

New Delhi

SCHEME & SYLLABUS I/II SEMESTER B.E. PROGRAMS

2022 SCHEME (W.E.F 2022 Admission Students)

New Delhi

VISION

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and **Inclusive Technology**

MISSION

- 1. To deliver outcome based Quality education, emphasizing on experiential learning with the state of the art infrastructure.
- 2. To create a conducive environment for interdisciplinary research and innovation.
- 3. To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- industry-institution collaboration nurture competency enhancement and entrepreneurship.
- 5. To focus on technologies those are sustainable and inclusive, benefiting all sections of the society.

QUALITY POLICY

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

CORE VALUES

Professionalism, Commitment, Integrity, Team Work, Innovation

Approved by AICTE, New Delhi

ABBREVIATIONS

Sl. No.	Abbreviation	Meaning
1.	VTU	Visvesvaraya Technological University
2.	AI	Artificial Intelligence & Machine Learning
3.	AS	Aerospace Engineering
4.	BT	Biotechnology
5.	CD	Computer Science & Engineering – Data Science
6.	СН	Chemical Engineering
7.	CS	Computer Science & Engineering
8.	CV	Civil Engineering
9.	CY	Computer Science & Engineering – Cyber Security
10.	EC	Electronics & Communication Engineering
11.	EE	Electrical & Electronics Engineering
12.	EI	Electronics & Instrumentation Engineering
13.	ET	Electronics & Telecommunication Engineering
14.	IM	Industrial Engineering & Management
15.	IS	Information Science & Engineering
16.	ME	Mechanical Engineering
17.	PHY	Physics
18.	СНҮ	Chemistry
19.	MA	Mathematics
20.	SPARK	Study through Projects & Activity for Renewing Knowledge
21.	ASC	Applied Sciences Course
22.	PC	Professional Core Course
23.	ES	Engineering Science Course
24.	PL	Programming Language Lab Course
25.	EM	Emerging Technology Course
26.	HSS	Humanities and Social Sciences
27.	CIE	Continuous Internal Evaluation
28.	SEE	Semester End Examination

Approved by AICTE, New Delhi

INDEX

		I / II Semester	
Sl. No.	Course Code	Course Title	Page No.
	T	APPLIED SCIENCE COURSES	
1.	22MA11A	Fundamentals of Linear Algebra, Calculus and Numerical Methods	1
2.	22MA11B	Fundamentals of Linear Algebra, Calculus and Differential Equations	3
3.	22MA11C	Fundamentals of Linear Algebra, Calculus and Statistics	5
4.	22MA11D	Applied Mathematics - I	7
5.	22MA21A	Vector Calculus, Laplace Transform and Numerical Methods	9
6.	22MA21B	Vector Calculus and Computational Methods	11
7.	22MA21C	Number Theory, Vector Calculus and Computational Methods	13
8.	22MA21D	Applied Mathematics - II	15
9.	22PHY12A	Condensed Matter Physics for Engineers	17
10.	22PHY12B	Classical Physics for Engineers	20
11.	22PHY12C	Quantum Physics for Engineers	23
12.	22PHY12D	Applied Physics for Engineers	26
13.	22CHY12A	Chemistry of Smart Materials and Devices	29
14.	22CHY12B	Engineering And Environmental Chemistry	32
15.	22CHY22C	Chemistry of Functional Materials	35
16.	22CHY22D	Chemistry of Engineering Materials	38
	1	PROFESSIONAL CORE COURSES	
17.	22EC13	Basic Electronics	41
18.	22EE13	Elements of Electrical Engineering	43
19.	22ME13	Elements of Mechanical Engineering	45
20.	22CS23	Principles of Programming Using C	47
21.	22CV23	Engineering Mechanics	50
22.	22MED13/23	Computer Aided Engineering Graphics	52
		ENGINEERING SCIENCE COURSES	
23.	22ES14A/24A	Fundamentals of Programming Using C	54
24.	22ES14B/24B	Elements of Civil Engineering	56
25.	22ES14C/24C	Principles of Electronics Engineering	58
26.	22ES14D/24D	Basics of Electrical Engineering	60
27.	22ES14E/24E	Fundamentals of Mechanical Engineering	62
		PROGRAMMING LANGUAGE LAB COURSES	
28.	22PL15A/25A	Introduction to Python Programming	64
29.	22PL15B/25B	Introduction to Web Programming	67
30.	22PL15C/25C	Basics to Java Programming	69
31.	22PL15D/25D	Introduction to C++ Programming	72

		EMERGING TECHNOLOGY COURSES	
32.	22EM101/201	Introduction to Internet of Things	75
33.	22EM102/202	Introduction to Drone Technology	77
34.	22EM103/203	Bioinspired Engineering	79
35.	22EM104/204	Global Climate Change	81
36.	22EM105/205	Elements of Blockchain Technology	83
37.	22EM106/206	Introduction to Cyber Security	85
38.	22EM107/207	Green Buildings	87
39.	22EM108/208	Infrastructure For Smart Cities	89
40.	22EM109/209	Fundamentals of Nanoscience and Technology	91
41.	22EM110/210	Fundamentals of Semiconductor Devices	93
42.	22EM111/211	Introduction to Embedded Systems	95
43.	22EM112/212	Renewable Energy Sources	97
44.	22EM113/213	Fundamentals of Sensor Technology	99
45.	22EM114/214	Human Factors in Engineering	101
46.	22EM115/215	Digital Humanities	103
47.	22EM116/216	Smart Materials and Systems	105
48.	22EM117/217	Elements of Industry 4.0	107
		HUMANITIES & SOCIAL SCIENCES COURSES	
49.	22HSE16	Technical English - I	109
50.	22HSE26	Technical English - II	111
51.	22HSI17/27	Fundamentals of Indian Constitution	113
52.	22HSY18/28	Scientific Foundations of Health: Yoga Practice	115
53.	22HSVK17	Vyavaharika Kannada	117
54.	22HSAK17	Aadalitha Kannada	119

	I SEMESTER: CHEMISTRY	CYCLI	E)	SST	REA	M) AI,	TRY CYCLE (CS STREAM) AI, BT, CS, CD, CY & IS	D, CY &	S				
	Sl. No. Course Code Code	BoS	,	Credit Allocation	Alloca	ıtion	Category	CIE Duration	Max Marks CIE		SEE Duration	Max Marks SEE	rks
			Т	T	Ы	Total	•	(Hrs)	Theory	Lab ((Hrs)	Theory Lab	Lab
22MA11C	Fundamentals of Linear Algebra, Calculus and Statistics	MA	က	1	0	4	Theory	ε	100	* *		100	* *
- 4	22CHY12A Chemistry Of Smart Materials And Devices	CHY	2	1	1	4	Theory+Lab	2	100	20	3	100	* *
Η.	22MECD13 Computer Aided Engineering Graphics	ME	2	0	1	ဗ	Lab	2	* * *	20	3	***	20
22ES14X	Engineering Science Course - I	XX	3	0	0	ဗ	Theory	2	100	***	3	100	**
22PL15X	Programming Languages Course - I	XX	2	0	1	ဗ	Theory+Lab	2	100	20	3	100	**
22HSE16	Communicative English-I	HSS	0	1	0	1	Theory	1	20	* *	7	20	20
22HSI17	Fundamentals of Indian Constitution	HSS	0	1	0	1	Theory	1	20	*	7	20	* * *
22HSYI8	Scientific Foundations of Health-Yoga Practice	HSS	0	0	1	1	Theory	1	20	* *	7	20	20
						00							

		II SEMESTER: PHYSICS CYCLE (CS STREAM) AI, BT, CS, CD, CY & IS	YCLE (SCS	STRE	BAM) AI, B	T, CS, CD	, CY & IS					
SI. No.	SI. No. Course Code	Course Title	BoS		Credit Allocation	Alloca	tion	Category	CIE	Max Marks CIE		SEE Duration	Max Marks SEE	ırks
				r	T	Ь	Total	,	(Hrs)	Theory Lab		(Hrs)	Theory Lab	Lab
1	22MA21C	Number Theory, Vector Calculus and Computational Methods	MA	8	1	0	4	Theory	3	100	*		100	* *
2	22PHY22B	Quantum Physics for Engineers	PHY	2	1	1	4	Theory+Lab	2	100	20	8	100	20
3	22CS23	Principles of Programming Using C	CS	2	0	1	3	Theory+Lab	2	100	20	3	100	20
4	22ES24X	Engineering Science Course-II	XX	3	0	0	3	Theory	2	100	**	3	100	***
2	22EM2XX	Emerging Technology Course-II	XX	2	0	1	3	Theory	2	100	* * *	3	100	***
9	22HSE26	Communicative English-II	SSH	0	1	0	1	Theory	1	20	***	2	20	**
7	22HSAK27/ 22HSVK27	22HSAK27/ Adalitha Kannada / Vyavaharika Kannada 22HSVK27 (Samskrutika Kannada/ Balake Kannada)	SSH	0	1	0	1	Theory	1	20	*	7	20	* *
8	22ME28	IDEA LAB (Idea Development, Evaluation & Application)	ME	1	0	0	1	Lab	2	* *	20	7	***	20

		I SEMESTER: CHEMISTRY CYCLE (CV STREAM) CV	HEMIS	STR	CYC	CLE	(CV S	TREAM)	CV					
SI. No.	Sl. No. Course Code	Course Title	BoS	Ü	Credit Allocation	llocat	ion	Category	CIE Duration (H)	Max Marks CIE		SEE Duration	Max Marks SEE	rks
			l	r	T	Ь	Total			Theory Lab	Lab	(Hrs)	Theory Lab	Lab
1	22MA11D	22MA11D Applied Mathematics – I	MA	3	1	0	4	Theory	3	100	**		100	***
2	22CHY12B	Engineering And Environmental Chemistry	CHY	2	1	1	4	Theory+Lab	2	100	20	3	100	**
3	22MECD13	22MECD13 Computer Aided Engineering Graphics	ME	2	0	1	3	Lab	2	***	20	3	***	20
4	22ES14X	Engineering Science Course-I	XX	3	0	0	3	Theory	2	100	**	3	100	**
S	22PL15X	Programming Languages Course	XX	2	0	1	3	Theory+Lab	2	100	20	3	100	**
9	22HSE16	Communicative English-I	HSS	0	1	0	1	Theory	1	20	***	7	20	**
7	22HSI17	Fundamentals of Indian Constitution	SSH	1	0	0	1	Theory	1	20	**	2	20	**
8	22HSYI8	Scientific Foundations of Health-Yoga Practice	SSH	0	0	1	1	Theory	1	20	***	2	20	***
							00							

		_								1
	larks E	Lab	*	20	***	**	***	**	*	20
	Max Marks SEE	Theory	100	100	100	100	100	20	20	***
	SEE Duration	Œ		3	3	3	3	7	7	8
	ırks	Lab	***	20	***	***	***	***	***	20
	Max Marks CIE	Theory Lab	100	100	100	100	100	20	09	***
۸	CIE Duration (H)		3	2	2	2	2	1	1	7
MESTER: PHYSICS CYCLE (CV STREAM) CV	Category		Theory	Theory+Lab	Theory	Theory	Theory	Theory	Theory	Lab
(CV ST	ation	Total	4	4	3	3	3	1	1	1
CLE	Alloca	Ь	0	1	0	0	1	0	0	0
CX	Credit Allocation	L	1	1	0	0	0	1	1	0
SICS		Т	3	2	3	3	2	0	0	1
: PHY	BoS		MA	PHY	CV	XX	XX	$_{\rm HSS}$	SSH	ME
II SEMESTER	Course Title		22MA21D Applied Mathematics – II	22PHY22C Quantum Physics for Engineers	Engineering Mechanics	Engineering Science Course-II	Emerging Technology Course-II	Communicative English-II	Samskrutika Kannada/ Balake Kannada	IDEA LAB (Idea Development, Evaluation &
	SI. No. Course Code		22MA21D	22PHY22C	22CV23	22ES24X	22EM2XX	22HSE26	22HSAK27/ 22HSVK27	8 22ME28
	SI. No.		1	2	3	4	2	9	2	8

		I SEMESTER: PHYSICS CYCLE (ME STREAM) AS, CH, IM & ME	ME S	TRE	AM)	AS,	CH, 1	IM & ME						
SI. No.	Sl. No. Course Code	Course Title	BoS	Cre	dit Al	Credit Allocation	uo	Category	CIE Duration	Max Marks CIE	rks	SEE Duration	Max Marks SEE	rks
				Г	T	P T	Total		(H)	Theory	Lab	(H)	Theory	Lab
1	22MA11B	Fundamentals of Linear Algebra, Calculus and Differential Equations	MA	3	1	0	4	Theory	2	100	**	3	100	* *
2	22PHY12B	Classical Physics for Engineers	PHY	2	1	1	4	Theory+Lab	2	100	20	8	100	20
3	22ME13	Elements of Mechanical Engineering	ME	2	1	0	3	Theory	3	100	***	3	100	*
4	22ES14X	Engineering Science Course-I	XX	3	0	0	3	Theory	2	100	*	3	100	*
2	22EM1XX	Emerging Technology Course-II	XX	2	0	1	3	Theory	2	100	***	3	100	*
9	22HSE16	Communicative English-I	SSH	0	1	0	1	Theory	1	20	***	7	20	*
7	22HSAK17/ 22HSVK17	Adalitha Kannada / Vyavaharika Kannada Kannada / Balake Kannada	HSS	0	1	0	1	Theory	1	20	*	7	20	* *
8	22ME18	IDEA LAB (Idea Development, Evaluation & Application)	ME	1	0	0	1	Lab	2	***	20	2	***	20
							90							

Course Title Bos Credit Allocation Category Category CIR Duration Max Marks of Indian Constitution SEE Duration Max Marks of Indian Constitution Max Marks of Energian Max Marks	e BoS Credit Allocation Category Lab Duration Duration (Hrs) CIE Duration Duration (Hrs) CIE Duration (Hrs) Alboration (Hrs)				,	-	_	,.	_	,.	,.	
Credit Allocation Category CIE Max Marks SEE	Course Title BoS Credit Allocation Category Curstion Duration CIE Duration Computational Methods CIE Duration Computational Methods CIE Duration Computational Methods CIE Duration Computed Computer Aided Engineering Graphics MA 3 1 4 Theory Lab 2 100 *** 3 Chemistry of Engineering Methods CHY 2 1 4 Theory Lab 2 100 *** 3 Chemistry of Engineering Graphics ME 2 0 1 4 Theory Lab 2 100 *** 3 Programming Lampunge Course-II XX 2 0 3 Theory Lab 2 100 *** 3 Emerging Technology Course-II HSS 0 1 3 Theory Lab 2 100 *** 3 Fundamentals of Indian Constitution HSS 0 1 0 1 1 Theory 1 50 *** 2 Fundamentals of Indian Constitution HSS 0 0 1 <td></td> <th>arks</th> <td></td> <td>***</td> <td>20</td> <td>20</td> <td>***</td> <td>20</td> <td>*</td> <td>*</td> <td>***</td>		arks		***	20	20	***	20	*	*	***
Credit Allocation Category Category	Course Title BoS Credit Allocation Category Duration CIE Max Marks Vector Calculus and Computational Methods MA 3 1 7 4 Theory 2 100 5 Chemistry of Engineering Graphics CHY 2 1 4 Theory+Lab 2 100 5 Engineering Science Course-II XX 3 0 0 3 Theory+Lab 2 100 5 Programming Language Course-II XX 3 0 3 Theory+Lab 2 100 5 Emerging Technology Course-II XX 3 0 3 Theory+Lab 2 100 5 Emerging Technology Course-II HSS 0 1 3 Theory+Lab 2 100 5 Fundamentals of Indian Constitution HSS 0 1 1 Theory 1 50 *** Fundamentals of Health-Yoga Practice HSS 0 1 1 1		Max M SE	Theory	100	100	**	100	100	20	20	20
Credit Allocation Category CIE Max Ma	Poetfor Calculus and Computational Methods Computer Aided Engineering Graphics MA METHOD A METHOD CIE OF Theory (Hrs) CIE OF		SEE Duration	(Hrs)	ဗ	ဗ	ဗ	ဗ	ဗ	7	7	7
Pos Credit Allocation Category Duration CIE Max	Computer Aided Engineering Regimeering Science Course-III Computer Aided Engineering Captuses Course-II MA 3 1 0 4 Theory CIE Max Ma Percya Calculus and Computational Methods Computer Aided Engineering Methods MA 3 1 0 4 Theory 2 100 Computer Aided Engineering Graphics ME 2 0 1 4 Theory+Lab 2 100 Programming Language Course-II XX 3 0 0 3 Theory+Lab 2 100 Energian Technology Course-II XX 2 0 1 3 Theory 2 100 Fundamentals of Indian Constitution HSS 0 1 1 Theory 1 50 Fundamentals of Indian Constitution HSS 0 1 1 Theory 1 50 Scientific Foundations of Health-Yoga Practice HSS 0 1 1 Theory 1 50		- Ks	Lab	***	20	20	***	20	*	*	***
MA 3 1 0 4 Theory	Course Title BoS Credit Allocation Category Vector Calculus and Computational Methods MA 3 1 0 4 Theory Chemistry of Engineering Materials Chromiter Aided Engineering Graphics CHY 2 1 1 4 Theory-Lab Engineering Science Course-II XX 3 0 0 3 Theory-Lab Programming Language Course-II XX 3 0 0 3 Theory-Lab Emerging Technology Course-II HSS 0 1 3 Theory-Lab Emerging Technology Course-II HSS 0 1 1 Theory-Lab Fundamentals of Indian Constitution HSS 0 1 0 1 Theory-Lab Scientific Foundations of Health-Yoga Practice HSS 0 0 1 Theory-Lab		Max Mai CIE	Theory	100	100	***	100	100	20	20	20
BoS Credit Allocation	Course Title BoS Credit Allocation Vector Calculus and Computational Methods MA 3 1 7 7 1 4 Chemistry of Engineering Materials Computer Aided Engineering Graphics ME 2 1 1 4 Engineering Science Course-II XX 3 0 0 1 3 Programming Language Course XX 3 0 0 3 Emerging Technology Course-II XX 2 0 0 3 Fundamentals of Indian Constitution HSS 0 0 1 0 1 Scientific Foundations of Health-Yoga Practice HSS 0 0 1 1 1		CIE Duration	(Hrs)	2	2	2	2	2	1	1	1
BoS Credit Alloca	Course Title BoS Credit Alloca Vector Calculus and Computational Methods MA 3 1 T P Chemistry of Engineering materials CMY 2 1 1 1 Computer Aided Engineering Graphics ME 2 1 1 1 Programming Language Course-II XX 3 0 0 1 1 Emerging Technology Course-II KX 3 0 0 1 0 1 Fundamentals of Indian Constitution HSS 0 1 0 1 0 Scientific Foundations of Health-Yoga Practice HSS 0 1 0 1		Category		Theory	Theory+Lab	Lab	Theory	Theory+Lab	Theory	Theory	Theory
MA 3 1 1 1 1 1 1 1 1 1	Course Title BoS Vector Calculus and Computational Methods MA 3 Chemistry of Engineering materials CHY 2 Computer Aided Engineering Graphics ME 2 Engineering Science Course-II XX 3 Programming Language Course-II XX 2 Emerging Technology Course-II XX 14SS Fundamentals of Indian Constitution HSS 0 Scientific Foundations of Health-Yoga Practice HSS 0	ĺ	ation	Total	4	4	3	3	3	1	1	1
MA 3 1 1 1 1 1 1 1 1 1	Course Title BoS Vector Calculus and Computational Methods MA Chemistry of Engineering materials CHY Computer Aided Engineering Graphics ME Engineering Science Course-II XX Programming Language Course XX Emerging Technology Course-II XX Emerging Technology Course-II HSS Fundamentals of Indian Constitution HSS Scientific Foundations of Health-Yoga Practice HSS Oscientific Foundations of Health-Yoga Practice HSS		Alloca	Ь	0	1	1	0	1	0	0	1
MA 3 1 1 1 1 1 1 1 1 1	Course Title BoS Vector Calculus and Computational Methods MA 3 Chemistry of Engineering materials CHY 2 Computer Aided Engineering Graphics ME 2 Engineering Science Course-II XX 3 Programming Language Course-II XX 2 Emerging Technology Course-II XX 14SS Fundamentals of Indian Constitution HSS 0 Scientific Foundations of Health-Yoga Practice HSS 0		redit	T	1	1	0	0	0	1	1	0
	Course Title Vector Calculus and Computational Methods Chemistry of Engineering materials Computer Aided Engineering Graphics Engineering Science Course-II Programming Language Course- Emerging Technology Course-II Fundamentals of Indian Constitution Scientific Foundations of Health-Yoga Practice		Ü	Г	3	2	2	3	2	0	0	0
	Course Title Vector Calculus and Computational Methods Chemistry of Engineering materials Computer Aided Engineering Graphics Engineering Science Course-II Programming Language Course Emerging Technology Course-II Fundamentals of Indian Constitution Scientific Foundations of Health-Yoga Practice		BoS		MA	CHY	ME	XX	XX	SSH	SSH	SSH
			Course Title		Tector Calculus and Computational Methods	Chemistry of Engineering materials	Computer Aided Engineering Graphics	Ingineering Science Course-II	Programming Language Course	Emerging Technology Course-II	Tundamentals of Indian Constitution	Scientific Foundations of Health-Yoga Practice

		I SEMESTER: PHYSICS CYCLE (EC STREAM) EC, EE, EI & ET	XCL	3 (EC	STI	REAM	EC, EE,	EI & ET					
SI. No	SI. No. Course Code	Course Title	BoS	Credi	t Allo	Credit Allocation	Category	CIE Duration	Max Marks CIE	rks	SEE Duration	Max Marks SEE	rks
			<u> </u>	LT	Ь	Total		(u)	Theory Lab	Lab	(Hrs)	Theory]	Lab
1	22MA11A	Fundamentals of Linear Algebra, Calculus and Numerical Methods	MA	3 1	0	4	Theory	ε	100	* * *		100	**
7	22PHY12A	Condensed Matter Physics for Engineers	PHY	2	1	4	Theory+Lab	2	100	20	3	100	20
3	22EC13	Basic Electronics (Common to EC, EI & ET)	EC	2 1	0	3	Theory	ε	100	*	3	100	**
	22EE13	Elements of Electrical Engineering (Only for EE Program)	EE	2 1	0	3	Theory	3	100	* *	3	100	***
4	22ES14X	Engineering Science Course-I	XX	3 0	0	3	Theory	2	100	* * *	3	100	***
2	22EM1XX	Emerging Technology Course-II	XX	2 0	1	3	Theory	2	100	***	3	100	***
9	22HSE16	Communicative English-I	SSH	0 1	0	1	Theory	1	20	**	7	20	**
7	22HSAK17/ 22HSVK17	Adalitha Kannada / Vyavaharika Kannada (Samskrutika Kannada/ Balake Kannada)	HSS	0 1	0	1	Theory	1	20	* *	2	20	**
8	22ME18	IDEA LAB (Idea Development, Evaluation & Application)	ME	1 0	0	1	Lab	2	***	20	2	***	20
						20							

П	w	q۲	***	20	20	***	20	***	***	***
	x Marks SEE	y Lab	*	Ę	Ų	*	Ę	*	*	*
	Max Marks SEE	Theory	100	100	**	100	100	20	20	20
	SEE Duration	(H)	8	ဗ	ဗ	ဗ	ဗ	7	7	7
	arks	Lab	**	20	20	***	20	***	***	***
	Max Marks CIE	Theory	100	100	***	100	100	20	20	20
	CIE Duration (H)		2	2	2	2	2	1	1	1
', EE, EI & ET	Category		Theory	Theory+Lab	Lab	Theory	Theory+Lab	Theory	Theory	Theory
AM) EC	ation	Total	4	4	3	3	3	1	1	1
STRE	Alloca	ď	0	1	1	0	1	0	0	1
(EC	Credit Allocation	T	1	1	0	0	0	1	1	0
YCLE		Г	3	2	2	3	2	0	0	0
TRY C	BoS		MA	CHX	$_{ m ME}$	XX	XX	SSH	SSH	SSH
II SEMESTER: CHEMISTRY CYCLE (EC STREAM) EC, EE, EI & ET	Course Title		Vector Calculus, Laplace Transform and Numerical Methods	Chemistry of functional materials	Computer Aided Engineering Graphics	Engineering Science Course-II	Programming Language Course	Emerging Technology Course-II	Fundamentals of Indian Constitution	Scientific Foundations of Health-Yoga Practice
	Sl. No. Course Code		22MA21A	22CHY22C	22MECD23	22ES24X	22PL25X	22EM2XX	22HSI27	22HSY28
	SI. No.		1	7	3	4	2	9	7	00

		ME & EC	STREAMS: (AS, CH, IM & ME) & (EC, EE, EI &	ET)	
SL. NO.	BoS	Course Code	Course Title	Credits	Stream
1	MA	22MA11A	Fundamentals of Linear Algebra, Calculus And Numerical Methods	4	EC
	MA	22MA11B	Fundamentals of Linear Algebra, Calculus And Differential Equations	4	ME
2	PHY	22PHY12A	Condensed Matter Physics for Engineers	4	EC
	PHY	22PHY12B	Classical Physics for Engineers	4	ME
3	XX	22XX13	Professional Core Courses	3	XX
4	XX	22ES14X	Engineering Science Courses-I	3	ME & EC
5	XX	22EM1XX	Emerging Technology Courses-I	3	ME & EC
6	HSS	22HSE16	Communicative English-I	1	ME & EC
7	HSS	22HSAK17/ 22HSVK17	Aadaliktha Kannada (Samskruthika Kannada)/ Vyavaharika Kannada (Balake Kannada)	1	ME & EC
8	ME	22ME18	IDEA LAB (Idea Development, Evaluation & Application)	1	ME & EC
•		-	-	20	

3. PROFE	ESSIONAI				
S1.No	BoS	Course Code	COURSE TITLE	Credits	Stream
1	EC	22EC13	Basic Electronics	3	EC
2	EE	22EE13	Elements of Electrical Engineering	3	EE
3	ME	22ME13	Elements of Mechanical Engineering	3	ME

4. ENGINEERING SCIENCE-I					
S1.No	BoS	Course Code	COURSE TITLE	Credits	Stream
1	CS	22ES14A	Introduction to C Programming	3	ME & EC
2	CV	22ES14B	Elements of Civil Engineering	3	ME & EC
3	EC	22ES14C	Principles of Electronics Engineering	3	ME & EE
4	EE	22ES14D	Basics of Electrical Engineering	3	ME & EC
5	ME	22ES14E	Fundamentals of Mechanical Engineering	3	ME & EC

5. EMER	5. EMERGING TECHNOLOGY				
S1.No	BoS	Course Code	COURSE TITLE	Credits	Stream
1	AI	22EM101	Introduction to Internet of Things	3	ME & EC
2	AS	22EM102	Introduction to Drone Technology	3	ME & EC
3	BT	22EM103	Bioinspired Engineering	3	ME & EC
4	CH	22EM104	Global Climate Change	3	ME & EC
5	CS	22EM105	Elements of Blockchain Technology	3	ME & EC
6	CS	22EM106	Introduction to Cyber Security	3	ME & EC
7	CV	22EM107	Green Buildings	3	ME & EC
8	CV	22EM108	Infrastructure for Smart Cities	3	ME & EC
9	CHY	22EM109	Fundamental of Nanoscience & Technology	3	ME & EC
10	EC	22EM110	Fundamentals of Semiconductor Devices	3	ME & EC
11	EC	22EM111	Introduction to Embedded Systems	3	ME & EC
12	EE	22EM112	Renewable Energy Sources	3	ME & EC
13	EI	22EM113	Fundamentals of Sensor Technology	3	ME & EC
14	IM	22EM114	Human factors in Engineering	3	ME & EC
15	IS	22EM115	Digital Humanities	3	ME & EC
16	ME	22EM116	Smart materials and Systems	3	ME & EC
17	ME	22EM117	Elements of Industry 4.0	3	ME & EC

	FIRST SEMESTER CHEMISTRY CYCLE								
		CS & CV ST	REAMS: (AI, BT, CS, CD, CY & IS) & (CV)					
SL. NO.	BoS	Course Code	Course Title	Credits	Stream				
1	MA	22MA11C	Fundamentals of Linear Algebra, Calculus And Statistics	4	CS				
	MA	22MA11D	Applied Mathematics – I	4	cv				
2	CHY	22CHY12A	Chemistry Of Smart Materials And Devices	4	CS				
	CHY	22CHY12B	Engineering And Environmental Chemistry	4	CV				
3	ME	22MED13	Computer Aided Engineering Graphics	3	CS & C				
4	XX	22ES14X	Engineering Science Courses-I	3	CS & C				
5	XX	22PL15X	Programming Language Courses	3	CS & C				
6	HSS	22HSE16	Communicative English-I	1	CS & C				
7	HSS	22HSI17	Fundamentals of Indian Constitution	1	CS & C				
8	HSS	22HSYI8	Scientific Foundations of Health-Yoga Practice	1	CS & C				
L		1	1	20					

4. ENGIN	. ENGINEERING SCIENCE-I				
S1.No	BoS	Course Code	COURSE TITLE	Credits	Stream
1	CS	22ES14A	Introduction to C Programming	3	CV
2	CV	22ES14B	Elements of Civil Engineering	3	CS
3	EC	22ES14C	Principles of Electronics Engineering	3	CS & CV
4	EE	22ES14D	Basics of Electrical Engineering	3	CS & CV
5	ME	22ES14E	Fundamentals of Mechanical Engineering	3	CS & CV

5. PROG					
S1.No	BoS	Course Code	COURSE TITLE	Credits	Stream
1	AI	22PL15A	Introduction to Python programming	3	CS & CV
2	CS	22PL15B	Introduction to Web programming	3	CS & CV
3	CS	22PL15C	Basics of Java programming	3	CS & CV
4	IS	22PL15D	Introduction to C++ Programming	3	CS & CV

SECOND SEMESTER PHYSICS CYCLE

CS & CV STREAMS: (AI, BT, CS, CD, CY & IS) & (CV)

SL. NO.	BoS	Course Code	Course Title	Credits	Stream
1	MA	22MA21C	Number Theory, Vector Calculus And Computational Methods	4	cs
	MA	22MA21D	Applied Mathematics – II	4	CV
2	PHY	22PHY22C	Quantum Physics for Engineers	4	CS
	PHY	22PHY22D	Applied Physics for Engineers	4	CV
3	XX	22XX23	Professional Core Courses	3	CS & CV
4	XX	22ES24X	Engineering Science Courses-II	3	CS & CV
5	XX	22EM2XX	Emerging Technology Courses-II	3	CS & CV
6	HSS	22HSE26	Communicative English-II	1	CS & CV
7	HSS	22HSAK27/ 22HSVK27	Aadaliktha Kannada (Samskruthika Kannada)/ Vyavaharika Kannada (Balake Kannada)	1	CS & CV
8	ME	22ME28	IDEA LAB (Idea Development, Evaluation & Application)	1	CS & CV

20

3. PROFESSIONAL CORE COURSES					
S1.No	BoS	Course Code	COURSE TITLE	Credits	Stream
1	CV	22CV23	Engineering Mechanics	3	CV
2	CS	22CS23	Principles of Programming using C	3	CS

4. ENGIN	EERING				
S1.No	BoS	Course Code	COURSE TITLE	Credits	Stream
1	CS	22ES24A	Introduction to C Programming	3	CV
2	CV	22ES24B	Elements of Civil Engineering	3	CS
3	EC	22ES24C	Principles of Electronics Engineering	3	CS & CV
4	EE	22ES24D	Basics of Electrical Engineering	3	CS & CV
5	ME	22ES24E	Fundamentals of Mechanical Engineering	3	CS & CV

5. EMER	GING TE	CHNOLOGY-II			
S1.No	BoS	Course Code	COURSE TITLE	Credits	Stream
1	AI	22EM201	Introduction to Internet of Things	3	CS & CV
2	AS	22EM202	Introduction to Drone Technology	3	CS & CV
3	BT	22EM203	Bioinspired Engineering	3	CS & CV
4	CH	22EM204	Global Climate Change	3	CS & CV
5	CS	22EM205	Elements of Blockchain Technology	3	CS & CV
6	CS	22EM206	Introduction to Cyber Security	3	CS & CV
7	CV	22EM207	Green Buildings	3	CS & CV
8	CV	22EM208	Infrastructure for Smart Cities	3	CS & CV
9	CHY	22EM209	Fundamental of Nanoscience & Technology	3	CS & CV
10	EC	22EM210	Fundamentals of Semiconductor Devices	3	CS & CV
11	EC	22EM211	Introduction to Embedded Systems	3	CS & CV
12	EE	22EM212	Renewable Energy Sources	3	CS & CV
13	EI	22EM213	Fundamentals of Sensor Technology	3	CS & CV
14	IM	22EM214	Human factors in Engineering	3	CS & CV
15	IS	22EM215	Digital Humanities	3	CS & CV
16	ME	22EM216	Smart materials and Systems	3	CS & CV
17	ME	22EM217	Elements of Industry 4.0	3	CS & CV

SECOND SEMESTER CHEMISTRY CYCLE

ME & EC STREAMS: (AS, CH, IM & ME) & (EC, EE, EI & ET)

SL. NO.	BoS	Course Code	Course Title	Credits	Stream
1	MA	22MA21A	Vector Calculus, Laplace Transform And Numerical Methods	4	EC
	MA	22MA21B	Vector Calculus And Computational Methods	4	ME
2	CHY	22CHY22C	Chemistry of functional materials	4	EC
	CHY	22CHY22D	Chemistry of Engineering materials	4	ME
3	ME	22MED23	Computer Aided Engineering Graphics	3	ME & EC
4	XX	22ES24X	Engineering Science Courses-II	3	ME & EC
5	XX	22PL25X	Programming Language Courses	3	ME & EC
6	HSS	22HSE26	Communicative English-II	1	ME & EC
7	HSS	22HSI27	Fundamentals of Indian Constitution	1	ME & EC
8	HSS	22HSY28	Scientific Foundations of Health-Yoga Practice	1	ME & EC

20

4. ENGIN	4. ENGINEERING SCIENCE-II					
S1.No	BoS	Course Code	COURSE TITLE	Credits	Stream	
1	CS	22ES24A	Introduction to C Programming	3	ME & EC	
2	CV	22ES24B	Elements of Civil Engineering	3	ME & EC	
3	EC	22ES24C	Principles of Electronics Engineering	3	ME & EC	
4	EE	22ES24D	Basics of Electrical Engineering	3	ME & EC	
5	ME	22ES24E	Fundamentals of Mechanical Engineering	3	ME & EC	

5. PROGI					
S1.No	BoS	Course Code	COURSE TITLE	Credits	Stream
1	AI	22PL25A	Introduction to Python programming	3	ME & EC
2	CS	22PL25B	Introduction to Web programming	3	ME & EC
3	CS	22PL25C	Basics of Java programming	3	ME & EC
4	IS	22PL25D	Introduction to C++ Programming	3	ME & EC

New Delhi

APPLIED SCIENCE COURSE

2022 SCHEME (W.E.F 2022 Admission Students)

RV Educational Institutions ® RV College of Engineering ®

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: I

FUNDAMENTALS OF LINEAR ALGEBRA, CALCULUS AND NUMERICAL METHODS

Category: Applied Science Course

Stream: Electronics (Common to EC, EE, EI & ET Programs)

(Theory)

0 0 1		22) (4 1 1 4	<u>, </u>	CIE		100 M1
Course Code	:	22MA11A		CIE	:	100 Marks
Credits: L:T:P	••	3:1:0		SEE	:	100 Marks
Total Hours	••	42L+14T		SEE Duration	••	3 Hours

Unit-I 09 Hrs

Elementary Linear Algebra

Rank of matrices-Rank of a matrix by Echelon form, consistency of system of linear equations-homogeneous and non-homogeneous equations, Gauss elimination, Gauss-Jordan and Gauss-Seidel methods. Eigenvalues and Eigenvectors-Properties, largest eigenvalue by Rayleigh's power method. Implementation using MATLAB.

Unit – II 09 Hrs

Differential Calculus

Basics of polar coordinates, polar curves, angle between radius vector and tangent. Curvature, radius of curvature-Cartesian, polar & parametric forms (without proof), centre and circle of curvature (formulae only) and problems. Taylor's and Maclaurin's series for a function of single variable (statements only) and problems. Simulation using MATLAB.

Unit –III 08 Hrs

Multivariable Functions and Partial Differentiation

Functions of several variables, Partial derivatives-Definition and notations, higher order partial derivatives-problems, total differentials, total derivatives, composite functions and chain rule-Problems. Extreme values for function of two variables-Method of Lagrange multipliers. Jacobians - Properties and problems. Simulation using MATLAB.

Unit –IV 08 Hrs

Multiple Integrals

Double integrals—Introduction and method of evaluation-Problems. Change of order of integration and change of variables to polar coordinates-Problems. Applications—Area, volume and centre of gravity. Triple integrals—Introduction and method of evaluation and problems. Applications-Volume of a solid and centre of gravity. Simulation using MATLAB.

Unit –V 08 Hrs

Numerical Methods

Finite differences, concept of forward and backward differences, introduction to interpolation and extrapolation. Newton-Gregory (N-G) forward and backward interpolation formulae, Lagrange interpolation formula, application oriented problems. Numerical differentiation based on N-G forward and backward interpolation, applications—velocity and acceleration.

Numerical integration-Newton-Cotes approach–Simpson's 1/3rd, 3/8th rules and Weddle's rule. Implementation using MATLAB.

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Illustrate the fundamental concepts of linear algebra, differential calculus, partial differentiation, multiple				
	integrals and numerical methods.				
CO2	Apply the acquired knowledge of linear algebra, differential calculus, partial differentiation, multiple				
	integrals and numerical methods to solve the problems of engineering applications.				
CO3	Analyze the solution of the problems using appropriate techniques of linear algebra, differential calculus,				
	partial differentiation, multiple integrals and numerical methods to the real - world problem and optimize				
	the solution.				
CO4	Interpret the overall knowledge of linear algebra, calculus, integration and numerical methods gained to				
	demonstrate the problems arising in many practical situations.				

RV Educational Institutions ** RV College of Engineering **

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Refere	Reference Books					
1	Higher Engineering Mathematics, B. S. Grewal, 44 th Edition, 2015, Khanna Publishers, ISBN: 978-81-					
	933284-9-1.					
2	Calculus, Saturinino L. Salas, Einar Hille and Garret J. Etgen, 10 th Edition, 2022, Wiley India, ISBN:					
	9789390421961.					
3	Schaum's Outline of Advanced Calculus, Robert Wrede and Murray Spiegel, 3 rd Edition, 2010, McGraw-					
	Hill Education, ISBN -10: 0071623663, ISBN -13: 978-0071623667.					
4	Advanced Engineering Mathematics, E. Kreyszig, 10th Edition (Reprint), 2016, John Wiley & Sons,					
	ISBN: 978-0470458365.					
5	Calculus, James Stewart, 8th Edition, 2016, Cengage Learning, ISBN: 978-1-285-74062-1.					

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	T
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	Q. NO. CONTENTS					
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B					
	(Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4 Unit 2 : Question 3 or 4						
5 & 6 Unit 3 : Question 5 or 6						
7 & 8	Unit 4: Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	MAXIMUM MARKS FOR THE SEE THEORY	100				

RV Educational Institutions ** RV College of Engineering **

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: I

FUNDAMENTALS OF LINEAR ALGEBRA, CALCULUS AND DIFFERENTIAL EQUATIONS

Category: Applied Science Course

Stream: Mechanical (Common to AS, CH, IM & ME Programs)

(Theory)

Course Code	••	22MA11B	CIE	:	100 Marks
Credits: L:T:P	••	3:1:0	SEE	:	100 Marks
Total Hours	••	42L+14T	SEE Duration	:	3 Hours

Unit-I 09 Hrs

Elementary Linear Algebra

Rank of matrices-Rank of a matrix by Echelon form, consistency of system of linear equations- homogeneous and non-homogeneous equations, Gauss elimination, Gauss-Jordan and Gauss-Seidel methods. Eigenvalues and Eigenvectors-Properties, largest eigenvalue by Rayleigh's power method. Implementation using MATLAB.

Unit – II 09 Hrs

Differential Calculus

Basics of polar coordinates, polar curves, angle between radius vector and tangent. Curvature, radius of curvature-Cartesian, polar & parametric forms (without proof), centre and circle of curvature (formulae only) and problems. Taylor's and Maclaurin's series for a function of single variable (statements only) and problems. Simulation using MATLAB.

Unit –III 08 Hrs

Multivariable Functions and Partial Differentiation

Functions of several variables, Partial derivatives-Definition and notations, higher order partial derivatives-problems, total differentials, total derivatives, composite functions and chain rule-Problems. Extreme values for function of two variables-Method of Lagrange multipliers. Jacobians - Properties and problems. Simulation using MATLAB.

Unit –IV 08 Hrs

Multiple Integrals

Double integrals—Introduction and method of evaluation-Problems. Change of order of integration and change of variables to polar coordinates-Problems. Applications—Area, volume and centre of gravity. Triple integrals—Introduction and method of evaluation and problems. Applications-Volume of a solid and centre of gravity. Simulation using MATLAB.

Unit –V 08 Hrs

Linear Ordinary Differential Equations of Higher Order

Standard form of higher order linear differential equation with constant coefficients. Solution of homogeneous equations—complementary functions. Non homogeneous equations—Concept of Inverse differential operator, methods of finding particular integral based on input function (force function), method of variation of parameters. Equations with functional coefficients—Cauchy equation. Applications—Simple harmonic motion, LRC circuits. Implementation using MATLAB.

Course	Course Outcomes: After completing the course, the students will be able to						
CO1	Illustrate the fundamental concepts of linear algebra, differential calculus, partial differentiation, multiple						
	integrals and differential equations.						
CO2	Apply the acquired knowledge of linear algebra, differential calculus, partial differentiation, multiple						
	integrals and differential equations to solve the problems of engineering applications.						
CO3	Analyze the solution of the problems using appropriate techniques of linear algebra, differential calculus,						
	partial differentiation, multiple integrals and differential equations to the real - world problem and						
	optimize the solution.						
CO4	Interpret the overall knowledge of linear algebra, calculus and differential equations gained to						
	demonstrate the problems arising in many practical situations.						

Refere	Reference Books					
1	Higher Engineering Mathematics, B. S. Grewal, 44 th Edition, 2015, Khanna Publishers, ISBN: 978-81-					
	933284-9-1.					
2	Calculus, Saturinino L. Salas, Einar Hille and Garret J. Etgen, 10 th Edition, 2022, Wiley India, ISBN:					
	9789390421961.					
3	Schaum's Outline of Advanced Calculus, Robert Wrede and Murray Spiegel, 3 rd Edition, 2010, McGraw-					
	Hill Education, ISBN -10: 0071623663, ISBN -13: 978-0071623667.					
4	Advanced Engineering Mathematics, E. Kreyszig, 10 th Edition (Reprint), 2016, John Wiley & Sons,					
	ISBN: 978-0470458365.					
5	Calculus, James Stewart, 8th Edition, 2016, Cengage Learning, ISBN: 978-1-285-74062-1.					

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS			
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20			
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40			
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40			
	MAXIMUM MARKS FOR THE CIE THEORY	100			

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5 & 6	Unit 3: Question 5 or 6	16			
7 & 8 Unit 4 : Question 7 or 8					
9 & 10	Unit 5: Question 9 or 10	16			
	MAXIMUM MARKS FOR THE SEE THEORY	100			

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: I

FUNDAMENTALS OF LINEAR ALGEBRA, CALCULUS AND STATISTICS

Category: Applied Science Course

Stream: Computer Science (Common to AI, BT, CS, CY, CD & IS Programs)

(Theory)

Course Code	:	22MA11C	CIE	:	100 Marks
Credits: L:T:P	:	3:1:0	SEE	:	100 Marks
Total Hours	:	42L+14T	SEE Duration	:	3 Hours

Unit-I 09 Hrs

Elementary Linear Algebra

Rank of matrices-Rank of a matrix by Echelon form, consistency of system of linear equations-homogeneous and non-homogeneous equations, Gauss elimination, Gauss-Jordan and Gauss-Seidel methods. Eigenvalues and Eigenvectors-Properties, largest eigenvalue by Rayleigh's power method. Implementation using MATLAB.

Unit – II 09 Hrs

Differential Calculus

Basics of polar coordinates, polar curves, angle between radius vector and tangent. Curvature, radius of curvature-Cartesian, polar & parametric forms (without proof), centre and circle of curvature (formulae only) and problems. Taylor's and Maclaurin's series for a function of single variable (statements only) and problems. Simulation using MATLAB.

Unit –III 08 Hrs

Multivariable Functions and Partial Differentiation

Functions of several variables, Partial derivatives-Definition and notations, higher order partial derivatives-problems, total differentials, total derivatives, composite functions and chain rule-Problems. Extreme values for function of two variables-Method of Lagrange multipliers. Jacobians - Properties and problems. Simulation using MATLAB.

Unit –IV 08 Hrs

Multiple Integrals

Double integrals—Introduction and method of evaluation-Problems. Change of order of integration and change of variables to polar coordinates-Problems. Applications—Area, volume and centre of gravity. Triple integrals—Introduction and method of evaluation and problems. Applications-Volume of a solid and centre of gravity. Simulation using MATLAB.

Unit –V 08 Hrs

Statistics

Central moments, mean, variance, coefficients of skewness and kurtosis in terms of moments. Curve fitting by method of least squares, fitting of curves—Polynomial, exponential and power functions. Correlation and linear regression analysis—Problems. Applications. Implementation using MATLAB.

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Illustrate the fundamental concepts of linear algebra, differential calculus, partial differentiation, multiple				
	integrals and statistics.				
CO2	Apply the acquired knowledge of linear algebra, differential calculus, partial differentiation, multiple				
	integrals and statistics to solve the problems of engineering applications.				
CO3	Analyze the solution of the problems using appropriate techniques of linear algebra, differential calculus,				
	partial differentiation, multiple integrals and statistics to the real - world problem and optimize the				
	solution.				
CO4	Interpret the overall knowledge of linear algebra, calculus, integration and statistics gained to demonstrate				
	the problems arising in many practical situations.				

Refere	nce Books
1	Higher Engineering Mathematics, B. S. Grewal, 44 th Edition, 2015, Khanna Publishers, ISBN: 978-81-
	933284-9-1.
2	Calculus, Saturinino L. Salas, Einar Hille and Garret J. Etgen, 10 th Edition, 2022, Wiley India, ISBN:
	9789390421961.
3	Schaum's Outline of Advanced Calculus, Robert Wrede and Murray Spiegel, 3 rd Edition, 2010, McGraw-
	Hill Education, ISBN -10: 0071623663, ISBN -13: 978-0071623667.
4	Advanced Engineering Mathematics, E. Kreyszig, 10 th Edition (Reprint), 2016, John Wiley & Sons,
	ISBN: 978-0470458365.
5	Calculus, James Stewart, 8th Edition, 2016, Cengage Learning, ISBN: 978-1-285-74062-1.

•	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	CONTENTS	MARKS					
	PART A						
1	Objective type questions covering entire syllabus	20					
	PART B						
	(Maximum of TWO Sub-divisions only)						
2	Unit 1 : (Compulsory)	16					
3 & 4	Unit 2: Question 3 or 4	16					
5 & 6	Unit 3: Question 5 or 6	16					
7 & 8	Unit 4: Question 7 or 8	16					
9 & 10	Unit 5: Question 9 or 10	16					
	MAXIMUM MARKS FOR THE SEE THEORY	100					

New Delhi

			Semester: I		
		APPLIE	ED MATHEMATICS - I		
		Category	: Applied Science Course		
		Stream: C	ivil (Only to CV Program)		
			(Theory)		
Course Code	:	22MA11D	CIE	:	100 Marks
Credits: L:T:P	:	3:1:0	SEE	:	100 Marks
Total Hours	:	42L+14T	SEE 1	Duration :	3 Hours

	Unit-I	09 Hrs
--	--------	--------

Elementary Linear Algebra

Rank of matrices-Rank of a matrix by Echelon form, consistency of system of linear equations- homogeneous and non-homogeneous equations, Gauss elimination, Gauss-Jordan and Gauss-Seidel methods. Eigenvalues and Eigenvectors-Properties, largest eigenvalue by Rayleigh's power method. Implementation using MATLAB.

> Unit - II 09 Hrs

Multivariable functions and Partial Differentiation

Functions of several variables, Partial derivatives-Definition and notations, higher order partial derivativesproblems, total differentials, total derivatives, composite functions and chain rule-Problems. Extreme values for function of two variables-Method of Lagrange multipliers. Jacobians-Properties and problems. Simulation using MATLAB.

> Unit –III 08 Hrs

Multiple Integrals

Double integrals-Introduction and method of evaluation-Problems. Change of order of integration and change of variables to polar coordinates-Problems. Applications-Area, volume and centre of gravity. Triple integrals-Introduction and method of evaluation and problems. Applications-Volume of a solid and centre of gravity. Simulation using MATLAB.

> Unit -IV 08 Hrs

Linear Ordinary Differential Equations of Higher Order

Standard form of higher order linear differential equation with constant coefficients. Solution of homogeneous equations – complementary functions. Non homogeneous equations- Concept of Inverse differential operator, methods of finding particular integral based on input function (force function), method of variation of parameters. Equations with functional coefficients-Cauchy equation. Applications-Simple harmonic motion, LRC circuits. Implementation using MATLAB.

> Unit -V 08 Hrs

Statistics

Central moments, mean, variance, coefficients of skewness and kurtosis in terms of moments. Curve fitting by method of least squares, fitting of curves-Polynomial, exponential and power functions. Correlation and linear regression analysis-Problems. Applications. Implementation using MATLAB.

Course	Outcomes: After completing the course, the students will be able to
CO1	Illustrate the fundamental concepts of linear algebra, multivariable functions, partial differentiation,
	multiple integrals, differential equations and statistics.
CO2	Apply the acquired knowledge of linear algebra, multivariable functions, partial differentiation, multiple
	integrals, differential equations and statistics to solve the problems of engineering applications.
CO3	Analyze the solution of the problems using appropriate techniques of linear algebra, multivariable
	functions, partial differentiation, multiple integrals, differential equations and statistics to the real - world
	problem and optimize the solution.
CO4	Interpret the overall knowledge of linear algebra, multivariable differential calculus, integration,
	differential equations and statistics gained to demonstrate the problems arising in many practical
	situations.

RV Educational Institutions ** RV College of Engineering **

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Refere	ence Books
1	Higher Engineering Mathematics, B. S. Grewal, 44 th Edition, 2015, Khanna Publishers, ISBN: 978-81-
	933284-9-1.
2	Calculus, Saturinino L. Salas, Einar Hille and Garret J. Etgen, 10 th Edition, 2022, Wiley India, ISBN: 9789390421961.
3	Schaum's Outline of Advanced Calculus, Robert Wrede and Murray Spiegel, 3 rd Edition, 2010, McGraw-
	Hill Education, ISBN -10: 0071623663, ISBN -13: 978-0071623667.
4	Advanced Engineering Mathematics, E. Kreyszig, 10th Edition (Reprint), 2016, John Wiley & Sons,
	ISBN: 978-0470458365.
5	Calculus, James Stewart, 8th Edition, 2016, Cengage Learning, ISBN: 978-1-285-74062-1.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	CONTENTS	MARKS					
	PART A						
1	Objective type questions covering entire syllabus	20					
	PART B						
	(Maximum of TWO Sub-divisions only)						
2	Unit 1 : (Compulsory)	16					
3 & 4	Unit 2: Question 3 or 4	16					
5 & 6	Unit 3: Question 5 or 6	16					
7 & 8	Unit 4: Question 7 or 8	16					
9 & 10	Unit 5: Question 9 or 10	16					
	MAXIMUM MARKS FOR THE SEE THEORY	100					

Approved by AICTE, New Delhi

Laplacian in cylindrical, spherical-polar coordinates. Simulation using MATLAB.

Semester: II							
VECTOR CALCULUS, LAPLACE TRANSFORM AND NUMERICAL METHODS							
	Category: Applied Science Course						
Stream: Electronics (Common to EC, EE, EI & ET Programs)							
(Theory)							
Course Code	:	22MA21A		CIE	:	100 Marks	
Credits: L:T:P	:	3:1:0		SEE	:	100 Marks	
T-4-1 II	_	401 · 14T		CEE D4'	_	2.11	

Credits: L:T:P : 3:1:0 SEE : 100 Marks									
Total Hours	otal Hours : 42L+14T SEE Duration : 3 Hours								
Unit-I 09 Hrs									
Vector Differentiation	n								
Vector valued functions-2D and 3D scalar and vector fields. Gradient of a scalar field-Normal vector to the									
surface, directional de	erivative	, scalar potential. I	Divergence and curl of a vector field, La	apla	cian of scalar	field,			

Solenoidal and irrotational fields, physical interpretations. Expressions for gradient, divergence, curl and

Unit – II 09 Hrs

Vector Integration

Line, surface and volume integrals. Green's theorem, Stokes theorem and Gauss divergence theorem (statements only)-Problems, solenoidal fields and irrotational fields. Work done by a force. Simulation using MATLAB.

Unit –III 08 Hrs

Laplace Transform

Existence and uniqueness of Laplace transform (LT), transform of elementary functions, region of convergence. Properties - linearity, scaling, s - domain shift, differentiation in the s - domain, division by t, differentiation and integration in the time domain. LT of special functions - Periodic functions (square wave, saw-tooth wave, triangular wave, full & half wave rectifier), Heaviside unit step function, unit impulse function, t - shift property. Implementation using MATLAB.

Unit –IV 08 Hrs

Inverse Laplace Transform

Definition, properties, evaluation using different methods. Convolution theorem (without proof), problems. Application to solve ordinary linear differential equations. Implementation using MATLAB.

Unit –V 08 Hrs

Numerical Methods

Algebraic and transcendental equations—Roots of equations, intermediate value property, Regula-Falsi and Newton-Raphson methods. Methods of solving first order ordinary differential equation -Taylor's series method, 4th order Runge-Kutta method and Milne predictor—corrector method. Implementation using MATLAB.

Course	Course Outcomes: After completing the course, the students will be able to			
CO1	Illustrate the fundamental concepts of Laplace transforms, vector calculus and numerical methods.			
CO2	Apply the acquired knowledge of Laplace transforms, vector calculus and numerical methods to solve the			
	problems of engineering applications.			
CO3	Analyze the solution of the problems using appropriate techniques of Laplace transforms, vector calculus			
	and numerical methods to the real - world problem and optimize the solution.			
CO4	Interpret the overall knowledge of Laplace transforms, vector calculus and numerical methods gained to			
	demonstrate the problems arising in many practical situations.			

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Refere	nce Books
1	Higher Engineering Mathematics, B. S. Grewal, 44 th Edition, 2015, Khanna Publishers, ISBN: 978-81-
	933284-9-1.
2	Calculus, Saturinino L. Salas, Einar Hille and Garret J. Etgen, 10 th Edition, 2022, Wiley India, ISBN:
	9789390421961.
3	Schaum's Outline of Advanced Calculus, Robert Wrede and Murray Spiegel, 3 rd Edition, 2010, McGraw-
	Hill Education, ISBN -10: 0071623663, ISBN -13: 978-0071623667.
4	Advanced Engineering Mathematics, E. Kreyszig, 10th Edition (Reprint), 2016, John Wiley & Sons,
	ISBN: 978-0470458365.
5	Advanced Modern Engineering Mathematics, Glyn James and Phil Dyke, 5th Edition, 2018, Pearson
	Education, ISBN-13 978-1292174341, ISBN-10 9780273719236.

.,	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	D. F.A. D. T.C.
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES	20
	WILL BE THE FINAL QUIZ MARKS.	
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	. NO. CONTENTS				
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5 & 6	Unit 3: Question 5 or 6	16			
7 & 8	Unit 4: Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	MAXIMUM MARKS FOR THE SEE THEORY	100			

Approved by AICTE, New Delhi

	Semester: II					
	VECTOR CALCULUS AND COMPUTATIONAL METHODS					
	Category: Applied Science Course					
	Stream: Mechanical (Common to AS, CH, IM & ME Programs)					
	(Theory)					
Course Code : 22MA21B CIE : 100 Marks						
Credits: L:T:P : 3:1:0 SEE : 100 Marks					100 Marks	
Total Hours	Total Hours : 42L+14T SEE Duration : 3 Hours					3 Hours

	Unit-I	09 Hrs
--	--------	--------

Vector Differentiation

Vector valued functions–2D and 3D scalar and vector fields. Derivative of vector function, tangent, velocity and acceleration. Gradient of a scalar field–Normal vector to the surface, directional derivative, scalar potential. Divergence and curl of a vector field, Laplacian of scalar field, Solenoidal and irrotational fields, physical interpretations. Simulation using MATLAB.

Unit – II 09 Hrs

Vector Integration

Line, surface and volume integrals. Green's theorem, Stokes theorem and Gauss divergence theorem (statements only)-Problems, solenoidal fields and irrotational fields. Work done by a force. Simulation using MATLAB.

Unit –III 08 Hrs

Partial Differential Equations

Formation of partial differential equations by elimination of arbitrary constants/functions, solution of Lagrange's linear equation. Solution of partial differential equations by method of separation of variables. Solution to wave and heat equations in one dimension and Laplace equation in two dimensions by the method of separation of variables, problems.

Unit –IV 08 Hrs

Numerical Methods - I

Algebraic and transcendental equations—Roots of equations, intermediate value property, Regula-Falsi and Newton-Raphson methods. Methods of solving first order ordinary differential equation—Taylor's series method, 4th order Runge-Kutta method and Milne predictor—corrector method. Implementation using MATLAB.

Unit –V 08 Hrs

Numerical Methods - II

Finite differences, concept of forward and backward differences, introduction to interpolation and extrapolation. Newton-Gregory (N-G) forward and backward interpolation formulae, Lagrange interpolation formula, application oriented problems. Numerical differentiation based on N-G forward and backward interpolation, applications—velocity and acceleration.

Numerical integration-Newton-Cotes approach–Simpson's 1/3rd, 3/8th rules and Weddle's rule. Implementation using MATLAB.

Course	Outcomes: After completing the course, the students will be able to
CO1	Illustrate the fundamental concepts of vector calculus, partial differential equations and numerical
	methods.
CO2	Apply the acquired knowledge of vector calculus, partial differential equations and numerical methods to
	solve the problems of engineering applications.
CO3	Analyze the solution of the problems using appropriate techniques of vector calculus, partial differential
	equations and numerical methods to the real - world problem and optimize the solution.
CO4	Interpret the overall knowledge of vector calculus, partial differential equations and numerical methods
	gained to demonstrate the problems arising in many practical situations.

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Refer	ence Books
1	Higher Engineering Mathematics, B. S. Grewal, 44th Edition, 2015, Khanna Publishers, ISBN: 978-81-
	933284-9-1.
2	Calculus, Saturnino L. Salas, Einar Hille and Garret J. Etgen, 10 th Edition, 2022, Wiley India, ISBN:
	9789390421961.
3	Advanced Engineering Mathematics, E. Kreyszig, 10 th Edition (Reprint), 2016, John Wiley & Sons,
	ISBN: 978-0470458365.
4	Numerical methods for scientific and engineering computation, M.K. Jain, S.R.K. Iyenger and R.K. Jain,
	6 th Edition, 2012, New Age International Publishers, ISBN: 9788122433234, 8122433235.
5	Advanced Modern Engineering Mathematics, Glyn James and Phil Dyke, 5th Edition, 2018, Pearson
	Education, ISBN-13 978-1292174341, ISBN-10 9780273719236.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	. NO. CONTENTS				
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5 & 6	Unit 3: Question 5 or 6	16			
7 & 8	Unit 4: Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	MAXIMUM MARKS FOR THE SEE THEORY	100			

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: II
NUMBER THEORY, VECTOR CALCULUS AND COMPUTATIONAL METHODS

Category: Applied Science Course Stream: Computer Science (Common to AI, BT, CS, CY, CD & IS Programs)

(Theory)

Course Code	:	22MA21C	 CIE	:	100 Marks
Credits: L:T:P	:	3:1:0	SEE	:	100 Marks
Total Hours	:	42L+14T	SEE Duration	:	3 Hours

Unit-I 09 Hrs

Number Theory

Divisibility, greatest common divisor, prime numbers, properties of prime numbers, fundamental theorem of arithmetic, congruence, linear congruence, multiplicative inverses, Euler's theorem, Euler's totient function, RSA public key encryption. Implementation using MATLAB.

Unit – II 09 Hrs

Vector Differentiation

Vector valued functions–2D and 3D scalar and vector fields. Derivative of vector function, tangent, velocity and acceleration. Gradient of a scalar field–Normal vector to the surface, directional derivative, scalar potential. Divergence and curl of a vector field, Laplacian of scalar field, Solenoidal and irrotational fields, physical interpretations, Simulation using MATLAB.

Unit –III 08 Hrs

Vector Integration

Line, surface and volume integrals. Green's theorem, Stokes theorem and Gauss divergence theorem (statements only)-Problems, solenoidal fields and irrotational fields. Work done by a force. Simulation using MATLAB.

Unit –IV 08 Hrs

Linear Ordinary Differential Equations of Higher Order

Standard form of higher order linear differential equation with constant coefficients. Solution of homogeneous equations—Complementary functions. Non homogeneous equations—Concept of inverse differential operator, methods of finding particular integral based on input function (force function), method of variation of parameters. Equations with functional coefficients—Cauchy equation. Applications—Simple harmonic motion, LRC circuits. Implementation using MATLAB.

Unit –V 08 Hrs

Numerical Methods

Finite differences, concept of forward and backward differences, introduction to interpolation and extrapolation. Newton-Gregory (N-G) forward and backward interpolation formulae, Lagrange interpolation formula, application oriented problems. Numerical differentiation based on N-G forward and backward interpolation, applications – velocity and acceleration. Implementation using MATLAB.

Course	e Outcomes: After completing the course, the students will be able to			
CO1	Illustrate the fundamental concepts of number theory, vector calculus, differential equations and			
	numerical methods.			
CO2	Apply the acquired knowledge of number theory, vector calculus, differential equations and numerical			
	methods to solve the problems of engineering applications.			
CO3	Analyze the solution of the problems using appropriate techniques of number theory, vector calculus,			
	differential equations and numerical methods to the real - world problem and optimize the solution.			
CO4	Interpret the overall knowledge of number theory, vector calculus, differential equations and numerical			
	methods gained to demonstrate the problems arising in many practical situations.			

RV Educational Institutions **
RV College of Engineering **

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Refere	ence Books
1	Higher Engineering Mathematics, B. S. Grewal, 44 th Edition, 2015, Khanna Publishers, ISBN: 978-81-
	933284-9-1.
2	Schaum's Outline of Advanced Calculus, Robert Wrede and Murray Spiegel, 3 rd Edition, 2010, McGraw-
	Hill Education, ISBN -10: 0071623663, ISBN -13: 978-0071623667.
3	Elementary Number Theory, David M. Burton, McGraw Hill, 7 th Edition, ISBN: 978-0-07-338314-9.
4	Discrete and Combinatorial Mathematics, Ralph P. Grimaldi, 5 th Edition, 2006, Pearson Education,
	ISBN-13: 978-81-7758-424-0.
5	Advanced Modern Engineering Mathematics, Glyn James and Phil Dyke, 5th Edition, 2018, Pearson
	Education, ISBN-13 978-1292174341, ISBN-10 9780273719236.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5 & 6	Unit 3: Question 5 or 6	16			
7 & 8	Unit 4: Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	MAXIMUM MARKS FOR THE SEE THEORY	100			

RV Educational Institutions ** RV College of Engineering **

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

omitorony, bolage	om sixty, Dotagan					
	Semester: II					
	APPLIED MATHEMATICS – II					
		Category	y: Applied Science Co	ourse		
	Stream: Civil (Only to CV Program)					
			(Theory)			
Course Code : 22MA21D CIE : 100 Marks						
Credits: L:T:P	Credits: L:T:P : 3:1:0 SEE : 100 Marks					
Total Hours	Fotal Hours : 42L+14T SEE Duration : 3 Hours					3 Hours

Unit-I	09 Hrs

Vector Differentiation

Vector valued functions–2D and 3D scalar and vector fields. Derivative of vector function, tangent, velocity and acceleration. Gradient of a scalar field–Normal vector to the surface, directional derivative, scalar potential. Divergence and curl of a vector field, Laplacian of scalar field, Solenoidal and irrotational fields, physical interpretations. Simulation using MATLAB.

Unit – II 09 Hrs

Vector Integration

Line, surface and volume integrals. Green's theorem, Stokes theorem and Gauss divergence theorem (statements only)-Problems, solenoidal fields and irrotational fields. Work done by a force. Simulation using MATLAB.

Unit –III 08 Hrs

Laplace Transform

Existence and uniqueness of Laplace transform, transform of elementary functions, region of convergence. Properties - Linearity, scaling, s - domain shift, differentiation in the s - domain, division by t, differentiation and integration in the time domain.

Inverse Laplace Transform-Definition, properties, evaluation using different methods. Convolution theorem (without proof), problems. Application to solve ordinary linear differential equations. Implementation using MATLAB.

Unit –IV 08 Hrs

Numerical Methods - I

Algebraic and Transcendental equations–Roots of equations, intermediate value property, Regula-Falsi and Newton-Raphson methods.

Taylor's and Maclaurin's series for a function of single variable and problems. Methods of solving first order ordinary differential equation—Taylor's series method, 4th order Runge-Kutta method and Milne predictor—corrector method. Implementation using MATLAB.

Unit –V 08 Hrs

Numerical Methods - II

Finite differences, concept of forward and backward differences, introduction to interpolation and extrapolation. Newton-Gregory (N-G) forward and backward interpolation formulae, Lagrange interpolation formula, application-oriented problems. Numerical differentiation based on N-G forward and backward interpolation, applications – velocity and acceleration. Numerical integration- Newton-Cotes approach – Simpson's $1/3^{rd}$, $3/8^{th}$ rules and Weddle's rule. Implementation using MATLAB.

Course	e Outcomes: After completing the course, the students will be able to				
CO1	Illustrate the fundamental concepts of vector calculus, Laplace transforms and numerical methods.				
CO2	Apply the acquired knowledge of vector calculus, Laplace transforms and numerical methods to solve the				
	problems of engineering applications.				
CO3	Analyze the solution of the problems using appropriate techniques of vector calculus, Laplace transforms				
	and numerical methods to the real - world problem and optimize the solution.				
CO4	Interpret the overall knowledge of vector calculus, Laplace transforms and numerical methods gained to				
	demonstrate the problems arising in many practical situations.				

Refere	ence Books
1	Higher Engineering Mathematics, B. S. Grewal, 44th Edition, 2015, Khanna Publishers,
	ISBN: 978-81-933284-9-1.
2	Calculus, Saturnino L. Salas, Einar Hille and Garret J. Etgen, 10th Edition, 2022, Wiley India,
	ISBN: 9789390421961.
3	Advanced Engineering Mathematics, E. Kreyszig, 10 th Edition (Reprint), 2016, John Wiley & Sons,
	ISBN: 978-0470458365.
4	Numerical methods for scientific and engineering computation, M. K. Jain, S. R. K. Iyenger and R. K.
	Jain, 6th Edition, 2012, New Age International Publishers, ISBN: 9788122433234, 8122433235.
5	Advanced Modern Engineering Mathematics, Glyn James and Phil Dyke, 5th Edition, 2018, Pearson
	Education, ISBN-13 978-1292174341, ISBN-10 9780273719236.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	Q. NO. CONTENTS				
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5 & 6	Unit 3: Question 5 or 6	16			
7 & 8	Unit 4: Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	MAXIMUM MARKS FOR THE SEE THEORY	100			

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: I

CONDENSED MATTER PHYSICS FOR ENGINEERS

Category: Applied Science Course

Stream: Electronics (Common to EC, EE, EI & ET Programs)

(Theory and Practice)

Course Code	:	22PHY12A	CIE	:	100 Marks
Credits: L:T:P	:	3:0:1	SEE	:	100 Marks
Total Hours	:	42 L + 30P	SEE Duration	:	3 Hours

Unit-I 08 Hrs

Quantum Mechanics: de Broglie Hypothesis and Matter Waves, Phase Velocity and Group Velocity, Heisenberg's Uncertainty Principle and its application.

Wave Mechanics: Wave Function, Time independent Schrodinger wave equation, Expectation value, Eigen functions and Eigen Values, Motion of a particle in a one-dimensional potential well of infinite depth, Numerical problems.

Unit – II 08 Hrs

Basics of Solid-State Physics

Electrical Conductivity in Metals: Quantum free electron theory and failures. Band theory of solids, Fermi energy and Fermi level, density of states, carrier concentration in metals at 0K.

Electrical Conductivity in Semiconductor

Fermi level in intrinsic semiconductors, Expression for concentration of electrons in conduction band (derivation), Law of mass action, Electrical conductivity of a semiconductor (derivation), Extrinsic semiconductors: Variation of fermi level with temperature and doping in extrinsic semiconductor, Hall effect and Hall coefficient (derivation).

Unit –III 09 Hrs

Lasers and Optical Fibers

Lasers: Characteristics of LASER, Interaction of radiation with matter, requisites of a Laser system. Construction and working of semiconductor laser. Application of Lasers in Defence and Laser Printing.

Optical Fibers: Propagation mechanism, Numerical aperture derivation, Modes of propagation. Attenuation in fiber, Discussion of block diagram of Point-to-Point communication, Optical fiber sensor. Numerical problems.

Unit –IV 08 Hrs

Semiconductor devices

Diodes: Direct and indirect band gap, Band gap engineering, P-N junction diode-forward and reverse bias, diode equation, V-I characteristic, Application: bridge rectifier, breakdown mechanism in diodes: Avalanche & Zener breakdown, Zener diode as voltage regulator.

Transistors: Bi-junction polar transistor, V-I characteristics in Common Emitter, Common Base and Common Collector configuration, CE configuration as an amplifier. Numerical problems.

Unit –V 09 Hrs

Dielectrics and Transducers

Dielectric Properties: Polar and non-polar dielectrics, Types of Polarization, internal fields in solid, Clausius-Mossotti equation (Derivation), solid, liquid and gaseous dielectrics. Application of dielectrics in transformers, Capacitors, Frequency dependency of dielectric constant, Electrical insulation – Dielectric breakdown Numerical problems.

Transducers: Stress-Strain curve, moduli of elasticity, strain gauge, ultrasonic piezoelectric transducer, temperature transducer – Thermocouples. Numerical problems.

Course	Course Outcomes: After completing the course, the students will be able to						
CO1	Explain the phenomenon of laser, fundamentals of quantum mechanics applicable to Electronics						
	engineering, basics of semiconducting and dielectric materials.						
CO2	Apply the knowledge of quantum mechanics in laser and semiconductors in engineering.						
CO3	Develop analytical thinking by solving numerical.						
CO4	Design & develop simulating models and validate with real time experimentation.						

Refere	ence Books
1	Grob's basic electronics, Mitchel E Schultz, McGrahill edtion, 10th edn, 2007, ISBN 978-0-07-3373874.
2	A Textbook of Engineering Physics, M. N. Avadhanulu and P G Kshirsagar,, S. Chand publications,
	2019, ISBN : 978-93-528-3399-3.
3	Physics for Degree students, C.L. Arora and Dr. P. S. Hemne, S Chand, revised 2010,
	ISBN: 978-81-219-33506.
4	Engineering Physics, R K Gaur and S L Gupta, Dhanpat Rai Publications, 2011, ISBN: 9788189928223.
5	Solid state electronic devices, Ben G Streetman and Sanjay Kumar Banerjee, 6th edition, PHI learning,
	2009, ISBN: 978-81-203-30207.

Labor	Laboratory Experiments (EE stream)		
1	Wavelength of laser by diffraction.		
2	Numerical aperture of an optical fiber.		
3	Transistor characteristics.		
4	Band gap of thermistor.		
5	Hall coefficient experiment.		
6	Black box experiment.		
7	Four probe experiment.		
8	Fermi Energy.		
9	Charging & discharging of a capacitor.		
10	Photo Diode.		
11	Exp Eyes experiment: LCR		
12	Exp Eyes experiment: Wavelength of LED and I-V characteristics of Zener diode.		

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY WITH LAB)		
#	COMPONENTS	MARKS	
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	10	
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted . Each test will be evaluated for 50 Marks , adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 30 MARKS .	30	
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) ADDING UPTO 30 MARKS .	30	
4	LAB: Conduction of laboratory exercises, lab report, observation and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE REDUCED TO 30 MARKS	30	
	MAXIMUM MARKS FOR THE CIE THEORY	100	

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)			
Q. NO.	CONTENTS	MARKS		
	PART A			
1	Objective type questions covering entire syllabus	10		
	PART B			
	(Maximum of TWO Sub-divisions only)			
2	Unit 1 : (Compulsory)	14		
3 & 4	Unit 2 : Question 3 or 4	14		
5 & 6	Unit 3: Question 5 or 6	14		
7 & 8	Unit 4: Question 7 or 8	14		
9 & 10	Unit 5: Question 9 or 10	14		
11	Lab Component (Compulsory)	20		
	MAXIMUM MARKS FOR THE SEE THEORY	100		

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: I

CLASSICAL PHYSICS FOR ENGINEERS

Category: Applied Science Course

Stream: Mechanical (Common to AS, CH, IM & ME Programs)

(Theory and Practice)

Course Code	:	22PHY12B	•	CIE	:	100 Marks
Credits: L:T:P	:	3:0:1		SEE	:	100 Marks
Total Hours	:	42 L+30P		SEE Duration	:	3 Hours

Unit-I 06 Hrs

Free, Damped and Forced Vibration:

Simple Harmonic motion (SHM), differential equation for SHM (No derivation), Spring mass and its applications.

Theory of damped oscillations (Derivation), Types of damping (Graphical Approach). Engineering applications of damped oscillations, Theory of forced oscillations (Qualitative), resonance and sharpness of resonance. Numerical problems

Unit – II 09Hrs

Elastic Properties of Materials:

Types of Stress and Strain, Stress, Strain equivalence relations, Relation between Elastic constants, Bending of beams: neutral surface and neutral axis, expression for bending moment of a beam: Single cantilever (derivation). Numerical problems.

Torsion of a Shaft: Expression for couple per unit twist of a solid shaft, torsion pendulum: expression for time period and rigidity modulus, Numerical problems.

Unit –III 09 Hrs

Fundamentals of Thermodynamics:

Introduction to thermodynamics: Quasi – static process. Zeroth law of thermodynamics, Liquid, gas, resistance thermometers. Joule's experiment (equivalence between heat and work), Numerical problems.

First law of thermodynamics, work done in thermodynamic quasi static processes, Isothermal process, adiabatic process and cyclic process, Application of first law of thermodynamics for both closed system and Steady State System. Numerical problems.

Unit –IV 09 Hrs

Basic concepts of Fluid Mechanics:

Definition of Fluid, concept of continuum, classification of fluids, Fluid Properties, Newton's Law of viscosity, Absolute and Kinematic viscosity, No slip condition, Vapour pressure and cavitation, Bulk Modulus and Compressibility, Ultrasonic interferometer. Surface tension and capillarity. Numerical problems.

Fundamentals of Fluid Flows:

Types of Fluid Flows, Stream line, Streak line and Path line. Continuity Equation in Integral form and three-dimension Cartesian coordinates. Numerical problems.

Unit –V 09 Hrs

Material Characterization:

Mechanical Characterisation (Tensile and yield strength, Ductility, Toughness and Hardness), Optical Characterisation, current-Voltage (IV) characterisation, Surface characterisation (Roughness & Crystallinity, particle distribution and magnetic properties.

Instrumentation Techniques:

Principle, construction and working of X-ray Diffractometer, crystallite size determination by Scherrer equation, Principle, construction, working and applications of Atomic Force Microscopy (AFM), X-ray photoelectron spectroscopy (XPS), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Numerical problems.

Course	Course Outcomes: After completing the course, the students will be able to			
CO1	Explain the concepts in oscillations, elasticity, thermodynamics, fluid mechanics & instrumentation			
	techniques.			
CO2	Apply the fundamentals of oscillations, elasticity, thermodynamics, fluid mechanics and material			
	characterization techniques to engineering applications.			
CO3	Develop analytical thinking by solving numerical.			
CO4	Design & develop simulating models and validate with real time experimentation.			

Refere	nce Books
1	Basic & Applied Thermodynamics, P K Nag, McGraw Hill Education, 2 nd Edition, 2017, ISBN 10-
	0070151318, 13-978-0070151314.
2	Fluid Mechanics: Fundamentals and Applications, John. M. CimbalaYunus A. Cengel, McGraw-Hill
	Publications, 4 th Edition, 2019, ISBN 10-9353166217, 13-978-9353166212.
3	A Textbook of Engineering Physics, M. N. Avadhanulu and P G Kshirsagar, S. Chand publications, 2019,
	ISBN: 978-93-528-3399-3.
4	Physics for Degree students, C.L. Arora and Dr. P. S. Hemne, S Chand, revised 2010, ISBN:
	9788121933506.
5	Engineering Physics, R K Gaur and S L Gupta, Dhanpat Rai Publications, 2011, ISBN: 9788189928223.

	Laboratory Experiments (ME stream)		
1	Spring constant experiment using expEYES17.		
2	Moment of Inertia of irregular body and rigidity modulus by Torsion pendulum.		
3	Young's modulus by Single cantilever.		
4	Young's modulus by Uniform bending.		
5	Ultrasonic Interferometer.		
6	Wavelength of laser by diffraction.		
7	Forced mechanical Oscillations and Resonance.		
8	Fermi Energy of copper		
9	Four Probe.		
10	Newton's rings.		
11	Exp Eyes experiment: LCR		

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY WITH LAB)		
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	10
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 30 MARKS.	30
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) ADDING UPTO 30 MARKS .	30
4	LAB: Conduction of laboratory exercises, lab report, observation and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE REDUCED TO 30 MARKS	30
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)			
Q. NO.	CONTENTS	MARKS		
	PART A			
1	Objective type questions covering entire syllabus	10		
	PART B			
	(Maximum of TWO Sub-divisions only)			
2	Unit 1 : (Compulsory)	14		
3 & 4	Unit 2: Question 3 or 4	14		
5 & 6	Unit 3: Question 5 or 6	14		
7 & 8	Unit 4: Question 7 or 8	14		
9 & 10	Unit 5: Question 9 or 10	14		
11	Lab Component (Compulsory)	20		
	MAXIMUM MARKS FOR THE SEE THEORY	100		

RV Educational Institutions RV College of Engineering

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: II

QUANTUM PHYSICS FOR ENGINEERS

Category: Applied Science Course

Stream: Computer Science (Common to AI, BT, CS, CY, CD & IS Programs)

(Theory and Practice)

Course Code	:	22PHY22C	CIE	:	100 Marks
Credits: L:T:P	:	3:0:1	SEE	:	100 Marks
Total Hours	:	42 L+30P	SEE Duration	:	3 Hours

Unit-I 08 Hrs

Quantum Mechanics: de Broglie Hypothesis and Matter Waves, Phase Velocity and Group Velocity, Heisenberg's Uncertainty Principle, and its application.

Wave Mechanics: Wave Function, Time independent Schrodinger wave equation, Expectation value, Eigen functions and Eigen Values, Motion of a particle in a one-dimensional potential well of infinite depth, Numerical problems.

Unit – II 08 Hrs

Principle of Quantum Computation

Matric Mechanics: Wave Function in Ket Notation: Matrix form of wave function, Identity operator, determination of I \mid 0 > and I \mid 1 > , Pauli matrices and its operation on 0 and 1 states, mention of conjugate and

transpose, unitary matrix U, Examples: Row and Column Matrices and their multiplication (Inner Product), Probability, Orthogonality.

Principles of Quantum information and Quantum Computing: Introduction to Quantum Computing, Moore's law and its end. Single particle quantum interference, classical and quantum information comparison. Difference between classical and quantum computing, quantum superposition and the concept of qubit.

Properties of qubit: Mathematical representation, summation of probabilities, representation of qubit by Bloch sphere.

Quantum Gates: Single qubit gates: Quantum not gate, Pauli -Z gate, Hadamard gate, Pauli matrices, Phase gate (S gate), T gate. Multiple qubit gates: controlled gate, CNOT gate (discuss for 4 different input states)

Unit –III 09 Hrs

Lasers and Optical Fibers

Lasers: Characteristics of LASER, Interaction of radiation with matter, requisites of a Laser system. Construction and working of semiconductor laser. Application of laser: Bar Code scanner, Laser Printer, Laser Cooling, Numerical problems.

Optical Fibers: Propagation mechanism, Numerical aperture derivation, Modes of propagation. Attenuation in fiber, Discussion of block diagram of Point-to-Point communication, Optical fiber sensor. Numerical problems.

Unit –IV 08 Hrs

Electrical Conductivity in Solids: Postulates of Classical free electron theory (CFET), Concept of Phonon, Matheissen's rule. Quantum free electron theory (QFET), Density of states in three dimensions (qualitative) and Fermi factor. Fermi energy: variation of Fermi factor with temperature.

Band theory of solids (qualitative approach), electron concentration in metals at 0K. Intrinsic semiconductors: electronic concentration in conduction band and hole concentration (qualitative), Fermi level in intrinsic semiconductors, Extrinsic semiconductors: Variation of carrier concentration with temperature and Fermi energy with doping, Hall effect for metals and semiconductors, Numerical problems.

Unit –V 09 Hrs

Super conductivity: Introduction to superconductors, temperature dependence of resistivity, Meissner effect, critical current, types of superconductors, temperature dependence of critical field.

BCS theory (qualitative), Quantum tunneling, High temperature superconductivity, Josephson junction, DC and AC SQUIDs (qualitative), Applications in quantum computing, Numerical problems.

Course	Outcomes: After completing the course, the students will be able to
CO1	Explain the fundamentals of quantum mechanics applicable to computer science engineering, basics of
	electrical and superconducting materials.
CO2	Apply the knowledge of quantum mechanics in lasers, semiconductors and super conductor devices for
	engineering applications.
CO3	Develop analytical thinking by solving numerical.
CO4	Design & develop simulating models and validate with real time experimentation.

Refere	ence Books
1	Physics for Engineers, M R Srinivasan, New Age International Publishers, 2011, ISBN: 978-81-224-
	2603-8.
2	A Textbook of Engineering Physics, M. N. Avadhanulu and P G Kshirsagar, 2019, S. Chand publications, ISBN: 978-93-528-3399-3.
3	Physics for Degree students, C.L. Arora and Dr. P. S. Hemne, S Chand, revised 2010, ISBN: 9788121933506.
4	Engineering Physics, R K Gaur and S L Gupta, DhanpatRai Publications, 2011, ISBN: 9788189928223.

	Laboratory Experiments (CS Stream)
1	Wavelength of laser by diffraction.
2	Numerical aperture of an optical fiber.
3	Transistor characteristics.
4	Band gap of thermistor.
5	Hall coefficient experiment.
6	Black box experiment.
7	Four probe experiment.
8	Fermi Energy.
9	Charging & discharging of a capacitor.
10	Photo Diode.
11	Exp Eyes experiment: LCR
12	Exp Eyes experiment: Wavelength of LED and I- V characteristics of Zener diode.

•	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY WITH LA	AB)
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	10
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 30 MARKS.	30
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) ADDING UPTO 30 MARKS .	30

RV Educational Institutions ** RV College of Engineering **

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

4	LAB: Conduction of laboratory exercises, lab report, observation and analysis (30 Marks),	
	lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10	30
	Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE REDUCED TO 30	30
	MARKS	
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	10			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	14			
3 & 4	Unit 2: Question 3 or 4	14			
5 & 6	Unit 3: Question 5 or 6	14			
7 & 8	Unit 4: Question 7 or 8	14			
9 & 10	Unit 5 : Question 9 or 10	14			
11	Lab Component (Compulsory)	20			
	MAXIMUM MARKS FOR THE SEE THEORY	100			

RV Educational Institutions ** RV College of Engineering **

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

omroiony, Doiaga	omorony, Dougan						
Semester: II							
APPLIED PHYSICS FOR ENGINEERS							
	Category: Applied Science Course						
Stream: Civil (Only to CV Program)							
	(Theory and Practice)						
Course Code							
Credits: L:T:P	:	3:0:1		SEE	:	100 Marks	
Total Hours		42 I +20D		SFF Duration		2 Цонго	

Unit-I	08 Hrs

Oscillations:

Simple Harmonic Motion (SHM), differential equation for SHM (No derivation), Sprig mass and its applications. Theory of damped oscillations (Derivation), Types of damping (Graphical Approach). Engineering applications of damped oscillations, Theory of forced oscillations (Qualitative), resonance and sharpness of resonance. Numerical problems.

Unit – II 09 Hrs

Elastic properties of materials:

Stress-Strain Curve, Stress hardening and softening. Elastic Moduli, Poisson's ratio and its limiting values. Relation among elastic constants (qualitative), Bending of beams: neutral surface and neutral axis, expression for bending moment of a beam, Single cantilever (derivation).

Torsion of a cylinder: expression for couple per unit twist of a solid cylinder, torsion pendulum: expression for time period and rigidity modulus. Failures of engineering materials — ductile fracture, brittle fracture, stress concentration, fatigue and factors affecting fatigue (only qualitative explanation) Numerical problems.

Unit –III 08 Hrs

Kinematics:

Displacement, average velocity, instantaneous velocity, speed, acceleration, average acceleration, variable acceleration, acceleration due to gravity, Newton's law of motion, rectilinear motion and numerical problems, curvilinear motion, superelevation, projectile motion, relative motion, numerical problems, motion under gravity, numerical problems.

Kinetics:

D 'Alembert's principle and its application in-plane motion and connected bodies including pulleys.

Unit –IV 09 Hrs

Fluid Mechanics:

Definition of fluid and its properties, Fluid statics, buoyancy, Poiseuille's equation, determination of co-efficient of viscosity of liquid by Poiseuille's flow method. Error and correction applied to Poiseuille's formula. Variation in viscosity of liquids and gases with temperature. Bernoulli's theorem and its application. Description of fluids (qualitative). Type of fluid flows- stream line, streak line, path line, turbulence. Numerical problems.

Unit -V 08 Hrs

Fundamentals of Sensors:

Introduction to Sensors, Sensor systems and overview of sensor technologies, Classification of sensors, Sensor's characteristics.

Sensors: principles & Applications: Temperature sensors: RTD, Thermistor, Thermocouple. Vibration sensor, Optical fiber sensor for structural health monitoring, Strain gauge sensor, Piezo electric sensors for energy harvesting.

Course	Course Outcomes: After completing the course, the students will be able to			
CO1	Explain the concepts in oscillations, elasticity, kinematics, Fluid dynamics and sensor techniques.			
CO2	Apply the fundamentals of oscillations, elasticity, kinematics, fluid dynamics and sensor techniques to			
	Civil engineering applications.			
CO3	Develop analytical thinking by solving numerical.			
CO4	Design & develop simulating models and validate with real time experimentation.			

Refere	ence Books
1	A Textbook of Engineering Physics, M N Avadhanulu, P G Kshirsagar and TVS Arun Murthy, S Chand
	and Company Limited, New Delhi, Revised Edition 2019, ISBN: 978-93-528-3399-3.
2	Jacob Fraden, Handbook of Modern Sensors: Physics, Designs, and Applications, PHI Publication, 5 th
	Edition 2016, ISBN: 978-1-4419-6465-6.
3	Elements of Properties of matter, D S Mathur, S Chand and Company PVT LTD, 2010, ISBN-13:978-
	8121908153.
4	Engineering Physics, Gaur and Gupta, Dhanpat Rai Publications LTD, 2012, ISBN-13: 978-8189928223.
5	Physics for Degree students, C L Arora and P S Hemne, S Chand and Company PVT. LTD, 2016, ISBN:
	978-81-219-4059-7.
6	Engineering Physics, Hitendra K Mallik and A K Singh, Tata McGraw Hill Education, 2010, ISBN 978-
	0-07-067153-9.

	Laboratory Experiments (CV stream)
1	Spring constant experiment using expEYES17.
2	Moment of Inertia of irregular body and rigidity modulus by Torsion pendulum.
3	Young's modulus by Single cantilever.
4	Young's modulus by Uniform bending.
5	Ultrasonic Interferometer.
6	Wavelength of laser by diffraction.
7	Forced mechanical Oscillations and Resonance.
8	Fermi Energy of Copper.
9	Four Probe Experiment.
10	Newton's rings.
11	Exp Eyes experiment: LCR

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY WITH LA	AB)
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	10
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted . Each test will be evaluated for 50 Marks , adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 30 MARKS .	30
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) ADDING UPTO 30 MARKS .	30
4	LAB: Conduction of laboratory exercises, lab report, observation and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE REDUCED TO 30 MARKS	30
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	10			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	14			
3 & 4	Unit 2: Question 3 or 4	14			
5 & 6	Unit 3: Question 5 or 6	14			
7 & 8	Unit 4: Question 7 or 8	14			
9 & 10	Unit 5 : Question 9 or 10	14			
11	Lab Component (Compulsory)	20			
	MAXIMUM MARKS FOR THE SEE THEORY	100			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: I

CHEMISTRY OF SMART MATERIALS AND DEVICES

Category: Applied Science Course

Stream: Computer Science (Common to AI, BT, CS, CY, CD & IS Programs)

(Theory and Practice)

	(======)					
Course Code	: 22C	HY12A		CIE	:	100 Marks
Credits: L:T:P	: 3:0:1			SEE	:	100 Marks
Total Hours	: 42L-	+ 30P		SEE Duration	:	3 Hours

Unit-I 8 Hrs

Sustainable chemistry and E-waste management:

Biomaterials: Introduction, bio-degradable and bio-compatible polymeric materials: synthesis and applications (Polymers and hydrogels in drug delivery).

Green Chemistry: Introduction, 12 principles with real life examples, validation of greenness.

E-waste: Hazards and toxicity, segregation and recycling (Hydrometallurgy, pyrometallurgy and direct recycling). Extraction of valuable metals from E-waste. Battery waste management and recycling, circular economy- case studies.

Unit – II 8 Hrs

Computational chemistry: Scope, cost and efficiency of computational modeling. Stabilizing interactions: Bonded and non-bonded interactions. Molecular topology, topological matrix representation, topological indices, QSAR/QSPC concept for insilico prediction of properties. 3D co-ordinate generation for small molecules, geometry optimization.

Unit –III 8 Hrs

Materials for memory and display technology:

Materials for memory storage: Introduction to materials for electronic memory, classification (organic, polymeric and hybrid materials), manufacturing of semiconductor chips. Green computing: Bio-composite based memory devices.

Fabrication of smart materials and devices: photo and electro active materials for memory devices, materials for display technology (Liquid crystals display, organic light emitting diode and light emitting electrochemical cells).

Unit –IV 9 Hrs

Smart sensors and devices:

RFID and IONT materials: Synthesis, properties and applications in logistic information, intelligent packaging systems (Graphene oxide, carbon nanotubes (CNTs) and polyaniline).

Sensors: Introduction, types of sensors (Piezoelectric and electrochemical), nanomaterials for sensing applications (Strain sensors, gas sensor, biomolecules and volatile organic compounds).

Unit-V 9 Hrs

Advanced energy systems:

Battery technology: Introduction to electrochemistry, characteristics of battery, Lithium-ion battery metal air batteries. Battery technology for e-mobility.

Super capacitors: Storage principle, types (EDLC, pseudo and asymmetric capacitor) with examples and applications.

Photovoltaics: Inorganic solar cells, organic solar cells, quantum dot sensitized (QDSSC's). Green hydrogen

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	CO1 Identify the materials, conventional & non-conventional energy systems for engineering applications.				
CO2	Investigate chemical properties of materials for various technological applications.				
CO3	Apply the knowledge of material property and energy to analyze environmental issues.				
CO4	Develop solutions in the areas of applied materials and energy systems for sustainable engineering				
	application.				

Refere	nce Books		
1	E-waste recycling and management: present scenarios and environmental issues, Khan, Anish, and		
	Abdullah M. Asiri. 2019, Springer, Vol. 33. ISBN: 978-3-030-14186-8.		
2	Essentials of computational chemistry: theories and models, Christopher J Cramer, 2013, John Wiley &		
	Sons. ISBN: 978-0-470-09182-1.		
3	Energy storage and conversion devices: Supercapacitors, batteries and hydroelectric cells, Anurag Gaur,		
	A. L. Sharma, Anil Arya. 2021, CRC press, 1st edition, ISBN: 978-1-003-14176-1.		
4	Fundamentals of analytical chemistry: An introduction, Douglas A. Skooget etal., 2004 Thomson Asia pte		
	Ltd., 8th, ISBN: 978-0-495-55828-6		
E-book	E-books		
5	Functional and smart materials, Chander Prakash, Sunpreet Singh, J. Paulo Davim, 2020, CRC Press,		
	ISBN: 978-036-727-510-5.		
6	Electrical and electronic devices, circuits and materials: Technological challenges and solutions. Tripathi,		
	S. L., Alvi, P. A., & Subramaniam, U, 2021, John Wiley & Sons, ISBN: 978-0367564261.		

	Laboratory Experiments
1	Estimation of copper from PCB.
2	Determination of total acidity of the soft drinks using pH sensors.
3	Potentiometric estimation of iron.
4	Conductometric estimation.
5	Determination of viscosity coefficient of a given liquid using Ostwald's viscometer.
6	Flame photometric estimation of sodium.
7	Colorimetric estimation of copper from E-waste.
8	Electroplating of copper.
9	Synthesis and fabrication of conducting polyaniline and its application in gas sensing (Demonstration
	experiment).
10	Study the surface morphology of nanomaterials using scanning electron microscopy (Demonstration
	experiment).
11	Fabrication of thin-film gas sensors using spin coating and electro-spinning technique (Demonstration
	experiment).
12	Separation of organic compounds using column chromatographic technique and monitoring by thin layer
	chromatographic technique (Demonstration experiment).
13	Synthesis of metal oxide nanomaterials using solution combustion synthesis.
14	Green synthesis of nanomaterials.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY WITH LA		
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	10
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 30 MARKS.	30
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) ADDING UPTO 30 MARKS .	30

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

4	LAB: Conduction of laboratory exercises, lab report, observation and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE REDUCED TO 30 MARKS	30
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS				
	PART A				
1	Objective type questions covering entire syllabus	10			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	14			
3 & 4	Unit 2 : Question 3 or 4	14			
5 & 6	Unit 3: Question 5 or 6	14			
7 & 8	Unit 4: Question 7 or 8	14			
9 & 10	Unit 5 : Question 9 or 10	14			
11	Lab Component (Compulsory)	20			
	MAXIMUM MARKS FOR THE SEE THEORY	100			

Course Code
Credits: L:T:P
Total Hours

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

	Semester: I					
ENGINEERING AND ENVIRONMENTAL CHEMISTRY						
	Category: Applied Science Course					
Stream: Civil (Only to CV Program)						
	(Theory and Practice)					
:	22CHY12B		CIE	:	100 Marks	
:	3:0:1		SEE	:	100 Marks	
:	42L+ 30P		SEE Duration	:	3 Hours	

Unit-I 8 Hrs

Green Chemistry: Introduction, principles of green chemistry, E-factor, atom economy, microwave and ultrasound assisted reactions, examples of green synthesis.

Water Chemistry: Impurities in water, emerging pollutants, water quality parameters as per BIS, determination of fluoride, DO, BOD and COD, numericals, desalination of water by RO. Sewage treatment process.

Unit – II 9 Hrs

Materials in civil engineering

Cement: Chemical composition of cement, manufacturing process of portland cement, process of setting and hardening, types (Mortar, concrete, RCC and CSH Gel) and their applications.

Glass: Manufacture, properties, types and applications.

Ceramics and refractory materials: Properties, types and applications.

Unit –III 8 Hrs

Corrosion science and engineering: Corrosion: Electrochemical theory, types: differential aeration (waterline and pitting), differential metal and stress corrosion (caustic embrittlement). Factors affecting rate of corrosion.

Corrosion control: Metal coating-galvanization and tinning, surface conversion coating - anodizing and phosphating. Cathodic protection - sacrificial anode method. Corrosion testing by weight loss method, corrosion penetration rate (CPR), numerical problems.

Metal finishing: Electroplating of chromium and electroless plating of copper

Unit –IV

Polymers and polymer composites: Synthesis, properties, and applications of PMMA, PVC, polyester,

polystyrene. Polymer concretes and biopolymer.

Smart polymers: Thermo chromic polymers, electrochromic polymers, polymer coatings, polymer binders and self-healing polymers.

Polymer composites: Carbon fiber composites, CNT and graphene-based composites.

Adhesives: Synthesis and application of epoxy resins.

Geo polymers: Properties, types, geo polymer concrete.

Biodegradable polymers: Polylactic acid and its application.

Unit-V 8 Hrs

Chemistry of nanomaterials and analytical techniques: Properties (surface area, electrical, optical and catalytic properties), synthesis of nanomaterials: Top down and bottom-up approaches, synthesis by sol-gel, and solution combustion method. Civil engineering applications of carbon nanotubes.

Analytical techniques: Principle, instrumentation and applications of conductometry, potentiometry, colorimetry and pH-sensor (glass electrode).

Course Outcomes: After completing the course, the students will be able to				
CO1	Identify the materials, conventional & non-conventional energy systems for engineering applications.			
CO2	Investigate chemical properties of materials for various technological applications.			
CO3	Apply the knowledge of material property and energy to analyze environmental issues.			
CO4	Develop solutions in the areas of applied materials and energy systems for sustainable engineering			
	application.			

9 Hrs

Refer	Reference Books				
1	Chemistry for Engineers, Teh Fu Yen, Imperial college press, 2008, ISBN: 97818609747742.				
2	Advances in corrosion science and technology, M.G. Fontana, R.W. Staettle, Springer publications, 2012, ISBN: 9781461590620.				
3	Fundamentals of analytical chemistry, Douglas A. Skoog et.al., 8 th edition, 2004, Thomson Asia pte Ltd. ISBN: 9812435131.				
4	Engineering chemistry, Shubha Ramesh et.al., Wiley India, 1st Edition, 2011, ISBN: 9788126519880.				

	Laboratory Experiments
1	Volumetric analysis.
2	Estimation of water quality parameter: chemical oxygen demand.
3	Estimation of CaO in cement solution.
4	Determination of pKa of a weak acid using pH meter.
5	Potentiometric estimation of iron.
6	Colorimetric estimation of copper.
7	Conductometric estimation.
8	Determination of viscosity coefficient of a given liquid using Ostwald's viscometer.
9	Flame photometric estimation of sodium.
10	Determination of relative and kinematic viscosities of given lubricating oil at different temperatures using
	Redwood viscometer (Demonstration Experiment).
11	To find of Tg of polymer using DSC. (Demonstration Experiment).
12	Study of surface morphology of materials using SEM (Demonstration Experiment).
13	Synthesis of iron oxide nanomaterials using solution combustion synthesis
14	Green synthesis of nanomaterials.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY WITH LA	AB)
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	10
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted . Each test will be evaluated for 50 Marks , adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 30 MARKS.	30
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) ADDING UPTO 30 MARKS .	30
4	LAB: Conduction of laboratory exercises, lab report, observation and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE REDUCED TO 30 MARKS	30
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	10			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	14			
3 & 4	Unit 2: Question 3 or 4	14			
5 & 6	Unit 3: Question 5 or 6	14			
7 & 8	Unit 4: Question 7 or 8	14			
9 & 10	Unit 5 : Question 9 or 10	14			
11	Lab Component (Compulsory)	20			
	MAXIMUM MARKS FOR THE SEE THEORY	100			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: II

CHEMISTRY OF FUNCTIONAL MATERIALS

Category: Applied Science Course

Stream: Electronics (Common to EC, EE, EI & ET Programs)

(Theory and Practice)

		,	,			
Course Code	:	22CHY22C		CIE	••	100 Marks
Credits: L:T:P	:	3:0:1		SEE	:	100 Marks
Total Hours	:	42L+ 30P		SEE Duration	:	3 Hours

Unit-I 8 Hrs

Energy storage and conversion devices

Battery: Introduction, types, characteristics, components/materials, working and applications of Lithium cobalt oxide and metal air batteries.

Super-capacitors: Introduction, types (EDLC, pseudo capacitors, asymmetric capacitors), mechanism with examples and applications.

Energy conversion devices: Introduction, characteristics, materials, working and applications of H2-O2 fuel cells, amorphous Si and quantum dye sensitized solar cells.

Unit – II 9 Hrs

Nanomaterials and thin film fabrication techniques

Nanomaterials: Introduction, classification and properties. Synthesis- solution combustion, sol-gel method for thin films.

Carbon nanomaterials: Types, synthesis, properties, functionalization and applications of CNT and Graphene.

Thin film deposition techniques: Fabrication of thin films using CVD and PECVD and Metal organic chemical vapor deposition (MOCVD)-principle, fabrication and applications.

Unit –III 9 Hrs

Chemistry of electronic materials

Inorganic semiconducting materials: Introduction, types with examples. Semiconductors- p-type, n-type materials. Production of electronic grade silicon-Czochralski process and float zone methods. Electronic and chemical properties, applications of Gallium arsenide (GaAs), Silicon-germanium (SiGe), and Indium phosphide (InP).

Organic semiconducting materials: Introduction, pentacene and fullerene derivatives, conducting polymer, principle, synthesis of polyaniline, applications in electronic devices.

Magnetic materials: Data storage materials, dielectric materials: Examples, properties and applications.

Unit –IV 8 Hrs

Advanced electronic materials and E –waste: Materials, mechanism, examples and applications of photochromic, thermochromic, electrochromic, electrostrictive, magnetostrictive, RFID, MEMS and NEMS, eskin, e-nose devices.

E-waste - Types, environmental risks, recycle management.

Unit-V 8 Hrs

Sensors and Instrumental methods of analysis

Sensors: Introduction, types, principle, materials used and applications of optoelectronic sensors, piezoelectric sensor, electrochemical sensor and gas sensors.

Instrumental method of analysis: Principle, instrumentation: Colorimetry, potentiometry, flame photometry and conductometry.

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Identify the materials, conventional & non-conventional energy systems for engineering applications.				
CO2	Investigate chemical properties of materials for various technological applications.				
CO3	Apply the knowledge of material property and energy to analyze environmental issues.				
CO4	Develop solutions in the areas of applied materials and energy systems for sustainable engineering application.				

Refere	nce Books					
1	Chemistry in microelectronics, Yannick Le Tiec, 2013, Wiley Publications, ISBN: 9781848214361.					
2	Electronics properties of materials, Rolf E, Hummel, 2012, Springer Publications New York, 4 th Edition, ISBN 9781441981639.					
3	Smart nanomaterials for sensor application, Li S, Ge Y, Li H, 2012, Bentham Science Publishers, ISBN: 9781608055425.					
4	Energy storage and conversion materials, Skinner S, 2019, Royal society of chemistry, ISBN: 9781788010900.					
E-Boo	E-Books					
5	Smart materials, Harvey, James A. Handbook of materials selection, 2002, John Wiley & Sons Canada, Limited, ISBN: 9780471359241.					
6	Engineering Chemistry, Suba Ramesh, Vairam, Ananda Murthy, 2011, Wiley India, ISBN: 9788126519880.					
7	Energy storage and conversion devices; Supercapacitors, batteries and hydroelectric Cells Editor: Anurag					
	Gaur, 2021, CRC Press, ISBN: 9781000470512.					
8	An overview of advanced nanomaterials for sensor applications, Rohilla D, Chaudhary S, Umar A.					
	Engineered Science publisher. 2021, 16:47-70. DOI: 10.30919/es8d552.					

	Laboratory Experiments (ME stream)
1	Estimation of copper in the E-waste.
2	Determination of pKa of a weak acid using pH sensor.
3	Potentiometric estimation of iron.
4	Colorimetric estimation of copper from PCBs.
5	Conductometric estimations.
6	Flame photometric estimation of sodium.
7	Determination of viscosity coefficient.
8	Electroplating of copper.
9	Preparation of polyaniline for sensor application (Demonstration experiment).
10	Preparation of semiconducting TiO ₂ nanoparticles for DSSC applications (Demonstration experiment).
11	Determination of band gap of semiconducting material using UV-vis spectrophotometer (Demonstration experiment).
12	Study the surface morphology of nanomaterials using scanning electron microscopy (Demonstration experiment).
13	Thin films fabrication using PECVD and sputtering technique (Demonstration Experiment).
14	Fabrication of coin cell super capacitor prototype (Demonstration experiment).
15	Synthesis of iron oxide nanomaterials using solution combustion synthesis.
16	Green synthesis of nanomaterials.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY WITH LA		
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be	
	conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO	10
	QUIZZES WILL BE THE FINAL QUIZ MARKS.	
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 30 MARKS.	30
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and	30

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) ADDING UPTO 30 MARKS .	
4	LAB: Conduction of laboratory exercises, lab report, observation and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE REDUCED TO 30 MARKS	30
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	Q. NO. CONTENTS					
	PART A					
1	Objective type questions covering entire syllabus	10				
	PART B					
	(Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	14				
3 & 4	Unit 2: Question 3 or 4	14				
5 & 6	Unit 3: Question 5 or 6	14				
7 & 8	Unit 4: Question 7 or 8	14				
9 & 10	Unit 5 : Question 9 or 10	14				
11	Lab Component (Compulsory)	20				
	MAXIMUM MARKS FOR THE SEE THEORY	100				

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: II

CHEMISTRY OF ENGINEERING MATERIALS

Category: Applied Science Course

Stream: Mechanical (Common to AS, CH, IM & ME Programs)

(Theory & Practice)

Course Code	:	22CHY22D	CIE	:	100 Marks
Credits: L:T:P	:	3:0:1	SEE	:	100 Marks
Total Hours	:	42L+ 30P	SEE Duration	:	3 Hours

Unit-I 8 Hrs

Fuels: Thermochemistry, calorific value of fuels, numericals, knocking in internal combustion engines, reasons for knocking, octane and cetane number, antiknocking agents. Biodiesel, power alcohol

Alternative Fuels: Green fuel- hydrogen production and storage. Rockets Fuels: Properties, characteristics and types.

Unit – II 9 Hrs

Energy storage and conversion devices: Batteries and super capacitors: Working principle, classification, fabrication and applications of lithium-ion battery, metal air batteries, supercapacitors and superbatteris.

Fuel cells and renewable energy: Hydrogen - oxygen fuel cell, direct methanol fuel cell and their applications. Solar cell – principle, construction and working of Quantum Dot sensitized solar cells.

Unit –III 8 Hrs

Corrosion Science and Management: Corrosion: Electrochemical theory of corrosion. Types: differential aeration (pitting and water line), differential metal and stress corrosion. Factor affecting rate of corrosion. Case studies on corrosion failure.

Corrosion control: Metal coating-galvanization and tinning, surface conversion coating - anodizing and phosphating. Cathodic protection - sacrificial anode method. Corrosion testing by weight loss method. Corrosion penetration rate (CPR)-numerical problems. Metal finishing: Electroplating of chromium and Electroless plating of copper:

Unit –IV 8 Hrs

Chemistry of nanomaterials: Size dependent properties: Surface area, optical and catalytic properties. Classification of nanomaterials. Synthesis: Solution combustion and Sol-gel methods.

Synthesis and applications: Synthesis, properties and applications of carbon nano tubes and graphenes. Nano lubricants: Types of nanoparticles as lubricant additives and their application in defence, automobile and spacecrafts.

Unit-V 9 Hrs

Engineering polymers and nanocomposites: Thermosets-bakelite and epoxy, thermoplastics- polycarbonate and polyether sulfones- preparation and specific applications in industries. Biodegradable polymer: Introduction, synthesis, properties, and application of poly lactic acid (PLA). Significance of glass transition temperature (Tg) and factors affecting Tg.

Reinforcements and testing- Glass, carbon and natural fibre - synthesis, properties and applications in polymer composites. ASTM standards of material testing-tensile strength, flexural strength, ILSS and impact strength. Applications of polymer nanocomposites in injection moulded products, paints and 3D printing.

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Identify the materials, conventional & non-conventional energy systems for engineering applications.				
CO2	Investigate chemical properties of materials for various technological applications.				
CO3	Apply the knowledge of material property and energy to analyze environmental issues.				
CO4	Develop solutions in the areas of applied materials and energy systems for sustainable engineering				
	application.				

Refere	nce Books
1	Understanding nanomaterials, Malkiat S. Johal, Lewis E. Johnson, 2017, CRC Press, Taylor and Francis
	Group, ISBN: 9780815354383.
2	Engineering chemistry, Shubha Ramesh et.al., 2011, Wiley India, 1st Edition, ISBN: 9788126519880.
3	Fundamentals of analytical chemistry, Douglas A. Skoog et.al., 2004, 9th edition,
	Thomson Asia pte Ltd., ISBN: 9780495558286
4	Energy storage and conversion devices, Anurag Gaur, A. L. Sharma, Anil Arya, 2021, CRC Press, Taylor
	and Francis Group, 1st Edition, ISBN: 9781003141761.

	Laboratory Experiments
1	Volumetric analysis.
2	Analysis of alloy (Brass).
3	Ore analysis (Haematite).
4	Determination of pKa of a weak acid.
5	Potentiometric estimation of iron in rust.
6	Colorimetric estimation of copper.
7	Conductometric estimations.
8	Determination of viscosity coefficient of a given liquid using Ostwald's viscometer.
9	Flame photometric estimation of sodium in the given saline solution.
10	Preparation of nanomaterials by solution combustion method.
11	Preparation of thin films by dipcoating technique and characterization of thin film.
12	Determination of relative and kinematic viscosities of given lubricating oil at different temperatures using
	Redwood viscometer (Demonstration experiment).
13	To find of Tg of polymer using DSC (Demonstration Experiment).
14	Study of surface morphology of materials using SEM (Demonstration experiment).
15	Phase analysis of alloys by XRD (Demonstration experiment).
16	Synthesis of metal oxide nanomaterials using solution combustion synthesis (Demonstration experiment).
17	Green synthesis of nanomaterials (Demonstration experiment).

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY WITH LA	AB)
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	10
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted . Each test will be evaluated for 50 Marks , adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 30 MARKS .	30
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) ADDING UPTO 30 MARKS .	30
4	LAB: Conduction of laboratory exercises, lab report, observation and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE REDUCED TO 30 MARKS	30
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS					
	PART A					
1	Objective type questions covering entire syllabus	10				
	PART B					
	(Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	14				
3 & 4	Unit 2: Question 3 or 4	14				
5 & 6	Unit 3: Question 5 or 6	14				
7 & 8	Unit 4: Question 7 or 8	14				
9 & 10	Unit 5: Question 9 or 10	14				
11	Lab Component (Compulsory)	20				
	MAXIMUM MARKS FOR THE SEE THEORY	100				

New Delhi

PROFESSIONAL CORE **COURSE**

2022 SCHEME (W.E.F 2022 Admission Students)

RV Educational Institutions RV College of Engineering

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

,, ,						
Semester: I						
BASIC ELECTRONICS						
		Category:	Professional Core C	Course		
	Str	eam: Electronics (Common to EC, ET	& EI Programs)		
(Theory)						
Course Code	Course Code : 22EC13 CIE : 100 Marks					
Credits: L:T:P	Credits: L:T:P : 3:0:0 SEE : 100 Marks					100 Marks
Total Hours	:	40L		SEE Duration	:	3 Hours

Unit-I 08Hrs

Ripolar Junction Transistors: Semiconductor Diode, Review Regulated Power Supply Ripolar Junction

Bipolar Junction Transistors: Semiconductor Diode- Review, Regulated Power Supply. Bipolar Junction Transistors- Transistor Construction and Operation, Load-Line Analysis, Operating Point, Fixed Bias, Voltage– Divider Bias Configurations, Bias Stabilization, Transistor Switching Networks, Amplification in the AC Domain, The re Transistor Model for CE Configuration, RC Coupled Amplifier, Gain, Input Resistance and Frequency Response, Cascaded Systems. Numerical Examples.

Unit – II 08 Hrs

MOSFET: Differences between BJT & FET, Enhancement Type N-MOSFET Operation. Output Characteristics, Regions of Operation, Current Equation and Transfer Characteristic, Small Signal Equivalent, Calculation of Trans-Conductance and Voltage Gain, rDS, Operation of CMOS Inverter, CMOS NAND and CMOS NOR, Numerical Examples.

Basic Principles and Advantages of Negative Feedback: Feedback Concept, Advantages of Negative Feedback, Analysis of Gain and Gain Stability, Numerical Examples.

Unit –III 08 Hrs

Digital Electronics

Boolean Algebra and Simplification: Boolean Postulates and De-Morgan's Theorems. Simplification Using Postulates and Theorems. Simplification using K-Map up to 4-Variables.

Basic and Universal Gates: Truth Tables of All Basic and Universal Gates. Half Adder, Full Adder, Realization Using Basic Gates and NAND Gates. Multiplexers, De-Multiplexers, Encoders and Decoders.

Unit –IV 08 Hrs

Introduction To OP-AMP: Block Diagram of Op-Amp, Characteristics of an Ideal Op-Amp: Gain, Bandwidth, Input & Output Impedances, CMRR, PSRR, Slew Rate, Input Offset Voltage. Typical Parameters of a General Purpose Op-Amp, Pin Configuration of Op-Amp (741). Differential Amplifier, Applications: Inverting Amplifier, Non Inverting, Amplifier, Voltage Follower, Summer, Integrator, Differentiator, Comparator, Difference Amplifier, Schmitt Trigger, Instrumentation Amplifier, Numerical Examples.

Unit –V 08 Hrs

Communication Systems, Sensors and Transducers

Introduction to Communication: Block Diagram of a General-Purpose Communication System, Need for **Modulation, Types of Modulation:** AM and FM. Modulation Index, Sideband Frequencies, Bandwidth and Power, Differences Between AM and FM, Numerical Examples. Digital Communication Block Diagram.

Introduction to Transducers: Passive Electrical Transducers- Resistive Thermometer, Linear Variable Differential Transformer (LVDT), Proximity Transducer. Active Electrical Transducer- Piezo Electric Transducer, Hall Effect Transducer.

Case Studies:

- i. Automatic Headlight System
- ii. Pick and Place Robots.

Course Outcomes: After completing the course, the students will be able to					
CO1	Realize the operation and the characteristics of the Electronic devices for modern day applications.				
CO2	Analyze different electronic circuits for various system designs.				
CO3	Demonstrate the role of different building blocks of Electronics Systems.				

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

CO4 Evaluate the performance of the Electronic Systems to meet given specifications using modern engineering tools.

Refere	ence Books
1	Electronic Devices and Circuit Theory, Robert L Boylestad, Louis Nashelsky, Prentice Hall India
	publication, 10 th Edition, 2009, ISBN: 978-317-2700-3.
2	Basic Electronics, D P Kothari, I J Nagrath, MCGraw Higher Ed, 2 nd Edition, ISBN: 9789352606467.
3	Digital Logic and Computer Design, Morris Mano, , Prentice Hall India publication, 54th Edition, 2007,
	ISBN: 978-81-317-1450-8.
4	Electronic Devices and Circuits, David A. Bell, Oxford University Press, 5th Edition, 2008.
	ISBN:9780195693409.
5	Basic Electronics, Ravish Aradhya H V, McGraw Hill Education; 3rd edition, ISBN: 978-0071333108.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	O. CONTENTS					
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B					
	(Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5 & 6	Unit 3: Question 5 or 6	16				
7 & 8	Unit 4: Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	MAXIMUM MARKS FOR THE SEE THEORY	100				

RV Educational Institutions RV College of Engineering

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

omroiony, Dolagari						
Semester: I						
ELEMENTS OF ELECTRICAL ENGINEERING						
		Category:	Professional Core C	Course		
Stream: Electronics (Only to EE Program)						
			(Theory)			
Course Code : 22EE13 CIE : 100 Marks						
Credits: L:T:P : 3:0:0						
Total Hours	:	40 L		SEE Duration	•	3 Hours

Unit-I 08 Hrs

AC Circuits: Parameters of sinusoidal quantities, Generation of sinusoidal voltage, Voltage and current relationship with phasor diagram in R, L and C circuits. Analysis with phasor diagram of R-L, R-C, R-L-C Series and Parallel circuits, Power factor, real power, reactive power, apparent power, Examples.

Three-phase circuits: Generation of three phase EMF, phase sequence, relation between phase and line values of voltage and current from phasor diagrams in Y and Δ connected systems, measurement of power in three phase circuit by two wattmeter method (Balanced load) and examples.

Unit – II 08 Hrs

DC Machines: DC Generators: Basic principle, construction, Derivation for induced EMF, types, OCC and load Characteristics of shunt and series, Application, and examples

DC Motor: Introduction, working principle, significance of back EMF, types, Derivation for power & Torque, Characteristics- shunt, series & compound, necessity of starters, 3-point starter, Application and examples

Unit –III 08 Hrs

Single Phase Transformers: Necessity of transformer, principle of operation, Construction of core and shell type for single - phase, ideal transformer, derivation for induced EMF, transformer on No-Load & On-Load (inductive), constant and variable losses, OC & SC tests, efficiency & regulation, condition for maximum efficiency.

Unit –IV 08 Hrs

Three phase Induction Motor: Concept of rotating magnetic field, Principle of operation, constructions, types, slip and its significance, applications, examples.

Alternators: Principle of operation, types, construction, advantage of stationary armature, derivation for EMF equation with the concept of winding factor (distribution factor, winding factor, breadth factor), applications, examples.

Unit –V 08 Hrs

Power transmission and distribution: Concept of power transmission and power distribution. Low voltage distribution system (400 V and 230 V) for domestic, commercial, and small-scale industry through block diagrams only.

Electricity bill: Power rating of household appliances including air conditioners, PCs, laptops, printers, etc. Definition of "unit" used for consumption of electrical energy, two-part electricity tariff, calculation of electricity bill for domestic consumers.

Equipment Safety measures: Fuse and Miniature circuit breaker (MCB), Electric Shock, Earthing and its types, Safety Precautions to avoid shock.

Course	Course Outcomes: After completing the course, the students will be able to					
CO1	Understand the working principle of electrical circuits, Transformer, Electric machines, and safety					
	devices.					
CO2	Evaluate the parameters of AC Circuits, AC, DC machines and Transformer.					
CO3	Analyze the characteristics of AC and DC machines, power transmission & distribution.					
CO4	Apply the knowledge of electrical safety equipment, measures, and tariffs to implement in the engineering					
	applications for domestic and industrial wirings.					

Refere	ence Books
1	Electrical and Electronics Technology, E. Hughes, 10 th Edition, 2010, Pearson, ISBN- 978-8131733660.
2	Basic Electrical Engineering, C.L. Wadhwa, 1st Edition, 2007, New Age international(P) Limited,
	ISBN- 10: 9788122421521.
3	Basic Electrical Engineering, M. V. Rao, 10 th Edition, 2018, Subhas Publications, ISBN- 9789383214136.
4	Basic Electrical Engineering, D C Kulshreshtha, Revised First Edition, 2017, Tata McGraw Hill,
	ISBN- 13:978-0071328968.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)					
#	COMPONENTS	MARKS			
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20			
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40			
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40			
MAXIMUM MARKS FOR THE CIE THEORY					

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	. NO. CONTENTS					
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B					
	(Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5 & 6	Unit 3: Question 5 or 6	16				
7 & 8	Unit 4: Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	MAXIMUM MARKS FOR THE SEE THEORY	100				

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: I

ELEMENTS OF MECHANICAL ENGINEERING

Category: Professional Core Course

Stream: Mechanical (Common for AS, CH, IM & ME Programs)

(Theory)

Course Code	:	22ME13	CIE	:	100 Marks
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks
Total Hours	:	40T	SEE Duration	:	3 Hours

Unit-I 8 Hrs

Engineering Materials: Introduction, Classification, fabrication and applications of Metals: Ferrous and Nonferrous, Polymers (Thermoplastics, Thermosets and Elastomers), Ceramics and Composites. Thin films, Sensors, semiconductor

Unit – II 10 Hrs

Lathe and Lathe operations: Classification, specifications of a lathe. Lathe operations (Turning, Taper Turning, drilling, boring, knurling, and thread cutting). Introduction to CNC Machines.

Joining processes & Non-destructive testing: Introduction to metal joining process-permanent & temporary joints, Soldering & welding, types and applications, accessories consumables and safety, Welding defects and causes, Non-Destructive testing: Liquid penetrate testing, Magnetic particle testing, Ultrasonic testing, Eddy current testing.

Unit –III 08 Hrs

Turbines: Steam and its properties, property charts, steam turbines. Classification of hydraulic turbines, working of Pelton, Francis and Kaplan turbines; comparison between impulse and reaction turbines, Working of Gas Turbines (Brayton cycle).

Refrigeration: Refrigeration effect, working principle of Vapour Compression refrigeration systems, ton of refrigeration, COP, refrigerants and their properties.

Unit –IV 08 Hrs

Mechanical Drives: Classification of IC Engines, Working of 4-S direct injection engines, Performance Characteristics, Classification of gears, velocity ratio for simple and compound gear trains.

Electrical Drives: History, Well to Wheel analysis, Electric vehicles, Configurations, EV/ICEV comparison, Performance, Traction Motor Characteristics, Concept of Hybrid Electric Drive Trains, Classification of hybrid electric vehicles.

Unit-V 6 Hrs

Mechatronics: Introduction: Evolution of Mechatronic system, measurement & control system, basic elements of control system, Applications-water level controller, washing machine, Engine management system (EMS), Antilock Braking System (ABS).

Robotics: Robots- Basic Structure of Robots, Robot Anatomy, Complete Classification of Robots, Fundamentals about Robot Technology, Basic Robot Configurations and their Relative Merits and Demerits.

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Understand the knowledge of various properties of Engineering materials and their Joining processes				
CO2	Elucidate the principles and operation of lathe machine tools, joining processes and Non-destructive				
	testing in various engineering applications.				
CO3	Apply concepts of principle of thermodynamics in steam, hydraulic and gas turbines and refrigeration				
	systems.				
CO4	Understand about Mechatronics, Automation and Robotics in Industrial Applications				

Refere	Reference Books				
1	Elements of Mechanical Engineering, K. R. Gopalakrishna, Subhas Publications, 18th Edition.				
	ISBN:5551234002884				
2	Material Science & Dramp; Engineering- William D Callister, 2 / 10th Edition, ISBN 978-1-119-45520-2.				
3	Welding Technology (PB), Khanna O P, Dhanpat Rai publication, 4 th Edition, ISBN 9383182555.				
4	Electric and Hybrid Vehicles, Design Fundamentals – Iqbal Husain, CRC Press, 2 nd Edition, 2010.				
	ISBN – 13-978-1439811757.				
5	Modern Electric, Hybrid Electric & Design – White Cell Vehicles, Fundamentals, Theory and Design –				
	Mehrdad Ehsani, CRC Press, 1st Edition, 2005. ISBN – 13- 978-0849331541.				
6	Mechatronics – Electronic control systems in Mechanical and Electrical Engineering, William Bolton,				
	Pearson, 6 th Edition, ISBN: 978-1-292-07668-3, 2015.				

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS	MARKS	
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40	
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40	
	MAXIMUM MARKS FOR THE CIE THEORY	100	

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	Q. NO. CONTENTS					
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B					
	(Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2: Question 3 or 4	16				
5 & 6	Unit 3: Question 5 or 6	16				
7 & 8	Unit 4: Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	MAXIMUM MARKS FOR THE SEE THEORY	100				

RV Educational Institutions ** RV College of Engineering **

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: II

PRINCIPLES OF PROGRAMMING USING C

Category: Professional Core Course

Stream: Computer Science (Common to AI, BT, CS, CY, CD & IS Programs)

(Theory and Practice)

Course Code	••	22CS23	•	CIE	:	100 Marks
Credits: L:T:P	••	2:0:1		SEE	:	100 Marks
Total Hours	:	28L+30P		SEE Duration	:	3 Hours

Unit-I 6 Hrs

Logical Reasoning and Algorithmic Problem Solving: Skill development – Examples related to Arithmetical Reasoning and Analytical Reasoning.

Introduction to Programming: Design and Implementation of efficient programs. Program Design Tools: Algorithms, Flowcharts and Pseudo codes. Types of Errors.

Introduction to C: Introduction, structure of a C program, writing the first program, Files used in a C program. Compiling and executing C Programs using comments, C Tokens, Character set in C, Keywords, Identifiers, Basic Data Types in C, Variables, Constants, I/O statements in C. Operators in C, Type conversion and type casting, scope of variables.

Unit – II 5 Hrs

Decision Control and Looping Statements: Introduction to decision control, conditional branching statements, iterative statements, Nested loops, Break and continue statements, goto statements

Arrays: Introduction, Declaration of Arrays, accessing elements of an array, Storing values in arrays, Operations on Arrays. Two dimensional arrays- Operations on two dimensional arrays.

Unit –III 6 Hrs

Strings: Introduction, Operations on strings- finding length of a string, converting characters of a string into uppercase and lowercase, Concatenating two strings, appending a string to another string, comparing two string, reversing a string, String and character Built in functions.

Functions: Introduction, using functions, Function declaration/function prototype, Function definition, Function call, Return statement, passing parameters to a function, Built-in functions. Passing arrays to functions. Recursion.

Unit -IV 6 Hrs

Structures: Introduction: Structure Declaration, Typedef declaration, initialization of structures, accessing members of a structures, copying and comparing structures, array of structures, Structures and functions.

Pointers: Introduction to pointers, declaring pointer variables, pointer expressions and pointer arithmetic, null pointers, passing arguments to functions using pointers, pointers and arrays.

Unit-V 5Hrs

Dynamic memory allocation: Memory allocation process, allocating a block of memory, releasing the used space.

Linked List and Files: Introduction, Linked lists vs Arrays, Memory allocation and deallocation for a linked list, types of linked lists, singly linked lists. Introduction to files, using files in C, Reading data from files, writing data to files, Detecting End-Of-File, Functions for selecting a record randomly, Remove().

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Apply logical skills to solve the engineering problems using C programming constructs.				
CO2	Evaluate the appropriate method/data structure required in C programming to develop solutions by				
	investigating the problem.				
CO3	Design a sustainable solution using C programming with societal and environmental concern by engaging				
	in lifelong learning for emerging technology				
CO4	CO4 Demonstrate programming skills to solve inter-disciplinary problems using modern tools effectively by				
	exhibiting team work through oral presentation and written reports.				

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Refere	Reference Books				
1	1 Programming in C, Reema Thareja, 2018, Oxford University Press. ISBN: 9780199492282.				
2	Algorithmic Problem Solving, Roland Backhouse, 2011, Wiley, ISBN: 978-0-470-68453-5				
3	The C Programming Language, Kernighan B.W and Dennis M. Ritchie, 2015, 2 nd Edition, Prentice Hall,				
	ISBN (13): 9780131103627.				
4	Turbo C: The Complete Reference, H. Schildt, 2000, 4th Edition, Mcgraw Hill Education,				
	ISBN-13: 9780070411838.				

Laboratory Experiments

PART A

Implement the following programs using cc/gcc compiler

Practice Programs:

- a) Familiarization with programming environment: Concept of creating, naming and saving the program file in gedit/vi editor, Concept of compilation and execution, Concept of debugging in GDB environment.
- b) Implementation and execution of simple programs to understand working of
 - Printf, formatted printf, Escape sequences in C.
 - Using formula in a C program for specific computation.
 - Example: computing area of circle, converting Celsius to Fahrenheit, area of a triangle, converting distance in centimeters to inches, etc.
 - Preprocessor directives (#include, #define)
- c) Execution of erroneous C programs to understand debugging and correcting the errors like:
 - Syntax / compiler errors
 - Linker errors
 - Logical errors
 - Semantical errors
- d) Implementation and execution of simple programs to understand working of operators like:
 - Unary
 - Arithmetic
 - Logical
 - Relational
 - Conditional
 - Bitwise

Programming Assignments:

- 1. Assignment statements.
- 2. Control Statements.
- 3. Loop Statements.
- 4. One dimensional Arrays Searching and sorting.
- 5. Two dimensional arrays Matrix operations.
- 6. Functions.

- 7. Recursion.
- 8. Structures.
- 9. Pointers
- 10. Linked Lists
- 11. Dynamic memory allocation
- 12. Files.

PART B

Design and development of a working model using any of the following combination of hardware and software.

- Develop a model that helps the user to monitor whether, health condition, environment parameters etc using Arduino board.
- Develop a simple Robot that can assist the user to perform simple activities home sanitization, lifting things etc using Raspberry pi.
- Hardware interfacing (**Ardunio Board, Finch, Lego WeDo 2.0**) with scratch to design various models to solve simple problems.

Develop applications using Nvidia Jetson Kit.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY WITH LA	AB)
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	10
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted . Each test will be evaluated for 50 Marks , adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 30 MARKS.	30
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) ADDING UPTO 30 MARKS .	30
4	LAB: Conduction of laboratory exercises, lab report, observation and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE REDUCED TO 30 MARKS	30
	MAXIMUM MARKS FOR THE CIE THEORY	100
	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)	
Q. NO.	CONTENTS	MARKS
	PART A	
1	Objective type questions covering entire syllabus	10
	PART B (Maximum of TWO Sub-divisions only)	
2	Unit 1 : (Compulsory)	14
	Unit 2 : Question 3 or 4	14
	Unit 3: Question 5 or 6	14
	Unit 4 : Question 7 or 8	14
	Unit 5 : Question 9 or 10	14
11	Lab Component (Compulsory)	20
	MAXIMUM MARKS FOR THE SEE THEORY	100

Autonomous Institution Affiliated to Visvesvaraya Technological University. Belagavi Approved by AICTE, New Delhi

Semester: II								
	ENGINEERING MECHANICS							
	(Category: F	Professional Core Course)						
		Stream: Civil)						
	`	(Theory)						
Course Code								
Credits: L:T:P : 3:0:0 SEE : 100 Marks								
Total Hours	Total Hours : 40L SEE Duration : 3 Hours							

Unit-I 08 Hrs Resultant of coplanar force system: Basic dimensions and units, Idealisations, Classification of force system, principle of transmissibility of a force, composition of forces, resolution of a force, Free body diagrams, moment, Principle of moments, couple, Resultant of coplanar concurrent force system, Resultant of coplanar nonconcurrent force system, Numerical examples.

Unit – II

Equilibrium of coplanar force system: Equilibrium of coplanar concurrent force system, Lami's theorem, Equilibrium of coplanar parallel force system, types of beams, types of loadings, types of supports, Equilibrium of coplanar non-concurrent force system, support reactions of statically determinate beams subjected to various types of loads, Numerical examples.

Unit –III

Analysis of Trusses: Introduction, Classification of trusses, analysis of plane perfect trusses by the method of joints and method of sections, Numerical examples.

> Unit -IV 08 Hrs

Centroid of Plane areas: Introduction, Locating the centroid of rectangle, triangle, circle, semicircle, quadrant and sector of a circle using method of integration, centroid of composite areas and simple built up sections, Numerical examples.

Unit -V

Moment of inertia of plane areas: Introduction, Polar moment of inertia, polar moment of inertia, product of inertia, radius of gyration, parallel axes theorem, perpendicular axis theorem, moment of inertia of rectangular, triangular and circular areas from the method of integration, moment of inertia of composite areas and simple built up sections,, Numerical examples.

Course	Course Outcomes: After completing the course, the students will be able to		
CO1	Explain the fundamental concepts of Mechanics - Force systems, beams, rigid bodies and geometrical		
	properties.		
CO2	Apply the concepts of mechanics in solving simple engineering problems.		
CO3	Analyze the bodies and pin jointed structures under various forces		
CO4	Demonstrate the applications of mechanics to solve engineering problems.		

Refere	nce Books
1	Mechanics for Engineers, Statics and Dynamics, Beer F.P. and Johnston E. R., McGraw-Hill Inc.,US; 4 th Revised Edition, 1987, ISBN-13: 978-0070045842.
2	Engineering Mechanics Statics and Dynamics, Irving H. Shames, Dorling Kindersley Pvt Ltd. 4 th Edition, 2005, ISBN: 9788177581232
3	Engineering Mechanics: Principles of Statics and Dynamics, Hibbler R. C., Pearson Press. 14 th Edition, 2017, ISBN-13: 978-9332584747.
4	Engineering Mechanics, Timoshenko S, Young D. H., Rao J. V., Pearson Press. 5th Edition, 2017,
	ISBN-13:978-1259062667.

RV Educational Institutions ** RV College of Engineering **

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

5 Engineering Mechanics, Bhavikatti S S, New Age International Private Limited, 8th Edition, 2021, ISBN-13:978-9388818476.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)		
Q. NO.	CONTENTS	MARKS	
	PART A		
1	Objective type questions covering entire syllabus	20	
	PART B		
	(Maximum of TWO Sub-divisions only)		
2	Unit 1 : (Compulsory)	16	
3 & 4	Unit 2: Question 3 or 4	16	
5 & 6	Unit 3: Question 5 or 6	16	
7 & 8	Unit 4: Question 7 or 8	16	
9 & 10	Unit 5: Question 9 or 10	16	
	MAXIMUM MARKS FOR THE SEE THEORY	100	

Approved by AICTE, New Delhi

	Semester: I/II				
COMPUTER AIDED ENGINEERING GRAPHICS					
	(Com	mon for all Program	us)		
(Theory & Practice)					
Course Code	: 22MED13/23		CIE	:	50 Marks
Credits: L:T:P : 1:0:2 SEE : 50 Marks					
Total Hours	: 15(T)+60 (P)		SEE Duration	:	3 Hours

Unit-I 12 Hrs Introduction: Significance of engineering graphics, BIS conventions, drawing sheets, drawing scales, dimensioning, line conventions, material conventions. Symbolic representation of fasteners - bolts and nuts, riveted, welded, brazed and soldered joints, bars and profile sections, electrical & electronic elements and piping. Use of Simple CAD tools: Overview of CAD software [Menu bar, tabs -sketch, modify, dimension, annotation and commands). Orthographic Projections: Principles of orthographic projections - quadrant systems, projection of points (All quadrants); Projection of lines (first angle projection); Projection of planes - inclined to HP and VP (first angle projection). Unit - II **12 Hrs Projection of Solids:** Prisms, pyramids, cylinder & cone with axis inclined to HP and VP (first angle projection).

(Computer Drafting)

Unit -III

Isometric projection: Isometric scale, Isometric Projection of regular solids and combination of two simple solids (Computer Drafting).

3D modelling of components: Conversion of isometric view to orthographic views and sectional views. (Computer Drafting)

Unit -IV

Development of Lateral Surfaces: Introduction to section planes, methods of development - parallel line method and radial line method – prism and cylinder (truncated), pyramid and cone (frustum and truncated) (Computer Drafting).

> Unit-V 18 Hrs

Engineering components

Assembly of Hexagonal bolt with nut (with washer)-3D

Riveted joint: - butt joint with two covering plate (chain riveting): 3D

Union joint, butt muff coupling, socket and spigot joint: 3D

Basic building drawing (Plan and Elevation): 2D Electrical wiring and lighting drawing: 2D

Electronic PCB drawings: 2D

Course	Course Outcomes: After completing the course, the students will be able to		
CO1	Understand the convention and methods of engineering drawing		
CO2	Enhance their visualization skills to develop new products		
CO3	Elucidate the principles of multi-view drawings and pictorial drawings		
CO4	Apply the knowledge of engineering graphics to develop respective (simple) engineering assembly		

Reference Books			
1	Textbook of Engineering Graphics by K R Gopalakrishna, Sudhir Gopalakrishna, Subhash Publishers,		
	40 th Edition, 2018; ISBN 978-9383214204		
2	SOLIDWORKS 2020 for Designers by Sham Tickoo Purdue University, CADCIM Technologies, 18th		
	Edition, 2019; ISBN: 978-1640570849		
3	Machine drawing by N. D. Bhatt, V. M. Panchal, Charotar Publishing House, 50 th Edition, 2016; ISBN:		

	978-9385039232
4	NPTEL :: Mechanical Engineering - Engineering Drawing

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
ASSESSMENT AND EVALUATION PATTERN Theory & quizzes questions are to be framed using Bloom's Taxonomy Levels - Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating	MARKS
WEIGHTAGE	CIE (50%)
Practice session	
Manual Drawing: Practice session	10
Computer Drafting: Practice Session	15
A. TESTS: Each test will be conducted for 50 Marks adding upto 100 marks. Final test marks w reduced to 10	ill be
Test – I for 50 Marks	10
Test – II for 50 Marks	10
B. EXPERIENTIAL LEARNING: Experiential Learning comprises of the modelling and simulation of various engineering components.	15
TOTAL MARKS FOR THE COURSE (Lab Course)	50

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)			
Q. NO.	Q. NO. CONTENTS			
	PART A			
	(TWO questions to be answered out of THREE Questions)			
Unit-I	One Question to be set from the chapters Points, Lines & Planes. Each question	10		
OIIIt-I	carrying 5 marks.	10		
	PART B			
	(TWO questions to be answered out of THREE Questions)			
Unit-II	Question on Projection of Solids (15 marks)	15		
Unit-III	Question on Isometric Projection (15 marks)	15		
Unit-IV	Question on Development of Surfaces (15marks)	15		
	PART C			
	(ONE question to be answered out of FOUR Questions)			
	Question on Assembly of Hexagonal bolt and nut or Riveted Joint	10		
Unit-V	Question on Basic building drawing	10		
Omt-v	Question on Electrical wiring and lighting drawings	10		
	Question on Electronic PCB drawings	10		
	MAXIMUM MARKS FOR THE SEE THEORY 50			

New Delhi

ENGINEERING SCIENCE COURSE

2022 SCHEME (W.E.F 2022 Admission Students)

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

		Semester: I/II			
FUNDAMENTALS OF PROGRAMMING USING C					
	Category:	Engineering Science Course			
(Common to all Programs Except CS Stream Programs)					
		(Theory)			
Course Code	: 22ES14A/24A	CIE	:	100 Marks	
Credits: L:T:P	: 3:0:0	SEE	:	100 Marks	
Total Hours	: 40L	SEE Duration	:	3 Hours	

Unit-I 6Hrs

Introduction to Programming: Definition of a computer. Components of computer system, Programming

Languages. Design and implementation of efficient programs. Program Design Tools: Algorithms, Flowcharts and Pseudocodes. Types of Errors.

Unit – II 8Hrs

Introduction to C: Introduction, structure of a C program, Writing the first program, Files used in a C program. Compiling and executing C Programs using comments, C Tokens, Character set in C, Keywords, Identifiers, Basic Data Types in C, Variables, Constants, I/O statements in C.

Operators in C, Type conversion and type casting, scope of variables.

Unit –III 8Hrs

Decision Control and Looping Statements: Introduction to decision control, conditional branching statements, iterative statements, Nested loops, Break and continue statements, goto statements

Arrays: Introduction, Declaration of Arrays, Accessing elements of an array, Storing values in arrays, Operations on Arrays- Traversing, Inserting and Deletion of element in an array. Two dimensional arrays- Operations on two dimensional arrays.

Unit –IV 10Hrs

Strings: Introduction, Operations on strings- finding length of a string, converting characters of a string into uppercase and lowercase, Concatenating two strings, appending a string to another string, comparing two string, reversing a string. String and character Built in functions.

Functions: Introduction, Using functions, Function declaration/function prototype, Function definition, Function call, Return statement.

Unit-V 8 Hrs

Functions: Passing parameters to a function, Built-in functions. Passing arrays to functions. Recursion.

Structures and Pointers: Introduction: Structure Declaration, Typedef declaration, initialization of structures, accessing members of a structures, structure within structures. Introduction to pointers, declaring pointer variables.

Course	Course Outcomes: After completing the course, the students will be able to		
CO1	Analyse problems and design solution using program design tools.		
CO2	Evaluate the appropriate method/data structure required in C programming to develop solutions by		
	investigating the problem.		
CO3	Design a sustainable solution using C programming with societal and environmental concern by engaging		
	in lifelong learning for emerging technology		
CO4	Demonstrate programming skills to solve inter-disciplinary problems using modern tools effectively by		
	exhibiting teamwork through oral presentation and written reports.		

Reference Books			
1	Programming in C, Reema Thareja, 2018, Oxford University Press. ISBN: 9780199492282.		
2	The C Programming Language, Kernighan B.W and Dennis M. Ritchie, 2015, 2 nd Edition, Prentice Hall, ISBN (13): 9780131103627.		
3	Turbo C: The Complete Reference, H. Schildt, 2000, 4th Edition, Mcgraw Hill Education,		

RV Educational Institutions ** RV College of Engineering **

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	ISBN-13: 9780070411838.
4	Let Us C: Authentic Guide to C PROGRAMMING Language, YashavantKanetkar 17 th Edition,
	2020,BPB PUBN , ISBN- 9789389845686.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)		
Q. NO.	CONTENTS		
	PART A		
1	Objective type questions covering entire syllabus	20	
	PART B		
	(Maximum of TWO Sub-divisions only)		
2	Unit 1 : (Compulsory)	16	
3 & 4	Unit 2 : Question 3 or 4	16	
5 & 6	Unit 3: Question 5 or 6	16	
7 & 8	Unit 4: Question 7 or 8	16	
9 & 10	Unit 5: Question 9 or 10	16	
•	MAXIMUM MARKS FOR THE SEE THEORY	100	

08 Hrs

RV Educational Institutions RV College of Engineering

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Oniversity, Belaga	v. ,				
Semester: I/II					
ELEMENTS OF CIVIL ENGINEERING					
	Category: Engineering Science Course				
(Common to all Programs Except CV Program)					
(Theory)					
Course Code	:	22ES14B/24B	CIE	:	100 Marks
Credits: L: T: P	:	3:0:0	SEE	:	100 Marks
Total Hours	:	40L	SEE Duration	:	3 Hours

Unit-I 08 Hrs

Introduction to Civil Engineering: Surveying, Structural Engineering, Geotechnical Engineering, Hydraulics & Water Resources, Transportation Engineering, Environmental Engineering, Construction planning & Project management.

Analysis of force systems: Concept of idealization, system of forces, principles of superposition and transmissibility, Resolution and composition of forces, Law of Parallelogram of forces, Resultant of concurrent and non-concurrent coplanar force systems, moment of forces, couple, Varignon's theorem, free body diagram, equations of equilibrium, equilibrium of concurrent and non-concurrent coplanar force systems.

Unit – II 08 Hrs

Basic Materials of Construction: Bricks, Cement & mortars, Plain, Reinforced & Pre-stressed Concrete, Structural steel, Construction Chemicals.

Structural elements of a building: foundation, plinth, lintel, chejja, Masonry wall, column, beam, slab and staircase including geometric design.

Plinth area, carpet area, floor area ratio, numerical problems, local building byelaws.

Unit –III

Environmental Engineering: Water Supply and Sanitary systems, Water quality and Security. Urban air pollution -causes and remedial measures, Solid waste management- types, sources, collection and disposal methods, Urban flood- types, causes and control.

Built-Environment: Energy efficient buildings, recycling, Temperature and Sound control inbuildings, Security systems, Smart buildings.

Unit –IV 08 Hrs

Transportation Engineering

Importance and classification of roads and railways, types of highway pavements and its functions. Functions and types of Tunnels, Harbours, Airport. Concepts of Multimodal transportation system- relevance and integration.

Unit –V 08 H

Geotechnical Engineering: Origin and formation of soil, Foundations- Importance, Types, and Factors to be considered in selection of foundations.

Novel areas: Concepts of Automation and Robotics in Construction, Concept of Sustainability in Civil Engineering, Introduction to sustainable development goals, Concept of Smart, Clean and Safe city.

Course Outcomes: After completing the course, the students will be able to			
CO1	Illustrate the various disciplines of civil engineering, materials and elements of a building		
CO2	Outline the concepts of environmental engineering and built environment		
CO3	Compute the resultant of a force system and resolution of a force		
CO4	Identify the concepts and importance of transportation and geotechnical engineering including novel areas		

Reference Books				
1	Principles of Transportation Engineering, <u>Partha Chakroborty</u> , <u>Animesh Das</u> , PHI Learning Pvt. Ltd., 2 nd			
	Edition, 2003, ISBN: 9788120320840.			
2	Engineering Mechanics, Bhavikatti S S, New Age International Private Limited, 8 th Edition, 2021, ISBN-			
	13:978-9388818476.			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

3	Basic Civil Engineering, G.K. Hiraskar, Dhanpat Rai Publications, 1 st Edition, ISBN-13 978-: 9383182022.
4	Basic Civil Engineering and Engineering Mechanics, R.K. Bansal, Laxmi Publications, 3rd Edition, 2015, ISBN-13:978-9380856674
5	Basic Civil Engineering, B.C. Punmia, Ashok Kumar Jain, Arun Kumar Jain, Laxmi Publications; 1st Edition, 2003, ISBN-13: 978-8170084037.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2: Question 3 or 4	16			
5 & 6	Unit 3: Question 5 or 6	16			
7 & 8	7 & 8 Unit 4 : Question 7 or 8				
9 & 10	Unit 5: Question 9 or 10	16			
	MAXIMUM MARKS FOR THE SEE THEORY	100			

Approved by AICTE, New Delhi

Omvorony, Bolage	onivolety, Dolagari					
	Semester: I / II					
	PRINCIPLES OF ELECTRONICS ENGINEERING					
		Category: Enginee	ring Science Course			
	(Common to all Programs Except EC, EI & ET Programs)					
			eory)			
Course Code						
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks	
Total Hours	:	40L	SEE Duration	:	3 Hours	

Unit-I 08Hrs

REGULATED POWER SUPPLY: Block Diagram, Bridge Rectifier with filter, Zener diode as Voltage Regulator, Photo diode, LED.

AMPLIFIERS: CEAmplifier with and without feedback, Multistage amplifier, BJT as a switch, Cutoff and Saturation modes.

Unit – II 08 Hrs

FEEDBACK AND SIGNAL GENERATORS: Feedback Concepts, Advantages of Voltage series Negative feedback, Oscillator Operation, Barkhausen Criterion, RC Phase Shift Oscillator, Wein Bridge Oscillator, Crystal Oscillator (Only Concepts, Working, Waveforms, No mathematical derivations).

OPERATIONAL AMPLIFIERS: Op-Amp basics, Practical Op-amp circuits- Inverting Amplifier, Non Inverting Amplifier, Voltage Follower, Summer, Integrator, Differentiator(Only Concepts, Working, Waveforms, No mathematical derivations)

Unit –III 08 Hrs

BOOLEAN ALGEBRA AND LOGIC CIRCUITS: Binary numbers, Number base conversion and Hexadecimal Numbers, Complements, Basic definitions, Basic theorems and properties of Boolean Algebra, Boolean functions, Canonical and Standard forms, Digital Logic gates, Demorgan's Laws, Ex-OR realization using NAND and NOR, Kmaps (Up-to 4 variable)

COMBINATIONAL LOGIC: Introduction, Design procedure, Adders-Half adder, Full adder

Unit –IV 08 Hrs

COMMUNICATION SYSTEMS: Introduction, Elements of Communication system, Modulation- AM, FM (Only concepts, working principle, waveform and Comparison), Super heterodyne receiver, Digital Communication block diagram.

INTRODUCTION TO MICROPROCESSOR AND MICROCONTROLLER: Microprocessor, Microcontroller (Only concepts, working principle, and Comparison)

Case studies:

- i. Development board based on Microprocessor(Raspberry Pi)
- ii.Development board based on Micro controller(Arduino)

Unit –V 08 Hrs

TRANSDUCERS: Introduction to Transducers: Passive Electrical transducers- Resistive thermometer, Linear variable differential transformer (LVDT), Proximity transducer. Active Electrical transducer- Piezo electric transducer, Hall effect Transducer.

SENSORS: Introduction to sensors: LDR, Biomedical Sensor, Humidity sensor, Ultra sonic Sensor, Touch Sensor (Only concepts, working principle). Case studies: Automatic Headlight System, Pick and Place Robots.

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Comprehending the operations and the characteristics of the Electronic devices for modern day				
	applications.				
CO2	Analyze Different Electronic circuits for various system designs.				
CO3	Demonstrate the different building blocks of Electronics systems.				
CO4	Evaluate the performance of the Electronic Systems to meet given specifications using modern				
	Engineering tools.				

Refer	rence Books
1	Basic Electronics, D P Kothari, I J Nagrath, 2 nd Edition, McGraw Hill Education (India), Private Limited,
	2018.
2	Electronic Devices and Circuit Theory, Robert L Boylestad, Louis Nashelsky, Prentice Hall India
	publication, 11 th Edition, 2009.
3	Digital Logic and Computer Design, Morris Mano, Prentice Hall India publication, 54th Edition, 2007,
	ISBN: 978-81-317-1450-8.
4	Electronic Devices and Circuits, David A. Bell, Oxford University Press, 5 th Edition, 2008, ISBN:
	9780195693409.
5	Microelectronics circuits: Theory and applications, Adel S Sedra& Kenneth C Smith,Oxford University
	Press, 5 th Edition, ISBN: 9780198062257.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2: Question 3 or 4	16			
5 & 6	Unit 3: Question 5 or 6	16			
7 & 8	7 & 8 Unit 4 : Question 7 or 8				
9 & 10	Unit 5: Question 9 or 10	16			
	MAXIMUM MARKS FOR THE SEE THEORY	100			

RV Educational Institutions
RV College of Engineering

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagayi Approved by AICTE, New Delhi

- · · · · · · · · · · · · · · · · · · ·						
Semester: I / II						
	BASICS OF ELECTRICAL ENGINEERING					
		Category: E	ngineering Science Course			
	(Common to all Programs Except EE Program)					
			(Theory)			
Course Code	Course Code : 22ES14D/24D CIE : 100 Marks					
Credits: L:T:P	Credits: L:T:P : 3:0:0 SEE : 100 Marks					
Total Hours	otal Hours : 40L SEE Duration : 3 Hours					

Unit-I 08 Hrs

DC circuits: Ohm's law and Kirchhoff's laws, analysis of series, parallel and series-parallel circuits excited by independent voltage sources. Derivation for Power and energy, Thevenin Theorem & Maximum Power Transfer Theorem applied to the series circuit and its applications.

Unit – II 08 Hrs

AC Fundamentals: Generation of sinusoidal voltage, frequency of generated voltage, average value, RMS value, form, and peak factors. Voltage and current relationship, with phasor diagrams, in R, L, and C circuits.

Single-phase Circuits: Analysis of single-phase ac series circuits R, L, C, RL, RC, RLC, resonance in series RLC circuit

Unit –III 08 Hrs

Three phase circuits: Generation of three-phase power, representation of balanced star and delta connected loads the relation between phase and line values of voltage and current from phasor diagrams, advantages of three-phase systems. Measurement of three-phase power by two-wattmeter method.

Transformers: Single phase transformers: Construction, principle of working, EMF equations, voltage and current ratios, losses, definition of regulation and efficiency.

Unit –IV 08 Hrs

Three Phase Induction motors: Three-phase induction motors. Principle of operation, construction, types. Rotating magnetic field, significance of torque-slip characteristic.

Single Phase Induction Motor: Single-phase induction motor. Construction, Principle of operation, Types of single-phase induction motors.

Unit –V 08 Hrs

Power transmission and distribution: Concept of power transmission and power distribution. through block diagrams only.

Electricity bill: Calculation of electricity bill for domestic consumers.

Equipment Safety measures: Working principle of Fuse and Miniature circuit breaker (MCB), merits and demerits.

Personal safety measures: Electric Shock, Earthing and its types, Safety Precautions to avoid shock.

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Understand the working of electric circuits, transformer, electrical machines, and safety devices.				
CO2	Evaluate the AC & DC circuit parameters and characteristics of A.C machines and transformers				
CO3	Analyze the performance of Electrical machines and methods of power transmission & distribution.				
CO4	Apply the knowledge of electrical equipment, tariff, safety measures for engineering applications.				

Refere	Reference Books					
1	D. C. Kulshreshtha, Basic Electrical Engineering, McGraw-Hill Education, 1st Edition, 2019,					
	ISBN- 13:978-0071328968.					
2	D.P. Kothari and Nagrath Theory and Problems in electrical Engineering, PHI Edition 2016,					
	ISBN-978-81-203-5279-7.					
3	V. K. Mehta, Basic Electrical Engineering, S.Chandand Company Ltd., New Delhi, 2006,					
	ISBN-13: 978-8121908719.					

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

4 V. N. Mittal, Basic Electrical Engineering, TMH Publication, New Delhi, 2006, ISBN: 9780070593572.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2: Question 3 or 4	16			
5 & 6	Unit 3: Question 5 or 6	16			
7 & 8	Unit 4: Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	MAXIMUM MARKS FOR THE SEE THEORY	100			

Approved by AICTE, New Delhi

Semester: 1/11
FUNDAMENTALS OF MECHANICAL ENGINEERING
Category: Engineering Science Course

(Common to all Programs Except ME Stream Programs)

Compostore I/II

(Theory)

Course Code	:	22ES14E/24E	CIE	:	100 Marks
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks
Total Hours	:	40T	SEE Duration	:	3 Hours

Unit-I 8 Hrs
Engineering Materials: Introduction, Classification, Metals (Magnetic and Non-Magnetic), Materials. Properties

& applications: physical, mechanical, optical, electrical and electronics, thermal, Chemical, Properties. Applications: Aerospace, Automotive, Electronic and Biomedical.

Unit – II 8 Hrs

Vision system in Manufacturing: Introduction, Role of human vision in computer interaction, importance, types of computer vision in manufacturing, Architecture of a Vision System, Artificial Intelligent v/s Computer vision, applications of Computer vision in various industries, **A case study:** Computer inspection of Two-stage Soldering Defect in PCB board

Joining process: Welding- Arc welding & amp; Gas welding, defects, types of flames, Soldering and brazing

Unit –III 10 Hrs

Automation in Manufacturing: Automation, Types of Automation, Historical Development, Definitions, Introduction to CNC Machines. Relative Merits and Demerits, CNC- Elements, merits, de-merits.

Robotics in Manufacturing

Robots- Basic Structure of Robots, Robot Anatomy, Complete Classification of Robots, Fundamentals about Robot Technology, Basic Robot Configurations and their Relative Merits and Demerits,

Unit –IV 08 Hrs

Mechanical Drives: Classification of IC Engines, Working of 4-S direct injection engines, Performance characteristics, Classification of gears, velocity ratio for simple and compound gear trains.

Electrical Drives: History, Well to Wheel analysis, Electric vehicles, Configurations, EV/ICEV comparison, Performance, Traction Motor Characteristics, Concept of Hybrid Electric Drive Trains, Classification of hybrid electric vehicles.

Unit-V 6 Hrs

Mechatronics:

Introduction: Evolution of Mechatronic system, measurement & Samp; control system, basic elements of control system, Applications-water level controller, washing machine, Engine management system (EMS), Anti-lock Braking System (ABS).

Energy Sources:

Introduction and applications of Energy sources like Fossil fuels, Nuclear fuels, Hydel, Solar, wind, and bio-fuels, Environmental issues like Global warming and Ozone depletion.

Course Outcomes: After completing the course, the students will be able to			
CO1	Understand the knowledge of various properties of Engineering materials and their Joining processes		
CO2	Elucidate the principles and operation of vision system in product inspection.		
CO3	Illustrate the Energy sources, mechanical drives and electrical drives in industrial applications		
CO4	Understand about Mechatronics, Automation and Robotics in Industrial Applications		

Refere	Reference Books				
1	Elements of Mechanical Engineering, K. R. Gopalakrishna, Subhas Publications, 18th Edition.				
	ISBN 5551234002884				
2	Material Science & Engineering- William D Callister, 2 / 10th Edition, ISBN 978-1-119-45520-2.				
3	Welding Technology (PB), Khanna O P, Dhanpat Rai publication, 4 th Edition, ISBN 9383182555.				
4	Electric and Hybrid Vehicles, Design Fundamentals – Iqbal Husain, CRC Press, 2 nd Edition, 2010.				
	ISBN -13-978-1439811757.				
5	Modern Electric, Hybrid Electric & Design – Electric & Design – Electric, Hybrid Electric & Design – Ele				
	Mehrdad Ehsani, CRC Press, 1 st Edition, 2005. ISBN – 13- 978-0849331541.				
6	Mechatronics – Electronic control systems in Mechanical and Electrical Engineering, William Bolton,				
	Pearson, 6 th Edition, ISBN: 978-1-292-07668-3, 2015.				

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS				
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B					
	(Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2: Question 3 or 4	16				
5 & 6	Unit 3: Question 5 or 6	16				
7 & 8	Unit 4: Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	MAXIMUM MARKS FOR THE SEE THEORY	100				

New Delhi

PROGRAMMING LANGUAGE LAB COURSE

2022 SCHEME (W.E.F 2022 Admission Students)

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Understanding Polymorphism

Approved by AICTE, New Delhi

oniversity, belagavi						
	Semester: I / II					
	INTRODUCTION TO PYTHON PROGRAMMING					
		Category: Pro	ogramming Languago	e Course		
	(Common to all Programs)					
		T)	heory & Practice)			
Course Code	Course Code : 22PL15A/25A CIE : 100 Marks					
Credits: L:T:P : 2:0:1 SEE : 100 Marks						
Total Hours	•	28L+28P		SEE Duration	•	3 Hours

Unit-I 5Hrs Getting Started: Introducing Python, Setting Up Python in windows, Setting Up Python in other Operating Systems, introducing IDLE Types, Variable, and Simple I/O: Using Quotes with Strings, Concatenating and Repeating Strings, Working with Numbers, Understanding the Variable, Getting User Input, Converting Values Unit – II 5Hrs Branching, While Loops, and Program Planning: Using the If statement, Using the else Clause, Using the elif clause, creating while Loops, Avoiding Infinite Loops, Creating Intentional infinite Loops, Using Compound Conditions **Unit –III** For Loops, Strings, and Tuples: Using for Loops, counting with the For Loops, Using Sequence Operators and Functions with Strings, Indexing Strings, Slicing the Strings, Creating the Tuple, Using Tuple Lists and Dictionaries: Using Lists, Using List Methods, understanding when to use the tuple instead of Lists Unit -IV 6Hrs Functions: Creating Functions, Using Parameters and Return Values, Using Keyword Arguments and Default Parameters Values, Using Global Variables and Constants Files and Exceptions: Reading from Text Files, Writing to Text Files, Handling Exceptions Unit -V 6Hrs Software Objects: Defining a Class, Defining Method, Instantiating an Object, invoking a Methods, Using Constructor, Using Class Attributes and Static Methods, Understanding Object Encapsulation Object-Oriented Programming: Using Inheritance to Create New Classes, creating a Base Class, inheriting from a Base Class, extending a Derived Class, Using the Derived Class, extending a Class through Inheritance,

Course Outcomes: After completing the course, the students will be able to				
CO1	Apply fundamental knowledge of Python programming to solve the engineering problems			
CO2	Identify the problems in various application domains and solve them using different concepts of Python			
	programming			
CO3	Design a solution using Python programming with societal, environmental, and other concerns by			
	engaging in lifelong learning for emerging technology			
CO4	Demonstrate the use of modern tools by exhibiting teamwork and effective communication skills			

Refere	ence Books	
1	Michael Dawson, Python programming for the absolute beginner, 3 rd Edition, CENGAGE,	
	ISBN-13:978-93-86668-00-4, ISBN-10: 93-86668-00-9, 2010.	
2	John V. Guttag. Introduction to Computation and Programming using Python, The MIT Press,	
	Cambridge, Massachusetts, London, ISBN: 978-0-262-51963-2, 2013	
3	Mark Summerfield, Programming in Python 3: A Complete Introduction to the Python Language, 2 nd	
	Edition, ISBN-13: 978-0-321-68056-3, ISBN-10: 0-321-68056-1.	
4	Paul Gries, Jennifer Campbell, Jason Montojo, Practical Programming: An Introduction to Computer	
	Science Using Python 3.6, 3 rd Edition, The Pragmatic Bookshelf, ISBN-13: 978-1-6805026-8-8, 2017.	

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

5	Mark Lutz, Learning Python, 5 th Edition, 2013, Oreilly Media, ISBN: 978-1-449-35573-9.
6	Burkhard A. Meier, Python GUI Programming Cookbook, Packt Publishing, 2015,
	ISBN 978-1-78528-375-8.

	Laboratory Experiments				
	PART-A				
1	Introductory Lab-Installation and Working with the Sample Programs				
2	Write a program to find the largest prime factor of a given integer				
3	Write a program to find the height of the ball thrown by a basketball player.				
4	Write a program to find the Golden ratio.				
5	Read a paragraph from the user and count the number of words, and frequency of Words appearing, and search for the specific word.				
6	Consider a sequence of numbers with some missing values. Write a python program for inserting the missing values, and remove some of the values from the sequence. Also, add a few more values to the existing sequence.				
7	Create an Employee 'Employee' Database using dictionaries and perform the insert, search and display operations.				
8	Implement Set and Tuple Operations				
9	Create a text file called my_file.txt with some content, capitalize the first letter of every word, and print				
	the content of the file in reverse order.				
	PROGRAMMING ASSIGNMENT				
Design (SDG)	and develop a python GUI application connected to interested Sustainable Development Goals				

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY WITH L			
#	COMPONENTS	MARKS	
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	10	
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted . Each test will be evaluated for 50 Marks , adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 30 MARKS .	30	
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) ADDING UPTO 30 MARKS .	30	
4	LAB: Conduction of laboratory exercises, lab report, observation and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE REDUCED TO 30 MARKS	30	
	MAXIMUM MARKS FOR THE CIE THEORY	100	

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	CONTENTS	MARKS				
	PART A	·				
1	Objective type questions covering entire syllabus	10				
PART B						
	(Maximum of TWO Sub-divisions only)					

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

2	Unit 1 : (Compulsory)	14
3 & 4	Unit 2: Question 3 or 4	14
5 & 6	Unit 3: Question 5 or 6	14
7 & 8	Unit 4: Question 7 or 8	14
9 & 10	Unit 5: Question 9 or 10	14
11	Lab Component (Compulsory)	20
	MAXIMUM MARKS FOR THE SEE THEORY	100

RV Educational Institutions ** RV College of Engineering **

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Oniversity, Belagavi							
Semester: I/II							
INTRODUCTION TO WEB PROGRAMMING							
		Category: Pro	ogramming Langua	ge Course			
		(Com	mon to all Programs	\mathbf{s})			
		(T	heory & Practice)				
Course Code	:	22PL15B/25B	·	CIE	:	100 Marks	
Credits: L:T:P : 2:0:1 SEE : 100 Marks							
Total Hours	:	28L+28P		SEE Duration	:	3 Hours	

Total Hours	• ZoL+Zor	SEE	Durauon	• 3 Hour	8
	$oldsymbol{\mathrm{U}}_{\mathrm{I}}$	nit-I			5Hrs
Introduction to We	eb Concepts: Fundamentals of	of Web -Introduction to Int	ernet, World	Wide Web, W	/eb
Browsers and Web S	Servers, Uniform Resource L	ocators, MIME (Multipurp	ose Internet N	Mail Extensio	ns),
Hypertext Transfer I	Protocol -HTTP Request Phas	e, HTTP Response Phase.			
	Uni	t – II			6 Hrs
XHTML: Basic sy	ntax, Standard XHTML doc	ument structure, Basic te	xt markup, I	mages, Hype	rtext Links,
Lists, Tables, Forms	s, Frames, Syntactic difference	es between HTML and XH	TML.		
	Uni	t –III			6 Hrs
CSS (Cascading Sty	yle Sheets): Introduction, Lev	els of style sheets, Style sp	pecification for	ormats, Select	or forms,
Property value forms	s, Font properties, List proper	ties, Color, Alignment of t	ext, The box	model, Backg	round
images, The 	and <div> tags, Conflict reso</div>	lution.			
	Uni	t -IV			6 Hrs
The Basics of JavaS	Script: Overview of JavaScri	ot; Object orientation and J	avaScript; Ge	eneral syntact	ic
characteristics; Prim	itives, operations, and expres	sions; Screen output and ke	eyboard input	; Control state	ements,
Object creation and modification; Arrays; Functions; Constructor; Pattern matching using regular expressions.					
	Ur	nit-V			5Hrs
Database access the	rough Web: Relational datab	ases, Introduction to SQL	Architecture	for database	access, The
MvSOL Database Sv	ystem, Programming Example	es and Demonstration of C	onnectivity E	xample code.	

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Understand the basic syntax and semantics of HTML/XHTML				
CO2	Apply HTML/XHTML tags for designing static web pages and forms using Cascading Style Sheet.				
CO3	Develop Client-Side Scripts using JavaScript.				
CO4	Demonstrate web-based applications with database.				

Refere	ence Books
1	Programming the World Wide Web – Robert W. Sebesta, 7th Edition, Pearson Education, 2013,
	ISBN-13:978-0132665810.
2	Web Programming Building Internet Applications – Chris Bates, 3 rd Edition, Wiley India, 2006,
	ISBN: 978-81-265-1290-4.
3	Internet & World Wide Web How to H program – M. Deitel, P.J. Deitel, A. B. Goldberg, 3 rd Edition,
	Pearson Education / PHI, 2004, ISBN-10: 0-130-89550-4
4	The Complete Reference to HTML and XHTML- Thomas A Powell, 4th Edition, Tata McGraw Hill,
	2003. ISBN: 978-0-07-222942-4.

Laboratory Experiments					
1	Familiarization with IDE -Compilation, Debugging and execution considering simple programs.				
2	2 Implementation and execution of simple HTML/XHTML programs to understand working of				
	• Tables				
	• Lists				
	• Frames				

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	• Forms
3	Web page styling with CSS
	• Font Properties
	List Properties
	Color Properties
	Box Model
	Background Image
	Conflict Resolution
4	Web Page validation using JavaScript
	 Data Types, Operators and Expressions
	Object creation, modification and Constructors
	Screen output and keyboard input
	Pattern matching using regular expressions
5	Web application using JavaScript with MySQL

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY WITH LA	
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	10
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted . Each test will be evaluated for 50 Marks , adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 30 MARKS .	30
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) ADDING UPTO 30 MARKS .	30
4	LAB: Conduction of laboratory exercises, lab report, observation and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE REDUCED TO 30 MARKS	30
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	10			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	14			
3 & 4	Unit 2: Question 3 or 4	14			
5 & 6	Unit 3: Question 5 or 6	14			
7 & 8	7 & 8 Unit 4 : Question 7 or 8				
9 & 10	Unit 5 : Question 9 or 10	14			
11	Lab Component (Compulsory)	20			
	MAXIMUM MARKS FOR THE SEE THEORY	100			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Offiversity, Delage	AVI						
			Semester: I/II				
BASICS TO JAVA PROGRAMMING							
		Category: Pro	ogramming Language Course				
		(Com	mon to all Programs)				
		(T)	heory & Practice)				
Course Code : 22PL15C/25C CIE : 100 Marks							
Credits: L:T:P : 2:0:1 SEE : 100 Marks							
Total Hours : 28L+28P SEE Duration : 3 Hours							

			Unit-I				6 Hrs
An Overview	of Java: Object	ct-Oriented	Programming,The J	ava Class Libra	ries, Data Ty	es, Variables	
Control Statem	•		2			·	
			Unit – II				5 Hrs
Introducing	Classes:	Class	Fundamentals,	Declaring	Objects,	Assigning	Object
Reference Vari	ables, Introduc	cing Metho	ds, Constructors, Me	ethod overloadi	ng.		
			Unit –III				6 Hrs
Inheritance:							
Inheritance Bas	sics, Using Sup	er, Method	l Overriding, Abstra	ct Classes, Usir	ng final with I	nheritance.	
			Unit -IV				5 Hrs
Packages :Def	ining a Packag	e, Importin	g Packages,				
Interfaces : De	Interfaces: Defining an Interface, Default Interface Methods						
Exception Hai	Exception Handling : Exception-Handling Fundamentals – Exception Classes, Exception Types.						
			Unit-V				6 Hrs
Multithreaded	Programmi	ng: The J	ava Thread Model	, The Main	Thread , Crea	ting a Threa	d, Creating
Multiple Threa	ds, Thread Pri	orities				-	

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Explore the fundamentals of Object-oriented concepts and apply features of object-oriented programming				
	of Java to solve real world problems.				
CO2	Design Classes and establish relationship among Classes for various applications from problem				
	definition.				
CO3	Analyze and implement reliable object-oriented applications using Java features such as Exception				
	Handling, Multithreaded Programming, Collection framework and Strings,				
CO4	Design and develop real world applications using Object Oriented concepts and Java programming				

Refere	nce Books
1	The Complete Reference - Java , Herbert Schildt , 10 th Edition , 2017, McGraw Hill Education
	Publications, ISBN-10: 9789387432291, ISBN-13: 978-9387432291
2	Introduction to Java Programming, Y Daniel Liang, 10 th Edition, 2014, Comprehensive Version Pearson
	education, ISBN 10: 0-13-376131-2, ISBN 13: 978-0-13-376131-3
3	Core Java – Vol 1, Cay S.Horstmann, 10 th Edition, 2016, Pearson Education, ISBN-10: 9332582718,
	ISBN-13: 978-9332582712
4	Object-Oriented Analysis And Design With applications, Grady Booch , Robert A Maksimchuk, Michael
	W Eagle, Bobbi J Young, 3 rd Edition, 2013, Pearson education, ISBN:978-81-317-2287-9.

Multithreading

New Delhi

	Laboratory Experiments (ME stream)					
	PART A					
Familia	arization with IDE - compilation, debugging and execution considering simple Java programs.					
Implen	nent programs on Fundamentals of Java Programming: Data Types, Variables and Arrays,					
Operato	ors, Control Statements.					
1	Classes, Objects and Methods					
1	 Create user defined classes and objects. 					
	 Define class members and their properties. 					
	 Define Methods, constructors, demonstrate method / constructor overloading. 					
	 Make necessary changes to the classes by making all the instance variables private and 					
	adding getter and setter methods for the instance variables.					
2	Inheritance and Polymorphism					
	 Create user defined classes and objects using Inheritance concept 					
	 Define class members to demonstrate Polymorphism 					
3	Package and Interfaces					
	 Creation of simple package. 					
	 Accessing a package/ use of different Access Specifiers 					
	Implementing interfaces					
4	Exception handling					
	Handling predefined exceptions.					

Design and develop an application to demonstrate appropriateObject-Oriented conceptsand Core Java programming features:

Develop standalone Java application to demonstrate the important features of Object-Oriented approach (Abstraction/Encapsulation/Data Hiding, Inheritance and Polymorphism) and also the important features of Java such as Inheritance, Interfaces, Packages, Exception Handling, Multithreaded Programming and Collection Framework

PART B

Create multiple threads: a) Using Thread class. b) Using Runnable interface

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY WITH LA		
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	10
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted . Each test will be evaluated for 50 Marks , adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 30 MARKS .	30
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) ADDING UPTO 30 MARKS .	30
4	LAB: Conduction of laboratory exercises, lab report, observation and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE REDUCED TO 30 MARKS	30
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS				
	PART A				
1	Objective type questions covering entire syllabus	10			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	14			
3 & 4	Unit 2: Question 3 or 4	14			
5 & 6	Unit 3: Question 5 or 6	14			
7 & 8	Unit 4: Question 7 or 8	14			
9 & 10	Unit 5: Question 9 or 10	14			
11	Lab Component (Compulsory)	20			
	MAXIMUM MARKS FOR THE SEE THEORY	100			

New Delhi

Semester: I/II							
INTRODUCTION TO C++ PROGRAMMING							
		Category: Pro	ogramming Language	e Course			
(Common to all Programs)							
		(T	heory & Practice)				
Course Code	Course Code : 22PL15D/25D CIE : 100 Marks						
Credits: L:T:P	:	2:0:1		SEE	:	100 Marks	
Total Hours	:	28L+28P		SEE Duration	:	3 Hours	

Unit – I 5 Hrs Introduction to Object Oriented Programming Concepts: Principles of object oriented programming: Procedure oriented programming Vs object oriented programming, Underlying concepts of object oriented programming, Benefits and applications of object oriented programming. The Origins of C++, A Closer Look at the I/O Operators, The bool Data Type, The C++ Headers, Namespaces, C++ programming fundamentals, Introducing C++ Classes & objects, Constructors and Destructors, The C++ Keywords.

Unit – II

Classes & Objects: Discovering Classes, Interfaces, Encapsulation, Abstraction, Member Functions, Classes and Objects, Object has an interface, Structures and Classes, Unions and Classes, Friend Functions, Friend Classes, Inline Functions, Static Class Members, Static Data, Static Member Functions, Constructors and Destructors, The Scope Resolution Operator, Nested Classes, Local Classes, Passing Objects to Functions, Returning Objects, Object Assignment and Accessing Data Fields.

> Unit – III 6 Hrs

Inheritance and Polymorphism: Inheritance, Access Control in derived classes, Encapsulation & protected access, Advanced operations with inheritance, Function Overloading and Default arguments, Polymorphism, operator overloading, Virtual functions and Abstract Classes.

> Unit - IV 5 Hrs

Exception Handling: Exception Handling Fundamentals, Catching Class Types, Using Multiple catch Statements, Handling Derived-Class Exceptions, Exception Handling Options, Catching All Exceptions, Understanding terminate() and unexpected()

Unit – V

Generic Programming: Template Functions, compile-time Polymorphism, Template Classes, Template Linked List, Nontype Template Arguments, Setting Behavior Using Template Arguments, Standard Template Library (STL) of C++: Template Class "vector", Template Class "map", Template Class "list", Iterators and Algorithms The Standard Function Library and The Standard C++ Class Library.

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Exhibit program design and implementation competence through the choice of appropriate object oriented				
	concept and explain the benefits of the same.				
CO2	Design and analyse the classes and objects using object oriented programming paradigm, for real world				
	case studies.				
CO3	Implement the solutions for real-time problems using Object Oriented concepts.				
CO4	Apply and analyze the advanced features of C++ specifically templates and operator overloading which				
	influences the performance of programs.				

Refere	Reference Books				
1	The Complete Reference C++, Herbert Schildt, 5 th Edition, 2020, McGrawHill,				
	ISBN: 9780070532465.				
2	C++ How to Program, Paul Deitel and Harvey Deitel, 8th Edition, 2018, Prentice Hall,				
	ISBN: 9780132990448.				

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

3	Big C++, Cay S. Horstmann, Timothy Budd, 1st Edition, 2020, Wiley India (P.) Ltd ISBN: 9788126509201.							
4	Thinking in C++-Introduction to standard C++, Bruce Eckel, http://iacs-courses							
	seas.harvard.edu/courses/cs207/resources/TIC2Vone.pdf Vol 1, 2 nd Edition, 2002, Pearson, ISBN:10: 8131706613							

	Laboratory Experiments
1	Implement the following programs using cc/gcc compiler
1	Implement the following requirement: An electricity board charges the following rates to domestic users
	to discourage large conceptions of energy.
	0 - 100 units : Rs 1.50 per unit
	101 - 200 units : Rs 1.80 per unit
	Beyond 200 units: Rs 2.50 per unit
	All users are charged a minimum of Rs 50. If the total amount is more than Rs 300 then an additional
	surcharge of 15% is added. The C++ program must read the names of users, number of units consumed
	and display the calculated charges.
2	Design and implement a class STUDENT with attributes like: roll number, name, 3 tests marks.
	Implement member functions
	a. to read student data like name and test marks,
	b. to compute average marks (considering best two out of three test marks) and
	c. to display the student information.
	Declare an array of STUDENT objects in the main function, use static data member to generate unique
	student roll number.
3	Design and implement a C++ program using class to process Shopping list for a departmental store. The
	list include details such as the Code No., Name, Price of each item and operations like adding, deleting
	items to the list and printing the total value of an order.
4	Design and implement a C++ class POLYNOMIAL. The internal representation of a POLYNOMIAL is
	an array of terms. Each term contains a coefficient and an exponent, e.g., the term $2x^4$ has the coefficient 2
	and the exponent 4. Implement a class containing constructors and the following capabilities:
	a. Overload the addition operator (+) to add two polynomials
	b. Overload the assignment operator to assign one polynomial to another
	c. Overload the multiplication operator (*) to multiple two polynomials
	d. Overload the >> operator to enable input through in.
	e. Overload the << operator to enable output throughout.
	f. Member function to compute value of the polynomial, given the value of x.
5	Design and implement a C++ program to create an abstract class - SHAPE to represent any shape
	in general. The class should have two pure virtual functions to read dimensions and to compute
	the area. Create three derived classes - CIRCLE, RECTANGLE, and SQUARE by inheriting the
	features of class SHAPE. Implement the functions to read and compute the area. Add
	constructors, method to display the results as required. (Assume appropriate attributes).
6	Write a C++ program using generic class to implement queue of integers, floating point numbers and
	strings. Support the queue operations like insert, delete and display in the queue class.
7	Write a C++ program to create a vector of integers. Copy the vector contents into a list, sort the contents,
	then copy selected items into another vector (like elements less than 10 etc).
8	Write a template function to search for a given key element from an array. Illustrate how you perform
	search in integer, character as well as double arrays using the same template function.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY WITH LAB)		
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	10
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted . Each test will be evaluated for 50 Marks , adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 30 MARKS .	30
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) ADDING UPTO 30 MARKS .	30
4	LAB: Conduction of laboratory exercises, lab report, observation and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE REDUCED TO 30 MARKS	30
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	10			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	14			
3 & 4	Unit 2: Question 3 or 4	14			
5 & 6	Unit 3: Question 5 or 6	14			
7 & 8	Unit 4: Question 7 or 8	14			
9 & 10	Unit 5 : Question 9 or 10	14			
11	Lab Component (Compulsory)	20			
	MAXIMUM MARKS FOR THE SEE THEORY	100			

New Delhi

EMERGING TECHNOLOGY COURSE

2022 SCHEME (W.E.F 2022 Admission Students)

08 Hrs

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Offiversity, Belagavi	Offiversity, belagavi					
	Semester: I/II					
		INTRODUCTIO	N TO INTERNET	OF THINGS		
		Category	: Emerging Technol	ogies		
		(Com	mon to all Program	s)		
			(Theory)			
Course Code : 22EM101/201 CIE : 100 Marks						100 Marks
Credits: L:T:P : 3:0:0 SEE : 100 Marks						100 Marks
Total Hours : 40L SEE Duration : 3 Hours						3 Hours

Unit – I 09 Hrs

Applications: Asset Management, Biometrics Identification, Smart Home, Bird Strike Avoidance Radar System, River Navigation Safety System.

Introduction - IoT Concept, Related Concepts to IoT, The Intrinsic Characteristics of IoT, IoT Development and Application, Future IoT Vision.

Architecture and Fundamentals-Research on IoT Architecture, Ubiquitous IoT (U2IoT) Architecture, Layered Models for IoT, Layered Model Proposed and Social Attributes Discussion for U2IoT, IoT Development Phases Summary and Discussion, Science Category and Supporting Technologies for IoT.

Unit – II 07 Hrs

Sensors and Actuators for IoT - Introduction, Sensors and Actuators, Ubiquitous Sensing, Networking and Communications, Management and Data Centers (M&DCs), Case Study for IoT.

Unit – III 08 Hrs

Ubiquitous Internet of Things- Introduction, Local Internet of Things, Industrial Internet of Things, National Internet of Things, Transnational Internet of Things Application, Global Application IoT and a Typical Example.

Unit – IV 08 Hrs

Resource Management - Introduction, Object Coding and Resolving, Resolving Discussion for nID Objects, Resource Naming, Recourse Addressing, Resource Discovery, Resource Allocation, Resource Management Scheme in U2IoT.

Unit – V

Security and Privacy for IoT-Introduction, Security Challenges in U2IoT, The Security Framework for U2IoT, Hybrid Authentication and Hierarchical Authorization Scheme, Entity Activity Cycle—Based Security Solution.

Course	Course Outcomes: After completing the course, the students will be able to					
CO1	Apply the knowledge of IoT and related science to solve the engineering problems					
CO2	Analyse the applicability of IoT in various application domains					
CO3	Design a sustainable solution using IoT with societal and environmental concern by engaging in lifelong					
	learning for emerging technology					
CO4	Demonstrate the solutions using various IoT principles by exhibiting team work and effective					
	communication.					

Refere	nce Books
1	Huansheng Ning - Unit and Ubiquitous Internet of Things, CRC Press; 1st edition,2018, ISBN-10:
	113837475X, ISBN-13 : 978-1138374751
2	Hakima Chaouchi - The Internet of Things Connecting Objects to the Web, Wiley-ISTE; 1st
	Edition, 2010, ISBN-10:1848211406, ISBN-13: 978-1848211407
3	Adrian McEwen, Hakim Cassimally - Designing the Internet of Things, Wiley,1st edition,2013,
	ISBN-10: 111843062X ,ISBN-13: 978-1118430620
4	Dawid Borycki - Programming for the Internet of Things PHI Learning Pvt.Ltd,Microsoft
	Press,2019,ISBN-10: 9387472558,ISBN-13: 978-9387472556

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS				
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5 & 6 Unit 3 : Question 5 or 6					
7 & 8 Unit 4 : Question 7 or 8					
9 & 10	Unit 5: Question 9 or 10	16			
	MAXIMUM MARKS FOR THE SEE THEORY	100			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Offiversity, Delaga	Offiversity, Delagavi				
Semester: I/II					
INTRODUCTION TO DRONE TECHNOLOGY					
		Category: Eme	rging Technologies		
		(Common t	o all Programs)		
		(T	heory)		
Course Code : 22EM102/202 CIE : 100 Marks					
Credits: L:T:P : 3:0:0 SEE : 100 Marks					
Total Hours	SEE Duration : 3 Hours				

Unit-I 08 Hrs Basics of Drones: History of UAVs, Need of unmanned aerial systems, India and drones, Overview of UAV Systems-System Composition, Classes and Missions of UAVs-Classification of UAVs based on size, range and endurance. Unit – II 08 Hrs Aerodynamics of Drones: Airfoil nomenclature, Generation of Lift on Airfoils and Wings, Basic aerodynamics of fixed, rotary and flapping wing UAVs. Unit –III Drones Propulsion Systems: Thrust Generation, Powered Lift, Sources of Power for UAVs- Piston, Rotary, Gas turbine engines, electric or battery powered UAVs. Unit –IV Drone Airframe Systems: Loads on UAVs, Materials for UAV construction, and Construction Techniques Unit -V Sensors and Payloads: Barometers, Accelerometer, Magnetometer, RADAR and range finder, Non-dispensable and dispensable Payloads- Optical, electrical, weapon, imaging payloads. **Regulations:** DGCA regulations, Operational and procedural requirements, No drone zones.

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Appreciate and apply the basic principles of aviation in the development of aerospace vehicles				
CO2	CO2 Survey the important fundamental factors that significantly influence the performance of aerospace				
	vehicles				
CO3	Evaluate the various factors affecting the performance of flight vehicles				
CO4	Criticize the design strategy involved in the development of aerospace vehicles				

Refere	nce Books
1	Unmanned Aircraft Systems UAV design, development and deployment, Reg Austin, 1st Edition, 2010,
	Wiley, ISBN 9780470058190.
2	Introduction to UAV Systems, Paul G Fahlstrom, Thomas J Gleason, 4th Edition, 2012, Wiley, ISBN:
	978-1-119-97866-4
3	Advances in Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy, Kimon P.
	Valavanis, 1st Edition, 2007, Springer ISBN 9781402061141
4	Design of Unmanned Air Vehicle Systems, Dr. Armand J. Chaput, 3 rd Edition, 2001, Lockheed Martin
	Aeronautics Company, ISBN: 978-1-60086-843-6

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES	20
	WILL BE THE FINAL QUIZ MARKS.	
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity	40

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying,	
	Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be	
	evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE	
	REDUCED TO 40 MARKS.	
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and	
	practical implementation of the problem. Case study-based teaching learning (05), Program	40
	specific requirements (05), Video based seminar/presentation/demonstration (10),	40
	MATLAB (20) ADDING UPTO 40 MARKS.	
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS				
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B					
	(Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5 & 6 Unit 3: Question 5 or 6						
7 & 8	Unit 4: Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
·	MAXIMUM MARKS FOR THE SEE THEORY	100				

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Chivoloty, Bolagavi							
Semester: I/II							
	•	BIOINSPIRED	ENGINEERING	•			
		Category: Emerg	ging Technologies				
	(Common to all Programs)						
		(The	eory)				
Course Code	Course Code : 22EM103/203 CIE : 100 Marks						
Credits: L:T:P	Credits: L:T:P : 3:0:0 SEE : 100 Marks						
Total Hours	:	40L	SEE Duration	:	3 Hours		

Unit-I 07 Hrs Engineering: Prologue Introduction to Bio-inspired to cellular entities. Stem cells; types and applications. Synthetic Biology: Bottom-up' 'top-down' engineering and approaches. Synthetic/ artificial life. Biological Clock, Genetic Algorithms Unit – II 08 Hrs

Principles of bioinspired materials: Biological and synthetic materials, Self-assembly, hierarchy and evolution. Biopolymers, Bio-steel, Bio-composites, multi-functional biological materials. Thermal Properties. Antireflection and photo-thermal biomaterials, Microfluidics in biology, Invasive and non-invasive thermal detection inspired by skin

Unit –III 10 Hrs

Lessons from Nature-Bioinspired Materials and mechanism: Firefly-Bioluminescence, Cockleburs –Velcro, Lotus leaf - Self-cleaning materials, Gecko - Gecko tape, Whale fins - Turbine blades, Box Fish / Bone - Bionic car, Shark skin - Friction reducing swimsuits, Kingfisher beak - Bullet train, Coral - Calera cement, Morpho butterfly- Structural color, Namib beetle- Water collecting, Termite mound passive cooling, Birds/Insects- flights/ aerodynamics, Mosquito inspired micro needle.

Unit -IV 07 Hrs Biomedical Inspiration-Concept and applications: Organ system-Circulatoryartificial blood, artificial heart, pacemaker. Respiratoryartificial lungs. Excretory-Artificial kidney Artificial Support and replacement of human organs: artificial liver Total joint replacements- artificial limbs. Visual prosthesis -artificial eye/ bionic eye

Unit –V 08 Hrs

for Biomimetics: Inventions Human Innovation: Photosynthesis Photovoltaic in nature and cells. Bionic/Artificial leaf. Bio-ink and 3D-Bioprinting. Biosensors: Artificial tongue nose. Biomimetic echolation. Insect foot adaptations adhesion. Thermal insulation storage materials. Bees and Honeycomb Structure. Artificial Intelligence, Neural Networking and robotics.

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Elucidate the concepts and phenomenon of natural processes				
CO2	Apply the basic principles for design and development of bioinspired structures				
CO3	Analyse and append the concept of biomimetics for diverse applications				
CO4	Designing technical solutions by utilization of bioinspiration modules.				

Refere	ence Books					
1	Yoseph Bar-Cohen. Biomimetics: Biologically Inspired Technologies D. Floreano and C.Mattiussi, "Bio-					
	Inspired Artificial Intelligence", CRC Press, 2018. ISBN: 9781420037715.					
2	Guang Yang, Lin Xiao, and Lallepak Lamboni. Bioinspired Materials Science and Engineering. John					
	Wiley, 2018. ISBN: 978-1-119-390336.					
3	M.A. Meyers and P.Y. Chen. Biological Materials, Bioinspired Materials, and Biomaterials					
	Cambridge University Press, 2014 ISBN 978-1-107-01045.					
4	Tao Deng. Bioinspired Engineering of Thermal Materials. Wiley-VCH Press. 2018. ISBN:					

RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

978-3-527-33834-4.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS				
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5 & 6	Unit 3: Question 5 or 6	16			
7 & 8	Unit 4: Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	MAXIMUM MARKS FOR THE SEE THEORY	100			

Semester: I/II							
GLOBAL CLIMATE CHANGE							
		_ ·	: Emerging Technol	_			
		(Com	mon to all Program	s)			
			(Theory)				
Course Code	Course Code : 22EM104/204 CIE : 100 Marks						
Credits: L:T:P	Credits: L:T:P : 3:0:0 SEE : 100 Marks						
Total Hours	:	40L		SEE Duration	:	3 Hours	

Unit-I	08 Hrs
Introduction to the climate change: Climate, climate change, temperature anomalies, radiation	and energy
balance	
Unit – II	08 Hrs
Simple Climate models: Source of energy, energy loss, greenhouse effect, carbon cycle, atmo	sphere-land-
biosphere–ocean carbon exchange	
Unit –III	08 Hrs
Prediction and impacts of climate change: Factors that control emissions, emissions scenarios, phys	ical impacts,
abrupt climate changes	
Unit –IV	08 Hrs
Strategies to mitigate climate change: Adaptation: technology, politics personal actions,	conventional
regulations, market-based regulations, information and voluntary methods	T
Unit –V	08 Hrs
Climate change conventions: Technical summary of IPCC reports, conference of parties and cliprotocols	mate change

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Understand climate change and the global climate crisis				
CO2	Assess the factors influencing the climate change				
CO3	Analyse climate change data				
CO4	Articulate climate change mitigation strategies				

Refere	Reference Books							
1	Introduction to Modern Climate Change, Andrew E. Dessler, Cambridge University Press, ISBN-10-							
	1108793878, ISBN-13- 978-1108793872, 3rd edition, 2021							
2	Introduction to Climate Science, Andreas Schmittner, Oregon State University,							
	https://open.oregonstate.education/climatechange/							
3	IPCC — Intergovernmental Panel on Climate Change							
	https://www.ipcc.ch							
4	UNFCC – United nations framework convention on climate change							
	https://unfccc.int							

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be	40

	evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS				
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2: Question 3 or 4	16			
5 & 6	Unit 3: Question 5 or 6	16			
7 & 8	Unit 4: Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	MAXIMUM MARKS FOR THE SEE THEORY	100			

RV Educational Institutions ® RV College of Engineering ®

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Offiversity, belagavi									
Semester: I/II									
ELEMENTS OF BLOCKCHAIN TECHNOLOGY									
	Category: Emerging Technologies								
(Common to all Programs)									
		(The	ory)						
Course Code	Course Code : 22EM105/205 CIE : 100 Marks								
Credits: L:T:P	Credits: L:T:P : 3:0:0 SEE : 100 Marks								
Total Hours	:	36L	SEE Duration	:	3 Hours				

Unit-I 7 Hrs Blockchain Fundamentals: Defining Blockchain, Elements of Blockchain, Qualities of Blockchain, Blockchain and Economics, Blockchain Technology, Origins of Bitcoin and Blockchain, Types of Blockchains, Business and Blockchain, Use cases, Ethical issues with Blockchain. Unit - II Blockchain Technology: Blockchain technology stack, monetizing the Blockchain, Blockchain Wallet, Sorting Blocks, Consensus, Blockchain as a Service, IT Use cases for Blockchain-Storage, IPFS, Edge Computing, Web 3.0 and Blockchain, Obstacles in Blockchain. Unit –III 7 Hrs Bitcoin and Crypto-assets: Introduction to Crypto-assets, Crypto-currencies, Crypto-commodities, Cryptotokens, Bitcoin, Ethereum, Digital Token Exchanges, Financial modelling for cryptocurrencies. Unit -IV 7 Hrs Ethereum and Smart Contracts: Basics of Ethereum, Ethereum Virtual Machine, Ether, Smart Contract, Onchain versus Off-chain versus Side chain, Mining Ethereum. Unit-V Blockchain Use Cases: Cross-functional Blockchain Use cases – Identity management, Asset Tracking, IoT integration; Functional Area Blockchain Use Cases for Business - Finance, Marketing/Sales, Supply Chain

integration; Functional Area Blockchain Use Cases for Business – Finance, Marketing/Sales, Supply Chain Management, Accounting, Human Resources; Use Cases for Specific Industries – Insurance, Real Estate, Healthcare, Energy.

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Apply the knowledge of Blockchain in some of the Industrial Use Cases				
CO2	Analyse the working of some of the Blockchain solutions in Business Use Cases				
CO3	Use some of the modern tools of Blockchain, such as Ethereum to solve real world problems				
CO4	Appreciate ethical implications of using Blockchain technologies				
CO5	Assess the impact and importance of the Blockchain technologies on social security				

Text B	Text Books					
1	Basics of Blockchain - A guide for building literacy in the economics, technology and business of					
	blockchain, Bettina Warburg, Bill Wagner, and Tom Serres, 2019, Animal Ventures LLC, Edition 1.0					
Refere	nce Books					
1	Mastering Blockchain - Distributed ledger technology, decentralization and smart contracts, Imran					
	Bashir, 2018, Packt, Second Edition					

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying,	40		

RV Educational Institutions ** RV College of Engineering **

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS				
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B					
	(Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5 & 6	Unit 3: Question 5 or 6	16				
7 & 8 Unit 4 : Question 7 or 8						
9 & 10	Unit 5: Question 9 or 10	16				
	MAXIMUM MARKS FOR THE SEE THEORY	100				

Institution Affiliated to Visvesvaraya Technological

Approved by AICTE, New Delhi

University, Belagavi Semester: I/II

INTRODUCTION TO CYBER SECURITY **Category: Emerging Technologies** (Common to all Programs)

(Theory)

$(Incor_{\mathcal{I}})$						
Course Code	:	22EM106/206		CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	40L		SEE Duration	:	3 Hours

Unit-I 8 Hrs

Introduction to Cyber Space: History of Internet, History and evolution of Information Security and cyber-Security, introduction to cyber space and information security, computer ethics and security policies.

Introduction to Cybercrime: Definition and Origins of the Word, Cybercrime and Information Security, who are Cybercriminals? Classifications of Cybercrimes, An Indian Perspective, Hacking and Indian

Laws., Global Perspectives. Different Types of Cyber Crimes, Scams and Frauds

Unit – II 8 Hrs

Cyber Offenses: How Criminals Plan Them: Introduction, how criminals plan the attacks, Social Engineering, Cyber Stalking, Cyber caafe& cybercrimes, Botnets: The fuel for cybercrime, Attack Vector.

Attacker Techniques and Motivations: How Hackers Cover Their Tracks (Anti-forensics), How and Why Attackers Use Proxies, Tunnelling Techniques, Fraud Techniques.

> Unit –III 8 Hrs

Social Media Overview and Security

Introduction to Social networks. Types of social media, Social media platforms, Social media monitoring, Hashtag, Viral content, Social media marketing, Social media privacy, Challenges, opportunities and pitfalls in online social network, Security issues related to social media, Flagging and reporting of inappropriate content, Laws regarding posting of inappropriate content,

Best practices for the use of social media, Case studies.

Unit -IV 8 Hrs

E - Commerce and Digital Payments: Definition of E- Commerce, Main components of E-Commerce, Elements of E-Commerce security, E-Commerce threats, E-Commerce security best practices, Introduction to digital payments, Components of digital payment and stake holders, Modes of digital payments- Banking

Cards, Unified Payment Interface (UPI), e-Wallets, Unstructured Supplementary Service Data (USSD), Aadhar enabled payments, Digital payments related common frauds and preventive measures. RBI guidelines on digital payments and customer protection in unauthorised banking transactions. Relevant provisions of Payment Settlement Act,2007

> **Unit-V** 8 Hrs

Digital Devices security, Tools, and Technologies for Cyber Security: End Point device and Mobile phone security, Password policy, Security patch management, Data backup, Downloading and management of thirdparty software, Device security policy, Cyber Security best practices, Significance of host firewall and Antvirus, Management of host firewall and Anti-virus, Wi-Fi security, Configuration of basic security policy and permissions.

Cours	Course Outcomes: After completing the course, the students will be able to					
CO1	Understand the cyber-attacks and their principles for different domains- social media, E-commerce, and digital					
	devices.					
CO2	Analyse vulnerabilities in different domains that the attacker capitalizes for attack.					
CO3	Applydifferent attacking techniques that make use of vulnerabilities available in various domains.					
CO4	Evaluate methods to cover different vulnerabilities to safeguard the systems against cyber-attacks.					
CO5	Investigate modern tools and technologies available to mitigate cybercrime attacks.					

Refere	ence Books
1	Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal Perspectives by
	SumitBelapure and Nina Godbole, Wiley India Pvt. Ltd, 1st Edition 2011, Reprint 2022, ISBN:978-81-265-
	2179-1.
2	Cyber Security Essentials by James Graham, Richard Howard, Ryan Olson, CRC Press, 2011 Taylor and
	Francis Group. ISBN13: 978-1-4398-5126-5.
3	Information Systems Security: Security Management, Metrics, Frameworks and Best Practices by Nina
	Godbole, 2 nd Edition, Wiley publishers, 2017. ISBN: 9788126564057.
4	Network Security Bible, Eric Cole, Ronald Krutz, James W. Conley, 2 nd Edition, John Wiley & Sons,
	2005, ISBN: 978-0764573972.
5	Security in the Digital Age: Social Media Security Threats and Vulnerabilities by Henry A. Oliver,
	Create Space Independent Publishing Platform, Pearson, 2001, ISBN: 9781516821020.
6	Electronic Commerce by Elias M. Awad, Pearson, 1 st edition, 2001, ISBN: 978-0130193223.
7	Cyber Laws: Intellectual Property & E-Commerce Security by Kumar K, Dominant Publishers & Distributors,
	2011, ISBN: 978-8187336891.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.					
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5 & 6	Unit 3: Question 5 or 6	16			
7 & 8	Unit 4: Question 7 or 8	16			
9 &	Hair 5. Occasion 0 on 10	16			
10	Unit 5: Question 9 or 10				
	100				

New Delhi

Semester: I/II								
GREEN BUILDINGS								
	Category: Emerging Technologies							
	(Common to all Programs)							
			(Theory)					
Course Code	:	22EM107/207		CIE	:	100 Marks		
Credits: L:T:P	Credits: L:T:P : 3:0:0 SEE : 100 Marks							
Total Hours	Total Hours : 40L SEE Duration : 3 Hours							

Unit-I 08 Hrs

Introduction to the concept of cost effective construction: Uses of different types of materials and their availability -Stone and Laterite blocks-M Sand- Burnt Bricks- Concrete Blocks- Stabilized Mud Blocks- Lime-Pozzolana Cement- Gypsum Board.

Light weight beams- Fiber Reinforced Cement Components- Fiber Reinforced Polymer Composite- Bamboo.

Availability of different materials- Recycling of building materials - Brick- Concrete- Steel- Plastics -Environmental issues related to building materials.

Unit - II

Environment friendly and cost effective Building Technologies: Different substitute for wall construction-Cavity Wall.

Ferro Cement and Ferro Concrete constructions – different pre cast members using these materials.

Wall and Roof Panels - Beams - Columns - Door and Window frames - Water tanks - Septic tanks - Alternate roofing systems - Filler slab - Composite Beam and Panel Roof.

Pre-engineered and ready to use building elements - wood products - steel - plastic.

Unit –III **08 Hrs**

Global Warming – Definition - Causes and Effects - Contribution of buildings towards Global Warming.

Carbon Footprint – Global Efforts to reduce carbon Emissions.

Green Buildings - Definition - Features- Necessity - Environmental benefit - Economical benefits - Health and Social benefits.

Major Energy efficient areas for buildings – Embodied Energy in Materials.

Green Materials - Comparison of Initial cost of Green V/s Conventional Building - Life cycle cost of Buildings.

Unit -IV

Green Building rating Systems- BREEAM - LEED - GREEN STAR -GRIHA, IGBC for new buildings -Purpose - Key highlights - Point System with Differential weightage.

Green Design - Definition - Principles of sustainable development in Building Design - Characteristics of Sustainable Buildings – Sustainably managed Materials - Integrated Lifecycle design of Materials and Structures (Concepts only)

> Unit -V 08 Hrs

Utility of Solar Energy in Buildings: Utility of Solar energy in buildings - concepts of Solar Passive Cooling and Heating of Buildings. Low Energy Cooling. Case studies of Solar Passive Cooled and Heated Buildings.

Green Composites for Buildings: Concepts of Green Composites. Water Utilisation in Buildings, Low Energy approaches to Water Management. Management of Solid Wastes. Management of Sullage and Sewage. Urban Environment and Green Buildings. Green Cover and Built Environment.

Course	Course Outcomes: After completing the course, the students will be able to		
CO1	Select suitable building material and apply effective environmental friendly building technology.		
CO2	Analyze global warming due to different materials in construction		
CO3	Analyze buildings for green rating.		
CO4	Use alternate source of energy and effective use of water in building.		

Refere	Reference Books				
1	Green Building Fundamentals, G Harihara Iyer, Notion Press, 1 st Edition, 2022, ISBN-13:979-8886416091.				
2	Green Building: Principles & Practices, Harshul Savla, Notion Press, 1 st Edition, 2021, ISBN-13: 978-1685866044.				
3	Green Building Guidance: The Ultimate Guide for IGBC Accredited Professional Examination, Karthik Karuppu, Notion Press; 1 st Edition, 2019, ISBN-13: 978-1684667291.				
4	Handbook of Green Building Design and Construction LEED, BREEAM, and Green Globes, Sam Kubba, Joe Hayton publisher, 1 st Edition, 2017, ISBN: 978-0-12-810433-0.				
5	Sustainable Construction: Green Building Design and Delivery, Charles J. Kibert, Wiley Publication, 5 th Edition, 2022, ISBN-13:978-1119706458.				

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)		
#	COMPONENTS	MARKS	
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40	
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40	
	MAXIMUM MARKS FOR THE CIE THEORY	100	

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)		
Q. NO.	CONTENTS	MARKS	
	PART A		
1	Objective type questions covering entire syllabus	20	
	PART B		
	(Maximum of TWO Sub-divisions only)		
2	Unit 1 : (Compulsory)	16	
3 & 4	Unit 2 : Question 3 or 4	16	
5 & 6	Unit 3: Question 5 or 6	16	
7 & 8	Unit 4: Question 7 or 8	16	
9 & 10	Unit 5: Question 9 or 10	16	
	MAXIMUM MARKS FOR THE SEE THEORY	100	

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

University, Belaga	avi				
Semester: I/II					
	INFRASTRUCTURE FOR SMART CITIES				
	Category: Emerging Technologies				
	(Common to all Programs)				
			(Theory)		
Course Code	:	22EM108/208	CIE	:	100 Marks
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks
Total Hours	:	40L	SEE Duration	:	3 Hours

Unit-I 08 Hrs Fundamental of smart city & Infrastructure: Importance of livability, Introduction of Smart City, need and concept of smart city systems, Challenges of managing infrastructure in India and world, various types of Infrastructure systems. Various stake holders in smart city. IoT applications in smart cities. Unit – II Planning and development of Smart city Infrastructure: Affordable housing, smart and green buildings-Objectives, features, benefits, different parameters considered –photo voltaic, water, materials and environment. Unit –III Intelligent transport systems: Public transportation management, Smart vehicles and fuels, traffic safety management, mobility services, E-ticketing. Smart mobility requirements, Smart City cases of G.I.S in mobility, smart roads. Unit -IV 08 Hrs Management of water resources and related infrastructure: Storage and conveyance system of water, sustainable water and sanitation, sewerage system, flood management, conservation system. Unit -V Infrastructure Management system & Policy for Smart city: Integrated infrastructure management systems for smart city, Infrastructure management system applications for existing smart city. Worldwide policies for smart city Government of India - policy for smart city, Mission statement & guidelines, Smart cities in India, Case studies of smart city.

Course	Course Outcomes: After completing the course, the students will be able to			
CO1	CO1 Comprehend the necessity and various types of infrastructural development for smart cities.			
CO2	Identify components of building infrastructure and Prepare infrastructure plan for smart city			
CO3	Understand smart transport system and water resources systems for smart cities and its application			
CO4	Understand National and Global policies to implement for smart city development.			

Refere	Reference Books			
1	Sustainable Smart Cities in India: Challenges and Future Perspectives, Poonam Sharma, Swati Rajput,			
	Springer; 1 st Edition, 2017, ISBN-13: 978-3319471440.			
2	Smart City in India Urban Laboratory, Paradigm or Trajectory?, Binti Singh, Manoj Parmar, , Routledge			
	India, 1 st Edition, 2019, ISBN 9780367462598.			
3	The Age of Intelligent Cities: Smart Environments and Innovation-for-all Strategies (Regions and Cities),			
	Nicos Komninos, Routledge India, 1 st Edition, 2014, ISBN-13: 978-1138782198,			
4	Smart Cities, Germaine Halegoua, The MIT Press, 1 st Edition, 2020, ISBN-13: 978-0262538053.			
5	Smart Cities, Smart Future: Showcasing Tomorrow, Mike Barlow, Cornelia Levy-Bencheton, Wiley; 1st Edition, 2018, ISBN-13: 978-111951618.			

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS	MARKS		
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be	20		
	conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES	20		

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	WILL BE THE FINAL QUIZ MARKS.	
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)			
Q. NO.	CONTENTS	MARKS		
	PART A			
1	Objective type questions covering entire syllabus			
	PART B			
(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16		
3 & 4	Unit 2 : Question 3 or 4	16		
5 & 6	Unit 3: Question 5 or 6	16		
7 & 8	Unit 4: Question 7 or 8	16		
9 & 10	Unit 5: Question 9 or 10	16		
· · · · · · · · · · · · · · · · · · ·	MAXIMUM MARKS FOR THE SEE THEORY	100		

Approved by AICTE, New Delhi

Semester: I/II						
FUNDAMENTALS OF NANOSCIENCE AND TECHNOLOGY						
		Category: E	Emerging Technologies			
(Common to all Programs)						
			(Theory)			
Course Code : 22EM109/209 CIE : 100 Marks						
Credits: L:T:P : 3:0:0 SEE : 100 Marks						
Total Hours	Total Hours : 42L SEE Duration : 3 Hours					

Unit-I 08 Hrs

History of nano science and technology: Historical developments of nanomaterials, nanotechnology in ancient Indian practices: Ayurveda medicine, cosmetics, and metallurgy.

Learning from nature: Gecko feet, spider web and lotus leaf. Fundamentals of nanotechnology and classification of nanomaterials.

> Unit-II 08Hrs

Preparation of nanomaterials: Top-down approach: physical vapor deposition (PVD), molecular beam epitaxy, sputtering and ion beam process.

Bottom-up approach: Chemical vapor deposition (CVD), precipitation method, electrochemical method and green synthesis of nanomaterials.

> Unit-III 09Hrs

Characterization of nanomaterials and their properties: Characterization: Introduction, UV-Vis absorption spectroscopy, Scanning electron microscopy, scattering techniques (particle size analyzer).

Properties: Physical properties: Size, surface area and optical properties), Chemical properties - catalytic properties.

> **Unit-IV** 08 Hrs

Nanomaterials for agriculture and healthcare: Agriculture: Application of nanotechnology in modern day agriculture practices, micronutrients.

Water and food technology: Membrane technology, nanomaterials for water purifications.

Nanomaterials in healthcare: Cosmetics and nano medicine.

Unit-V 09Hrs

Engineering applications of nanomaterials: Energy: Materials for energy production and storage.

Electronics: Nano materials for display technology, circuit elements and their advantages over conventional materials.

Mechanical industry: Self-cleaning surfaces, automobile industry and nanocomposites

Civil construction: High strength materials and fire-retardant materials.

Course	Course Outcomes: After completing the course, the students will be able to			
CO1	Identify the nano science and nanotechnology applications associated with engineering problems.			
CO2 Investigate chemical properties of nano materials for technological applications.				
CO3 Apply the knowledge of material property and energy to analyze environmental issues.				
CO4	Design and develop solutions in the areas of applied materials for sustainable engineering applications.			

Refere	Reference Books			
1	Nanostructures and nanomaterials synthesis, properties, and applications, Guozhong Cao and Ying Wang			
	2011, 2 nd , ISBN: 9789814324557.			
2	Nanoscience: The Science of the small in physics, engineering, chemistry, biology and medicine", Hans-			
	Eckhardt Schaefer, 2010, Springer. ISBN: 3642105580.			
3	Introduction to nanoscience and nanotechnology, Gabor L. Hornyak, H.F. Tibbals, Joydeep Dutta, John J.			
	Moore, 2020, CRC press, ISBN: 9781420047790.			
4	Nano biotechnology-concepts, applications in health, agriculture and environment, R. Tomar, 2020,			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	Apple Academic Press: ISBN: 9780429292750.			
E-bool	E-book			
5	Nanotechnology advances and real-life applications, Bhargava and Amit Sachdeva, 2021, CRC press,			
	ISBN: 9780367536732.			

#	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY) COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5 & 6	Unit 3: Question 5 or 6	16			
7 & 8	Unit 4: Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	MAXIMUM MARKS FOR THE SEE THEORY	100			

RV Educational Institutions ** RV College of Engineering **

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Offiversity, Belagavi						
	Semester: I / II					
FUNDAMENTALS OF SEMICONDUCTOR DEVICES						
		Category	: Emerging Technol	logies		
		(Com	mon to all Program	\mathbf{s})		
			(Theory)			
Course Code	:	22EM110/210		CIE	:	100 Marks
Credits: L:T:P	Credits: L:T:P : 3:0:0 SEE : 100 Marks					
Total Hours : 40L SEE Duration : 3 Hours				3 Hours		

Unit-I	08Hrs			
Semiconductor Basics: Energy Levels to Energy Bands, Crystalline, Polycrystalline, and	Amorphous			
Semiconductors, Miller Indices, Properties of Common Semiconductors, Free Carriers in Sem	iconductors,			
Doping.				
Unit – II	08 Hrs			
Semiconductor Quantum behaviour: The Wave Equation, Quantum Confinement, Quantum Tu	nneling and			
Reflection, Electron Waves in Crystals, Density of States, Fermi Function, Carrier Concentrations				
Unit –III	08 Hrs			
Semiconductor Transport: Carrier Transport, Generation, and Recombination- The Landauer Appro	ach, Current			
from the Nanoscale to Macroscale, Drift-Diffusion Equation, Carrier Recombination, Carrier	Generation,			
Mathematical Formulation, Energy Band Diagrams, Quasi-Fermi Levels, Minority Carrier Diffusion E	quation			
Unit –IV	08 Hrs			
Quantum Computing Basics: Difference between classical & quantum computing, Quantum Qu	ıbits, Single			
Qubits states, Postulates of Quantum Mechanics				
Unit –V	08 Hrs			
Hardware of Quantum Computers: Quantum measurement, Quantum Gates and Circuits, Introduction to				
building blocks of a quantum computer, Quantum materials, Spin Qubits				

Course Outcomes: After completing the course, the students will be able to					
CO1	Identify electron behavior in crystals, semiconductors and quantum Qubits, models Entangled states.				
CO2	Analyze electron transport in semiconductors and quantum gates and circuits				
CO3	Evaluate the carrier concentration and transport behaviour in semiconductor quantum computation				
CO4	Apply computation behaviour of electrons and quits in real time semiconductor devices, quantum gates				
	and circuits.				

Refere	Reference Books				
1	Semiconductor Device Fundamentals, Robert F. Pierret, 2006, Pearson, ISBN 9780201543933				
2	Advanced Semiconductor Fundamentals, R.F. Pierret, 2nd ed., Pearson Education, Inc., 2003, ISBN-0-				
	13-061792-X				
3	Operation and Modeling of the MOS Transitor, Y.P. Tsividis, Colin McAndrew, 3 rd Edition, 2014,				
	Oxford Univ Press, ISBN:978-0195170153				
4	Nielsen, M., & Chuang, I. (2010). Quantum Computation and Quantum Information: 10th Anniversary				
	Edition. Cambridge: Cambridge University Press.				
5	Lecture Notes, Quantum Computation, California Institute of Technology,				
	http://theory.caltech.edu/~preskill/ph219/ph219_2021-22.html [accessed as on 30-11-2022]				
6	Learn Quantum Computation using Qiskit, Online Textbook, https://qiskit.org/textbook/preface.html,				
	[accessed as on 30-11-2022]				

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	# COMPONENTS			
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be	20		

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	Q. NO. CONTENTS				
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5 & 6	Unit 3: Question 5 or 6	16			
7 & 8	Unit 4: Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	MAXIMUM MARKS FOR THE SEE THEORY	100			

Approved by AICTE, New Delhi

3, 3	,,,,							
Semester: I / II								
INTRODUCTION TO EMBEDDED SYSTEMS								
		Category	: Emerging Technol	logies				
		(Com	mon to all Program	$\mathbf{s})$				
		•	(Theory)	,				
Course Code	:	22EM111/211		CIE	:	100 Marks		
Credits: L:T:P : 3:0:0 SEE : 100 Marks								
Total Hours	Total Hours : 40L SEE Duration : 3 Hours							

Unit-I 08 Hrs

Introduction: Definition of Embedded Systems, Typical examples, and Application domains (Automotive, Consumer, etc.), Characteristics, Typical block diagram, Input, Core, Output, Commercial Off the Shelf Components (COTS). ProcessingComponents, Microprocessors & Microcontrollers, Indicative Examples

(Microcontrollers on Arduino boards), Development boards (Arduino boards), Concepts and brief introduction to Memory, Interrupts, Power Supply, Clocks, Reset. Case Studies: Washing Machine, Antilock Brake Systems (Block diagram & Working Principle).

Unit – II 08 Hrs

Integrated Development Environment(Ide) And Programming: Basics of Embedded C Programming, Data Types, Arithmetic & Logical Operators, Loops, Functions, #define Macros, Structures (Declaration and Accessing data members). Integrated Development Environment tools: Editor, Compiler, Linker, Loader, Debugger (Definitions only). Practice: Working with Arduino IDE(Simple programs on Operators, Loops and Functions).

Unit –III 08 Hrs

Serial And Parallel Interfaces: Digital Data, Analog data, Serial Vs Parallel Data Transfer, UART, I2C, SPI (only block diagram and working), Arduino board with schematics, Port pins and GPIOs, Data Sheets Practice: Interfacing Serial Modules like GSM, GPS, LEDs, Switches, Interfacing Temperature & Humidity Sensors, Interfacing LCD Module

Unit –IV 08 Hrs

Data Converters: Real world analog signals (Temperature, Bio medical signals, etc), Analog to digital conversion, Successive Approximation ADC Type, FLASH Type (Block Diagram and Explanation). Digital to Analog Conversion, R-2R DAC type, (Block Diagram and Explanation). Selection criteria of ADC and DAC for different applications

Practice: Programming ADC of Arduino Board, Interfacing Analog Temperature Sensor, Gas sensor, Generation of PWM Wave.

Unit –V 08 Hrs

Electro Mechanical Acturators: DC motor, Principle of Operation, DC Motor Driver, Stepper Motor, Principle of Operation, Stepper Motor Driver, Servo Motor, Principle of Operation, Servo Motor Driver. (Working principles and Typical Diagrams).

Planning, Design and Implementation: Smart Street Lights

Practice: Interfacing, Speed Control and Direction control of DC motor, Servo Motor, Stepper Motors.

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Analyse the architecture of embedded systems, importance of different functional units and their mapping				
	toreal-world requirements.				
CO2	Interpret the embedded programming constructs, tools usage and their suitability to develop embedded				
	applications.				
CO3	Identify the data converter specifications to match with real world needs and programming with suitable				
	configurations to achieve the same.				
CO4	Demonstrate the use of serial and parallel ports for data transfer and motors for actuation.				

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Refere	ence Books
1	Embedded System Design: A Unified Hardware / Software Introduction, Tony Givargis and Frank Vahid.
	Wiley. ISBN-10: 812650837X.
2	Designing EmbeddedSystems with Arduino: A Fundamental Technology for Makers, Tianhong Pan, Yi
	Zhu, Springer, ISBN 978-981-10-4417-5.
3	Embedded Systems: Architecture, Programming and Design, Raj Kamal, 2nd Edition, The McGraw Hill,
	ISBN: 13:978-0-07-066764-8
4	Introduction to Embedded Systems, Shibu K V, 2009, Tata McGraw Hill Education Private Limited,
	ISBN: 10: 0070678790.
5	Embedded System Design: A Unified Hardware / Software Introduction, Tony Givargis and Frank Vahid.
	Wiley. ISBN-10: 812650837X.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS				
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B					
	(Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5 & 6	Unit 3: Question 5 or 6	16				
7 & 8 Unit 4 : Question 7 or 8						
9 & 10	Unit 5: Question 9 or 10	16				
	MAXIMUM MARKS FOR THE SEE THEORY	100				

RV Educational Institutions RV College of Engineering

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: I / II								
RENEWABLE ENERGY SOURCES								
		Category	: Emerging Technol	ogies				
(Common to all Programs)								
		•	(Theory)					
Course Code								
Credits: L:T:P : 3:0:0 SEE : 100 Marks								
Total Hours : 40L SEE Duration : 3 Hours								

Unit-I 08 Hrs

Introduction: Energy systems model causes of Energy Scarcity, Solution to Energy Scarcity, Factors Affecting Energy Resource Development, Energy Resources and Classification, Renewable Energy – Worldwide Renewable Energy Availability, Renewable Energy in India.

Solar Energy: Sun- earth Geometric Relationship, Layer of the Sun, Earth – Sun Angles and their Relationships, Solar Energy Reaching the Earth's Surface, Solar Thermal Energy Application. Block diagram of solar energy conversion.

Unit – II 08 Hrs

Photo Voltaic Systems: PV Cell, Module and array, equivalent electrical circuit, OC Voltage and SC Current I-V and V-I characteristics, Array design, peak power tracking, system components of Solar Cell System, Types of PV system- Standalone, Grid connected, Hybrid, Applications of Solar PV Systems.

Wind Energy: Basic Principles of wind energy conversion, nature of wind, power in wind, forces on blades, wind energy conversion, wind data and energy estimation, site selection considerations, Block diagram and basic components of WECS, Advantages & disadvantages.

Unit –III 08 Hrs

Hydrogen Energy: Benefits of Hydrogen Energy, Hydrogen Production through block diagram, Use of Hydrogen Energy, Merits and Demerits, Problems Associated with Hydrogen Energy.

Biomass Energy: Introduction, Biomass Production through block diagram, Energy Plantation, Biomass Gasification, Theory of Gasification, Gasifier and their Classifications, Updraft, Downdraft and Cross-draft Gasifiers, Use of Biomass Gasifier, Gasifier Biomass Feed Characteristics, Applications of Biomass Gasifier.

Unit –IV 08 Hrs

Geothermal Energy: Introduction to Geothermal Systems, Block diagram, Classifications, Geothermal Resource Utilization, Resource Exploration, Geothermal Based Electric Power Generation, Associated Problems, environmental Effects.

Tidal Energy: Introduction, Tidal Energy Resource, Block diagram, Tidal Power Generation in India, Leading Country in Tidal Power Plant Installation, Energy Availability in Tides, Tidal Power Basin, Turbines for Tidal Power, Advantages and Disadvantages of Tidal Power, Issues Faced in Exploiting Tidal Energy.

Unit –V 08 Hrs

Energy storage: Hydro Pump Storage, Compressed Air Storage, Thermal Storage, Electrochemical Storage or Battery Storage, Hydrogen Energy Storage, Inertial Storage, Superconducting Magnetic Energy Storage.

Challenges in Renewable Energy Adoption: Energy Storage, The high initial cost of installation, Lack of infrastructure, Non-renewable energy monopoly, Lack of knowledge and awareness, Lack of policies, subsidies.

Course	Course Outcomes: After completing the course, the students will be able to					
CO1	Understand the concepts of energy generation and storage from various renewable sources.					
CO2	Evaluate the parameters of different renewable energy system.					
CO3	Analyze the characteristics and performances of renewable energy resources.					
CO4	Apply the knowledge of efficient energy management and implement sustainable energy solutions.					

Refere	ence Books
1	Non-conventional Energy Resources, Shobh Nath Singh, 1 st Edition, 2015, Pearson, ISBN- 978-93-325-4357-7
2	Solar photo voltaic Technology and systems, Chetan Singh Solanki, third edition(2013), 2 PHI, Learning Private limited New Delhi ISBN: 978-81-203-4711-3.
3	Wind and solar Power system design, Analysis and operation, Mukund R. Patel, 2 nd Edition
4	Non-Conventional sources of energy, G.D.Rai, 4 th Edition, 2009, Khanna Publishers, ISBN8174090738, 9788174090737

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS			
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20			
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40			
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40			
	MAXIMUM MARKS FOR THE CIE THEORY	100			

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	Q. NO. CONTENTS					
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B					
	(Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5 & 6	Unit 3: Question 5 or 6	16				
7 & 8	Unit 4: Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	MAXIMUM MARKS FOR THE SEE THEORY	100				

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

,, ,								
Semester: I /II								
FUNDAMENTALS OF SENSOR TECHNOLOGY								
Category: Emerging Technologies								
(Common to all Programs)								
			(Theory)					
Course Code : 22EM113/213 CIE : 100 Marks								
Credits: L:T:P : 3:0:0 SEE : 100 Marks								
otal Hours · 40L SEE Duration · 3 Hours								

Unit-I 08 Hrs

Sensing and Sensor fundamentals: Introduction to Sensors, Sensor systems and overview of sensor technologies, Classification of sensors, Characteristics of sensors.

Principle of operation and applications:

Measurement of Temperature: Thermistor, Thermocouple, Pyroelectric sensor.

Measurement of Force, Pressure and Displacement: Strain gauges, Inductive and Capacitive Sensors.

Unit – II 10 Hrs

Miscellaneous sensors

Principle of operation: Moisture sensor, humidity sensors, gas sensors, Direction sensor, Ultrasound sensor,

Accelerometers, Alcohol sensor, SpO₂ sensor, Color sensor. **Photo sensors**: Photovoltaic cell, Photo resistor, Phototransistor.

Tactile sensors: Construction and operation, types.

Unit –III 07 Hrs

Special Sensors: Thin film sensors and deposition techniques, Smart sensors: Principles and applications.

Sensor materials: Silicon, Plastics, Metals, Ceramics, Glasses, Nanomaterials.

Unit –IV 09 Hrs

Sensor technologies: Key Sensor Technology Components: Hardware and Software Overview: Sensor platforms, Introduction to MEMS Sensors and Nano Sensors.

MEMS Technology

Surface processing: Sputtering, Chemical vapor deposition, Electroplating.

Microtechnology: Photolithography, LIGA process.

Unit –V 06 Hrs

Case studies: Sensors for Smart home automation, Sensors for Automobile applications, Sensors for agriculture, Sensors for mobile phone applications.

Course Outcomes: After completing the course, the students will be able to						
CO1	Understand the basic principles and applications of different sensors.					
CO2	Apply the knowledge of sensors to comprehend digital instrumentation systems.					
CO3	Analyze and evaluate the performance of different sensors for various applications.					
CO4	Create a system using appropriate sensors for a particular application.					

Refere	Reference Books						
1	Handbook of Modern Sensors: Physics, Designs, and Applications, Jacob Fraden, PHI Publication, 5 th Edition, 2016, ISBN: 978-1-4419-6465-6.						
2	Sensors and Actuators: Control systems Instrumentation, Clarence W.de Silva, CRC Press, 2013 Edition, ISBN: 978-1-4200-4483-6.						
3	Electrical and Electronic Measurements and Instrumentation, A.K.Sawhney, Dhanpat Rai and Sons, 18 th Edition, 2008, ISBN: 81-7700-016-0.						
4	Sensor technologies, Michael J McGrath, Intel Labs, 2013 Edition, ISBN: 9781430260141.						

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS				
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	3 & 4 Unit 2 : Question 3 or 4				
5 & 6 Unit 3: Question 5 or 6					
7 & 8	Unit 4: Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	MAXIMUM MARKS FOR THE SEE THEORY	100			

Institution Affiliated to Visvesvaraya Technological

Approved by AICTE, New Delhi

University, Belaga	University, Belagavi					
			Semester: I/II			
		HUMAN FA	CTORS IN ENGINEERING			
		Category	Emerging Technologies			
			mon to all Programs)			
		•	(Theory)			
Course Code : 22EM114/214 CIE : 100 Marks						
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks	
Total Hours		421	SEF Duration		3 Hours	

Unit-I 09 Hrs Introduction to Ergonomic Design: Description of human-machine systems, Introduction to the concept of ergonomics, Ergonomic Design, history of ergonomics, Principles of Human -Centered Design, Ergonomic Criteria, Models of human Performance, Macroergonomics, Trends in Industry that impact Ergonomics, Organizations associated with Ergonomics, Ergonomic methods. Unit – II Human System: Components of human body, skeletal sub system, Muscles, Anthropometry, Body movements, Musculoskeletal systems as levers Unit –III **08 Hrs** Human System: Sensory sub systems, Support subsystems. Cognitive ergonomics: an overview. Design of work areas: Introduction, Applied Anthropometry, Drafting templates, Design of work areas and stations, Basic ergonomic design principles, principles for design of seating, Office design. Unit -IV **09 Hrs Design of tools and equipment:** Design of tools and equipment and related principles, Protective equipment for the operator, Accommodating people with disabilities. Assessment and Design of Physical Environment: Introduction, Cleanliness, Clutter and Disorder, Lighting and Illumination, Conceptual overview of basic lighting principles, Noise (Conceptual Treatment only) Unit -V 08 Hrs Assessment and Design of Physical Environment: Temperature and Humidity, Control strategies for hot and cold environments, Hazards and control measures. (Conceptual Treatment only), Consequences of not incorporating Ergonomics in design of work spaces, Ergonomics and Digital Transformation. statement & guidelines, Smart cities in India, Case studies of smart city.

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Recognize the importance of ergonomics and human factors in the design of work spaces.				
CO2	Interpret human anatomy, physiology and psychology from a system's perspective.				
CO3	Analyze the role of anthropometric data and modelling techniques in the workplace design.				
CO4	Explain the importance of physical environment in ergonomic design of work settings.				

Refere	nce Books					
1	Introduction to Human Factors and Ergonomics for Engineers, Lehto Mark, Steven J Landry, 2nd Edition,					
	2013,CRC Press, ISBN:978-1-4398-5394-8					
2	Ergonomics for Beginners-A quick reference guide, Jan Dul, Bernard Weerdmeester,3rd Edition,2008,					
	CRC Press, ISBN 978-1-4200-7751-3					
3	Introduction to Ergonomics, R S Bridger, 3rd Edition, 2008, CRC Press, ISBN: 9780849373060.					
4	Human Factors in Engineering and Design; Mark S. Sanders and Ernest J McCormick; 7th Edition,					
	McGraw-Hill and Co. Singapore 1992. ISBN 0-07-112826-3.					

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)					
#	# COMPONENTS					
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be	20				

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	O. CONTENTS					
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B					
	(Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	3 & 4 Unit 2 : Question 3 or 4					
5 & 6	5 & 6 Unit 3: Question 5 or 6					
7 & 8	Unit 4: Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	MAXIMUM MARKS FOR THE SEE THEORY	100				

RV Educational Institutions ** RV College of Engineering **

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Oniversity, belagavi							
	Semester: I/II						
DIGITAL HUMANITIES							
		Category	: Emerging Technol	ogies			
	(Common to all Programs)						
			(Theory)				
Course Code	Course Code : 22EM115/215 CIE : 100 Marks						
Credits: L:T:P : 3:0:0 SEE : 100 Marks							
Total Hours	Total Hours : 40L SEE Duration : 3 Hours						

Total Hours	• 40L	SEE Duration . 3110	uis			
	U	nit-I	08 Hrs			
Introduction to Digit	al Humanities: What is di	gital humanities? Principals and Scenarios for digit	al humanities.			
Reasons to Engage v	vith the Digital Humanit	ies: Defining the Digital Humanities, Motivations	for Engaging			
with the Digital Huma	nities, Digital Futures.	•				
	Un	it – II	09 Hrs			
Humanities to Digita	I Humanities: Designing d	igital humanities. Computational activities in digi	tal			
humanities: Computa	tion, Processing, Digitization	on, Classification, Organization, Navigation				
Unit –III						
Generating Humani	ties: Humanities as the n	ew core. Towards an Encounter between Hu	manities and			
Computing: Formalisation in humanity computing, Cultures of formalization. Transdiciplinary						
humanity: Beyond in	terdisciplinarity, Methodolo	ogical transformation and transdisciplinarity.				
	Un	it –IV	0 8Hrs			
Generating Humani	Generating Humanities: Humanities as the new core. Towards an Encounter between Humanities and					
Computing: Formalisation in humanity computing, Cultures of formalization. Transdiciplinary						
humanity: Beyond interdisciplinarity, Methodological transformation and transdisciplinarity.						
	Un	ut –V	07 Hrs			
Designing class roam activities: Activity design, Digital events, Physical Computing and Critical Making						
· · · · · · · · · · · · · · · · · · ·	· ·	·				

Course	Course Outcomes: After completing the course, the students will be able to			
CO1	Demonstrate knowledge and understanding and significant in-depth knowledge in subcategories of the			
	digital humanities			
CO2	Applying digital humanities in different sub areas their role in society, and the individual's responsibility pplying digital humanities in different sub areas their role in society, and the individual's res			
CO3	Analyze, assess, and manage complex phenomena, questions, and situations related to the digital			
	humanities as a field of study and work			
CO4	Describe the prospects and limitations of science and technology in digital humanities			

Refere	nce Books
1	Introduction to Digital Humanities by Kathryn C. Wymer, Taylor & Francis, ISBN: 978-0-367-71110-8
	published in 2021
2	An Introduction to Digital Methods for Research and Scholarship By Johanna Drucker, Taylor & Francis,
	ISBN 9780367565756 Published March 25, 2021
3	Understanding Digital Humanities by David M. Berry, Palgrave Macmillan, ISBN: 978–0–230–29264–2,
	published in 2012
4	Digital Humanities by Anne Burdick, Johanna Drucker, Peter Lunenfeld, Todd Presner & Jeffrey
	Schnapp, The MIT Press Cambridge, Massachusetts London, England, ISBN 978-0-262-01847-0,
	published in 2012
5	Using Digital Humanities in the Classroom by Claire Battershill and Shawna Ross, Second Edition
	BloomsBurt Academic, ISBN: HB: 978-1-3501-8090-1 published in 2017

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMIM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)			
Q. NO.	CONTENTS			
	PART A			
1	Objective type questions covering entire syllabus	20		
	PART B			
	(Maximum of TWO Sub-divisions only)			
2	Unit 1 : (Compulsory)	16		
3 & 4	Unit 2 : Question 3 or 4	16		
5 & 6	Unit 3: Question 5 or 6	16		
7 & 8	Unit 4: Question 7 or 8	16		
9 & 10	Unit 5: Question 9 or 10	16		
	MAXIMUM MARKS FOR THE SEE THEORY	100		

Approved by AICTE, New Delhi

		Semeste	er: I/II		
		SMART MATERIAI	LS AND SYSTEMS		
		Category: Emergi	ing Technologies		
(Common to all Programs)					
		(Theo	ory)		
Course Code	:	22EM116/216	CIE	:	100 Marks
Credits: L:T:P	:	3: 0:0	SEE	:	100 Marks
Total Hours	:	42T	SEE Duration	:	3 Hours

Unit-I 06 Hr **Introduction:** Characteristics of metals, polymers and ceramics. Introduction to smart materials. Classification of

smart materials, Components of a smart System, Applications of Smart Materials and Smart Materials Manufacturing in Industries in India.

> Unit – II 08 Hrs

Smart Materials: Piezoelectric materials, Electro strictive Materials, Magnetostrictive materials, Magnetoelectric Materials, Magnetorheological fluids, Electrorheological fluids, Shape Memory materials.

Processing of Smart Materials: Semiconductors and their processing, Metals and metallization techniques, Ceramics and their processing, Polymers and their synthesis, UV radiation curing of polymers.

> Unit –III 10 Hrs

Self-Sensing Piezoelectric Transducers, Energy Harvesting Advances in smart Materials: Autophagous Materials, Self Healing Polymers, Intelligent System Design, Emergent System Design.

Sensors: Introduction, Conductometric sensors, Capacitive sensors, Piezoelectric sensors, Magnetostrictive sensors, Piezoresistive sensors, Optical sensors, semiconductor-based sensors, Acoustic sensors, polymerize sensors, Carbon nanotube sensors.

Unit -IV

Actuators: Introduction, Electrostatic transducers, Electromagnetic transducers, Electrodynamic transducers, Piezoelectric transducers, Electro-strictive transducers, Magneto-strictive transducers, Electro thermal actuators, Comparison of actuation, Applications.

Magnetostrictive Mini Actuators, Polymeric Actuators, Shape Memory Actuators, Active Vibration Control, Active Shape Control, Passive Vibration Control, Hybrid Vibration Control.

> Unit -V 08 Hrs

Measurement, Introduction, Definition, Signal and Signal Processing, Device Drive and Control system: open type and closed type; Static and Dynamic Measurement Methods; Signal conditioning and devices;

Calibration techniques; Calibration, Significance of calibration, Benefit of calibration, Calibration method, Classification of calibration, Lab calibration, Curve fitting method of calibration,

Course Outcomes: After completing the course, the students will be able to		
CO1	Identify the basic components of smart Materials	
CO2	Understanding processing of smart materials	
CO3	Analysis of different types of sensor and actuators for industrial applications	
CO4	Illustrate measurement and calibration techniques for smart materials	

Refere	ence Books
1	Fundamentals of Smart Materials, (2020) Mohsen Shahinpoor, Print ISBN 978-1-78262-645-9, ePub
	eISBN, 978-1-78801-946-0
2	Smart Material Systems and MEMS: Design and Development Methodologies, V. K. Varadan,
	K. J. Vinoy, S. Gopalakrishnan, John Wiley and Sons, England, 2006.
3	Smart Structures: Analysis and Design, A. V. Srinivasan, Cambridge University Press, Cambridge, New
	York, 2001.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

4	Encyclopedia of Smart Materials, ISBN: 9780128157329, eBook ISBN: 97801281573
5	Functional and Smart Materials, Chander Prakash, Sunpreet Singh, J. Paulo Davim, 2021, ISBN
	9780367275105
6	Piezoelectric Sensorics: Force, Strain, Pressure, Acceleration and Acoustic Emission Sensors, Materials
	and Amplifiers, G. Gautschi, Springer, Berlin, New York, 2002.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	. CONTENTS				
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5 & 6	Unit 3: Question 5 or 6	16			
7 & 8	Unit 4: Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	MAXIMUM MARKS FOR THE SEE THEORY	100			

RV Educational Institutions ** RV College of Engineering **

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Offiveroity, Belage	Oniversity, Belagavi					
	Semester: I/II					
		ELEMEN	TS OF INDUSTRY	Y 4.0		
		Category:	Emerging Technol	ogies		
	(Common to all Programs)					
			(Theory)			
Course Code	:	22EM117/217		CIE	:	100 Marks
Credits: L:T:P	Credits: L:T:P : 3:0:0 SEE : 100 Marks					
Total Hours	:	42L		SEE Duration	:	3 Hours

Unit-I Industry 4.0 – Introduction: The Various Industrial Revolutions, Need – Reason for Adopting Industry 4.0, Definition, Goals and Design Principles – Interoperability, Virtualization, Decentralization, Real-time Capability, Road to Industry 4.0 – Industrial Internet of Things (IIoT).

Unit – II 10Hrs

Opportunities and Challenges: Lack of resources, Availability of skilled workers, Broadband infrastructure, Policies, Future of Works and Skills in the Industry 4.0 Era.

Horizontal and Vertical Integration: End-to-end engineering of the overall value chain, Digital integration platforms, Role of machine sensors, Sensing classification according to measuring variables, Machine-to-Machine communication.

Unit -III 10Hrs

Smart Worker: Augmented and Virtual Reality, Industrial Applications – Maintenance, Assembly, Collaborative operations, Training.

Digital-to-Physical: Additive Manufacturing technologies, Advantages, impact on environment, Applications – Automotive, Aerospace, Electronics, and Medical.

Unit –IV 8Hrs

Digital Twin, Virtual factory, Total Productive Maintenance, Understanding I 4.0 in MSMEs, Industry 5.0 **Cloud Computing:** Fundamentals, Cloud / Edge Computing and Industry 4.0, The IT/OT convergence, Cyber Security.

Unit-V 8Hrs

Artificial Intelligence: Fundamentals, Case Studies, Technology paradigms in production logistics - Intelligent conveyor system, Intelligent commissioning system, Intelligent production machine, Intelligent load carrier, Applications.

Intelligent Objects (user-oriented functions), Technological realization of Intelligent Objects (product-oriented functions).

Course Outcomes: After completing the course, the students will be able to		
CO1	Identify the basic components of Industry 4.0.	
CO2	Analyze the role of digital twin and cloud for modern manufacturing.	
CO3	Create smart and digital models for industrial scenario.	
CO4	Understand Artificial intelligence models for modern manufacturing.	

Refere	nce Books
1	Industry 4.0: Managing The Digital Transformation, Alp Ustundag, Emre Cevikcan, 2017, Springer,
	ISBN 978-3-319-57869-9 ISBN 978-3-319-57870-5.
2	The Concept Industry 4.0 - An Empirical Analysis of Technologies and Applications in Production
	Logistics, Christoph Jan Bartodziej, 2017, Springer Gabler, ISBN 978-3-658-16501-7 ISBN 978-3-658-
	16502-4.
3	Industry 4.0 - The Industrial Internet of Things, Alasdair Gilchrist, 2016, APRESS, ISBN-13 978-1-4842-
	2046-7 ISBN-13 978-1-4842-2047-4.
4	Digitizing the Industry – Internet of Things connecting the Physical, Digital and Virtual Worlds, Ovidiu

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Vermesan, 2016, River Publishers, ISBN 978-87-93379-81-7 ISBN 978-87-93379-82-4.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	Q. NO. CONTENTS					
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B					
	(Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5 & 6	5 & 6 Unit 3 : Question 5 or 6					
7 & 8	Unit 4: Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	MAXIMUM MARKS FOR THE SEE THEORY 100					

New Delhi

HUMANITIES AND SOCIAL SCIENCE COURSE

2022 SCHEME (W.E.F 2022 Admission Students)

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

ominorally, Dalagari	omvolety, botagavi							
	Semester: I							
TECHNICAL ENGLISH- I								
	Category: Humanities & Social Sciences							
(Common to all Programs)								
		(Onl	line English Course)					
Course Code								
Credits: L:T:P : 0:0:1 SEE : 50 Marks								
Total Hours	Total Hours : 30P SEE Duration : 2 Hours							

Online English Course: Standardized Test Of English Proficieny – From The Hindu Group Unit – I 6 Hrs

Chapter 1 & 2: Identifying main ideas and details in a reading text - Understanding places on a map - Understanding new words using Punctuation Clues - Previewing Vocabulary - Organizing, drafting, editing, and writing an email - Researching and Documenting, Listening for and visualizing directions, Listening to an advertisement - Role-play: talking about places on campus, Role-play: returning merchandise to a store - Comparing shopping in a store and online shopping - Conducting research and giving a presentation.

Unit – II 6 Hrs

Chapter 3 & 4: Skimming a text using headings, subheadings, and images, identifying text organization - Reading and answering a questionnaire - Brainstorming and making notes on pros and cons, writing a paragraph using the words should and shouldn't - Listening for conversation starters, advice, instructions, complaints, Voice mail messages - Leaving voicemail messages, describing people, Changing nouns to adjectives - Using model verbs to give advice.

Unit – III 6 Hrs

Chapter 5 & 6: Reading and Understanding graphs, Identifying a good summary - Reading faster: reading in phrases - Summarizing facts and ideas in a written text, Identifying narrative sequence, Recognizing and writing conclusions, Understanding pronouns and pronoun reference - Thinking critically about cultural events and celebrations - Recognizing polite and impolite expressions of disagreement.

Unit – IV 6 Hrs

Chapter 7 & 8: Understanding chronological events, Using Organizers to organize ideas in reading text - Summarizing Events and Describing feelings, Writing a summary statement, Understanding paragraph function - Listening to work-place complaints, Job interviews, future plans, Listening for expressions used in restaurant, instruction in following a recipe - Discussing future plans, careers, and work-related issues, healthy and unhealthy eating habits and nutrition.

Unit – V 6 Hrs

Chapter 9 & 10: Understanding relationships between ideas - writing a questionnaire and an opinion blog post - posting a comment - Expressing an opinion - Listening to conversations about travel plans, travel information, activities, an opinion, agreement and disagreement - Discussing travel plans, fares, transportation, sights, and activities, Using conditional forms to support an argument, Using parts of speech to classify word families.

Course	Course Outcomes: After completing the course, the students will be able to					
CO1	Understand the fundamental concepts of Academic English LSRW skills with Grammar - Articles,					
	Pronouns, Prepositions, Nouns, Verbs and Tenses.					
CO2	Use appropriate Vocabulary in real-life scenarios that students might face in professional and social					
	situations.					
CO3	Construct grammatically correct sentences, Learn basics of professional e-mail writing, Blog post.					
CO4	Introduce Oneself in detail, preparing for interview, small talk, conversations, voice email messages,					
	discussing future plans, careers, work related issues, environmental problem and travel conversations.					

Refere	ence Books
1	Standardized Test of English Proficiency-from The Hindu Group: e-books.

Approved by AICTE, New Delhi

About the Course: STEP (Standardized Test of English Proficiency) train is a 20 hours of adoptive course. designed to improve every aspect of English language learning – Listening, Speaking, Reading and Writing skills. The STEP train course assesses learner's current language level as well learning intent against global standards. The online course includes the following:

- 1. 45-minute Diagnostic test (baseline) to ascertain the current level of English proficiency.
- 2. Personalized course content (50-Hours) based on baseline levels including Detailed instructions, practice sessions, interactions, feedback and assessments.

The course begins with a baseline test which determines the learner's current language levels. Based on their language levels, the course will provide the learner with webisodes suitable to their language levels. The course is also interspersed with exercises and mid-line tests. Based on the learner's performance in these tests, and their strengths and challenges/gaps, the course will adaptively provide webisodes matching their performance profile..

ASSESSMENT AND EVALUATION PATTERN (ONLINE MODE)					
	CIE	SEE			
WEIGHTAGE	50%	50%			
Test – I	Each test will be conducted				
	for 50 Marks adding upto				
Test – II	100 marks. Final test				
Test – II	marks will be reduced to 40				
	MARKS				
EXPERIENTIAL LEARNING					
Communication Skills- Activity based test – Script writing,		Final Assessment			
Essay Writing, Role plays. Any other activity that enhances		will be conducted			
the Communication skills. The students will be assigned		for 50 marks			
with a topic by the faculty handling the batch. The students		(ONLINE MODE)			
can either prepare a presentation/write essay/role play etc.	10				
for the duration (4-5 minutes per student.					
Parameters for evaluation of the Presentation					
a. Clarity in the presentation/ Speaking/Presentation skills.					
b. Concept / Subject on which the drama is enacted/					
scripted.					
MAXIMUM MARKS	50 MARKS	50 MARKS			
TOTAL MARKS FOR THE COURSE	50	50			

Approved by AICTE, New Delhi

Offiversity, Delaga	avi						
Semester: II							
TECHNICAL ENGLISH - II							
Category: Humanities & Social Sciences							
(Common to all Programs)							
	(Online	English Course)					
Course Code : 22HSE26 CIE : 50 Marks							
Credits: L:T:P : 0:0:1 SEE : 50 Marks							
Total Hours : 30P SEE Duration : 2 Hours							

Online English Course: Standardized Test Of English Proficieny – From The Hindu Group Unit – I 6 Hrs

Chapter 1 & 2: Describing a weather phenomenon – Using transition words and phrases to connect cause and effect – Vocabulary words related to weather and climate situations – Listening to weather forecast - Introduction yourself and others - speaking from notes and discussing study habits and body language - Assessing good study habits and Evaluating why some students may not graduate - Casual expressions for making new friends -Distinguish between Can and can't – Identifying the meaning and importance of sign – Words related to learning from history.

> Unit – II 6 Hrs

Chapter 3 & 4: Identifying and Expressing opinions, Using arguments and examples to support an opinion, Creating an outline or mind map – Vocabulary on words related to food, healthy and unhealthy eating habits – Using modal verbs such as should, must and have to – Identifying paragraph, main text and supporting ideas – Drafting, editing, reviewing and finalizing the text and Blogging – Speaking about food shopping and recipes.

> Unit – III 6 Hrs

Chapter 5 & 6: Verbs and expression used to explain home maintenance – Comparing reduced and unreduced pronunciation - Identifying True or false information - Using idioms and discourse markers. Expression for apologizing - Identifying and practicing stressed words and reduced forms - Giving and receiving apologies -Vocabulary words related to homes through time, ancestry, home and family - Recognizing punctuation and phrase clues.

> Unit – IV 6 Hrs

Chapter 7 & 8: Conducting a interview – Using a graphic organizer: Problem – Solution chart – Discussing the benefits of a healthy lifestyle - Vocabulary words on health and stress issues and fitness issues - Describing symptoms – Summarizing a story plot – Vocabulary words and phrases about TV and Social Media – Using reducing pronunciation.

> Unit - V6 Hrs

Chapter 9 & 10: Role-playing – Preparing a 30 second speech – Expression of like and Dislikes – Reporting survey results - Conducting a review - Identifying and practicing stresses words and reduced forms - Identifying speaker attitudes - Understanding left-out words and reference - Understanding literal meaning and reference -Interpreting and rewording quotes - Identifying negative prefixes.

Course	Course Outcomes: After completing the course, the students will be able to					
CO1	Understand the fundamental concepts of Academic English LSRW skills with Grammar - Articles,					
	Pronouns, Prepositions, Nouns, Verbs and Tenses					
CO2	Use appropriate Vocabulary in real-life scenarios that students might face in professional and social					
	situations.					
CO3	Construct grammatically correct sentences, Learn basics of professional e-mail writing, Blog post.					
CO4	Introduce Oneself in detail, preparing for interview, small talk, conversations, voice email messages,					
	discussing future plans, careers, work related issues, environmental problem and travel conversations.					

Reference Books				
1	Standardized Test of English Proficiency-from The Hindu Group: e-books.			

Approved by AICTE, New Delhi

About the Course: STEP (Standardized Test of English Proficiency) train is a 20 hours of adoptive course. designed to improve every aspect of English language learning – Listening, Speaking, Reading and Writing skills. The STEP train course assesses learner's current language level as well learning intent against global standards. The online course includes the following:

- 3. 45-minute Diagnostic test (baseline) to ascertain the current level of English proficiency.
- 4. Personalized course content (50-Hours) based on baseline levels including Detailed instructions, practice sessions, interactions, feedback and assessments.

The course begins with a baseline test which determines the learner's current language levels. Based on their language levels, the course will provide the learner with webisodes suitable to their language levels. The course is also interspersed with exercises and mid-line tests. Based on the learner's performance in these tests, and their strengths and challenges/gaps, the course will adaptively provide webisodes matching their performance profile.

ASSESSMENT AND EVALUATION PATTERN (ONLINE MODE)					
	CIE	SEE			
WEIGHTAGE	50%	50%			
Evaluation of CIE					
(Bloom's Taxonomy Levels: Remembering, Understanding		ating, and Creating)			
Test – I	Each test will be conducted				
	for 50 Marks adding upto				
Test – II	100 marks. Final test				
	marks will be reduced to 40				
	MARKS				
EXPERIENTIAL LEARNING					
Communication Skills- Activity based test – Script writing,		Final Assessment			
Essay Writing, Role plays. Any other activity that enhances		will be conducted			
the Communication skills. The students will be assigned		for 50 marks			
with a topic by the faculty handling the batch. The students		(ONLINE MODE)			
can either prepare a presentation/write essay/role play etc.	10				
for the duration (4-5 minutes per student.					
Parameters for evaluation of the Presentation					
a. Clarity in the presentation/ Speaking/Presentation skills.					
b. Concept / Subject on which the drama is enacted/					
scripted.					
MAXIMUM MARKS	50 MARKS	50 MARKS			
TOTAL MARKS FOR THE COURSE	50	50			

05 Hrs

Institution Affiliated to Visvesvaraya Technological University, Belagavi New Delhi

Semester: I/II							
FUNDAMENTALS OF INDIAN CONSTITUTION							
	Category: Humanities & Social Sciences						
(Common to All Programs)							
(Theory)							
Course Code	Course Code : 22HSI17/27 CIE : 50 Marks						
Credits: L:T:P : 1:0:0 SEE : 50 Marks							
Total Hours	:	15		SEE Duration	:	1 Hours	

Indian Constitution- Necessity of Constitution, Societies before and after the constitution adoption, Introduction to Indian Constitution, Making of the constitution, Role of constituent assembly, Salient features of Indian Constitution Preamble to the Indian Constitution and key concept of preamble. Fundamental Rights and its restrictions.

Unit - I

Unit – II 05 Hrs

Directive Principles of State Policy and its present relevance in Indian Society, Fundamental Duties and its scope and significance in nation. Union Executive: Parliamentary system, President, Prime minister, Union Cabinet, Parliament- LS & RS, Parliamentary committees, Important Parliamentary terminologies. Judicial System of India, Supreme court of India, and other courts, Judicial Reviews and Judicial activism.

> Unit –III 05 Hrs

State Executive: Governor, CM, State cabinet Legislature: VS & VP, Election Commission, Election and Electoral Process, Amendment to Indian Constitution and Important constitutional amendments till today. Emergency provisions.

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Demonstrate the citizen's fundamental Rights, duties & consumer responsibility capability and to take				
	affirmative action as a responsible citizen.				
CO2	Identify the conflict management in legal perspective and judicial systems pertaining to professional				
	environment, strengthen the ability to contribute to the resolve of human rights & Ragging issues and				
	problems through investigative and analytical skills.				
CO3	Understanding process of ethical and moral analysis in decision making scenarios and inculcate ethical				
	behavior as a trait for professional development.				
CO4	Apply the knowledge to solve practical problems with regard to personal issues & business Enterprises.				

J. N Pandey, Constitutional Law of India, Central Law Agency, 2020 edition
tar Singh: Law of Consumer Protection: Principles and Practice, Eastern Book Company, 5 th Edition, 15, ISBN -13:978-9351452461
C. Srivastava: Industrial Relation and Labour Laws, Vikas Publishing House, 6 th Edition, 12, ISBN: 9789325955400
Charles E Harris, Michael. S. Pritchard and Michael J Rabins, Engineering Ethics, Wadsworth ngage Learning, 5 th Edition, 2009, ISBN-978-0495502791
].

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be			
	conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO	10		
	QUIZZES WILL BE THE FINAL QUIZ MARKS.			
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity	20		

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 20 MARKS.	
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) adding upto 40 marks. THE FINAL EL MARKS IS REDUCED TO 20 MARKS .	20
	MAXIMUM MARKS FOR THE CIE THEORY	50

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	Q. CONTENTS				
1	Objective type questions (MCQs) covering the entire syllabus	50			
MAXIMUM MARKS FOR THE SEE THEORY					

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: I/II						
SCIENTIFIC FOUNDATIONS OF HEALTH: YOGA PRACTICE						
Category: Humanities & Social Sciences (Common to all the Programs)						s)
			(Practice)			
Course Code	Course Code : 22HSY18/28 CIE : 50 Marks					
Credits: L:T:P : 0:0:1 SEE : 50 Marks						
Total Hours : 30 SEE Duration : 2 Hours						

Unit-I 10 Hrs

Introduction to Yoga: Definition and Meaning of Yoga, Aims and Objectives, Historical development of Yoga, Eight stages of Yoga, Relevance of Yoga in modern age and scope.

Prayers: Shanthi Mantra and Loka Kalyana Mantra.

Starting Practice –Swasa Kriya, Marjalaswasa, Swanaswasa, Urasandhi chalane, Greeva sandhi chalane, Kati chalane, Super Brain yoga.

Suryanamaskara/Pragya Yoga: With Mantras & Breathing pattern.

Unit – II 10 Hrs

Standing Asanas: Trikonasana, Veerabhadrasana, Vrikshasana, Tadasana, Tiryak Tadasana, Sarvangapushti, Utkatasana.

Sitting Asanas: Baddhakonasana, Bharadwajasana, Mandukasana, Ushtrasana, SuptaVeerasana, Vakrasana, Gomukhasana, Janushirasana, Dhanurasana, Shashankasana.

Unit –III 10 Hrs

Lying Asanas : Pawanamuktasana, Sarvangasana, Naukasana, Halasana, Chakrasana, Bhujangasana, Shalabhasana, Dhanurasana, Yoga Nidra.

Relaxative/ Meditative Asanas: Shavasana, Balasana, Makarasana, Sukhasana, Padmasana, Vajrasana.

Pranayama: Mantra, Breathing – Chest, Abdominal & Yogic, Puraka, Rechaka and Kumbhaka, Anulom-Vilom, Nadishodhan, Suryabhedan, Chadrabhedan, Bhastrika, Bhramri, Sheetali, Shitkari and Kapalabhati.

Course Outcomes: After completing the course, the students will be able to						
CO1	CO1 Demonstrate the various postures of Yoga					
CO2	Analyse the impact of Yoga on Health					
CO3	Identify the remedial measures if there are any health issues.					
CO4	Develop concentration for better performance.					

Refere	Reference Books						
1	Light on Yoga, B.K.S. Iyengar, 2017, Harper Collins Publishers, ISBN: 9780008267919.						
2	Light on Pranayama, B.K.S. Iyengar, 2013, Harper Collins Publishers, ISBN: 978-8172235413.						
3	Asana Pranayama Mudra Bandha, Swami Satyananda Saraswathi, 12 th Edition, 2002, Published by Yoga						
	Publications Trust, Bihar School of Yoga, ISBN:9788186336144.						
4	Yoga Nidra, Swami Satyananda Saraswathi, 2009, Published by Yoga Publications Trust, ISBN:						
	9788185787121.						

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (PRACTICE)					
#	COMPONENTS	MARKS				
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	10				
2	TESTS: One Demonstration Test will be conducted for 30 Marks	30				
3	ACTIVITY BOOK: Students are asked to maintain an Activity Book, THE TOTAL MARKS FOR THE COMPILATION OF THE BOOK (05 Marks) AND STUDENT'S	10				

INVOLVEMENT IN THE ACTIVITY (05 Marks) WILL BE THE FINAL MARKS.	
MAXIMUM MARKS FOR THE CIE THEORY	50

RUBRIC FOR SEMESTER END EXAMINATION (PRACTICE)				
Q. NO.	CONTENTS	MARKS		
1	Demonstration of Asanas and Pranayama SEE for 50 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of only objective type questions for 40 marks covering the complete syllabus. Part – B consists of essay type questions for 10 marks.	50		
	MAXIMUM MARKS FOR THE SEE THEORY	50		

	Semester: I						
	VYAVAHARIKA KANNADA (BALAKE Kannada)						
				umanities & Social S			
			(Com	mon to all Programs	s)		
Course	Code	:	22HSVK17		CIE	:	50 Marks
Credits: L:T:P : 1:0:0 S1			SEE	:	50 Marks		
Total Hours			16		SEE Duration	:	90 Minutes
Course				Kannada: The student			
1	1 Motivate students to learn Kannada language with active involvement.						
2	2 Learn basic communication skills in Kannada language (Vyavaharika Kannada).						
3	3 Importance of learning local language Kannada.						

To those students who does not know Kannada				
Unit – I	4 Hrs			
Parichaya (Introduction): Necessity of learning local language, Tips to learn the language with easy	nethods,			
Hints for correct and polite conversation, History of kannada language.				
Unit – II				
Kannada alphabtets and Pronunciation: Kannada aksharmale, Kannada stress letters (vattakshara),				
Kannada Khagunitha, Pronunciation, memorisation and usage of the Kannada letters.				
Unit – III	4 Hrs			
Kannada vocabulary for communication: Singular and Plural nouns, Genders, Interrogative words, Antonyms,				
Inappropriate pronunciation, Number system, List of vegetables, Fractions, Menu of food items, Names of the				
food items, words relating to time, words relating to directions, words relating to human's feelings and emotion,				
Parts of the human body, words relating to relationship.				
Unit – IV				
Kannada Grammar in Conversations: Nouns, Pronouns, Use of pronouns in Kannada sentences	,			
Adjectives and its usage, Verbs, Adverbs, Conjunctions, Prepositions, Questions constructing words, Simple				
communicative sentences in kannada. Activities in Kannada, Vocabulory, Conversation.				

Course Outcomes: After completing the course, the students will be able to			
CO1	Usage of local language in day today affairs.		
CO2	Construction of simple sentences according to the situation.		
CO3	Usage of honorific words with elderly people.		
CO4	Easy communication with everyone.		

Reference Books							
1	Vyavaharika Kannada patyapusthaka, L. Thimmesh, and V. Keshavamurthy, Prasaranga						
	Visveshvaraya University, Belgaum.						
2	Kannada Kali, K. N. Subramanya, S. Narahari, H. G. Srinivasa Prasad, S. Ramamurthy and S.						
	Sathyanarayana, 5 th Edition, 2019, RV College of Engineering Bengaluru.						
3	Spoken Kannada, Kannada Sahithya Parishat, Bengaluru.						

Semester: III

VYAVAHARIKA KANNADA

(Common to all branches)

Course Code	:	22HSVK17	CIE	:	50 Marks
Credits: L:T:P	:	1:0:0	SEE	:	50 Marks
Total Hours	:	16Hrs	CIE Duration	:	90 Minutes

Course Learning Objectives of Vyavaharika Kannada: The students will be able to

- 1 Motivate students to learn Kannada language with active involvement.
- 2 Learn basic communication skills in Kannada language (Vyavaharika Kannada).
- 3 Importance of learning local language Kannada.

VYAVAHARIKA KANNADA (BALAKE Kannada)

(to those students who does not know Kannada)

Unit-I 4Hrs

Parichaya(Introduction):

Necessity of learning local language, Tips to learn the language with easy methods, Hints for correct and polite conversation, History of kannada language.

Unit – II 4Hrs

Kannada alphabtets and Pronunciation:

Kannada aksharmale, Kannada stress letters (vattakshara), Kannada Khagunitha, Pronunciation, memorisation and usage of the Kannada letters.

Unit – III 4Hrs

Kannada vocabulary for communication:

Singular and Plural nouns, Genders, Interrogative words, Antonyms, Inappropriate pronunciation, Number system, List of vegetables, Fractions, Menu of food items, Names of the food items, words relating to time, words relating to directions, words relating to human's feelings and emotion, Parts of the human body, words relating to relationship.

Unit –IV 4Hrs

Kannada Grammar in Conversations:

Nouns, Pronouns, Use of pronouns in Kannada sentences, Adjectives and its usage, Verbs, Adverbs, Conjunctions, Prepositions, Questions constructing words, Simple communicative sentences in kannada. Activities in Kannada, Vocabulory, Conversation.

Course Outcomes: After completing the course, the students will be able to

- 1 Usage of local language in day today affairs.
- 2 Construction of simple sentences according to the situation.
- 3 Usage of honorific words with elderly people.
- **4** Easy communication with everyone.

Reference Books:

- 1 Vyavaharika Kannada patyapusthaka, L. Thimmesh, and V. Keshavamurthy, Prasaranga Visveshvaraya University, Belgaum.
- 2 Kannada Kali, K. N. Subramanya, S. Narahari, H. G. Srinivasa Prasad, S. Ramamurthy and S. Sathyanarayana, 5th Edition, 2019, RV College of Engineering Bengaluru.
- 3 Spoken Kannada, Kannada Sahithya Parishat, Bengaluru.

ವ್ಯಾವಹಾರಿಕ ಕನ್ನಡ (Kannada Version) ಅಧ್ಯಾಯ – I 4Hrs ಭಾಷಾ ಕಲಿಕೆಯ ಅವಶ್ಯಕತೆ, ಭಾಷಾ ಕಲಿಕೆಯ ಸುಲಭ ವಿಧಾನಗಳು, ಸಂಭಾಷಣೆಗಾಗಿ ಸುಲಭ ಸೂಚ್ಯಗಳು

ಸ್ಥಳೀಯ ಅಥವಾ ಪ್ರಾದೇಶಿಕ ಭಾಷಾ ಕಲಿಕೆಯ ಅವಶ್ಯಕತೆ, ಭಾಷಾ ಕಲಿಕೆಯ ಸುಲಭ ವಿಧಾನಗಳು, ಸಂಭಾಷಣೆಗಾಗಿ ಸುಲಭ ಸೂಚ್ಯಗಳು ಕನ್ನಡ ಭಾಷೆಯ ಇತಿಹಾಸ.

ಅಧ್ಯಾಯ – II 4Hrs

ಕನ್ನಡ ಅಕ್ಷರಮಾಲೆ ಹಾಗೂ ಉಚ್ಛಾರಣೆ:

ಕನ್ನಡ ಅಕ್ಷರಮಾಲೆ, ಒತ್ಪಕ್ಷರ, ಕಾಗುಣಿತ, ಉಚ್ಚಾರಣೆ, ಸ್ವರಗಳು ಉಚ್ಚಾರಣೆ, ವ್ಯಂಜನಗಳ ಉಚ್ಚಾರಣೆ.

ಅಧ್ಯಾಯ – III 4Hrs

ಸಂಭಾಷಣೆಗಾಗಿ ಕನ್ನಡ ಪದಗಳು:

ಏಕವಚನ, ಬಹುವಚನ, ಲಿಂಗಗಳು (ಸ್ತ್ರೀಲಿಂಗ, ಪುಲ್ಲಿಂಗ) ಪ್ರಶ್ನಾರ್ಥಕ ಪದಗಳು, ವಿರುದ್ಧಾರ್ಥಕ ಪದಗಳು, ಅಸಮಂಜಸ ಉಚ್ಚಾರಣೆ, ಸಂಖ್ಯಾ ವ್ಯವಸ್ಥೆ, ಗಣಿತದ ಚಿಹ್ನೆಗಳು, ಭಿನ್ನಾಂಶಗಳು.

ತರಕಾರಿಗಳ ಹೆಸರುಗಳು, ತಿಂಡಿಗಳ ಹೆಸರುಗಳು, ಆಹಾರಕ್ಕೆ ಸಂಬಂಧಿಸಿದ ಪದಗಳು, ಕಾಲ/ಸಮಯಕ್ಕೆ ಸಂಬಂಧಿಸಿದ ಪದಗಳು, ದಿಕ್ಕುಗಳ ಹೆಸರುಗಳು, ಭಾವನೆಗೆ ಸಂಬಂಧಿಸಿದ ಪದಗಳು, ಮಾನವ ಶರೀರದ ಭಾಗಗಳು, ಸಂಬಂಧದ ಪದಗಳು, ಸಾಮಾನ್ಯ ಸಂಭಾಷಣೆಯಲ್ಲಿ ಬಳಸುವಂತಹ ಪದಗಳು.

ಅಧ್ಯಾಯ – IV 4Hrs

ಸಂಭಾಷಣೆಯಲ್ಲಿ ಕನ್ನಡ ಬಳಕೆ:

ನಾಮಪದಗಳು, ಸರ್ವನಾಮಗಳು, ನಾಮವಿಶೇಷಣಗಳು, ಕ್ರಿಯಾಪದಗಳು, ಕ್ರಿಯಾವಿಶೇಷಣಗಳು, ಕನ್ನಡದಲ್ಲಿ ಸಂಯೋಜನೆಗಳು, ಉಪಸರ್ಗಗಳು, ಪ್ರಶ್ನಾರ್ಥಕ ಪದಗಳು, ವಿಚಾರಣೆಯ / ವಿಚಾರಿಸುವ / ಬೇಡಿಕೆಯ ವಾಕ್ಯಗಳು. ಕನ್ನಡದಲ್ಲಿ ಚಟುವಟಿಕೆಗಳು, ಶಬ್ದಕೋಶ, ಸಂಭಾಷಣೆ.

ವ್ಯವಹಾರಿಕ ಕನ್ನಡದ ಕಲಿಕಾ ಫಲಿತಾಂಶಗಳು :

	·
	ನಿತ್ಯ ಜೀವನದಲ್ಲಿ ಆಡುಭಾಷೆಯ ಬಳಕೆ.
CO2:	ಸಂದರ್ಭ, ಸನ್ನಿವೇಶಕ್ಕನುಗುಣವಾಗಿ ಸರಳ ಕನ್ನಡ ವಾಕ್ಯಗಳ ಬಳಕೆ.
CO3:	ಗೌರವ ಸಂಬೋಧನೆಯ ಬಳಕೆ.
CO4·	ಇತರರೊಡನೆ ಸುಲಭ ಸಂವಹನ.

ಆಧಾರ	ಪುಸ್ತಕಗಳು :
1	ವ್ಯವಹಾರಿಕ ಕನ್ನಡ ಪಠ್ಯಪುಸ್ತಕ, ಎಲ್.ತಿಮ್ಮೇಶ್ ಮತ್ತು ವಿ.ಕೇಶವಮೂರ್ತಿ, ಪ್ರಸಾರಾಂಗ, ವಿಶ್ವೇಶ್ವರಯ್ಯ ತಾಂತ್ರಿಕ ವಿದ್ಯಾಲಯ, ಬೆಳಗಾಂ.
2	ಕನ್ನಡ ಕಲಿ, ಕೆ.ಎನ್.ಸುಬ್ರಹ್ಮಣ್ಯಂ, ಎನ್.ಎಸ್.ನರಹರಿ, ಎಚ್.ಜಿ.ಶ್ರೀನಿವಾಸ 'ಪ್ರಸಾದ್, ಎಸ್.ರಾಮಮೂರ್ತಿ ಮತ್ತು ಎಸ್.ಸತ್ಯನಾರಾಯಣ, 2ನೇ ಮುದ್ರಣ 2019, ರಾ.ವಿ.ತಾಂತ್ರಿಕ ಮಹಾವಿದ್ಯಾಲಯ, ಬೆಂಗಳೂರು.
3	ಮಾತನಾಡುವ ಕನ್ನಡ, ಕನ್ನಡ ಸಾಹಿತ್ಯ ಪರಿಷತ್, ಬೆಂಗಳೂರು.

Continuous Internal Evaluation (CIE); (50 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Activity. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks and the sum of the marks scored from two quizzes is reduced to 10. The two tests are conducted for 50 marks each and the sum of the marks scored from two tests is reduced to 30. The marks component for Activity is 10. Total CIE is 10(Q) + 30(T) + 10(A) = 50 Marks.

Semester End Evaluation (SEE); Theory (50 Marks)

SEE for 50 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of only objective type questions for 40 marks covering the complete syllabus. Part – B consists of essay type questions for 10 marks.

Semester: III AADALITHA KANNADA (Common to all branches) **Course Code** 22HSAK17 CIE 50 Marks Credits: L:T:P 1:0:0 50 Marks SEE **Total Hours** 16Hrs **CIE Duration** 90 Minutes ಆಡಳಿತ ಕನ್ನಡ (ಕನ್ನಡಿಗರಿಗಾಗಿ) ಆಡಳಿತ ಭಾಷಾ ಕಲಿಕೆಯ ಉದ್ದೇಶಗಳು: ವಿದ್ಯಾರ್ಥಿಗಳಲ್ಲಿ ಆಡಳಿತ ಕನ್ನಡದ ಪರಿಚಯ ಮಾಡಿಕೊಡುವುದು. ಕನ್ನಡ ಭಾಷೆಯ ವ್ಯಾಕರಣದ ಬಗ್ಗೆ ಅರಿವು ಮೂಡಿಸುವುದು. 2 ಕನ್ನಡ ಭಾಷಾ ಬರಹದಲ್ಲಿ ಕಂಡುಬರುವ ದೋಷಗಳು ಹಾಗೂ ಅವುಗಳ ನಿವಾರಣೆ ಮತ್ತು ಲೇಖನ ಚಿಹ್ನೆಗಳನ್ನು ಪರಿಚಯಿಸುವುದು. ಸಾಮಾನ್ಯ ಅರ್ಜಿಗಳು, ಸರ್ಕಾರಿ ಮತ್ತು ಅರೆಸರ್ಕಾರಿ ಪತ್ರ ವ್ಯವಹಾರದ ಬಗ್ಗೆ ಅರಿವು ಮೂಡಿಸುವುದು. ಭಾಷಾಂತರ, ಪ್ರಬಂದ, ರಚನೆ, ಕನ್ನಡ ಭಾಷಾಭ್ಯಾಸ ಮತ್ತು ಆಡಳಿತ ಕನ್ನಡದ ಪದಗಳ ಪರಿಚಯ ಮಾಡಿಕೊಡುವುದು. 4Hrs ಅಧ್ಯಾಯ -I ಕನ್ನಡ ಭಾಷೆ – ಸಂಕ್ಷಿಪ್ತ ವಿವರಣೆ: ಪ್ರಸ್ತಾವನೆ–ಕನ್ನಡ ಭಾಷೆ, ಶ್ರಾವಣ (ಕವನ)– ದ.ರಾ.ಬೇಂದ್ರೆ (ಕವಿ), ಬೆಲ್ಲಿಯ ಹಾಡು (ಕವನ) –ಸಿದ್ದಲಿಂಗಯ್ಯ (ಕವಿ) ಆಡಳಿತ ಭಾಷೆಕನ್ನಡ, ಆಡಳಿತ ಭಾಷೆಯ ಲಕ್ಷಣಗಳು, ಆಡಳಿತ ಭಾಷೆಯ ಪ್ರಯೋಜನಗಳು. 4 Hrs ಅಧ್ಯಾಯ –II ಭಾಷಾ ಪ್ರಯೋಗದಲ್ಲಾಗುವ ಲೋಪದೋಷಗಳು ಮತ್ತು ಅವುಗಳ ನಿವಾರಣೆ: ಪ್ರಸ್ತಾವನೆ- ಕಾಗುಣಿತದ ತಪ್ಪು ಬಳಕೆಯಿಂದಾಗುವ ಲೋಪದೋಷಗಳು ಅಥವಾ ಸಾಧುರೂಪಗಳ ಬಳಕೆ, ಅಲ್ಪ ಪ್ರಾಣ ಮತ್ತು ಮಹಾಪ್ರಾಣಗಳ ಬಳಕೆಯಲ್ಲಿನ ವ್ಯತ್ಯಾಸದಿಂದಾಗುವ ಲೋಪದೋಷಗಳು, ಲೇಖನ ಚಿಹ್ನೆಗಳು, ಕನ್ನಡ ಭಾಷೆಯಲ್ಲಿನ ಲೋಪದೋಷಗಳು ಗೌರವ ಸೂಚಕಗಳ ಬಳಕೆ, ಭಾಷಾ ಬರಹದಲ್ಲಿ ಅನುಸರಿಸಬೇಕಾದ ಇನ್ನಿತರಕ್ರಮ, ಲೇಖನ ಚಿಹ್ನೆಗಳು ಮತ್ತು ಅವುಗಳ ಉಪಯೋಗ. ಅಧ್ಯಾಯ -III 4Hrs ಪತ್ರ ವ್ಯವಹಾರ: ಪ್ರಸ್ತಾವನೆ- ಖಾಸಗಿ ಪತ್ರ ವ್ಯವಹಾರ, ಆಡಳಿತ ಪತ್ರಗಳು, ಅರ್ಜಿಯ ವಿವಿಧ ಬಗೆಗಳು ಮತ್ತು ಮಾದರಿಗಳು. ಅಧ್ಯಾಯ -IV 4Hrs ಪ್ರಬಂಧ, ಸಂಕ್ಷಿಪ್ತ ಪ್ರಬಂಧರಚನೆ ಮತ್ತು ಭಾಷಾಂತರ: ಕನ್ನಡ ಶಬ್ದಸಂಗ್ರಹ, ಜೋಡಿನುಡಿಗಳು, ಅನುಕರಣಾವ್ಯಯಗಳು, ಸಮಾನಾರ್ಥಕ ಪದಗಳು, ನಾನಾರ್ಥಗಳು, ವಿರುದ್ಧಪದಗಳು, ತತ್ತಮ– ತದ್ಧವಗಳು, ದ್ವಿರುಕ್ಕಿಗಳು, ನುಡಿಗಟ್ಟುಗಳು, ಶಬ್ದಸಮೂಹಕ್ಕೆ ಒಂದು ಶಬ್ದ, ಅನ್ಯದೇಶೀಯ ಪದಗಳು, ದೇಶೀಯಪದಗಳು. ಆಡಳಿತ ಕನ್ನಡದ ಕಲಿಕಾ ಫಲಿತಾಂಶಗಳು: **CO1:** ಕನ್ನಡ ಬರಹದಲ್ಲಿ ವ್ಯಾಕರಣದ ಬಳಕೆ. CO2: | ಕನ್ನಡದಲ್ಲಿ ಪತ್ರ ಬರೆಯುವಿಕೆ. CO3: ಕನ್ನಡ ಸಾಹಿತ್ಯ ಹಾಗೂ ಸಂಸ್ಕೃತಿಯ ಬಗ್ಗೆ ಆಸಕ್ತಿ ಮೂಡುವುದು. ಆಧಾರ ಪುಸ್ತಕಗಳು : ಆಡಳಿತ ಕನ್ನಡ ಪಠ್ಯಪುಸ್ತಕ, ಎಲ್.ತಿಮ್ಮೇಶ್ ಮತ್ತು ವಿ.ಕೇಶವಮೂರ್ತಿ, ಪ್ರಸಾರಾಂಗ, ವಿಶ್ವೇಶ್ವರಯ್ಯ ತಾಂತ್ರಿಕ ವಿದ್ಯಾಲಯ, 1

ಕನ್ನಡ ಅನುಭವ, ಕೆ.ಎನ್.ಸುಬ್ರಹ್ಮಣ್ಯಂ, ಎನ್.ಎಸ್.ನರಹರಿ, ಎಚ್.ಜಿ.ಶ್ರೀನಿವಾಸಪ್ರಸಾದ್, ಎಸ್.ರಾಮಮೂರ್ತಿ

ಎಸ್.ಸತ್ಯನಾರಾಯಣ, 2ನೇ ಮುದ್ರಣ 2019, ರಾ.ವಿ.ತಾಂತ್ರಿಕ ಮಹಾವಿದ್ಯಾಲಯ, ಬೆಂಗಳೂರು.

2

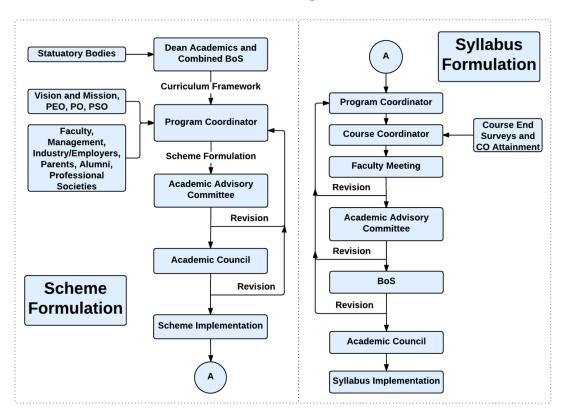
ಮತ್ತು

Continuous Internal Evaluation (CIE); (50 Marks)

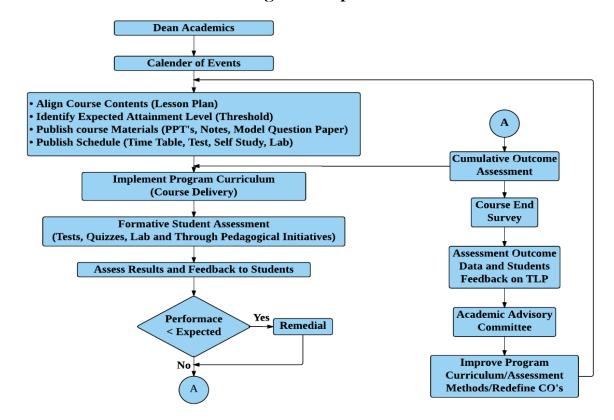
CIE is executed by way of quizzes (Q), tests (T) and Activity. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks and the sum of the marks scored from two quizzes is reduced to 10. The two tests are conducted for 50 marks each and the sum of the marks scored from two tests is reduced to 30. The marks component for Activity is 10. Total CIE is 10(Q) + 30(T) + 10(A) = 50 Marks.

Semester End Evaluation (SEE); Theory (50 Marks)

SEE for 50 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 10 marks covering the complete syllabus. Part - B is for 40 marks. It consists of simple grammar and essay type questions.

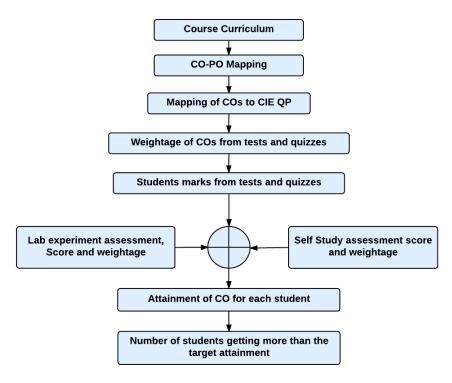


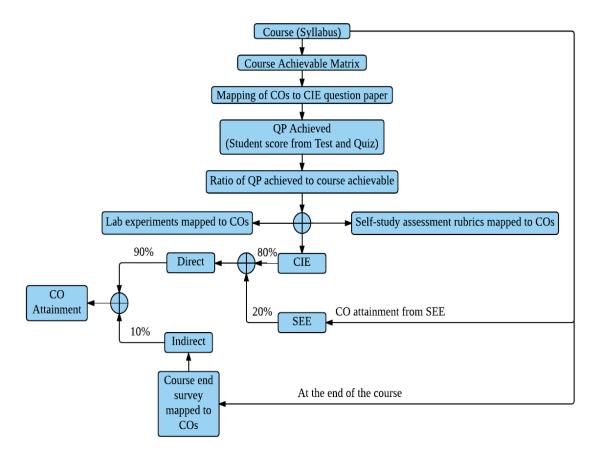
RV Educational Institutions ® RV College of Engineering


Institution Affiliated to Visvesvaraya Technological University, Belagavi

Approved by AICTE, New Delhi

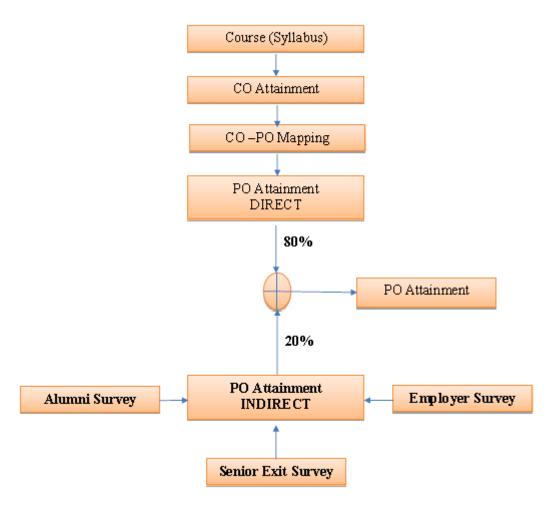
Curriculum Design Process


Academic Planning And Implementation



New Delhi

Process For Course Outcome Attainment


Final CO Attainment Process

New Delhi

Program Outcome Attainment Process

