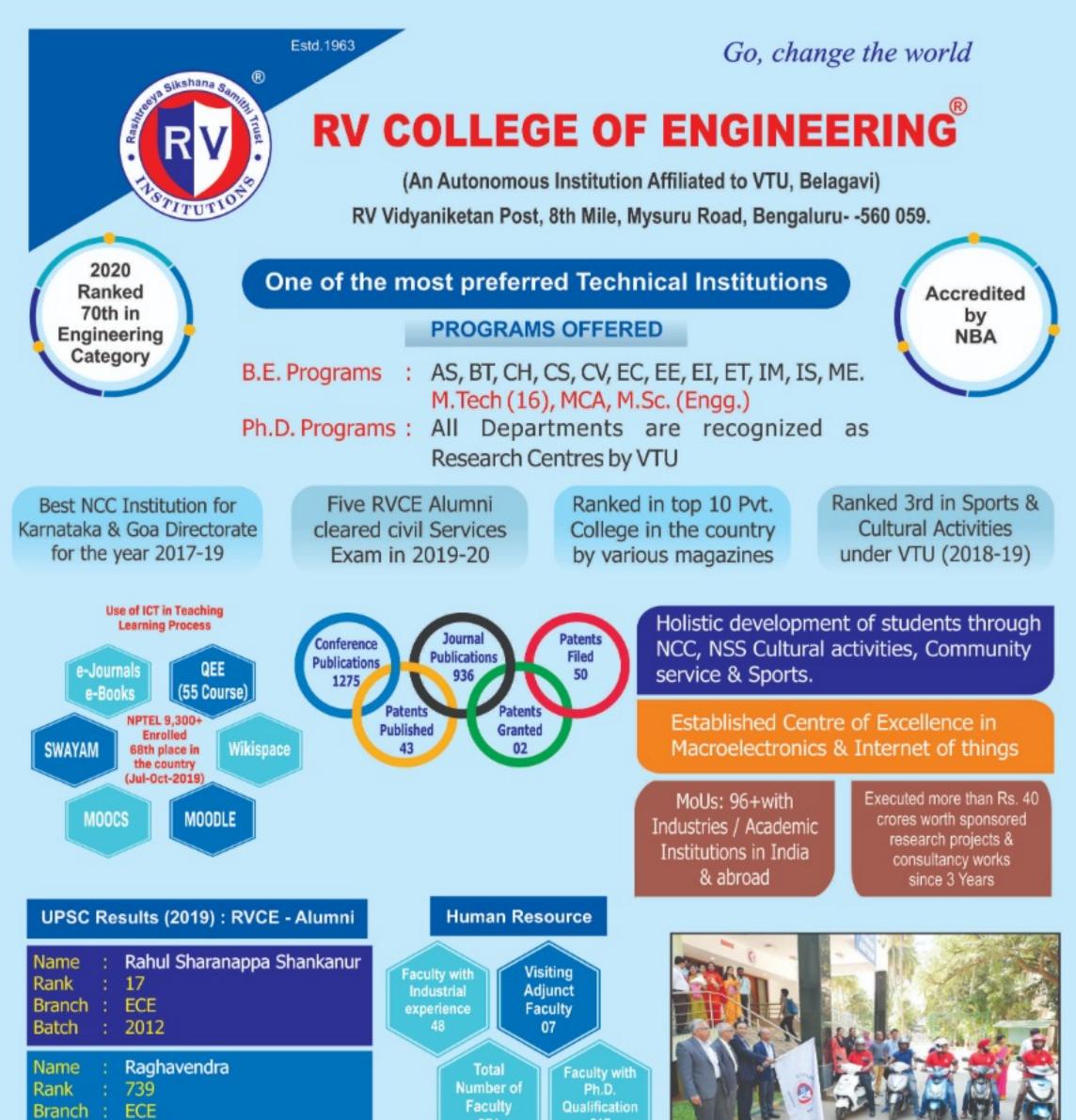
Go, change the world

RV BERVISE

RV COLLEGE OF ENGINEERING[®]

(An Autonomous Institution Affiliated to VTU, Belagavi) Approved by AICTE, New Delhi, Accredited By NBA, New Delhi RV Vidyaniketan Post, 8th Mile, Mysuru Road, Bengaluru- -560 059.


Bachelor of Engineering (B.E) Scheme and Syllabus

(2018 Scheme)

I & II Semester (COMMON TO ALL B.E. PROGRAMS)

ACADEMIC YEAR 2020-2021

RVCE - Greaves Cotton Ltd Centre of excellence in e-mobility

RV-Mercedes Benz Centre for Automotive Mechatronics

Go, change the world

RV COLLEGE OF ENGINEERING

(An Autonomous Institution Affiliated to VTU, Belagavi) Approved by AICTE, New Delhi, Accredited By NAAC, Bengaluru and NBA, New Delhi **R.V. Vidyaniketan Post, 8th Mile, Mysuru Road, Bengaluru--560 059.**

Bachelor of Engineering (B.E) Scheme and Syllabus

(2018 Scheme)

I & II Semester (COMMON TO ALL B.E. PROGRAMS)

ACADEMIC YEAR 2020-2021

ABBREVIATIONS

Sl. No.	Abbreviation	Meaning
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	SEE	Semester End Examination
5.	PE	Professional Core Elective
6.	GE	Global Elective
7.	HSS	Humanities and Social Sciences
8.	CV	Civil Engineering
9.	ME	Mechanical Engineering
10.	EE	Electrical & Electronics Engineering
11.	EC	Electronics & Communication Engineering
12.	IM	Industrial Engineering & Management
13.	EI	Electronics & Instrumentation Engineering
14.	СН	Chemical Engineering
15.	CS	Computer Science & Engineering
16.	TE	Telecommunication Engineering
17.	IS	Information Science & Engineering
18.	BT	Biotechnology
19.	AS	Aerospace Engineering
20.	PY	Physics
21.	CY	Chemistry
22.	MA	Mathematics

INDEX

	FIRST YEAR COURSES						
Sl. No.	Course Code	Name of the Course	Page No.				
1.	18MA11	Engineering Mathematics-I (Common to both cycles)	05				
2.	18PH12/22	Engineering Physics	07				
3.	18EE13/23	Elements of Electrical Engineering	10				
4.	18CV14/24	Elements of Civil Engineering and Mechanics	12				
5.	18EE15/25	Elements of Engineering Practices	14				
6.	18ME16/26	Computer Aided Engineering Drawing	16				
7.	18CH12/22	Engineering Chemistry	18				
8.	18CS13/23	Programing in C	21				
9.	18EC14/24	Elements of Electronics Engineering	25				
10.	18ME15/25	Elements of Mechanical Engineering	27				
11.	18HS17	English Language Lab I	29				
12.	18MA21	Engineering Mathematics-II (Common to both cycles)	31				
13.	18HS27	English Language Lab II	33				
14.		Program Outcomes (PO)	35				

R V COLLEGE OF ENGINEERNG, BENGALURU-560 059 (Autonomous Institution Affiliated to VTU, Belagavi) FIRST SEMESTER CREDIT SCHEME FOR PHYSICS CYCLE (Effective from the Academic year 2018-19)

	(COMMON TO ALL B.E. PROGRAMS)						
Sl.	Course	se		CREDIT ALLOCATIO			N
No.	Code	Course Title	BoS	Lecture	Tutorial	Practical	Total Credits
1.	18MA11	Engineering Mathematics-I	MA	3	1	0	4
2.	18PH12	Engineering Physics	PY	3	1	1	5
3.	18EE13	Elements of Electrical Engineering	EE	2	1	0	3
4.	18CV14	Elements of Civil Engineering and Mechanics	CV	2	1	0	3
5.	18EE15	Elements of Engineering Practices	EE		0	1	1
6.	6. 18ME16 Computer Aided Engineering Drawing		ME	1	0	2	3
7.	18HS17	English Language Laboratory-1			1	1	
	r ·	Fotal number of Credits		11	4	5	20
	Tota	al Number of Hours / Week		11	08	10	

Г

FIRST SEMESTER CREDIT SCHEME FOR CHEMISTRY CYCLE (Effective from the Academic year 2018-19)

	(COMMON TO ALL B.E. PROGRAMS)								
S1.	Course					CREDIT ALLOCATION			
No.	Code	Course Title	BoS		Tutorial	Practical	Total Credits		
1.	18MA11	Engineering Mathematics-I	MA	3	1	0	4		
2.	18CH12	Engineering Chemistry	CY	3	1	1	5		
3.	18CS13	Programing in C	CS	2	1	1	4		
4.	18EC14	Elements of Electronics Engineering		2	1	0	3		
5.	18ME15	Elements of Mechanical Engineering	ME	2	1	0	3		
6.	18HS16	English Language Laboratory-1	HSS	-	0	1	1		
]	Fotal number of Credits		12	5	3	20		
	Tota	al Number of Hours / Week		12	10	06			

٦

R V COLLEGE OF ENGINEERNG, BENGALURU-560 059 (Autonomous Institution Affiliated to VTU, Belagavi) SECOND SEMESTER CREDIT SCHEME FOR PHYSICS CYCLE (Effective from the Academic year 2018-19)

	(COMMON TO ALL B.E. PROGRAMS)						
Sl.	Course		C	N			
No.	Code	Course Title	BoS	Lecture	Tutorial	Practical	Total Credits
1.	18MA21	Engineering Mathematics-II	MA	3	1	0	4
2.	18PH22	Engineering Physics	PY	3	1	1	5
3.	18EE23	Elements of Electrical Engineering	EE	2	1	0	3
4.	18CV24	Elements of Civil Engineering and Mechanics	CV	2	1	0	3
5.	18EE25	Elements of Engineering Practices	EE		0	1	1
6.	18ME26	Computer Aided Engineering Drawing	ME	1	0	2	3
7.	18HS27	English Language Laboratory- II	HSS			1	1
	T	Sotal number of Credits		11	4	5	20
	Tota	l Number of Hours / Week		11	08	10	

SECOND SEMESTER CREDIT SCHEME FOR CHEMISTRY CYCLE (Effective from the Academic year 2018-19)

	(COMMON TO ALL B.E. PROGRAMS)								
S1.	Course			C	CREDIT ALLOCATION				
No.	Code	Course Title	BoS	Lecture	Tutorial	Practical	Total Credits		
1.	18MA21	Engineering Mathematics-II	MA	3	1	0	4		
2.	18CH22	Engineering Chemistry	CY	3	1	1	5		
3.	18CS23	Programing in C	CS	2	1	1	4		
4.	18EC24	Elements of Electronics Engineering	EC	2	1	0	3		
5.	18ME25	Elements of Mechanical Engineering	ME	2	1	0	3		
6. 18HS26 English Language H Laboratory-II				-	0	1	1		
	Tota	al number of Credits		12	5	3	20		
	Total N	umber of Hours / Week		12	10	06			

		Semester: I					
	ENGINEERING MATHEMATICS – I						
		(Theory)					
Course Code: 18MA11 CIE Marks: 100							
Cred	Credits: L:T:P:: 3:1:0 SEE Marks: 100						
	rs: 39L + 26T		SEE Duration: 3Hrs				
Cour	se Learning Objectives: The stude	ents will be able to					
1	Understand the existence of po	olar coordinates as possible 2-	D geometry, curves in po	lar			
1	coordinates and to approximate a f	function of single variable in term	s of infinite series.				
2	Gain knowledge of multivariate	functions, types of derivatives	involved with these function	ns,			
4	Jacobian as transformation factor a	and their applications.					
	Enhance the knowledge level to	visualize integrals in higher di	mensional coordinate system	ns,			
3	possible representation and evaluation	ation of geometrical and physical	quantities in terms of multip	ple			
	integrals.						
4	Interpret concepts of vector functions, vector fields, differential calculus of vector functions in						
-	Cartesian coordinates and apply them for various engineering problems.						
5	Appreciate the significance of ve	ctor integration and its applicabi	lity to Electromagnetic theory	ry,			
5	Mechanics and other allied areas.						
6	Use mathematical IT tools to analy	ze and visualize various concepts	5.				
			1				
DIEE		UNIT-I	08 Hr	s			
	ERENTIAL CALCULUS - I s of polar coordinates, polar curves	a angla batwaan radius vastor a	nd tangant nr aquation (no	4.1			
	ion). Curvature, radius of curvature						
	irvature (formulae only) and problem						

of curvature (formulae only) and problems. Taylor's and Maclaurin's series for variable (statements only) and problems.

DIFFERENTIAL CALCULUS - II

Partial Differentiation - Basics, total derivatives-differentiation of composite and implicit functions, Maxima and minima of functions of two variables. Method of Lagrange multipliers with one subsidiary condition. Jacobians- properties and simple problems.

INTEGRAL CALCULUS

Gamma and Beta functions- Definitions, relationship between these functions and simple problems. Multiple integrals- Double and Triple integrals – Introduction and method of evaluation, problems. Double integrals - Change of order of integration and change of variables to polar coordinates. Applications – Area, volume and centre of gravity. **UNIT-IV** 08 Hrs

VECTOR DIFFERENTIATION

Scalar and vector fields, vector differentiation, velocity and acceleration vectors, gradient, divergence, curl and Laplacian of scalar/vector fields, solenoidal and irrotational fields, physical interpretations, simple problems involving practical situations. Vector identities and problems.

VECTOR INTEGRATION

Line, surface and volume integrals. Green's theorem, Stoke's theorem and Gauss divergence theorem (all theorems without proof), solenoidal fields and irrotational fields. Applications to work done by a force and flux.

UNIT-II

08 Hrs

UNIT-III

08 Hrs

UNIT-V

07 Hrs

Cours	Course Outcomes: After completing the course, the students will be able to					
CO1	Demonstrate the understanding of the basics of polar coordinates and p-r equations, partial					
	differentiation, multiple integrals, vector fields and vector differentiation.					
CO2	Solve problems on radius of curvature, total derivatives of functions, double integrals by changing					
	order of integration, velocity and acceleration vectors, line, surface and volume integrals.					
CO3	Apply acquired knowledge to find infinite series form of functions, Jacobians, multiple integrals by					
	changing variables, different operations using Del operator and to verify integral theorems.					
CO4	Estimate extremal points of functions of two variables, area and volume using multiple integrals,					
	solenoidal and irrotational fields.					

Refer	rence Books
1.	Higher Engineering Mathematics, B.S. Grewal, 44 th Edition, 2015, Khanna Publishers, ISBN: 978-
	81-933284-9-1.
2.	Higher Engineering Mathematics, B.V. Ramana, 11th Edition, 2010, Tata McGraw-Hill, ISBN:
	978-0-07-063419-0.
3.	Advanced Engineering Mathematics, E. Kreyszig, 10th Edition (Reprint), 2016, John Wiley &
	Sons, ISBN: 978-0470458365.
4.	Advanced Engineering Mathematics, C. Ray Wylie, Louis C. Barrett 6th Edition, 1995, McGraw-
	Hill Book Co., New York, ISBN: 978-0071135436.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	-	-	1
CO2	3	2	-	-	-	-	-	-	-	-	-	1
CO3	3	3	1	1	1	-	1	-	-	-	-	1
CO4	3	3	1	1	1	-	1	-	-	-	-	1

		Semeste ENGINEERIN				
		(Theory &				
Cou	rse Code: 18PH12/22	(CIE Marks: 1	00+50	
	dits: L:T:P:: 3:1:1			SEE Marks: 1		
Hou	rs: 39L + 26T			SEE Duration	n: 03+03 H	Irs
Cou	rse Learning Objectives:	The students will be a	ble to			
1	Understand the principles	of Lasers, Optical fibr	res and its appli	ication in moder	n technol	ogy.
2	Understand the principle		nics and its app	olications to div	erse field	s like lasers
4	and electrical properties of					
3	Analyze the Electrical pro	•		nductors.		
4	Explain the Elasticity and	<u> </u>				
5	Solve differential equation	ns of harmonic oscilla	itors to analyze	experimental si	tuations a	pplicable to
_	engineering problems.					
		UNIT-I				00 II
ТАС	TEDS	UNIT-I				08 Hrs
	SERS	ton Einstein's fr .	ionto (n for 1	noites) D	anicitaa - f
	action of radiation with ma or system. Conditions for		· •	•••	•	•
	lication of Lasers in measur					-ine Lasei.
	TICAL FIBERS	finents of pollutants in	i atmosphere. N	uniciteal proble		
-	agation mechanism, Angle	of acceptance Nume	erical aperture	Modes of propa	agation ar	nd Types of
	cal fibers. Attenuation: Cau					
	ptical fibers. Discussion of t					
1						
Matt	ANTUM MECHANICS er waves, de-Broglie's H	UNIT-II ypothesis and wavele	ength of matte	er waves. Heis	enberg's	08 Hrs Uncertainty
Matt princ Schr parti	er waves, de-Broglie's H ciple and application (Broad odinger's wave equation. cle in a one- dimensional	UNIT-II ypothesis and wavele lening of spectral line Significance of Wave nfinite potential well	ength of matter es). Setting up of e function, nor (Particle in a	er waves. Heise of one dimensio rmalization. Ap	enberg's onal time i plication	08 Hrs Uncertainty independent of SWE to
Matt princ Schr parti	er waves, de-Broglie's H ciple and application (Broad odinger's wave equation.	UNIT-II ypothesis and waveled lening of spectral line Significance of Wave nfinite potential well ell potential. Numerica	ength of matter es). Setting up of e function, nor (Particle in a	er waves. Heise of one dimensio rmalization. Ap	enberg's onal time i plication	08 Hrs Uncertainty independent of SWE to dimensional
Matt prind Schr parti well	er waves, de-Broglie's H ciple and application (Broad odinger's wave equation. cle in a one- dimensional . Free particle and square war CCTRICAL CONDUCTIV	UNIT-II ypothesis and wavele lening of spectral line Significance of Wave nfinite potential well ell potential. Numerica UNIT-III TTY IN METALS A	ength of matter es). Setting up of e function, nor (Particle in a al problems. AND SEMICO	er waves. Heise of one dimensio rmalization. Ap box).Extension	enberg's onal time plication to three Review	08 Hrs Uncertainty independent of SWE to dimensional 08 Hrs of Classical
Matt prince Schr parti well ELE free ener of C appr Intri expr in semi	ter waves, de-Broglie's H ciple and application (Broad odinger's wave equation. cle in a one- dimensional . Free particle and square ware CCTRICAL CONDUCTIV electron theory, Quantum gy: carrier concentration in QFET, Hall Effect, deriva oach). nsic semiconductors: carrie ession for hole concentration intrinsic semiconductors. conductors: Types of extr	UNIT-II ypothesis and waveled lening of spectral line Significance of Wave nfinite potential well ell potential. Numerica UNIT-III TTY IN METALS A free electron theory (Conetals (derivation), va ion of Hall coefficient concentration, derive n in valence band, inter Energy gap of in nsic semiconductors,	ength of matter es). Setting up of e function, nor (Particle in a al problems. AND SEMICO QFET), Density uniation of Ferme ent in metals. vation of electro rinsic carrier co intrinsic semi doping metho	er waves. Heise of one dimension rmalization. Ap- box).Extension DNDUCTORS y of states and hi factor with ten Band theory of on concentration oncentration (de iconductors (de ds (qualitative).	enberg's onal time i plication to three Review Fermi fa nperature. of solids n in condu- trivation), erivation).	08 Hrs Uncertainty independent of SWE to dimensional 08 Hrs of Classical actor. Fermi Drawbacks (qualitative action band, Fermi level . Extrinsic n of carrier
Matt prince Schr parti well ELE free ener of C appr Intri expr in semi conce semi prob DIE Elec treat	ter waves, de-Broglie's H ciple and application (Broad odinger's wave equation. cle in a one- dimensional . Free particle and square war CCTRICAL CONDUCTIV electron theory, Quantum gy: carrier concentration in QFET, Hall Effect, deriva oach). nsic semiconductors: carrie ession for hole concentratio intrinsic semiconductors.	UNIT-II ypothesis and waveled lening of spectral line Significance of Wave nfinite potential well ell potential. Numerica UNIT-III TTY IN METALS A free electron theory (C metals (derivation), va ion of Hall coefficie reconcentration, derive n in valence band, intre Energy gap of in nsic semiconductors, niconductors with ter re and impurity concert , Polarization of dieled ds for one dimensiona Numerical problems.	ength of matter es). Setting up of e function, nor (Particle in a al problems. AND SEMICO QFET), Density uniation of Ferme ent in metals. vation of electro rinsic carrier co intrinsic semi doping metho mperature, var entration. Hall of ectric materials	er waves. Heise of one dimension rmalization. Ap- box).Extension ONDUCTORS y of states and hi factor with ten Band theory of on concentration (de iconductors (de ds (qualitative). riation of Ferm effect for semico	enberg's onal time i plication to three Review Fermi fa nperature. of solids n in condu- rrivation), erivation) Variation ni level i onductors	08 Hrs Uncertainty independent of SWE to dimensional 08 Hrs of Classical actor. Fermi Drawbacks (qualitative action band, Fermi level . Extrinsic n of carrier in extrinsic . Numerical Qualitative
Matt prince Schr parti well ELE free ener of C appr Intri expr in semi conce semi prob DIE Elece treat - Mc	ter waves, de-Broglie's H ciple and application (Broad odinger's wave equation. cle in a one- dimensional . Free particle and square ware CCTRICAL CONDUCTIV electron theory, Quantum gy: carrier concentration in QFET, Hall Effect, deriva oach). nsic semiconductors: carrie ession for hole concentration intrinsic semiconductors. conductors: Types of extra conductors with temperatur lems. LECTRICS tric dipole, Dipole moment ment of Internal field in sol pssotti equation(derivation).	UNIT-II ypothesis and waveled lening of spectral line Significance of Wave nfinite potential well ell potential. Numerica UNIT-III TTY IN METALS A free electron theory (C metals (derivation), va ion of Hall coefficie concentration, deriv n in valence band, intre Energy gap of in nsic semiconductors, niconductors with ter ter and impurity concer- , Polarization of dieled ds for one dimensiona Numerical problems. UNIT-IV	ength of matter es). Setting up of e function, nor (Particle in a al problems. AND SEMICO QFET), Density uniation of Ferme ent in metals. vation of electro rinsic carrier co intrinsic semi doping metho mperature, var entration. Hall of ectric materials	er waves. Heise of one dimension rmalization. Ap- box).Extension ONDUCTORS y of states and hi factor with ten Band theory of on concentration (de iconductors (de ds (qualitative). riation of Ferm effect for semico	enberg's onal time i plication to three Review Fermi fa nperature. of solids n in condu- rrivation), erivation) Variation ni level i onductors	08 Hrs Uncertainty independent of SWE to dimensional 08 Hrs of Classical actor. Fermi Drawbacks (qualitative action band, Fermi level . Extrinsic n of carrier in extrinsic . Numerical
Matt prince Schr partii well ELE free ener of C appr Intrii expr in semii conce semii prob DIE Elece treat - Mo	er waves, de-Broglie's H ciple and application (Broad odinger's wave equation. cle in a one- dimensional . Free particle and square we CCTRICAL CONDUCTIV electron theory, Quantum gy: carrier concentration in QFET, Hall Effect, deriva oach). nsic semiconductors: carrie ession for hole concentration intrinsic semiconductors. conductors: Types of extra- conductors with temperatu- lems. LECTRICS tric dipole, Dipole moment- ment of Internal field in sol pssotti equation(derivation).	UNIT-II ypothesis and waveled lening of spectral line Significance of Wave nfinite potential well ell potential. Numerica UNIT-III TTY IN METALS A free electron theory (Con netals (derivation), va ion of Hall coefficient concentration, derive n in valence band, intre Energy gap of in nsic semiconductors, niconductors with tenter and impurity concent , Polarization of dieled ds for one dimensional Numerical problems. UNIT-IV MATERIALS	ength of matter es). Setting up of e function, nor (Particle in a al problems. AND SEMICO QFET), Density variation of Ferme ent in metals. vation of electro rinsic carrier co intrinsic semi doping metho mperature, var entration. Hall e ectric materials al infinite array	er waves. Heise of one dimension rmalization. Ap- box).Extension ONDUCTORS y of states and hi factor with ten Band theory of on concentration (de iconductors (de ds (qualitative). riation of Ferm effect for semico	enberg's onal time i plication to three Review Fermi fa nperature. of solids n in condu- trivation), erivation), Variation ni level i onductors urizations. entz field)	08 Hrs Uncertainty independent of SWE to dimensional 08 Hrs of Classical actor. Fermi Drawbacks (qualitative action band, Fermi level . Extrinsic n of carrier in extrinsic . Numerical Qualitative . Claussius 08 Hrs
Matt prince Schr partii well ELE free ener of C appr Intrii expr in semii conce semii prob DIE Elece treat - Mc ELA Elas	er waves, de-Broglie's H ciple and application (Broad odinger's wave equation. cle in a one- dimensional . Free particle and square we CCTRICAL CONDUCTIV electron theory, Quantum gy: carrier concentration in QFET, Hall Effect, deriva oach). nsic semiconductors: carrie ession for hole concentration intrinsic semiconductors. conductors: Types of extr centration in extrinsic sem conductors with temperatur lems. LECTRICS tric dipole, Dipole moment ment of Internal field in sol pssotti equation(derivation).	UNIT-II ypothesis and waveled lening of spectral line Significance of Wave nfinite potential well ell potential. Numerica UNIT-III TTY IN METALS A free electron theory (C metals (derivation), va ion of Hall coefficient concentration, derive n in valence band, intre Energy gap of in nsic semiconductors, niconductors with tentre and impurity concent , Polarization of dieled ds for one dimensional Numerical problems. UNIT-IV MATERIALS rain, Hooke's law, Ela	ength of matter es). Setting up of e function, nor (Particle in a al problems. AND SEMICO QFET), Density wriation of Ferme ent in metals. vation of electro rinsic carrier co intrinsic semi doping metho mperature, var entration. Hall e ectric materials al infinite array asticity, plastic	er waves. Heise of one dimension rmalization. Ap- box).Extension ONDUCTORS y of states and hi factor with ten Band theory of on concentration (de iconductors (de ds (qualitative). riation of Ferm effect for semico s: Types of pola of dipoles (Lord ity, strain harde	enberg's onal time i plication to three Fermi fa nperature. of solids n in condu- rivation), erivation) Variation ni level i onductors arizations. entz field)	08 Hrs Uncertainty independent of SWE to dimensional 08 Hrs of Classical actor. Fermi Drawbacks (qualitative action band, Fermi level . Extrinsic n of carrier in extrinsic . Numerical Qualitative . Claussius 08 Hrs in softening
Matt prind Schr parti well ELF free ener of C appr Intri expr in semi conc semi prob DIE Elec treat - Mc ELA Elas and	er waves, de-Broglie's H ciple and application (Broad odinger's wave equation. cle in a one- dimensional . Free particle and square we CCTRICAL CONDUCTIV electron theory, Quantum gy: carrier concentration in QFET, Hall Effect, deriva oach). nsic semiconductors: carrie ession for hole concentration intrinsic semiconductors. conductors: Types of extra- conductors with temperatu- lems. LECTRICS tric dipole, Dipole moment- ment of Internal field in sol pssotti equation(derivation).	UNIT-II ypothesis and waveled lening of spectral line Significance of Wave nfinite potential well ell potential. Numerical UNIT-III TTY IN METALS A free electron theory (C metals (derivation), va ion of Hall coefficie r concentration, derive n in valence band, intre Energy gap of in nsic semiconductors, iconductors with ter re and impurity concer , Polarization of dieled ds for one dimensional Numerical problems. UNIT-IV MATERIALS rain, Hooke's law, Ela ferent elastic moduli a	ength of matter es). Setting up of e function, nor (Particle in a <u>al problems.</u> AND SEMICC QFET), Density triation of Ferme ent in metals. vation of electro trinsic carrier co intrinsic semi doping metho mperature, var entration. Hall e ectric materials al infinite array asticity, plastic and derivation	er waves. Heise of one dimension rmalization. Ap- box).Extension DNDUCTORS y of states and hi factor with ten Band theory of on concentration oncentration (de iconductors (de ds (qualitative). riation of Ferm effect for semico s: Types of pola of dipoles (Lore city, strain harde of their inter ref	enberg's onal time i plication to three Review Fermi fa nperature. of solids n in condu- crivation), erivation) Variation ni level i onductors arizations. entz field)	08 Hrs Uncertainty independent of SWE to dimensional 08 Hrs of Classical actor. Fermi Drawbacks (qualitative action band, Fermi level . Extrinsic n of carrier in extrinsic . Numerical Qualitative . Claussius 08 Hrs in softening s, Poisson's

(Derivation), expression for circular and rectangular cross section. Application example: single cantilever (Derivation). Torsion of cylinder: Expression for couple per unit twist of a solid cylinder (Derivation). Numerical problems.

UNIT-V

Review of Simple Harmonic Motion, Free oscillations. Examples of Simple harmonic oscillators- a) Spring and Mass system, b) springs in series and parallel, c) Torsional pendulum-Expression for period of oscillation.

Damped and forced oscillations: Theory of damped oscillations: overdamping, critical and under damping. Theory of forced oscillations and resonance, Sharpness of resonance, quality factor. Example for electrical resonance (LC, LCR circuit).Numerical problems.

LABORATORY EXPERIMENTS

- 1. Experiments with Lasers and Optical Fibers.
- 2. Experiments on Light Emitting Diodes (LED).
- 3. Experiments on Energy band gap of a thermistor, Fermi energy of a conductor, Hall Effect and Dielectric constant in a capacitor.
- 4. Experiments on spring constant in series & parallel combinations and single cantilever.
- 5. Experiments on Torsional pendulum and LCR circuit.
- 6. Innovative experiments using software.

Course Outcomes: After completing the course, the students will be able to

0000	o accompto and comptoting the course, the scattering that so as to
CO1	Explain the fundamentals of lasers & optical fibers, quantum mechanics, electrical conductivity in
	metals and semiconductors, dielectrics, elastic properties of materials, oscillations and relate them
	to engineering applications.
CO2	Apply and Demonstrate lasers & optical fibers, quantum mechanics, electrical properties, dielectric
	properties, elastic properties of materials, oscillations through experiential learning.
CO3	Formulate and Evaluate lasers & optical fibers, quantum mechanics, electrical properties, dielectric
	properties, elastic properties of materials, oscillations towards specific engineering applications.
CO4	Design and Develop innovative experiments.

Reference Books

Kele	
1.	Engineering Physics, R K Gaur and S L Gupta,8 th Edition, reprint 2013, Dhanpat Rai Publications,
	ISBN: 9788189928223
2.	A Textbook of Engineering Physics, P G Kshirsagar, M. N. Avadhanulu, 9th Edition, reprint 2015, S.
	Chand, ISBN : 9788121908177
3.	Fundamentals of Physics- Resnick, Halliday and Walker, 9th Edition, 2011, John Wiley & Sons,
	ISBN: 9780470547915
4.	Physics for Degree students, C.L. Arora and Dr. P. S. Hemne, 1 st Edition, reprint 2016, S Chand,
	ISBN: 9788121933506

Continuous Internal Evaluation (CIE): Total marks: 100+50=150

Theory – 100 Marks

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150

Theory – 100 Marks

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal

choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	1	3	1	2	-	-	-	-	2
CO2	3	3	1	2	3	1	2	-	-	-	-	1
CO3	3	3	2	3	1	2	-	-	-	1	-	1
CO4	3	2	3	1	3	-	1	-	3	3	-	2

		Semester: I/II		
	ELEMEN	IS OF ELECTRICAL ENGINEERIN (Theory)	G	
Cours	se Code:18EE13/18EE23	(Theory)	CIE Marks: 1	00
	ts: L:T:P:: 2:1:0		SEE Marks: 1	
	s: 26L + 26T		SEE Duration	
Cours	se Learning Objectives: The st	udents will be able to,	·	
1		of the electrical AC and DC circuits.		
2		ectric machines and select the machine t		
3	applications.	and compute energy consumption for d	omestic and indu	ıstrial
4	Demonstrate the principles of			
5	Apply the basic electrical cond	cepts in their chosen branch.		
		UNIT-I		04 Hrs
FUNI	DAMENTALS OF D.C. AND A			04 HIS
sinuso		E Laws, series-parallel circuits, mesh cur ergy, Generation of sinusoidal voltag		
	LYSIS OF A.C. CIRCUITS	UNIT-II		06 Hrs
Single power Three	e phase analysis using phasor dia r, reactive power, apparent powe	grams for R, L, C, R-L, R-C, R-L-C ser r and Power factor. rcuits, voltage and current relations and		
power	using two watcheter methods.	UNIT-III		06 Hrs
Basic transfe Induct	parts and rating of transformers ormer. Etion Motors : Concept of rota	mutually induced EMFs, EMF equation s, phasor diagram on No-load and R-L ating magnetic field, Construction and nce, Necessity of a starter, Principle and lications of induction motors.	Load, losses, eff	iciency of a three-phase
		UNIT-IV		06 Hrs
Flemin DC m of dc r Three	otors: Construction, principle o motors; necessity of starter, App	ors: Construction, types, principle of op		nous speed,
		UNIT-V		04 Hrs
Service device electri	es, fuse and MCB, Electric cal appliances, their ratings and		rthing, Common	
		the course, the students will be able t		
CO1		of AC, DC, electromagnetism, AC circui		
CO2		s, synchronous machines, electric wiring king and construction of electrical machi		
CO2 CO3		ansformers, Induction motors, DC mach		s machines
CO4		electrical wiring scheme for a residential		s maonines.
		6	0	

Refer	rence Books:
1.	Fundamentals of Electrical Engineering, Dr. Rajendra Prasad, PHI, 2 nd Edition, 2009, ISBN-10: 8120339282, ISBN-13: 978-8120339286,
2.	Basic Electrical Engineering, D C Kulshreshtha, Tata McGraw Hill, Revised 1 st Edition, ISBN10 0071328963, ISBN13 9780071328968
3.	Electrical Technology, E. Hughes International Students 9 th Edition, 2005, ISBN-10: 013114397, ISBN-13: 9780131143975
4.	Basic Electrical Engineering, D. P. Kothari and I. J. Nagrath, Tata McGraw Hill, 2010, ISBN-10: 0070681120, ISBN-13: 978-0070681125

Continuous Internal Evaluation (CIE)

Theory – 100 Marks

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Semester End Evaluation (SEE)

Theory -100 Marks

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	-	-	1	-	-	-	1	-	-
CO2	2	2	1	1	1	1	-	-	2	2	-	-
CO3	3	2	2	2	-	2	2	1	1	2	-	2
CO4	3	3	3	3	1	2	2	-	3	3	2	1

		Semester: I/II						
	ELEMEN	NTS OF CIVIL ENGINEERING A	ND MECHANICS					
	(Theory)							
Cour	se Code: 18CV14/24	\ \	CIE Marks: 100					
Cred	its: L:T:P:2:1:0		SEE Marks: 100					
Hour	rs: 26L + 26T		SEE Duration: 3Hrs					
Cour	se Learning Objectives:	The students will be able to						
1	Understand the import	ance and basic concepts of Civil Eng	gineering.					
2	Identify the component	ts and materials used for building co	onstruction.					
3	Illustrate the behaviou	r of rigid bodies.						
4	Apply principles of me	echanics for solving engineering pro	blems.					
		UNIT-I	04 Hrs					
INTE	RODUCTION TO CIVI	L ENGINEERING						
Scope	e of different fields of Ci	vil Engineering-Surveying, Building	g Materials, Construction Technology,					
			s, Water Resources and Irrigation					
			neering. Effect of the infrastructural					
	ties on socio-economic de		C					
	DING COMPONENTS	1 2						
Conce	ept of Sub Structure, Ma	asonry Foundation, Isolated RCC for	ooting, Raft foundation, Pile foundation:					
	* ·	•	Components and types of walls, doors,					
	ows, roots, flooring and s	tairs.						
	ows, roofs, flooring and s	tairs. UNIT-II	05 Hrs					
INTE			05 Hrs					
	RODUCTION TO ENG	UNIT-II INEERING MECHANICS	ensional force system, Rigid Body					
Force	RODUCTION TO ENG	UNIT-II INEERING MECHANICS ots, Particle equilibrium in 2-Dim	•					
Force equili	RODUCTION TO ENG System: Basic concept	UNIT-II INEERING MECHANICS ots, Particle equilibrium in 2-Dim : Varignon's theorem.	•					
Force equili EQU	RODUCTION TO ENG System: Basic concept brium, System of Forces ILIBRIUM OF FORCE	UNIT-II INEERING MECHANICS ots, Particle equilibrium in 2-Dim : Varignon's theorem. ES:	nensional force system, Rigid Body					
Force equili EQU Free b	RODUCTION TO ENG System: Basic concept brium, System of Forces ILIBRIUM OF FORCE body diagram, Equations	UNIT-II INEERING MECHANICS ots, Particle equilibrium in 2-Dim : Varignon's theorem. ES:	nensional force system, Rigid Body					
Force equili EQU Free b	RODUCTION TO ENG System: Basic concept brium, System of Forces ILIBRIUM OF FORCE body diagram, Equations	UNIT-II INEERING MECHANICS ots, Particle equilibrium in 2-Dim : Varignon's theorem. ES: of Equilibrium of Coplanar Systems composition of forces, Couple and R	nensional force system, Rigid Body ; Lami's Theorem. Moment of Force and esultant of Force System.					
Force equili EQU Free b its Ap	RODUCTION TO ENG System: Basic concept brium, System of Forces ILIBRIUM OF FORCE body diagram, Equations oplication; Resolution & o	UNIT-II INEERING MECHANICS ots, Particle equilibrium in 2-Dim : Varignon's theorem. ES: of Equilibrium of Coplanar Systems	nensional force system, Rigid Body					
Force equili EQU Free b its Ap	RODUCTION TO ENG System: Basic concept brium, System of Forces ILIBRIUM OF FORCE body diagram, Equations oplication; Resolution & C PORT REACTIONS	UNIT-II INEERING MECHANICS ots, Particle equilibrium in 2-Dim : Varignon's theorem. ES: of Equilibrium of Coplanar Systems composition of forces, Couple and R UNIT-III	nensional force system, Rigid Body s; Lami's Theorem. Moment of Force and esultant of Force System. 05 Hrs					
Force equili EQU Free b its Ap SUPF Class	RODUCTION TO ENG System: Basic concept brium, System of Forces ILIBRIUM OF FORCE body diagram, Equations oplication; Resolution & C PORT REACTIONS ification of beams, Types	UNIT-II INEERING MECHANICS ots, Particle equilibrium in 2-Dim : Varignon's theorem. ES: of Equilibrium of Coplanar Systems composition of forces, Couple and R UNIT-III s of Loads and Supports, Support Re	nensional force system, Rigid Body s; Lami's Theorem. Moment of Force and esultant of Force System. 05 Hrs eactions in statically determinate beams,					
Force equili EQU Free b its Ap SUPH Class Nume	RODUCTION TO ENG System: Basic concept brium, System of Forces ILIBRIUM OF FORCE body diagram, Equations oplication; Resolution & C PORT REACTIONS ification of beams, Types perical problems on support	UNIT-II INEERING MECHANICS ots, Particle equilibrium in 2-Dim : Varignon's theorem. ES: of Equilibrium of Coplanar Systems composition of forces, Couple and R UNIT-III s of Loads and Supports, Support Re ort reactions for statically determin	nensional force system, Rigid Body s; Lami's Theorem. Moment of Force and sesultant of Force System. 05 Hrs eactions in statically determinate beams, ate beams with Point load (Normal and					
Force equili EQU Free b its Ap SUPH Class Nume	RODUCTION TO ENG System: Basic concept brium, System of Forces ILIBRIUM OF FORCE body diagram, Equations oplication; Resolution & C PORT REACTIONS ification of beams, Types perical problems on support	UNIT-II INEERING MECHANICS ots, Particle equilibrium in 2-Dim : Varignon's theorem. ES: of Equilibrium of Coplanar Systems composition of forces, Couple and R UNIT-III s of Loads and Supports, Support Re ort reactions for statically determin d and uniformly varying loads and M	nensional force system, Rigid Body s; Lami's Theorem. Moment of Force and esultant of Force System. 05 Hrs eactions in statically determinate beams, ate beams with Point load (Normal and Moments.					
Force equili EQU Free b its Ap Class Nume inclin	RODUCTION TO ENG System: Basic concept brium, System of Forces ILIBRIUM OF FORCH body diagram, Equations oplication; Resolution & C PORT REACTIONS ification of beams, Types erical problems on support ed), uniformly distributed	UNIT-II INEERING MECHANICS ots, Particle equilibrium in 2-Dim : Varignon's theorem. ES: of Equilibrium of Coplanar Systems composition of forces, Couple and R UNIT-III s of Loads and Supports, Support Re ort reactions for statically determin	nensional force system, Rigid Body s; Lami's Theorem. Moment of Force and sesultant of Force System. 05 Hrs eactions in statically determinate beams, ate beams with Point load (Normal and					
Force equili EQU Free b its Ap Class Nume inclin	RODUCTION TO ENG System: Basic concept brium, System of Forces ILIBRIUM OF FORCE body diagram, Equations oplication; Resolution & of PORT REACTIONS ification of beams, Typest erical problems on support ed), uniformly distributed CTION	UNIT-II INEERING MECHANICS ots, Particle equilibrium in 2-Dim : Varignon's theorem. ES: of Equilibrium of Coplanar Systems composition of forces, Couple and R UNIT-III s of Loads and Supports, Support Re ort reactions for statically determin d and uniformly varying loads and M UNIT-IV	nensional force system, Rigid Body s; Lami's Theorem. Moment of Force and sesultant of Force System. 05 Hrs eactions in statically determinate beams, ate beams with Point load (Normal and Moments. 06 Hrs					
Force equili EQU Free b its Ap Class Nume inclin FRIC Types	RODUCTION TO ENG System: Basic concept brium, System of Forces ILIBRIUM OF FORCH body diagram, Equations oplication; Resolution & of PORT REACTIONS ification of beams, Typest erical problems on support ed), uniformly distributed CTION s of friction, Limiting friction	UNIT-II INEERING MECHANICS ots, Particle equilibrium in 2-Dim : Varignon's theorem. ES: of Equilibrium of Coplanar Systems composition of forces, Couple and R UNIT-III s of Loads and Supports, Support Re ort reactions for statically determin d and uniformly varying loads and M UNIT-IV	nensional force system, Rigid Body s; Lami's Theorem. Moment of Force and esultant of Force System. 05 Hrs eactions in statically determinate beams, ate beams with Point load (Normal and foments.					
Force equili EQU Free b its Ap Class Nume inclin FRIC Types	RODUCTION TO ENG System: Basic concept brium, System of Forces ILIBRIUM OF FORCE body diagram, Equations oplication; Resolution & of PORT REACTIONS ification of beams, Typest erical problems on support ed), uniformly distributed CTION	UNIT-II INEERING MECHANICS ots, Particle equilibrium in 2-Dim : Varignon's theorem. ES: of Equilibrium of Coplanar Systems composition of forces, Couple and R UNIT-III s of Loads and Supports, Support Re ort reactions for statically determin d and uniformly varying loads and M UNIT-IV ction, Laws of Friction, Concept of	nensional force system, Rigid Body s; Lami's Theorem. Moment of Force and esultant of Force System. 05 Hrs eactions in statically determinate beams, ate beams with Point load (Normal and Moments. 06 Hrs Static friction, Motion of Bodies, wedge					
Force equili EQU Free b its Ap SUPH Class Nume inclin FRIC Types frictio	RODUCTION TO ENG System: Basic concept brium, System of Forces ILIBRIUM OF FORCH body diagram, Equations polication; Resolution & C PORT REACTIONS ification of beams, Types erical problems on support ed), uniformly distributed CTION s of friction, Limiting fri- on, ladder friction.	UNIT-II INEERING MECHANICS ots, Particle equilibrium in 2-Dim : Varignon's theorem. ES: of Equilibrium of Coplanar Systems composition of forces, Couple and R UNIT-III s of Loads and Supports, Support Ro ort reactions for statically determin d and uniformly varying loads and N UNIT-IV ction, Laws of Friction, Concept of UNIT-V	nensional force system, Rigid Body s; Lami's Theorem. Moment of Force and sesultant of Force System. 05 Hrs eactions in statically determinate beams, ate beams with Point load (Normal and foments. 06 Hrs					
Force equili EQU Free b its Ap Class Nume inclin FRIC Types frictic	RODUCTION TO ENG System: Basic concept brium, System of Forces ILIBRIUM OF FORCH body diagram, Equations oplication; Resolution & of PORT REACTIONS ification of beams, Typest erical problems on support ed), uniformly distributed CTION s of friction, Limiting friction, adder friction. TRE OF GRAVITY AN	UNIT-II INEERING MECHANICS ots, Particle equilibrium in 2-Dim : Varignon's theorem. ES: of Equilibrium of Coplanar Systems composition of forces, Couple and R UNIT-III s of Loads and Supports, Support Re ort reactions for statically determin d and uniformly varying loads and M UNIT-IV ction, Laws of Friction, Concept of UNIT-V ND MOMENT OF INERTIA	nensional force system, Rigid Body s; Lami's Theorem. Moment of Force and sesultant of Force System. 05 Hrs eactions in statically determinate beams, ate beams with Point load (Normal and foments. 06 Hrs Static friction, Motion of Bodies, wedge 06 Hrs					
Force equili EQU Free b its Ap Class Nume inclin FRIC Types frictio	RODUCTION TO ENG System: Basic concept brium, System of Forces ILIBRIUM OF FORCH body diagram, Equations oplication; Resolution & of PORT REACTIONS ification of beams, Typest erical problems on support ed), uniformly distributed CTION s of friction, Limiting friction, adder friction. TRE OF GRAVITY AN	UNIT-II INEERING MECHANICS ots, Particle equilibrium in 2-Dim : Varignon's theorem. ES: of Equilibrium of Coplanar Systems composition of forces, Couple and R UNIT-III s of Loads and Supports, Support Re ort reactions for statically determin d and uniformly varying loads and M UNIT-IV ction, Laws of Friction, Concept of UNIT-V ND MOMENT OF INERTIA rectangle, triangle, semicircle, qua	nensional force system, Rigid Body s; Lami's Theorem. Moment of Force and esultant of Force System. 05 Hrs eactions in statically determinate beams, ate beams with Point load (Normal and Moments. 06 Hrs Static friction, Motion of Bodies, wedge					

(Centre of Gravity and its implications;) Moment of inertia: Definition, Moment of inertia of plane sections: rectangle, triangle, semicircle and quarter circle from first principles. Theorems of moment of inertia. Moment of inertia of composite sections;

Numerical problems on centroid and moment of inertia (up to 3 components)

Cours	Course Outcomes: After completing the course, the students will be able to						
CO1	Understand the fundamental concepts of Mechanics and Civil Engineering Structures.						
CO2	Apply the concepts of Engineering Mechanics in solving simple engineering problems.						
CO3	Analyze the forces and geometrical properties of structural components						
CO4	Demonstrate the applications of mechanics to solve engineering problems.						

Refer	Reference Books						
1.	Mechanics for Engineers – Statics, Ferdinand P.Beer and E.Russel Johnston Jr, McGraw Hill book						
	Inc., U.S.A, 4 th Edition, 2009, ISBN- 007100135.						
2.	Building Construction, Sushil Kumar, Standard Publishers, 20th Edition, 2016, ISBN:						
	9788180141683.						
3.	Engineering Mechanics, Statics and Dynamics", A.Nelson, Tata McGraw Hill Publication,1st						
	Edition, 2010, ISBN -10-0-07-014614-4, ISBN-13: 978-0-07-014614-3.						
4.	Engineering Mechanics, Irving H. Shames, Prentice Hall, Fourth edition, 2005, ISBN: 10:						
	0133569160, ISBN13: 9780133569162.						

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	-	-	1	-	2	1	1	-	-	2
CO2	2	2	-	-	1	-	-	-	1	-	-	2
CO3	3	2	1	-	1	-	-	-	1	-	-	2
CO4	3	2	1	-	1	-	-	-	-	-	-	2

	Semester	: I/II
	ELEMENTS OF ENGINE	ERING PRACTICES
	(Practi	ce)
Cours	e Code: 18EE15/25	CIE Marks: 50
Credit	ts: L:T:P:: 0: 0 : 1	SEE Marks: 50
Hours	: 26P	SEE Duration(Lab):3Hrs
Cours	e Learning Objectives:	
At the	end of the course the student will be able to:	
1	Understand the domestic wiring concepts, eff	fects of different types of load, compute energy
	consumed and design simple wiring circuits.	
2	Identify the hand tools and instruments, acquire	knowledge of measuring instruments.
3	Acquire practical skills in the trade and knowled	lge of job materials in various shops.
4	Provide the knowledge of core technical subject	s for making and working of
	any type of project.	
	LABORATORY E	XPERIMENTS
Electr	ical Engineering	
1.	One-way, Two-way and Three-way control of ir	ncandescent lamp
2.	Power and Power factor measurement of	
	i. Fluorescent lamp with and without c	capacitor.
	ii. LED lamp.	
	iii. Compact Fluorescent Lamp (CFL).	
	iv. Incandescent lamp.	
3.		three wattmeter method) and Delta connected load
	(two wattmeter method)	
4.	Demonstration of domestic wiring.	
	onics Engineering	
5.	Soldering of Electronic Components	
6.	Soldering and Wiring of Half Wave Rectifier	
7.	Truth Table Verification of Simple Logic Gates	
8.	Study of Sensor Characteristics	
Mecha	anical Engineering	
9.	Internal threading: Drilling and Tapping opera	tion to fasten bolt and nut in a given work piece.
10.	Sheet metal work: Preparation of sheet me	tal models: Cylinder and hexagonal prism with
	soldering.	
11.	Demonstration : Demonstration on Cut section	of IC Engine.
	Demonstration on Water turbines.	
	Demonstration on Electric Arc Welding.	
	Pipe fitting (Plumbing): Demonstration of exte	rnal threading for a T-joint pipe fittings.
Labor	atory Course Outcomes: The student should be	able to:
CO1	Analyse and design simple electric wiring cir	cuits and compute energy consumed by different
	types of loads	1 00 1 1 1 1

	types of loads.
CO	2 Learn the physical recognition of different Electrical & Electronics components like Resistances,
	Inductances, Capacitances and devices like diodes, transistors along with their ratings.
00	

- CO3 Understand sheet materials manufacturing operations, including their capabilities, limitations, and how to design economically.
- CO4 Able to think in an innovative way to work with basics of Electrical, Electronics / Mechanical components.

Refere	erence Books							
1	Fundamentals of Electrical Engineering, Dr. Rajendra Prasad, PHI, 3 rd Edition 2009, ISBN-978-8120339286.							
2	Manufacturing Engineering's Reference book, D.KOSHAL,1 st Edition 2014,ISBN- 9780080523958.							
3	Soldering in Electronics Assembly, MIKE JUDD Keith Brindley,2 nd Edition, ISBN-9780080517346.							

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	2	1	-	-	2	1	1	1
CO2	3	2	1	2	2	-	-	-	1	1	1	1
CO3	3	1	1	2	2	-	-	-	1	1	1	1
CO4	3	3	3	3	2	-	-	-	2	2	1	1

	Semester: I/II							
	COMPUTER AIDED ENGINEERING DRAWING							
		(Practice)						
Cours	se Code:18ME16/26	CIE Marks: 50						
Credi	ts: L:T:P:1:0:2	SEE Marks:50						
Hours: 13L+26P		SEE Duration:	03 Hours					
Cours	se Learning Objectives: The	udents will be able to						
1	Understand the conventions and standards used in drawings.							
2	Impart skills of visualizing three dimensional objects and represent the same in two dimensions as per international standards, by manual and computational methods.							
3	Analyze and draw orthographic projections of points, lines, planes and simple three dimensional objects.							
4	Prepare development of lateral surfaces of solids.							
5	Comprehend concepts of isometric projections of solids and combination of solids.							

UNIT-I 03 Hrs **INTRODUCTION TO COMPUTER AIDED SKETCHING** Drawing Instruments, BIS conventions, size of drawing sheet, Dimensioning, line conventions, material conventions, Drawing scale, Types of Projections. Working with software – Basic commands for creation of drawings and dimensions. **UNIT-II** 12Hrs **ORTHOGRAPHIC PROJECTIONS** Projection of points in all the four quadrants. Projection of straight lines (First Angle Projection)true and apparent lengths, true and apparent inclinations to reference planes, mid-point problems, simple application problems. Projection of plane surfaces: Projections of regular plane surfaces-triangle, square, rectangle, pentagon, hexagon and circle inclined to both the planes- using change of position method UNIT-III 09Hrs

PROJECTIONS OF SOLIDS

Projections of right regular tetrahedron, hexahedron (cube), prisms, pyramids, and cones with axis inclined to both the planes

UNIT-IV

DEVELOPMENT OF LATERAL SURFACES OF SOLIDS

Introduction to section planes and sectional views, Development of lateral surfaces of right regular prisms, cylinders, pyramids, cones and their frustums resting with base on HP only.

UNIT-V

ISOMETRIC PROJECTION

Isometric scale, Isometric projection of simple plane figures, Isometric projection of hexahedron(cube), right regular prisms, pyramids, cylinders, cones, spheres. combination of two simple solids

Cours	Course Outcomes: After completing the course, the students will be able to						
CO1	Illustrate competence in basics of orthographic projections of points, lines, planes and solids in						
	three different views.						
CO2	Apply the concepts of orthographic projections for industrial drawings.						
CO3	Create isometric drawings of simple objects from orthographic views.						
CO4	Develop computer aided drawings of simple objects						

06Hrs

09 Hrs

Refere	Reference Books										
1.	Engineering Graphics, K R Gopalakrishna Subhash Publishers, Bangalore; 32 nd										
	Edition;2013;ISBN: 5551234018577										
2.	Engineering Drawing, N D Bhatt, V M Panchal Charutha Publishing House, Gujarat, 48 th Edition,										
	2005, ISBN:9380358178										
3.	Fundamentals of Engineering Drawing with an Introduction to Interactive Computer Graphics for										
	Design and Production, Luzadder Warren J., Duff John M Eastern, ISBN 13: 9780133350500										
4.	A Primer on Computer Aided Engineering Drawing-2006, Published by VTU, Belagavi										

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	2	2	-	-	1	1	1	2
CO2	3	2	3	2	2	2	-	1	1	1	-	1
CO3	1	2	3	3	2	2	-	1	1	1	-	1
CO4	1	2	3	3	3	2	-	1	1	0	1	2

	Semester: I/II							
	ENGINEERING CHEMISTRY							
		(Theory & Practice)						
Cour	rse Code:18CH12/22		CIE Marks: 150					
Credits: L:T:P: 3:1:1			SEE Marks: 150					
Hours: 39T+26T			SEE Duration: 3Hrs					
Cou	rse Learning Objectives:	The students will be able to						
1	Understand and develop new electrochemical devices for the application of Engineering and Technology.							
2	Organise the knowledge	of chemistry to study and exploit th	e available energy and water resources.					
3	Use the analytical techniques in quality assessment of chemical compounds.							
4	Evaluate various corrosion situations and implement suitable corrosion control measures.							
5		Apply the basic concepts of chemistry to develop materials for applications in the area of engineering and nanotechnology.						

UNIT-I

08 Hrs

08 Hrs

NATURAL RESOURCES AND THEIR MANAGEMENT

WATER CHEMISTRY: Introduction, sources and impurities in water, Potable water; meaning and specifications (as per WHO standards), Hardness in water: causes, types. Biological oxygen demand (BOD) and Chemical Oxygen Demand (COD), Numerical problems on BOD and COD. Sewage treatment: Primary and secondary (activated sludge method) methods, Desalination of sea water by reverse osmosis using Polysulfone membrane.

CHEMICAL FUELS:Introduction, classification, calorific value, types. Knocking in IC engines, octane number, cetane number, Power alcohol, unleaded petrol and biodiesel.

SOLAR ENERGY: Introduction, photovoltaic cells- construction and working of silicon cells

(Amorphous). Advantages & disadvantages of PV cells. Dye sensitized solar cells (using TiO₂, Ruthenium dye and Tri Iodide system).

UNIT-II ELECTROCHEMICAL ENERGY SYSTEMS

THERMODYNAMICS OF CELLS: Galvanic cell, cell representation, Gibbs Free energy and EMF. Cell potential, Nernst equation-Derivation and numerical problems. Applications of Nernst equation-Potentiometric Titrations.

TYPES OF ELECTRODES: Metal-Metal-ion, Metal-gas, metal insoluble salt, Redox electrode, Ion selective electrode. Reference electrodes: Introduction, construction, working and applications of calomel electrode. Ion selective electrode: Introduction; Construction and working of glass electrode, determination of pH using glass electrode. Numerical problems.

ENERGY STORAGE AND CONVERSION SYSTEMS: Introduction, classification - primary, secondary and reserve batteries. Construction, working and applications of Li-ion batteries-LiCoO₂ battery.

FUEL CELLS: Introduction, differences between conventional cell and fuel cell, limitations & advantages. Construction, working & applications of methanol-oxygen fuel cell with H₂SO₄ electrolyte.

UNIT-III	08 Hrs
CORROSION SCIENCE AND ENGINEERING	

CORROSION: Introduction, electrochemical theory of corrosion, Factors affecting the rate of corrosion: ratio of anodic to cathodic areas, nature of metal, nature of corrosion product, pH, conductivity and temperature. Common Types of corrosion- differential aeration (pitting and water line), Differential metal and Stress corrosion.

CORROSION CONTROL: Introduction, metal coatings: Galvanization and Tinning. Inorganic coatings: Phosphating and Anodising.

METAL FINISHING: Introduction, Technological importance. Electroplating: Introduction, Factors influencing the nature of electrodeposit (current density, metal ion concentration, temperature, pH, throwing power and organic additives). Electroplating: Introduction, electroplating of chromium.

Electroless plating: Introduction, distinction between electroplating and electro less plating, electroless plating of copper, application of electroless plating in making of PCBs.

UNIT-IV

NANOMATERIALS AND ANALYTICAL TECHNIQUES

NANOMATERIALS: Introduction, size dependent properties (Surface area, Optical, and Catalytic properties), Synthesis of nano-materials: Top down and bottom up approaches. Bottom up synthesis-Solution combustion and Sol-gel methods.

NANO SCALE MATERIALS:

Carbon nanotubes: Introduction, types, synthesis by modified CVD method, functionalization and applications.

Graphene: Introduction, synthesis by modified Hummer's method.

INSTRUMENTAL METHODS OF ANALYSIS: Theory, Instrumentation and applications of

colorimetry, UV-Visible spectroscopy, conductometry and flame photometry.

UNIT-V

07 Hrs

CHEMISTRY AND APPLICATIONS OF ORGANIC POLYMERS POLYMERIC MATERIALS: Introduction to polymer, Glass transition temperature (Tg), factors

affecting Tg. Thermo plastic polymers: Polycarbonate & ABS preparation and specific applications in industries. Thermosetting polymers: Epoxy resin, phenol- formaldehyde resin, synthesis, properties and applications.

SMART POLYMERIC MATERIALS

BIODEGRADABLE POLYMERS: Introduction and their requirements. Synthesis and properties of Poly lactic acid, Applications of biodegradable polymers in medical industry.

CONDUCTING POLYMERS: Introduction, requirements of conducting polymers, mechanism of conduction (taking polyacetylene as an example), synthesis of Poly aniline, use of conducting polymers in energy harvesting.

PHOTO CONDUCTING POLYMERS: Synthesis of Poly vinyl carbazole and its applications in laser printing.

SYNTHETIC FIBRES: Synthesis of carbon fibre from PAN, applications of carbon fibre in polymer composites.

LABORATORY EXPERIMENTS

VOLUMETRIC ANALYSIS AND PREPARATIONS

- 1. Evaluation of quality of water in terms of total hardness by Complexometic titration.
- 2. Estimation of percentage of copper in brass by Iodometric titration.
- 3. Estimation of iron in the given sample of haematite ore solution by Redox titration.
- 4. Determination of Chemical Oxygen Demand (COD) of the given industrial waste water sample.(Self learning experiment)
- 5. Determination of Dissolved Oxygen in the given water sample by Winkler's method. (Demonstration experiment)
- 6. Preparation of polystyrene by bulk polymerization method. (Demonstration experiment)
- 7. Preparation of ZnO by solution combustion method. (Demonstration experiment).

INSTRUMENTAL METHODS OF ANALYSIS

- 1. Determination of pKa of a weak acid using pH meter.
- 2. Potentiometric titration–Estimation of FAS using standard $K_2Cr_2O_7$ solution. (Self-learning experiment)
- 3. Colorimetric estimation of copper.
- 4. Conductometric estimation of HCl using standard NaOH solution.
- 5. Determination of viscosity coefficient of a given liquid using Ostwald's viscometer (density of the liquid to be given).
- 6. Flame photometric estimation of sodium in the given saline solution.
- 7. Determination of relative and kinematic viscosities of given lubricating oil at different temperatures using Redwood Viscometer. (Demonstration Experiment).
- 8. To find of Tg of polymer using DSC. (Demonstration Experiment).

08 Hrs

Cours	Course Outcomes: After completing the course, the students will be able to						
CO1	Explain the principles of chemistry in engineering & technology						
CO2	Apply the knowledge of chemistry in solving socio-economic and environmental issues.						
CO3	Identify and analyze engineering problems to achieve practical solutions.						
CO4	Develop solutions for problems associated with technologies.						

Reference Books

Ittitit	
1.	Engineering Chemistry, O.G.Palanna, Tata McGraw Hill Education Pvt. Ltd. New Delhi, 4th
	Reprint 2017. ISBN: 978-0-07-014610-5,
2.	Engineering Chemistry, Shubha Ramesh et.al., Wiley India, 1 st Edition, 2011, ISBN: 978-81-265-
	1988-0.
3.	Engineering Chemistry, S Satyanarayana and H C Shashidhara, Himalaya Publishing House,
	Edition-2011, ISBN-978-9-35-051498-6.
4.	Fundamentals of Analytical chemistry, Douglas A. Skoog et, al., 8 th Edition, 2004, Thomson Asia
	Pvt Ltd. ISBN: 981-243-513-1.

Continuous Internal Evaluation (CIE): Total marks: 100+50=150

Theory – 100 Marks

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50

Semester End Evaluation (SEE): Total marks: 100+50=150

Theory – 100 Marks

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	-	-	-	-	-	-	-	1
CO2	3	2	-	-		2	2	-	-	1	1	1
CO3	1	2	-	2	-	-	-	-	-	-	-	2
CO4	-	-	1	-	-	1	1	-	-	-	-	2

Semester: I/II							
		PROGRAMMING IN C					
		(Theory & Practice)					
Cou	rse Code:18CS13/23		CIE Marks: 100+50				
Credits: L:T:P: 2:1:1			SEE Marks: 100+50				
Hours: 26+26T			SEE Duration: 03+03Hours				
Cou	rse Learning Objectives: '	The students will be able to					
1	Acquire basic principles of	f problem using computers.					
2	Learn and use syntax of C	programming language to solve basi	c science and engineering problems.				
3	3 Select appropriate programming constructs, data structures and functions to build solutions to variety of problems.						
4	Identify the scientific and business problems which can be solved using C programming.						
	· · · · · · · · · · · · · · · · · · ·						

UNIT-I

06Hrs

INTRODUCTION TO COMPUTER CONCEPTSAND REASONING

Introduction to Computer Hardware, Software and its Types. Skill development - Examples related to Arithmetical Reasoning and Analytical Reasoning.

ALGORITHMS AND FLOWCHARTS: Fundamentals of algorithms and flowcharts with examples. **INTRODUCTION TO C PROGRAMMING**

Programming paradigms, Basic structure of C program, Process of compiling and running a C program, Features of C language, Character set, C tokens, Keywords and Identifiers, Constants, Variables, Data types, Pre-processor directives.

HANDLING INPUT AND OUTPUT OPERATIONS AND OPERATORS

Formatted input/output functions, Unformatted input/output functions with programming examples using different input/ output functions.

OPERATORS

Introduction to operator set, Arithmetic operators, Relational operators, Logical Operators, Assignment operators, Increment and decrement operators, Conditional operators, Bit-wise operators, Special operators. 06 Hrs

EXPRESSIONS Arithmetic expressions, evaluation of expressions, Precedence of arithmetic	ic operators,
Type conversion in expressions, Operator precedence and associativity.	

UNIT-II

UNIT-III

PROGRAMMING CONSTRUCTS

DECISION MAKING AND BRANCHING

Decision making with 'if' statement, Simple 'if' statement, the 'if...else' statement, nesting of 'if...else' statements, The 'else if' ladder, The 'switch' statement,

The '?:' operator, The 'goto' statement.

DECISION MAKING AND LOOPING The 'for', 'while', 'do-while' statements with examples, Jumps in loops.

ARRAYS:

Introduction to Arrays, Types of arrays, Declaration arrays, Initializing dimensional arrays (One Dimensional and Multidimensional Array), Applications of Arrays.

STRING OPERATIONS

Introduction, Declaration and Initializing String Variables using arrays, String operations and functions with examples.

FUNCTIONS:

Need for Functions, Types of functions (User Defined and Built –In), working with functions, Definition, declaration and its scope, Category of functions Storage classes (Automatic, Static, Extern, Register).

UNIT-IV	05Hrs	
RECURSION		ĺ
Introduction Example programs (Eactorial Fibonacci series Ackerman function merge sort of	or quick sort	Ĺ

Introduction, Example programs(Factorial, Fibonacci series, Ackerman function merge sort or quick sort and other examples)

POINTERS: Introduction, Benefits of using pointers, Declaration and Initialization of pointers, Obtaining a value of a variable, Typecasting of a pointer, Arithmetic Operations using pointers, pointers and arrays, pointers and strings, pointers and functions.

05 Hrs

UNIT-V

STRUCTURES AND UNIONS

Introduction, Structure definition, Declaring structure variables, Accessing structure members, Structure initialization, Copying and comparing structure variables, Arrays of structure, Arrays within structures, Structure within structures, Structures and functions, Introduction to Unions.

	LABORATORY PROGRAMS
	PART A
1	Familiarization with programming environment, concept of naming the program files, storing, compilation, execution and debugging. Taking any simple C-code.
2	Debug the errors and understand the working of input statements in a program by compiling the C-code.
3	Implement C Program to demonstrate the working of relational operator, logical, bitwise operator and analyze the output.
4	 Simple computational problems using arithmetic expressions and use of each operator leading to implementation of a Commercial calculator with appropriate message: a) Read two values from the key board. b) Handle divide by zero error and print appropriate message. c) Handling the modulus operator for floating point numbers.
5	 Compute the roots of the equation ax² + bx + c = 0and print result upto three-decimal places. The roots are real -b±√D/2a if the discriminant D = b²-4ac is non-negative. If the discriminate is negative, then the roots are complex conjugate-b/2a ±√-Di/ 2a. The program proceeds in the following steps: a) The program should accept input values for<i>a</i>, <i>b</i> and <i>c</i> from the keyboard. b) No solution, if both a and b are zero. The program terminates with appropriate message. c) Linear equation, if a = 0 but b ≠ 0 and the root is -c/b. The program prints out the root with appropriate message and the program terminates. d) Calculate the discriminant D and determines the corresponding roots.
6	e) Display all possible roots of a quadratic equation with appropriate message. Design and develop using an iterative problem solving approach for Taylor series approximation for five decimal digits to compute $Sin(x) = x - x^3/3! + x^5/5! - x^7/7! + x^9/9!X^n / n!$.
7	Develop a C program for one dimensional and two dimensional array manipulations (insertion, deletion, modification, search). Demonstrate a C program that reads N integer numbers and arrange them in ascending or descending order using bubble sort technique.
8	 Develop and demonstrate a C program for Matrix multiplication: a) Read the sizes of two matrices and check the compatibility for multiplication. b) Print the appropriate message if the condition is not satisfied and ask user to enter proper input. c) Read the input matrix d) Perform matrix multiplication and print the result along with the input matrix.
9	 Using functions develop a C program to perform the following and check whether the given string is a Palindrome by parameter passing concept: a) To read a string from the user. b) Print appropriate message for palindrome or not palindrome
10	Develop and implement Newton-Raphson method to find the square root of a given positive integer. Also Cross check with implementation of long-division method.
11	Write a C program to perform the following operations using recursive functions: i)GCD, LCM (Using GCD method) ii) Binary to Decimal Conversion
12	Develop and demonstrate addition of one dimensional and two dimensional array elements using Pointer concept.
13	Implement a C program to maintain a record of n students using an array of structures:a) Declare a structure with the structure members USN Number, Name, Marks and Grade by assuming appropriate data type.
	Page 23

b) Read and write n students structure data.

c) Compute average- marks, the students scoring above and below the average marks for a class of 60 students. Display the computed record.

PART B

Student will design, develop and implement an application using the appropriate data structure. Some example applications are listed below:

- The Encoding/decoding model of communication was first developed by cultural studies scholar Stuart Hall in 1973. It deals with the process of converting information into a coded format and then converting it back again from a coded format to the original information. Make use of matrices to implement encoding/decoding of messages.
- Develop a C programming code with GUI for real time Bank application for customized transactions with appropriate validations for n number of customers.
- Matrix rotation is one of the basic operations used in understanding the movement of robots. Assume a robot present position attributes are given by a MXM square matrix, robot is allowed to move 90 degrees clockwise, print the new matrix of position attributes after rotation using functions.

Cours	e Outcomes: After completing the course, the students will be able to
CO1	Describe the fundamental computer concepts and syntax of C programming.
CO2	Apply logical skills to design and develop algorithms/flow charts to solve real-world problems.
CO3	Analyze the logic of the program and output obtained using different sets of input.
CO4	Design and develop programs using appropriate data structures and functions in C language.

Refer	ence Books
1.	Programming in C, P. Dey, M. Ghosh, 2 nd Edition, 2012, Oxford University press, ISBN -13: 978-
	0198065289.
2.	The C Programming Language, Kernighan B.W and Dennis M. Ritchie, 2 nd Edition, 2015, Pearson
	Education India, ISBN -13: 978-9332549449.
3.	Let Us C, Yashavant P. Kanetkar., 16 th Edition, 2018, BPB Publications, ISBN-13: 978-
	9387284494.
4.	C: The Complete Reference, H. Schildt, 4 th Edition, 2017, McGraw Hill Education, ISBN-13: 978-
	0070411838.

Continuous Internal Evaluation (CIE): Total marks: 100+50=150

Theory – 100 Marks

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Laboratory- 50 Marks

The lab component consists of two parts. Students will be given one program based on the concepts of C programming of all the units defined in the theory syllabus from PART A. The total marks for solving program is 50 marks.20% of the total marks (10) for write up and 60% of the total marks (30) will be for execution and 20% of the total marks (10) for viva voce for each program. The marks obtained will be reduced to 10 marks.

From the PART B, students have to identify the application design, develop and demonstrate the application and submit the work as per the guidelines which will be evaluated for 10 marks based on the defined rubrics. The Cumulative Continuous Evaluation (CCE) will be for 30 marks. So the total marks will be 50.

Semester End Evaluation (SEE): Total marks: 100+50=150

Theory – 100 Marks

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Students will be given one program based on the concepts of C programming of all the units defined in the theory syllabus. The total mark for solving program is 50 marks. 20% of the total marks (10) for write up, 60% of the total marks (30) will be for execution and 20% of the total marks (10) is for viva voce for each program. The total marks will be 50.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	-	1	-	-	-	1	1	-	1
CO2	3	3	3	3	2	-	-	-	1	1	-	1
CO3	3	3	3	3	2	-	2	1	2	2	1	2
CO4	3	3	3	3	2	-	1	-	2	2	1	2

		SEMESTER – I/II				
	ELEI	MENTS OF ELECTRONICS ENGINEER	RING			
Cours	e Code:18EC14/24	(Theory)	CIE Marks:	100		
	ts: L:T:P:: 2:1:0		SEE Marks:			
	:: 26L+26T		SEE Duratio			
		The students will be able to				
1		on of simple devices like Diode, Zener	Diode, Bipolar T	ransistor and		
2		Zener regulator circuits, biasing circuits for ed specifications	obtaining the desi	ired operating		
3		ike, comparators and summers using operati	onal amplifiers.			
4		uilding blocks in digital electronics and im		ogic functions		
		UNIT-I		05 Hrs		
SEMI	CONDUCTOR DIODE	S AND APPLICATIONS				
	diode as a voltage regu	ers, Characteristics, Full wave Bridge real lator, Block Diagram of a DC Power sup				
		UNIT-II		05 Hrs		
BJT oj	ND APPLICATIONS peration and characteristic BACK AMPLIFIERS	es, Voltage Divider Biasing, BJT as an ampl	ifier and as a switc	ch.		
		ges of Negative Feedback.				
	1	UNIT-III		05 Hrs		
MOSF and op	rence between BJT & M FET, MOSFET as an amp peration.	MOSFET, Construction, Operation, Charac lifier and as a switch, CMOS inverter, CMO communication system, Need for modulat	S NAND, CMOS	NOR: Circuit		
		UNIT-IV	¥ *	06 Hrs		
Different theorem DIGI	ms and postulates, K-map	nd digital signals, Boolean Algebra and	-	-		
Dusie	una Oniversar Gates, II	UNIT-V	unpiexer, Lileot	05 Hrs		
OPER	RATIONAL AMPLIFIF	RS AND APPLICATIONS		VU 1115		
Introd CMR Ampl	luction to Op-Amp, Op- R, PSRR, Slew Rate, In ifier, Voltage Follower,	Amp parameters: Gain, Bandwidth, Inpu put Offset voltage, Applications: Inverti- Summer, Difference amplifier, Integrate Pin Configuration and parameters of 741	ng amplifier, Nor or, Differentiator	n-Inverting		
Cours	e Outcomes: After com	bleting the course, the students will be able	e to			
CO1		nd the characteristics of the Electronic devic		lications.		
CO2	Apply and analyze circu	its for applications of various Electronic sy	stems			

CO3 Demonstrate the different building blocks of Electronics systems

CO4 Evaluate the performance of the electronic circuits to meet given specifications using modern IT tools

Refe	erence Books						
1.	Electronic Devices and Circuit Theory, Robert L Boylestad, Louis Nashelsky, 10th Edition, 2009,						
	Prentice Hall India publication, ISBN: 978-317-2700-3.						
2.	Electronic Devices and Circuits, David A. Bell, 5th Edition, 2008, Oxford University Press,						
	ISBN:9780195693409						
3.	Basic Electronics, D P Kothari,I J Nagrath, 2 nd Edition, MCGraw Higher Ed, ISBN:						
	9789352606467						
4.	Digital Logic and Computer Design, Morris Mano, 54th Edition, 2007, Prentice Hall India						
	publication, ISBN: 978-81-317-1450-8.						

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	-	1	1	-	1	-	-	-	-
CO2	3	3	2	1	-	1	-	-	-	-	-	1
CO3	3	3	2	2	2	1	1	-	-	2	-	1
CO4	3	2	-	-	2	-	1	-	-	2	-	1

Semester: I/II	
ELEMENTS OF MECHANICAL ENGINEERING	
(Theory)	
Course Code:18ME15/25 CIE Marks: 100	
Credits: L:T:P:2:1:0 SEE Marks: 100	
Hours: 26L+26T SEE Duration: 03 Hours	
Course Learning Objectives: The students will be able to,1Understand basic laws of thermodynamics and different methods of energy generation	
2 Understand the working of two stroke, four stroke IC engine, refrigeration system and esti- performance parameters	imate the
3 Familiarize with basic machine tools and their operations	
4 Familiarize with basics of joining process, power transmission elements and CNC machines.	
UNIT-I	05 Hrs
BASIC CONCEPTS OF THERMODYNAMICS-	
Introduction, states, concept of work, heat, temperature; Zeroth, First and Second Law of thermod simple numerical on First Law of thermodynamic PROPERTIES OF STEAM Steam generation, properties of steam in different phases, computation of properties of steam using tables- simple numerical.	-
*	06 Hrs
and condenser REFRIGERATION Concept of refrigeration, refrigeration effect, ton of refrigeration, refrigerants and their properties, principle of vapour compression refrigeration system.	Working
UNIT-III	05Hrs
INTERNAL COMBUSTION ENGINES Classification of I C engine, working of 2-stroke and 4- stroke petrol and diesel engines, P - V dia Otto cycle and Diesel cycle. Computation of performance parameters - indicated power, brak indicated thermal efficiency, brake thermal efficiency, mechanical efficiency and specific fuel con- (simple numerical).	e power, sumption
	05 Hrs
MACHINE TOOLS Lathe: Classification, specification, lathe operations-turning, thread cutting and knurling. Drilling: Classification, working of radial drilling machine, drilling operation-reaming, boring, boring, counter sinking and tapping Milling: Classification, working of horizontal milling machine, milling operation- Plain milling, milling, form milling, straddle milling andgang milling. (Note: No sketch and explain machine tools)	, angular
	05 Hrs
JOINING PROCESS Classification and methods of joining process- Arc and Gas welding, Soldering POWER TRANSMISSION Types of belt drives, Flat belt drives- Open and cross belt drive (No derivation), velocity ratio, cr and idler pulley (No numerical) Classification of gears, velocity ratio for simple and compound gear trains (No derivation and num COMPUTER NUMERICAL CONTROL (CNC) Concepts and elements of CNC machine. Advantages and disadvantages of CNC machines over	
conventional machines	

Course	e Outcomes: After completing the course, the students will be able to
CO1	Apply the principles of thermodynamics to evaluate the properties of steam and explain the
	concepts of energy generation.
CO2	Differentiate types of IC engines, analyze and compute performance parameters of IC engines and
	explain the principle of refrigeration system.
CO3	Explain different types of machine tools and their applications in performing various machining
	operations through conventional and computer control methods
CO4	Apply the knowledge of joining processes and power transmission elements in various engineering
	applications.

Reference Books Elements of Mechanical Engineering, K R Gopalakrishna, 30th Edition, Subhas Publications, 2014, ISBN 13-1234567153375. A text book of Elements of Mechanical Engineering, S Trymbaka Murthy, I K International Publishing House Pvt. Ltd, 2008, ISBN-3980578571 Basic and applied Thermodynamics, P.K.Nag, 2nd Edition, 2017, McGraw Hill Education, ISBN-100070151318 Principles of modern manufacturing, Mikell P. Groover, SI Version, Wiley India, 2018, ISBN-108126573058

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	-	1	1	-	-	-	2	-	2
CO2	3	2	2	1	1	1	-	1	1	1	-	2
CO3	3	1	1	-	1	1	-	1	2	1	1	2
CO4	2	1	1	-	1	1	1	1	1	1	1	2

		Semester: 1		
		English Language Lab 1	-	
		(Online English Course)	`	
C		(Common to all first year BE Prog		
	urse Code: 18HS17 dits: L:T:P::0:0:1		CIE Marks: 50 SEE Marks: 50	
	uits: L: 1: P :: 0: 0: 1 irs: 26 L		SEE Warks: 50 SEE(Lab)Duration:	03 Hrs
	irse Learning Objectives: 7	Fhe students will be able to		. 03 1115
1		ncepts of the core skills of Lang	uage Learning - Listenin	g. Speaking.
-	Reading and Writing.			8, ~F8,
2	<u> </u>	nar – Articles, Pronouns, Prepositior	ns, Nouns, Adverbs, Verbs	and Tenses
3	Improve their Vocabulary	that may be used in over 50 real-lin	fe scenarios that students	might face in
	social situations			
4		mar and Vocabulary learned in imp	e e	
		Form Entries, E-Mail and Letter Wi	iting, Questionnaire Prepa	tration, Show
F	cause-effect relationships	amon & Wooshulam laamad in ing	noving their Creating Of-	110 000000 50
5		nmar & Vocabulary learned in imp ducing Oneself, Speaking in Multip		
		I, Responding to Verbal Challenges	ie renses, Engaging in a	Conversation
	with Queri, Redding dioud	, responding to verour chanonges		
		Unit-I		5 Hrs
Lev	el 1:			
time	e, Self-introduction, Simple r	epetition, Sharing basic information Unit – II	on self, basic question for	mation. 4 Hrs
Nan Con	sessive Adjectives & Nour nes, Places from Dialogue	ns, Conjunctions, Question Constru- es, Comprehending Preferences o , Extended Self-Introductions, Expr	f people in a dialogue,	, Telephonic
P unit		Unit –III		4 Hrs
Und note	positions, Imperative Verl lerstanding & Describing the es / personal e-mail writing,	b Forms, Countable & Un-count difference between Need & Want, Writing & Speaking about Skills a ing activities in present continuous te	Usage of 'Can' to express and Abilities, Explaining of	ability, Short
		TT:4 TV7		Juci, Asking
		Unit –IV		6 Hrs
Sigr prof	rerbs of Frequency, Adver- naling contrast, Reading, ressional e-mails, Commun	bial phrases of position, Imperson Understanding & Describing usi icating instructions on a process, e Texts, Understanding Rules & Reg	ng visual aids / diagra Making Announcements	6 Hrs erfect Tense, ms, Writing , Expressing
Adv Sigr prof	rerbs of Frequency, Adver- naling contrast, Reading, ressional e-mails, Commun- ret, Understanding Narrative	bial phrases of position, Imperson Understanding & Describing using icating instructions on a process,	ng visual aids / diagra Making Announcements	6 Hrs erfect Tense ms, Writing

Cours	Course Outcomes: After completing the course, the students will be able to					
CO1	Understand the fundamental concepts of English Grammar - Articles, Pronouns, Prepositions,					
	Nouns, Adverbs, Verbs and Tenses					
CO2	Use appropriate Vocabulary in over 50 real-life scenarios that students might face in professional					
	and social situations					
CO3	Construct grammatically correct sentences, Learn basics of professional e-mail writing,					
CO4	Introduce Oneself in detail, Speak in multiple tenses, Engage in a Conversation with Q&A,					
	Describe Professional Goals					

Reference Books

1 Pearson MePro

Continuous Internal Evaluation (CIE); online test (50 Marks)

CIE is executed by way of online tests. A minimum of three online tests are conducted and each test is evaluated for 50 marks. The three tests are conducted for 50 marks, of each the average of three test is considered as final CIE

Semester End Evaluation (SEE); online test (50 Marks)

SEE for 50 marks is executed by means of an online examination.

		Semester: II		
	ENGINEERIN	NG MATHEMATICS – II		
		(Theory)		
	rse Code: 18MA21	CIE Marks: 100		
Cree	SEE Marks: 100			
	ars: 39L + 26T	SEE Duration: 3 Hrs		
Cou	rse Learning Objectives: The students w			
1	equations.	Eigen values and Eigen vectors, solution of system of linear		
2	Recognize and model differential equation engineering problems.	ions, apply analytical techniques to compute solutions for		
3		ferential equations that arise in physical situations.		
4	**	is using numerical methods in the absence of analytical		
4	solutions of various systems of equations			
5	Use mathematical IT tools to analyze and	visualize various concepts.		
	UNI EMENTARY LINEAR ALGEBRA	T-I 08 Hrs		
home meth	ogeneous and non-homogeneous equation	chelon form, consistency of system of linear equations - s, Gauss elimination, Gauss – Jordan and Gauss - Seidel perties, largest Eigen value by Rayleigh's power method.		
	UNI	Г-II 08 Hrs		
equa func	tions- Concept of Inverse differential oper- tion (force function), method of variation	equations – complementary functions. Non homogeneous rator, methods of finding particular integral based on input n of parameters. Equations with functional coefficients – blications-Simple harmonic motion, LRC circuits.		
	UNI			
PARTIAL DIFFERENTIAL EQUATIONS Formation of partial differential equations by elimination of arbitrary constants/functions, solution of Lagrange's linear equation. Solution of partial differential equations by method of separation of variables. Solution of Wave and Heat equations in one dimension and Laplace equation in two dimensions by the method of separation of variables - problems.				
	UNIT	C-IV 08 Hrs		
NUMERICAL METHODS - I Algebraic and Transcendental equations – Roots of equations, intermediate value property. Regula-Falsi and Newton - Raphson methods. Methods of solving first order ordinary differential equation (ODE) – Taylor series method, modified Euler method, 4 th order Runge-Kutta method, Milne predictor –corrector method.				
	UNI	Γ-V 07 Hrs		
Finit	rapolation). Newton-Gregory(N-G) forw	d backward differences, introduction to interpolation vard and backward interpolation formulae, Lagrange plems. Numerical differentiation based on N-G forward and		

Cours	Course Outcomes: After completing the course, the students will be able to					
CO1	Demonstrate the understanding of rank of a matrix, classification and types of solutions of higher					
	order linear ordinary differential equations and partial differential equations, necessity of numerical					
	methods and few basic definitions.					
CO2	Solve system of equations using Gauss elimination and Jordan methods, homogeneous linear					
	differential equations & Lagrange linear pde, interpolate data using finite differences and use					
	intermediate value property.					
CO3	Apply acquired knowledge to find solution of equations using Gauss - Seidel method, derivatives					
	and integrals of numerical data and solve differential equations numerically.					
CO4	Estimate the solutions of problems involving applications of differential equations using both					
	analytical and numerical methods.					

Refere	Reference Books						
1.	Higher Engineering Mathematics, B.S. Grewal, 44 th Edition, 2015, Khanna Publishers, ISBN: 978-						
	81-933284-9-1.						
2.	Higher Engineering Mathematics, B.V. Ramana, 11 th Edition, 2010, Tata McGraw-Hill, ISBN:						
	978-0-07-063419-0.						
3.	Advanced Engineering Mathematics, E. Kreyszig, 10th Edition (Reprint), 2016, John Wiley &						
	Sons, ISBN: 978-0470458365.						
4.	Advanced Engineering Mathematics, C. Ray Wylie, Louis C. Barrett 6 th Edition, 1995, McGraw-						
	Hill Book Co., New York, ISBN: 978-0071135436.						

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy levels.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	-	-	1
CO2	3	2	-	-	-	-	-	-	-	-	-	1
CO3	3	3	2	1	2	-	1	-	-	-	-	1
CO4	3	3	2	1	2	-	1	-	-	-	-	1

		Semester: 2					
English Language Lab 2							
(Online English Course)							
	(Common	to all first year BE Programs)					
	Course Code : 18HS27 CIE : 50 marks						
	Credits: L:T:P :: 0:0:1 SEE : 50 marks						
	rs: 26 L		SEE(Lab)Duration: 03 Hrs				
Cour	rse Learning Objectives: The student						
1	Understand the Advanced concepts Reading and Writing.						
2	Learn concepts of Advanced Gramm Modals with passive infinitives	· •					
3	Improve their vocabulary pertaining t						
4	Apply the basics of Grammar and Vo Essays, Detailed Descriptions of Con	nplex processes, Critical analysis	s of texts				
5	Apply the advanced concepts to in Persuasive Language, Leading a disc						
		Unit-I	4 Hrs				
Adve speal Rhete	ent Perfect Tense in Passive, Usage erbials, Changes in Tenses, Past Conti ker's opinions, Differentiating main orical questions, Suggesting Pros and fy a view point, Writing Structured ess	inuous Tense, Identify details to & supporting ideas, Using per Cons on a topic, Giving a shor	o support a point of view, Infer suasive language, Recognizing				
0 45 11		J nit – II	4 Hrs				
extra opini	ication of Noun Phrases in Written La meous content from a speech, Under ion, Understanding specialized vocab phrasing, Showing various degrees of a	rstanding complex instructions, ulary used in presentations, Un agreement	Distinguish between fact and inderstanding tonality of a text,				
		Jnit –III	4 Hrs				
Level 8: Application of Present & Past Participles, Impersonal Possessive Adjectives, Future Perfect passive, Understanding Irony, Following extended speech on unstructured & lengthy ideas, Understanding strategies used by speakers, Using Lexical cues to infer attitude and mood, Positive & Negative Word Connotations, Understanding & Using Hyperbole, Story Narration, Leading a discussion in an Interview, Shifting between Formal & Informal Registers, Structuring complex texts, Writing a detailed description of a complex process.							
		Jnit –IV	7 Hrs				
Level 9: Using past conditionals in formal statements, Adding information using appended clauses or passive participles, Using words in the subjunctive mood, Understanding vocabulary used in entrepreneurship, business development, Using idiomatic phrases, Following presentations on complex or abstract topics, Understanding Linguistically complex podcasts, Extracting information from highly specialized sources, Critically evaluate a writer's choice of words in expressing nuances, Making evidence based arguments in a presentation							
		Unit –V	7Hrs				
Level 10: Using embedded defining relative clauses, Following multiple accents and dialects, Technical presentations, Reading and understanding argumentative texts, Leading a panel discussion, Participating in a debate on abstract and complex topics, Vocabulary pertaining to business, politics and society, Critical analysis of a complex academic text.							

Course Outcomes: After completing the course, the students will be able to					
CO1	CO1 Understand the advanced concepts of English Grammar				
CO2	Use appropriate Vocabulary pertaining to real-world professional scenarios				
CO3	Have strong fundamentals in Writing essays, processes and critical analyses				
CO4	Speak at a comfortable pace, make persuasive presentations and lead discussions effectively				

Reference Books

Nere books					
1	Mark Ibbotson, Professional English in Use - Technical English for Professionals, 1st ed. Cambridge: UK, Cambridge University Press, 2009. ISBN-13: 978-0521734882				
2	Leo Jones and Richard Alexander, New International Business English Workbook, 2nd ed.(revised), Cambridge: UK, Cambridge University Press, 1996 ISBN 13: 9780521455763				
3	Simon Sweeny, English For Business Communication, 2nd ed., Cambridge: UK, Cambridge University Press, 2003, ISBN 0 521 75449 6				
4	Murphy, Intermediate English Grammar - With Answers, 2nd ed., Asia, Cambridge University Press, 2007				

Continuous Internal Evaluation (CIE); online test (50 Marks)

CIE is executed by way of online tests. A minimum of three online tests are conducted and each test is evaluated for 50 marks. The three tests are conducted for 50 marks, of each the average of three test is considered as final CIE

Semester End Evaluation (SEE); online test (50 Marks)

SEE for 50 marks is executed by means of an online examination.

PROGRAM OUTCOMES (PO)

PO1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: Problem analysis: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3: Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5: Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6: The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11: Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Innovative Clubs of RVCE

1	Ashwa Racing	Ashwa Mobility Foundation (AMF) is a student R&D platform that designs and fabricates Formula theme race cars and future mobility solutions to tackle urban
2	Astra Robites	transportation problems. Team involved in the design, fabrication and building application specific robots.
3	Coding Club	To facilitate students the skills, confidence, and opportunity to change their world using coding and help them become successful in GSoC, ACM-ICPC, and other recognized coding competitions.
4	Entrepreneurship Development Cell	E-Cell is a student run body that aims to promote entrepreneurship by conducting workshops, speaker sessions and discussions on business and its aspects. We possess a mentor board to help startups grow.
5	Frequency Club	Team aims at contributing in both software and hardware domains mainly focusing on Artificial Intelligence, Machine Learning and it's advances.
6	Garuda	Design and development of supermileage urban concept electric car. Indigenous development of E-mobility products.
7	Jatayu	Build a low cost Unmanned Aerial Vehicle capable of Autonomous Navigation, Obstacle Avoidance, Object Detection, Localization, Classification and Air Drop of a package of optimum weight.
8	Solar Car	Build a roadworthy solar electric vehicle in order to build a green and sustainable environment.
9	Team Antariksh	Team Antariksh is a Space Technology Student Club whose goal is to understand, disseminate and apply the engineering skills for innovation in the field of Space technology. designing Nano-Satellite payload for ISRO PS4 Orbital platform, RVSAT-1 along with developing experimental rockets of various altitude.
10	Team Chimera	Building a Formula Electric Car through Research and Development in E-Mobility. Electrifying Formula Racing.
11	Helios Racing	Team involved in design, manufacturing and testing of All-Terrain Vehicles and other supportive tasks for the functioning of the team. Participating in BAJA competitions organized by SAE in India and the USA.
12	Team Hydra	Developing autonomous underwater vehicles and use it for various real world applications such as water purification, solid waste detection and disposal etc.
13	Team Krushi	Develop low cost equipments, which help farmers in cultivating and harvesting the crops. Use new technology applications to reduce the labour time hand cost for farmers. Aims at developing implants for Tractors.
14	Team vyoma	Design, fabrication and testing of radio controlled aircrafts and research on various types of unmanned aerial vehicles.
15	Team Dhruva	Organizing activities like quizzes based on astronomy.Stargazing and telescope handling sessions.Construction of a standard observatory. working on small projects with organizations like ICTS, IIA, ARIES etc.
16	Ham club	To popularize Amateur Radio as a hobby among students, alongside exploring technical innovations in the communications domain. Intended to provide human capital for service to the nation at times of natural calamities.

"Not me but you" " Education through Community Service & Community Service through education"

Cultural Activity Teams

- 1. AALAP (Music club)
- 2. DEBSOC (Debating society)
- 3. CARV (Dramatics club)
- 4. FOOTPRINTS (Dance club)
- 5. QUIZCORP (Quizzing society)
- 6. ROTARACT (Social welfare club)
- 7. RAAG (Youth club)
- 8. EVOKE (Fashion team)
- 9. f/6.3 (Photography club)
- 10. CARV ACCESS (Film-making club)

Leadership in Technical Education, Interdisciplinary Research & Innovation, with a Focus on sustainable and Inclusive Technologies.

To deliver outcome based Quality Education, emphasizing on experiential learning with state of the art infrastructure.

To create a conducive environment for interdisciplinary research and innovation.

To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.

To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.

To focus on technologies that are sustainable and inclusive, benefitting all sections of the society.

RV COLLEGE OF ENGINEERING

RV Vidyaniketan Post, 8th Mile, Mysuru Road, Bengaluru- -560 059. www.rvce.edu.in