that reviewer name will come first, then by movie title, and lastly by number of stars (use join)
- 3. Consider a scenario on Hospital Database and perform the following
 - 3. Identify the Entities, attributes, relationships, cardinality and participation
 - 4. Design the ER diagram and map it to schema diagram
 - 5. Create the tables and populated them with appropriate data
 - 6. Design the solution for the following
 - a. Find the name and medication for those patients who did not take any appointment
 - b. Find out the floor where the minimum no of rooms are available
 - c. Obtain the nurses and the block where they are booked for attending the patients on call (use Join)
 - d. Find the name of the patients who taken an advanced appointment, and also display their physicians and medication
 - e. Find the name of the patients, their treating physicians and medication
 - f. Generate a report which will show name of the patient, name of the physician who is treating him or her, name of the nurse who is attending him or her, which treatment is going on to the patient, the date of release, In which room the patient has admitted and which floor and block the room belongs to respectively

Additional Queries

- 1. Find the floor and block where the room number 104 belongs to
- 2. Count the number of unavailable rooms
- 3. Find the name of the nurse who are the head of their department
- 4. Find all the information of the nurses who are yet to be registered
- 5. Obtain the name of the physicians who are trained for a special treatment
- 6. Count the number of patients who taken appointment with at least one physician
- 7. Obtain the name of the physicians who are not a specialized physician
- 8. Obtain the name of the physicians with department who are yet to be affiliated
- 9. Count number of unique patients who got an appointment for examination room C
- 10. Find the name of the patients and the number of physicians they have taken appointment

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Explain the basic concepts of data models, database design for transaction processing and Query									
	Language									
CO2:	Analyze an information storage problem and derive an information model expressed in the form									
	of an entity relation diagram									
CO3 :	Transform high-level conceptual model to relational data model, populate database and formulate									
	queries based on principles of normalization									
CO4:	Design and Implement a relational database for any given problem									

Refere	ence Books
1	"Fundamentals of Database Systems", Ramez Elmasri, Shamkant B. Navathe, 6th Edition, 2011,
	Pearson Addison Wesley, ISBN 13: 978-0-136-08620-8
2	"Database Systems Concepts", Abraham Silberschatz, Henry F. Korth, S. Sudarshan, 6th Edition,
	2010, McGraw-Hill Education, ISBN 0-07-352332-1
3	"Database Management System", Raghu Ramakrishnan, Johannes Gehrke, 3rd Edition, 2003, Mc
	Graw-Hill, ISBN-10: 0072465638
4	"Modern Database Management", Jeffrey A. Hoffer, Mary B. Prescott, Fred R. McFadden, 8th
	Edition, , Prentice Hall, ISBN-13: 978-0-13-033969-0

Continuous Internal Evaluation (CIE): Theory (100 Marks) + Practical (50 Marks)

Theory: CIE consists of three Tests (T) each for 50 marks, two quizzes (Q) of 10 marks each and Experiential Learning (EL) for 30 marks. All the tests and quizzes are compulsory. The test shall be conducted for 50 marks each and is then reduced to 50 marks. Two Quizzes are conducted for 10 marks each and consolidated to 20 marks and Experiential Learning s are given for 30 marks.

Total CIE = 50 (T) + 20 (Q) + 30 (EL) = 100 Marks

Practical: CIE for practical consists of continuous evaluation of the programmes in the lab during every lab hour. Every programme is evaluated for 10 marks and consolidated for 40 marks. One lab internal is conducted at the end of the semester for 50 marks and reduced to 10 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) + Practical (50 Marks) Theory: The question paper will be set for maximum of 100 marks and shall consist of TEN questions from FIVE units with 20 marks each. Out of the ten questions, students must answer FIVE questions; one from each unit. The questions will have Internal Choice with maximum 3 sub divisions. The duration of the SEE will be for 3 hours.

Mapping of Course Outcomes (CO) to Program Outcomes (PO)														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	Н	M	M	M	M	L	M	M	L	L	L	L		
CO2	Н	Н	M	M	L	-	M	M	L	-	-	-		
CO3	Н	Н	M	M	L	L	L	L	L	-	-	-		
CO4	Н	Н	M	L	L	-	M	M	M	-	L	L		
Mapping	of Cou	ırse Ou	itcomes	(CO) to	Progr	am Spe	cific Ou	tcomes	(PSO)	1	•	-		
CO/PSO				PS	O 1					PSO2				
CO1				I	Ŧ			M						
CO2			M						M					
CO3			Н						Н					
CO4				ŀ	Ŧ			Н						
H-High,	M-Med	lium, L	-Low				•							

SEMESTER: II											
OPERATING SYSTEMS											
(Theory & Practice)											
Course Code	:	18MCA24	CIE	:	150 Marks						
Credits: L:T:P	:	3:1:1	SEE	:	150 Marks						
Total Hours	:	39L+26T+26P	SEE Duration	:	3:00 Hrs (T)						
					3:00 Hrs (P)						

Unit – I 08 Hrs

Introduction to Operating Systems

Operating system objectives and functions, Unix – architecture, features, General purpose utilities, File system, Basic file attributes, Simple filters: head, tail, cut, paste, fork, sort, tr, grep, sed

Unit – II 08 Hrs

Process Management

Process, Process States, Process Description, Process Control, System call – fork, exec Process Scheduling: Basic Concept, Scheduling Criteria and Algorithms

Unit – III 08 Hrs

Concurrency Control

Principles of Concurrency, Semaphore, Message Passing, Principles of Deadlock, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection and Dining Philosopher's problem using semaphores

Unit – IV 08 Hrs

Memory Management

Swapping, Contiguous Memory Allocation, Paging, Segmentation, Demand Paging, Page Replacement and Allocation of Frames

Unit – V 07 Hrs

File and Disk Management

Implementing File systems: Directory Implementation, Allocation Methods, Free Space Management, Secondary Storage Structure: Disk Structure, Disk Scheduling and Disk Management, Case Study – RTOS

Laboratory Component

- 1. Write a shell script to implement the following tasks
 - a) Count the files with read only permission for all users.
 - b) Display directory/file properties with formatted output
 - c) Display the current week of the month, with replacement of current date to "*"
 - d) Convert range of lines from a file into toggle case and store it in another file
- 2. Write a program to implement copy command
- 3. Write a program using fork() system call that generates Fibonacci series in the child process.
- 4.Implement future knowledge algorithm and non preemptive SJF and make the comparison
- 5.Implement FCFS and Round Robin algorithms
- 6.Implement producer-consumer problem using semaphore
- 7. Write a program to simulate the MFT (Multiprogramming with Fixed number of tasks) memory management technique
- 8. Write a program to implement FIFO, LRU and Optimal Page Replacement algorithm with a memory reference string with three frames
- 9.Implement Linked List File Allocation techniques
- 10.Implement disk scheduling Algorithms

(Note: For Program No: 8 and 10 Implement Any Two in CIE/SEE)

Course	Course Outcomes: After completing the course, the students will be able to										
CO1:	Define the structure of an operating system components and its responsibilities										
CO2:	Analyze the structure and design decisions involved in the implementation of an operating system										
CO3:	Design and Demonstrate general solutions for the issues involved in the management of an										
	operating system										
CO4:	Implement and manage the computer resources like memory, storage devices, processes, file										
	systems and users										

Refer	Reference Books								
1	"Operating Systems – Internals and Design Principles", William Stallings, Pearson, 7 th Edition, 2012, ISBN:978-93-325-1880-3								
2	"Operating System Concepts", Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, Eighth Edition, 2010, John Wiley, ISBN :978-81-265-205-0								
3	"Unix Concepts and Applications", Sumitabha Das, 4 th Edition, 2012,Mc Graw Hill, ISBN:978-0-07-063546-3								
4	XReal –Time Operating Systems For ARM Cortex-M Microcontrollers - Embedded Systems, Fourth Edition, 2012, Volume 3, 4th Edition, 2017, ISBN: 978-1463590154								

Continuous Internal Evaluation (CIE): Theory (100 Marks) + Practical (50 Marks)

Theory: CIE consists of three Tests (T) each for 50 marks, two quizzes (Q) of 10 marks each and Experiential Learning (EL) for 30 marks. All the tests and quizzes are compulsory. The test shall be conducted for 50 marks each and is then reduced to 50 marks. Two Quizzes are conducted for 10 marks each and consolidated to 20 marks and Experiential Learning s are given for 30 marks.

Total CIE = 50 (T)+20(Q)+30(EL) = 100 Marks

Practical: CIE for practical consists of continuous evaluation of the programmes in the lab during every lab hour. Every programme is evaluated for 10 marks and consolidated for 40 marks. One lab internal is conducted at the end of the semester for 50 marks and reduced to 10 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks)

Theory: The question paper will be set for maximum of 100 marks and shall consist of TEN questions from FIVE units with 20 marks each. Out of the ten questions, students must answer FIVE questions; one from each unit. The questions will have Internal Choice with maximum 3 sub divisions. The duration of the SEE will be for 3 hours.

N	Mapping of Course Outcomes (CO) to Program Outcomes (PO)												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	L	M	L	L	M	-	L	-	-	M	-	-	
CO2	M	M	-	L	M	-	M	-	-	M	-	-	
CO3	M	M	-	L	M	-	L	-	-	M	-	-	
CO4	Н	Н	-	L	M	L	-	-	-	-	-	-	
Mapping	of Co	urse O	utcomes	s (CO) to	o Progi	am Spe	cific Ou	itcomes	(PSO)				
CO/PSO				PS	01			PSO2					
CO1				I	_			L					
CO2		L						L					
CO3			Н						M				
CO4		Н						M					
H-High,	M-Me	dium, I	L-Low				•						

SEMESTER: II											
JAVA PROGRAMMING											
(Theory & Practice)											
Course Code	:	18MCA25	CIE	:	150 Marks						
Credits: L:T:P	:	3:1:1	SEE	:	150 Marks						
Total Hours	:	39L+26T+26P	SEE Duration	:	3:00 Hrs (T)						
					3:00 Hrs (P)						

Unit – I 07 Hrs

Java Programming Fundamentals: Introduction to Java Programming, Applications of Java Programming, The Java Development Kit, The Java Keywords, Identifiers in Java, User input using Scanners, The Java Class Libraries. Java's Primitive Types, The Scope and Lifetime of Variables, operators, Type Casting, Operator Precedence, Expressions, Conditional and Control Statements, Arrays, String Handling

Unit – II 07 Hrs

Classes, Objects and Methods: Class Fundamentals, How Objects are Created, Reference Variables and Experiential Learning, Methods, Returning from a Method, Returning Value, Using Parameters, Constructors, The new operator Revisited, Garbage Collection and Finalizers, this Keyword, Recursion, Understanding Static.

Unit – III 10 Hrs

Inheritance, Interface, Packages: Inheritance: Fundamentals, Overloading, Overriding, super keyword, Using final. Interface: Fundamentals, Creating an Interface, Implementing an Interface, Using Interface References, Implementing Multiple Interfaces. Package: Fundamentals, Importing Packages, Creating user defined packages

Unit – IV 07 Hrs

Exception Handling and Multithreading: Exception Handling: Fundamentals, Hierarchy, Catching subclass Exceptions, try blocks can be nested, Throwing an Exception, Throwable, using finally, using throws, Java's Built-in Exceptions. Multithreaded Programming: fundamentals, Thread Class and Runnable Interface, Creating Thread, Creating Multiple Threads, Thread Priorities, Thread Synchronization, Thread Communication using notify(), wait() and notify All(), suspending, Resuming and stopping Threads.

Unit – V 08Hrs

I/O, Applets: The Java I/O Classes and Interfaces, File Handling, Input stream and Output stream.Applet: fundamentals, Architecture, Applet Skeleton, Applet Initialization and Termination, Requesting Repainting, using the status window, Passing parameters to Applets, event handling, Layouts.

Laboratory Component

- 1. Write a JAVA Program to demonstrate Constructor Overloading and Method overloading
- 2. Write a Java program to demonstrate the methods in String and StringBuffer
 - a. Write a JAVA Program to demonstrate Inheritance
 - b. Write a Java program to demonstrate Multiple inheritance using interface.
- 3. Demonstrate the usage of packages in java programing by creating a package containing geometrical figures and calculating their area. Import and compile classes in other program
- 4. Write a JAVA program to demonstrate the usage of user defined Exception Handling (also make use of throw, throws.)
- 5. Write a JAVA program using Synchronized Threads, which demonstrates Producer Consumer concept
- 6. Write a JAVA program to demonstrate the Thread priority by creating three different thread and changing its priority in another program.
- 7. Write a JAVA Program to demonstrate read, write and append operations on files
- 8. Write a JAVA applet program, which handles keyboard event.
- 9. Write a Java program that works as a simple calculator. Use a grid layout to arrange buttons for the digits and for the +-* % operations. Add a text field to display the result.

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Understand the fundamentals of Java Programming									
CO2:	Design a Java program efficiently by using its features									
CO3:	Implement and Develop software using Java programming									
CO4:	Demonstrate various Java features in building applications									

Refere	Reference Books									
1	Herbert Schildt, Dale Skrien, "Java Fundamentals, A Comprehensive Introduction", Tata									
	McGraw Hill Edition, 2013, McGraw Hill Publication, ISBN-13:9781249006593									
2	Schildt, Herbert. Java: The Complete Reference 9th . McGraw-Hill Education Group, 2014,									
	McGraw-Hill Education Group, ISBN:0071808558 9780071808552									
3	Danny Poo, Derek Kiong, Swarnalatha Ashok, "Object-Oriented Programming and Java", second									
	edition Springer science and business media, 2009, ISBN: 978-81-8489-235-2									
4	Krishna, P. Radha "Object oriented programming through Java" CRC Press, Inc., 2007,ISBN:									
	8173715726									

Continuous Internal Evaluation (CIE): Theory (100 Marks) + Practical (50 Marks)

Theory: CIE consists of three Tests (T) each for 50 marks, two quizzes (Q) of 10 marks each and Experiential Learning (EL) for 30 marks. All the tests and quizzes are compulsory. The test shall be conducted for 50 marks each and is then reduced to 50 marks. Two Quizzes are conducted for 10 marks each and consolidated to 20 marks and Experiential Learning s are given for 30 marks.

Total CIE = 50 (T)+20(Q)+30(EL) = 100 Marks

Practical: CIE for practical consists of continuous evaluation of the programmes in the lab during every lab hour. Every programme is evaluated for 10 marks and consolidated for 40 marks. One lab internal is conducted at the end of the semester for 50 marks and reduced to 10 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks)

Theory: The question paper will be set for maximum of 100 marks and shall consist of TEN questions from FIVE units with 20 marks each. Out of the ten questions, students must answer FIVE questions; one from each unit. The questions will have Internal Choice with maximum 3 sub divisions. The duration of the SEE will be for 3 hours.

Mapping of Course Outcomes (CO) to Program Outcomes (PO)													
CO/PO	PO1	PO2		PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	Н	M	M	L	M	-	L	-	-	-	L	-	
CO2	Н	Н	M	M	M	-	L	-	L	-	-	-	
CO3	Н	Н	Н	M	Н	-	L	L	-	-	-	-	
CO4	Н	Н	Н	Н	Н	-	L	-	-	-	-	-	
Mapping	of Cou	rse Ou	tcomes	(CO) to	Progra	am Spec	ific Out	tcomes (PSO)				
CO/PSO				PS	01					PSO2			
CO1				N	1			L					
CO2		Н						Н					
CO3		Н						Н					
CO4			F	I			Н						
H-High, N	M-Med	ium, L	-Low				•						

SEMESTER: III							
	RESEARCH METHODOLOGY						
		(Theory)					
Course Code	:	18MCA31	CIE	:	100 Marks		
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks		
Total Hours	:	39L	SEE Duration	:	3:00 Hrs		

Unit – I	07 Hrs
----------	--------

Introduction - Meaning of Research, Types of Research, Research and Scientific method

Objectives of Research, Types of Research, Research Approaches, Significance of Research, Research and Scientific Method, Research Process

Defining the Research Problem- Selecting the problem, necessity of defining the problem, techniques involved in defining the problem

Research Design – Meaning of research design, Need and features of a good Design, Important Concepts Relating to Research Design, Different research designs

Unit – II 08 Hrs

Methods of Data Collection-Experiment and Surveys, Collection of Primary data, Collection of Secondary Data, Selection of Appropriate Method for Data Collection, Case study

Unit – III 08 Hrs

Design of Sample Surveys-Sample Design, Sampling and Non sampling Errors, Sample survey v/s Census Survey, Types of Sampling Designs, Probability and Non-probability sampling, Complex Random Sampling Designs

Unit – IV 08 Hrs

Data Preparation - Data Preparation Process, Some Problems in Preparation Process, Missing Values and Outliers, Types of Analysis, Statistics in Research,

Descriptive Statistics - Measures of Central Tendency (Mean, Median, Mode, Other averages), Measures of Dispersion (range, mean deviation, statistical deviation)

Unit – V 08 Hrs

Testing of Hypothesis – Basic concepts concerning testing of hypothesis, Testing the hypothesis Test statistic and critical region, Critical value and decision rule, Hypothesis Testing of Mean, Hypothesis Testing of Proportion, Hypothesis Testing of Variance

Essential Report Writing- Interpretation of research output, Significance of Report Writing, Layout of the Research Report

	Course Outcomes: After completing the course, the students will be able to
CO1:	Understand various principles and concepts of research methodology to solve research problems
CO2:	Identify appropriate method for collecting the data and solve the problems
CO3:	Implement the research method to collect the data, find solution and interpret the outputs
CO4:	Analyze the research methods to collect, apply, interpret and depict the research data

Refer	ence Books
1	"Research Methodology Methods and Techniques", Kothari CR, 3 rd Edition, 2014, New Age International, , ISBN: 978-81-224-3623-5
2	"Management Research Methodology", Krishnaswami KN, Sivakuma AI and Mathiarajan, 2009, Pearson Education, ISBN: 9788177585636
3	"Statistics for Management ",Levin RI and Rubin, 7 th Edition, Pearson Education, New Delhi, ISBN: 9788177585841
4	"Probability and Statistics", Murray R Spiegel, John J Schiller and R Alu Srinivasan, 3 rd Edition, Tata McGraw Hill Education Private Limited, New Delhi, ISBN:978007015154

Theory: CIE consists of three Tests (T) each for 50 marks, two quizzes (Q) of 10 marks each and Experiential Learning (EL) for 30 marks. All the tests and quizzes are compulsory. The test shall be conducted for 50 marks each and is then reduced to 50 marks. Two Quizzes are conducted for 10 marks each and consolidated to 20 marks and Experiential Learning s are given for 30 marks

Total CIE = 50 (T) + 20 (Q) + 30 (EL) = 100 Marks

Semester End Examination (SEE): Theory (100 Marks)

Theory: The question paper will be set for maximum of 100 marks and shall consist of TEN questions from FIVE units with 20 marks each. Out of the ten questions, students must answer FIVE questions; one from each unit. The questions will have Internal Choice with maximum 3 sub divisions. The duration of the SEE will be for 3 hours.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	L	M	L	M	M	L	L	M	-	L	-	-
CO2	L	Н	Н	Н	M	-	-	-	-	L	L	-
CO3	-	-	-	-	M	M	L	-	L	-	L	-
CO4	M	Н	Н	Н	Н	L	M	-	-	M	-	-
Mapping	of Cou	rse Ou	tcomes	(CO) to	Progr	am Spec	cific Ou	tcomes	(PSO)	•		
CO/PSO				PS	O 1					PSO2		
CO1				N	Л					M		
CO2	Н						L					
CO3	03 L						M					
CO4 H						M						
H-High,	H-High, M-Medium, L-Low											

SEMESTER: III							
	ANALYSIS AND DESIGN OF ALGORITHMS						
		(Theory & Practice)					
Course Code	:	18MCA32	CIE	:	100 + 50 Marks		
Credits: L:T:P	:	3:1:1	SEE	:	100 + 50 Marks		
Total Hours	:	39L+26T+26P	SEE Duration	:	03:00 Hrs (T)		
				:	03:00 Hrs (P)		

Unit – I 07 Hrs

Introduction to Algorithms, Brute Force Technique & Divide and Conquer technique

Notion of Algorithm, Review of Asymptotic Notations, Mathematical Analysis of Non-Recursive and Recursive Algorithms

Brute Force Technique : Sequential Search and Brute force string matching

Divide and Conquer: Merge Sort, Quick Sort and its performance

Unit – II 08 Hrs

Decrease-and-Conquer & Greedy Method

Insertion Sort, Topological Sorting, Algorithms for generating combinatorial objects

Knapsack Problem, Minimum-Cost Spanning Trees: Prim's Algorithm, Kruskal's Algorithm; Single Source Shortest Paths

Unit – III 08 Hrs

Dynamic Programming

Warshall's Algorithm, Floyd's Algorithm for the All-Pairs Shortest Paths Problem,

0/1 Knapsack, The Travelling Salesperson problem

Unit – IV 08 Hrs

Space and Time Trade Offs and Limitations of Algorithmic Power

Space-Time Tradeoffs: Introduction, sorting by Counting, Input Enhancement in String Matching.

Lower-Bound Arguments, Decision Trees, P, NP, and NP-Complete Problems, Challenges of Numerical Algorithms

Unit – V 08 Hrs

Backtracking and Branch - Bound Technique

Backtracking: n – Queens problem, Hamiltonian Circuit Problem, Subset – Sum Problem, Branch and Bound-Experiential Learning Problem, Travelling Salesman Problem

Laboratory Component

Students are required to implement the following using C

- 1. Implement String pattern matching using Brute force technique and find the time complexity for different inputs
- 2. Implement Quick sort and analyze its time complexity using different values of n (n is the number of inputs) and represent the complexity in a graph sheet. The input should be generated randomly.
- 3. Obtain the Topological ordering of vertices in a given digraph using Source removal method
- 4. Find Minimum Cost Spanning Tree of a given undirected graph using Prim's algorithm.
- 5. From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijkstra's algorithm
- 6. Implement 0/1 Knapsack problem using Dynamic Programming.
- 7. Find the transitive closure and shortest path among all pairs in a given graph
- 8. Apply input enhancement technique to search the given pattern from a string and find the time complexity of the same
- 9. Find a subset of a given set $S = \{sl, s2, sn\}$ of n positive integers whose sum is equal to a given positive integer d. For example, if $S = \{1, 2, 5, 6, 8\}$ and d = 9 there are two solutions $\{1,2,6\}$ and $\{1,8\}$. A suitable message is to be displayed if the given problem instance doesn't have a solution.
- 10. Implement N Queen's problem using Back Tracking.

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Identify paradigms and approaches used in algorithms and appreciate the impact of algorithm					
	design in practice					
CO2:	Classify different computational models (e.g., divide-and-conquer), order notation and various complexity measures (e.g., running time, disk space)					
CO3:	Implement and apply various techniques for efficient algorithm design					
CO4:	Analyze and evaluate the algorithms based on the order of notation and performance metrics					

Refere	ence Books
1.	"Introduction to the Design and Analysis of Algorithms", Anany Levitin, 3rd Edition, 2016, Person Education, ISBN-13: 9780321358288
2.	"Fundamentals Of Computer Algorithms", Ellis Horowitz, Sanguthevar Rajasekaran, Sartaj Sahni, 2nd Edition, 2004, Galgotia Publications, ISBN 13: 9788175152571
3.	"Essential Algorithms A Practical Approach to Computer Algorithms", Rod Stephens, 2013, Wiley, ISBN: 978-1-118-61210-1
4.	"Analysis and Design of Algorithms A Beginner's Approach", Rajesh K. Shukla, 2015 Wiley Edition:, ISBN 13: 9788126554775

Continuous Internal Evaluation (CIE): Theory (100 Marks)+ Practical (50 Marks)

Theory: CIE consists of three Tests (T) each for 50 marks, two quizzes (Q) of 10 marks each and Experiential Learning (EL) for 30 marks. All the tests and quizzes are compulsory. The test shall be conducted for 50 marks each and is then reduced to 50 marks. Two Quizzes are conducted for 10 marks each and consolidated to 20 marks and Experiential Learning s are given for 30 marks.

Total CIE = 50 (T)+20(Q)+30(EL) = 100 Marks

Practical: CIE for practical consists of continuous evaluation of the programmes in the lab during every lab hour. Every programme is evaluated for 10 marks and consolidated for 40 marks. One lab internal is conducted at the end of the semester for 50 marks and reduced to 10 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks)

Theory: The question paper will be set for maximum of 100 marks and shall consist of TEN questions from FIVE units with 20 marks each. Out of the ten questions, students must answer FIVE questions; one from each unit. The questions will have Internal Choice with maximum 3 sub divisions. The duration of the SEE will be for 3 hours.

Practical: SEE for practical will be jointly conducted and evaluated by two examiners. The duration of practical examination is 3 hours and is evaluated for 50 marks. The break up for conduction of practical examination is (i) Procedure and Write up: 20% of max marks, (ii) Conducting the practical: 60% of max marks, (iii) Viva Voce: 20% of max marks

					CO-	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	M	L	-	L	-	L	M	-	-	-	-
CO2	Н	Н	M	M	Н	-	-	M	-	-	L	L
CO3	Н	L	L	L	-	-	L	-	-	-	L	-
CO4	M	M	Н	M	-	L	-	-	-	-	-	-

Mapping of Cours	Mapping of Course Outcomes (CO) to Program Specific Outcomes (PSO)					
CO/PSO	PSO1	PSO2				
CO1	Н	L				
CO2	L	Н				
CO3	M	Н				
CO4 H M						
H-High, M-Medium, L-Low						

SEMESTER: III							
	COMPUTER NETWORKS						
			(Theory & Practice)				
Course Code	:	18MCA33		CIE	:	100 + 50 Marks	
Credits: L:T:P	:	3:1:1		SEE	:	100 + 50 Marks	
Total Hours	:	39L+26T+26P		SEE Duration	:	03:00 Hrs (T)	
					:	03:00 Hrs (P)	

Unit – I 07 Hrs

Introduction- Introduction, Uses of Computer Networks, Network Hardware, Network Software: Protocol Hierarchies, Design Issues for the Layers, Reference Models: The OSI Reference Model, The TCP/IP Reference Model, A Comparison of the OSI and TCP/IP Reference Models, Example Networks: Internet, Architecture of the Internet, Who's Who in the International Standards World

Physical Layer-Guided Transmission Media, Digital Modulation and Multiplexing

Unit – II 08 Hrs

Data Link Layer-Data Link Layer Design issues, Error Detection codes, Sliding Window Protocols (Stop and Wait, Go-Back-N (GBN) and Selective Repeative (SR))

Medium Access Control-The Channel Allocation Problem, Multiple Access Protocols, Ethernet

Unit – III

08 Hrs

The Network Layer- Network Layer Design issues, Routing algorithms- The Optimality Principal, Shortest Path Algorithm, Flooding, Distance Vector Routing, Link State Routing, Hierarchical routing, Congestion Control Algorithms, Quality of Service, Internetworking, The Network Layer in the Internet: The Network Layer in the internet- IP version 4 Protocol, IP version 6 protocol: The Main IPv6 Header, Extension Headers, Internet Control Protocols: ICMP—The Internet Control Message Protocol, ARP—The Address Resolution Protocol, DHCP—The Dynamic Host Configuration Protocol

Unit - IV

08 Hrs

The Transport Layer-The Transport Service: Services Provided to the Upper Layers, Berkeley Sockets, Elements of Transport Protocols, Internet transport protocols- TCP: Introduction to TCP, The TCP Service Model, UDP

Unit – V

08 Hrs

The Application Layer-The Domain Name System, Electronic Mail, The World-Wide-Web, Streaming Audio and Video

Laboratory Component

- 1. Create a LAN with three or more nodes implementing star topology in it. Demonstrate class full addressing
- 2. Create a LAN using physical networks/virtual machine and install FTP server to demonstrate file transfer
- 3. Demonstrate secured file transfer and computing over wired Network and wireless Network with SCP and SSH key based computing
- 4. Demonstrate packet forwarding from one LAN to another LAN with IP Forward
- 5. Build DHCP server using dns-masq with and without MAC binding with IPV4 and IPV6
- 6. Build DNS server for resolving the names and IP addresses
- 7. Build a firewall using Iptables
- 8. Build a firewall with SNAT/DNAT/PNAT using IP addresses
- 9. Write a program to demonstrate TCP echo Server and Client (using C / Python)
- 10. Demonstrate Proxy Server setup for a web server and SSH port forwarding.

	Course Outcomes: After completing the course, the students will be able to					
CO1:	Identify the design issues, services, interfaces, protocols and flow of data in computer networks					
CO2:	Understand the elements and protocols for peer - peer and communication between layers					
CO3:	Analyze the protocols and services designed for physical, data link, network and transport layers					
CO4:	Evaluate the concepts, methods, principles and protocols in computer networking					

Refer	ence Books
1	"Computer Networks", Andrew S. Tanenbaum, David J Wetherall, 5 th Edition, 2012, Pearson Education, Pearson Publication, ISBN-1978-81-317-8757-1
2	"Computer Networks A Top-Down Approach", Behrouz A Forouzan, Firouz Mosharraf, 2011, Tata McGraw-Hill Education Pvt. Ltd, ISBN 13: 9781259001567
3	Computer networks: a systems approach, Peterson, Larry L., and Bruce S. Davie, 4 th Edition, 2007, Elsevier, ISBN-13: 978-0123705488
4	"Data and computer communications.", Stallings, William., 4 th Edition, 2007, Pearson Education India, ISBN: 0-13-243310-9

Continuous Internal Evaluation (CIE): Theory (100 Marks)+ Practical (50 Marks)

Theory: CIE consists of three Tests (T) each for 50 marks, two quizzes (Q) of 10 marks each and Experiential Learning (EL) for 30 marks. All the tests and quizzes are compulsory. The test shall be conducted for 50 marks each and is then reduced to 50 marks. Two Quizzes are conducted for 10 marks each and consolidated to 20 marks and Experiential Learning s are given for 30 marks.

Total CIE = 50 (T) + 20 (Q) + 30 (EL) = 100 Marks

Practical: CIE for practical consists of continuous evaluation of the programmes in the lab during every lab hour. Every programme is evaluated for 10 marks and consolidated for 40 marks. One lab internal is conducted at the end of the semester for 50 marks and reduced to 10 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks)

Theory: The question paper will be set for maximum of 100 marks and shall consist of TEN questions from FIVE units with 20 marks each. Out of the ten questions, students must answer FIVE questions; one from each unit. The questions will have Internal Choice with maximum 3 sub divisions. The duration of the SEE will be for 3 hours.

Practical: SEE for practical will be jointly conducted and evaluated by two examiners. The duration of practical examination is 3 hours and is evaluated for 50 marks. The break up for conduction of practical examination is (i) Procedure and Write up: 20% of max marks, (ii) Conducting the practical: 60% of max marks, (iii) Viva Voce: 20% of max marks

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	L	M	L	-	-	-	-	-	M	-	L
CO2	M	Н	L	L	-	-	L	-	M	-	M	-
CO3	M	L	Н	L	-	L	-	L	L	L	-	L
CO4	Н	M	L	L	-	-	-	M	L	M	L	-

Mapping of Course Outcomes (CO) to Program Specific Outcomes (PSO)

CO/PSO	PSO1	PSO2
CO1	Н	M
CO2	M	M
CO3	Н	L
CO4	M	Н
TT TT' 1 NA NA 19	T T	

H-High, M-Medium, L-Low

SEMESTER: III											
NON-RELATIONAL DATABASES (NOSQL)											
	(Theory)										
Course Code	:	18MCA341	CIE	:	100 Marks						
Credits: L:T:P	:	3:1:0	SEE	:	100 Marks						
Total Hours	:	39L+26T	SEE Duration	:	3:00 Hrs						

Unit – I	07 Hrs							
Introduction to NOSQL- Definition and introduction, sorted ordered column-oriented stores, key/value								
stores, document databases, graph databases.								
Interfacing and Interacting with NOSQL- If No SQL, then what?, Language Binding for NoS	QL data							
stores.								
Unit – II	08 Hrs							
Understanding the Storage Architecture - Working with column- oriented databases, HBase	distributed							
Storage Architecture, Document store internals, Understanding Key/Value stores in Memcached	and Redis							
Performing CRUD Operations - Creating Records, Accessing Data, Updating and Deleting Data.								
Unit – III	08 Hrs							
Modifying Data stores and Managing Evolution- Changing document databases, Schema evo	lution in							
column oriented database								
Indexing and Ordering Datasets- Essential concepts behind a database index, Indexing and or	dering in							
MongoDB								

Managing Transactions- RDBMS and ACID, Distributed ACID systems, Upholding CAP.

Unit – IV 08 Hrs

Gaining Proficiency with NOSQL- Using NOSQL in the CLOUD, Scalable Parallel Processing with Map Reduce, Surveying Database Internals – MongoDB internals, Hypertable under the Hood, Apache Cassandra, Berkeley DB.

Unit – V 08 Hrs

Developing and Administration- PhP and MongoDB, Python and MongoDB, creating blog application with PHP Drive, Database Administration.

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understand different types of NoSQL databases
CO2:	Illustrate the different operations to manage databases
CO3:	Apply CRUD operations with MongoDB, Cassandra, CouchDB and Redis
CO4:	Justify the need of NOSQL and choose appropriate NOSQL for a problem dealing with Principles of CAP theory
Refere	ence Books
1	"Professional NOSQL", Shashank Tiwari, 2011, Wiley India Private Limited, ISBN: 99788126533268
2	"The Definitive Guide to MongoDB, TheNOSQL Database for Cloud and Desktop Computing, Eelco Plugge, Peter Membrey and Tim Hawkins, Apress2010, ISBN: 978-1-4302-3052-6. (E-Book)
3.	"NOSQL FOR DUMMIES", Adam Fowler, 2015, A Wiley Brand John Wiley &Sons, Inc., ISBN 978-1-118-90574-6 (pbk); ISBN 978-1-118-90562-3 (epub); ISBN 978-1-118-90578-4 (epdf)
4.	"Seven Databases in Seven Weeks", A Guide to Modern Databases and the NOSQL Movement Eric Redmond and Jim R. Wilson, The Pragmatic Bookshelf Dallas, Texas • Raleigh, North Carolina 2012, ISBN-13: 978-1-93435-692-0

Theory: CIE consists of three Tests (T) each for 50 marks, two quizzes (Q) of 10 marks each and Experiential Learning (EL) for 30 marks. All the tests and quizzes are compulsory. The test shall be conducted for 50 marks each and is then reduced to 50 marks. Two Quizzes are conducted for 10 marks each and consolidated to 20 marks and Experiential Learning s are given for 30 marks

Total CIE = 50 (T)+20(Q)+30(EL) = 100 Marks

Semester End Examination (SEE): Theory (100 Marks)

Theory: The question paper will be set for maximum of 100 marks and shall consist of TEN questions from FIVE units with 20 marks each. Out of the ten questions, students must answer FIVE questions; one from each unit. The questions will have Internal Choice with maximum 3 sub divisions. The duration of the SEE will be for 3 hours.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	Н	M	L	-	-	-	Н	-	L	-	L
CO2	Н	Н	Н	L	-	-	L	M	-	L	-	L
CO3	Н	Н	M	L	-	-	L	M	-	L	-	L
CO4	Н	Н	L	L	-	-	-	M	-	L	-	L
Mapping	of Cou	rse Ou	tcomes	(CO) to	Progra	m Spec	ific Out	tcomes (PSO)			
CO/PS	SO			PS	01					PSO2		
CO	l			I	ł			Н				
CO2	2	Н						Н				
CO3		Н						M				
CO ₂	M						L					
H-High, N	H-High, M-Medium, L-Low											

SEMESTER: III											
OPERATIONS RESEARCH											
	(Theory)										
Course Code	:	18MCA342	CIE	:	100 Marks						
Credits: L:T:P	:	3:1:0	SEE	:	100 Marks						
Total Hours	:	39L+26T	SEE Duration	:	3:00 Hrs						

Unit – I	08 Hrs						
Introduction to Operations Research & LPP-Introduction, Operations Research models, S	Solving the						
OR model, Phases of an OR study, Two variable LP Model, Graphical LP Solution, The Simple	lex Method						
and Sensitivity Analysis- LP Model in equation form, Simplex Method, Artificial Starting So	lution – M						
Method, Special cases in Simplex Method							
Unit – II	07 Hrs						
Transportation and Experiential Learning Problems- Definition of Transportation	on Model,						
Transportation Algorithm - North-West Corner method, Least Cost Method, Vogel's App	roximation						
Method, Iterative Computations of the Transportation Algorithm, Experiential Learning	Model -						
Hungarian Method, Simplex explanation of the Hungarian Method.							
Unit – III	08 Hrs						
Network Models- Scope and Definition of Network Models, CPM and PERT – Network repr	resentation,						
CPM computations, Construction of the Time schedule, PERT Networks							
Unit – IV	08 Hrs						
Duality and Game Theory -Definition of the Dual Problem, Primal dual relationship,	Duality and Game Theory -Definition of the Dual Problem, Primal dual relationship, Economic						
Interpretation of Duality, Dual Simplex Algorithm, Game Theory, Optimal Solution of Two person Zero							
Sum games, Solution of Mixed Strategy Games							
Unit – V	08 Hrs						

The Nature of Metaheuristics: Non-linear programming Problem, Travelling Salesman Problem - Sub Tour reversal algorithm, Tabu Search: Minimum spanning tree, Simulated Annealing: Travelling Salesman Problem, Genetic Algorithms: basic concept

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Understand the importance of decision making for optimal utilization of resources									
CO2:	Design and formulate real world problem by applying relevant mathematical models									
CO3:	Apply and Analyze various operations research techniques for obtaining solutions									
CO4:	Evaluate the solutions for obtaining optimal solution for the real world problems									

Refere	ences Books
1	"Operations Research - An Introduction", Hamdy A Taha, 9 th Edition, 2014, Pearson, ISBN: 978-93-325-1822-3, First Impression
2	"Introduction to Operations Research", Frederick S. Hillier & Gerald J. Lieberman, 8 th Edition, 2007, Tata McGraw Hill, ISBN-10: 0070600929, ISBN-13: 978-0070600928
3	"Operations Research :Applications and Algorithms", Wayne L Winston, Thomson Course Technology, 4 th Edition, 2003, ISBN-13:978-0534380588, ISBN-0534380581
4	"Operations Research", Prem Kumar Gupta, D S Hira, 5th Edition,2014, S.Chand & Company Pvt Ltd., ISBN10:8121902819, ISBN 13:9788121902816

Non-Linear Programming –Meta heuristics

Theory: CIE consists of three Tests (T) each for 50 marks, two quizzes (Q) of 10 marks each and Experiential Learning (EL) for 30 marks. All the tests and quizzes are compulsory. The test shall be conducted for 50 marks each and is then reduced to 50 marks. Two Quizzes are conducted for 10 marks each and consolidated to 20 marks and Experiential Learning s are given for 30 marks

Total CIE = 50 (T)+20(Q)+30(EL) = 100 Marks

Semester End Examination (SEE): Theory (100 Marks)

Theory: The question paper will be set for maximum of 100 marks and shall consist of TEN questions from FIVE units with 20 marks each. Out of the ten questions, students must answer FIVE questions; one from each unit. The questions will have Internal Choice with maximum 3 sub divisions. The duration of the SEE will be for 3 hours.

					CO	-PO Ma	pping						
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	Н	M	L	-	-	-	-	L	L	M	M	M	
CO2	M	M	-	-	M	-	-	-	M	-	-	-	
CO3	M	M	M	M	L	-	M	M	L	M	M	M	
CO4	L	Н	L	Н	-	-	L	M	M	M	L	-	
Mapping	of Cou	rse Ou	tcomes	(CO) to	Progra	am Spec	cific Out	tcomes (PSO)	•		•	
CO/P	SO			PS	SO1			PSO2					
CO	1]	H			M					
CO	2		Н						M				
CO3		M						M					
CO4			L					M					
H-High,	M-Med	ium, L	-Low										

SEMESTER: III								
	MACHINE LEARNING							
		(Theory)						
Course Code	:	18MCA343	CIE	:	100 Marks			
Credits: L:T:P	:	3:1:0	SEE	:	100 Marks			
Total Hours	:	39L+26T	SEE Duration	:	3:00 Hrs			

Unit – I	07 Hrs
Data and Introduction to Machine Learning: Data Objects and Attribute Types Do	ata Vigualization

Data and Introduction to Machine Learning: Data Objects and Attribute Types, Data Visualization, Measuring Data Similarity and Dissimilarity, Introduction to Machine learning - Human learning, machine learning, types, problems not to be solved using machine learning, Application, Issues

Unit – II 08 Hrs

Preparing to Model / Modelling and Evaluation – Machine learning activities, Basic type of data in Machine learning, Exploring structure of data, Data quality and Remediation, Data Pre-processing. Selecting the Model, Training the Model, Model Representation and Interpretability, Evaluating performance of a model

Unit – III 08 Hrs

Supervised learning

Bayesian Concept – Bayes theorem and concept learning - Brute force Bayesian algorithm, Naïve Base Classifier

Classification: Classification Model, Classification learning steps, Classification Algorithms-k-nearest Neighbour(KNN), Decision Tree, Random Forest Model, Support Vector Machines

Unit – IV 08 Hrs

Regression: Introduction, Examples of Regression, Regression Algorithms- Simple Linear Algorithms, Multiple Linear Regression, Assumption in Regression Analysis, Main Problems in Regression Analysis, Logistic Regression

Unsupervised learning : Introduction, Unsupervised/s supervised learning, applications of Unsupervised Learning, Clustering - Clustering as a machine learning task, different types of clustering techniques, Partitioning methods, K-medoids, Hierarchical clustering, Density based Methods – DBSCAN Finding Pattering using Association Rule

Unit – V 08 Hrs

Outlier Detection: Outliers and Outlier Analysis, Outlier Detection Methods, Statistical Approaches, Proximity Based Approaches

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Understand the need of data and pre-processing, machine learning techniques for various application					
CO2:	Identify and apply the appropriate techniques to process the data and solve the applications using machine learning techniques					
CO3:	Implement machine learning techniques for various problems					
CO4:	Evaluate the different data processing and machine learning techniques for various application					

Refere	Reference Books					
1	"Machine Learning", Saikat Dutt, Subramanian Chandramouli, Amit Kumar Das, , 1st Edition,					
	2019, Pearson Pearson Publications, ISBN 978-93-530-6669-7					
2	Jiawei Han, Micheline Kamber Jian Pei," Data Mining Concepts and Techniques", 3rd					
	Edition, Morgan Kaufmann publications, ISBN 9780123814791					
3	," Machine Learning ",Tom M Mitchel , McGraw Hill publications,ISBN-0070428077					
4	,"Elements of statistical learning, Data Mining, Inference and Prediction", Trevor Hastie, Robert					
	Tibshirani, Jerome Friedman Second Edition, Springer Series in Statistics, Springer Publications.					

Theory: CIE consists of three Tests (T) each for 50 marks, two quizzes (Q) of 10 marks each and Experiential Learning (EL) for 30 marks. All the tests and quizzes are compulsory. The test shall be conducted for 50 marks each and is then reduced to 50 marks. Two Quizzes are conducted for 10 marks each and consolidated to 20 marks and Experiential Learning s are given for 30 marks

Total CIE = 50 (T)+20(Q)+30(EL) = 100 Marks

Semester End Examination (SEE): Theory (100 Marks)

Theory: The question paper will be set for maximum of 100 marks and shall consist of TEN questions from FIVE units with 20 marks each. Out of the ten questions, students must answer FIVE questions; one from each unit. The questions will have Internal Choice with maximum 3 sub divisions. The duration of the SEE will be for 3 hours.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	L	L	Н	M	M	-	L	-	-	-	L	-
CO2	L	M	M	M	Н	-	L	-	-	-	M	-
CO3	M	Н	Н	Н	Н	-	M	L	L	-	L	-
CO4	Н	M	M	Н	Н	_	L	-	-	-	-	-
Mapping	of Cou	rse Ou	tcomes	(CO) to	Progra	am Spec	ific Out	tcomes (PSO)			
CO/PSO				PS	O 1					PSO2		
CO1				N	Л					L		
CO2	CO2 M L											
СО3						M						
CO4					L							
H-High, N	H-High, M-Medium, L-Low											

	SEMESTER: III					
		CONTENT MANAGEMENT SYS	STEM			
		(Theory & Practice)				
Course Code	:	18MCA351	CIE	:	150 Marks	
Credits: L:T:P	:	4:0:1	SEE	:	150 Marks	
Total Hours	:	52L+26P	SEE Duration	:	3:00 Hrs (T)	
	3:00 Hrs (P)					
Unit – I 10 Hrs						

What Content Management Is (And Isn't), Points of Comparison, Acquiring a CMS, The Content Management Team, CMS Feature Analysis, Content Modeling, Content Aggregation

Unit – II 11 Hrs

Introduction to Drupal: Content Management Systems, Creating Content

Creating and Managing Content: Understanding the Basics, Creating Content in Drupal, Editing Content, Other Content Options, Deleting Content, Finding Content

Creating and Managing Users: Users, Roles, and Permissions, User Accounts, Configuring User Account Settings, Creating Roles, Assigning Permissions, Creating User Accounts, User Generated Accounts

Taxonomy: Taxonomy Overview, Creating Vocabularies, Assigning a Taxonomy Vocabulary to a Content Type, Selecting a Taxonomy Term when Creating Content, Creating Human- and Search-Engine-Friendly Lists, Assigning More Than One Vocabulary

Creating Menus: Ordering From the Menu, Adding an Item to a Menu, Creating a New Menu

Installing Themes: How a Drupal Theme Works, Finding a New Theme, Installing a Theme, The Administration Theme, Configuration Options

Drupal Blocks: Blocks, Blocks and More Blocks, Making Blocks Appear on Pages, Finding the List of Available Blocks, Reassigning and Deactivating Blocks, Configuring Blocks, Using Blocks from Contributed Modules, Creating Custom Blocks

Unit – III 11 Hrs

Drupal Modules: Contributed Modules, How to Download, Install, and Configure a Module, Configuring Modules and Setting Permissions, Enabling Other Modules, The Top Eleven Modules

Enabling Interactive Capabilities: Blogging, Forums, Polls

Content Types: The Basic Page and Article Content Types, Defining a Custom Content Type, Creating a Custom Content Type, Other Field Types

Views: Installing the Views Module, Creating Your First View

Panels: Available Layouts, Creating a Panel Page, Using the Flexible Layout Option, Adding Other Things to Panel Panes

Administering Your Drupal Site: Backing Up Your Site, Checking the Log Files, Status Report, Checking for Updates

Unit – IV 10 Hrs

First Post: What Is WordPress?, Popularity of WordPress, Content and Conversation, Getting Started, Finishing Up

Code Overview: downloading, directory and file structure, wordpress configuration, wp-content user playground

Working With Wordpress Locally: Benefits of Working Locally, Tools for Component Administration, Configuration Details, Deploying Local Changes

Tour of Core: What is in the Core?, Using the core as a Reference

Unit – V 10 Hrs

The Loop: Understanding the Loop, Template Tags, Customizing the loop, Global variables

Data Management: Database Schema, Table Details, Word Press Database Class, Direct Database Manipulation

Custom Post Types, Custom Taxonomies, And Meta data: Understanding Data in Word Press, Word Press Taxonomy, Building your own taxonomy, Meta data

Theme Development: Why use a Theme? Installing a Theme, What is a Theme?

Laboratory Component

1.a.Demonstrate extending drupal functionality by using and configuring ckeditor and imce contributed modules for rich text formatting, file and image uploading in drupal

1.b. Create a basic page for the template shown below

Logo	Header Name		
Home About Us Products Contact us	Content		
Footer			

- **2.** Create a new content type with the following fields usn, student_name, semester(integer), branch, program, date of birth(date type), sex(radio button), hobbies(check boxes), height(float), resume(file), ug studied(term reference) with a suitable title for the content in drupal.
- **3.** Create a news slider showing fields like program, date and venue using views. Also create a photo slider for showcasing photos of the past events in drupal. Attach the news slider to the first side bar block and photo slider to the footer of the theme installed.
- **4. a**.Demonstarte a user creation, assigning a role and give permission to certain content in drupal
- **b.** Create main menu with titles for the following:

```
HOME
ABOUT US
DEPARTMENTS
|--DEPARTMENTS NAMES
|- CSE
|- About the departments
|- Achievements
|-Faculty
|-Placements
```

KEY EXECUTIVES

CONTACT US

- **5.** Install and configure Webform module in Drupal. Create a form for collecting faculty information with fields like Name, education Qualification, date of joining, email id and research publications (National and International) and demonstrate report generation.
- **6a.** Demonstrate backup update and restore of drupal websites.
- **b.** Install drush and demonstrate drush commands to enable, disable, download modules and clearing caches
- **7.** Enable the following core module and configure the following:
 - a. Poll
 - b. Blog
 - c. Forum

Demonstrate the above modules with appropriate contents

- **8.**Build a website using drupal for a school. The pages should have the following
- 1. Proper headings, Links for more details

- 2. Images where ever appropriate
- 3. Displaying the school curriculum
- 4. Provision to take feedback from the users and Validate important fields

9.Create a navigation menu having titles About Us, Authorities, Administation, Academics, Examination and Departments in Word Press. The sub-menu are as follows:

About Us – Objectives, Students Enrollment, MoU and Rules, Infrastructure

Authorities – Principal, Vice Principal, Dean Academics, Dean Student affairs, Dean Infrastructure

Administration – Registrar, Controller of Examination, Finance Office, Heads of Department

Academics – Programs offered, Soft skills

Examination – Results, Time table, syllabus copy

Departments – Architecture, Biotech, Civil, Computer Science, Electronics

- 10. Build a website using Wordpress for a Product Based Company. The pages should have the following
- 1. Proper headings, Links for more details
- 2. Images where ever appropriate
- 3. Displaying types of products and their prices
- 4. Provision to take feedback from the user and Validate important fields

Course	Course Outcomes: After completing the course, the students will be able to				
CO1:	Compare and Contrast between various content management systems				
CO2:	Enabling and configuring interactive capabilities				
CO3:	Demonstrate critical thinking skills to design and create different contents				
CO4:	Design and create personal and /or business websites				

Reference Books
 Web Content Management: Systems, Features, and Best Practices, Deane Barker, 1st Edition, 2016, O'Reilly Media, Inc., ISBN 978-1-4919-0812-9
 Beginning Drupal 7, Todd Tomlinson, 1st Edition, Apress Publishing Company, ISBN-13 (pbk): 978-1-4302-2859-2
 Professional WordPress: Design and Development, Brad Williams, David Damstra, Hai Stern, 3rd Edition, 2015, Wrox Publications, ISBN: 978-1-118-98724-7
 "Programmer's Guide to Drupal, Jennifer Hodgdon 2nd Edition", 2015, O'Reilly Media, ISBN-13:9781491911464

Continuous Internal Evaluation (CIE): Theory (100 Marks) + Practical (50 Marks)

Theory: CIE consists of three Tests (T) each for 50 marks, two quizzes (Q) of 10 marks each and Experiential Learning (EL) for 30 marks. All the tests and quizzes are compulsory. The test shall be conducted for 50 marks each and is then reduced to 50 marks. Two Quizzes are conducted for 10 marks each and consolidated to 20 marks and Experiential Learning s are given for 30 marks.

Total CIE = 50 (T)+20(Q)+30(EL) = 100 Marks

Practical: CIE for practical consists of continuous evaluation of the programmes in the lab during every lab hour. Every programme is evaluated for 10 marks and consolidated for 40 marks. One lab internal is conducted at the end of the semester for 50 marks and reduced to 10 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks)

Theory: The question paper will be set for maximum of 100 marks and shall consist of TEN questions from FIVE units with 20 marks each. Out of the ten questions, students must answer FIVE questions; one from each unit. The questions will have Internal Choice with maximum 3 sub divisions. The duration of the SEE will be for 3 hours.

Practical: SEE for practical will be jointly conducted and evaluated by two examiners. The duration of practical examination is 3 hours and is evaluated for 50 marks. The break up for conduction of practical examination is (i) Procedure and Write up: 20% of max marks, (ii) Conducting the practical: 60% of max marks, (iii) Viva Voce: 20% of max marks

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	M	M	Н	L	M	-	L	L	L	-	-	M
CO2	M	M	M	L	M	-	L	L	L	-	-	L
CO3	M	M	Н	L	Н	L	L	L	L	-	-	M
CO4	Н	Н	Н	L	Н	L	M	L	L	-	L	Н
Mapping	Mapping of Course Outcomes (CO) to Program Specific Outcomes (PSO)											
CO/DSO	0/050 0501 0502											

CO/PSO	PSO1	PSO2		
CO1	L	L		
CO2	M	M		
CO3	M	Н		
CO4	Н	Н		
H-High, M-Medium, L-Low				

SEMESTER: III							
	ADVANCED OBJECT ORIENTED PROGRAMMING						
	(Theory & Practice)						
Course Code	:	18MCA352	CIE	:	150 Marks		
Credits: L:T:P	:	4:0:1	SEE	:	150 Marks		
Total Hours	:	52L+26P	SEE Duration	:	3:00 Hrs (T)		
					3:00 Hrs (P)		

Unit – I 10 Hrs

Introduction to Advanced Object Oriented Programming

Decorators: Understanding Decorators, Decorator Syntax, Where Decorators are used, Why you should write Decorators, When you should write Decorators, Writing Decorators, decorator classes. **Context Managers:** Context manager syntax, when you should write context managers. **Generators**: Understanding what a Generator is, Understanding Generators syntax, communication with generators, alterable vs iterators, generators in standard library.

Unit – II 10 Hrs

Meta Classes, Abstract Base Class: Meta classes Classes and Objects, Writing Meta classes, When to Use Meta classes. Class Factories: Understanding A Class Factory Function, Determining when you should write class factories. Abstract Base classes: Declaring a Virtual Subclasses, Declaring a Protocol, Built-in Abstract Base Classes.

Unit – III 11 Hrs

OOP for Database Programming: Introduction- Persistent Storage, Basic Operations and SQL, Databases and Python, Python DB API – Module Attributes, Connection Objects, Cursor Objects, Type Objects and Constructors, Relational Databases, **Databases and Python:** Adapters, Examples of Using Database Adapters, Non-Relational Databases.

Unit – IV 11 Hrs

OOP for GUI Programming: Tkinter: Introduction – About Tcl, Tk, and Tkinter, Getting Tkinter Installed and Working, Client/Server Architecture –Tkinter and Python Programming, Tkinter Examples – Labels, Button widgets, Scale and Partial Function Application.

Unit – V 10 Hrs

OOP for Web Development: Web Frameworks: Django Introduction, Web Frameworks, Introduction to Django, Projects and Apps, "Hello World" Application. Creating a Model to add database service, Python Application Shell, Creating Blog's User Interface.

Laboratory Component

- 1. Write a program to create Fibonacci series using generators and stack the same with a decorator to find the time taken by the generator.
- 2. Define meta classes to create new classes by re-implementing __init__ and __new__ Example: Create a class using __init__ and __new__ Also __init__ method should display the memory allocation details and __new__ method should display initialization of class.
- 3. Define a class factory which demonstrates the runtime attributes during the class creation.
- 4. Write a Python program to demonstrate the Abstract Classes.

 Example: create a class with abstract execute method and __init__ method which accepts the operand_a and operand_b. Derive abstract class which is overriden by the execute method based on the operations which is being performed.
- 5. Write a python program to demonstrate connection to database and retrieving information. Example: create menu driven program which will demonstrate the add, display and delete the record of an employee table created using database MYSQL with attributes slno, name, address, empcode, date of birth, age, mobile, status, designation
- 6. Write a GUI application using TKinter with username, password, submit button and clear button. When the submit button is clicked an appropriate message should be displayed.
- 7. Demonstrate Conversion table with a Tkinter GUI
 (Any one of the Conversion table to be considered for exams)
 Metric Conversion (gram to ounce, kilo to pounds, tonne to stone)
 Temperature Conversion (Celsius to Fahrenheit)
- 8. Design a canvas using TKinter to animate an moving car.
- 9. Demonstrate with the Django framework, a registration page for alumni meet for college and display the same in the next page using Django framework
- Demonstrate with the Django framework, Insert, fetch the employee details from MYSQL database using ORM.

Course	Course Outcomes: After completing the course, the students will be able to				
CO1:	Understand advanced concepts of OOP with TKinter, database and Django				
CO2:	Apply advanced concepts of OOP in TKinter, database and Django				
CO3:	Analyze the standard way of developing applications using TKinter, Django and database				
CO4:	Develop application using advanced OOP in Tkinter, Django and database				

Reference Books									
Wiley India Pvt ltd, ISBN:978-81-265-									
·									
un, Third, 2016 Edition, Pearson,									
npbell, Jason Montojo, Edited by Lynn									
13, ISBN: 9781937785451, 1937785459									
nt Done Right", Adrian Holovaty, Jacob									
1430219361									
]									

Continuous Internal Evaluation (CIE): Theory (100 Marks) + Practical (50 Marks)

Theory: CIE consists of three Tests (T) each for 50 marks, two quizzes (Q) of 10 marks each and Experiential Learning (EL) for 30 marks. All the tests and quizzes are compulsory. The test shall be conducted for 50 marks each and is then reduced to 50 marks. Two Quizzes are conducted for 10 marks each and consolidated to 20 marks and Experiential Learning s are given for 30 marks.

Total CIE = 50 (T)+20(Q)+30(EL) = 100 Marks

Practical: CIE for practical consists of continuous evaluation of the programmes in the lab during every lab hour. Every programme is evaluated for 10 marks and consolidated for 40 marks. One lab internal is conducted at the end of the semester for 50 marks and reduced to 10 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks)

Theory: The question paper will be set for maximum of 100 marks and shall consist of TEN questions from FIVE units with 20 marks each. Out of the ten questions, students must answer FIVE questions; one from each unit. The questions will have Internal Choice with maximum 3 sub divisions. The duration of the SEE will be for 3 hours.

Practical: SEE for practical will be jointly conducted and evaluated by two examiners. The duration of practical examination is 3 hours and is evaluated for 50 marks. The break up for conduction of practical examination is (i) Procedure and Write up: 20% of max marks, (ii) Conducting the practical: 60% of max marks, (iii) Viva Voce: 20% of max marks

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	L	L	L	-	M	-	L	-	-	-	-	-
CO2	-	L	M	M	M	-	L	-	-	-	-	-
CO3	-	M	M	M	Н	-	M	M	-	-	M	M
CO4	-	Н	M	-	Н	M	M	-	M	-	M	M

Mapping of Course Outcomes (CO) to Program Specific Outcomes (PSO)

CO/PSO	PSO1	PSO2						
CO1	L	M						
CO2	L	Н						
CO3	M	Н						
CO4	M	Н						
H-High, M-Medium, L-Low								

SEMESTER: III											
MODEL VIEW CONTROLLER PROGRAMMING											
	(Theory & Practice)										
Course Code	:	18MCA353	CIE	:	150 Marks						
Credits: L:T:P	:	4:0:1	SEE	:	150 Marks						
Total Hours	:	52L+26P	SEE Duration	:	3:00 Hrs (T)						
					3:00 Hrs (P)						

Unit – I	10 Hrs
Unit – I	10 H

Introduction to MEAN (MongoDB, ExpressJS, AngularJS, NodeJS)

Three-tier web application development, Introduction to JavaScript and MEAN, Introduction to Node.js, JavaScript event-driven programming

Node.js - event-driven programming, JavaScript closures Node modules, Common JS modules, Node.js core modules, Node.js third-party modules, Node.js file modules Developing Node.js web application, connecting and mounting middleware.

Unit – II 10 Hrs

Building Express Web Application - Introduction to Express, Installing Express, Creating your first Express application, **The application, request and response objects**- The application object, The request object, The response object, External middleware

Implementing the MVC pattern-Application folder structure, Horizontal folder structure, Vertical folder structure, File-naming, conventions, Implementing the horizontal folder structure,

Configuring an Express application-Environment configuration files Rendering views, Configuring the view system

Rendering EJS views-Configuring the view system 71, Rendering EJS views

Unit – III 11 Hrs

Introduction to MongoDB - Introduction to NoSQL, Introducing MongoDB, MongoDB sharding, **MongoDB CRUD operations-**Creating a new document, Creating a document using insert(), Creating a document using update(), Creating a document using save()

Introduction to Mongoose-Introducing Mongoose, Connecting to MongoDB, Understanding Mongoose schemas, Creating the user schema and model, Registering the User model, Creating new users using save(), Finding multiple user documents using find(), Reading a single user document using find One(), Updating an existing user document Deleting an existing user document, Extending your Mongoose schema- Defining default values, Using schema modifiers, Predefined modifiers, Custom setter modifiers, Custom getter modifiers

Unit – IV 11 Hrs

Introducing AngularJs: Key concepts of AngularJs, Modules, Dependency injection in AngularJs, Directives, installing AngularJs using with Bower, structure and bootstrap the application, Angular MVC entities, ngRoute module, Services

Implementing the AngularJS module views- The create-article view, The view-article view, The edit-article view, The list-articles view

Unit – V 10 Hrs

Creating a MEAN CRUD Module

Implementing the AngularJS MVC module-Creating the AngularJS module service, Setting up the AngularJS module controller, Implementing the AngularJS module views, The create() method of the AngularJS controller, The find() and find One() methods of the AngularJS controller, The update() method of the AngularJS controller, The delete() method of the AngularJS controller

Laboratory Component

- 1. Write a node.js program to create a custom middleware functions that outputs the current URL and time stampto the console
- 2. Write a node.js program to calculate area or three geometrical objects using modules.
- 3. Write a node.js program using express framework accept USN, Name, branch and marks validate name and mark fields (Name should not empty and marks should be integer)
- 4. Write a node.js program using Express framework to accept user name, Branch, Semester, from web page and display the information as below
 - a) Handle both get and post methods
 - b) Branch should be underlined
 - c) Name should be in bold face.
- 5. Write a node.js program using Express framework to display different categories of products from flipcart/Amazon (Note: Use Routing, Min:3 products)
- 6.Using node.js and Mongo create a database called 'FinalYears. Create a collection 'Student' with 'USN', 'Name' and company_name (by campus selection) as fields. Write a node.js program to insert and display the list of students who are selected for 'Microsoft'.
- 7. Using Node.js and mongo, develop a program to accept 'Employee' information namely Emp name, Emp code, Dept, Basic Salary from a web page and to store the information in a database and update the salary with the name specified by the user.
- 8. Write a controller using AngularJs for the student information namely USN, Name, branch, Semester for inserting, editing, deleting and updating.
- 9. Create an Insurance Management system using Mean Stack Framework for handling all the key insurance functions like including product definition, handling of policies, and claims.
- 10.Develop and demonstrate online book carting system Mean Stack Framework provisions to create item list and customer to add items to the cart, alter the quantities of an item and remove items from the cart.

Note: Students are required to implement all the programs

Course Outcomes: After completing the course, the students will be able to									
CO1:	Understand the concepts of Model, view and controller								
CO2:	Apply Model, view and controller for developing applications using MEAN								
CO3:	Design Web entities for developing web applications using MEAN Frameworks								
CO4:	Implement MVC Framework for enterprise application								

Refere	ence Books
1	"MEAN Web Development", Amos Q. Haviv, 2014, PACKT Publication, ISBN 978-1-78398-
	328-5
2	"Getting MEAN with Mongo, Express, Angular, and Node", Simon Holmes, MEAP Edition
	November 2015, ISBN 9781617292033.
3	"PRO MEAN STACK DEVELOPMENT", Elad Elrom, 1st Edition, 2016, APRESS
	publications, ISBN-13:978-1484220436,
4	"Write Modern Web Apps with the MEAN Stack", Jeff Dickey 1st Edition 2015, ISBN-13:978-
	0133930153

Continuous Internal Evaluation (CIE): Theory (100 Marks) + Practical (50 Marks)

Theory: CIE consists of three Tests (T) each for 50 marks, two quizzes (Q) of 10 marks each and Experiential Learning (EL) for 30 marks. All the tests and quizzes are compulsory. The test shall be conducted for 50 marks each and is then reduced to 50 marks. Two Quizzes are conducted for 10 marks each and consolidated to 20 marks and Experiential Learning s are given for 30 marks.

Total CIE = 50 (T)+20(Q)+30(EL) = 100 Marks

Practical: CIE for practical consists of continuous evaluation of the programmes in the lab during every lab hour. Every programme is evaluated for 10 marks and consolidated for 40 marks. One lab internal is conducted at the end of the semester for 50 marks and reduced to 10 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks)

Theory: The question paper will be set for maximum of 100 marks and shall consist of TEN questions from FIVE units with 20 marks each. Out of the ten questions, students must answer FIVE questions; one from each unit. The questions will have Internal Choice with maximum 3 sub divisions. The duration of the SEE will be for 3 hours.

Practical: SEE for practical will be jointly conducted and evaluated by two examiners. The duration of practical examination is 3 hours and is evaluated for 50 marks. The break up for conduction of practical examination is (i) Procedure and Write up: 20% of max marks, (ii) Conducting the practical: 60% of max marks, (iii) Viva Voce: 20% of max marks

N	Mapping of Course Outcomes (CO) to Program Outcomes (PO)												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	M	-	L	-	Н	L	M	L	M	L	-	-	
CO2	M	-	L	-	Н	L	M	L	M	L	-	-	
CO3	Н	Н	M	M	Н	M	L	M	Н	M	L	-	
CO4	Н	-	L	L	Н	-	L	M	L	-	L	-	
Mapping	g of Co	urse O	utcomes	s (CO) t	o Progi	am Spe	cific Ou	itcomes	(PSO)				
CO/PSO				PS	O 1			PSO2					
CO1				N	Л			M					
CO2				N	Л			M					
CO3			Н							Н			
CO4		Н								Н			
H-High, M-Medium, L-Low													

SEMESTER: IV										
SOFTWARE TESTING AND PRACTICE										
	(Theory & Practice)									
Course Code	:	18MCA41	CIE Marks	:	100+50					
Credits: L:T:P	:	3:0:1	SEE Marks	:	100 +50					
Total Hours	:	39L+26P	SEE Duration	:	3 Hrs (T)					
					3 Hrs (P)					
Unit – I 07 Hrs										

Basics of software testing - Basic Definitions, Test Cases, Preparing a Test Plan, Insights from a Venn Diagram, Identifying Test Cases, Fault Taxonomies, Levels of Testing; Examples: The Triangle Problem, The NextDate Function, The Commission Problem; Case study- Develop test cases for any real world application using test case description template

Unit – II 08 Hrs

Boundary value testing, Equivalence class testing, Decision table based testing-Normal, Robust Boundary value testing, Examples, Random testing, Traditional and Improved Equivalence class testing, Equivalence class test cases examples- triangle problem, NextDate function, Decision Table Techniques, Decision Table Test cases for triangle problem

Unit – III 08 Hrs

Path Testing, Data flow testing, Life Cycle–Based Testing-Program Graphs, DD Paths, Basis path testing, Define/Use Testing, Slice-Based Testing, Traditional Waterfall Testing, Testing in Iterative Life Cycles, Agile Testing

Unit – IV 08 Hrs

Integration Testing, System testing-Decomposition-Based Integration, Path-Based Integration ,Example: integration NextDate; Threads, Basis Concepts for Requirements Specification, Model-Based Threads, Use Case—Based Threads, Coverage Metrics for System Testing, Non-functional System Testing

Unit – V 08 Hrs

Testing Automation-Automation test life cycle,writing test cases using unit test:setUp() method, tearDown() methods, Finding Web elements: Using ID,name attributes, class name, tag name, Xpath; Synchronizing Tests:Implicit wait, explicit wait; test Suite automation

Case study: Perform Code coverage analysis, Pass/Fail data flow, Control flow analysis, Unit testing, Integration testing using LDRA testing tool

Laboratory Component

Design and write programs using Python for manual testing and Selenium to implement the automation testing

Pre-requisite: Students are required to design and develop a sample webpage in order to implement the automation programs 6 to 10

- 1. Write a Program to demonstrate decision table-based testing. Develop various test cases, execute them and analyze the test results
- 2. Write a Program to demonstrate boundary value testing. Generate test cases for normal and boundary value testing. Execute the test cases and discuss test results
- 3. Write and execute test cases from the perspective of equivalence class testing for any real world. Analyze the test results
- 4. Demonstrate dataflow testing with a case study. Derive different test cases, execute the test cases and analyze the test results
- 5. Implement basis paths testing. Derive different test cases, execute the test cases and discuss the test results
- 6. Write and execute test cases to demonstrate unit test automation concept
- 7. Write and execute test cases to find web elements using ID, name attributes, class name, tag name, Xpath and display the count
- 8. Write and execute test cases to create, update and validate the contents of an Excel file.
- 9. Develop and execute a test Suit automation concept
- 10. Write and execute test cases to read and validate the contents of a webpage

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Demonstrate the fundamentals of software testing using real world examples								
CO2:	Identify and apply relevant testing techniques suitable for a real world scenario								
CO3:	Investigate the different levels in testing								
CO4:	Implement test result analysis and automation process using testing tools								

Refere	ence Books
1	"Software Testing, A Craftsman's Approach", Paul C. Jorgensen, , 4 th Edition, First Indian Reprint, 2014, Auerbach PublicationsISBN-13:9781466560680
2	"Learning Selenium Testing Tools with Python", Unmesh Gunecha, 2014, PACKT Publishing, ISBN-13:9781783983506
3	"Software Testing Principles and Practices", Srinivasan Desikan Gopalaswamy, 5 th Edition, 2008, Pearson Education, ISBN: 9788177581218
4	"Software Testing Technique", Beizer Boris, 2 nd Edition, 2008, Wiley India, ISBN-13: 9788177222609,

Continuous Internal Evaluation (CIE): Theory (100 Marks)+ Practical (50 Marks)

Theory: CIE consists of three Tests (T) each for 50 marks, two quizzes (Q) of 10 marks each and Experiential Learning (EL) for 30 marks. All the tests and quizzes are compulsory. The test shall be conducted for 50 marks each and is then reduced to 50 marks. Two Quizzes are conducted for 10 marks each and consolidated to 20 marks and Assignments are given for 30 marks.

Total CIE = 50 (T) + 20 (Q) + 30 (EL) = 100 Marks

Practical: CIE for practical consists of continuous evaluation of the programmes in the lab during every lab hour. Every programme is evaluated for 10 marks and consolidated for 40 marks. One lab internal is conducted at the end of the semester for 50 marks and reduced to 10 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks)

Theory: The question paper will be set for maximum of 100 marks and shall consist of TEN questions from FIVE units with 20 marks each. Out of the ten questions, students must answer FIVE questions; one from each unit. The questions will have Internal Choice with maximum 3 sub divisions. The duration of the SEE will be for 3 hours.

Practical: SEE for practical will be jointly conducted and evaluated by two examiners. The duration of practical examination is 3 hours and is evaluated for 50 marks. The break up for conduction of practical examination is (i) Procedure and Write up: 20% of max marks, (ii) Conducting the practical: 60% of max marks, (iii) Viva Voce: 20% of max marks

	CO-PO Mapping											
CO/PO												PO12
CO1	L	L	L	M	L	-	M	M	Н	M	Н	-
CO2	M	Н	L	Н	L	-	M	Н	M	Н	M	L
CO3	M	L	-	-	-	-	L	-	M	L	M	-
CO4	L	L	-	M	Н	-	M	L	L	M	L	L
Mapping	of Cou	rse Ou	tcomes	(CO) to	Progra	ım Spec	ific Out	comes (PSO)		•	
CO/PSO				PS	01			PSO2				
CO1				N	Л					L		
CO2			Н М									
CO3	CO3 L							L				
CO4	CO4 M							Н				
H-High, N	M-Medi	ium, L	-Low									

SEMESTER: IV								
MODERN APPLICATION DEVELOPMENT								
		(Theory & Practice)						
Course Code	:	18MCA42	CIE	:	100+50 Marks			
Credits: L:T:P	:	3:0:1	SEE	:	100 +50 Marks			
Total Hours	:	39L+26P	SEE Duration	:	03:00 Hrs (T)			
					03:00 Hrs (P)			

Unit – I 7 Hrs

Activities: Declaring an activity, Starting a new activity with an intent object, Switching between activities, Passing data to another activity, Returning a result from an activity, Understanding the activity life cycle **Views, Widgets, and Styles:** Inserting a widget into a layout, Using graphics to show button state, Creating a widget at runtime

Unit – II 08 Hrs

Menus and Action Mode: Creating and using a Fragment, Adding and removing Fragments during runtime, Passing data between Fragments

Alerts and Notifications: Creating a Toast with a custom layout, Displaying a message box with AlertDialog, Displaying a progress dialog

Unit – III 08 Hrs

Data Storage: Storing simple data, Read and write a text file to internal storage and external storage, Creating and using an SQLite database

Location and Using Geofencing: How to get the device location, Creating and monitoring a Geofence

Unit – IV 08 Hrs

Introduction to PWAs and Tooling: Introduction to Progressive Web Apps, Tools to Measure Progressive Web Apps

PWA Features: Service Workers, Caching and Offline Functionality with Service Workers, Background Sync for Offline Apps with Service Workers

Unit – V 08Hrs

PWA Features: Adding your App to the Home Screen with Web App Manifest, Notifications, App Shell Architecture and Loading Performance, Exploring HTTP/2 and Server Push

Putting the Features to Use: Turning a Real App into a PWA, PWAs From the Start

Leveling Up Your PWA: Leveling Up Your PWA

Laboratory Component

- 1. Create an application to obtain a signature on a canvas
- 2. Devise a Calculator App to perform basic arithmetic operations
- 3. Create a Mobile App to exhibit Recorder
- 4. Build an application to perform CRUD i) Create and Read, ii) Create and Update, iii) Create and Delete operations on the information of automobiles on the database and email the details to the provided email address
- 5. Develop an application to send SMS to a particular contact from the Phonebook
- 6. Build mobile application to save GPS location information of a particular phone
- 7. Create a login page to authenticate an user using PWA
- 8. Build a simple web page using PWA
- 9. Devise a PWA to fetch the Github Details for a particular person
- 10. Build an application to do a stock display using PWA

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understand Android applications work, Life cycle, Manifest, Intents, and using external resources
CO2:	Demonstrate Activities, Layouts, Views, Widgets, Menus and Notifications
CO3:	
	Data Storage
CO4:	Design and develop innovative applications with enhanced features

Refer	rence Books
1	"Android 9 Development Cookbook", Rick Boyer, 3 rd Edition, 2018, Packt
1	Publishing, ISBN – 13: 9781788622967
2	"Beginning Progressive Web App Development: Creating a Native App Experience on the Web",
2	Dennis Sheppard, 2017, Apress Publishing, ISBN: 9781484230909
2	"Beginning Hybrid Mobile Application Development", Mahesh Panhale, Apres 2016, ISBN 978-1-
3	4842-1314-8, DOI 10.1007/978-1-4842-1314-8
4	"Beginning Android Application Development", Wei-Meng Lee, 2011, Wiley, ISBN-13: 978-
4	1118017111

Continuous Internal Evaluation (CIE): Theory (100 Marks)+ Practical (50 Marks)

Theory: CIE consists of three Tests (T) each for 50 marks, two quizzes (Q) of 10 marks each and Experiential Learning (EL) for 30 marks. All the tests and quizzes are compulsory. The test shall be conducted for 50 marks each and is then reduced to 50 marks. Two Quizzes are conducted for 10 marks each and consolidated to 20 marks and Assignments are given for 30 marks.

Total CIE = 50 (T) + 20 (Q) + 30 (EL) = 100 Marks

Practical: CIE for practical consists of continuous evaluation of the programmes in the lab during every lab hour. Every programme is evaluated for 10 marks and consolidated for 40 marks. One lab internal is conducted at the end of the semester for 50 marks and reduced to 10 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks)

L

M

Theory: The question paper will be set for maximum of 100 marks and shall consist of TEN questions from FIVE units with 20 marks each. Out of the ten questions, students must answer FIVE questions; one from each unit. The questions will have Internal Choice with maximum 3 sub divisions. The duration of the SEE will be for 3 hours.

Practical: SEE for practical will be jointly conducted and evaluated by two examiners. The duration of practical examination is 3 hours and is evaluated for 50 marks. The break up for conduction of practical examination is (i) Procedure and Write up: 20% of max marks, (ii) Conducting the practical: 60% of max marks, (iii) Viva Voce: 20% of max marks

marks, (iii	marks, (iii) Viva Voce: 20% of max marks											
M	Mapping of Course Outcomes (CO) to Program Outcomes (PO)											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2
CO1	L	L	L	M	L	-	M	M	H	M	Н	
CO2	L	Н	L	Н	L	•	M	H M H M L				L
CO3	L	L	-	-	-	•	L	•	M	L	M	-
CO4	L	L	-	M	Н	-	M	L	L	M	L	L
Mapping	of Cou	rse Out	tcomes	(CO) to	Progra	ım Spec	ific Out	comes (PSO)			
CO/PSO		PSO1 PSO2										
CO1			M						L			
CO2				I	I			M				

H-High, M-Medium, L-Low

CO₃

CO₄

L

Η

SEMESTER: IV							
INFORMATION RETRIEVAL							
Course Code	:	18MCA431	CIE	:	100 Marks		
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks		
Total Hours	:	39L	SEE Duration	:	3:00 Hrs		

Unit – I	7 Hrs
Introduction to information retrieval and architecture of a search engine-Search En	gines and
Information Retrieval- What Is Information Retrieval? The Big Issues, Search Engine	es, Search
Engineers	
Architecture of a Search Engine- What is architecture? Basic Building Blocks, Breaking It Do	wn
Unit – II	8 Hrs
Crawls and Feeds- Deciding what to search, Crawling the Web, Crawling Documents a	nd Email,
Document Feeds, The Conversion Problem, Storing the Documents, Detecting Duplicates	
Processing Text - From Words to Terms, Text Statistics, Document Parsing, Document Str	acture and
Markup, Link Analysis, Information Extraction, Internationalization	
Unit – III	8 Hrs
Ranking with Indexes - Overview, Abstract Model of Ranking, Inverted indexes, Compression,	
Auxiliary Structures, Index Construction, Query Processing	
Unit – IV	8 Hrs
Queries and Interfaces- Information Needs and Queries, Query Transformation and R	efinement,
Showing the Results, Cross-Language Search	ŕ
Unit – V	8 Hrs
Retrieval Models - Overview of Retrieval Models , Probabilistic Models, Ranking Based on Lan	nguage
Models	
Evaluating Search Engines- Why Evaluate?, The Evaluation Corpus, Effectiveness Metrics,	Efficiency

Evaluating Search Engines- Why Evaluate?, The Evaluation Corpus, Effectiveness Metrics, Efficiency Metrics

Course Outcomes: After completing the course, the students will be able to

CO1: Understand the concept of Information Retrieval, its models and Search Engine

CO2: Recognize and use various indexing and querying techniques to store and retrieve documents
 CO3: Apply IR principles to extract relevant information and build retrieval models
 CO4: Analyze and evaluate the IR techniques, retrieval models and search engines

Ref	Ference Books
1.	"Search Engines: Information Retrieval in Practice", Trevor Strohman, Bruce Croft Donald Metzler, Kindle Edition, 2015, Pearson Education Inc., ISBN-13: 978-0136072249
2.	"Introduction to Information Retrieval", Christopher D. Manning, Prabhakar, Raghavan and Hinrich Schutze, 2008, Cambridge University Press, ISBN 978-0-521-86571-5
3.	"Information Retrieval Data Structures and Algorithms", William B Frakes, Ricardo Baeza-Yates, 3 rd Edition, 2009. Pearson Education, ISBN13: 9780134638379
4.	"Information Storage & Retrieval", Robert. R. Korfhage, 4th Edition, 1997, John Wiley & Sons, Inc. New York, NY, USA, ISBN:0-471-14338-3

Theory: CIE consists of three Tests (T) each for 50 marks, two quizzes (Q) of 10 marks each and Experiential Learning (EL) for 30 marks. All the tests and quizzes are compulsory. The test shall be conducted for 50 marks each and is then reduced to 50 marks. Two Quizzes are conducted for 10 marks each and consolidated to 20 marks and Assignments are given for 30 marks

Total CIE = 50 (T)+20(Q)+30(EL) = 100 Marks

Semester End Examination (SEE): Theory (100 Marks)

Theory: The question paper will be set for maximum of 100 marks and shall consist of TEN questions from FIVE units with 20 marks each. Out of the ten questions, students must answer FIVE questions; one from each unit. The questions will have Internal Choice with maximum 3 sub divisions. The duration of the SEE will be for 3 hours.

Mapping	Mapping of Course Outcomes (CO) to Program Outcomes (PO)											
СО/РО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	Y PO8 PO9 PO10 PO11 PO 2				
CO1	Н	Н	Н	M	M	L	L	Н	M	M	-	M
CO2	Н	Н	Н	M	M	L	L	Н	M	L	-	M
CO3	Н	Н	Н	L	M	L	L	Н	M	L	-	M
CO4	Н	Н	Н	L	M	L	L	Н	M	L	-	M
Mapping	of Cou	rse Ou	tcomes	(CO) to	Progr	am Spe	cific Ou	tcomes	(PSO)			•
CO/PSO				PS	01					PSO2		
CO1]	L					L		
CO2			M M									
CO3			M M									
CO4			Н									
H-High,	H-High, M-Medium, L-Low											

SEMESTER: IV							
PATTERN RECOGNITION							
Course Code	:	18MCA432	CIE	:	100 Marks		
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks		
Total Hours	:	39L	SEE Duration	:	3:00 Hrs		

Credits: L:T:P	:	3:0:0	S	EE	:	100 Marks
Total Hours	:	39L	S	EE Duration	:	3:00 Hrs
		Unit – I				7 Hrs
Introduction:						
Machine perception pattern recognition		pattern recognition systems, de	esign cycle, learning	and adaptation	n, A	Applications of
•		Unit – II				8 Hrs
Statistical decisio Introduction, Baye Characteristic Cur	's]	Theorem, multiple features, cond	litionally independen	t features, decis	sion	·
		Unit – III				8 Hrs
	ogra	sion making: nms, Kernel and window estin ninant Functions. Nearest neight			ncti	ons, Minimum
•		Unit – IV		•		8 Hrs
	ıt fu	unctions and decision hyper plar on, support vector machine – se		_	es m	nethods, sum of
.		Unit – V	· · · · · ·	•		8 Hrs
Artificial Neural Introduction, nets nets, an application	witl	works nout hidden layers. Nets with hi	dden layers, the back	Propagation al	gori	thms, Hopfield

Course	e Outcomes: After completing the course, the students will be able to
CO1:	State and illustrate pattern recognition and its broad applications in aspects of real world problems
CO2:	Recognize and examine the techniques used to recognize patterns, such as statistical approaches, data clustering and neural networks
CO3:	Apply performance evaluation methods for pattern recognition algorithm for detection and classification of different applications
CO4:	Summarize, analyze and critique comparisons of techniques used in pattern recognition systems

Refere	ence Books
1	"Pattern Classification", Duda R. O., and Hart P. E., and Stork D. G., , 2 nd Edition, 2007, Wiley Interscience Publishers
2	"Pattern Recognition and Image Analysis", Earl Gose, Richard Johnsonbaugh and Steve Jost, , 2015, Pearson Education Inc.,
3	'Pattern Recognition', SergiosTheodoridis, Konstantinos Koutroumbas, 2 nd Edition, , 2008 Elsevier Academic Press, Hardcover ISBN: 9781597492720
4	"Pattern Recognition and Machine Learning', Christopher M Bishop, Springer Publications, ISBN-13: 978-0387310732, ISBN-10: 0387310738

Theory: CIE consists of three Tests (T) each for 50 marks, two quizzes (Q) of 10 marks each and Experiential Learning (EL) for 30 marks. All the tests and quizzes are compulsory. The test shall be conducted for 50 marks each and is then reduced to 50 marks. Two Quizzes are conducted for 10 marks each and consolidated to 20 marks and Assignments are given for 30 marks

Total CIE = 50 (T)+20(Q)+30(EL) = 100 Marks

Semester End Examination (SEE): Theory (100 Marks)

Theory: The question paper will be set for maximum of 100 marks and shall consist of TEN questions from FIVE units with 20 marks each. Out of the ten questions, students must answer FIVE questions; one from each unit. The questions will have Internal Choice with maximum 3 sub divisions. The duration of the SEE will be for 3 hours.

Mapping	g of Co	urse O	utcome	s (CO) 1	to Prog	ram Ou	tcomes	(PO)					
CO/PO	1	PO2		PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	Н	M	-	-	-	-	-	L	L	-	-	-	
CO2	Н	Н	L	M	L	-	-	L	L	-	-	-	
CO3	Н	Н	M	M	L	-	-	L	L	-	-	-	
CO4	-	-	-	M	M	-	-	-	-	-	-	-	
Mapping	g of Co	urse O	utcome	s (CO) 1	to Prog	ram Sp	ecific O	utcome	s (PSO)				
CO/P	SO			PS	01					PSO2			
CO	1			N	Л					L			
CO	CO2 H							M					
CO	CO3 H					M							
CO	CO4 H						M						
H-High,	H-High, M-Medium, L-Low												

SEMESTER: IV											
	SOFTWARE ARCHITECTURE										
	(Theory)										
Course Code	:	18MCA433	CIE Marks	:	100						
Credits: L:T:P	:	3:0:0	SEE Marks	:	100						
Total Hours	:	39L	SEE Duration	:	3 Hrs						
	Unit – I 07 Hrs										

Introduction: What is software Architecture? What Software Architecture is and what it isn't, Architectural Structures and Views, Architectural Patterns, What Makes a "Good" architecture?

Why is Software Architecture Important: Inhibiting or Enabling a System's Quality Attributes, Reasoning About and Managing change

The Many Contexts of Software Architecture: Architecture in a Technical context, Architecture in a Project Life –Cycle context, Architecture in a Business Context, Architecture in a Professional Context

Unit – II 08 Hrs

Quality Attributes:

Understanding Quality Attributes, Architecture and Requirements, Functionality, Quality attribute considerations, Specifying Quality Attribute Requirements, Achieving Quality Attributes through Tactics, Guiding Quality Design Decisions.

Unit – III 08 Hrs

Quality Attributes Modeling and Analysis:

Modeling Architectures to Enable Quality Attribute Analysis, Quality Attribute Checklists, Thought Experiments and Back-of-the Envelope Analysis, Experiments, simulations and Prototypes, Analysis at Different Stages of the Life Cycle

Unit – IV 08 Hrs

Architecture in Agile Projects, How much Architecture?, Agility and Architecture Methods, A brief Example of Agile Architecting, Guidelines for the Agile Architect

Designing an Architecture: Design strategy, the Attribute driven Design Method, The Steps of ADD

Unit – V 8 Hrs

Architecture, Implementation and Testing: Architecture and Implementation, Architecture and Testing **Architecture Evaluation**: Evaluation Factors, The Architecture Trade off Analysis Method, Lightweight architecture Evaluation

Course Outcomes: After completing the course, the students will be able to CO1: Understand various architectural design concepts and its principles CO2: Analyze the required quality attributes for architectural design CO3: Apply architectural strategy to aid quality analysis

CO4: Evaluate the architecture using various analysis methods.

Reference Books

1	Software Architecture in Practice, Len Bass, Paul Clements, Rick Kazman, 3 rd Edition, Pearson
	Publishing, ISBN: 9789332502307.

- Software Architecture: Perspectives on an Emerging Discipline, Mary Shaw, David Garlan, PHI Publishing, ISBN 9788120314702.
- ³ Pattern- Oriented Software Architecture: A system of Patterns, Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael Stal, Vol 1, Willy Student Edition, ISBN 9788126516117
- Software Architecture Foundation, Richard N.Taylor, Nenad Medviovic, Eric M.Dashofy, Theory, and Practice", Wiley student edition ISBN 9788126528028

CIE is executed by way of Quizzes(Q), Test(T) and Experiential Learning(EL). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two Experiential Learnings are given with a combination of two component among 1) solving innovative problem 2) seminar/new developments in the related course 3) Laboratory work 4) Minor project

Total CIE is 20(Q)+50(T)+30(EL)=100 Marks

Semester End Examination (SEE): Theory (100 Marks)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

					CO	O-PO M	apping						
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	-	M	M	L	M	-	M	M	Н	M	M	-	
CO2	M	M	Н	Н	M	M	M	M	M	-	M	-	
CO3	M	M	M	M	M	M	M	M	M	Н	-	-	
CO4	M	M	M	M	L	-	M	M	M	-	-	M	
Mappin	g of Co	ourse C	Outcom	es (CO)	to Prog	gram Sp	ecific O	utcome	s (PSO)	•		•	
CO/PSC)			PS	SO1					PSO2			
CO1				1	M			M					
CO2				1	M			Н					
CO3	O3 M							Н					
CO4 H								Н					
H-High,	M-Me	edium,	L-Low										

SEMESTER: IV											
	CYBER SECURITY										
		(Theory)									
Course Code	:	18MCA441	CIE Marks	:	100						
Credits: L:T:P	:	3:0:0	SEE Marks	:	100						
Total Hours	:	39L	SEE Duration	:	3 Hrs						
Unit – I											

Introduction to Cyber Security

Defining Cyberspace and Cyber security, Standard of Good Practice for Information Security, ISO Suite of Information Security Standards, NIST Cyber security Framework and Security Documents, CIS Critical Security Controls for Effective Cyber Defence, COBIT 5 for Information Security, Payment Card Industry Data Security Standard

Unit – II 08 Hrs

System Access

System Access Concepts, User Authentication, Password-Based Authentication, Possession-Based Authentication, Biometric Authentication, Risk Assessment for User Authentication , Access Control, Customer Access

Unit – III 08 Hrs

Phishing and Identity Theft

Introduction, Phishing – Methods of Phishing, Phishing Techniques, Phishing Toolkits And Spy Phishing. Identity Theft – PII, Types of Identity Theft, Techniques of ID Theft. Digital Forensics Science, Need for Computer Cyber forensics and Digital Evidence, Digital Forensics Life Cycle

Unit – IV 08 Hrs

Tools and Methods used in Cybercrime

Introduction, Proxy Server and Anonymizers, Password Cracking, Key loggers and Spyware, Virus and Worms, Trojan and backdoors, Steganography, DOS and DDOS attack, SQLinjection, Buffer Overflow

Network Defence tools

Firewalls and Packet Filters: Firewall Basics, Packet Filter Vs Firewall, How a Firewall Protects a Network, Packet Characteristic to Filter, Stateless Vs Stateful Firewalls

Unit – V 08 Hrs

Threat and Incident Management

Technical Vulnerability Management, Security Event Logging, Security Event Management, Threat Intelligence, Cyber Attack Protection, Security Incident Management Framework, Security Incident Management Process

Manage	Wianagement 1 Toccss								
Course	Outcomes: After completing the course, the students will be able to								
CO1:	Define and illustrate cyber security concepts and principles								
CO2:	Analyse the working of cyber security principles to system design								
CO3:	Apply appropriate techniques to solve cyber security threats								
CO4:	Evaluate cyber security through network defence controls								
Referen	ce Books:								
1	Effective Cybersecurity: A Guide to Using Best Practices and Standards, William Stallings, Addison-Wesley Professional, ISBN-13: 978-0134772806								
2	Cyber Security, Nina Godbole & Sunit Belapure, Wiley India, 2012, ISBN: 9788126521791								
3	Anti-Hacker Tool Kit (Indian Edition) by Mike Shema, 4th Edition, Publication McGraw Hill, ISBN: 9789339212155								
4	Cyber Security Understanding Cyber Crimes, Nina Godbole and SunitBelpure, Computer Forensics and Legal Perspectives, Wiley Publication, ISBN 9788126521791								

CIE is executed by way of Quizzes(Q), Test(T) and Experiential Learning(EL). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two Experiential Learnings are given with a combination of two component among 1) solving innovative problem 2) seminar/new developments in the related course 3) Laboratory work 4) Minor project

Total CIE is 20(Q)+50(T)+30(EL)=100 Marks

Semester End Examination (SEE): Theory (100 Marks)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	Н	Н	M	Н	Н	L	M	M	M	L	L	M			
CO2	Н	Н	M	M	Н	-	M	M	M	M	-	L			
CO3	Н	Н	M	M	Н	L	L	L	L	L	L	-			
CO4	Н	Н	M	Н	Н	-	M	M	M	L	L	L			
Mappin	g of Co	ourse C	Outcome	es (CO)	to Prog	ram Sp	ecific O	utcome	s (PSO)	•					
CO/PSC)			PS	01					PSO2					
CO1				N	Л					L					
CO2				I	Н				M						
CO3		L								L					
CO4	CO4 M									Н					
H-High,	H-High, M-Medium, L-Low														

SEMESTER: IV											
SOFT COMPUTING											
(Theory)											
Course Code	:	18MCA442	CIE Marks	:	100						
Credits: L:T:P	:	3:0:0	SEE Marks	:	100						
Total Hours	:	39L	SEE Duration	:	3 Hrs						
Unit – I 07 Hrs											

Artificial Neural Network

Fundamental Concept – Artificial Neural Network, Biological Neural Network, Brain Vs Computer; Important Terminologies of ANNs – Weights, Bias, Threshold, learning rate, Momentum Factor, Vigilance Parameter, Notations; Back Propagation Network- Theory, Architecture, Flow chart for Training Process, Training Algorithm, Learning Factors of Back Propagation Network, Testing Algorithm of Back Propagation Network

Unit – II 08 Hrs

Introduction to Fuzzy Logic, Classical Sets and Fuzzy Sets

Introduction to Fuzzy Logic, Classical Sets – Operators on classical sets, Fuzzy Sets-Fuzzy Set Operations, properties of Fuzzy Sets

Classical Relations and Fuzzy Relations

Introduction, Cartesian Product of Relation, Classical Relation – Cardinality of Classical Relation, Operations on Classical Relations, Properties of Crisp Relations, Composition of Classical Relations; Fuzzy Relations - Cardinality of Fuzzy Relation, Operations on Fuzzy Relations, Properties of Fuzzy Relations, Fuzzy Composition

Unit – III 08 Hrs

Member Functions

Introduction, Features of the Membership Functions, Fuzzification, Methods of Membership Value Assignments – Intuition, Inference, Rank Ordering, Angular Fuzzy Sets, Neural Networks, Genetic Algorithms, Induction Reasoning

Unit – IV 08 Hrs

Defuzzification

Lambda-Cuts for Fuzzy Sets, Lambda-Cuts for Fuzzy Relations, Defuzzification Methods – Max-Membership Principle, Centroid Method, Weighted Average Method, Mean-Max Membership, Centre of Sums, Centre of Largest Area, First of maxima

Unit – V 08 Hrs

Genetic Algorithms

Biological Background – The Cell, Chromosomes, Genetics, Reproduction, Natural Selection; Traditional Optimization and Search Techniques, Genetic Algorithm and Search Space, Basic Terminologies in Genetic Algorithm – Individuals, Genes, Fitness, Populations; Operators in Genetic Algorithm ,Stopping Condition for Genetic Algorithm Flow

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Understand the fundamentals of Soft computing approaches and demonstrate the basic									
	functionalities									
CO2:	Apply the soft computing techniques to solve problems									
CO3:	Analyze the results of soft computing techniques to handle various problems									
CO4:	Evaluate the solutions of soft computing algorithms for optimization									

Refere	Reference Books								
1	Soft Computing, S. N. Sivanandam, S. N. Deepa, 2 nd Edition, 2015, Wiley Publishers, ISBN – 978-81-265-2741-0								
2	Soft Computing Advances and Applications, B. K. Tripathi, J. Anuradha, 2015, Cengage Learning India Pvt Ltd, ISBN-13: 978-81-315-2619-4, ISBN-10: 81-315-2619-4								
3	Pattern Recognition and Image Analysis, Earl Gose, Richard JohnsonBaugh, Steve Jost, Pearson, ISBN: 978-93-325-4979-1								
4	An Introduction to Neural Networks, James A. Anderson, Prentice Hall of India, ISBN-81-203-1351-8								

Continuous Internal Evaluation (CIE): Theory (100 Marks)

CIE is executed by way of Quizzes(Q), Test(T) and Experiential Learning(EL). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two Experiential Learnings are given with a combination of two component among 1) solving innovative problem 2) seminar/new developments in the related course 3) Laboratory work 4) Minor project

Total CIE is 20(Q)+50(T)+30(EL)=100 Marks

Semester End Examination (SEE): Theory (100 Marks)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

					CC)-PO M	Lapping	5					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	M	Н	M	M	L	-	L	L	-	-	-	-	
CO2	Н	M	L	M	M	-	-	-	-	-	-	-	
CO3	Н	Н	L	M	M	-	-	-	-	-	-	-	
CO4	Н	M	L	M	L	-	-	-	-	-	-	-	
Mappir	g of C	Course	Outco	mes (C	O) to I	Prograi	m Speci	ific Out	comes	(PSO)			
CO/PSC)			PS	SO1			PSO2					
CO1		M M											
CO2]	Н		M						
CO3	M M												
CO4	Н М												
H-High,	M-Me	edium,	L-Low										

SEMESTER: IV										
UNIFIED MODELING LANGUAGE										
(Theory)										
Course Code	:	18MCA443	CIE	:	100 Marks					
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks					
Total Hours	:	39L	SEE Duration	:	3:00 Hrs					
Unit – I 07 Hrs										

Introduction to UML and Structural Modelling

Importance and principles of modelling, object-oriented modelling, overview of the UML, conceptual model of UML, architecture, software development life cycle in object oriented approach

Classes, Relationships - dependency, generalization and association relationships, modelling simple dependencies, single inheritance and structural relationships.

Unit – II 08 Hrs

Introduction to UML Diagrams

Diagrams- Terms and concepts, structural diagrams, behavioral diagrams, modeling different views of the system, levels of abstraction and complex views

Class diagrams, modelling simple collaborations and logical database schema, forward and reverse engineering, advanced relationships- dependencies, generalizations, association classes, realizations, understanding the interface, modeling the seams in a system, packages, visibility, importing and exporting of packages

Unit – III 08 Hrs

Behavioural Modelling

Use case Diagrams, common properties and uses, modeling the context of a system, requirements of a system, forward and reverse engineering

Sequence diagrams, structured control in sequence diagrams, nested activity diagrams, modeling flows of control by time ordering.

Unit – IV 08 Hrs

Advanced Behavioural Modelling

Activity diagrams-actions, activity nodes, control flows, branching, forking and joining, swim lanes, expansion of regions, modelling the workflow and operation

State machines- states, transitions, advanced states and transitions, sub-states, modelling lifetime of an object

Deployment diagrams- common properties and uses, modelling an embedded system, client-server and fully distributed system

Unit – V 08 Hrs

Patterns

Introduction to patterns, modelling design and architectural patterns Structural patterns: composite, façade Behavioural patterns: command, observer Creational patterns: abstract factory, factory method

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Understand UML Concepts, modelling and its applications								
CO2:	Examine the required behaviour and structure of the system to be designed								
CO3:	Apply UML to solve modelling problems in Object oriented design								
CO4:	Create UML models to produce, deploy and maintain software								

Referen	ce Books:
1	The Unified Modeling Language User Guide, Grady Booch, James rumbaugh, Ivar Jacobson, 2 nd Edition, 2007, Pearson Education, ISBN-81-317-1582-5, ISBN-13: 978-0321267979, ISBN-10: 0321267974
2	Design Patterns: Elements of reusable object-oriented Software, Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, 6 th impression -2009 Pearson Education, ISBN- 978-81-317-0007-5
3	Learning UML 2.0, Kim Hamilton, Russell Miles, 2006, O'ReillyPub, ISBN-10: 0-596-00982-8, ISBN-13: 978-0-59-600982-3
4	UMLDistilled A Brief Guide to the Standard Object Modeling Language, MartinFowler, 3 rd Edition, Addision-Wesley, ISBN-13: 978-0321193681, ISBN-10: 9780321193681
5	Pattern-Oriented Software Architecture, A System of Patterns, Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael Stal, Volume 1, 2006, John Wiley and Sons, ISBN:978-81-265-1611-7.

Continuous Internal Evaluation (CIE): Theory (100 Marks)

CIE is executed by way of Quizzes(Q), Test(T) and Experiential Learning(EL). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two Experiential Learnings are given with a combination of two component among 1) solving innovative problem 2) seminar/new developments in the related course 3) Laboratory work 4) Minor project

Total CIE is 20(Q)+50(T)+30(EL)=100 Marks

Semester End Examination (SEE): Theory (100 Marks)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	M	M	M	M	Н	-	L	-	L	-	L	-	
CO2	M	M	M	M	M	-	L	-	L	-	M	-	
CO3	L	M	Н	L	M	-	L	-	-	-	-	-	
CO4	M	L	M	L	M	-	-	-	-	-	-	-	
Mapping	of Cour	se Out	comes ((CO) to	Progra	m Speci	fic Outo	comes (I	PSO)				
CO/PSO				PS	O1			PSO2					
CO1				M				M					
CO2				M				L					
CO3							L						
CO4							L						
H-High, M	H-High, M-Medium, L-Low												

SEMESTER: IV										
COMPUTER GRAPHICS										
(Theory & Practice)										
Course Code	:	18MCA451	CIE Marks	:	100 -	+ 50				
Credits: L:T:P	:	3:1:1	SEE Marks	:	100 + 50					
Total Hours	:	39L+26T+26P	SEE Duration	:	3 Hrs (T)					
				:	3 Hrs (P)					
Unit – I 07 Hrs										

Introduction- Introduction to OpenGL, Coordinate Reference Frames, Specifying a Two Dimensional World Coordinate Reference frame in Open GL, OpenGL Point Functions, OpenGL Line Functions, OpenGL Polygon Fill Area functions, Line generation algorithms—DDA, Bresenham's Line Generation, Mid-point Circle Generation algorithm

Unit – II 08 Hrs

Two Dimensional Geometric Transformations-Two Dimensional Translation, Rotation, Scaling, Reflection and Shear Geometric Transformation, Matrix Representations and Homogeneous Coordinates, Inverse Transformations

Unit – III 08 Hrs

Two Dimensional Viewing-The two dimensional viewing pipeline, Clipping window, Normalization and viewport transformations, Clipping algorithms, Two dimensional point clipping, Two dimensional line clipping algorithms- Polygon fill area clipping, Text clipping

Unit – IV 08 Hrs

Three Dimensional Geometric Transformations, Viewing and Curves-Three Dimensional Translation, Rotation, Scaling, Orthogonal Projection, Oblique Parallel Projection, Perspective Projection, Bezier spline curves

Unit – V 08 Hrs

Computer Animation, Color Models- Raster methods for computer animation, Design of animation sequences, Traditional animation techniques, OpenGL interactive input device functions- GLUT mouse functions, GLUT keyboard functions, The RGB color model, The YIQ and related color model, The CMY and CMYK color models

Laboratory Component

- 1. Write a program to implement Bresenham's line drawing algorithm.
- 2. Write a program to implement mid-point circle generation algorithm
- 3. Write a program to implement 2D geometric translation and scaling in X-Y Plane for the square object without using built-in function
- 4. Write a program to implement 2D reflection about X- axis, Y axis and X-Y Plane for the object triangle without using built-in function
- 5. Write a program to implement oblique parallel projections with angle 45° for the object cube without using built in function
- 6. Write a program to implement 3D rotation for a given angle in X-Y Plane and around X- axis for the object triangle without using built-in function
- 7. Write a program to implement Bezier Curve algorithm with animation.
- 8. Write a program to display sun with animated rays using mouse events
- 9. Develop a 3D RGB color cube model with color animation
- 10. Develop a screen saver using geometrical objects

Note:

- 1. Programs can be executed using Open GL
- 2. During examination, each student picks one question from the lot of 10 questions and it has to be executed
- 3. No change of programs is permitted

Course	e Outcomes: After completing the course, the students will be able to						
CO1:	Illustrate the fundamentals of computer graphics hardware and software concepts						
CO2:	Demonstrate computer graphics algorithms with data and its specifications						
CO3:	Apply algorithms on different graphical models						
CO4:	Analyze different algorithms to manage graphical objects and resources						
Reference Books:							
1	Computer Graphics with OpenGL, Donald D. Hearn, M. Pauline Baker, Warren Carithers, 4th Edition, 2014, Pearson Education, Second Impression, ISBN 978-93-325-1871-1						
2	Interactive Computer Graphics – A Top down Approach using OpenGL, Edward Angel, Dave Shreiner, 6th Edition, 2012, Addison-Wesley, ISBN-13: 978-0-13-254523-5						
3	Computer Graphics, Peter Shirley, Steve Marschner, 2009, Cengage Learning (India Edition), ISBN -13: 9788131512715						
4	Open GL Programming Guide, Official guide to learning Open GL Version3.0 & 3.1, Dave Shreiner, 7th Edition, 2013, Addison-Wesley, ISBN 13: 978-0-321-55262-4						

Continuous Internal Evaluation (CIE): Theory (100 Marks)+ Practical (50 Marks)

CIE is executed by way of Quizzes(Q), Test(T) and Experiential Learning(EL). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two Experiential Learnings are given with a combination of two component among 1) solving innovative problem 2) seminar/new developments in the related course 3) Laboratory work 4) Minor project

Total CIE is 20(Q)+50(T)+30(EL)=100 Marks

Practical: CIE for practical consists of continuous evaluation of the programmes in the lab during every lab hour. Every programme is evaluated for 10 marks and consolidated for 40 marks. One lab internal is conducted at the end of the semester for 50 marks and reduced to 10 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Practical: SEE for practical will be jointly conducted and evaluated by two examiners. The duration of practical examination is 3 hours and is evaluated for 50 marks. The break up for conduction of practical examination is (i) Procedure and Write up: 20% of max marks, (ii) Conducting the practical: 60% of max marks, (iii) Viva Voce: 20% of max marks

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	M	-	M	L	M	-	L	-	L	-	-	-
CO2	M	L	M	L	M	-	L	-	L	-	L	-
CO3	L	L	M	-	M	-	L	-	L	L	L	-
CO4	L	M	L	-	-	-	M	-	L	L	-	-

Mapping of Course Outcomes (CO) to Program Specific Outcomes (PSO)								
CO/PSO	PSO1	PSO2						
CO1	M	L						
CO2	M	M						
CO3	M	M						
CO4	L	L						

H-High, M-Medium, L-Low

	SEMESTER: IV										
ADVANCED COMPUTER NETWORKS											
		(Theory & Practice)									
Course Code	:	18MCA452	CIE Marks	:	100 + 50						
Credits: L:T:P	:	3:1:1	SEE Marks	:	100 + 50						
Total Hours	:	39L+26T+26P	SEE Duration	:	3 Hrs (T)						
	: 3 Hrs (P)										
	Unit – I 07 Hrs										

Concepts of Storage Network- Data Storage and Data Access Problem, The Battle for Size and Access, Decoupling the Storage Component- Putting Storage on the Network, Creating a Network for Storage.

Unit – II 08 Hrs

Internet Protocol- Error and Control Messages (ICMP), The Internet Control Message Protocol, ICMP Message Delivery, ICMP Message Format, Testing Destination Reachability and status, Echo Request and Reply Message Format, Classless and Subnet Address Extension (CIDR) — Review of Relevant Facts, Proxy ARP, Subnet Addressing, Subnet Mask Representation, Broadcasting the Subnets, A Classless Addressing example

Unit – III 08 Hrs

Wireless LANS and PANS – Fundamentals of WLAN's, 802.11 Standards, HIPERLAN Standard, Blue tooth specifications, Transport Protocol group, ZigBee Specification

Wireless WANS and MANS – The Cellular Concept and Cellular Architecture- Capacity enhancement .Channel Allocation Algorithms, Handoffs.

Unit – IV 08 Hrs

Mobile IP - Introduction, Mobility, Routing and Addressing, Mobile IP Characteristics, Overview of Mobile IP Operations, Mobile Addressing Details, Foreign Agent Discovery, Agent Registration, registration message format, communication with a foreign agent, datagram transmission and reception, two-crossing problem, communication with computers on the home network

Private Network Interconnection- NAT, VPN- Introduction, Private and hybrid networks, VPN, VPN addressing and routing and VPN with private address.

Unit – V 08 Hrs

SDN - Introduction, Centralized and Distributed Control and Data Planes- Introduction, Control plane, Data plane, Moving Information Between Planes, Distributed Control Planes, IP and MPLS, Convergence Time, Load Balancing, High Availability.

Laboratory Component

- 1. Created a LAN with 4 nodes implement star topology and demonstrate sub netted network.
- 2. Create a network with 3 or 4 nodes and do the following: i)Capture ICMP packets, ii)Capture UDP on specific interface, iii) Capture TCP and UDP packets, iv) Capture ipv6 packets.
- 3. Explore the features: Filters, flow graphs(TCP), statistics and protocol hierarchy in a network.
- 4. Create a network with 4 routers and 4 host on different networks and demonstrate RIP routing protocol.
- 5. Create a network with 4 routers and 4 host on different networks and demonstrate OSPF routing protocol.
- 6. Demonstrate the working of VLAN.
- 7. Create a wireless LAN with two access points and demonstrate wireless distributed network.
- 8. Create a network with clients & server and assign the IP. Demonstrate the collection of data from clients and store in server through socket programming.
- 9. Demonstrate of Peer-to-Peer Network for GNU-Linux Container based Application.
- 10. Demonstrate multi cast network for GNU-Linux Container based Application.

Course (Course Outcomes: After completing the course, the students will be able to									
CO1:	Understand the advanced networking concepts and its applications									
CO2:	Apply various networking classifications in day to day computing									
CO3:	Analyze the importance of routing and congestion control principles									
CO4:	Access the different routing protocol methods in the networking support layers									
Referen	ce Books									
1	The Complete Reference-Storage Networks, Robert Spalding, Indian Edition 2003, McGraw Hill Education, ISBN -13: 978-0-07-053292-2									
2	Ad Hoc Wireless Networks Architecture and Protocols, C. Siva Ram Murthy, B. S. Manoj, 2011, Pearson Publication, ISBN 978–81-317-5905-9									
3	Internet working with TCP/IP, Principles, Protocols, and Architectures, Douglas E Comer, Volume 1, 4 th Edition, , 2001, Pearson Education, ISBN 81-7808-444-9									
4	SDN: Software Defined Networks, Thomas D. Nadeau & Ken Gray, 2013, O'REILLY, ISBN-978-1-449-34230-2									

Continuous Internal Evaluation (CIE): Theory (100 Marks)+ Practical (50 Marks)

CIE is executed by way of Quizzes(Q), Test(T) and Experiential Learning(EL). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two Experiential Learnings are given with a combination of two component among 1) solving innovative problem 2) seminar/new developments in the related course 3) Laboratory work 4) Minor project

Total CIE is 20(Q)+50(T)+30(EL)=100 Marks

Practical: CIE for practical consists of continuous evaluation of the programmes in the lab during every lab hour. Every programme is evaluated for 10 marks and consolidated for 40 marks. One lab internal is conducted at the end of the semester for 50 marks and reduced to 10 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Practical: SEE for practical will be jointly conducted and evaluated by two examiners. The duration of practical examination is 3 hours and is evaluated for 50 marks. The break up for conduction of practical examination is (i) Procedure and Write up: 20% of max marks, (ii) Conducting the practical: 60% of max marks, (iii) Viva Voce: 20% of max marks

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	Н	Н	M	L	-	-	-	Н	-	L	-	L	
CO2	Н	Н	Н	L	-	-	L	M	-	L	-	L	
CO3	Н	Н	M	L	-	-	L	M	-	L	-	L	
CO4	Н	Н	L	L	-	-	-	M	-	L	-	L	
Mapping of	Cours	e Outc	omes (C	CO) to 1	Progran	n Specif	ic Outc	omes (P	SO)				
CO/PSO				PS	01					PSO2			
CO1				I	I					Н			
CO2				I	H					Н			
CO3	CO3 H M												
CO4	CO4 M L												
H-High, M-	Mediu	m, L-L	ow			•							

SEMESTER: IV												
ENTERPRISE APPLICATION PROGRAMMING												
	(Theory & Practice)											
Course Code	:	18MCA453	CIE Marks	:	100 + 50							
Credits: L:T:P	:	3:1:1	SEE Marks	:	100 + 50							
Total Hours	:	39L+26T+26P	SEE Duration	:	3 Hrs (T)							
	: 3 Hrs (P)											
	Unit – I 08 Hrs											

Unit – I 08 Hrs

Introduction- Challenges of Enterprise Application Development, Programming Productivity

Response to Demand Integration with Existing Systems Freedom to Choose J2EE Application Scenarios,

Multitier Application Scenario, Stand-Alone Client Scenario, Web-Centric Application Scenario Business-to-Business Scenario, A Note on the MVC Architecture

Annotations: What's the use of Annotation? Annotation basics, built in Annotation, Creating custom Annotations.

Unit – II 07 Hrs

JDBC - Talking to Database, Immediate Solutions, Essential JDBC program, using prepared Statement Object, Interactive SQL tool. JDBC in Action Result sets, Batch updates, Mapping, Basic JDBC data types, Advanced JDBC data types, immediate solutions.

Unit – III 08 Hrs

Servlets- Servlet Structure, Servlet packaging, HTML building utilities, Lifecycle, Single Thread model interface, Handling Client Request: Form Data, Handling Client Request: HTTP Request Headers. Generating server Response: HTTP Status codes, Generating server Response: HTTP Response Headers, Handling Cookies, Session Tracking

Unit – IV 08 Hrs

JSP: Overview of JSP Technology, Need of JSP, Benefits of JSP, Advantages of JSP, Basic syntax, Invoking java code with JSP scripting elements, creating Template Text, Invoking java code from JSP, Limiting java code in JSP, using JSP expressions, comparing servlets and JSP, writing script lets. For example Using Scriptlets to make parts of JSP conditional, using declarations, declaration example, Including Files and Applets in JSP Documents.

Unit – V 08 Hrs

JSP Directives: The JSP page directive, import attribute, session attribute, is Elign or attribute, buffer and auto flush attributes, info attribute, error Page and is error page attribute, is Thread safe attribute, extends attribute, language attribute, Including files and applets in jsp Pages, using java beans components in JSP documents

Understanding ORM: Understanding Object relational Persistence – what is persistence?, ORM and JPA. Starting a Project: Introducing Hibernate, "Hello World" with JPA, Native Hibernate Configurations.

Laboratory Component

- 1. Write a JAVA Program to insert data into Student DATA BASE and retrieve info based on particular queries(For example update, delete, search etc...).
- 2. Write a JAVA Servlet Program to Auto Web Page Refresh (Consider a webpage which is displaying Date and time or stock market status. For all such type of pages, you would need to refresh your web page regularly; Java Servlet makes this job easy by providing refresh automatically after a given interval).
- 3. Write a JAVA Servlet Program to implement and demonstrate get() and post() methods (Using HTTP Servlet Class)
- 4. Write a JAVA Servlet Program to implement a dynamic HTML for following scenarios
 - a. User name and password should be accepted in HTML
 - b. Verify the username and password using a ServletConfig initparam and display the appropriate message on another Servlet
- 5. Write a JAVA Servlet program to display all the methods which are present in ServletConfig and ServletContext
- 6. Write a JAVA JSP Program which uses <jsp:plugin> tag to run a applet
- 7. Write a JAVA JSP Program to remember user preferences using cookies
- 8. Write a JSP program to implement all the attributes of page directive tag
- 9. Write a JAVA JSP Program which uses jsp:include and jsp:forward action to display a Webpage
- 10. Write a Java Servlet Program to enter the login credentials and verify the same using hibernate frame work

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Understand the concepts of servlets, jsp and hybernate for enterprise applications									
CO2:	Apply JAVA support and API skills for Enterprise Application Development									
CO3:	Analyze the enterprise requirement to implement real world application									
CO4:	Develop an enterprise application using servlets, jsp and hybernate									
Refere	nce Books									
1	Designing Enterprise Applications with the Java TM 2 Platform, Inderjeet Singh, Beth Stearns, Mark Johnson and the Enterprise Team Enterprise Edition, 2 nd Edition <i>ISBN</i> -10: 0201787903									
2.	Java Fundamentals, A Comprehensive Introduction , Herbert Schildt, Dale Skrien, Tata McGraw Hill Edition, 2013, Mc Graw Hill Publication, ISBN-13:9781249006593									
3.	Marty Hall, Larry Brown, "Core Servlets and Java Server Pages. Volume 1: Core Technologies. 2 nd Edition" Pearson Hall, ISBN-13: 97886278043.									
4.	Java Persistance with Hibernate, Bauer, Christian, and Gavin King, 2 nd edition, 2016, Dreamtech Press, ISBN-13: 978-9351199199									

Continuous Internal Evaluation (CIE): Theory (100 Marks)+ Practical (50 Marks)

CIE is executed by way of Quizzes(Q), Test(T) and Experiential Learning(EL). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two Experiential Learnings are given with a combination of two component among 1) solving innovative problem 2) seminar/new developments in the related course 3) Laboratory work 4) Minor project

Total CIE is 20(Q)+50(T)+30(EL)=100 Marks

Practical: CIE for practical consists of continuous evaluation of the programmes in the lab during every lab hour. Every programme is evaluated for 10 marks and consolidated for 40 marks. One lab internal is conducted at the end of the semester for 50 marks and reduced to 10 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Practical: SEE for practical will be jointly conducted and evaluated by two examiners. The duration of practical examination is 3 hours and is evaluated for 50 marks. The break up for conduction of practical examination is (i) Procedure and Write up: 20% of max marks, (ii) Conducting the practical: 60% of max marks, (iii) Viva Voce: 20% of max marks

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	M	-	L	-	Н	L	M	L	M	L	-	-	
CO2	M	-	L	-	Н	L	M	L	M	L	-	-	
CO3	Н	Н	M	M	Н	M	L	M	Н	M	L	-	
CO4	Н	-	L	L	Н	-	L	M	L	-	L	-	
Mapping o	f Cours	se Outc	omes (C	CO) to 1	Progran	n Specif	ic Outc	omes (P	SO)				
CO/PSO				PS	O 1					PSO2			
CO1]						L			
CO2				N	Л					M			
CO3				I	Н					M			
CO4	CO4 H H												
H-High, M	-Mediu	H-High, M-Medium, L-Low											

	SEMESTER: IV											
	MINOR PROJECT – I											
	(Practice)											
Course Code	:	18MCA46	CIE Marks	:	100							
Credits: L:T:P	Credits: L:T:P : 0:0:3											
Total Hours	:	78P	SEE Duration	:	3 Hrs (P)							

GUIDELINES

- 1. Each project group will consist of maximum of two students
 - The Student shall undertake minor project- I depending on the electives studied in the previous semesters / Research based / Industry Oriented
 - Each student / group has to select a contemporary topic that will use the technical knowledge of their program of study after intensive literature survey
- 2. Allocation of the guides preferably in accordance with the expertise of the faculty
- 3. The number of projects that a faculty can guide would be limited to six
- 4. The minor project would be performed in-house
- 5. The implementation of the project must be preferably carried out using the resources available in the department/college
- 6. Students are required to publish project findings in reputed journals/ conferences

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	CO1: Conceptualize, design and implement solutions for specific problems								
CO2:	Communicate the solutions through presentations and technical reports								
CO3:	Apply resource managements skills for projects								
CO4:	Synthesize self-learning, team work and ethics								

Scheme of Continuous Internal Examination (CIE)

Evaluation of the project work will be done by the committee appointed by the director, Dept of MCA. The student should submit report on the mini project work.

Evaluation will be carried out in THREE Phases.

Phase	Activity	Weightage
I	Synopsis submission, Preliminary seminar for the approval of selected topic	10%
	and Objectives formulation	
II	Mid-term seminar to review the progress of the work and documentation	
	Design and Simulation/Algorithm development /	
	Experimental Setup	20%
	Conducting experiments / Implementation / Testing	25%
III	Oral presentation	10%
	Demonstration	10%
	Project report& Paper publication	25%

Scheme for Semester End Examination (SEE)

The evaluation will be done by Internal and External examiners. The following weightage would be given for the examination. Evaluation will be done in batches of 10 students.

1.	Project work	40%
2.	Presentation	30%
3.	Viva-voce	30%

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	M	M	Н	Н	Н	-	-	M	-	Н	Н		
CO2	-	-	-	-	Н	-	-	Н	Н	Н	-		
CO3	Н	Н	M	-	M	M	Н	Н	-	M	Н		
CO4	-	Н	-	-	-	Н	M	M	M	Н	-		
Mapping	of Cou	irse Oi	utcomes	s (CO) t	o Prog	ram Sp	ecific C	outcome	es (PSO)				
CO/PSO				PSC	D1					PSO2			
CO1				Н	[M			
CO2				-						L			
CO3 - M													
CO4 M							M						
H-High, I	M-Med	lium, I	L-Low										

	SEMESTER: V										
SOFTWARE PROJECT MANAGEMENT											
	(Theory)										
Course Code	:	18MCA51	CIE Marks	:	100						
Credits: L:T:P	:	3:0:0	SEE Marks	:	100						
Total Hours	:	39L	SEE Duration	:	03 Hrs						
Unit – I 08 Hrs											

Introduction to Software Project Management- Introduction, Why is Software Project Management important?, What is a Project?, Software Projects versus other types of Project, Contract Management and Technical Project Management, Activities covered by software project management, Plans, methods & Methodologies, Stakeholders, Setting Objectives, The Business Case, Project Success and Failure, What is Management?

Unit – II 08Hrs

Project Evaluation- Introduction, A Business Case, Evaluation of individual projects, Cost-Benefit Evaluation Techniques, Risk Evaluation

Project Stakeholders and Governance- Project stakeholders, project governance, project success

Unit – III 08 Hrs

An Overview of Project Planning-Introduction to Step-wise Project Planning, Step 0: Select Project, Step 1: Identify Project Scope and Objectives, Step 2: Identify Project Infrastructure, Step 3: Analyze Project Characteristics, Step 4: Identify Project Products and Activities, Step 5: Estimate Efforts for each activity, Step 6: Identify Activity Risks, Step 7: Allocate Resources, Step 8: Review / Publicize Plan, Step 9 & 10: Execute Plan / Lower Levels of Planning

Unit – IV 08 Hrs

Activity Planning-Sequencing and Scheduling Activities, Network Planning Models, Formulating a Network Model, Adding the time dimension, Forward Pass, The Backward Pass, Identifying the critical path, Activity Float, Shortening the Project duration, Identifying critical activities, Activity-on-Arrow Networks

Risk Management – Risk, Categories of Risk, Risk Identification, Risk Assessment, Risk Planning and Risk Management

Monitoring and Control- Introduction, Creating the Framework, Collecting the Data, Review, Project Termination Review, Cost Monitoring, Earned Value Analysis, Prioritizing Monitoring, Getting the Project back to Target, Change Control

Unit – V 07 Hrs

Managing People in Software Environments-Introduction, Understanding Behaviour, Organizational Behaviour: A Background, Selecting the right person for the job, Motivation, Stress, Health & Safety, Some Ethical and Professional Concerns

Software Quality- ISO 9126, Product and project metrics, quality plans

Cours	e Outcomes: After going through this course the students will be able to
CO1:	Explain the practices and methods for successful software project management
CO2:	Identify techniques for requirement, policies and decision making for effective resource Management
CO3:	Apply the evaluation techniques for estimating cost ,benefit, schedule and risk
CO4:	Devise a framework for planning software project management activities, risk, staffing, monitoring and control

Refer	rence Books
1.	"Software Project Management", Bob Hughes, Mike Cotterell, Rajib Mall, Special Indian Edition, 5 th Edition, 2011, Tata McGraw-Hill Education, Delhi, ISBN-13: 978-0-07-107274-8, ISBN-10: 0-07-107274-8
2.	"A Guide to the Project Management Body of Knowledge (PMBOK Guide)", PMI, 6 th Edition, 2017, PMI, ISBN NO 9781628251845.
3	"Applied Software Project Management", Andrew Stellman, Jennifer Greene, July 2008, O'Reilly Media, ISBN 978-0596009489.
4	"Project Management, A System Approach to Planning Scheduling & Controlling", Harold Kerzer, 11th Edition, 2013, John Wiley & Sons Inc., ISBN 978-1-118-02227-6.

Continuous Internal Evaluation (CIE): Theory (100 Marks)

CIE is executed by way of Quizzes(Q), Test(T) and Experiential Learning(EL). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two Experiential Learnings are given with a combination of two component among 1) solving innovative problem 2) seminar/new developments in the related course 3) Laboratory work 4) Minor project

Total CIE is 20(Q)+50(T)+30(EL)=100 Marks

Semester End Examination (SEE): Theory (100 Marks)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Mapping of	Mapping of Course Outcomes (CO) to Program Outcomes (PO)											
СО/РО		PO2		PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	Н	Н	M	M	-	Н	M	M	M	-	-
CO2	M	M	Н	Н	L	M	Н	M	-	M	-	-
CO3	M	Н	M	Н	-	L	Н	-	-	M	-	-
CO4	Н	L	M	M	M	M	Н	M	-	Н	-	-
Mapping of	Cours	se Outo	comes (CO) to	Progra	m Spec	ific Out	tcomes	(PSO)			
CO/PSO				PS	01					PSO2		
CO1				N	Л			M				
CO2				N	Л			M				
СОЗ Н							Н					
CO4 H										Н		
High-3: Me	dium-2	2: Low	-1		•		•	•				

SEMESTER:V BIG DATA ANALYTICS (Theory & Proprise)										
	1	1	(Theory & Practice)	1		Т				
Course Code	:	18MCA52		CIE Marks	:	100+50				
Credits:	:	3:1:1		SEE Marks	:	100+50				
L:T:P										
Total Hours	:	39L+26T+26P		SEE Duration	:	3 Hrs(T)				
						3Hrs(P)				
Unit – I										

Introduction to Data Analytics & Hadoop Eco System

Hadoop Fundamentals

Data, Data Analysis and storage, Comparison with other systems – Relational Database Management Systems

The Hadoop Distributed File system

The Design of HDFS, HDFS Concepts – Blocks, Name nodes and Data nodes, Block Caching, HDFS Federation, HDFS High Availability, The command-Line Interface, Hadoop File system – Interfaces Data Flow – Anatomy of a File Read, Anatomy of a File Write

Unit – II 08 Hrs

Map Reduce - A Weather Dataset – Data format, Analyzing the data with Unix Tools, Analyzing the Data with Hadoop, Scaling Out

Working of Map Reduce - Anatomy of a Map Reduce Job Run, Failures, Shuffle and Sort, Task Execution **Map Reduce Formats -** Input Formats, Output Formats

Unit – III 08 Hrs

Pig Introduction – Execution types, Running Pig programs, Grunt, Pig Latin Editors, Comparison with databases

Pig Latin – Structure, Statements, Expressions, Types, Schemas, Functions, Macros

Data Processing Operators – Loading and storing of data, Filtering Data, Grouping and Joining Data, Sorting Data, Combining and splitting Data

Pig in Practice— Parallelism, Anonymous Relations, Parameter Substitution

Unit – IV 08 Hrs

Hive Introduction – The Hive shell, Hive services, the Meta store

Comparison with Traditional Databases – Schema on Read Versus Schema on Write, Updates, Transactions and Indexes

Hive QL – Data Types, operators and functions

Tables – Managed Tables and External Tables, Partitions and Buckets, Storage Formats, Importing Data, Altering Tables, Dropping Tables

Querying Data – Sorting and Aggregating, Joins, Sub queries, Views

Unit – V 07 Hrs

Data Visualization - **I** - Introduction, Techniques used for visual Data Representation, Types of Data Visualization, Applications of Data Visualization, Visualizing Big Data, Tools used in Data Visualization, Tableau Products

Data Visualization with Tableau – Introduction to Tableau software, Tableau Desktop Workspace, Data Analytics in Tableau Public, Using visual controls in Tableau Public

Master of Computer Applications

Unit VI - Lab Component

Introduction to Hadoop Ecosystems

Review the commands available for the Hadoop Distributed File System:

- a) Copy file foo.txt from local disk to the user's directory in HDFS
- b) Get a directory listing of the user's home directory in HDFS
- c) Get a directory listing of the HDFS root directory
- d) Display the contents of the HDFS file user/fred/bar.txt
- e) Move that file to the local disk, named as baz.txt
- f) Create a directory called input under the user's home directory
- g) Delete the directory input old and all its contents
- h) Verify the copy by listing the directory contents in HDFS

1 --- Map Reduce Program on Counting

- a) Write a Java Program using Mapper and Reducer function to find the number of records in the give dataset
- b) Submit the job to cluster
- c) Track the job information

2 --- Map Reduce Program using Temperature Dataset

- a) Write a Java program for finding Maximum recorded temperature by the year from Weather Dataset
- b) Submit the job to cluster
- c) Find the status of the Job and terminate it

3 --- Programs on Pig Script Using movie lens data

- a) List all the movies and the number of ratings
- b) List all the users who have rated the same movie and find the number of ratings
- c) List all the Users who have rated the movies (Users who have rated at least one movie)
- d) Find the count of the Movie which has the ratings more than 3
- e) Find the max, min, average ratings for all the movie

4--- Program on Advanced Concepts in Pig

- f) Group by Year and dump the result in a bag
- g) Write a pig script to find the maximum temperature
- h) Write a pig Script to find the average temperature of a state for 3 years and store the result in HDFS

5-- Demonstrate Anonymous Relation and Parameter Substitution to find Maximum Temperature in a given Dataset using Pig script

6 -- Extract facts using Hive on movie lens data

- a) Write a query to select only those records which correspond to starting, browsing, completing, or purchasing movies. Use a CASE statement to transform the RECOMMENDED column into integers where 'Y' is 1 and 'N' is 0. Also, ensure GENREID is not null. Only include the first 25 rows.
- b) Write a query to select the customer ID, movie ID, recommended state and most recent rating for each movie.
- c) Create the staging table and Load the results of the previous two queries into a staging table

7 – Extract facts using Zippline

- a) Write a query to find the total number of cities where NO2 is greater than 20.
- b) Write a query to select only those cities which correspond to type of location-Industrial Area where temperature is greater than 25 and less than 40
- c) Write a query to select city and Monitoring Location and type of location where NO2 greater than 25
- d) Write a query to display the city names and Location of Monitory Station where SO2 and NO2 values are greater than 11 and 22

8-- Consider the superstore dataset

- a) Write a query to find the Top 10 sales for the current year, previous year, previous quarter, and previous month.
- b) Write a query to find the sales for consumer & corporate segment for order between 2015 2019
- c) Write a query to find the maximum discount for all the products in the region south and central for the year 2015 & 2017
- d) Write a query to find the bottom 10 profit by Country, State & City
- e) Demonstrate the visualization for profit percentage by region

9 - Creation of Story Board

Demonstrate and Create a story board of your choice using any BI Tool

Course	Course Outcomes: After going through this course the students will be able to							
CO1:	Understand the fundamentals of data analytics techniques and platforms							
CO2:	Apply data analytics ecosystem and visualization techniques to solve various problems							
CO3:	Analyse the use of data analytics and visualization for various problems							
CO4:	Evaluate the solutions of data analytics ecosystems							

Re	ference Books:
1	"Hadoop – The Definitive Guide; Storage and Analysis at Internet scale", Tom White, 2015, O'Reilly, Shroff Publishers & Distributers Pvt. Ltd., ISBN – 978-93-5213-067-2
2	DT Editorial Services "Big Data – Black Book" Dreamtech Press, Edition – 2015, ISBN - 978-93-511-9-757-7
3	"Hadoop for Dummies", Dirk deRoos, Paul C. Zikopoulos, Roman B. Melnyk, Bruce Brown, Rafael Coss, 2014, John Wiley & Sons, Inc., ISBN: 978-1-118-60755-8 (pbk); ISBN 978-1-118-65220-6 (ebk); ISBN 978-1-118-70503-2 (ebk)
4	"Big Data Principles and best practices of scalable real-time data systems", Nathan Marz and James Warren, April 2015, ISBN 9781617290343

Continuous Internal Evaluation (CIE): Theory (100 Marks) + Practical (50 Marks)

CIE is executed by way of Quizzes(Q), Test(T) and Experiential Learning(EL). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two Experiential Learnings are given with a combination of two component among 1) solving innovative problem 2) seminar/new developments in the related course 3) Laboratory work 4) Minor project

Total CIE is 20(Q)+50(T)+30(EL)=100 Marks

Continues Internal Evaluation (CIE): Practical (50 Marks)

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 50 marks and reduced to 10 marks. Total marks for the laboratory is 50

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Practical: SEE for practical will be jointly conducted and evaluated by two examiners. The duration of practical examination is 3 hours and is evaluated for 50 marks. The break up for conduction of practical examination is (i) Procedure and Write up: 20% of max marks, (ii) Conducting the practical: 60% of max marks, (iii) Viva Voce: 20% of max marks

Mappin	g of Cou	rse Ou	tcomes	(CO) to	Progra	m Outo	comes (I	PO)					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	M	Н	M	M	L	-	L	L	-	-	-	-	
CO2	Н	M	L	M	M	-	-	-	-	-	-	-	
CO3	Н	Н	L	M	M	-	-	-	-	-	-	-	
CO4	Н	M	L	M	L	-	-	-	-	-	-	-	
Mappin	g of Cou	rse Ou	tcomes	(CO) to	Progr	am Spe	cific Ou	tcomes	(PSO)		•		
CO/PSC	•			PS	SO1			PSO2					
CO1				1	M			M					
CO2]	Н			M					
CO3	M							M					
CO4 H						M							
High-3:	Mediun	1-2: Lo	w-1										

	SEMESTER: V									
	WIRELESS MOBILE NETWORKS									
	(Theory)									
Course Code	:	18MCA531	CIE Marks	: 100						
Credits: L:T:P	:	3:0:0	SEE Marks	: 100						
Total Hours	:	39L	SEE Duration	: 3 Hrs						
Unit – I										

Wireless Telecommunication Systems & Networks: History and Evolution of Wireless Radio Systems, The Development of Modern Telecommunications Infrastructure, Overview of Existing Network Infrastructure, Review of the Seven Layer OSI Model, Wireless Network Applications

Unit – II 08 Hrs

Basics of Wireless Networks: Wireless Networks, Wireless Switching Technology, Wireless Network Reference Model.

Cellular Mobile Wireless Networks: System Design Fundamentals and Propagation Path Loss Models-Description of Cellular Systems, Propagation Models for Wireless Networks - Free-space Propagation Model and Two-Ray Ground Reflection Model.

Unit – III 08 Hrs

Second-Generation Mobile Networks-GSM: Architecture and Protocols – GSM Network Architecture, GSM Multiple Access Scheme, GSM Protocols and Signalling, Authentication and Security.

3G-The Universal Mobile Telecommunication System (UMTS): UMTS Network Architecture-Release, UMTS Interfaces, UMTS Networks Evolution, UMTS Network Protocol Architecture

Unit – IV 08 Hrs

Fundamentals of Wireless Local Area Networks: IEEE 802.11, WLAN Transmission Technology, WLAN System Architecture, CSMA/CD, CSMA/CA

Cellular and WLAN Integration: Heterogeneous Network Architecture, Step Towards 4G Networks: IEEE 804.11 Overview, Complementary Features of Cellular and WLAN, Suitable Point of Integration, Integration Architecture

Unit – V 07 Hrs

Overview of WiMAX Technologies - Broadband Wireless Communications: Evolution of Broadband Wireless, Spectrum Allocation, IEEE 802.16 Standard Architecture, Overview of WiMAX PHY, IEEE 802.16 MAC Layer Overview, IEEE 802.16 Scheduling Services, Network Architecture, 804.16e Handover Procedures

Course	Course Outcomes: After going through this course the students will be able to								
CO1:	*								
CO2:	Explore various concepts and principles used in wireless network								
CO3:	Build knowledge upon architecture and protocols of wireless mobile networks								
CO4:	Analyse the design issues in wireless and mobile networks								

Refe	rence Books							
1	"Introduction to Wireless Telecommunication Systems & Networks", Gary J Mullet. 2010 Cengagae Learning (India) Pvt Ltd, ISBN – 13: 978-81-315-0559-5							
2	"Wireless Communications and Networks: 3G and Beyond, 2e.", ItiSahaMisra, 2013, McGraw Hill Education (India) Pvt Ltd, ISBN – 13:978-1-25-906273-5.							
3	"Wireless and Mobile Networks: Concepts and Protocol", Dr.SunilKumar S. Manvi, MahabaleshwarS. kakkasageri, Reprint 2012, Wiley India, ISBN: 978-81-265-2069-5.							
4	"Fundamentals of 5G mobile networks", Rodriguez, Jonathan, ed., 2015, Publisher- John Wiley & Sons, ISBN: 9781118867525.							

Continuous Internal Evaluation (CIE): Theory (100 Marks)

CIE is executed by way of Quizzes(Q), Test(T) and Experiential Learning(EL). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two Experiential Learnings are given with a combination of two component among 1) solving innovative problem 2) seminar/new developments in the related course 3) Laboratory work 4) Minor project

Total CIE is 20(Q)+50(T)+30(EL)=100 Marks

Semester End Examination (SEE): Theory (100 Marks)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Mapping o			`				T `	<u> </u>	1-00	15010		T = 0.14	
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	-	L	M	-	L	M	L	-	-	M	-	-	
CO2	L	L	-	Н	Н	L	-	-	-	M	-	-	
CO3	-	M	M	Н	M	Н	Н	-	-	M	-	-	
CO4	L	L	Н	Н	Н	M	L	-	-	M	-	-	
Mapping o	f Course	e Outco	omes (C	CO) to 1	Progran	ı Specifi	ic Outc	omes (P	SO)	1		•	
CO/PSO				PS	601			PSO2					
CO1				I	M			Н					
CO2				I	M			M					
CO3 L							Н						
CO4 L							M						

	SEMESTER: V										
	SOFTWARE PERFORMANCE ENGINEERING										
	(Theory)										
Course Code	:	18MCA532	CIE Marks	:	100						
Credits: L:T:P	:	3:0:0	SEE Marks	:	100						
Total Hours	:	39L	SEE Duration	:	3 Hrs						
Unit – I											

Basics of Performance Engineering—Role of performance requirements in Performance Engineering, Examples, Business and process aspects of performance Engineering, Disciplines and techniques used in performance engineering, Roles and activities of a performance Engineer Interactions and performance between performance Engineering and other activities

Unit – II 08Hrs

Performance Requirements-Qualitative attributes related to system performance, Concept of sustainable load, formulation of Response time and throughput requirements, Derived and implicit performance requirements, Elicitation and management of performance requirements

Unit – III 08Hrs

Performance metrics and analysis-Examples of performance metrics, useful properties of performance metrics, Explicit and implicit metrics, Performance metrics in different domains; Characterizing the performance of a queue, Basic performance laws, Open and closed Queuing network models, Bottleneck analysis

Unit – IV 08Hrs

System measurement techniques and instrumentation-Distinguishing between measurements and testing, resource usage measurements, utilizations and averaging time window, Measurement of multicore and multi-processor system, Measurement in production versus Performance testing and scalability, Interpreting measurements in Virtualized environments

Unit – V 07Hrs

Performance Testing—overview, special challenges, Performance test planning and performance models, A wrong way to evaluate system achievable system throughput, provocative performance testing, preparing a performance test, Lab discipline, Challenges, Scripts and checklists, Best practices, Automating performance tests and the analysis of the outputs

Case Study: To explore the Performance testing using tools like JMeter, Locust, The Grinder.

Course	Course Outcomes: After going through this course the students will be able to								
CO1:	Demonstrate the fundamentals of software Performance Engineering in real world scenarios								
CO2:	Identify various performance requirements and apply relevant methods/models								
CO3 :	Investigate different levels of Performance analysis								
CO4 :	Implement performance metrics in various domains								

Re	ference Books
1	"Foundations of Software and System Performance Engineering", Andre B. Bondi, Edition, 2015, Pearson, ISBN-13:9780321833822
2	"Performance Solutions: A Practical Guide to Creating Responsive, Scalable Software", Connie Smith and Lloyd Williams, 1 st Edition, Addison Wesley, ISBN-13: 978-0201722291
3	"Performance by Design: Computer Capacity Planning By Example", Daniel A. Menasce, Dowdy, Almeida, 1st Edition, Pearson, ISBN-13: 978-0130906731
4	"Non-Functional Requirements in Software Engineering", L.Chung, B. Nixon, E. Yu and J. Mylopoulos, 2009, Springer, ISBN 978-1-4615-5269-7

Continuous Internal Evaluation (CIE): Theory (100 Marks)

CIE is executed by way of Quizzes(Q), Test(T) and Experiential Learning(EL). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two Experiential Learnings are given with a combination of two component among 1) solving innovative problem 2) seminar/new developments in the related course 3) Laboratory work 4) Minor project

Total CIE is 20(Q)+50(T)+30(EL)=100 Marks

Semester End Examination (SEE): Theory (100 Marks)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

	Mapping of Course Outcomes (CO) to Program Outcomes (PO)											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	L	L	L	M	L	-	-	M	M	M	-	-
CO2	M	Н	L	Н	M	-	M	Н	M	Н	M	L
CO3	M	M	-	-	M	M	-	M	-	M	M	-
CO4	L	Н	-	M	M	-	M	Н	M	M	L	L
Mapping	of Cou	rse Ou	tcomes	(CO) to	Progra	am Spec	cific Out	tcomes ((PSO)			
CO/PSO				PS	O1			PSO2				
CO1				N	Л			L				
CO2				I	H					M		
CO3				N	Л			M				
CO4 M H												
High-3: M	1edium	1-2: Lo	w-1									

	SEMESTER: V											
	PRINCIPLES OF UI / UX DESIGN (Theory)											
Course Code	:	18MCA533		CIE Marks	:	100						
Credits: L:T:P	:	3:0:0		SEE Marks	:	100						
Total Hours	:	39L		SEE Duration	:	3 Hrs						
		Un	it – I)7 Hrs						

Introduction to User Interface Design Process

Usability of Interactive Systems: Introduction, Usability Goals and Measures, Usability Motivation, Universal Usability, Guideline, principles, and theories, **Managing Design Processes:** Organizational Design to support Usability, The Four Pillars of Design, Development methodologies, Ethnographic Observation

Unit – II 08 Hrs

Evaluating Interface Design and Interacting Styles

Evaluating Interface Design: Introduction, Expert Reviews, Usability Testing and Laboratories, Survey Instruments, Acceptance tests, Evaluation during Active Use, Controlled Psychologically Oriented Experiments; **Virtual Environments:** Introduction to 3D Interfaces; **Menu Selection, Form Filling and Dialog Boxes:** Introduction, Task-Related Menu Organization, Single Menus, Combination of Multiple Menus, Form Filling, Dialog Boxes and Alternatives, Audio Menus and Menus for Small Displays

Unit – III 08Hrs

Quality of Service and Information Search

Quality of Service: Introduction, Models of Response-Time Impacts, Expectations and Attitudes, User Productivity, Variability in Response time, **Balancing Function and Fashion**: Introduction, Error Messages, Non-anthropomorphic Design, Display design, Window Design, Colour. **Information Search**: Introduction, Search in Textual Documents and Database Querying, Multimedia document searches

Unit – IV 08Hrs

User Experience Design

Introduction to User Experience, From product design to user experience design, Designing for experience, User experience and the web, Building from bottom to top, Elements of user experience; **Strategy Plane:** Product Objectives, Business goals, Brand Identity, Success Metrics and User Needs, User Segmentation, Usability and User Research, Creating Personas

Unit – V 08Hrs

Structure Plane and Surface Plane

Structure Plane: Defining the Structure Interaction Design, Conceptual Models, Error Handling, Information Architecture, Structuring Content, Architectural Approaches ,Organizing Principles; **Surface Plane:** Sensory Design, Defining the Surface, Making Sense of the Senses, Contrast and Uniformity, Internal and External Consistency, Colour Palettes and Typography, Design Comps and Style Guides

Cours	Course Outcomes: After going through this course the students will be able to									
CO1:	Understand the theoretical foundations and awareness of user interface and user experience design									
CO2:	Apply various design skills in UI and UX for real world applications									
CO3 :	Demonstrate Quality of Service in design strategies, approaches and technical documentation Process									
CO4:	Evaluate UI/UX design process, artefacts for building products									

Ref	erence Books
1	"Designing the User Interface", Ben Shneiderman, Plaisant, Cohen, Jacobs, 5th Edition, 2014,
	Pearson Education, ISBN-10: 9332518734 ISBN-13: 978-9332518735
2	"The Elements of User Experience: User-Centred Design for the Web", Jesse James, ,2 nd Edition,
	2011 New Riders Publishers, ISBN-10: 0321683684 ISBN-13: 978-0321683687
3	"Sketching User Experiences: Getting the Design Right and the Right Design", Morgan Kaufmann,
	2007, ISBN-10: 0123740371 ISBN-13: 978-0123740373
4	"Handbook of Usability Testing: How to Plan, Design, and Conduct Effective Tests", Jeffrey Rubin,
	Dana Chisnell, 2 nd Edition,2008 Wiley India Private Limited, ISBN-10: 8126516909 ISBN-13:
	978-8126516902

Continuous Internal Evaluation (CIE): Theory (100 Marks)

CIE is executed by way of Quizzes(Q), Test(T) and Experiential Learning(EL). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two Experiential Learnings are given with a combination of two component among 1) solving innovative problem 2) seminar/new developments in the related course 3) Laboratory work 4) Minor project

Total CIE is 20(Q)+50(T)+30(EL)=100 Marks

Semester End Examination (SEE): Theory (100 Marks)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Mapping	g of C	ours	e Outcor	nes (CO)	to Prog	ram Ou	tcomes	(PO)					
CO/PO	PO 1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	M	L	L	M	M	-	L	-	L	L	L	-	
CO2	M	M	M	L	L	L	M	-	M	L	M	L	
CO3	M	L	M	L	L	-	L	-	M	-	M	-	
CO4	M	M	M	M	M	L	M	-	M	-	M	L	
Mapping	g of C	ours	e Outcor	nes (CO)	to Prog	gram Sp	ecific O	utcome	s (PSO))			
CO/PSO)			PSC	01			PSO2					
CO1				N	1			Н					
CO2				N	1			Н					
CO3				L	4					M			
CO4	M M												
High-3:	Medi	um-2	: Low-1										

	SEMESTER: V									
	CLOUD COMPUTING (Theory & Practice)									
Course Code	:	18MCA541	CIE Marks	:	100+50					
Credits: L:T:P	:	3:1:1	SEE Marks	:	100 +50					
Total Hours	:	39L+26T+26P	SEE Duration	:	3 Hrs(T) 3 Hrs(P)					
	Unit – I									

Introduction & Concepts:

Introduction to Cloud Computing: Introduction, Characteristics of Cloud Computing, Cloud Models, Cloud Service Examples, Cloud-based Services & Applications.

Unit – II 08Hrs

Cloud Concepts & Technologies: Virtualization, Load Balancing, Scalability & Elasticity, Deployment, Replication, Monitoring, Software Defined Networking, Network Function Virtualization, Identity and Access Management, Service Level Agreements, Billing.

Parallel and Distributed Systems: Parallel Computing, Distributed Systems.

Unit – III

08Hrs

Cloud Application Design: Introduction, Design Considerations for Cloud Applications, Reference Architectures for Cloud Applications, Cloud Application Design Methodologies, Data Storage Approaches.

Unit – IV 08Hrs

Cloud Security: Introduction, CSA (Cloud Security Architecture) Authentication, Authorization, Identity & Access Management, Data Security, Key Management, Auditing.

Virtual Machine Security, Security of Virtualization, Security risk posted by a management OS.

Unit – V 08 Hrs

Multimedia Cloud: Introduction, case study- live video streaming app, streaming protocols

Cloud Application Benchmarking & Tuning: Introduction, workload characteristic, application performance matrices, design consideration for a bench marking methodology, benchmarking tools, deployment prototyping, load testing and bottle neck detection case study.

Unit – VI(Lab Component)

Note: Students should create an Account from any Public Cloud by Cloud Service Providers to run the following Programs.

- 1. Launch a Linux or Window Server by creating VPC, Route Table in a cloud.
- 2. Create Storage space using S3 Services in cloud.
- 3. Demonstrate Load Balancer and Elastic IPs concept in cloud.
- 4. Create a new user from root using Identity and access management (IAM).
- 5. Create RDS Server and connect using MySQL Workbench.
- 6. Run the PHP Code on EC2 instance that retrieve data from RDS Server.
- 7. Building own static website and hosting application from desktop.
- 8. Demonstrate ECLIPSE Integration with cloud.
- 9. Run JAVA application by connecting to RDS Server in cloud.
- 10. Demonstrate auto scaling group concept in cloud.

Course	Course Outcomes: After going through this course the students will be able to							
CO1:	Understand the fundamental concepts of cloud computing environment							
CO2:	Identify the various key enabling technologies for cloud computing							
CO3:	Apply multiple cloud application to the various programming models							
CO4:	Compare the different cloud platforms to the cloud computing scenarios							

Refer	rence Books:
1.	"Cloud Computing A Hands-on Approach", ArshdeepBahga, Vijay Madisetti, , 2014, Edition University Press ISBN: 9788173719233
2.	"Cloud Computing Theory And Practice", Dan C. Marinescu, 2016, Morgan Kaufmann Publication, ISBN: 978-93-5107-094-8
3.	"Cloud Computing Principles and paradigms", RajkumarBuyya , James Broberg , Andrzej Goscinski, 2011, WILEY Publications , ISBN 978-0-470-88799-8
4.	"Cloud Computing Bible", Barrie. Sosinsky, 2011, WILEY Publishing, Inc., ISBN: 978-0-470-90356-8

Continuous Internal Evaluation (CIE): Theory (100 Marks) + Practical (50 Marks)

CIE is executed by way of Quizzes(Q), Test(T) and Experiential Learning(EL). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two Experiential Learnings are given with a combination of two component among 1) solving innovative problem 2) seminar/new developments in the related course 3) Laboratory work 4) Minor project

Total CIE is 20(Q)+50(T)+30(EL)=100 Marks

Continues Internal Evaluation (CIE): Practical (50 Marks)

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 50 marks and reduced to 10 marks. Total marks for the laboratory is 50

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Practical: SEE for practical will be jointly conducted and evaluated by two examiners. The duration of practical examination is 3 hours and is evaluated for 50 marks. The break up for conduction of practical examination is (i) Procedure and Write up: 20% of max marks, (ii) Conducting the practical: 60% of max marks, (iii) Viva Voce: 20% of max marks

Mapping	of Cou	rse Ou	tcomes	(CO) to	Progra	m Outc	omes (P	O)				
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	L		L			M		M	M	L	M
CO2	L	M	M				Н	L		L		M
CO3	M	L		M			L	M	M		L	L
CO4	M	Н	L			=	M	L	L	L	M	
Mapping	of Cou	rse Ou	tcomes	(CO) to	Progra	ım Spec	ific Out	comes (PSO)			
CO/PSO				PS	01			PSO2				
CO1		Н						M				
CO2		M						-				
CO3		L					Н					
CO4			_				L					
High-3: M	1edium	1-2: Lo	w-1				•					

	SEMESTER: V									
	INTERNET OF THINGS									
	(Theory & Practice)									
Course Code	:	18MCA542	CIE Marks	:	100+50					
Credits: L:T:P	:	3:1:1	SEE Marks	:	100+50					
Total Hours	:	39L+26T+26P	SEE Duration	:	3 Hrs(T)					
					3 Hrs(P)					
	Unit – I									

Introduction to Internet of Things:

Fundamentals of Electronics and devices for Internet of Things. Physical and Logical design of IoT Technologies that enable Internet of Things Applications and Use cases, IoT Deployment Levels. Network and Communication, Standards related to Internet of Things, Protocols in Internet of things

Unit – II 08Hrs

Programming with Arduino :Understanding the eco system of arduino, Pinout configuration, Digital input and output, Analog input and output, working with sensors and actuators. Arduino serial communication. Communication interfaces (SPI and I2C) wired and wireless communication with arduino and logging sensor data from arduino.

Unit – III 08Hrs

Programming with Raspberry Pi: Understanding the eco system of Raspberry Pi3, Pinout configuration, Digital input and output, working with sensors and actuators. Raspberry Pi serial communication. Communication interfaces (SPI and I2C) wired and wireless communication with raspberry Pi. Serial communication from raspberry Pi3 to Arduino

Unit – IV 08Hrs

Programming with esp8266 (node mcu) and esp32: Understanding the eco system of esp8266and esp 32, pinout configuration, Digital, Analog input and output, working with sensors and actuators. Communication from raspberry Pi to nodeMCU/esp32, Network configuration with esp8266 and esp32, wireless communication using nodeMCU and esp32

Unit – V 08 Hrs

IoT Application Development, Integrating sensors with IoT Dashboards and notification services

NodeJS / Django Based web application development to monitor and control IoT devices. Integration of Adafruit / Thingsboard and similar tools with sensors and actuators. Integrating Applications with notification services

Introduction to Flow based IoT Dashboard: NodeRED

Introduction to MQTT based Dashboard implementation: Open HAB

Introduction to IoT data visualization tools and technologies: visualization libraries and dashboard

Lab Component

Implement the following programs using

- 1. Write a program with Arduino UNO board to calculate the distance of a obstacle based on the Ultrasonic sensor inputs. If the distance calculated is less than a certain value turn on a buzzer / beeper with a LED in ON state and display the distance in LCD / OLED
- 2. Write a program with Arduino UNO to indicate the level of temperature using the LEDs indicating the low, medium and high values of temperature (Red, Blue and Green) **OR**Write a program with Arduino UNO to implement the interactive traffic signal.
- 3. Write a interactive python script on Raspberry Pi3 to implement the serial communication from Raspberry Pi to Arduino and vice versa with the following components
- a) LED b) Buzzer c) Temperature and humidity sensor d) four channel relay
- 4. Write a python script on Raspberry pi to control servo motor or DC Motor based on the potentiometer meter or button switch inputs. **OR** change the color of RGB LED / Bulb based on the potentiometer
- 5. Write a micro python script /arduino sketch with esp8266/esp32 based board to calculate the distance of a obstacle based on the Ultrasonic sensor inputs. If the distance calculated is less than a certain value turn on a buzzer / beeper with a LED in ON state and display the distance in LCD / OLED
- 6. Write a micro python script/arduino sketch with esp8266 / esp32 board to operate a 4 channel relay demonstrating minimal home automation and integrate with a dashboard
- 7.Integrate Blink / ThingsBoard /openhab to any of the experiments done above or any sensor and actuator used in the experiments above
- 8. Develop a django dashboard to monitor and control the sensor and actuators **OR** Develop a program to tweet about a sensor value and the status of a actuator.
- 9. Develop a Dashboard using NodeRED to monitor, control any two sensor, actuators
- 10. Develop a python program on raspberry pi to get the sensor value from Raspberry pi to another using network programming **OR**

Develop a python program to send email to a particular email the temperature / humidity read from DHT11 sensor when a button is pressed.

Cours	e Outcomes: After going through this course the students will be able to
CO1:	Understand the fundamentals of electronics and devices needed for IoT including deployment levels,
	Network protocols and standards.
CO2:	Differentiate between various development boards, sensors, actuators, architecture of Arduino,
	Raspberry Pi, nodemcu and esp32 with Arduino IDE and other frameworks
CO3:	Interact with Arduino, RaspberryPi, nodemcu and esp32 using python, JavaScript and C/C++ to
	program the devices (sensors and actuators)
CO4:	Develop minimal IoT Applications and integrate several essential services

Refer	rence Books:
1.	"Exploring Arduino: Tools and Techniques for Engineering", Wizardry, 1st Edition WILEY, ISBN-10: 1118549368, ISBN-13: 978-1118549360
2.	"Internet of Things with Raspberry Pi 3", Maneesh Rao, PackPublihing,
3.	"Internet of Things with ESP8266", Marco Schwartz, 29 Jul 2016, PACKT
4.	Internet of Things: A Hands-on Approach by ArshdeepBahga, Vijay Madisetti, July 1st 2015 by Orient Blackswan Private Ltd ISBN: 8173719543
5	"Building the Web of Things", Dominique D. Guinard and Vlad M. Trifa, Manning Publication, ISBN 9781617292682
6	The Official ESP32 Book, ISBN: 978-1-907920-63-9, Elector

Continuous Internal Evaluation (CIE): Theory (100 Marks) + Practical (50 Marks)

CIE is executed by way of Quizzes(Q), Test(T) and Experiential Learning(EL). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two Experiential Learnings are given with a combination of two component among 1) solving innovative problem 2) seminar/new developments in the related course 3) Laboratory work 4) Minor project

Total CIE is 20(Q)+50(T)+30(EL)=100 Marks

Continues Internal Evaluation (CIE): Practical (50 Marks)

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 50 marks and reduced to 10 marks. Total marks for the laboratory is 50

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Practical: SEE for practical will be jointly conducted and evaluated by two examiners. The duration of practical examination is 3 hours and is evaluated for 50 marks. The break up for conduction of practical examination is (i) Procedure and Write up: 20% of max marks, (ii) Conducting the practical: 60% of max marks, (iii) Viva Voce: 20% of max marks

Mapping	or Cou	rse Ou	tcomes	(CO) to	Progra	m Outc	omes (F	<u>(O)</u>			_		
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	L	L		L	L	_	M	_	M	M	L		
CO2	L	M	M		L		Н	L		L			
CO3	M	M	M	M	M	_	M		-	_	-	-	
CO4	M	Н	Н	M	Н	L	M	L	L	L	M	M	
Mapping	of Cou	rse Ou	tcomes	(CO) to	Progra	am Spec	cific Ou	tcomes	(PSO)			•	
CO/PSO				PS	01			PSO2					
CO1]	L			L					
CO2				N	M			M					
CO3	CO3 M							Н					
CO4 H							Н						

		SEMESTER: V									
	VIRTUAL REALITY										
		(Theory & Practice)									
Course Code	:	18MCA543	CIE Marks	:	100+50						
Credits: L:T:P	:	3:1:1	SEE Marks	:	100+50						
Total Hours	:	36L+26T+26P	SEE Duration	:	3 Hrs(T)						
					3 Hrs(P)						
		Unit – I			09 Hrs						

Introduction: Virtual Reality, Virtual Reality Applications

Birds-eye view: Hardware, Software, Human Physiology and perception

Objects and Scale: Getting started with Unity- Starting a new Unity project, The Unity editor, The default world space. Adding a cube, plane etc. An introduction to Blender. Importing from Blender to Unity.

Unit – II 08 Hrs

Introduction : Augmented Reality, Mixed Reality, its applications, Creating a Image marker, AR Database, Integrating in Unity,

Geometry of Virtual Worlds: Geometric models, Transforming models, 2D and 3D rotation yaw, pitch, and roll. Viewing Transformations, Chaining the Transformations

Unit – III 07 Hrs

Tracking: Tracking 2D and 3D orientation.

Physics and the Environment: Unity physics, Bouncy balls

Unit – IV 07 Hrs

Visual Rendering: Visual Rendering overview, Ray Tracing and Shading Models, Rasterization, VR-specific problems.

Gaze-based Control: Ethan, the walker- Artificially intelligent Ethan, The Navmesh bakery, The Random Position script for Ethan, Ray casting.

Unit – V 05 Hrs

First-person Character: Understanding the Unity characters - The Camera component, The Rigid body component, The Character Controller component. Unity Standard Assets- Third Person Controller, AI Third Person Controller, First Person Controller, Rigid Body FPS Controller. Making a first person, User calibrations, Managing VR motion sickness

Unit – VI(Lab Component)

- 1. Create a 3D object and Apply different geometric Transformations using Mouse/Keyboard
- 2. Bouncing ball on multiple 2D/3D platforms
- 3. Develop First Person Controller to a Scene
- 4. Create a 3D Character movement
- 5. Making a basic AR app
- 6. Create a menu driven interface for adding and removing objects from a Scene
- 7. Finding target using 2D Ray-caster
- 8. Create a marker based app that places a jumping and dancing model on a plane by real-time detection.
- 9. Create and show motion effect using time scale and scripts for 2D images.
- 10. Design and Develop a VR Game

Cours	Course Outcomes: After going through this course the students will be able to									
CO1:	Understand the concepts of Virtual Reality and its Applications									
CO2:	Discuss the Principles of Virtual Reality									
CO3 :	Demonstrate a virtual environment to captivate its experiences									
CO4:	Analyse the fundamental issues of virtual reality									

Ref	erence Books:
1	"Learning Virtual Reality, Developing Immersive Experiences and Applications for Desktop, Web and Mobile", Tony Parisi, first edition, 2015, O'Reilly Media, Inc., ISBN-13: 978-93-5213-257-7
2	"Unity Virtual Reality Projects", Jonathan Linowes, first edition, 2015, Packt Publishing Ltd., ISBN 978-1-78398-855-6
3	"Virtual Reality", Steven M. LaValle, Copyright Steven M. LaValle 2017 Available for downloading at http://vr.cs.uiuc.edu/
4	"Augmented Reality Principles and Practice", Dieter Schmalstieg and Tobias Höllerer, Addison-Wesley, 2016,ISBN-13: 978-0-321-88357-5

Continuous Internal Evaluation (CIE): Theory (100 Marks) + Practical (50 Marks)

CIE is executed by way of Quizzes(Q), Test(T) and Experiential Learning(EL). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two Experiential Learnings are given with a combination of two component among 1) solving innovative problem 2) seminar/new developments in the related course 3) Laboratory work 4) Minor project

Total CIE is 20(Q)+50(T)+30(EL)=100 Marks

Continues Internal Evaluation (CIE): Practical (50 Marks)

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 50 marks and reduced to 10 marks. Total marks for the laboratory is 50

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Practical: SEE for practical will be jointly conducted and evaluated by two examiners. The duration of practical examination is 3 hours and is evaluated for 50 marks. The break up for conduction of practical examination is (i) Procedure and Write up: 20% of max marks, (ii) Conducting the practical: 60% of max marks, (iii) Viva Voce: 20% of max marks

Mapping	of Cou	rse O	utcome	s (CO) t	o Progr	am Out	comes	(PO)					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	Н	L	L	L	M	L	-	-	-	-	-	-	
CO2	Н	M	M	L	M	-	-	-	L	-	L	-	
CO3	-	-	Н	L	Н	-	-	M	M	-	L	-	
CO4	-	L	L	Н	L	-	-	-	L	-	-	-	
Mapping	of Cou	rse O	utcome	s (CO) t	o Progr	ram Spe	ecific O	utcomes	(PSO)				
CO/PSO				PS	SO1			PSO2					
CO1		L						L					
CO2		L	L						L				
СО3 Н						Н							
CO4		M	M										
High-3: N	Mediun	1-2: L	ow-1				•						

		SEMESTER: V									
	SEMINAR - I										
Course Code	:	18MCA55	CIE Marks	:	50						
Credits: L:T:P	:	0:0:2	SEE Marks	:	50						
Hrs/Week	:	2	SEE Duration		3 Hrs						

GUIDELINES

- 1. The seminar presentation shall be done by individual students.
- 2. The topic for seminar should be in one of the thrust areas relevant to industry or on-going research with in-depth technical review and analysis.
- 3. The student must be able to highlight or relate the technological developments with societal relevance and sustainability.
- 4. The students must mandatorily address professional computing practices relevant to the topic of study.
- 5. The student shall make an attempt to perform financial / cost analysis or apply project management tools as related to his/her topic of study.
- 6. Each student must submit both hard and soft copy of the presentation and report.

Cours	e Outcomes: After going through this course the students will be able to
CO1:	Identify topics in cutting edge areas in computing technology relevant to sustainability and societal
	concern
CO2:	Conduct literature / market / product survey and analyse information in the field of study
CO3:	Enhance communication skills and report writing skills
CO4:	Exhibit creative thinking abilities

Scheme of Continuous Internal Evaluation (CIE): Evaluation would be carried out in TWO phases. The evaluation committee shall comprise of guide and senior faculty members. The evaluation criteria shall be as per the rubrics given below:

The evaluation criteria shall be as per the rubrics given below:

Reviews	Activity	Weightage
Phase 1	Selection of topic – Technical Relevance, review of literature,	50%
	Presentation skills, Sustainability and Societal Concerns	
Phase 2	Technological developments, key competitors, Presentation skills,	50%
	Report writing	

Scheme for Semester End Evaluation (SEE)

The evaluation will be done by ONE Senior faculty / Internal Guide from the department and ONE External member from Academia / Industry / Research Organization. Evaluation will be done in batches 6 students per batch and maximum of 03 batches per day per examiner.

Rubrics for SEE evaluation

•	Topic	10%
•	Literature Review	20%
•	Technical relevance, Sustainability and Societal Concerns	30%
•	Presentation Skills	20%
•	Viva- Voce	20%

Mapping of Course Outcomes (CO) to Program Outcomes (PO)													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	-	M	M	M	M	Н	Н	-	-	L	M	-	
CO2	L	M	-	-	-	-	-	-	-	Н	-	-	
CO3	-	L	M	-	Н	L	L	-	-	-	M	-	
CO4	-	-	-	-	-	L	L	M	Н	-	-	-	
Mapping	of Cor	urse O	utcome	s (CO)	to Pro	gram S	pecific	Outcom	es (PSO)			
CO/PSO				PSC	D1			PSO2					
CO1				N.	Ī			L					
CO2				L	,			L					
CO3	CO3 L							L					
CO4	CO4 L							L					
High-3: N	/lediur	n-2: L	ow-1										

MINOR PROJECT – II						
Course Code	:	18MCA56	CIE Marks	:	100	
Credits :L:T:P	:	0:0:4	SEE Marks	:	100	
Hrs/Week	:	04	SEE Duration	:	03 Hrs	

GUIDELINES

- 6. Each project group will consist of maximum of two students
 - The Student shall undertake minor project- II depending on the electives studied in the previous semesters / Research based / Industry Oriented
 - Each student / group has to select a contemporary topic that will use the technical knowledge of their program of study after intensive literature survey
- 7. Allocation of the guides preferably in accordance with the expertise of the faculty
- 8. The number of projects that a faculty can guide would be limited to six
- 9. The minor project would be performed in-house
- 10. The implementation of the project must be preferably carried out using the resources available in the department/college

Course Outcomes: After going through this course the students will be able to					
CO1:	Conceptualize, design and implement solutions for specific problems				
CO2:	Communicate the solutions through presentations and technical reports				
CO3:	Apply resource managements skills for projects				
CO4:	Synthesize self-learning, team work and ethics				

Scheme of Continuous Internal Examination (CIE)

Evaluation of the project work will be done by the committee appointed by the director, Dept. of MCA. The student should submit report on the mini project work. Evaluation will be carried out in THREE Phases.

Phase	Activity	Weightage
I	Synopsis submission, Preliminary seminar for the approval of selected topic	20%
	and objectives formulation, Literature survey	
II	Midterm seminar to review the progress of the work Design and	40%
	Simulation/Algorithm development / Experimental Setup	
III	Conducting experiments / Implementation / Testing - Oral presentation,	40%
	demonstration and submission of project report	

Scheme for Semester End Examination (SEE)

The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.

Rubrics for SEE evaluation

•	Project work	40%
•	Presentation	30%
•	Viva-voce	30%

Mapping	Mapping of Course Outcomes (CO) to Program Outcomes (PO)											
CO/PO	PO1	PO2	O2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO						PO12			
CO1	M	M	Н	Н	Н	-	-	M	-	Н	Н	
CO2	-	-	-	-	Н	-	-	Н	Н	Н	-	
CO3	Н	Н	M	-	M	M	Н	Н	-	M	Н	
CO4	-	Н	-	-	- H M M H -							
Mapping	of Cou	ırse O	utcome	s (CO) 1	to Prog	gram Sp	ecific C	Outcome	es (PSO)			
CO/PSO				PSC	D1					PSO2		
CO1				Н						M		
CO2		- L										
CO3		- M										
CO4		M M										
High-3: Medium-2: Low-1												

SEMESTER: VI								
	MAJOR PROJECT							
Course Code	:	18MCA61	CIE Marks	:	100			
Credits L:T:P	:	0:0:20	SEE Marks	:	100			
Hrs/Week	:	40	SEE Duration	:	03 Hrs			

Course Learning Objectives:

The students shall be able to

- 1. Understand the method of applying technical knowledge to solve specific problems.
- 2. Apply software engineering and management principles while executing the project
- 3. Demonstrate good verbal presentation and technical report writing skills
- 4. Identify and solve complex application / research oriented problems using professionally prescribed standards

GUIDELINES

- 1. Major project will have to be done by only one student in his / her area of interest
- 2. Each student has to select a contemporary topic in the area of application or research that will use the technical knowledge and skill set
- 3. The project can be carried out on-campus or in an industry or an organization with prior approval from the Director, Department of MCA
- 4. Students carrying out the Project In house are required to be present in the college every day and report to the Internal Guide
- 5. The candidate must maintain and submit weekly project work dairy duly signed by the internal and external guide to verify the regularity of the student
- 6. Internal Evaluation of the project work will be done by the evaluation committee appointed by the Director, Department of MCA.
- 7. The standard duration of the project is for 5 month duration, however if the evaluation committee of the department, after the assessment feel that the work is insufficient and it has to be extended, then the student will have to continue as per the directions of the committee.
- 8. Students are mandatorily required to publish in reputed journals/ conferences.

Course	Course Outcomes: After going through this course the students will be able to					
CO1:	Conceptualize, design and implement solutions for specific problem defined					
CO2:	Communicate the solutions through presentations and dissertation report					
CO3:	Apply project and resource management skills, professional ethics and societal concerns					
CO4:	Exhibit self-learning, lifelong learning skills towards sustainable solutions					

Scheme of Continuous Internal Examination (CIE)

Evaluation will be carried out in THREE Phases. The evaluation committee will comprise of: guide and members appointed by Director, MCA

Phase	Activity	Weightage
I	Synopsis submission, Preliminary seminar for the approval of selected topic	20%
	, review and refinement of objectives, Literature survey	
II	Mid-term seminars to review the progress of the work and documentation	40%
	- SRS and algorithm development, Design and simulation/ experimental	
	set up	
III	Experimental result & analysis, testing, Conclusions and Future Scope of	40%
	Work, Dissertation Report	

Note -

- (a) 50% CIE is the pre requisite to appear for SEE
- (b) Two hard bound dissertation reports are to be submitted. The report has to be in light yellow color
- (c) Certificate sheet having the signatures of Guide, Director and Principal must be included
- (d) Plagiarism report must be <20% and to be included in the report
- (e) Technical paper publication in reputed Journals/ National / International Conference is mandatory

Scheme for Semester End Examination (SEE):

The evaluation will be done by ONE Senior faculty / Internal Guide from the department and ONE External member from Academia / Industry / Research Organization. Evaluation will be done in batches not exceeding SIX students per batch and maximum of 12 students per day per examiner.

SEE procedure is as follows

	Internal Examiner	External		Total
		Examiner		
SEE Dissertation	100 marks	100 marks		200 marks
			(A)	(200/2) = 100 marks
Viva Voce	Jointly Evaluated by Internal and External Examiner		(B)	100 marks
		Total N	Marks	[(A)+(B)]/2=100

Final Marks / Grades = (CIE+SEE)/2

Mappin	Mapping of Course Outcomes (CO) to Program Outcomes (PO)												
CO/PO	PO1	PO2	PO3	PO4	PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO						PO12		
CO1	Н	Н	Н	M	L	M	L	-	-	-	L	L	
CO2	-	-	-	-		M	-	M	Н	-			
CO3	-	-	-	-	L	M	M		-	H L -			
CO4	L M H M H L							L					
Mappin	g of Co	ourse O	utcom	es (CO) to Pro	ogram	Specifi	c Outc	omes (l	PSO)			
			PS	O1					P	SO2			
CO1			ŀ	ł						Н			
CO2			I							L			
CO3	M									L			
CO4	Н					Н							
High-3:	High-3: Medium-2: Low-1												

		SEMESTER: VI			
		SEMINAR-II			
Course Code	:	18MCA62	CIE Marks	:	50
Credits: L:T:P	:	0:0:2	SEE Marks	:	50
Hrs/Week	:	2	SEE Duration		

GUIDELINES

- 1. The seminar presentation shall be done by individual students.
- 2. The topic for seminar should be in one of the thrust areas relevant to industry or on-going research with in-depth technical review and analysis
- 3. The topic can also be an extension of the Major project
- 4. The student must be able to highlight or relate the technological developments with societal relevance and sustainability
- 5. The students must mandatorily address professional computing practices relevant to the topic of study
- 6. The student shall make an attempt to perform financial / cost analysis or apply project management tools as related to his/her topic of study
- 7. Each student must submit both hard and soft copy of the presentation and report

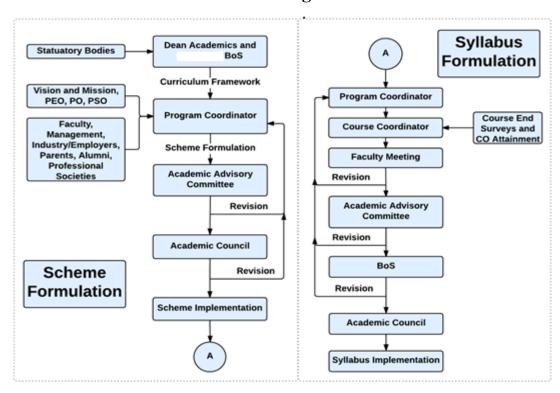
Cours	Course Outcomes: After going through this course the students will be able to					
CO1:	Identify topics in recent trends in computing technology.					
CO2:	Perform literature / market / product survey and analyse information in the field of study					
CO3:	Enhance communication skills and report writing skills					
CO4:	Exhibit creative thinking abilities					

Scheme of Continuous Internal Evaluation (CIE): Evaluation would be carried out in TWO phases. The evaluation committee shall comprise of guide and senior faculty members. The evaluation criteria shall be as per the rubrics given below:

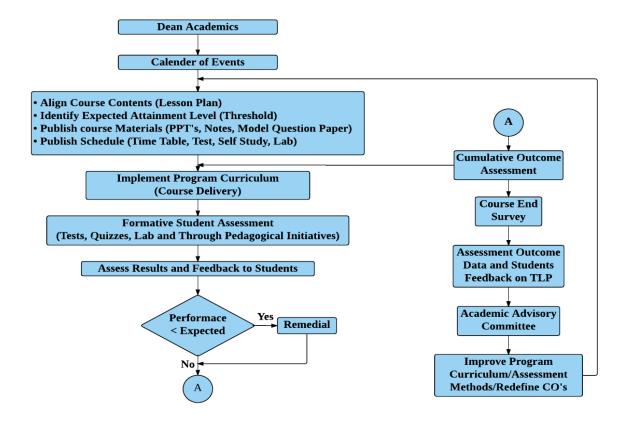
The evaluation criteria shall be as per the rubrics given below:

Reviews	Activity	Weightage
Phase 1	Selection of topic - Technical Relevance, review of literature,	50%
	Presentation skills, Sustainability and Societal Concerns	
Phase 2	Technological developments, key competitors, Presentation skills,	50%
	Report writing	

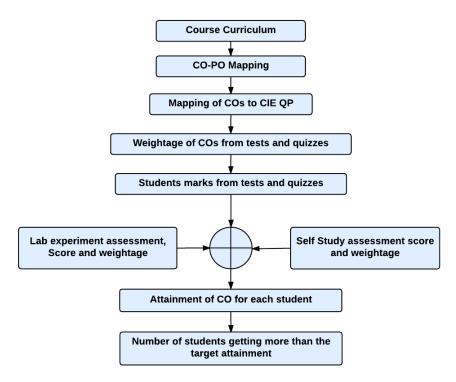
Scheme for Semester End Evaluation (SEE)

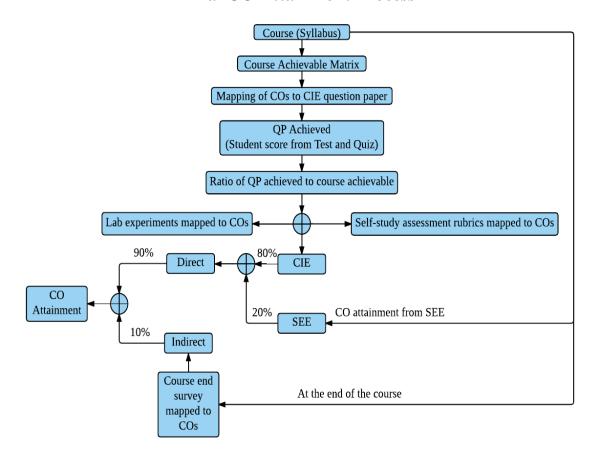

The evaluation will be done by ONE Senior faculty / Internal Guide from the department and ONE External member from Academia / Industry / Research Organization. Evaluation will be done in batches 6 students per batch and maximum of 03 batches per day per examiner.

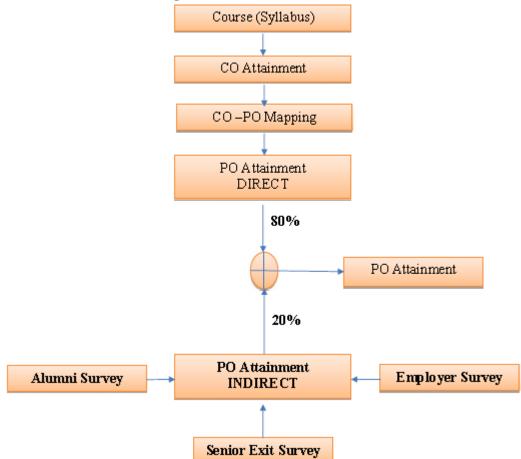
Rubrics for SEE evaluation


• Topic	10%
Literature Review	20%
 Technical relevance, Sustainability and Societal Concerns 	30%
 Presentation Skills 	20%
 Viva- Voce 	20%

Mapping of Course Outcomes (CO) to Program Outcomes (PO)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	M	M	M	M	Н	Н	-	ı	L	M	-
CO2	L	M	-	-	-	-	-	-	-	Н	-	-
CO3	-	L	M	-	Н	L	L	-	-	-	M	-
CO4	-	-	-	-	-	L	L	M	Н	-	-	-
Mapping of Course Outcomes (CO) to Program Specific Outcomes (PSO)												
	PSO1					PSO2						
CO1	M					L						
CO2	L					L						
CO3	L					L						
CO4	L					L						
High-3: Medium-2: Low-1												


Curriculum Design Process


Academic Planning and Implementation


Process for Course Outcome Attainment

Final CO Attainment Process

Program Outcome Attainment Process

.

PROGRAMME OUTCOMES (PO)

MCA graduates will be able to:

- **PO1** Computational Knowledge: Acquire in-depth computational knowledge and mathematics with an ability to abstract and conceptualize models from defined problems and requirements
- **PO2 Problem Analysis:** Identify, formulate, conduct literature survey and solve complex computing problems through analysis as well as provide optimal solutions
- PO3 Design / Development of Solutions: Design and evaluate solutions for complex problems, components or processes that meet specified needs after considering public health and safety, cultural, societal, and environmental factors
- **PO4** Conduct investigations of complex Computing problems: Conduct literature survey to analyze and extract information relevant to unfamiliar problems and synthesize information to provide valid conclusions and interpret data by applying appropriate research methods, tools and design experiments
- **PO5** Use of Modern Tool: Create, select, adapt and apply appropriate techniques, resources, and modern IT tools to complex computing system activities, with an understanding of the limitations
- **PO6** Professional Ethics: Understand and commit to professional ethics and cyber regulations, responsibilities, and norms of professional computing practices
- **PO7 Life-long Learning:** Engage in lifelong learning independently for continual development to improve knowledge and competence as a computing professional
- PO8 Project management and finance: Demonstrate knowledge and understanding of management principles and apply these to multidisciplinary software development as a team member and manage projects efficiently as a leader considering economical and financial factors
- **PO9** Communication Efficacy: Understand and communicate effectively with the computing community and with society at large, regarding complex computing systems activities confidently and effectively by writing effective reports and design documentations by adhering to appropriate standards, make effective presentations and give / receive clear instructions
- **PO10** Societal and Environmental Concern: Understand responsibilities and consequences based on societal, environmental, health, safety, legal and cultural issues within local and global contexts relevant to professional computing practices
- **PO11** Individual and Team Work: Function effectively as an individual, as a member or leader in diverse teams in multidisciplinary environments
- **PO12** Innovation and Entrepreneurship: Identify a timely opportunity for entrepreneurship and use innovation to pursue and create value addition for the betterment of the individual and society at large