Go, change the world



## **RV COLLEGE OF ENGINEERING®**

(An Autonomous Institution Affiliated to VTU, Belagavi) Approved by AICTE, New Delhi. **RV Vidyaniketan Post, 8th Mile, Mysuru Road, Bengaluru - 560 059.** 



**Bachelor of Engineering (B.E.)** Scheme and Syllabus

(2022 Scheme)

1 & II Semester

**ACADEMIC YEAR 2022-23** 



**RV-Mercedes Benz Centre for Automotive Mechatronics** 

Go, change the world



Technological University, Belagavi Approved by AICTE, New Delhi

## VISION

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

## **MISSION**

- 1. To deliver outcome based Quality education, emphasizing on experiential learning with the state of the art infrastructure.
- 2. To create a conducive environment for interdisciplinary research and innovation.
- 3. To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- 4. To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- 5. To focus on technologies those are sustainable and inclusive, benefiting all sections of the society.

## **QUALITY POLICY**

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

## **CORE VALUES**

Professionalism, Commitment, Integrity, Team Work, Innovation



Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

### **ABBREVIATIONS**

| Sl. No. | Abbreviation | Meaning                                                  |
|---------|--------------|----------------------------------------------------------|
| 1.      | VTU          | Visvesvaraya Technological University                    |
| 2.      | AI           | Artificial Intelligence & Machine Learning               |
| 3.      | AS           | Aerospace Engineering                                    |
| 4.      | BT           | Biotechnology                                            |
| 5.      | CD           | Computer Science & Engineering – Data Science            |
| 6.      | СН           | Chemical Engineering                                     |
| 7.      | CS           | Computer Science & Engineering                           |
| 8.      | CV           | Civil Engineering                                        |
| 9.      | СҮ           | Computer Science & Engineering – Cyber Security          |
| 10.     | EC           | Electronics & Communication Engineering                  |
| 11.     | EE           | Electrical & Electronics Engineering                     |
| 12.     | EI           | Electronics & Instrumentation Engineering                |
| 13.     | ЕТ           | Electronics & Telecommunication Engineering              |
| 14.     | IM           | Industrial Engineering & Management                      |
| 15.     | IS           | Information Science & Engineering                        |
| 16.     | ME           | Mechanical Engineering                                   |
| 17.     | РНҮ          | Physics                                                  |
| 18.     | СНУ          | Chemistry                                                |
| 19.     | MA           | Mathematics                                              |
| 20.     | SPARK        | Study through Projects & Activity for Renewing Knowledge |
| 21.     | ASC          | Applied Sciences Course                                  |
| 22.     | РС           | Professional Core Course                                 |
| 23.     | ES           | Engineering Science Course                               |
| 24.     | PL           | Programming Language Lab Course                          |
| 25.     | EM           | Emerging Technology Course                               |
| 26.     | HSS          | Humanities and Social Sciences                           |
| 27.     | CIE          | Continuous Internal Evaluation                           |
| 28.     | SEE          | Semester End Examination                                 |



Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

### CONTENT

|                                               | Course Title<br>ED SCIENCE COURSES<br>inear Algebra, Calculus And Numerical Methods | Page<br>No. |
|-----------------------------------------------|-------------------------------------------------------------------------------------|-------------|
|                                               |                                                                                     |             |
| 1. <b>22MA11A</b> Fundamentals of L           | inear Algebra. Calculus And Numerical Methods                                       |             |
|                                               |                                                                                     | 1           |
|                                               | inear Algebra, Calculus And Differential Equations                                  | 3           |
|                                               | inear Algebra, Calculus And Statistics                                              | 5           |
| 4. <b>22MA11D</b> Applied Mathemat            |                                                                                     | 7           |
|                                               | aplace Transform And Numerical Methods                                              | 9           |
|                                               | nd Computational Methods                                                            | 11          |
|                                               | ector Calculus And Computational Methods                                            | 13          |
| 8. <b>22MA21D</b> Applied Mathemat            |                                                                                     | 15          |
|                                               | Physics For Engineers                                                               | 17          |
| 10. <b>22PHY12B</b> Classical Physics F       | -                                                                                   | 20          |
| 11. <b>22PHY12C</b> Quantum Physics I         | _                                                                                   | 23          |
| 12. <b>22PHY12D</b> Applied Physics Fo        | 5                                                                                   | 26          |
| 13. <b>22CHY12A</b> Chemistry of Sm           | art Materials And Devices                                                           | 29          |
|                                               | nvironmental Chemistry                                                              | 32          |
| 15. <b>22CHY12C</b> Chemistry of Func         | tional Materials                                                                    | 35          |
| 16. <b>22CHY12D</b> Chemistry of Eng          | ineering Materials                                                                  | 38          |
| PROFES                                        | SIONAL CORE COURSES                                                                 |             |
| 17. <b>22EC13</b> Basic Electronics           |                                                                                     | 41          |
| 18. <b>22EE13</b> Elements of Electr          | cal Engineering                                                                     | 43          |
| 19. <b>22ME13</b> Elements of Mecha           | inical Engineering                                                                  | 45          |
| 20. 22CS23 Principles of Progr                | amming Using C                                                                      | 47          |
| 21. <b>22CV23</b> Engineering Mecha           | anics                                                                               | 50          |
| 22. <b>22MED13/23</b> Computer Aided E        | ngineering Graphics                                                                 | 52          |
| 23. <b>22ME18/28</b> Idea Lab (Idea Dev       | relopment, Evaluation & Application)                                                | 54          |
| ENGINEE                                       | RING SCIENCE COURSES                                                                | -           |
| 24. <b>22ES14A/24A</b> Fundamentals of P      | rogramming Using C                                                                  | 56          |
| 25. <b>22ES14B/24B</b> Elements of Civil I    | Engineering                                                                         | 58          |
| 26. <b>22ES14C/24C</b> Principles of Electron | onics Engineering                                                                   | 60          |
| 27. <b>22ES14D/24D</b> Basics of Electrica    | l Engineering                                                                       | 62          |
|                                               | Mechanical Engineering                                                              | 64          |
| PROGRAMMIN                                    | IG LANGUAGE LAB COURSES                                                             | 1           |
| 29. <b>22PL15A/25A</b> Introduction to Pyt    | hon Programming                                                                     | 66          |
| 30. 22PL15B/25B Introduction to We            | b Programming                                                                       | 69          |
| 31. 22PL15C/25C Basics to Java Prog           | gramming                                                                            | 71          |
| 32. 22PL15D/25D Introduction to C+            | + Programming                                                                       | 74          |



Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

|     |             | EMERGING TECHNOLOGY COURSES                     |     |
|-----|-------------|-------------------------------------------------|-----|
| 33. | 22EM101/201 | Introduction to Internet of Things              | 77  |
| 34. | 22EM102/202 | Introduction to Drone Technology                | 79  |
| 35. | 22EM103/203 | Bioinspired Engineering                         | 81  |
| 36. | 22EM104/204 | Global Climate Change                           | 83  |
| 37. | 22EM105/205 | Elements of Blockchain Technology               | 85  |
| 38. | 22EM106/206 | Introduction to Cyber Security                  | 87  |
| 39. | 22EM107/207 | Green Buildings                                 | 89  |
| 40. | 22EM108/208 | Infrastructure For Smart Cities                 | 91  |
| 41. | 22EM109/209 | Fundamentals of Nanoscience and Technology      | 93  |
| 42. | 22EM110/210 | Fundamentals of Semiconductor Devices           | 95  |
| 43. | 22EM111/211 | Introduction to Embedded Systems                | 97  |
| 44. | 22EM112/212 | Renewable Energy Sources                        | 99  |
| 45. | 22EM113/213 | Fundamentals of Sensor Technology               | 101 |
| 46. | 22EM114/214 | Human Factors in Engineering                    | 103 |
| 47. | 22EM115/215 | Digital Humanities                              | 105 |
| 48. | 22EM116/216 | Smart Materials and Systems                     | 107 |
| 49. | 22EM117/217 | Elements of Industry 4.0                        | 109 |
|     |             | HUMANITIES & SOCIAL SCIENCES COURSES            |     |
| 50. | 22HSE16     | Communicative English - I                       | 111 |
| 51. | 22HSE26     | Communicative English - II                      | 113 |
| 52. | 22HSI17/27  | Fundamentals of Indian Constitution             | 115 |
| 53. | 22HSY18/28  | Scientific Foundations of Health: Yoga Practice | 117 |
| 54. | 22HSBK17    | Balake Kannada                                  | 119 |
| 55. | 22HSSK17    | Samskrutika Kannada                             | 120 |

| <b>Credit structure)</b> |  |
|--------------------------|--|
| pu                       |  |
| (Components a            |  |
| Scheme                   |  |
| 22                       |  |
| 20                       |  |
| s of                     |  |
| am                       |  |
| rogr                     |  |
| <b>Ε Ρ</b>               |  |
| r BE                     |  |
| Year                     |  |
| Ι                        |  |
|                          |  |

| Credit AllocationCategoryCIETPTotalCategoryDuration104Theory $1.5$ 114Theory $1.5$ 114Theory $1.5$ 023Lab $1.5$ 013Theory $1.5$ 011Lab $1.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Course Title         BoS         Credit Allocati           Fundamentals of Linear Algebra, Calculus and         MA         3         1         P           Fundamentals of Linear Algebra, Calculus and         MA         3         1         0           Statistics         MA         3         1         0         2           Chemistry Of Smart Materials And Devices         CHY         2         1         1         0           Computer Aided Engineering Graphics         ME         1         0         2         1         1           Engineering Science Course - I         XX         3         0         0         1         1           Programming Languages Course         XX         2         0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         < | 1 |             | I SEMESTER: CHEMISTRY CYCLE (CS STREAM) AI, BT, CS, CD, CY & IS | Y CYCL | ,Е (C | LS S  | REA    | .M) AI, | BT, CS, C  | D, CY & 1       | S                |      |                 |                  |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------|-----------------------------------------------------------------|--------|-------|-------|--------|---------|------------|-----------------|------------------|------|-----------------|------------------|-----------|
| Image: Legending of the statisticsImage: L | Fundamentals of Linear Algebra, Calculus and<br>Fundamentals of Linear Algebra, Calculus and<br>Statistics       L       T       P         Natistics       MA       3       1       0         Chemistry Of Smart Materials And Devices       CHY       2       1       1         Computer Aided Engineering Graphics       ME       1       0       2         Engineering Science Course - I       XX       3       0       0       1         Programming Languages Course       XX       2       0       1       1         Fundamentals of Indian Constitution       HSS       0       0       1       1         Scientific Foundations of Health-Yoga Practice       HSS       0       0       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | i | Course Code | Course Title                                                    | BoS    | O I   | redit | Alloca | tion    | Category   | CIE<br>Duration | Max Marks<br>CIE | arks | SEE<br>Duration | Max Marks<br>SEE | arks<br>E |
| Fundamentals of Linear Algebra, Calculus and<br>StatisticsMA3104Theory1.5Image: Chemistry Of Smart Materials And DevicesCHY2114Theory+Lab1.5Image: Chemistry Of Smart Materials And DevicesME1023Lab1.5Image: Chemistry Of Smart Materials And DevicesME1023Lab1.5Image: Chemistry Of Smart Materials And DevicesXX3003Theory+Lab1.5Image: Chemistry Science Course - 1XX20013Theory+Lab1.5Image: Communicative English-IHSS0011111Image: Councative English-IHSS0011111Image: Councative English-IHSS00111111Image: Councative English-IHSS001111111Image: Councative English-IHSS00111111111Image: Councative English-IHSS0011111111111111111111111111111111111111 <td< th=""><th>Fundamentals of Linear Algebra, Calculus and<br/>StatisticsMA310Chemistry Of Smart Materials And DevicesCHY2111Computer Aided Engineering GraphicsME10211Engineering Science Course - IXX30001Programming Languages CourseMSHSS0011Fundamentals of Indian ConstitutionHSS10011Scientific Foundations of Health-Yoga PracticeHSS00111Scientific Foundations of Health-Yoga PracticeHSS00111</th><th></th><th></th><th></th><th></th><th>L</th><th>Т</th><th>ፈ</th><th>Total</th><th></th><th>(H)</th><th>Theory</th><th>Lab</th><th>(Hrs)</th><th>Theory</th><th>Lab</th></td<>                                                                                                                                                                                                                                                                                                                                                                                                     | Fundamentals of Linear Algebra, Calculus and<br>StatisticsMA310Chemistry Of Smart Materials And DevicesCHY2111Computer Aided Engineering GraphicsME10211Engineering Science Course - IXX30001Programming Languages CourseMSHSS0011Fundamentals of Indian ConstitutionHSS10011Scientific Foundations of Health-Yoga PracticeHSS00111Scientific Foundations of Health-Yoga PracticeHSS00111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |             |                                                                 |        | L     | Т     | ፈ      | Total   |            | (H)             | Theory           | Lab  | (Hrs)           | Theory           | Lab       |
| Chemistry Of Smart Materials And DevicesCHY2114Theory+Lab1.5Computer Aided Engineering GraphicsME1023Lab1.5Engineering Science Course - IXX3003Theory1.5Programming Languages CourseXX2013Theory+Lab1.5Fundamentative English-IHSS001111Fundamentation of Health-Yoga PracticeHSS001111Scientific Foundations of Health-Yoga PracticeHSS0011Lab1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Chemistry Of Smart Materials And DevicesCHY211Computer Aided Engineering GraphicsME102Engineering Science Course - IXX300Programming Languages CourseXX201Communicative English-IHSS001Fundamentals of Indian ConstitutionHSS100Scientific Foundations of Health-Yoga PracticeHSS001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | 22MA11C     | Fundamentals of Linear Algebra, Calculus and<br>Statistics      | MA     | ю     | -     | 0      | 4       | Theory     | 1.5             | 100              | ***  | e               | 100              | ***       |
| Computer Aided Engineering GraphicsME1023Lab1.5Engineering Science Course - 1XX3003Theory1.5Programming Languages CourseXX2013Theory1.5Communicative English-1HSS001111Fundamentals of Indian ConstitutionHSS100111Scientific Foundations of Health-Yoga PracticeHSS001111Scientific Foundations of Health-Yoga PracticeHSS0011Lab1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Computer Aided Engineering GraphicsME102Engineering Science Course - IXX300Programming Languages CourseXX201Communicative English-IHSS001Fundamentals of Indian ConstitutionHSS100Scientific Foundations of Health-Yoga PracticeHSS001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | 22CHY12A    | Chemistry Of Smart Materials And Devices                        | СНУ    | 2     | 1     | 1      | 4       | Theory+Lab | 1.5             | 100              | ***  | ო               | 100              | ***       |
| Engineering Science Course - IXX3003Theory1.5Programming Languages CourseXX2013Theory+Lab1.5Communicative English-IHSS001111Fundamentals of Indian ConstitutionHSS100111Scientific Foundations of Health-Yoga PracticeHSS001111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Engineering Science Course - IXX300Programming Languages CourseXX201Communicative English-IHSS001Fundamentals of Indian ConstitutionHSS100Scientific Foundations of Health-Yoga PracticeHSS001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | 22MECD13    | Computer Aided Engineering Graphics                             | ME     | 1     | 0     | 7      | ო       | Lab        | 1.5             | ***              | 50   | ო               | ***              | 50        |
| Programming Languages CourseXX2013Theory+Lab1.5Communicative English-IHSS0011111Fundamentals of Indian ConstitutionHSS1001111Scientific Foundations of Health-Yoga PracticeHSS0011111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Programming Languages CourseXX201Communicative English-IHSS001Fundamentals of Indian ConstitutionHSS100Scientific Foundations of Health-Yoga PracticeHSS001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | 22ES14X     | Engineering Science Course - I                                  | XX     | 3     | 0     | 0      | e       | Theory     | 1.5             | 100              | ***  | £               | 100              | ***       |
| Communicative English-I       HSS       0       1       1       Lab       1       1         Fundamentals of Indian Constitution       HSS       1       0       0       1       Theory       1       1         Scientific Foundations of Health-Yoga Practice       HSS       0       0       1       1       Lab       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Communicative English-IHSS001Fundamentals of Indian ConstitutionHSS1000Scientific Foundations of Health-Yoga PracticeHSS001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | 22PL15X     | Programming Languages Course                                    | XX     | 2     | 0     | 1      | e       | Theory+Lab | 1.5             | 100              | ***  | £               | 100              | ***       |
| Fundamentals of Indian Constitution       HSS       1       0       0       1       Theory       1       1         Scientific Foundations of Health-Yoga Practice       HSS       0       0       1       1       Lab       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Fundamentals of Indian ConstitutionHSS100Scientific Foundations of Health-Yoga PracticeHSS0011226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | 22HSE16     | Communicative English-I                                         | HSS    | 0     | 0     | 1      |         | Lab        | 1               | ***              | 50   | 10              | ***              | 50        |
| Scientific Foundations of Health-Yoga Practice         HSS         0         0         1         1         Lab         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Scientific Foundations of Health-Yoga Practice     HSS     0     0     1       12     2     6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | 22HSI17     | Fundamentals of Indian Constitution                             | HSS    | 1     | 0     | 0      | ч       | Theory     | 1               | 50               | ***  | 6               | 50               | ***       |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 22HSYI8     | Scientific Foundations of Health-Yoga Practice                  | HSS    | 0     | 0     | 1      |         | Lab        | 1               | ***              | 50   | 10              | ***              | 50        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |             |                                                                 |        | 12    | 2     | 9      | 20      |            |                 |                  |      |                 |                  |           |

|      |                       | II SEMESTER: PHYSICS C                                      | <b>YCLE</b> | (CS    | STR                      | EAM    | ) AI, E | ICS CYCLE (CS STREAM) AI, BT, CS, CD, CY & IS | , CY & IS       |                  |      |                 |                  |           |
|------|-----------------------|-------------------------------------------------------------|-------------|--------|--------------------------|--------|---------|-----------------------------------------------|-----------------|------------------|------|-----------------|------------------|-----------|
| SLNO | SI. No. Course Code   | Course Title                                                | BoS         | С<br>Г | <b>Credit Allocation</b> | llocat | tion    | Category                                      | CIE<br>Duration | Max Marks<br>CIE | ırks | SEE<br>Duration | Max Marks<br>SEE | arks<br>E |
|      |                       |                                                             | 2           | L      | Т                        | Ρ      | Total   |                                               | (H)             | Theory Lab       | Lab  | (Hrs)           | Theory           | Lab       |
| 1    | 22MA21C               | Number Theory, Vector Calculus and Computational<br>Methods | MA          | ω      |                          | 0      | 4       | Theory                                        | 1.5             | 100              | ***  | с               | 100              | ***       |
| 2    | 22PHY22B              | Quantum Physics for Engineers                               | λНд         | 2      | 1                        | 1      | 4       | Theory+Lab                                    | 1.5             | 100              | ***  | 3               | 100              | ***       |
| с    | 22CS23                | Principles of Programming Using C                           | CS          | 2      | 0                        | 1      | 3       | Theory+Lab                                    | 1.5             | 100              | ***  | з               | 100              | ***       |
| 4    | 22ES24X               | Engineering Science Course-II                               | XX          | ю      | 0                        | 0      | с       | Theory                                        | 1.5             | 100              | ***  | 3               | 100              | ***       |
| ъ    | 22EM2XX               | Emerging Technology Course                                  | XX          | e      | 0                        | 0      | e       | Theory                                        | 1.5             | 100              | ***  | s               | 100              | ***       |
| 9    | 22HSE26               | Communicative English-II                                    | SSH         | 0      | 0                        | 1      | 1       | Lab                                           | 1               | ***              | 50   | 7               | ***              | 50        |
| 7    | 22HSSK17/<br>22HSBK17 | Samskrutika Kannada<br>/ Balake Kannada                     | SSH         | 1      | 0                        | 0      | 1       | Theory                                        | 1               | 50               | ***  | 2               | 50               | ***       |
| ∞    | 22ME28                | IDEA LAB (Idea Development, Evaluation &<br>Application)    | ME          | 0      | 0                        |        | 1       | Lab                                           | 2               | ***              | 50   | 2               | ***              | 50        |
|      |                       |                                                             |             | 14     | 6                        | 4      | 20      |                                               |                 |                  |      |                 |                  |           |
|      |                       |                                                             |             |        |                          |        |         |                                               |                 |                  |      |                 |                  |           |

|         | I Year l              | I Year BE Programs of 2022 Scheme (Components and Credit structure) | hen                       | Je (   | Co                       | du      | <b>NOD</b> | ents a     | nd Cı    | redit     | st   | ructi    | lre)             |      |
|---------|-----------------------|---------------------------------------------------------------------|---------------------------|--------|--------------------------|---------|------------|------------|----------|-----------|------|----------|------------------|------|
|         |                       |                                                                     |                           |        |                          |         |            |            |          |           |      |          |                  |      |
|         |                       | I SEMESTER: CHEMISTRY CYCLE (CV STREAM) CV                          | <b>EMIS1</b>              | RY (   | CVCL                     | E (C)   | V STR      | EAM) CV    |          |           |      |          |                  |      |
|         |                       |                                                                     |                           | Č      | Credit Allocation        | ocatio  | 5          |            | CIE      | Max Marks | arks | ЭЭS      | Max Marks        | arks |
| SI. No. | . Course Code         | Course Title                                                        | BoS                       | 5      | במור שו                  | וחכמרזר | 110        | Category   | Duration | CIE       | (c)  | Duration | SEE              | ē    |
|         |                       |                                                                     |                           | L      | T                        | P T     | Total      |            | (H)      | Theory    | Lab  | (Hrs)    | Theory           | Lab  |
| 1       | 22MA11D               | Applied Mathematics – I                                             | MA                        | 3      | 1                        | 0       | 4          | Theory     | 1.5      | 100       | ***  | S        | 100              | ***  |
| 0       | 22CHY12B              | Engineering And Environmental Chemistry                             | СНУ                       | 7      | 1                        | 1       | 4          | Theory+Lab | 1.5      | 100       | ***  | ო        | 100              | ***  |
| e       | 22MECD13              | Computer Aided Engineering Graphics                                 | ME                        | 1      | 0                        | 2       | 3          | Lab        | 1.5      | ***       | 50   | 3        | ***              | 50   |
| 4       | 22ES14X               | Engineering Science Course - I                                      | XX                        | ю      | 0                        | 0       | 3          | Theory     | 1.5      | 100       | ***  | ო        | 100              | ***  |
| IJ      | 22PL15X               | Programming Languages Course                                        | XX                        | 2      | 0                        | 1       | e          | Theory+Lab | 1.5      | 100       | ***  | S        | 100              | ***  |
| 9       | 22HSE16               | Communicative English-I                                             | SSH                       | 0      | 0                        | 1       | 1          | Lab        | 1        | ***       | 50   | 2        | ***              | 50   |
| 2       | 22HSI17               | Fundamentals of Indian Constitution                                 | HSS                       | 1      | 0                        | 0       | 1          | Theory     | 1        | 50        | ***  | ы        | 50               | ***  |
| ø       | 22HSYI8               | Scientific Foundations of Health-Yoga Practice                      | SSH                       | 0      | 0                        | 1       | 1          | Lab        | 1        | ***       | 50   | 2        | ***              | 50   |
|         |                       |                                                                     |                           | 12     | 6                        | 9       | 20         |            |          |           |      |          |                  |      |
|         |                       | II SEMESTER: P                                                      | PHYSICS CYCLE (CV STREAM) | SS C   | YCLE                     | (CV     | STRE       | AM) CV     |          |           |      |          |                  |      |
| SI NO   | epoj estitoj          | Course Title                                                        | Ros                       | Cr     | <b>Credit Allocation</b> | locatio | u          | Catedory   | CIE      | Max Marks | arks | SEE      | Max Marks<br>SEE | arks |
|         |                       |                                                                     |                           | г      | T                        | P T     | Total      | C=000000   | (H)      | Theory    | Lab  | (H)      | Theory           | Lab  |
| 1       | 22MA21D               | Applied Mathematics – II                                            | MA                        | с<br>С | 1                        | 0       | 4          | Theory     | 1.5      | 100       | ***  | σ        | 100              |      |
| 0       | 22PHY22C              | Quantum Physics for Engineers                                       | ΥНЧ                       | 2      | 1                        | 1       | 4          | Theory+Lab | 1.5      | 100       | ***  | e        | 100              | ***  |
| З       | 22CV23                | Engineering Mechanics                                               | CV                        | 3      | 0                        | 0       | 3          | Theory     | 1.5      | 100       | ***  | 3        | 100              | ***  |
| 4       | 22ES24X               | Engineering Science Course-II                                       | XX                        | 3      | 0                        | 0       | 3          | Theory     | 1.5      | 100       | ***  | 3        | 100              | ***  |
| S       | 22EM2XX               | Emerging Technology Course                                          | XX                        | 3      | 0                        | 0       | 3          | Theory     | 1        | 100       | ***  | 3        | 100              | ***  |
| 9       | 22HSE26               | Communicative English-II                                            | HSS                       | 0      | 0                        | 1       | 1          | Lab        | 1        | ***       | 50   | 13       | ***              | 50   |
| 7       | 22HSSK17/<br>22HSBK17 | Samskrutika Kannada<br>/Balake Kannada                              | HSS                       | 1      | 0                        | 0       | 1          | Theory     | 1        | 50        | ***  | 6        | 50               | ***  |
| ∞       | 22ME28                | IDEA LAB (Idea Development, Evaluation & Application)               | ME                        | 0      | 0                        | 1       | 1          | Lab        | 7        | ***       | 50   | 3        | ***              | 50   |
|         |                       | -                                                                   |                           | ļ      |                          |         | ŝ          |            |          |           |      |          |                  |      |

۲ 20

0 ŋ

| Credit structure)              |
|--------------------------------|
| (Components and Credit structu |
| s of 2022 Scheme (             |
| I Year BE Program              |
|                                |

|         | I Year E              | I Year BE Programs of 2022 Scheme (Components and Credit structure) | her   | ne      | (Co               | mpo      | nents                                     | and C        | redit            | st  | ructu           | lre)             |     |
|---------|-----------------------|---------------------------------------------------------------------|-------|---------|-------------------|----------|-------------------------------------------|--------------|------------------|-----|-----------------|------------------|-----|
|         |                       | I SEMESTER: PHYSIC                                                  | s cyc | ) EE (1 | EC S1             | REAM     | PHYSICS CYCLE (EC STREAM) EC, EE, EI & ET | I & ET       |                  |     |                 |                  |     |
| SI. No. | . Course Code         | Course Title                                                        | BoS   | Cred    | Credit Allocation | cation   | Category                                  | CIE          | Max Marks<br>CIE | rks | SEE<br>Duration | Max Marks<br>SEE | rks |
|         |                       |                                                                     | 1     | L       | T<br>T            | P Totai  |                                           | Duration (H) | Theory           | Lab | (Hrs)           | Theory           | Lab |
| 1       | 22MA11A               | Fundamentals of Linear Algebra, Calculus and<br>Numerical Methods   | MA    | 3       | 1                 | 4        | Theory                                    | 1.5          | 100              | *** |                 | 100              | *** |
| 2       | 22PHY12A              | Condensed Matter Physics for Engineers                              | ЧY    | 2       | 1                 | 4        | Theory+Lab                                | 1.5          | 100              | *** | ო               | 100              | *** |
| ¢       | 22EC13                | Basic Electronics<br>(Common to EC, El & ET Programs)               | EC    | c       | -                 | <b>،</b> | Theory                                    | 1.5          | 100              | *** | 3               | 100              | *** |
| 0       | 22EE13                | Elements of Electrical Engineering<br>(Only for EE Program)         | ЕE    | N       | -                 |          | Theory                                    | 1.5          | 100              | *** | 3               | 100              | *** |
| 4       | 22ES14X               | Engineering Science Course - I                                      | XX    | Э       | 0                 | 0 3      | Theory                                    | 1.5          | 100              | *** | ς               | 100              | *** |
| 5       | 22EM1XX               | Emerging Technology Course                                          | XX    | Э       | 0                 | 0<br>3   | Theory                                    | 1            | 100              | *** | ო               | 100              | *** |
| 9       | 22HSE16               | Communicative English-I                                             | HSS   | 0       | 0                 | 1        | Lab                                       | 1            | ***              | 50  | 7               | ***              | 50  |
| 7       | 22HSSK17/<br>22HSBK17 | Samskrutika Kannada<br>/Balake Kannada                              | SSH   | 1       | 0                 | 0 1      | Theory                                    | 1            | 50               | *** | 2               | 50               | *** |
| 8       | 22ME18                | IDEA LAB (Idea Development, Evaluation &<br>Application)            | ME    | 0       | 0                 | 1        | Lab                                       | 2            | ***              | 50  | 7               | ***              | 50  |
|         |                       |                                                                     |       | 14      |                   | 3 20     |                                           |              |                  |     |                 |                  |     |

|                                                  | Max Marks         | SEE                          | Theory Lab | *** 0                                                       | *** 0                             | *                                   | *** 0                         | *** 0                        | * 50    | *** (                               | * 50                                           |    |
|--------------------------------------------------|-------------------|------------------------------|------------|-------------------------------------------------------------|-----------------------------------|-------------------------------------|-------------------------------|------------------------------|---------|-------------------------------------|------------------------------------------------|----|
|                                                  | Max               |                              | Theo       | 100                                                         | 100                               | ***                                 | 100                           | 100                          | ***     | 50                                  | ***                                            |    |
|                                                  | SEE               | Duration                     | (H)        | ю                                                           | ო                                 | e                                   | ო                             | ო                            | 6       | 61                                  | 10                                             |    |
|                                                  | rks               |                              | Lab        | ***                                                         | ***                               | 50                                  | ***                           | ***                          | 50      | ***                                 | 50                                             |    |
|                                                  | Max Marks         | CIE                          | Theory Lab | 100                                                         | 100                               | ***                                 | 100                           | 100                          | ***     | 50                                  | ***                                            |    |
| EI & ET                                          | CIE               | Thread and the second second | urauon (n) | 1.5                                                         | 1.5                               | 1.5                                 | 1.5                           | 1.5                          | 1       | 1                                   | 1                                              |    |
| M) EC, EE,                                       | •                 | Category                     |            | Theory                                                      | Theory+Lab                        | Lab                                 | Theory                        | Theory+Lab                   | Lab     | Theory                              | Lab                                            |    |
| <b>FREA</b>                                      | tion              |                              | Total      | 4                                                           | 4                                 | S                                   | £                             | 3                            | 1       | 1                                   | 1                                              | 20 |
| C<br>S                                           | locat             |                              | ዋ          | 0                                                           | -                                 |                                     | 0                             |                              |         | 0                                   |                                                | ŋ  |
| ē<br>e                                           | Credit Allocation |                              | Ţ          | 1                                                           | 1                                 | 0                                   | 0                             | 0                            | 0       | 0                                   | 0                                              | 6  |
| <b>XCL</b>                                       | Ċ                 | 5                            | r          | з                                                           | 2                                 | 2                                   | З                             | 2                            | 0       | 1                                   | 0                                              | 13 |
| RY C                                             |                   | BoS                          |            | MA                                                          | СНУ                               | ME                                  | XX                            | XX                           | HSS     | HSS                                 | SSH                                            |    |
| II SEMESTER: CHEMISTRY CYCLE (EC STREAM) EC, EE, |                   | Course Title                 |            | Vector Calculus, Laplace Transform and Numerical<br>Methods | Chemistry of functional materials | Computer Aided Engineering Graphics | Engineering Science Course-II | Programming Languages Course |         | Fundamentals of Indian Constitution | Scientific Foundations of Health-Yoga Practice |    |
|                                                  |                   | <b>Course Code</b>           |            | 22MA21A                                                     | 22CHY22C                          | 22MECD23                            | 22ES24X                       | 22PL25X                      | 22HSE26 | 22HSI27                             | 22HSY28                                        |    |
|                                                  |                   | SI. No.                      |            | 1                                                           | 0                                 | ო                                   | 4                             | IJ                           | 9       | 7                                   | 8                                              |    |

| (ə)        |  |
|------------|--|
| ctuj       |  |
| tru        |  |
| dit s      |  |
| red        |  |
| d C        |  |
| s and (    |  |
| ente       |  |
| ponents    |  |
| lui        |  |
| e (Co      |  |
| eme        |  |
| <b>sch</b> |  |
| 22 S       |  |
| 202        |  |
| of         |  |
| ams        |  |
| ogr        |  |
| Pr         |  |
| BE         |  |
| (eai       |  |
| I N        |  |
|            |  |

|         |                       | I SEMESTER: PHYSICS CYCLE (ME STREAM) AS, CH, IM & ME                  | CLE  | (ME    | STR     | (EAM)             | AS, CH, IM          | & ME            |                  |       |                 |                  |      |
|---------|-----------------------|------------------------------------------------------------------------|------|--------|---------|-------------------|---------------------|-----------------|------------------|-------|-----------------|------------------|------|
| SI. No. | Sl. No. Course Code   |                                                                        | BoS  | Cre    | dit All | Credit Allocation | Category            | CIE<br>Duration | Max Marks<br>CIE | rks   | SEE<br>Duration | Max Marks<br>SEE | urks |
|         |                       |                                                                        | L    | L<br>L | TF      | P Total           |                     | (H)             | Theory           | Lab   | (H)             | Theory Lab       | Lab  |
| 1       | 22MA11B               | Fundamentals of Linear Algebra, Calculus and<br>Differential Equations | MA   | 3      | 1 0     | 4                 | Theory              | 1.5             | 100              | * * * | 3               | 100              | ***  |
| 7       | 22PHY12B              | Classical Physics for Engineers                                        | ΥНЧ  | 7      | 1       | 4                 | Theory+Lab          | 1.5             | 100              | ***   | ო               | 100              | ***  |
| n       | 22ME13                | Elements of Mechanical Engineering                                     | ME   | 2      | 1 0     | 3                 | Theory              | 1.5             | 100              | ***   | 3               | 100              | ***  |
| 4       | 22ES14X               | Engineering Science Course - I                                         | XX   | e      | 0 0     | <b>8</b>          | Theory              | 1.5             | 100              | ***   | 3               | 100              | ***  |
| ß       | 22EM1XX               | Emerging Technology Course                                             | XX   | З      | 0 0     | 3                 | Theory              | 1               | 100              | ***   | 3               | 100              | ***  |
| 9       | 22HSE16               | Communicative English-I                                                | HSS  | 0      | 0 1     | 1                 | Lab                 | 1               | ***              | 50    | 7               | ***              | 50   |
| 7       | 22HSSK17/<br>22HSBK17 | Samskrutika Kannada<br>/Balake Kannada                                 | SSH  | 1      | 0 0     | 1                 | Theory              | 1               | 50               | ***   | 2               | 50               | ***  |
| 8       | 22ME18                | IDEA LAB (Idea Development, Evaluation &                               | ME   | 0      | 0 1     | 1                 | Lab                 | 2               | ***              | 50    | 2               | ***              | 50   |
|         |                       | •                                                                      |      | 14     | 3       | 3 20              |                     |                 |                  |       | •               |                  |      |
|         |                       |                                                                        | I    |        |         |                   |                     |                 |                  |       |                 |                  |      |
|         |                       |                                                                        |      |        |         |                   |                     |                 |                  |       |                 |                  |      |
|         |                       |                                                                        |      |        |         |                   |                     |                 |                  |       |                 |                  |      |
|         |                       | II SEMESTER: CHEMISTRY CYCLE (ME STREAM) AS, CH, IM & ME               | CYCL | ₽<br>2 | ы<br>В  | TREAD             | <b>M) AS, CH, I</b> | IM & ME         |                  |       |                 |                  |      |

|   | Max Marks<br>SEE         | Theory Lab | 100 ***                                   | 100 ***                            | *                                   | 100 ***                       | *** 0                        | 20<br>*                  | *** 0                               | 20<br>*                                        |   |
|---|--------------------------|------------|-------------------------------------------|------------------------------------|-------------------------------------|-------------------------------|------------------------------|--------------------------|-------------------------------------|------------------------------------------------|---|
|   |                          | The        | 10                                        | 10                                 | ***                                 | 10                            | 100                          | ***                      | 50                                  | ***                                            |   |
|   | SEE<br>Duration          | (Hrs)      | ო                                         | ო                                  | S                                   | ო                             | ო                            | 61                       | 6                                   | 17                                             |   |
|   | arks                     | Lab        | ***                                       | ***                                | 50                                  | ***                           | ***                          | 50                       | ***                                 | 50                                             |   |
|   | Max Marks<br>CIE         | Theory Lab | 100                                       | 100                                | ***                                 | 100                           | 100                          | ***                      | 50                                  | ***                                            |   |
|   | CIE<br>Duration          | (H)        | 1.5                                       | 1.5                                | 1.5                                 | 1.5                           | 1.5                          | 1                        | 1                                   | 1                                              |   |
|   | Category                 | )          | Theory                                    | Theory+Lab                         | Lab                                 | Theory                        | Theory+Lab                   | Lab                      | Theory                              | Lab                                            |   |
| ( | <b>Credit Allocation</b> | Total      | 4                                         | 4                                  | 3                                   | 3                             | 3                            | 1                        | 1                                   | 1                                              | ę |
| 1 | Alloc                    | Ч          | 0                                         | 1                                  | 2                                   | 0                             | 1                            | 1                        | 0                                   | 1                                              | ų |
|   | edit .                   | Ļ          | 1                                         | 1                                  | 0                                   | 0                             | 0                            | 0                        | 0                                   | 0                                              | • |
|   | C                        | L          | Э                                         | 2                                  | 1                                   | З                             | 2                            | 0                        | 1                                   | 0                                              | ç |
|   | BoS                      |            | WW                                        | СНУ                                | ШE                                  | XX                            | XX                           | SSH                      | SSH                                 | SSH                                            |   |
|   | Course Title             |            | Vector Calculus and Computational Methods | Chemistry of Engineering materials | Computer Aided Engineering Graphics | Engineering Science Course-II | Programming Languages Course | Communicative English-II | Fundamentals of Indian Constitution | Scientific Foundations of Health-Yoga Practice |   |
|   | Sl. No. Course Code      |            | 22MA21B                                   | 22CHY22D                           | 22MECD23                            | 22ES24X                       | 22PL25X                      | 22HSE26                  | 22HSI27                             | 22HSY28                                        |   |
|   | SI. No.                  |            | -                                         | 2                                  | С                                   | 4                             | 2                            | 9                        | 7                                   | 8                                              |   |

|         |     | ME & EC               | STREAMS: (AS, CH, IM & ME) & (EC, EE, EI &                          | ET)     |         |
|---------|-----|-----------------------|---------------------------------------------------------------------|---------|---------|
| SL. NO. | BoS | Course Code           | Course Title                                                        | Credits | Stream  |
| 1       | MA  | 22MA11A               | Fundamentals of Linear Algebra, Calculus And Numerical Methods      | 4       | EC      |
|         | MA  | 22MA11B               | Fundamentals of Linear Algebra, Calculus And Differential Equations | 4       | ME      |
| 2       | PHY | 22PHY12A              | Condensed Matter Physics for Engineers                              | 4       | EC      |
|         | PHY | 22PHY12B              | Classical Physics for Engineers                                     | 4       | ME      |
| 3       | XX  | 22XX13                | Professional Core Courses                                           | 3       | XX      |
| 4       | XX  | 22ES14X               | Engineering Science Courses-I                                       | 3       | ME & EC |
| 5       | XX  | 22EM1XX               | Emerging Technology Courses-I                                       | 3       | ME & EC |
| 6       | HSS | 22HSE16               | Communicative English-I                                             | 1       | ME & EC |
| 7       | HSS | 22HSSK17/<br>22HSBK17 | Samskruthika Kannada<br>Balake Kannada                              | 1       | ME & EC |
| 8       | ME  | 22ME18                | IDEA LAB (Idea Development, Evaluation & Application)               | 1       | ME & EC |
|         |     | -                     | ·                                                                   | 20      |         |

| 3. PROFE | essionai | CORE COURSE        | S                                  |         |        |
|----------|----------|--------------------|------------------------------------|---------|--------|
| Sl.No    | BoS      | <b>Course Code</b> | COURSE TITLE                       | Credits | Stream |
| 1        | EC       | 22EC13             | Basic Electronics                  | 3       | EC     |
| 2        | EE       | 22EE13             | Elements of Electrical Engineering | 3       | EE     |
| 3        | ME       | 22ME13             | Elements of Mechanical Engineering | 3       | ME     |

| 4. ENGIN | EERING | SCIENCE-I   |                                        |         |         |
|----------|--------|-------------|----------------------------------------|---------|---------|
| Sl.No    | BoS    | Course Code | COURSE TITLE                           | Credits | Stream  |
| 1        | CS     | 22ES14A     | Introduction to C Programming          | 3       | ME & EC |
| 2        | CV     | 22ES14B     | Elements of Civil Engineering          | 3       | ME & EC |
| 3        | EC     | 22ES14C     | Principles of Electronics Engineering  | 3       | ME & EE |
| 4        | EE     | 22ES14D     | Basics of Electrical Engineering       | 3       | ME & EC |
| 5        | ME     | 22ES14E     | Fundamentals of Mechanical Engineering | 3       | ME & EC |

| 5. EMER | GING TE | CHNOLOGY    |                                         |         |         |
|---------|---------|-------------|-----------------------------------------|---------|---------|
| Sl.No   | BoS     | Course Code | COURSE TITLE                            | Credits | Stream  |
| 1       | AI      | 22EM101     | Introduction to Internet of Things      | 3       | ME & EC |
| 2       | AS      | 22EM102     | Introduction to Drone Technology        | 3       | ME & EC |
| 3       | BT      | 22EM103     | Bioinspired Engineering                 | 3       | ME & EC |
| 4       | CH      | 22EM104     | Global Climate Change                   | 3       | ME & EC |
| 5       | CS      | 22EM105     | Elements of Blockchain Technology       | 3       | ME & EC |
| 6       | CS      | 22EM106     | Introduction to Cyber Security          | 3       | ME & EC |
| 7       | CV      | 22EM107     | Green Buildings                         | 3       | ME & EC |
| 8       | CV      | 22EM108     | Infrastructure for Smart Cities         | 3       | ME & EC |
| 9       | CHY     | 22EM109     | Fundamental of Nanoscience & Technology | 3       | ME & EC |
| 10      | EC      | 22EM110     | Fundamentals of Semiconductor Devices   | 3       | ME & EC |
| 11      | EC      | 22EM111     | Introduction to Embedded Systems        | 3       | ME & EC |
| 12      | EE      | 22EM112     | Renewable Energy Sources                | 3       | ME & EC |
| 13      | EI      | 22EM113     | Fundamentals of Sensor Technology       | 3       | ME & EC |
| 14      | IM      | 22EM114     | Human factors in Engineering            | 3       | ME & EC |
| 15      | IS      | 22EM115     | Digital Humanities                      | 3       | ME & EC |
| 16      | ME      | 22EM116     | Smart materials and Systems             | 3       | ME & EC |
| 17      | ME      | 22EM117     | Elements of Industry 4.0                | 3       | ME & EC |

|         |     | CS & CV ST         | REAMS: (AI, BT, CS, CD, CY & IS) & (0                   | CV)     |         |
|---------|-----|--------------------|---------------------------------------------------------|---------|---------|
| SL. NO. | BoS | <b>Course Code</b> | Course Title                                            | Credits | Stream  |
| 1       | MA  | 22MA11C            | Fundamentals of Linear Algebra, Calculus And Statistics | 4       | CS      |
|         | MA  | 22MA11D            | Applied Mathematics – I                                 | 4       | cv      |
| 2       | CHY | 22CHY12A           | Chemistry Of Smart Materials And Devices                | 4       | CS      |
|         | CHY | 22CHY12B           | Engineering And Environmental Chemistry                 | 4       | CV      |
| 3       | ME  | 22MED13            | Computer Aided Engineering Graphics                     | 3       | CS & C  |
| 4       | XX  | 22ES14X            | Engineering Science Courses-I                           | 3       | CS & CV |
| 5       | XX  | 22PL15X            | Programming Language Courses                            | 3       | CS & CV |
| 6       | HSS | 22HSE16            | Communicative English-I                                 | 1       | CS & C  |
| 7       | HSS | 22HSI17            | Fundamentals of Indian Constitution                     | 1       | CS & C  |
| 8       | HSS | 22HSYI8            | Scientific Foundations of Health-Yoga Practice          | 1       | CS & C  |
|         |     | 1                  |                                                         | 20      |         |

| 4. ENGIN | EERING | SCIENCE-I          |                                        |         |         |
|----------|--------|--------------------|----------------------------------------|---------|---------|
| S1.No    | BoS    | <b>Course Code</b> | COURSE TITLE                           | Credits | Stream  |
| 1        | CS     | 22ES14A            | Introduction to C Programming          | 3       | CV      |
| 2        | CV     | 22ES14B            | Elements of Civil Engineering          | 3       | CS      |
| 3        | EC     | 22ES14C            | Principles of Electronics Engineering  | 3       | CS & CV |
| 4        | EE     | 22ES14D            | Basics of Electrical Engineering       | 3       | CS & CV |
| 5        | ME     | 22ES14E            | Fundamentals of Mechanical Engineering | 3       | CS & CV |

| 5. PROG | RAMMINO | LANGUAGE-I         |                                    |         |         |
|---------|---------|--------------------|------------------------------------|---------|---------|
| S1.No   | BoS     | <b>Course Code</b> | COURSE TITLE                       | Credits | Stream  |
| 1       | AI      | 22PL15A            | Introduction to Python programming | 3       | CS & CV |
| 2       | CS      | 22PL15B            | Introduction to Web programming    | 3       | CS & CV |
| 3       | CS      | 22PL15C            | Basics of Java programming         | 3       | CS & CV |
| 4       | IS      | 22PL15D            | Introduction to C++ Programming    | 3       | CS & CV |

### SECOND SEMESTER CHEMISTRY CYCLE ME & EC STREAMS: (AS, CH, IM & ME) & (EC, EE, EI & ET)

| SL. NO. | BoS | <b>Course Code</b> | Course Title                                                | Credits | Stream  |
|---------|-----|--------------------|-------------------------------------------------------------|---------|---------|
| 1       | MA  | 22MA21A            | Vector Calculus, Laplace Transform And<br>Numerical Methods | 4       | EC      |
|         | MA  | 22MA21B            | Vector Calculus And Computational Methods                   | 4       | ME      |
| 2       | CHY | 22CHY22C           | Chemistry of functional materials                           | 4       | EC      |
|         | CHY | 22CHY22D           | Chemistry of Engineering materials                          | 4       | ME      |
| 3       | ME  | 22MED23            | Computer Aided Engineering Graphics                         | 3       | ME & EC |
| 4       | XX  | 22ES24X            | Engineering Science Courses-II                              | 3       | ME & EC |
| 5       | XX  | 22PL25X            | Programming Language Courses                                | 3       | ME & EC |
| 6       | HSS | 22HSE26            | Communicative English-II                                    | 1       | ME & EC |
| 7       | HSS | 22HSI27            | Fundamentals of Indian Constitution                         | 1       | ME & EC |
| 8       | HSS | 22HSY28            | Scientific Foundations of Health-Yoga Practice              | 1       | ME & EC |
|         |     | -                  | ·                                                           | 20      |         |

| 4. ENGIN | EERING | SCIENCE-II         |                                        |         |         |
|----------|--------|--------------------|----------------------------------------|---------|---------|
| S1.No    | BoS    | <b>Course Code</b> | COURSE TITLE                           | Credits | Stream  |
| 1        | CS     | 22ES24A            | Introduction to C Programming          | 3       | ME & EC |
| 2        | CV     | 22ES24B            | Elements of Civil Engineering          | 3       | ME & EC |
| 3        | EC     | 22ES24C            | Principles of Electronics Engineering  | 3       | ME & EC |
| 4        | EE     | 22ES24D            | Basics of Electrical Engineering       | 3       | ME & EC |
| 5        | ME     | 22ES24E            | Fundamentals of Mechanical Engineering | 3       | ME & EC |

| 5. PROGI | RAMMINO | <b>HANGUAGE-II</b> |                                    |         |         |
|----------|---------|--------------------|------------------------------------|---------|---------|
| Sl.No    | BoS     | <b>Course Code</b> | COURSE TITLE                       | Credits | Stream  |
| 1        | AI      | 22PL25A            | Introduction to Python programming | 3       | ME & EC |
| 2        | CS      | 22PL25B            | Introduction to Web programming    | 3       | ME & EC |
| 3        | CS      | 22PL25C            | Basics of Java programming         | 3       | ME & EC |
| 4        | IS      | 22PL25D            | Introduction to C++ Programming    | 3       | ME & EC |

### SECOND SEMESTER PHYSICS CYCLE CS & CV STREAMS: (AI, BT, CS, CD, CY & IS) & (CV)

| SL. NO. | BoS | <b>Course Code</b>    | Course Title                                                | Credits | Stream  |
|---------|-----|-----------------------|-------------------------------------------------------------|---------|---------|
| 1       | MA  | 22MA21C               | Number Theory, Vector Calculus And Computational<br>Methods | 4       | CS      |
|         | MA  | 22MA21D               | Applied Mathematics – II                                    | 4       | CV      |
| 2       | PHY | 22PHY22C              | Quantum Physics for Engineers                               | 4       | CS      |
|         | PHY | 22PHY22D              | Applied Physics for Engineers                               | 4       | CV      |
| 3       | XX  | 22XX23                | Professional Core Courses                                   | 3       | CS & CV |
| 4       | XX  | 22ES24X               | Engineering Science Courses-II                              | 3       | CS & CV |
| 5       | XX  | 22EM2XX               | Emerging Technology Courses-II                              | 3       | CS & CV |
| 6       | HSS | 22HSE26               | Communicative English-II                                    | 1       | CS & CV |
| 7       | HSS | 22HSSK27/<br>22HSBK27 | Samskruthika Kannada<br>Balake Kannada                      | 1       | CS & CV |
| 8       | ME  | 22ME28                | IDEA LAB (Idea Development, Evaluation & Application)       | 1       | CS & CV |
|         |     | -                     |                                                             | 20      |         |

| 3. PROFESSIONAL CORE COURSES |     |                    |                                   |         |        |
|------------------------------|-----|--------------------|-----------------------------------|---------|--------|
| S1.No                        | BoS | <b>Course Code</b> | COURSE TITLE                      | Credits | Stream |
| 1                            | CV  | 22CV23             | Engineering Mechanics             | 3       | CV     |
| 2                            | CS  | 22CS23             | Principles of Programming using C | 3       | CS     |

| 4. ENGIN | EERING |             |                                        |         |         |
|----------|--------|-------------|----------------------------------------|---------|---------|
| S1.No    | BoS    | Course Code | COURSE TITLE                           | Credits | Stream  |
| 1        | CS     | 22ES24A     | Introduction to C Programming          | 3       | CV      |
| 2        | CV     | 22ES24B     | Elements of Civil Engineering          | 3       | CS      |
| 3        | EC     | 22ES24C     | Principles of Electronics Engineering  | 3       | CS & CV |
| 4        | EE     | 22ES24D     | Basics of Electrical Engineering       | 3       | CS & CV |
| 5        | ME     | 22ES24E     | Fundamentals of Mechanical Engineering | 3       | CS & CV |

| 5. EMER |     |             |                                         |         |         |
|---------|-----|-------------|-----------------------------------------|---------|---------|
| S1.No   | BoS | Course Code | COURSE TITLE                            | Credits | Stream  |
| 1       | AI  | 22EM201     | Introduction to Internet of Things      | 3       | CS & CV |
| 2       | AS  | 22EM202     | Introduction to Drone Technology        | 3       | CS & CV |
| 3       | BT  | 22EM203     | Bioinspired Engineering                 | 3       | CS & CV |
| 4       | СН  | 22EM204     | Global Climate Change                   | 3       | CS & CV |
| 5       | CS  | 22EM205     | Elements of Blockchain Technology       | 3       | CS & CV |
| 6       | CS  | 22EM206     | Introduction to Cyber Security          | 3       | CS & CV |
| 7       | CV  | 22EM207     | Green Buildings                         | 3       | CS & CV |
| 8       | CV  | 22EM208     | Infrastructure for Smart Cities         | 3       | CS & CV |
| 9       | CHY | 22EM209     | Fundamental of Nanoscience & Technology | 3       | CS & CV |
| 10      | EC  | 22EM210     | Fundamentals of Semiconductor Devices   | 3       | CS & CV |
| 11      | EC  | 22EM211     | Introduction to Embedded Systems        | 3       | CS & CV |
| 12      | EE  | 22EM212     | Renewable Energy Sources                | 3       | CS & CV |
| 13      | EI  | 22EM213     | Fundamentals of Sensor Technology       | 3       | CS & CV |
| 14      | IM  | 22EM214     | Human factors in Engineering            | 3       | CS & CV |
| 15      | IS  | 22EM215     | Digital Humanities                      | 3       | CS & CV |
| 16      | ME  | 22EM216     | Smart materials and Systems             | 3       | CS & CV |
| 17      | ME  | 22EM217     | Elements of Industry 4.0                | 3       | CS & CV |

Go, change the world

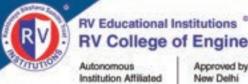
RV Educational Institutions <sup>®</sup> RV College of Engineering <sup>®</sup>

Autonomous Institution Affiliated to Visvesvaraya

Technological University, Belagavi

Approved by AICTE, New Delhi

# Applied Science Courses


- FUNDAMENTALS OF LINEAR ALGEBRA, CALCULUS AND NUMERICAL METHODS (22MA11A)
- FUNDAMENTALS OF LINEAR ALGEBRA, CALCULUS AND DIFFERENTIAL EQUATIONS (22MA11B)
- FUNDAMENTALS OF LINEAR ALGEBRA, CALCULUS AND STATISTICS (22MA11C)
- > APPLIED MATHEMATICS I (22MA11D)
- VECTOR CALCULUS, LAPLACE TRANSFORM AND NUMERICAL METHODS (22MA21A)
- VECTOR CALCULUS AND COMPUTATIONAL METHODS (22MA21B)
- > NUMBER THEORY, VECTOR CALCULUS AND COMPUTATIONAL METHODS (22MA21C)
- > APPLIED MATHEMATICS II (22MA21D)
- > CONDENSED MATTER PHYSICS FOR ENGINEERS (22PHY12A)
- > CLASSICAL PHYSICS FOR ENGINEERS (22PHY12B)
- > QUANTUM PHYSICS FOR ENGINEERS (22PHY22C)
- > APPLIED PHYSICS FOR ENGINEERS (22PHY22D)
- CHEMISTRY OF SMART MATERIALS AND DEVICES (22CHY12A)
- ENGINEERING AND ENVIRONMENTAL CHEMISTRY (22CHY12B)
- > CHEMISTRY OF FUNCTIONAL MATERIALS (22CHY22C)
- > CHEMISTRY OF ENGINEERING MATERIALS (22CHY22D)

**09 Hrs** 

08 Hrs

08 Hrs

08 Hrs



RV College of Engineering Approved by AICTE,

New Delhi to Visvesvaraya

#### Semester – I

#### FUNDAMENTALS OF LINEAR ALGEBRA, CALCULUS AND NUMERICAL METHODS **Category: Applied Science Course** Stream: Electronics (Common to EC, EE, EI & ET Programs)

(Theory)

| (110013)       |   |         |  |                     |   |           |
|----------------|---|---------|--|---------------------|---|-----------|
| Course Code    | : | 22MA11A |  | CIE                 | : | 100 Marks |
| Credits: L:T:P | : | 3:1:0   |  | SEE                 | : | 100 Marks |
| Total Hours    | : | 42L+14T |  | <b>SEE Duration</b> | : | 3 Hours   |
|                |   |         |  |                     |   |           |

Unit – I

Unit – III

Unit – IV

Unit – V

### **Elementary Linear Algebra**

Technological University, Belagavi

Rank of matrices-Rank of a matrix by Echelon form, consistency of system of linear equations- homogeneous and non-homogeneous equations, Gauss elimination, Gauss-Jordan and Gauss-Seidel methods. Eigenvalues and Eigenvectors-Properties, largest eigenvalue by Rayleigh's power method. Implementation using MATLAB. Unit – II 09 Hrs

#### **Differential Calculus**

Basics of polar coordinates, polar curves, angle between radius vector and tangent. Curvature, radius of curvature-Cartesian, polar & parametric forms (without proof), centre and circle of curvature (formulae only) and problems. Taylor's and Maclaurin's series for a function of single variable (statements only) and problems. Simulation using MATLAB.

#### **Multivariable Functions and Partial Differentiation**

Functions of several variables, Partial derivatives-Definition and notations, higher order partial derivativesproblems, total differentials, total derivatives, composite functions and chain rule-Problems. Extreme values for function of two variables-Method of Lagrange multipliers. Jacobians - Properties and problems. Simulation using MATLAB.

#### **Multiple Integrals**

Double integrals-Introduction and method of evaluation-Problems. Change of order of integration and change of variables to polar coordinates-Problems. Applications-Area, volume and centre of gravity. Triple integrals-Introduction and method of evaluation and problems. Applications-Volume of a solid and centre of gravity. Simulation using MATLAB.

#### **Numerical Methods**

Finite differences, concept of forward and backward differences, introduction to interpolation and extrapolation. Newton-Gregory (N-G) forward and backward interpolation formulae, Lagrange interpolation formula, application oriented problems. Numerical differentiation based on N-G forward and backward interpolation, applicationsvelocity and acceleration.

Numerical integration-Newton-Cotes approach-Simpson's 1/3<sup>rd</sup>, 3/8<sup>th</sup> rules and Weddle's rule. Implementation using MATLAB.

| Course | e Outcomes: After completing the course, the students will be able to                                           |
|--------|-----------------------------------------------------------------------------------------------------------------|
| CO1    | Illustrate the fundamental concepts of linear algebra, differential calculus, partial differentiation, multiple |
|        | integrals and numerical methods.                                                                                |
| CO2    |                                                                                                                 |
|        | integrals and numerical methods to solve the problems of engineering applications.                              |
| CO3    | Analyze the solution of the problems using appropriate techniques of linear algebra, differential calculus,     |
|        | partial differentiation, multiple integrals and numerical methods to the real - world problem and optimize      |
|        | the solution.                                                                                                   |
| CO4    | Interpret the overall knowledge of linear algebra, calculus, integration and numerical methods gained to        |
|        | demonstrate the problems arising in many practical situations.                                                  |

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

#### **Reference Books**

| Iterere |                                                                                                                    |
|---------|--------------------------------------------------------------------------------------------------------------------|
| 1       | Higher Engineering Mathematics, B. S. Grewal, 44 <sup>th</sup> Edition, 2015, Khanna Publishers, ISBN: 978-81-     |
|         | 933284-9-1.                                                                                                        |
| 2       | Calculus, Saturinino L. Salas, Einar Hille and Garret J. Etgen, 10 <sup>th</sup> Edition, 2022, Wiley India, ISBN: |
|         | 9789390421961.                                                                                                     |
| 3       | Schaum's Outline of Advanced Calculus, Robert Wrede and Murray Spiegel, 3 <sup>rd</sup> Edition, 2010, McGraw-     |
|         | Hill Education, ISBN -10: 0071623663, ISBN -13: 978-0071623667.                                                    |
| 4       | Advanced Engineering Mathematics, E. Kreyszig, 10 <sup>th</sup> Edition (Reprint), 2016, John Wiley & Sons,        |
|         | ISBN: 978-0470458365.                                                                                              |
| 5       | Calculus, James Stewart, 8th Edition, 2016, Cengage Learning, ISBN: 978-1-285-74062-1.                             |

|   | <b>RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)</b>                                                                                                                                                                                                                                                                                                               |       |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| # | COMPONENTS                                                                                                                                                                                                                                                                                                                                                                  | MARKS |
| 1 | <b>QUIZZES:</b> Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. <b>THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.</b>                                                                                                                                                                     | 20    |
| 2 | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.</b> | 40    |
| 3 | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), <b>MATLAB (20) ADDING UPTO 40 MARKS</b> .                                                                      | 40    |
|   | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                                                                                                                            | 100   |

|                                               | RUBRIC FOR SEMESTER END EXAMINATION (THEORY)      |       |  |  |  |
|-----------------------------------------------|---------------------------------------------------|-------|--|--|--|
| Q. NO.                                        | CONTENTS                                          | MARKS |  |  |  |
|                                               | PART A                                            |       |  |  |  |
| 1                                             | Objective type questions covering entire syllabus | 20    |  |  |  |
| PART B<br>(Maximum of TWO Sub-divisions only) |                                                   |       |  |  |  |
| 2                                             | Unit 1 : (Compulsory)                             | 16    |  |  |  |
| 3 & 4                                         | Unit 2 : Question 3 or 4                          | 16    |  |  |  |
| 5&6                                           | Unit 3 : Question 5 or 6                          | 16    |  |  |  |
| 7 & 8                                         | Unit 4 : Question 7 or 8                          | 16    |  |  |  |
| 9 & 10                                        | Unit 5: Question 9 or 10                          | 16    |  |  |  |
|                                               | MAXIMUM MARKS FOR THE SEE THEORY                  | 100   |  |  |  |

09 Hrs

09 Hrs

08 Hrs

08 Hrs

08 Hrs



Institution Affiliated

to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

#### Semester – I

#### FUNDAMENTALS OF LINEAR ALGEBRA, CALCULUS AND DIFFERENTIAL EQUATIONS Category: Applied Science Course Stream: Mechanical (Common to AS, CH, IM & ME Programs)

(Theory)

| (11001 y)      |   |         |  |              |   |           |
|----------------|---|---------|--|--------------|---|-----------|
| Course Code    | : | 22MA11B |  | CIE          | : | 100 Marks |
| Credits: L:T:P | : | 3:1:0   |  | SEE          | : | 100 Marks |
| Total Hours    | : | 42L+14T |  | SEE Duration | : | 3 Hours   |
|                |   |         |  |              |   |           |

Unit – I

Unit – II

Unit – IV

#### **Elementary Linear Algebra**

Rank of matrices-Rank of a matrix by Echelon form, consistency of system of linear equations- homogeneous and non-homogeneous equations, Gauss elimination, Gauss-Jordan and Gauss-Seidel methods. Eigenvalues and Eigenvectors-Properties, largest eigenvalue by Rayleigh's power method. Implementation using MATLAB.

#### **Differential Calculus**

Basics of polar coordinates, polar curves, angle between radius vector and tangent. Curvature, radius of curvature-Cartesian, polar & parametric forms (without proof), centre and circle of curvature (formulae only) and problems. Taylor's and Maclaurin's series for a function of single variable (statements only) and problems. Simulation using MATLAB.

|                                | Unit – 111                  |
|--------------------------------|-----------------------------|
| <b>Multivariable Functions</b> | and Partial Differentiation |

Functions of several variables, Partial derivatives-Definition and notations, higher order partial derivativesproblems, total differentials, total derivatives, composite functions and chain rule-Problems. Extreme values for function of two variables-Method of Lagrange multipliers. Jacobians - Properties and problems. Simulation using MATLAB.

#### Multiple Integrals

Double integrals–Introduction and method of evaluation-Problems. Change of order of integration and change of variables to polar coordinates-Problems. Applications–Area, volume and centre of gravity. Triple integrals-Introduction and method of evaluation and problems. Applications-Volume of a solid and centre of gravity. Simulation using MATLAB.

#### Unit – V Linear Ordinary Differential Equations of Higher Order

Standard form of higher order linear differential equations with constant coefficients. Solution of homogeneous equations–complementary functions. Non homogeneous equations-Concept of Inverse differential operator, methods of finding particular integral based on input function (force function), method of variation of parameters. Equations with functional coefficients–Cauchy equation. Applications-Simple harmonic motion, LRC circuits. Implementation using MATLAB.

| Course | Course Outcomes: After completing the course, the students will be able to                                      |  |  |  |  |  |
|--------|-----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| CO1    | Illustrate the fundamental concepts of linear algebra, differential calculus, partial differentiation, multiple |  |  |  |  |  |
|        | integrals and differential equations.                                                                           |  |  |  |  |  |
| CO2    |                                                                                                                 |  |  |  |  |  |
|        | integrals and differential equations to solve the problems of engineering applications.                         |  |  |  |  |  |
| CO3    | Analyze the solution of the problems using appropriate techniques of linear algebra, differential calculus,     |  |  |  |  |  |
|        | partial differentiation, multiple integrals and differential equations to the real - world problem and          |  |  |  |  |  |
|        | optimize the solution.                                                                                          |  |  |  |  |  |
| CO4    | Interpret the overall knowledge of linear algebra, calculus and differential equations gained to                |  |  |  |  |  |
|        | demonstrate the problems arising in many practical situations.                                                  |  |  |  |  |  |

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

| Refere | Reference Books                                                                                                |  |  |  |  |
|--------|----------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1      | Higher Engineering Mathematics, B. S. Grewal, 44 <sup>th</sup> Edition, 2015, Khanna Publishers, ISBN: 978-81- |  |  |  |  |
|        | 933284-9-1.                                                                                                    |  |  |  |  |
| 2      | Calculus, Saturinino L. Salas, Einar Hille and Garret J. Etgen, 10th Edition, 2022, Wiley India, ISBN:         |  |  |  |  |
|        | 9789390421961.                                                                                                 |  |  |  |  |
| 3      | Schaum's Outline of Advanced Calculus, Robert Wrede and Murray Spiegel, 3 <sup>rd</sup> Edition, 2010, McGraw- |  |  |  |  |
|        | Hill Education, ISBN -10: 0071623663, ISBN -13: 978-0071623667.                                                |  |  |  |  |
| 4      | Advanced Engineering Mathematics, E. Kreyszig, 10 <sup>th</sup> Edition (Reprint), 2016, John Wiley & Sons,    |  |  |  |  |
|        | ISBN: 978-0470458365.                                                                                          |  |  |  |  |
| 5      | Calculus, James Stewart, 8th Edition, 2016, Cengage Learning, ISBN: 978-1-285-74062-1.                         |  |  |  |  |

|   | <b>RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)</b>                                                                                                                                                                                                                                                                                                               |       |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| # | COMPONENTS                                                                                                                                                                                                                                                                                                                                                                  | MARKS |
| 1 | QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.                                                                                                                                                                                   | 20    |
| 2 | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.</b> | 40    |
| 3 | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), <b>MATLAB (20) ADDING UPTO 40 MARKS</b> .                                                                      | 40    |
|   | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                                                                                                                            | 100   |

| <b>RUBRIC FOR SEMESTER END EXAMINATION (THEORY)</b> |                                                   |       |  |  |
|-----------------------------------------------------|---------------------------------------------------|-------|--|--|
| Q. NO.                                              | CONTENTS                                          | MARKS |  |  |
|                                                     | PART A                                            |       |  |  |
| 1                                                   | Objective type questions covering entire syllabus | 20    |  |  |
|                                                     | PART B                                            |       |  |  |
|                                                     | (Maximum of TWO Sub-divisions only)               |       |  |  |
| 2                                                   | Unit 1 : (Compulsory)                             | 16    |  |  |
| 3 & 4                                               | Unit 2 : Question 3 or 4                          | 16    |  |  |
| <b>5 &amp; 6</b> Unit 3 : Question 5 or 6           |                                                   |       |  |  |
| 7 & 8                                               | Unit 4 : Question 7 or 8                          | 16    |  |  |
| 9 & 10                                              | Unit 5: Question 9 or 10                          | 16    |  |  |
|                                                     | MAXIMUM MARKS FOR THE SEE THEORY                  | 100   |  |  |



to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

#### Semester – I FUNDAMENTALS OF LINEAR ALGEBRA, CALCULUS AND STATISTICS **Category: Applied Science Course** Stream: Computer Science (Common to AI, BT, CS, CY, CD & IS Programs)

(Theory)

| (110013)       |    |         |   |                     |   |           |
|----------------|----|---------|---|---------------------|---|-----------|
| Course Code    | •• | 22MA11C |   | CIE                 | : | 100 Marks |
| Credits: L:T:P | :  | 3:1:0   |   | SEE                 | : | 100 Marks |
| Total Hours    | •• | 42L+14T |   | <b>SEE Duration</b> | : | 3 Hours   |
|                |    | •       | • |                     |   |           |

Unit – I

#### **Elementary Linear Algebra**

Rank of matrices-Rank of a matrix by Echelon form, consistency of system of linear equations- homogeneous and non-homogeneous equations, Gauss elimination, Gauss-Jordan and Gauss-Seidel methods. Eigenvalues and Eigenvectors-Properties, largest eigenvalue by Rayleigh's power method. Implementation using MATLAB Unit – II 09 Hrs

#### **Differential Calculus**

Basics of polar coordinates, polar curves, angle between radius vector and tangent. Curvature, radius of curvature-Cartesian, polar & parametric forms (without proof), centre and circle of curvature (formulae only) and problems. Taylor's and Maclaurin's series for a function of single variable (statements only) and problems. Simulation using MATLAB.

#### Unit – III **Multivariable Functions and Partial Differentiation**

Functions of several variables, Partial derivatives-Definition and notations, higher order partial derivativesproblems, total differentials, total derivatives, composite functions and chain rule-Problems. Extreme values for function of two variables-Method of Lagrange multipliers. Jacobians - Properties and problems. Simulation using MATLAB.

#### **Multiple Integrals**

Unit – IV

Unit – V

08 Hrs

08 Hrs

08 Hrs

**09 Hrs** 

Double integrals-Introduction and method of evaluation-Problems. Change of order of integration and change of variables to polar coordinates-Problems. Applications-Area, volume and centre of gravity. Triple integrals-Introduction and method of evaluation and problems. Applications-Volume of a solid and centre of gravity. Simulation using MATLAB.

#### **Statistics**

Central moments, mean, variance, coefficients of skewness and kurtosis in terms of moments. Curve fitting by method of least squares, fitting of curves-Polynomial, exponential and power functions. Correlation and linear regression analysis-Problems. Applications. Implementation using MATLAB.

| Course | Course Outcomes: After completing the course, the students will be able to                                      |  |  |  |  |
|--------|-----------------------------------------------------------------------------------------------------------------|--|--|--|--|
| CO1    | Illustrate the fundamental concepts of linear algebra, differential calculus, partial differentiation, multiple |  |  |  |  |
|        | integrals and statistics.                                                                                       |  |  |  |  |
| CO2    | Apply the acquired knowledge of linear algebra, differential calculus, partial differentiation, multiple        |  |  |  |  |
|        | integrals and statistics to solve the problems of engineering applications.                                     |  |  |  |  |
| CO3    | Analyze the solution of the problems using appropriate techniques of linear algebra, differential calculus,     |  |  |  |  |
|        | partial differentiation, multiple integrals and statistics to the real - world problem and optimize the         |  |  |  |  |
|        | solution.                                                                                                       |  |  |  |  |
| CO4    | Interpret the overall knowledge of linear algebra, calculus, integration and statistics gained to demonstrate   |  |  |  |  |
|        | the problems arising in many practical situations.                                                              |  |  |  |  |

RV Educational Institutions ° RV College of Engineering °

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

| Refere | nce Books                                                                                                      |
|--------|----------------------------------------------------------------------------------------------------------------|
| 1      | Higher Engineering Mathematics, B. S. Grewal, 44 <sup>th</sup> Edition, 2015, Khanna Publishers, ISBN: 978-81- |
|        | 933284-9-1.                                                                                                    |
| 2      | Calculus, Saturinino L. Salas, Einar Hille and Garret J. Etgen, 10th Edition, 2022, Wiley India, ISBN:         |
|        | 9789390421961.                                                                                                 |
| 3      | Schaum's Outline of Advanced Calculus, Robert Wrede and Murray Spiegel, 3 <sup>rd</sup> Edition, 2010, McGraw- |
|        | Hill Education, ISBN -10: 0071623663, ISBN -13: 978-0071623667.                                                |
| 4      | Advanced Engineering Mathematics, E. Kreyszig, 10th Edition (Reprint), 2016, John Wiley & Sons,                |
|        | ISBN: 978-0470458365.                                                                                          |
| 5      | Calculus, James Stewart, 8th Edition, 2016, Cengage Learning, ISBN: 978-1-285-74062-1.                         |

| RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY) |                                                                                                                                                                                                                                                                                                                                                                             |       |  |  |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|
| #                                                      | COMPONENTS                                                                                                                                                                                                                                                                                                                                                                  | MARKS |  |  |
| 1                                                      | QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be                                                                                                                                                                                                                                                                                              | 20    |  |  |
|                                                        | conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.                                                                                                                                                                                                                                                                  | 20    |  |  |
| 2                                                      | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.</b> | 40    |  |  |
| 3                                                      | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), <b>MATLAB (20) ADDING UPTO 40 MARKS</b> .                                                                      | 40    |  |  |
|                                                        | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                                                                                                                            | 100   |  |  |

|               | <b>RUBRIC FOR SEMESTER END EXAMINATION (THEORY)</b> |       |  |  |  |
|---------------|-----------------------------------------------------|-------|--|--|--|
| <b>Q. NO.</b> | CONTENTS                                            | MARKS |  |  |  |
|               | PART A                                              |       |  |  |  |
| 1             | Objective type questions covering entire syllabus   | 20    |  |  |  |
|               | PART B                                              |       |  |  |  |
|               | (Maximum of TWO Sub-divisions only)                 |       |  |  |  |
| 2             | Unit 1 : (Compulsory)                               | 16    |  |  |  |
| 3 & 4         | Unit 2 : Question 3 or 4                            | 16    |  |  |  |
| 5&6           | Unit 3 : Question 5 or 6                            | 16    |  |  |  |
| 7 & 8         | Unit 4 : Question 7 or 8                            | 16    |  |  |  |
| 9 & 10        | Unit 5: Question 9 or 10                            | 16    |  |  |  |
|               | MAXIMUM MARKS FOR THE SEE THEORY                    | 100   |  |  |  |



Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                      | Semester –                                                                                                                                                                                                                                                                                                                           | I                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                           |                                                                                               |                                                                                                                        |                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                      | ED MATHEN                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                           |                                                                                               |                                                                                                                        |                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                      | y: Applied Sci                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                           |                                                                                               |                                                                                                                        |                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                           | Stream: (                                                                                                                                                                                                                                                                                                                                                                                                            | Civil (Only to (                                                                                                                                                                                                                                                                                                                     | CV Program)                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                           |                                                                                               |                                                                                                                        |                                                                                                                                                                                                                                                                                               |
| ~ ~ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                           | 00144410                                                                                                                                                                                                                                                                                                                                                                                                             | (Theory)                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                           |                                                                                               | 0036                                                                                                                   | 1                                                                                                                                                                                                                                                                                             |
| Course Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | :                                                                                                                                                                         | 22MA11D                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                      | CIE                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                         |                                                                                               | 00 Ma                                                                                                                  |                                                                                                                                                                                                                                                                                               |
| Credits: L:T:P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | :                                                                                                                                                                         | 3:1:0                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                      | SEE                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                         | -                                                                                             | <u>00 Ma</u>                                                                                                           |                                                                                                                                                                                                                                                                                               |
| Total Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | :                                                                                                                                                                         | 42L+14T                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                      | <b>SEE Duration</b>                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                         | 3                                                                                             | Hours                                                                                                                  | S                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                           | I                                                                                                                                                                                                                                                                                                                                                                                                                    | nit – I                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                           |                                                                                               |                                                                                                                        | 09 Hrs                                                                                                                                                                                                                                                                                        |
| Elementary Linear Algel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | hra                                                                                                                                                                       | C                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                           |                                                                                               |                                                                                                                        | 07 1113                                                                                                                                                                                                                                                                                       |
| Rank of matrices-Rank of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                           | natrix by Echelon                                                                                                                                                                                                                                                                                                                                                                                                    | form. consisten                                                                                                                                                                                                                                                                                                                      | ecv of system of linear equ                                                                                                                                                                                                                                                                                                                                                                               | uatior                                                                                                                    | ıs-1                                                                                          | homo                                                                                                                   | peneous and                                                                                                                                                                                                                                                                                   |
| non-homogeneous equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                           |                                                                                               |                                                                                                                        |                                                                                                                                                                                                                                                                                               |
| Eigenvectors-Properties, la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                           |                                                                                               |                                                                                                                        |                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                      | nit – II                                                                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                           | <u> </u>                                                                                      |                                                                                                                        | 09 Hrs                                                                                                                                                                                                                                                                                        |
| Multivariable functions a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                           |                                                                                               | 1                                                                                                                      |                                                                                                                                                                                                                                                                                               |
| Functions of several var                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                      | n and notations, higher                                                                                                                                                                                                                                                                                                                                                                                   | order                                                                                                                     | pa                                                                                            | artial                                                                                                                 | derivatives-                                                                                                                                                                                                                                                                                  |
| problems, total differentia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                           |                                                                                               |                                                                                                                        |                                                                                                                                                                                                                                                                                               |
| function of two variables-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                           |                                                                                               |                                                                                                                        |                                                                                                                                                                                                                                                                                               |
| MATLAB.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                    | . 1                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                           |                                                                                               |                                                                                                                        |                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                           | Uı                                                                                                                                                                                                                                                                                                                                                                                                                   | nit – III                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                           |                                                                                               |                                                                                                                        | 08 Hrs                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                           |                                                                                               |                                                                                                                        |                                                                                                                                                                                                                                                                                               |
| Multiple Integrals<br>Double integrals–Introduc<br>variables to polar coordi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                           |                                                                                               |                                                                                                                        |                                                                                                                                                                                                                                                                                               |
| Double integrals–Introduc<br>variables to polar coordi<br>Introduction and method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | inate<br>of                                                                                                                                                               | es-Problems. App                                                                                                                                                                                                                                                                                                                                                                                                     | lications-Area,                                                                                                                                                                                                                                                                                                                      | , volume and centre of                                                                                                                                                                                                                                                                                                                                                                                    | gravi                                                                                                                     | ity.                                                                                          | Tripl                                                                                                                  | e integrals-                                                                                                                                                                                                                                                                                  |
| Double integrals-Introduc<br>variables to polar coordi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | inate<br>of                                                                                                                                                               | es-Problems. App<br>evaluation and p                                                                                                                                                                                                                                                                                                                                                                                 | lications–Area<br>roblems. Appli                                                                                                                                                                                                                                                                                                     | , volume and centre of                                                                                                                                                                                                                                                                                                                                                                                    | gravi                                                                                                                     | ity.                                                                                          | Tripl                                                                                                                  | e integrals-<br>of gravity.                                                                                                                                                                                                                                                                   |
| Double integrals–Introduc<br>variables to polar coordi<br>Introduction and method<br>Simulation using MATLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | inate<br>of<br>AB.                                                                                                                                                        | es-Problems. App<br>evaluation and p                                                                                                                                                                                                                                                                                                                                                                                 | ilications–Area,<br>roblems. Appli<br>nit – IV                                                                                                                                                                                                                                                                                       | , volume and centre of                                                                                                                                                                                                                                                                                                                                                                                    | gravi                                                                                                                     | ity.                                                                                          | Tripl                                                                                                                  | e integrals-                                                                                                                                                                                                                                                                                  |
| Double integrals–Introduc<br>variables to polar coordi<br>Introduction and method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | inate<br>of<br>AB.<br>entia<br>orde<br>ary f<br>ular<br>ular                                                                                                              | es-Problems. App<br>evaluation and p<br>Un<br>al Equations of Hi<br>er linear different<br>functions. Non ho<br>integral based on<br>pefficients–Cauchy                                                                                                                                                                                                                                                              | ilications–Area,<br>roblems. Appli<br>nit – IV<br>igher Order<br>ial equation wi<br>omogeneous eq<br>input function                                                                                                                                                                                                                  | , volume and centre of<br>ications-Volume of a sol<br>th constant coefficients.<br>uations- Concept of Inv<br>(force function), method                                                                                                                                                                                                                                                                    | gravi<br>lid ar<br>Solut<br>verse<br>of var                                                                               | ity.<br>id o<br>ion<br>diff                                                                   | Tripl<br>centre<br>of ho<br>ferenti                                                                                    | <ul> <li>of gravity.</li> <li>08 Hrs</li> <li>omogeneous al operator, parameters.</li> </ul>                                                                                                                                                                                                  |
| Double integrals–Introduct<br>variables to polar coordi<br>Introduction and method<br>Simulation using MATLA<br>Linear Ordinary Different<br>Standard form of higher<br>equations – complementation<br>methods of finding particut<br>Equations with functional                                                                                                                                                                                                                                                                                                                                                                                                              | inate<br>of<br>AB.<br>entia<br>orde<br>ary f<br>ular<br>ular                                                                                                              | es-Problems. App<br>evaluation and p<br>Un<br>I Equations of His<br>er linear differenti<br>functions. Non ho<br>integral based on<br>pefficients–Cauchy<br>AB.                                                                                                                                                                                                                                                      | ilications–Area,<br>roblems. Appli<br>nit – IV<br>igher Order<br>ial equation wi<br>omogeneous eq<br>input function                                                                                                                                                                                                                  | , volume and centre of<br>ications-Volume of a sol<br>th constant coefficients.<br>uations- Concept of Inv<br>(force function), method                                                                                                                                                                                                                                                                    | gravi<br>lid ar<br>Solut<br>verse<br>of var                                                                               | ity.<br>id o<br>ion<br>diff                                                                   | Tripl<br>centre<br>of ho<br>ferenti                                                                                    | <ul> <li>of gravity.</li> <li>08 Hrs</li> <li>omogeneous al operator, parameters.</li> </ul>                                                                                                                                                                                                  |
| Double integrals–Introduct<br>variables to polar coordi<br>Introduction and method<br>Simulation using MATLA<br>Linear Ordinary Different<br>Standard form of higher<br>equations – complementation<br>methods of finding particut<br>Equations with functional                                                                                                                                                                                                                                                                                                                                                                                                              | inate<br>of<br>AB.<br>entia<br>orde<br>ary f<br>ular<br>ular                                                                                                              | es-Problems. App<br>evaluation and p<br>Un<br>I Equations of His<br>er linear differenti<br>functions. Non ho<br>integral based on<br>pefficients–Cauchy<br>AB.                                                                                                                                                                                                                                                      | ications–Area,<br>roblems. Appli<br>nit – IV<br>igher Order<br>ial equation wi<br>pmogeneous eq<br>input function<br>y equation. Ap                                                                                                                                                                                                  | , volume and centre of<br>ications-Volume of a sol<br>th constant coefficients.<br>uations- Concept of Inv<br>(force function), method                                                                                                                                                                                                                                                                    | gravi<br>lid ar<br>Solut<br>verse<br>of var                                                                               | ity.<br>id o<br>ion<br>diff                                                                   | Tripl<br>centre<br>of ho<br>ferenti                                                                                    | e integrals-<br>of gravity.<br>08 Hrs<br>omogeneous<br>al operator,<br>parameters.<br>RC circuits.                                                                                                                                                                                            |
| Double integrals–Introduc<br>variables to polar coordi<br>Introduction and method<br>Simulation using MATLA<br>Linear Ordinary Differen<br>Standard form of higher<br>equations – complementa<br>methods of finding particu<br>Equations with functional<br>Implementation using MA                                                                                                                                                                                                                                                                                                                                                                                          | inate<br>of<br>AB.<br>entia<br>orde<br>ary f<br>ular<br>ular<br>tl co                                                                                                     | es-Problems. App<br>evaluation and p<br>Un<br>I Equations of Hi<br>er linear different<br>functions. Non ho<br>integral based on<br>befficients–Cauchy<br>AB.<br>U                                                                                                                                                                                                                                                   | dications–Area,<br>roblems. Appli<br>nit - IV<br>igher Order<br>ial equation wi<br>pmogeneous eq<br>input function<br>y equation. Ap<br>nit - V                                                                                                                                                                                      | , volume and centre of<br>ications-Volume of a sol<br>th constant coefficients.<br>uations- Concept of Inv<br>(force function), method<br>plications-Simple harmon                                                                                                                                                                                                                                        | gravi<br>lid ar<br>Solut<br>verse<br>of van                                                                               | ity.<br>ion<br>diff<br>riati                                                                  | Tripl<br>centre<br>of ho<br>ferenti<br>ion of<br>on, Ll                                                                | e integrals-<br>of gravity.<br>08 Hrs<br>omogeneous<br>al operator,<br>parameters.<br>RC circuits.<br>08 Hrs                                                                                                                                                                                  |
| Double integrals–Introduc<br>variables to polar coordi<br>Introduction and method<br>Simulation using MATLA<br>Linear Ordinary Different<br>Standard form of higher<br>equations – complementa<br>methods of finding particu<br>Equations with functiona<br>Implementation using MA                                                                                                                                                                                                                                                                                                                                                                                          | inate<br>of<br>AB.<br>entia<br>orde<br>ary f<br>ular<br>il co<br>ATL/                                                                                                     | es-Problems. App<br>evaluation and p<br>Un<br>al Equations of Hi<br>functions. Non ho<br>integral based on<br>befficients–Cauchy<br>AB.<br>U<br>ance, coefficients                                                                                                                                                                                                                                                   | dications–Area,<br>roblems. Appli<br>nit - IV<br>igher Order<br>ial equation wi<br>pmogeneous eq<br>input function<br>v equation. Ap<br>nit - V<br>of skewness an                                                                                                                                                                    | , volume and centre of<br>ications-Volume of a sol<br>ith constant coefficients.<br>uations- Concept of Inv<br>(force function), method<br>plications-Simple harmon<br>nd kurtosis in terms of m                                                                                                                                                                                                          | gravi<br>lid ar<br>Solut<br>verse<br>of van<br>nic m                                                                      | ity.<br>id c<br>ion<br>diff<br>iati<br>otic<br>nts.                                           | Tripl<br>centre<br>of ho<br>ferenti<br>ion of<br>on, Ll<br>Curv                                                        | <ul> <li>of gravity.</li> <li>08 Hrs</li> <li>omogeneous al operator, parameters.</li> <li>RC circuits.</li> <li>08 Hrs</li> <li>ve fitting by</li> </ul>                                                                                                                                     |
| Double integrals–Introduct<br>variables to polar coordi<br>Introduction and method<br>Simulation using MATLA<br>Linear Ordinary Different<br>Standard form of higher<br>equations – complementa<br>methods of finding particu<br>Equations with functional<br>Implementation using MA<br>Statistics<br>Central moments, mean, we<br>method of least squares, finding particular<br>Statistics                                                                                                                                                                                                                                                                                | inate<br>of<br>AB.<br>entia<br>orde<br>ary f<br>ular<br>ular<br>co<br>ATL.<br>varia<br>fitti                                                                              | es-Problems. App<br>evaluation and p<br>Un<br>I Equations of His<br>functions. Non ho<br>integral based on<br>pefficients–Cauchy<br>AB.<br>U<br>ance, coefficients<br>ng of curves–Poly                                                                                                                                                                                                                              | dications–Area,<br>roblems. Appli<br>nit - IV<br>igher Order<br>ial equation wi<br>pmogeneous eq<br>input function<br>y equation. Ap<br>nit - V<br>of skewness ar<br>ynomial, expon                                                                                                                                                  | , volume and centre of<br>ications-Volume of a sol<br>ith constant coefficients.<br>uations- Concept of Inv<br>(force function), method<br>plications-Simple harmon<br>and kurtosis in terms of m<br>inential and power functio                                                                                                                                                                           | gravi<br>lid ar<br>Solut<br>verse<br>of van<br>nic m                                                                      | ity.<br>id c<br>ion<br>diff<br>iati<br>otic<br>nts.                                           | Tripl<br>centre<br>of ho<br>ferenti<br>ion of<br>on, Ll<br>Curv                                                        | <ul> <li>of gravity.</li> <li>08 Hrs</li> <li>omogeneous al operator, parameters.</li> <li>RC circuits.</li> <li>08 Hrs</li> <li>ve fitting by</li> </ul>                                                                                                                                     |
| Double integrals–Introduct<br>variables to polar coordi<br>Introduction and method<br>Simulation using MATLA<br>Linear Ordinary Different<br>Standard form of higher<br>equations – complementa<br>methods of finding particu<br>Equations with functiona<br>Implementation using MA<br>Statistics<br>Central moments, mean, w                                                                                                                                                                                                                                                                                                                                               | inate<br>of<br>AB.<br>entia<br>orde<br>ary f<br>ular<br>ular<br>co<br>ATL.<br>varia<br>fitti                                                                              | es-Problems. App<br>evaluation and p<br>Un<br>I Equations of His<br>functions. Non ho<br>integral based on<br>pefficients–Cauchy<br>AB.<br>U<br>ance, coefficients<br>ng of curves–Poly                                                                                                                                                                                                                              | dications–Area,<br>roblems. Appli<br>nit - IV<br>igher Order<br>ial equation wi<br>pmogeneous eq<br>input function<br>y equation. Ap<br>nit - V<br>of skewness ar<br>ynomial, expon                                                                                                                                                  | , volume and centre of<br>ications-Volume of a sol<br>ith constant coefficients.<br>uations- Concept of Inv<br>(force function), method<br>plications-Simple harmon<br>and kurtosis in terms of m<br>inential and power functio                                                                                                                                                                           | gravi<br>lid ar<br>Solut<br>verse<br>of van<br>nic m                                                                      | ity.<br>id c<br>ion<br>diff<br>iati<br>otic<br>nts.                                           | Tripl<br>centre<br>of ho<br>ferenti<br>ion of<br>on, Ll<br>Curv                                                        | <ul> <li>of gravity.</li> <li>08 Hrs</li> <li>omogeneous</li> <li>operator,</li> <li>parameters.</li> <li>RC circuits.</li> <li>08 Hrs</li> <li>ve fitting by</li> </ul>                                                                                                                      |
| Double integrals–Introduct<br>variables to polar coordi<br>Introduction and method<br>Simulation using MATLA<br>Linear Ordinary Different<br>Standard form of higher<br>equations – complementa<br>methods of finding particu<br>Equations with functiona<br>Implementation using MA<br>Statistics<br>Central moments, mean, we<br>method of least squares, is<br>regression analysis–Proble                                                                                                                                                                                                                                                                                 | inate<br>of<br>AB.<br>entia<br>orde<br>ary f<br>ular<br>ular<br>co<br>ATL/<br>varia<br>fittin<br>ems.                                                                     | es-Problems. App<br>evaluation and p<br>Un<br><b>I Equations of H</b> i<br>er linear differentia<br>functions. Non ho<br>integral based on<br>befficients–Cauchy<br>AB.<br>U<br>ance, coefficients<br>ng of curves–Poly<br>Applications. Imp                                                                                                                                                                         | lications–Area,<br>roblems. Appli<br><b>nit – IV</b><br><b>igher Order</b><br>ial equation wi<br>pmogeneous eq<br>input function<br>y equation. Ap<br><b>nit – V</b><br>of skewness an<br>ynomial, expon-<br>plementation us                                                                                                         | , volume and centre of<br>ications-Volume of a solution<br>ith constant coefficients.<br>uations- Concept of Inv<br>(force function), method<br>plications-Simple harmon<br>nd kurtosis in terms of m<br>inential and power function<br>sing MATLAB.                                                                                                                                                      | gravi<br>lid ar<br>Solut<br>verse<br>of van<br>nic m                                                                      | ity.<br>id c<br>ion<br>diff<br>iati<br>otic<br>nts.                                           | Tripl<br>centre<br>of ho<br>ferenti<br>ion of<br>on, Ll<br>Curv                                                        | <ul> <li>of gravity.</li> <li>08 Hrs</li> <li>omogeneous al operator, parameters.</li> <li>RC circuits.</li> <li>08 Hrs</li> <li>ve fitting by</li> </ul>                                                                                                                                     |
| Double integrals–Introduct<br>variables to polar coordi<br>Introduction and method<br>Simulation using MATLA<br>Linear Ordinary Different<br>Standard form of higher<br>equations – complementa<br>methods of finding particut<br>Equations with functiona<br>Implementation using MA<br>Statistics<br>Central moments, mean, we<br>method of least squares, regression analysis–Problet<br>Course Outcomes: After                                                                                                                                                                                                                                                           | inate<br>of<br>AB.<br>entia<br>orde<br>ary f<br>ular<br>ular<br>co<br>ATL.<br>varia<br>fittin<br>ems.                                                                     | es-Problems. App<br>evaluation and p<br>Un<br><b>I Equations of H</b> i<br>er linear differentia<br>functions. Non ho<br>integral based on<br>befficients–Cauchy<br>AB.<br>U<br>ance, coefficients<br>ng of curves–Poly<br>Applications. Imp                                                                                                                                                                         | dications–Area,<br>roblems. Appli<br><b>nit – IV</b><br><b>igher Order</b><br>ial equation wi<br>pmogeneous eq<br>input function<br>y equation. Ap<br><b>nit – V</b><br>of skewness an<br>ynomial, expon-<br>plementation us<br><b>se, the student</b>                                                                               | , volume and centre of<br>ications-Volume of a solution<br>ith constant coefficients.<br>uations- Concept of Inv<br>(force function), method<br>plications-Simple harmon<br>nd kurtosis in terms of m<br>inential and power function<br>sing MATLAB.                                                                                                                                                      | gravi<br>lid ar<br>Solut<br>verse<br>of van<br>nic m<br>nomer<br>ns. C                                                    | ity.<br>ion<br>diff<br>iati<br>otic                                                           | Tripl<br>centre<br>of ho<br>ferenti<br>ion of<br>on, Ll<br>Curv<br>elation                                             | e integrals-<br>of gravity.<br>08 Hrs<br>omogeneous<br>al operator,<br>parameters.<br>RC circuits.<br>08 Hrs<br>ve fitting by<br>n and linear                                                                                                                                                 |
| Double integrals–Introduct<br>variables to polar coordi<br>Introduction and method<br>Simulation using MATLA<br>Linear Ordinary Different<br>Standard form of higher<br>equations – complementa<br>methods of finding particut<br>Equations with functiona<br>Implementation using MA<br>Statistics<br>Central moments, mean, we<br>method of least squares, for<br>regression analysis–Proble                                                                                                                                                                                                                                                                               | inate<br>of<br>AB.<br>entia<br>orde<br>ary f<br>ular<br>ular<br>orde<br>ATL2<br>varia<br>fittin<br>ems.<br><b>con</b>                                                     | es-Problems. App<br>evaluation and p<br>Un<br><b>I Equations of H</b> i<br>er linear differentia<br>functions. Non ho<br>integral based on<br>befficients–Cauchy<br>AB.<br>U<br>ance, coefficients<br>ng of curves–Poly<br>Applications. Imp                                                                                                                                                                         | dications–Area,<br>roblems. Appli<br>init – IV<br>igher Order<br>ial equation wi<br>progeneous eq<br>input function<br>y equation. Ap<br>nit – V<br>of skewness an<br>ynomial, expon<br>plementation us<br>se, the student<br>of linear algebra                                                                                      | , volume and centre of<br>ications-Volume of a solution<br>ith constant coefficients.<br>uations- Concept of Inv<br>(force function), method<br>plications-Simple harmon<br>nd kurtosis in terms of m<br>nential and power function<br>sing MATLAB.                                                                                                                                                       | gravi<br>lid ar<br>Solut<br>verse<br>of van<br>nic m<br>nomer<br>ns. C                                                    | ity.<br>ion<br>diff<br>iati<br>otic                                                           | Tripl<br>centre<br>of ho<br>ferenti<br>ion of<br>on, Ll<br>Curv<br>elation                                             | e integrals-<br>of gravity.<br>08 Hrs<br>omogeneous<br>al operator,<br>parameters.<br>RC circuits.<br>08 Hrs<br>ve fitting by<br>n and linear                                                                                                                                                 |
| Double integrals–Introduct<br>variables to polar coordi<br>Introduction and method<br>Simulation using MATLA<br>Linear Ordinary Different<br>Standard form of higher<br>equations – complementa<br>methods of finding particu<br>Equations with functional<br>Implementation using MA<br>Statistics<br>Central moments, mean, we<br>method of least squares, for<br>regression analysis–Proble<br>Course Outcomes: After<br>CO1 Illustrate the fun<br>multiple integrals                                                                                                                                                                                                     | inate<br>of<br><u>AB.</u><br>entia<br>orde<br>ary f<br>ular<br>ular<br>il co<br><u>ATL</u><br>varia<br>fittin<br>ems.                                                     | es-Problems. App<br>evaluation and p<br>Un<br>I Equations of His<br>er linear differentia<br>functions. Non how<br>integral based on<br>pefficients–Cauchy<br>AB.<br>U<br>ance, coefficients<br>ng of curves–Poly<br>Applications. Imp<br>npleting the cour<br>nental concepts of<br>fferential equation                                                                                                             | dications–Area,<br>roblems. Appli<br>init – IV<br>igher Order<br>ial equation with<br>progeneous eq<br>input function<br>y equation. Ap<br>nit – V<br>of skewness an<br>ynomial, expon<br>plementation us<br>se, the student<br>of linear algebra<br>s and statistics.                                                               | , volume and centre of<br>ications-Volume of a solution<br>ith constant coefficients.<br>uations- Concept of Inv<br>(force function), method<br>plications-Simple harmon<br>nd kurtosis in terms of m<br>nential and power function<br>sing MATLAB.                                                                                                                                                       | gravi<br>lid ar<br>Solut<br>verse<br>of van<br>nic m<br>nomer<br>ns. C                                                    | ity.<br>ion<br>diff<br>riati<br>otic<br>nts.<br>orre-                                         | Tripl<br>centre<br>of ho<br>ferenti<br>ion of<br>on, Ll<br>Curv<br>elation<br>al dif                                   | e integrals-<br>of gravity.<br>08 Hrs<br>omogeneous<br>ial operator,<br>parameters.<br>RC circuits.<br>08 Hrs<br>ve fitting by<br>n and linear<br>ferentiation,                                                                                                                               |
| Double integrals–Introduct<br>variables to polar coordi<br>Introduction and method<br>Simulation using MATLA<br>Linear Ordinary Different<br>Standard form of higher<br>equations – complementa<br>methods of finding particut<br>Equations with functional<br>Implementation using MA<br>Statistics<br>Central moments, mean, we<br>method of least squares, for<br>regression analysis–Proble<br>Course Outcomes: After<br>CO1 Illustrate the fun<br>multiple integrals<br>CO2 Apply the acquired                                                                                                                                                                          | inate<br>of<br><u>AB.</u><br>entia<br>orde<br>ary f<br>ular<br>il co<br><u>ATL</u><br>varia<br>fittin<br>ems.                                                             | es-Problems. App<br>evaluation and p<br>Un<br>I Equations of Hi<br>er linear differenti<br>functions. Non ho<br>integral based on<br>pefficients–Cauchy<br>AB.<br>U<br>ance, coefficients<br>ng of curves–Poly<br>Applications. Imp<br>npleting the cour<br>nental concepts of<br>fferential equation<br>mowledge of linear                                                                                          | dications–Area,<br>roblems. Appli<br>init – IV<br>igher Order<br>ial equation with<br>progeneous eq<br>input function<br>y equation. Ap<br>nit – V<br>of skewness an<br>ynomial, expon<br>plementation us<br>se, the student<br>of linear algebra<br>ar algebra, mul                                                                 | , volume and centre of<br>ications-Volume of a solution<br>ith constant coefficients.<br>uations- Concept of Inv<br>(force function), method<br>plications-Simple harmon<br>nd kurtosis in terms of m<br>nential and power function<br>sing MATLAB.                                                                                                                                                       | gravi<br>lid ar<br>Solut<br>verse<br>of van<br>nic m<br>nomer<br>ns. C<br>ns, pa<br>al dif                                | ity.<br>id c<br>ion<br>diff<br>riati<br>otic<br>nts.<br>orre-<br>artis<br>feree               | Tripl<br>centre<br>of ho<br>ferenti<br>ion of<br>on, Ll<br>Curv<br>elation<br>al dif                                   | e integrals-<br>of gravity.<br>08 Hrs<br>omogeneous<br>al operator,<br>parameters.<br>RC circuits.<br>08 Hrs<br>ve fitting by<br>n and linear<br>ferentiation,<br>on, multiple                                                                                                                |
| Double integrals–Introduction and method         Variables to polar coordi         Introduction and method         Simulation using MATLA         Linear Ordinary Difference         Standard form of higher         equations – complementa         methods of finding particul         Equations with functional         Implementation using MA         Statistics         Central moments, mean, we method of least squares, is regression analysis–Problet         Course Outcomes: After         CO1       Illustrate the fund multiple integrals         CO2       Apply the acquire integrals, difference                                                            | inate<br>of<br>AB.<br>entia<br>orde<br>ary f<br>ular<br>orde<br>ary f<br>ular<br>orde<br>ATL.<br>varia<br>fittis<br>ems.<br><u>con</u><br>adam<br>s, dif<br>ed k<br>ntial | es-Problems. App<br>evaluation and p<br>Un<br>I Equations of His<br>er linear differentia<br>functions. Non hos<br>integral based on<br>befficients–Cauchy<br>AB.<br>U<br>ance, coefficients<br>ng of curves–Poly<br>Applications. Imp<br>npleting the cour<br>nental concepts of<br>fferential equation<br>mowledge of linea<br>equations and stat                                                                  | dications–Area,<br>roblems. Appli<br>init – IV<br>igher Order<br>ial equation with<br>progeneous eq<br>input function<br>y equation. Ap<br>nit – V<br>of skewness an<br>ynomial, expon<br>plementation us<br>se, the student<br>of linear algebra<br>ar algebra, mul<br>tistics to solve t                                           | , volume and centre of<br>ications-Volume of a solution<br>it constant coefficients.<br>uations- Concept of Inv<br>(force function), method<br>plications-Simple harmon<br>and kurtosis in terms of m<br>nential and power function<br>sing MATLAB.                                                                                                                                                       | gravi<br>lid ar<br>Solut<br>verse<br>of van<br>nic m<br>nomer<br>ns. C<br>ns, pa<br>al dif<br>ng apj                      | ity.<br>ion<br>diff<br>riati<br>otic<br>nts.<br>orro                                          | Tripl<br>centre<br>of ho<br>ferenti<br>ion of<br>on, Ll<br>Curv<br>elation<br>al dif<br>entiati-<br>ations             | e integrals-<br>of gravity.<br>08 Hrs<br>omogeneous<br>al operator,<br>parameters.<br>RC circuits.<br>08 Hrs<br>ve fitting by<br>n and linear<br>ferentiation,<br>on, multiple                                                                                                                |
| Double integrals–Introduction variables to polar coordination using MATLA         Linear Ordinary Difference         Standard form of higher of equations – complementation using MATLA         Equations – complementation gratical         methods of finding partical         Equations with functional         Implementation using MA         Statistics         Central moments, mean, or method of least squares, is regression analysis–Problet         Course Outcomes: After         CO1       Illustrate the funding the funding partical integrals, difference         CO2       Apply the acquired integrals, difference         CO3       Analyze the solution | inate<br>of<br>AB.<br>entia<br>orde<br>ary f<br>ular<br>orde<br>ATL.<br>varia<br>fittis<br>ems.<br><u>con</u><br>ndan<br>s, dif<br>red k<br><u>ntial</u><br>ution         | es-Problems. App<br>evaluation and p<br>Un<br>d Equations of His<br>er linear differentia<br>functions. Non hos<br>integral based on<br>befficients–Cauchy<br>AB.<br>U<br>ance, coefficients<br>ng of curves–Poly<br>Applications. Imp<br>npleting the cour<br>nental concepts of<br>fferential equation<br>mowledge of linea<br>equations and stat<br>n of the problem                                              | dications–Area,<br>roblems. Appli<br>init – IV<br>igher Order<br>ial equation with<br>progeneous eq<br>input function<br>y equation. Ap<br>nit – V<br>of skewness an<br>ynomial, expon<br>plementation us<br>se, the student<br>of linear algebra<br>ar algebra, multistics to solve to<br>s using appro                             | , volume and centre of<br>ications-Volume of a solution<br>it constant coefficients.<br>uations- Concept of Inv<br>(force function), method<br>plications-Simple harmon<br>nd kurtosis in terms of m<br>nential and power function<br>sing MATLAB.<br><b>S will be able to</b><br>ra, multivariable functions, parti-<br>the problems of engineerin<br>priate techniques of line                          | gravi<br>lid ar<br>Solut<br>verse<br>of van<br>nic m<br>nomer<br>ns. C<br>ns, pa<br>al dif<br>ng app<br>ear al            | ity.<br>id c<br>ion<br>diff<br>riati<br>otic<br>artis.<br>fere<br>olic<br>geb                 | Tripl<br>centre<br>of ho<br>ferenti<br>ion of<br>on, L1<br>Curv<br>elation<br>al dif<br>entiations<br>ora, n           | <ul> <li>integrals-<br/>of gravity.</li> <li>08 Hrs</li> <li>omogeneous<br/>al operator,<br/>parameters.</li> <li>RC circuits.</li> <li>08 Hrs</li> <li>ve fitting by<br/>n and linear</li> <li>ferentiation,</li> <li>on, multiple</li> <li>ultivariable</li> </ul>                          |
| Double integrals–Introduction variables to polar coordination using MATLA         Linear Ordinary Difference         Standard form of higher of equations – complementation using MATLA         Equations – complementation gratical         methods of finding partical         Equations with functional         Implementation using MA         Statistics         Central moments, mean, or method of least squares, is regression analysis–Problet         Course Outcomes: After         CO1       Illustrate the funding the funding partical integrals, difference         CO2       Apply the acquired integrals, difference         CO3       Analyze the solution | inate<br>of<br>AB.<br>entia<br>orde<br>ary f<br>ular<br>al coo<br>ATL.<br>varia<br>fittii<br>ems.<br>con<br>adam<br>s, dif                                                | es-Problems. App<br>evaluation and p<br>Un<br><b>I Equations of H</b> i<br>er linear differentia<br>functions. Non ho<br>integral based on<br>befficients–Cauchy<br>AB.<br>U<br>ance, coefficients<br>ng of curves–Poly<br>Applications. Imp<br>npleting the cour<br>nental concepts of<br>fferential equation<br>anowledge of linea<br>equations and stat<br>n of the problem<br>Ferentiation, multip               | dications–Area,<br>roblems. Appli<br>init – IV<br>igher Order<br>ial equation with<br>progeneous eq<br>input function<br>y equation. Ap<br>nit – V<br>of skewness an<br>ynomial, expon<br>plementation us<br>se, the student<br>of linear algebra<br>ar algebra, multistics to solve to<br>s using appro                             | , volume and centre of<br>ications-Volume of a solution<br>it constant coefficients.<br>uations- Concept of Inv<br>(force function), method<br>plications-Simple harmon<br>and kurtosis in terms of m<br>intential and power function<br>sing MATLAB.                                                                                                                                                     | gravi<br>lid ar<br>Solut<br>verse<br>of van<br>nic m<br>nomer<br>ns. C<br>ns, pa<br>al dif<br>ng app<br>ear al            | ity.<br>id c<br>ion<br>diff<br>riati<br>otic<br>artis.<br>fere<br>olic<br>geb                 | Tripl<br>centre<br>of ho<br>ferenti<br>ion of<br>on, L1<br>Curv<br>elation<br>al dif<br>entiations<br>ora, n           | <ul> <li>integrals-<br/>of gravity.</li> <li>08 Hrs</li> <li>omogeneous<br/>al operator,<br/>parameters.</li> <li>RC circuits.</li> <li>08 Hrs</li> <li>ve fitting by<br/>n and linear</li> <li>ferentiation,</li> <li>on, multiple<br/>s.</li> <li>nultivariable</li> </ul>                  |
| Double integrals–Introduct<br>variables to polar coordi<br>Introduction and method<br>Simulation using MATLA<br>Linear Ordinary Different<br>Standard form of higher<br>equations – complementa<br>methods of finding particu<br>Equations with functiona<br>Implementation using MA<br>Statistics<br>Central moments, mean, we<br>method of least squares, for<br>regression analysis–Proble<br>Course Outcomes: After<br>CO1 Illustrate the fun-<br>multiple integrals<br>CO2 Apply the acquire<br>integrals, different<br>CO3 Analyze the solut<br>functions, partial<br>problem and optin                                                                                | inate<br>of<br>AB.<br>entia<br>orde<br>ary f<br>ular<br>orde<br>ary f<br>ular<br>orde<br>ATLA<br>varia<br>fittin<br>ems.<br><u>con</u><br>ndan<br>s, diff<br>mize         | es-Problems. App<br>evaluation and p<br>Un<br>I Equations of His<br>er linear differentia<br>functions. Non how<br>integral based on<br>pefficients–Cauchy<br>AB.<br>U<br>ance, coefficients<br>ng of curves–Poly<br>Applications. Imp<br>npleting the courr<br>nental concepts of<br>fferential equation<br>mowledge of linear<br>equations and stat<br>n of the problem<br>ferentiation, multip<br>e the solution. | dications–Area,<br>roblems. Appli<br>init – IV<br>igher Order<br>ial equation with<br>mogeneous eq-<br>input function<br>y equation. Ap<br>nit – V<br>of skewness ar<br>ynomial, expon-<br>plementation us<br>se, the student<br>of linear algebra<br>ar algebra, mul-<br>tistics to solve to<br>s using appro-<br>ple integrals, di | , volume and centre of<br>ications-Volume of a solution<br>it constant coefficients.<br>uations- Concept of Inv<br>(force function), method<br>plications-Simple harmon<br>ind kurtosis in terms of m<br>inential and power function<br>sing MATLAB.<br>s will be able to<br>ra, multivariable functions, parti-<br>the problems of engineerin<br>priate techniques of line<br>fferential equations and s | gravi<br>lid ar<br>Solut<br>verse<br>of van<br>nic m<br>nomer<br>ns. C<br>ns, pa<br>al dif<br>ng app<br>ear al<br>tatisti | ity.<br>id c<br>ion<br>diff<br>riati<br>otic<br>otic<br>artis.<br>fere<br>olic<br>geb<br>cs t | Tripl<br>centre<br>of ho<br>ferenti<br>ion of<br>on, Ll<br>Curv<br>elation<br>al dif<br>entiations<br>ora, n<br>to the | <ul> <li>integrals-<br/>of gravity.</li> <li>08 Hrs</li> <li>omogeneous<br/>al operator,<br/>parameters.</li> <li>RC circuits.</li> <li>08 Hrs</li> <li>ve fitting by<br/>n and linear</li> <li>ferentiation,</li> <li>on, multiple<br/>s.</li> <li>nultivariable<br/>real - world</li> </ul> |
| Double integrals–Introduction variables to polar coordination using MATLA         Linear Ordinary Difference         Standard form of higher equations – complementation using MATLA         Equations – complementation of finding particule         Equations with functional Implementation using MA         Statistics         Central moments, mean, with functional implementation using MA         Course Outcomes: After         CO1       Illustrate the fummultiple integrals         CO2       Apply the acquired integrals, different         CO3       Analyze the solutions, partial problem and optint         CO4       Interpret the over                   | inate<br>of<br>NB.<br>entia<br>orde<br>ary f<br>ular<br>orde<br>ary f<br>ular<br>orde<br>ATL/<br>varia<br>fittin<br>ems.<br><u>con</u><br>dams,<br>diff<br>mize<br>veral  | es-Problems. App<br>evaluation and p<br>Un<br>I Equations of His<br>er linear differentia<br>functions. Non hos<br>integral based on<br>pefficients–Cauchy<br>AB.<br>U<br>ance, coefficients<br>ng of curves–Poly<br>Applications. Imp<br>nental concepts of<br>fferential equation<br>mowledge of linear<br>equations and stat<br>n of the problem<br>cerentiation, multip<br>e the solution.<br>I knowledge of     | dications–Area,<br>roblems. Appli<br>init – IV<br>igher Order<br>ial equation with<br>progeneous eq<br>input function<br>y equation. Ap<br>nit – V<br>of skewness an<br>ynomial, expon<br>plementation us<br>se, the student<br>of linear algebra<br>ar algebra, multistics to solve to<br>is using appro-<br>ple integrals, di      | , volume and centre of<br>ications-Volume of a solution<br>it constant coefficients.<br>uations- Concept of Inv<br>(force function), method<br>plications-Simple harmon<br>ind kurtosis in terms of m<br>nential and power function<br>sing MATLAB.<br><b>S will be able to</b><br>ra, multivariable functions, parti-<br>the problems of engineerin<br>priate techniques of line                         | gravi<br>lid ar<br>Solut<br>verse<br>of van<br>nic m<br>nomer<br>ns. C<br>ns, pa<br>al dif<br>ng app<br>ear al<br>tatisti | ity.<br>id d<br>ion<br>diff<br>riati<br>iotic<br>mts.<br>force<br>plic<br>geb<br>cs t         | Tripl<br>centre                                                                                                        | <ul> <li>integrals-<br/>of gravity.</li> <li>08 Hrs</li> <li>omogeneous<br/>al operator,<br/>parameters.</li> <li>RC circuits.</li> <li>08 Hrs</li> <li>re fitting by<br/>n and linear</li> <li>ferentiation,</li> <li>on, multiple<br/>and linear</li> <li>integration,</li> </ul>           |

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

#### **Reference Books**

| Ittitt | ince Dooks                                                                                                     |
|--------|----------------------------------------------------------------------------------------------------------------|
| 1      | Higher Engineering Mathematics, B. S. Grewal, 44 <sup>th</sup> Edition, 2015, Khanna Publishers, ISBN: 978-81- |
|        | 933284-9-1.                                                                                                    |
| 2      | Calculus, Saturinino L. Salas, Einar Hille and Garret J. Etgen, 10th Edition, 2022, Wiley India, ISBN:         |
|        | 9789390421961.                                                                                                 |
| 3      | Schaum's Outline of Advanced Calculus, Robert Wrede and Murray Spiegel, 3 <sup>rd</sup> Edition, 2010, McGraw- |
|        | Hill Education, ISBN -10: 0071623663, ISBN -13: 978-0071623667.                                                |
| 4      | Advanced Engineering Mathematics, E. Kreyszig, 10th Edition (Reprint), 2016, John Wiley & Sons,                |
|        | ISBN: 978-0470458365.                                                                                          |
| 5      | Calculus, James Stewart, 8 <sup>th</sup> Edition, 2016, Cengage Learning, ISBN: 978-1-285-74062-1.             |

| RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY) |                                                                                                                                                                                                                                                                                                                                                                             |       |  |  |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|
| #                                                      | COMPONENTS                                                                                                                                                                                                                                                                                                                                                                  | MARKS |  |  |
| 1                                                      | <b>QUIZZES:</b> Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. <b>THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.</b>                                                                                                                                                                     | 20    |  |  |
| 2                                                      | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.</b> | 40    |  |  |
| 3                                                      | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), <b>MATLAB (20) ADDING UPTO 40 MARKS</b> .                                                                      | 40    |  |  |
|                                                        | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                                                                                                                            | 100   |  |  |

|        | <b>RUBRIC FOR SEMESTER END EXAMINATION (THEORY)</b> |       |  |  |  |
|--------|-----------------------------------------------------|-------|--|--|--|
| Q. NO. | CONTENTS                                            | MARKS |  |  |  |
|        | PART A                                              |       |  |  |  |
| 1      | Objective type questions covering entire syllabus   | 20    |  |  |  |
|        | PART B                                              |       |  |  |  |
|        | (Maximum of TWO Sub-divisions only)                 |       |  |  |  |
| 2      | Unit 1 : (Compulsory)                               | 16    |  |  |  |
| 3 & 4  | Unit 2 : Question 3 or 4                            | 16    |  |  |  |
| 5&6    | Unit 3 : Question 5 or 6                            | 16    |  |  |  |
| 7 & 8  | Unit 4 : Question 7 or 8                            | 16    |  |  |  |
| 9 & 10 | Unit 5: Question 9 or 10                            | 16    |  |  |  |
|        | MAXIMUM MARKS FOR THE SEE THEORY                    | 100   |  |  |  |



Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

#### Semester - II VECTOR CALCULUS, LAPLACE TRANSFORM AND NUMERICAL METHODS **Category: Applied Science Course** Stream: Electronics (Common to EC, EE, EI & ET Programs) Z)

|                |   |         | (1110015) |                     |   |           |
|----------------|---|---------|-----------|---------------------|---|-----------|
| Course Code    | : | 22MA21A |           | CIE                 | : | 100 Marks |
| Credits: L:T:P | : | 3:1:0   |           | SEE                 | : | 100 Marks |
| Total Hours    | : | 42L+14T |           | <b>SEE Duration</b> | : | 3 Hours   |
|                |   |         |           |                     |   |           |

#### Unit – I **09 Hrs Vector Differentiation** Vector valued functions-2D and 3D scalar and vector fields. Gradient of a scalar field-Normal vector to the surface, directional derivative, scalar potential. Divergence and curl of a vector field, Laplacian of scalar field, Solenoidal and irrotational fields, physical interpretations. Expressions for gradient, divergence, curl and Laplacian in cylindrical, spherical-polar coordinates. Simulation using MATLAB. Unit – II **09 Hrs Vector Integration** Line, surface and volume integrals. Green's theorem, Stokes theorem and Gauss divergence theorem (statements only)-Problems, solenoidal fields and irrotational fields. Work done by a force. Simulation using MATLAB. Unit – III 08 Hrs Laplace Transform Existence and uniqueness of Laplace transform (LT), transform of elementary functions, region of convergence. Properties - linearity, scaling, s - domain shift, differentiation in the s - domain, division by t, differentiation and integration in the time domain. LT of special functions - Periodic functions (square wave, saw-tooth wave, triangular wave, full & half wave rectifier), Heaviside unit step function, unit impulse function, t - shift property. Implementation using MATLAB. Unit – IV 08 Hrs **Inverse Laplace Transform** Definition, properties, evaluation using different methods. Convolution theorem (without proof), problems. Application to solve ordinary linear differential equations. Implementation using MATLAB. Unit – V 08 Hrs **Numerical Methods** Algebraic and transcendental equations-Roots of equations, intermediate value property, Regula-Falsi and Newton-Raphson methods. Methods of solving first order ordinary differential equation -Taylor's series method, 4th order Runge-Kutta method and Milne predictor-corrector method. Implementation using MATLAB.

| Course | Outcomes: After completing the course, the students will be able to                                      |
|--------|----------------------------------------------------------------------------------------------------------|
| CO1    | Illustrate the fundamental concepts of Laplace transforms, vector calculus and numerical methods.        |
| CO2    | Apply the acquired knowledge of Laplace transforms, vector calculus and numerical methods to solve the   |
|        | problems of engineering applications.                                                                    |
| CO3    | Analyze the solution of the problems using appropriate techniques of Laplace transforms, vector calculus |
|        | and numerical methods to the real - world problem and optimize the solution.                             |
| CO4    | Interpret the overall knowledge of Laplace transforms, vector calculus and numerical methods gained to   |
|        | demonstrate the problems arising in many practical situations.                                           |

RV Educational Institutions ° RV College of Engineering °

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

#### **Reference Books**

| 1101010 | Hee Dooks                                                                                                      |
|---------|----------------------------------------------------------------------------------------------------------------|
| 1       | Higher Engineering Mathematics, B. S. Grewal, 44 <sup>th</sup> Edition, 2015, Khanna Publishers, ISBN: 978-81- |
|         | 933284-9-1.                                                                                                    |
| 2       | Calculus, Saturinino L. Salas, Einar Hille and Garret J. Etgen, 10th Edition, 2022, Wiley India, ISBN:         |
|         | 9789390421961.                                                                                                 |
| 3       | Schaum's Outline of Advanced Calculus, Robert Wrede and Murray Spiegel, 3 <sup>rd</sup> Edition, 2010, McGraw- |
|         | Hill Education, ISBN -10: 0071623663, ISBN -13: 978-0071623667.                                                |
| 4       | Advanced Engineering Mathematics, E. Kreyszig, 10 <sup>th</sup> Edition (Reprint), 2016, John Wiley & Sons,    |
|         | ISBN: 978-0470458365.                                                                                          |
| 5       | Advanced Modern Engineering Mathematics, Glyn James and Phil Dyke, 5th Edition, 2018, Pearson                  |
|         | Education, ISBN-13 978-1292174341, ISBN-10 9780273719236.                                                      |

|   | <b>RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)</b>                                                                                                                                                                                                                                                                                                               |       |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| # | COMPONENTS                                                                                                                                                                                                                                                                                                                                                                  | MARKS |
| 1 | <b>QUIZZES:</b> Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. <b>THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.</b>                                                                                                                                                                     | 20    |
| 2 | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.</b> | 40    |
| 3 | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), <b>MATLAB (20) ADDING UPTO 40 MARKS</b> .                                                                      | 40    |
|   | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                                                                                                                            | 100   |

|        | <b>RUBRIC FOR SEMESTER END EXAMINATION (THEORY)</b> |       |  |  |  |  |
|--------|-----------------------------------------------------|-------|--|--|--|--|
| Q. NO. | CONTENTS                                            | MARKS |  |  |  |  |
|        | PART A                                              |       |  |  |  |  |
| 1      | Objective type questions covering entire syllabus   | 20    |  |  |  |  |
|        | PART B                                              |       |  |  |  |  |
|        | (Maximum of TWO Sub-divisions only)                 |       |  |  |  |  |
| 2      | Unit 1 : (Compulsory)                               | 16    |  |  |  |  |
| 3 & 4  | Unit 2 : Question 3 or 4                            | 16    |  |  |  |  |
| 5&6    | Unit 3 : Question 5 or 6                            | 16    |  |  |  |  |
| 7 & 8  | Unit 4 : Question 7 or 8                            | 16    |  |  |  |  |
| 9 & 10 | Unit 5: Question 9 or 10                            | 16    |  |  |  |  |
|        | MAXIMUM MARKS FOR THE SEE THEORY                    | 100   |  |  |  |  |



Institution Affiliated to Visvesvaraya Technological

Approved by AICTE, New Delhi

| University, Belaga                          | W         |                      | <u> </u>                          |                         |       |             |               |
|---------------------------------------------|-----------|----------------------|-----------------------------------|-------------------------|-------|-------------|---------------|
|                                             | VEOI      |                      | Semester – II                     |                         | 2     |             |               |
|                                             | VECI      |                      | AND COMPUTAT                      |                         | 5     |             |               |
|                                             | Stucon    |                      | y: Applied Science C              |                         |       |             |               |
|                                             | Stream    |                      | ommon to AS, CH, I<br>(Theory)    | WI & WIE Programs       | s)    |             |               |
| Course Code                                 | :         | 22MA21B              |                                   | CIE                     | :     | 100 Ma      |               |
| Credits: L:T:P                              | :         | 3:1:0                |                                   | SEE                     | :     |             |               |
| Total Hours                                 | :         | 42L+14T              |                                   | SEE Duration            | :     | 3 Hour      | S             |
|                                             |           | Ur                   | nit – I                           |                         |       |             | 09 Hrs        |
| Vector Differentiatio                       | n         |                      |                                   |                         |       |             |               |
| Vector valued function                      | ns–2D a   | and 3D scalar and    | vector fields. Derivat            | tive of vector function | on, 1 | tangent,    | velocity and  |
| acceleration. Gradient                      | ofas      | scalar field–Norma   | l vector to the surf              | ace, directional deri   | vati  | ive, scala  | ar potential. |
| Divergence and curl                         |           |                      | ian of scalar field,              | Solenoidal and irro     | tati  | onal fiel   | ds, physical  |
| interpretations. Simula                     | tion usi  | 0                    |                                   |                         |       |             |               |
|                                             |           | Un                   | it – II                           |                         |       |             | 09 Hrs        |
| Vector Integration                          |           |                      |                                   |                         |       |             |               |
| Line, surface and volu                      |           |                      |                                   |                         |       |             |               |
| only)-Problems, solen                       | oidal fie |                      |                                   | y a force. Simulation   | us1   | ng MAT      |               |
| Partial Differential E                      |           |                      | it – III                          |                         |       |             | 08 Hrs        |
| and heat equations in variables, problems.  | one un    | -                    | •                                 | dimensions by the i     | met   |             |               |
|                                             |           | Un                   | it – IV                           |                         |       |             | 08 Hrs        |
| Numerical Methods -                         |           | 1 (° D (             | с                                 | 1. 4 1                  |       | D 1         | <b>D</b> 1'   |
| Algebraic and transc                        |           |                      |                                   |                         |       |             |               |
| Newton-Raphson met<br>4th order Runge-Kutta |           |                      |                                   |                         |       |             |               |
| 411 oldel Kullge-Kulla                      | method    | ·                    | nit – V                           | mplementation usi       | ng r  | VIAILAI     | 08 Hrs        |
| Numerical Methods -                         | - 11      | 01                   | III – V                           |                         |       | l           | 00 1113       |
| Finite differences, cor                     |           | forward and back     | ward differences, int             | roduction to interpol   | latic | on and ex   | xtrapolation  |
| Newton-Gregory (N-C                         |           |                      |                                   |                         |       |             |               |
| oriented problems. N                        |           |                      |                                   |                         |       |             |               |
| velocity and accelerati                     |           |                      |                                   |                         | 1     |             |               |
| Numerical integration                       | -Newto    | n-Cotes approach-    | Simpson's 1/3 <sup>rd</sup> , 3/8 | th rules and Weddle     | e's 1 | rule. Imp   | lementatior   |
| using MATLAB.                               |           |                      | _                                 |                         |       | _           |               |
|                                             |           |                      |                                   |                         |       |             |               |
| Course Outcomes: A                          |           |                      |                                   |                         |       |             |               |
| CO1 Illustrate the methods.                 | fundar    | nental concepts of   | f vector calculus, p              | artial differential e   | qua   | tions and   | d numerica    |
| CO2 Apply the acc                           | 1         | U                    | r calculus, partial dif           | ferential equations an  | nd r  | numerical   | l methods to  |
|                                             |           | f engineering applic |                                   | niques of wester1       | 1.    | na marti-1  | differenti-   |
| CO3 Analyze the s                           | solution  | or the problems us   | sing appropriate tech             | inques of vector cal    | culu  | is, partial | unterentia    |

equations and numerical methods to the real - world problem and optimize the solution. **CO4** Interpret the overall knowledge of vector calculus, partial differential equations and numerical methods gained to demonstrate the problems arising in many practical situations.

RV Educational Institutions ° RV College of Engineering °


Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

#### **Reference Books**

| Ittitt | ILC DOORS                                                                                                      |
|--------|----------------------------------------------------------------------------------------------------------------|
| 1      | Higher Engineering Mathematics, B. S. Grewal, 44 <sup>th</sup> Edition, 2015, Khanna Publishers, ISBN: 978-81- |
|        | 933284-9-1.                                                                                                    |
| 2      | Calculus, Saturnino L. Salas, Einar Hille and Garret J. Etgen, 10th Edition, 2022, Wiley India, ISBN:          |
|        | 9789390421961.                                                                                                 |
| 3      | Advanced Engineering Mathematics, E. Kreyszig, 10 <sup>th</sup> Edition (Reprint), 2016, John Wiley & Sons,    |
|        | ISBN: 978-0470458365.                                                                                          |
| 4      | Numerical methods for scientific and engineering computation, M.K. Jain, S.R.K. Iyenger and R.K. Jain,         |
|        | 6 <sup>th</sup> Edition, 2012, New Age International Publishers, ISBN: 9788122433234, 8122433235.              |
| 5      | Advanced Modern Engineering Mathematics, Glyn James and Phil Dyke, 5th Edition, 2018, Pearson                  |
|        | Education, ISBN-13 978-1292174341, ISBN-10 9780273719236.                                                      |

|   | <b>RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)</b>                                                                                                                                                                                                                                                                                                               |       |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| # | COMPONENTS                                                                                                                                                                                                                                                                                                                                                                  | MARKS |
| 1 | <b>QUIZZES:</b> Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. <b>THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.</b>                                                                                                                                                                     | 20    |
| 2 | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.</b> | 40    |
| 3 | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), <b>MATLAB (20) ADDING UPTO 40 MARKS</b> .                                                                      | 40    |
|   | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                                                                                                                            | 100   |

| RUBRIC FOR SEMESTER END EXAMINATION (THEORY) |                                                   |       |  |  |  |
|----------------------------------------------|---------------------------------------------------|-------|--|--|--|
| Q. NO.                                       | CONTENTS                                          | MARKS |  |  |  |
|                                              | PART A                                            |       |  |  |  |
| 1                                            | Objective type questions covering entire syllabus | 20    |  |  |  |
|                                              | PART B                                            |       |  |  |  |
|                                              | (Maximum of TWO Sub-divisions only)               |       |  |  |  |
| 2                                            | Unit 1 : (Compulsory)                             | 16    |  |  |  |
| 3 & 4                                        | Unit 2 : Question 3 or 4                          | 16    |  |  |  |
| 5&6                                          | Unit 3 : Question 5 or 6                          | 16    |  |  |  |
| 7 & 8                                        | Unit 4 : Question 7 or 8                          | 16    |  |  |  |
| 9 & 10                                       | Unit 5: Question 9 or 10                          | 16    |  |  |  |
|                                              | MAXIMUM MARKS FOR THE SEE THEORY                  | 100   |  |  |  |



Technological University, Belagavi

RV College of Engineering Approved by AICTE,

New Delhi to Visvesvaraya

#### Semester - II

#### NUMBER THEORY, VECTOR CALCULUS AND COMPUTATIONAL METHODS **Category: Applied Science Course**

Stream: Computer Science (Common to AI, BT, CS, CY, CD & IS Programs)

(Theory)

|                |    |         | (111001)) |                     |   |           |
|----------------|----|---------|-----------|---------------------|---|-----------|
| Course Code    | •• | 22MA21C |           | CIE                 | : | 100 Marks |
| Credits: L:T:P | :  | 3:1:0   |           | SEE                 | : | 100 Marks |
| Total Hours    | :  | 42L+14T |           | <b>SEE Duration</b> | : | 3 Hours   |
|                |    |         |           |                     |   | -         |

#### Unit – I **09 Hrs** Number Theory Divisibility, greatest common divisor, prime numbers, properties of prime numbers, fundamental theorem of arithmetic, congruence, linear congruence, multiplicative inverses, Euler's theorem, Euler's totient function, RSA public key encryption. Implementation using MATLAB. Unit – II **09 Hrs Vector Differentiation** Vector valued functions-2D and 3D scalar and vector fields. Derivative of vector function, tangent, velocity and acceleration. Gradient of a scalar field-Normal vector to the surface, directional derivative, scalar potential. Divergence and curl of a vector field, Laplacian of scalar field, Solenoidal and irrotational fields, physical interpretations. Simulation using MATLAB. Unit – III 08 Hrs **Vector Integration** Line, surface and volume integrals. Green's theorem, Stokes theorem and Gauss divergence theorem (statements only)-Problems, solenoidal fields and irrotational fields. Work done by a force. Simulation using MATLAB Unit – IV 08 Hrs Linear Ordinary Differential Equations of Higher Order Standard form of higher order linear differential equation with constant coefficients. Solution of homogeneous equations-Complementary functions. Non homogeneous equations-Concept of inverse differential operator, methods of finding particular integral based on input function (force function), method of variation of parameters. Equations with functional coefficients-Cauchy equation. Applications-Simple harmonic motion, LRC circuits. Implementation using MATLAB. Unit – V 08 Hrs Numerical Methods Finite differences, concept of forward and backward differences, introduction to interpolation and extrapolation. Newton-Gregory (N-G) forward and backward interpolation formulae, Lagrange interpolation formula, application oriented problems. Numerical differentiation based on N-G forward and backward interpolation, applications velocity and acceleration. Implementation using MATLAB. Course Outcomes: After completing the course, the students will be able to **CO1** Illustrate the fundamental concepts of number theory, vector calculus, differential equations and numerical methods. CO2 Apply the acquired knowledge of number theory, vector calculus, differential equations and numerical

|     | methods to solve the problems of engineering applications.                                              |
|-----|---------------------------------------------------------------------------------------------------------|
| CO3 | Analyze the solution of the problems using appropriate techniques of number theory, vector calculus,    |
|     | differential equations and numerical methods to the real - world problem and optimize the solution.     |
| CO4 | Interpret the overall knowledge of number theory, vector calculus, differential equations and numerical |
|     | methods gained to demonstrate the problems arising in many practical situations.                        |



Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

| Refere | ence Books                                                                                                     |
|--------|----------------------------------------------------------------------------------------------------------------|
| 1      | Higher Engineering Mathematics, B. S. Grewal, 44 <sup>th</sup> Edition, 2015, Khanna Publishers, ISBN: 978-81- |
|        | 933284-9-1.                                                                                                    |
| 2      | Schaum's Outline of Advanced Calculus, Robert Wrede and Murray Spiegel, 3 <sup>rd</sup> Edition, 2010, McGraw- |
|        | Hill Education, ISBN -10: 0071623663, ISBN -13: 978-0071623667.                                                |
| 3      | Elementary Number Theory, David M. Burton, McGraw Hill, 7th Edition, ISBN: 978-0-07-338314-9.                  |
| 4      | Discrete and Combinatorial Mathematics, Ralph P. Grimaldi, 5 <sup>th</sup> Edition, 2006, Pearson Education,   |
|        | ISBN-13: 978-81-7758-424-0.                                                                                    |
| 5      | Advanced Modern Engineering Mathematics, Glyn James and Phil Dyke, 5th Edition, 2018, Pearson                  |
|        | Education, ISBN-13 978-1292174341, ISBN-10 9780273719236.                                                      |

| <b>RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)</b> |                                                                                                                                                                                                                                                                                                                                                                             |       |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| #                                                             | COMPONENTS                                                                                                                                                                                                                                                                                                                                                                  | MARKS |
| 1                                                             | <b>QUIZZES:</b> Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. <b>THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.</b>                                                                                                                                                                     | 20    |
| 2                                                             | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.</b> | 40    |
| 3                                                             | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), <b>MATLAB (20) ADDING UPTO 40 MARKS</b> .                                                                      | 40    |
|                                                               | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                                                                                                                            | 100   |

|               | <b>RUBRIC FOR SEMESTER END EXAMINATION (THEORY)</b> |       |  |  |  |
|---------------|-----------------------------------------------------|-------|--|--|--|
| <b>Q. NO.</b> | CONTENTS                                            | MARKS |  |  |  |
|               | PART A                                              |       |  |  |  |
| 1             | Objective type questions covering entire syllabus   | 20    |  |  |  |
|               | PART B                                              |       |  |  |  |
|               | (Maximum of TWO Sub-divisions only)                 |       |  |  |  |
| 2             | Unit 1 : (Compulsory)                               | 16    |  |  |  |
| 3 & 4         | Unit 2 : Question 3 or 4                            | 16    |  |  |  |
| 5&6           | Unit 3 : Question 5 or 6                            | 16    |  |  |  |
| 7 & 8         | Unit 4 : Question 7 or 8                            | 16    |  |  |  |
| 9 & 10        | Unit 5: Question 9 or 10                            | 16    |  |  |  |
|               | MAXIMUM MARKS FOR THE SEE THEORY                    | 100   |  |  |  |



Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

| University, being                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                         | Semester – II                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                             |                                                                                                               |                                                                                                      |                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | APPLI                                                                                                                                                                                                                                                                                                                                                                   | ED MATHEMATIC                                                                                                                                                                                                                                                                                                                                           | S – II                                                                                                                                                                                                                                                                                      |                                                                                                               |                                                                                                      |                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                         | y: Applied Science                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                             |                                                                                                               |                                                                                                      |                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                         | Civil (Only to CV Pr                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                             |                                                                                                               |                                                                                                      |                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                         | (Theory)                                                                                                                                                                                                                                                                                                                                                | ·8·····)                                                                                                                                                                                                                                                                                    |                                                                                                               |                                                                                                      |                                                                                                                                                                                                                                                                                                                     |
| Course Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22MA21D                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                         | CIE                                                                                                                                                                                                                                                                                         | :                                                                                                             | 100 1                                                                                                | Marks                                                                                                                                                                                                                                                                                                               |
| Credits: L:T:P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3:1:0                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                         | SEE                                                                                                                                                                                                                                                                                         | :                                                                                                             |                                                                                                      | Marks                                                                                                                                                                                                                                                                                                               |
| Total Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 42L+14T                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                         | SEE Duration                                                                                                                                                                                                                                                                                | :                                                                                                             | 3 Ho                                                                                                 |                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                             |                                                                                                               |                                                                                                      |                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U                                                                                                                                                                                                                                                                                                                                                                       | nit – I                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                             |                                                                                                               |                                                                                                      | 09 Hrs                                                                                                                                                                                                                                                                                                              |
| Vector Differentiatie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                             |                                                                                                               |                                                                                                      | •                                                                                                                                                                                                                                                                                                                   |
| Vector valued function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ons–2D a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and 3D scalar and                                                                                                                                                                                                                                                                                                                                                       | vector fields. Deriva                                                                                                                                                                                                                                                                                                                                   | ative of vector func                                                                                                                                                                                                                                                                        | tion, 1                                                                                                       | angen                                                                                                | , velocity and                                                                                                                                                                                                                                                                                                      |
| acceleration. Gradier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                             |                                                                                                               |                                                                                                      |                                                                                                                                                                                                                                                                                                                     |
| Divergence and curl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                             |                                                                                                               |                                                                                                      |                                                                                                                                                                                                                                                                                                                     |
| interpretations. Simul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                             |                                                                                                               |                                                                                                      |                                                                                                                                                                                                                                                                                                                     |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                         | nit – II                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                             |                                                                                                               |                                                                                                      | 09 Hrs                                                                                                                                                                                                                                                                                                              |
| Vector Integration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                             |                                                                                                               |                                                                                                      |                                                                                                                                                                                                                                                                                                                     |
| Line, surface and vol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ume inte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | egrals. Green's the                                                                                                                                                                                                                                                                                                                                                     | eorem, Stokes theorem                                                                                                                                                                                                                                                                                                                                   | m and Gauss diverg                                                                                                                                                                                                                                                                          | gence                                                                                                         | theore                                                                                               | m (statements                                                                                                                                                                                                                                                                                                       |
| only)-Problems, soler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                             |                                                                                                               |                                                                                                      |                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ur                                                                                                                                                                                                                                                                                                                                                                      | nit – III                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                             |                                                                                                               |                                                                                                      | 08 Hrs                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                             |                                                                                                               |                                                                                                      |                                                                                                                                                                                                                                                                                                                     |
| <b>Laplace Transform</b><br>Existence and unique<br>Properties - Linearity<br>integration in the time                                                                                                                                                                                                                                                                                                                                                                                                                           | r, scaling<br>e domain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | g, s - domain shift,<br>1.                                                                                                                                                                                                                                                                                                                                              | differentiation in the                                                                                                                                                                                                                                                                                                                                  | e s - domain, divisio                                                                                                                                                                                                                                                                       | on by                                                                                                         | t, diffe                                                                                             | rentiation and                                                                                                                                                                                                                                                                                                      |
| Existence and unique<br>Properties - Linearity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | r, scaling<br>e domain<br>nsform-l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | g, s - domain shift,<br>n.<br>Definition, proper<br>Application to sol                                                                                                                                                                                                                                                                                                  | differentiation in the<br>ties, evaluation usin<br>ve ordinary linear o                                                                                                                                                                                                                                                                                 | e s - domain, divisions different metho                                                                                                                                                                                                                                                     | on by<br>ds. C                                                                                                | t, diffe<br>Convolu                                                                                  | rentiation and<br>ation theorem<br>entation using                                                                                                                                                                                                                                                                   |
| Existence and unique<br>Properties - Linearity<br>integration in the time<br>Inverse Laplace Tra<br>(without proof), pro<br>MATLAB.                                                                                                                                                                                                                                                                                                                                                                                             | r, scaling<br>e domain<br>nsform-l<br>blems. A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | g, s - domain shift,<br>n.<br>Definition, proper<br>Application to sol                                                                                                                                                                                                                                                                                                  | differentiation in the ties, evaluation usir                                                                                                                                                                                                                                                                                                            | e s - domain, divisions different metho                                                                                                                                                                                                                                                     | on by<br>ds. C                                                                                                | t, diffe<br>Convolu                                                                                  | rentiation and<br>ation theorem                                                                                                                                                                                                                                                                                     |
| Existence and unique<br>Properties - Linearity<br>integration in the time<br>Inverse Laplace Tra<br>(without proof), pro<br>MATLAB.<br>Numerical Methods<br>Algebraic and Trans<br>Newton-Raphson me<br>Taylor's and Maclau<br>ordinary differential                                                                                                                                                                                                                                                                            | r, scaling<br>e domain<br>nsform-l<br>blems. A<br>– I<br>scendent<br>thods.<br>rin's ser<br>equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | g, s - domain shift,<br>n.<br>Definition, proper<br>Application to sol<br>Un<br>al equations–Roo<br>ries for a function<br>n–Taylor's series                                                                                                                                                                                                                            | differentiation in the ties, evaluation usin ve ordinary linear on $\frac{\text{nit} - IV}{\text{nit} - IV}$ ts of equations, into of single variable a method, 4th order                                                                                                                                                                               | e s - domain, division<br>ng different metho<br>differential equation<br>ermediate value pr<br>nd problems. Meth                                                                                                                                                                            | ds. C<br>ns. In<br>copert                                                                                     | t, diffe<br>convolu<br>npleme<br>y, Reg                                                              | rentiation and<br>ntion theorem<br>entation using<br>08 Hrs<br>gula-Falsi and<br>ing first order                                                                                                                                                                                                                    |
| Existence and unique<br>Properties - Linearity<br>integration in the time<br>Inverse Laplace Tra<br>(without proof), pro<br>MATLAB.<br>Numerical Methods<br>Algebraic and Trans<br>Newton-Raphson me<br>Taylor's and Maclau                                                                                                                                                                                                                                                                                                     | r, scaling<br>e domain<br>nsform-l<br>blems. A<br>– I<br>scendent<br>thods.<br>rin's ser<br>equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | g, s - domain shift,<br>n.<br>Definition, proper<br>Application to sol<br>un<br>al equations–Roo<br>ries for a function<br>n–Taylor's series<br>ation using MATL                                                                                                                                                                                                        | differentiation in the ties, evaluation usin ve ordinary linear on $\frac{\text{nit} - IV}{\text{nit} - IV}$ ts of equations, into of single variable a method, 4th order                                                                                                                                                                               | e s - domain, division<br>ng different metho<br>differential equation<br>ermediate value pr<br>nd problems. Meth                                                                                                                                                                            | ds. C<br>ns. In<br>copert                                                                                     | t, diffe<br>convolu<br>npleme<br>y, Reg                                                              | rentiation and<br>ution theorem<br>entation using<br>08 Hrs<br>gula-Falsi and<br>ing first order<br>ne predictor—                                                                                                                                                                                                   |
| Existence and unique<br>Properties - Linearity<br>integration in the time<br>Inverse Laplace Tra<br>(without proof), pro<br>MATLAB.<br>Numerical Methods<br>Algebraic and Trans<br>Newton-Raphson me<br>Taylor's and Maclau<br>ordinary differential                                                                                                                                                                                                                                                                            | r, scaling<br>e domain<br>nsform-l<br>blems. A<br>– I<br>scendent<br>thods.<br>rin's ser<br>equation<br>plementa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | g, s - domain shift,<br>n.<br>Definition, proper<br>Application to sol<br>un<br>al equations–Roo<br>ries for a function<br>n–Taylor's series<br>ation using MATL                                                                                                                                                                                                        | differentiation in the<br>ties, evaluation usin<br>ve ordinary linear on<br><b>nit – IV</b><br>ts of equations, into<br>of single variable a<br>method, 4th order<br>AB.                                                                                                                                                                                | e s - domain, division<br>ng different metho<br>differential equation<br>ermediate value pr<br>nd problems. Meth                                                                                                                                                                            | ds. C<br>ns. In<br>copert                                                                                     | t, diffe<br>convolu<br>npleme<br>y, Reg                                                              | rentiation and<br>ntion theorem<br>entation using<br>08 Hrs<br>gula-Falsi and<br>ing first order                                                                                                                                                                                                                    |
| Existence and uniqu<br>Properties - Linearity<br>integration in the time<br>Inverse Laplace Tra<br>(without proof), pro<br>MATLAB.<br>Numerical Methods<br>Algebraic and Trans<br>Newton-Raphson me<br>Taylor's and Maclau<br>ordinary differential<br>corrector method. Im                                                                                                                                                                                                                                                     | r, scaling<br>e domain<br>nsform-l<br>blems. A<br>- I<br>scendent<br>thods.<br>rin's ser<br>equation<br>plementa<br>- II<br>oncept of<br>f-G) for<br>problematy<br>and ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | g, s - domain shift,<br>Definition, proper<br>Application to sol<br>Un<br>al equations–Roo<br>ries for a function<br>n–Taylor's series<br>ation using MATL<br>U<br>f forward and backy<br>s. Numerical diff<br>cceleration. Nume                                                                                                                                        | differentiation in the<br>ties, evaluation usin<br>we ordinary linear of<br>nit - IV<br>ts of equations, into<br>of single variable a<br>method, 4th order<br>AB.<br>nit - V<br>exard differences, in<br>vard interpolation in<br>erentiation based or<br>rical integration- New                                                                        | e s - domain, division<br>ng different metho<br>differential equation<br>ermediate value pr<br>nd problems. Meth<br>Runge-Kutta meth<br>troduction to interp<br>formulae, Lagrang<br>n N-G forward and                                                                                      | on by<br>ds. C<br>ns. In<br>roperty<br>nods c<br>od an<br>polatic<br>re int<br>d bac                          | t, diffe<br>convolu<br>npleme<br>y, Reg<br>of solv<br>nd Mil                                         | rentiation and         ation theorem         entation using         08 Hrs         gula-Falsi and         ing first order         ne predictor-         08 Hrs         extrapolation.         tion formula,         interpolation,                                                                                  |
| Existence and unique<br>Properties - Linearity<br>integration in the time<br>Inverse Laplace Tra<br>(without proof), pro<br>MATLAB.<br>Numerical Methods<br>Algebraic and Trans<br>Newton-Raphson me<br>Taylor's and Maclau<br>ordinary differential<br>corrector method. Im<br>Numerical Methods<br>Finite differences, co<br>Newton-Gregory (N<br>application-oriented<br>applications – veloci<br>rules and Weddle's ru                                                                                                      | r, scaling<br>e domain<br>nsform-l<br>blems. A<br>- I<br>scendent<br>thods.<br>rin's ser<br>equation<br>plementa<br>- II<br>oncept of<br>f-G) for<br>problemation<br>ty and ac<br>ile. Imple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | g, s - domain shift,<br>n.<br>Definition, proper<br>Application to sol<br>Un<br>al equations–Roo<br>ries for a function<br>n–Taylor's series<br>ation using MATL<br>U<br>f forward and back<br>ward and back<br>s. Numerical diff<br>cceleration. Nume<br>ementation using I                                                                                            | differentiation in the<br>ties, evaluation usin<br>we ordinary linear of<br>hit - IV<br>ts of equations, into<br>of single variable a<br>method, 4th order<br>AB.<br>nit - V<br>cward differences, in<br>vard interpolation for<br>erentiation based on<br>rical integration- New<br>MATLAB.                                                            | e s - domain, division<br>ng different metho<br>differential equation<br>ermediate value pr<br>nd problems. Meth<br>Runge-Kutta meth<br>troduction to interp<br>formulae, Lagrang<br>n N-G forward and<br>wton-Cotes approac                                                                | on by<br>ds. C<br>ns. In<br>roperty<br>nods c<br>od an<br>polatic<br>re int<br>d bac                          | t, diffe<br>convolu<br>npleme<br>y, Reg<br>of solv<br>nd Mil                                         | rentiation and         ation theorem         entation using         08 Hrs         gula-Falsi and         ing first order         ne predictor-         08 Hrs         extrapolation.         tion formula,         interpolation,                                                                                  |
| Existence and unique<br>Properties - Linearity<br>integration in the time<br>Inverse Laplace Tra<br>(without proof), pro<br>MATLAB.<br><b>Numerical Methods</b><br>Algebraic and Trans<br>Newton-Raphson me<br>Taylor's and Maclau<br>ordinary differential<br>corrector method. Im<br><b>Numerical Methods</b><br>Finite differences, co<br>Newton-Gregory (N<br>application-oriented<br>applications – velocir<br>rules and Weddle's ru                                                                                       | r, scaling<br>e domain<br>nsform-l<br>blems. A<br>- I<br>scendent<br>thods.<br>rin's ser<br>equation<br>plementa<br>- II<br>oncept of<br>f-G) for<br>problema<br>ty and ac<br>ile. Impl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | g, s - domain shift,<br>n.<br>Definition, proper<br>Application to sol<br><u>Un</u><br>al equations–Roo<br>ries for a function<br>n–Taylor's series<br>ation using MATL<br><u>U</u><br>f forward and back<br>ward and back<br>s. Numerical diff<br>cceleration. Nume<br>ementation using I<br><b>npleting the cour</b>                                                  | differentiation in the<br>ties, evaluation usin<br>ve ordinary linear of<br>hit - IV<br>ts of equations, into<br>of single variable a<br>method, 4th order<br><u>AB</u> .<br><b>nit – V</b><br>evard differences, in<br>vard interpolation to<br>rical integration- New<br>MATLAB.<br><b>se, the students will</b>                                      | e s - domain, division<br>ng different metho<br>differential equation<br>ermediate value pr<br>nd problems. Meth<br>Runge-Kutta meth<br>troduction to interp<br>formulae, Lagrang<br>n N-G forward and<br>wton-Cotes approac<br><b>be able to</b>                                           | on by<br>ds. C<br>ns. In<br>ropert<br>nods c<br>od an<br>polatic<br>re int<br>d bac<br>ch – S                 | t, diffe<br>convolu<br>npleme<br>y, Reg<br>of solv<br>nd Mil<br>on and<br>cerpola<br>kward<br>Simpso | rentiation and         ation theorem         entation using         08 Hrs         gula-Falsi and         ing first order         ne predictor—         08 Hrs         extrapolation.         tion formula,         interpolation,         n's 1/3 <sup>rd</sup> , 3/8 <sup>th</sup>                                |
| Existence and unique<br>Properties - Linearity<br>integration in the time<br>Inverse Laplace Tra-<br>(without proof), pro-<br>MATLAB.<br>Numerical Methods<br>Algebraic and Trans<br>Newton-Raphson me<br>Taylor's and Maclau<br>ordinary differential<br>corrector method. Im<br>Numerical Methods<br>Finite differences, co<br>Newton-Gregory (N<br>application-oriented<br>applications – velocir<br>rules and Weddle's ru-<br>Course Outcomes: A<br>CO1 Illustrate the<br>CO2 Apply the ac                                  | <ul> <li>c, scaling</li> <li>e domain</li> <li>nsform-l</li> <li>blems. <i>A</i></li> <li>- I</li> <li>scendent</li> <li>thods.</li> <li>rin's ser</li> <li>equation</li> <li>plementa</li> <li>- II</li> <li>oncept of</li> <li>f-G) for</li> <li>problemation</li> <li>ty and action</li> <li>the second secon</li></ul> | g, s - domain shift,<br>Definition, proper<br>Application to sol<br>Un<br>al equations–Roo<br>ries for a function<br>n–Taylor's series<br>ation using MATL<br>U<br>f forward and backy<br>s. Numerical diff<br>cceleration. Nume<br>ementation using I<br>npleting the cour-<br>ental concepts of vector                                                                | differentiation in the<br>ties, evaluation usin<br>we ordinary linear of<br>hit - IV<br>ts of equations, into<br>of single variable a<br>method, 4th order<br>AB.<br>nit - V<br>cward differences, in<br>vard interpolation for<br>erentiation based on<br>rical integration- New<br>MATLAB.                                                            | e s - domain, division<br>ng different metho<br>differential equation<br>ermediate value pr<br>nd problems. Meth<br>Runge-Kutta meth<br>troduction to interp<br>formulae, Lagrang<br>n N-G forward and<br>wton-Cotes approac<br>be able to<br>ce transforms and n                           | on by<br>ds. C<br>ns. In<br>roperty<br>nods c<br>od an<br>polatic<br>ge int<br>d bac<br>ch – S                | t, diffe<br>convolu<br>npleme<br>y, Reg<br>of solv<br>nd Mil<br>on and<br>erpola<br>kward<br>simpso  | rentiation and         ation theorem         entation using         08 Hrs         gula-Falsi and         ing first order         ne predictor-         08 Hrs         extrapolation.         tion formula,         interpolation,         n's 1/3 <sup>rd</sup> , 3/8 <sup>th</sup> thods.                         |
| Existence and unique<br>Properties - Linearity<br>integration in the time<br>Inverse Laplace Tra-<br>(without proof), pro-<br>MATLAB.<br>Numerical Methods<br>Algebraic and Trans<br>Newton-Raphson me<br>Taylor's and Maclau<br>ordinary differential<br>corrector method. Im<br>Numerical Methods<br>Finite differences, co<br>Newton-Gregory (N<br>application-oriented<br>applications – velocir<br>rules and Weddle's ru<br>Course Outcomes: A<br>CO1 Illustrate the<br>CO2 Apply the ac<br>problems of<br>CO3 Analyze the | r, scaling<br>e domain<br>nsform-l<br>blems. A<br>- I<br>scendent<br>thods.<br>rin's ser<br>equation<br>plementa<br>- II<br>oncept of<br>f-G) for<br>problema<br>ty and ac<br>ile. Impl<br>After cor<br>fundame<br>squired k<br>engineer<br>solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | g, s - domain shift,<br>n.<br>Definition, proper<br>Application to sol<br>Un<br>al equations–Roo<br>ries for a function<br>n–Taylor's series<br>ation using MATL<br>U<br>f forward and back<br>ward and back<br>s. Numerical diff<br>cceleration. Nume<br>ementation using I<br>npleting the cour<br>ental concepts of vector<br>ing applications.<br>of the problems u | differentiation in the<br>ties, evaluation usin<br>ve ordinary linear of<br>nit - IV<br>ts of equations, inter-<br>of single variable a<br>method, 4th order<br>AB.<br>nit - V<br>evard differences, in<br>vard interpolation to<br>erentiation based on<br>rical integration- New<br>MATLAB.<br><b>se, the students will</b><br>rector calculus, Lapla | e s - domain, division<br>ng different metho<br>differential equation<br>ermediate value pr<br>nd problems. Meth<br>Runge-Kutta meth<br>troduction to interp<br>formulae, Lagrang<br>n N-G forward and<br>wton-Cotes approac<br>be able to<br>ce transforms and nume<br>niques of vector ca | on by<br>ds. C<br>ns. Ir<br>ropert<br>nods c<br>od ar<br>polatic<br>d bac<br>ch – S<br><u>umeri</u><br>erical | t, diffe<br>convolu<br>nplema<br>y, Reg<br>of solv<br>nd Mil<br>on and<br>terpola<br>kward<br>Simpso | rentiation and         ation theorem         entation using         08 Hrs         gula-Falsi and         ing first order         ne predictor-         08 Hrs         extrapolation.         tion formula,         interpolation,         n's 1/3 <sup>rd</sup> , 3/8 <sup>th</sup> thods.         ds to solve the |

RV Educational Institutions ° RV College of Engineering °

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

| Refere | Reference Books                                                                                             |  |  |  |  |
|--------|-------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1      | Higher Engineering Mathematics, B. S. Grewal, 44 <sup>th</sup> Edition, 2015, Khanna Publishers,            |  |  |  |  |
|        | ISBN: 978-81-933284-9-1.                                                                                    |  |  |  |  |
| 2      | Calculus, Saturnino L. Salas, Einar Hille and Garret J. Etgen, 10 <sup>th</sup> Edition, 2022, Wiley India, |  |  |  |  |
|        | ISBN: 9789390421961.                                                                                        |  |  |  |  |
| 3      | Advanced Engineering Mathematics, E. Kreyszig, 10th Edition (Reprint), 2016, John Wiley & Sons,             |  |  |  |  |
|        | ISBN: 978-0470458365.                                                                                       |  |  |  |  |
| 4      | Numerical methods for scientific and engineering computation, M. K. Jain, S. R. K. Iyenger and R. K.        |  |  |  |  |
|        | Jain, 6 <sup>th</sup> Edition, 2012, New Age International Publishers, ISBN: 9788122433234, 8122433235.     |  |  |  |  |
| 5      | Advanced Modern Engineering Mathematics, Glyn James and Phil Dyke, 5 <sup>th</sup> Edition, 2018, Pearson   |  |  |  |  |
|        | Education, ISBN-13 978-1292174341, ISBN-10 9780273719236.                                                   |  |  |  |  |

| RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY) |                                                                                                                                                                                                                                                                                                                                                                             |       |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| #                                                      | COMPONENTS                                                                                                                                                                                                                                                                                                                                                                  | MARKS |
| 1                                                      | <b>QUIZZES:</b> Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. <b>THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.</b>                                                                                                                                                                     | 20    |
| 2                                                      | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.</b> | 40    |
| 3                                                      | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), <b>MATLAB (20) ADDING UPTO 40 MARKS</b> .                                                                      | 40    |
|                                                        | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                                                                                                                            | 100   |

|        | <b>RUBRIC FOR SEMESTER END EXAMINATION (THEORY)</b> |       |  |  |  |
|--------|-----------------------------------------------------|-------|--|--|--|
| Q. NO. | CONTENTS                                            | MARKS |  |  |  |
|        | PART A                                              |       |  |  |  |
| 1      | Objective type questions covering entire syllabus   | 20    |  |  |  |
|        | PART B                                              |       |  |  |  |
|        | (Maximum of TWO Sub-divisions only)                 |       |  |  |  |
| 2      | Unit 1 : (Compulsory)                               | 16    |  |  |  |
| 3 & 4  | Unit 2 : Question 3 or 4                            | 16    |  |  |  |
| 5&6    | Unit 3 : Question 5 or 6                            | 16    |  |  |  |
| 7 & 8  | Unit 4 : Question 7 or 8                            | 16    |  |  |  |
| 9 & 10 | Unit 5: Question 9 or 10                            | 16    |  |  |  |
|        | MAXIMUM MARKS FOR THE SEE THEORY                    | 100   |  |  |  |



Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

| Cimerally, Designin 1 |                                        |                   |                                    |   |           |  |  |
|-----------------------|----------------------------------------|-------------------|------------------------------------|---|-----------|--|--|
|                       | Semester – I                           |                   |                                    |   |           |  |  |
|                       | CONDENSED MATTER PHYSICS FOR ENGINEERS |                   |                                    |   |           |  |  |
|                       |                                        | Category          | : Applied Science Course           |   |           |  |  |
| S                     | trea                                   | m: Electronics (C | ommon to EC, EE, EI & ET Programs) |   |           |  |  |
|                       |                                        | (Tł               | neory and Practice)                |   |           |  |  |
| Course Code           | :                                      | 22PHY12A          | CIE                                | : | 100 Marks |  |  |
| Credits: L:T:P        | :                                      | 3:0:1             | SEE                                | : | 100 Marks |  |  |
| Total Hours           | :                                      | 42 L + 30P        | SEE Duration                       | : | 3 Hours   |  |  |
|                       |                                        |                   |                                    |   |           |  |  |

 Unit – I
 08 Hrs

 Quantum Mechanics: de Broglie Hypothesis and Matter Waves, Phase Velocity and Group Velocity, Heisenberg's Uncertainty Principle and its application.
 Velocity, Experimentation

**Wave Mechanics:** Wave Function, Time independent Schrodinger wave equation, Expectation value, Eigen functions and Eigen Values, Motion of a particle in a one-dimensional potential well of infinite depth, Numerical problems.

Unit – II

Unit – III

#### **Basics of Solid-State Physics**

**Electrical Conductivity in Metals:** Quantum free electron theory and failures. Band theory of solids, Fermi energy and Fermi level, density of states, carrier concentration in metals at 0K.

#### Electrical Conductivity in Semiconductor

Fermi level in intrinsic semiconductors, Expression for concentration of electrons in conduction band (derivation), Law of mass action, Electrical conductivity of a semiconductor (derivation), Extrinsic semiconductors: Variation of fermi level with temperature and doping in extrinsic semiconductor, Hall effect and Hall coefficient (derivation).

#### Lasers and Optical Fibers

Lasers: Characteristics of LASER, Interaction of radiation with matter, requisites of a Laser system. Construction and working of semiconductor laser. Application of Lasers in Defence and Laser Printing.

 Optical Fibers: Propagation mechanism, Numerical aperture derivation, Modes of propagation. Attenuation in fiber, Discussion of block diagram of Point-to-Point communication, Optical fiber sensor. Numerical problems.

 Unit – IV
 08 Hrs

#### Semiconductor devices

**Dielectrics and Transducers** 

**Diodes:** Direct and indirect band gap, Band gap engineering, P-N junction diode-forward and reverse bias, diode equation, V-I characteristic, Application: bridge rectifier, breakdown mechanism in diodes: Avalanche & Zener breakdown, Zener diode as voltage regulator.

**Transistors:** Bi-junction polar transistor, V-I characteristics in Common Emitter, Common Base and Common Collector configuration, CE configuration as an amplifier. Numerical problems.

### Unit – V

09 Hrs

08 Hrs

09 Hrs

**Dielectric Properties:** Polar and non-polar dielectrics, Types of Polarization, internal fields in solid, Clausius-Mossotti equation (Derivation), solid, liquid and gaseous dielectrics. Application of dielectrics in transformers, Capacitors, Frequency dependency of dielectric constant, Electrical insulation – Dielectric breakdown Numerical problems.

**Transducers**: Stress-Strain curve, moduli of elasticity, strain gauge, ultrasonic piezoelectric transducer, temperature transducer – Thermocouples. Numerical problems.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

| Course | Course Outcomes: After completing the course, the students will be able to                   |  |  |  |  |
|--------|----------------------------------------------------------------------------------------------|--|--|--|--|
| CO1    | Explain the phenomenon of laser, fundamentals of quantum mechanics applicable to Electronics |  |  |  |  |
|        | engineering, basics of semiconducting and dielectric materials.                              |  |  |  |  |
| CO2    | Apply the knowledge of quantum mechanics in laser and semiconductors in engineering.         |  |  |  |  |
| CO3    | Develop analytical thinking by solving numerical.                                            |  |  |  |  |
| CO4    | Design & develop simulating models and validate with real time experimentation.              |  |  |  |  |

| Refere | Reference Books                                                                                       |  |  |  |  |
|--------|-------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1      | Grob's basic electronics, Mitchel E Schultz, McGrahill editon, 10th edn, 2007, ISBN 978-0-07-3373874. |  |  |  |  |
| 2      | A Textbook of Engineering Physics, M. N. Avadhanulu and P G Kshirsagar,, S. Chand publications,       |  |  |  |  |
|        | 2019, ISBN : 978-93-528-3399-3.                                                                       |  |  |  |  |
| 3      | Physics for Degree students, C.L. Arora and Dr. P. S. Hemne, S Chand, revised 2010,                   |  |  |  |  |
|        | ISBN: 978-81-219-33506.                                                                               |  |  |  |  |
| 4      | Engineering Physics, R K Gaur and S L Gupta, Dhanpat Rai Publications, 2011, ISBN: 9788189928223.     |  |  |  |  |
| 5      | Solid state electronic devices, Ben G Streetman and Sanjay Kumar Banerjee, 6th edition, PHI learning, |  |  |  |  |

2009, ISBN: 978-81-203-30207.

| Labor | Laboratory Experiments (EE stream)              |  |  |  |  |
|-------|-------------------------------------------------|--|--|--|--|
| 1     | Wavelength of laser by diffraction.             |  |  |  |  |
| 2     | Numerical aperture of an optical fiber.         |  |  |  |  |
| 3     | Transistor characteristics.                     |  |  |  |  |
| 4     | Band gap of thermistor.                         |  |  |  |  |
| 5     | Hall coefficient experiment.                    |  |  |  |  |
| 6     | Black box experiment.                           |  |  |  |  |
| 7     | Four probe experiment.                          |  |  |  |  |
| 8     | Fermi Energy.                                   |  |  |  |  |
| 9     | Charging & discharging of a capacitor.          |  |  |  |  |
| 10    | Photo Diode.                                    |  |  |  |  |
| 11    | Exp Eyes experiment: LCR                        |  |  |  |  |
| 10    | En |  |  |  |  |

**12** Exp Eyes experiment: Wavelength of LED and I-V characteristics of Zener diode.

|   | <b>RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY WITH LAB)</b>                                                                                                                                                                                                                                                                                                                       |       |  |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|
| # | COMPONENTS                                                                                                                                                                                                                                                                                                                                                                                   | MARKS |  |
| 1 | QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.                                                                                                                                                                                                | 10    |  |
| 2 | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). <b>THREE tests will be conducted</b> . Each test will be evaluated for <b>50 Marks</b> , adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 30 MARKS</b> . | 30    |  |
| 3 | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) <b>ADDING UPTO 30 MARKS</b> .                                                                                                    | 30    |  |
| 4 | LAB: Conduction of laboratory exercises, lab report, observation and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE REDUCED TO 30 MARKS                                                                                                                                     | 30    |  |
|   | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                                                                                                                                             | 100   |  |



Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

|                                           | <b>RUBRIC FOR SEMESTER END EXAMINATION (THEORY)</b> |     |  |  |  |
|-------------------------------------------|-----------------------------------------------------|-----|--|--|--|
| Q. NO.                                    | Q. NO. CONTENTS                                     |     |  |  |  |
|                                           | PART A                                              |     |  |  |  |
| 1                                         | Objective type questions covering entire syllabus   | 10  |  |  |  |
|                                           | PART B                                              |     |  |  |  |
|                                           | (Maximum of TWO Sub-divisions only)                 |     |  |  |  |
| 2                                         | 2 Unit 1 : (Compulsory)                             |     |  |  |  |
| 3 & 4                                     | Unit 2 : Question 3 or 4                            | 14  |  |  |  |
| <b>5 &amp; 6</b> Unit 3 : Question 5 or 6 |                                                     | 14  |  |  |  |
| 7 & 8                                     | Unit 4 : Question 7 or 8                            | 14  |  |  |  |
| 9 & 10                                    | Unit 5: Question 9 or 10                            | 14  |  |  |  |
| 11                                        | Lab Component (Compulsory)                          | 20  |  |  |  |
|                                           | MAXIMUM MARKS FOR THE SEE THEORY                    | 100 |  |  |  |



Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

|                                                                                                                                                                                         |                                                        |                                                                                               | Semester – I                                                       |                                             |                  |               |                |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------|------------------|---------------|----------------|--|
|                                                                                                                                                                                         |                                                        | CLASSICAL                                                                                     | PHYSICS FOR EN                                                     | GINEERS                                     |                  |               |                |  |
|                                                                                                                                                                                         |                                                        | Category                                                                                      | : Applied Science C                                                | ourse                                       |                  |               |                |  |
| S                                                                                                                                                                                       | Strean                                                 |                                                                                               | mmon to AS, CH, I                                                  |                                             | ms)              |               |                |  |
|                                                                                                                                                                                         |                                                        |                                                                                               | eory and Practice)                                                 | C                                           |                  |               |                |  |
| Course Code                                                                                                                                                                             | :                                                      | 22PHY12B                                                                                      |                                                                    | CIE                                         | :                | 100 N         | larks          |  |
| Credits: L:T:P                                                                                                                                                                          | :                                                      | 3:0:1                                                                                         |                                                                    | SEE                                         | :                | 100 N         | 100 Marks      |  |
| Total Hours                                                                                                                                                                             | :                                                      | 42 L+30P                                                                                      |                                                                    | SEE Duration                                | :                | 3 Hou         | rs             |  |
|                                                                                                                                                                                         |                                                        | T.                                                                                            | .:4 T                                                              |                                             |                  |               | 06 11.00       |  |
| Free, Damped and For                                                                                                                                                                    | and V                                                  |                                                                                               | nit – I                                                            |                                             |                  |               | 06 Hrs         |  |
| Simple Harmonic mot<br>applications.<br><b>Theory of damped osci</b><br>of damped oscillations,<br>Numerical problems                                                                   | ion (<br><b>illatio</b>                                | SHM), differentia                                                                             | ypes of damping (Gr                                                | aphical Approach                            | ). Eng           | ineering      | g applications |  |
| Trumerical problems                                                                                                                                                                     |                                                        | Un                                                                                            | it – II                                                            |                                             |                  |               | 09Hrs          |  |
| <b>Elastic Properties of M</b>                                                                                                                                                          | ateria                                                 |                                                                                               |                                                                    |                                             |                  |               |                |  |
| beams: neutral surface a<br>Numerical problems.<br><b>Torsion of a Shaft</b> : Exp<br>period and rigidity modu                                                                          | pressi                                                 | on for couple per u                                                                           | unit twist of a solid                                              |                                             | 0                |               |                |  |
| F f                                                                                                                                                                                     | ,-                                                     |                                                                                               | t – III                                                            |                                             |                  |               | 09 Hrs         |  |
| Introduction to thermod<br>thermometers. Joule's ex<br><b>First law of thermodyn</b><br>process and cyclic proce                                                                        | xperin<br><b>1amic</b><br>ess, A                       | nent (equivalence b<br>s, work done in the                                                    | etween heat and wor<br>ermodynamic quasi s                         | k), Numerical prob<br>static processes, Iso | olems.<br>othern | nal proc      | ess, adiabatic |  |
| System. Numerical prob                                                                                                                                                                  | lems.                                                  |                                                                                               |                                                                    |                                             |                  |               |                |  |
|                                                                                                                                                                                         |                                                        |                                                                                               | t – IV                                                             |                                             |                  |               | 09 Hrs         |  |
| Basic concepts of Fluid<br>Definition of Fluid, con<br>Absolute and Kinemati<br>Compressibility, Ultraso<br>Fundamentals of Fluid<br>Types of Fluid Flows, S<br>dimension Cartesian coo | ic ept o<br>ic vis<br>onic in<br><b>Flow</b><br>Strear | of continuum, class<br>cosity, No slip co<br>terferometer. Surfa<br>s:<br>n line, Streak line | ondition, Vapour pr<br>ce tension and capill<br>and Path line. Con | ressure and cavita<br>arity. Numerical pr   | ation,<br>robler | Bulk I<br>ns. | Modulus and    |  |
|                                                                                                                                                                                         | /i dillu                                               | 1                                                                                             | it – V                                                             |                                             |                  |               | 09 Hrs         |  |
| Material Characterizat                                                                                                                                                                  | tion                                                   | 01                                                                                            |                                                                    |                                             |                  |               | J/ 1113        |  |
| Mechanical Characterization, current<br>particle distribution and<br>Instrumentation Techn                                                                                              | sation<br>nt-Vol<br>magn                               | tage (IV) characte<br>etic properties.                                                        | -                                                                  |                                             |                  |               | · -            |  |
| Principle, construction a<br>Principle, construction,<br>spectroscopy (XPS), S<br>Numerical problems.                                                                                   | and work                                               | orking of X-ray Di<br>ing and application                                                     | ons of Atomic Forc                                                 | e Microscopy (Al                            | FM),             | X-ray         | photoelectron  |  |

٦

RV Educational Institutions <sup>®</sup> RV College of Engineering <sup>®</sup>

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

| nstrumentation |
|----------------|
|                |
|                |
| and material   |
|                |
|                |
|                |
| •              |

#### **Reference Books**

| Refere | Reference Dooks                                                                                         |  |  |  |  |
|--------|---------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1      | Basic & Applied Thermodynamics, P K Nag, McGraw Hill Education, 2 <sup>nd</sup> Edition, 2017, ISBN 10- |  |  |  |  |
|        | 0070151318, 13-978-0070151314.                                                                          |  |  |  |  |
| 2      | Fluid Mechanics: Fundamentals and Applications, John. M. CimbalaYunus A. Cengel, McGraw-Hill            |  |  |  |  |
|        | Publications, 4 <sup>th</sup> Edition, 2019, ISBN 10-9353166217, 13-978-9353166212.                     |  |  |  |  |
| 3      | A Textbook of Engineering Physics, M. N. Avadhanulu and P G Kshirsagar, S. Chand publications, 2019,    |  |  |  |  |
|        | ISBN : 978-93-528-3399-3.                                                                               |  |  |  |  |
| 4      | Physics for Degree students, C.L. Arora and Dr. P. S. Hemne, S Chand, revised 2010, ISBN:               |  |  |  |  |
|        | 9788121933506.                                                                                          |  |  |  |  |
| 5      | Engineering Physics, R K Gaur and S L Gupta, Dhanpat Rai Publications, 2011, ISBN: 9788189928223.       |  |  |  |  |

| Laboratory Experiments (ME stream) |                                                                               |  |  |  |
|------------------------------------|-------------------------------------------------------------------------------|--|--|--|
| 1                                  | Spring constant experiment using expEYES17.                                   |  |  |  |
| 2                                  | Moment of Inertia of irregular body and rigidity modulus by Torsion pendulum. |  |  |  |
| 3                                  | Young's modulus by Single cantilever.                                         |  |  |  |
| 4                                  | Young's modulus by Uniform bending.                                           |  |  |  |
| 5                                  | Ultrasonic Interferometer.                                                    |  |  |  |
| 6                                  | Wavelength of laser by diffraction.                                           |  |  |  |
| 7                                  | Forced mechanical Oscillations and Resonance.                                 |  |  |  |
| 8                                  | Fermi Energy of copper                                                        |  |  |  |
| 9                                  | Four Probe.                                                                   |  |  |  |
| 10                                 | Newton's rings.                                                               |  |  |  |
| 11                                 | Exp Eyes experiment: LCR                                                      |  |  |  |

|   | RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY WITH LAB)                                                                                                                                                                                                                                                                                                                              |       |  |  |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|
| # | COMPONENTS                                                                                                                                                                                                                                                                                                                                                                                   | MARKS |  |  |
| 1 | QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.                                                                                                                                                                                                | 10    |  |  |
| 2 | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). <b>THREE tests will be conducted</b> . Each test will be evaluated for <b>50 Marks</b> , adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 30 MARKS</b> . | 30    |  |  |
| 3 | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) <b>ADDING UPTO 30 MARKS</b> .                                                                                                    | 30    |  |  |
| 4 | LAB: Conduction of laboratory exercises, lab report, observation and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE REDUCED TO 30 MARKS                                                                                                                                     | 30    |  |  |
|   | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                                                                                                                                             | 100   |  |  |



| <b>RUBRIC FOR SEMESTER END EXAMINATION (THEORY)</b> |                                                   |       |  |  |
|-----------------------------------------------------|---------------------------------------------------|-------|--|--|
| Q. NO.                                              | CONTENTS                                          | MARKS |  |  |
|                                                     | PART A                                            |       |  |  |
| 1                                                   | Objective type questions covering entire syllabus | 10    |  |  |
|                                                     | PART B                                            |       |  |  |
|                                                     | (Maximum of TWO Sub-divisions only)               |       |  |  |
| 2                                                   | Unit 1 : (Compulsory)                             | 14    |  |  |
| 3 & 4                                               | Unit 2 : Question 3 or 4                          | 14    |  |  |
| 5&6                                                 | Unit 3 : Question 5 or 6                          | 14    |  |  |
| 7 & 8                                               | Unit 4 : Question 7 or 8                          | 14    |  |  |
| 9 & 10                                              | Unit 5 : Question 9 or 10                         | 14    |  |  |
| 11                                                  | Lab Component (Compulsory)                        | 20    |  |  |
|                                                     | MAXIMUM MARKS FOR THE SEE THEORY                  | 100   |  |  |



Approved by AICTE, New Delhi

#### Semester – II QUANTUM PHYSICS FOR ENGINEERS Category: Applied Science Course Stream: Computer Science (Common to AI, BT, CS, CY, CD & IS Programs) (Theory and Practice)

|                |     | (11      | icory and ractice) |                     |   |           |
|----------------|-----|----------|--------------------|---------------------|---|-----------|
| Course Code    | ••• | 22PHY22C |                    | CIE                 | : | 100 Marks |
| Credits: L:T:P | :   | 3:0:1    |                    | SEE                 | : | 100 Marks |
| Total Hours    | :   | 42 L+30P |                    | <b>SEE Duration</b> | : | 3 Hours   |

| Unit – I                                                                                                                                                                                                                                                                                                                                                                                                                  | 08 Hrs        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| <b>Quantum Mechanics:</b> de Broglie Hypothesis and Matter Waves, Phase Velocity and Grou<br>Heisenberg's Uncertainty Principle, and its application.                                                                                                                                                                                                                                                                     | 1             |
| Wave Mechanics: Wave Function, Time independent Schrodinger wave equation, Expectation                                                                                                                                                                                                                                                                                                                                    |               |
| functions and Eigen Values, Motion of a particle in a one-dimensional potential well of infinite dept                                                                                                                                                                                                                                                                                                                     | h, Numerical  |
| problems.                                                                                                                                                                                                                                                                                                                                                                                                                 |               |
| Unit – II                                                                                                                                                                                                                                                                                                                                                                                                                 | 08 Hrs        |
| Principle of Quantum Computation                                                                                                                                                                                                                                                                                                                                                                                          |               |
| <b>Matric Mechanics:</b> Wave Function in Ket Notation: Matrix form of wave function, Identidetermination of I   $0 \ge$ and I   $1 \ge$ , Pauli matrices and its operation on 0 and 1 states, mention of c                                                                                                                                                                                                               | • I /         |
| transpose, unitary matrix U, Examples: Row and Column Matrices and their multiplication (Inr<br>Probability, Orthogonality.                                                                                                                                                                                                                                                                                               | ner Product), |
| <b>Principles of Quantum information and Quantum Computing:</b> Introduction to Quantum Comput<br>law and its end. Single particle quantum interference, classical and quantum information comparison<br>between classical and quantum computing, quantum superposition and the concept of qubit.<br><b>Properties of qubit:</b> Mathematical representation, summation of probabilities, representation of qu<br>sphere. | n. Difference |
| <b>Quantum Gates:</b> Single qubit gates: Quantum not gate, Pauli – Z gate, Hadamard gate, Pauli matrice (S gate), T gate. Multiple qubit gates: controlled gate, CNOT gate (discuss for 4 different input states)                                                                                                                                                                                                        | s, Phase gate |
| Unit – III                                                                                                                                                                                                                                                                                                                                                                                                                | 09 Hrs        |
| Lasers and Optical Fibers                                                                                                                                                                                                                                                                                                                                                                                                 |               |
| Lasers: Characteristics of LASER, Interaction of radiation with matter, requisites of a Laser system.                                                                                                                                                                                                                                                                                                                     |               |
| and working of semiconductor laser. Application of laser: Bar Code scanner, Laser Printer, La Numerical problems.                                                                                                                                                                                                                                                                                                         | ser Cooling,  |
| Optical Fibers: Propagation mechanism, Numerical aperture derivation, Modes of propagation. A                                                                                                                                                                                                                                                                                                                             | ttenuation in |
| fiber, Discussion of block diagram of Point-to-Point communication, Optical fiber sensor. Numerical                                                                                                                                                                                                                                                                                                                       | problems.     |
| Unit – IV                                                                                                                                                                                                                                                                                                                                                                                                                 | 08 Hrs        |
| <b>Electrical Conductivity in Solids:</b> Postulates of Classical free electron theory (CFET), Concept Matheissen's rule. Quantum free electron theory (QFET), Density of states in three dimensions (qua Fermi factor. Fermi energy: variation of Fermi factor with temperature.                                                                                                                                         |               |
| Band theory of solids (qualitative approach), electron concentration in metals at 0K. Intrinsic sem                                                                                                                                                                                                                                                                                                                       | niconductors: |
| electronic concentration in conduction band and hole concentration (qualitative), Fermi level                                                                                                                                                                                                                                                                                                                             |               |
| semiconductors, Extrinsic semiconductors: Variation of carrier concentration with temperature and I                                                                                                                                                                                                                                                                                                                       | Fermi energy  |
| with doping, Hall effect for metals and semiconductors, Numerical problems.                                                                                                                                                                                                                                                                                                                                               | 1             |
| Unit – V                                                                                                                                                                                                                                                                                                                                                                                                                  | 09 Hrs        |
| <b>Super conductivity:</b> Introduction to superconductors, temperature dependence of resistivity, Met critical current, types of superconductors, temperature dependence of critical field.                                                                                                                                                                                                                              |               |
| <b>BCS theory (qualitative)</b> , Quantum tunneling, High temperature superconductivity, Josephson junc AC SQUIDs (qualitative), Applications in quantum computing, Numerical problems.                                                                                                                                                                                                                                   | tion, DC and  |

RV Educational Institutions ° RV College of Engineering °

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Approved by AICTE, New Delhi

| Course | e Outcomes: After completing the course, the students will be able to                               |
|--------|-----------------------------------------------------------------------------------------------------|
| CO1    | Explain the fundamentals of quantum mechanics applicable to computer science engineering, basics of |
|        | electrical and superconducting materials.                                                           |
| CO2    | Apply the knowledge of quantum mechanics in lasers, semiconductors and super conductor devices for  |
|        | engineering applications.                                                                           |
| CO3    | Develop analytical thinking by solving numerical.                                                   |
| CO4    | Design & develop simulating models and validate with real time experimentation.                     |
|        |                                                                                                     |

#### **Reference Books**

| Iterere | nee Dooks                                                                                                                      |
|---------|--------------------------------------------------------------------------------------------------------------------------------|
| 1       | Physics for Engineers, M R Srinivasan, New Age International Publishers, 2011, ISBN: 978-81-224-                               |
|         | 2603-8.                                                                                                                        |
| 2       | A Textbook of Engineering Physics, M. N. Avadhanulu and P G Kshirsagar, 2019, S. Chand publications, ISBN : 978-93-528-3399-3. |
| 3       | Physics for Degree students, C.L. Arora and Dr. P. S. Hemne, S Chand, revised 2010, ISBN: 9788121933506.                       |
| 4       | Engineering Physics, R K Gaur and S L Gupta, DhanpatRai Publications, 2011, ISBN: 9788189928223.                               |

|    | Laboratory Experiments (CS Stream)                                              |  |  |  |  |
|----|---------------------------------------------------------------------------------|--|--|--|--|
| 1  | Wavelength of laser by diffraction.                                             |  |  |  |  |
| 2  | Numerical aperture of an optical fiber.                                         |  |  |  |  |
| 3  | Transistor characteristics.                                                     |  |  |  |  |
| 4  | Band gap of thermistor.                                                         |  |  |  |  |
| 5  | Hall coefficient experiment.                                                    |  |  |  |  |
| 6  | Black box experiment.                                                           |  |  |  |  |
| 7  | Four probe experiment.                                                          |  |  |  |  |
| 8  | Fermi Energy.                                                                   |  |  |  |  |
| 9  | Charging & discharging of a capacitor.                                          |  |  |  |  |
| 10 | Photo Diode.                                                                    |  |  |  |  |
| 11 | Exp Eyes experiment: LCR                                                        |  |  |  |  |
| 12 | Exp Eyes experiment: Wavelength of LED and I- V characteristics of Zener diode. |  |  |  |  |

| RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY WITH LA |                                                                                                                                                                                                                                                                                                                                                                                              |       |  |  |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|
| #                                                             | COMPONENTS                                                                                                                                                                                                                                                                                                                                                                                   | MARKS |  |  |
| 1                                                             | QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.                                                                                                                                                                                                | 10    |  |  |
| 2                                                             | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). <b>THREE tests will be conducted</b> . Each test will be evaluated for <b>50 Marks</b> , adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 30 MARKS</b> . | 30    |  |  |
| 3                                                             | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) <b>ADDING UPTO 30 MARKS</b> .                                                                                                    | 30    |  |  |



Approved by AICTE, New Delhi

| LAB: Conduction of laboratory exercises, lab report, observation and analysis (30 Marks),<br>lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10<br>Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE REDUCED TO 30<br>MARKS |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                  | 100 |

#### MAXIMUM MARKS FOR THE CIE THEORY

|        | RUBRIC FOR SEMESTER END EXAMINATION (THEORY)      |       |  |  |  |
|--------|---------------------------------------------------|-------|--|--|--|
| Q. NO. | CONTENTS                                          | MARKS |  |  |  |
|        | PART A                                            |       |  |  |  |
| 1      | Objective type questions covering entire syllabus | 10    |  |  |  |
|        | PART B                                            |       |  |  |  |
|        | (Maximum of TWO Sub-divisions only)               |       |  |  |  |
| 2      | Unit 1 : (Compulsory)                             | 14    |  |  |  |
| 3 & 4  | Unit 2 : Question 3 or 4                          | 14    |  |  |  |
| 5&6    | Unit 3 : Question 5 or 6                          | 14    |  |  |  |
| 7 & 8  | Unit 4 : Question 7 or 8                          | 14    |  |  |  |
| 9 & 10 | Unit 5 : Question 9 or 10                         | 14    |  |  |  |
| 11     | Lab Component (Compulsory)                        | 20    |  |  |  |
|        | MAXIMUM MARKS FOR THE SEE THEORY                  | 100   |  |  |  |

RV Educational Institutions <sup>®</sup> RV College of Engineering

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

| Oscillations:         Simple Harmonic Motion (SHM), differential equation for SHM (No derivation), Sprig mass and applications. Theory of damped oscillations (Derivation), Types of damping (Graphical Approach). Engineer applications of damped oscillations, Theory of forced oscillations (Qualitative), resonance and sharpness resonance. Numerical problems.         Unit – II         09 H         Elastic properties of materials:         Stress-Strain Curve, Stress hardening and softening. Elastic Moduli, Poisson's ratio and its limiting val Relation among elastic constants (qualitative), Bending of beams: neutral surface and neutral axis, expression bending moment of a beam, Single cantilever (derivation).         Torsion of a cylinder: expression for couple per unit twist of a solid cylinder, torsion pendulum: expression time period and rigidity modulus. Failures of engineering materials – ductile fracture, brittle fracture, st concentration, fatigue and factors affecting fatigue (only qualitative explanation) Numerical problems.         Unit – III <b>08 H</b> Kinematics:         Displacement, average velocity, instantaneous velocity, speed, acceleration, average acceleration, varia acceleration, acceleration due to gravity, Newton's law of motion, rectilinear motion and numerical problems.         Kinematics:         Displacement, average velocity, projectile motion, relative motion, numerical problems, motion under grav numerical problems.         Kinetics: <td colspan<="" th=""><th>University, Belagavi</th><th></th><th></th><th></th><th></th><th></th><th></th></td>                     | <th>University, Belagavi</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>                     | University, Belagavi |                       |                      |                        |              |                      |         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|----------------------|------------------------|--------------|----------------------|---------|
| Category: Applied Science Course<br>Stream: Civil (Only to CV Program)<br>(Theory and Practice)         Course Code       : 22PHY22D       CIE       : 100 Marks         Credits: L:T:P       : 3:0:1       SEE       : 100 Marks         Total Hours       : 42 L+30P       SEE Duration       : 3 Hours         Unit – I       08 H         Oscillations:         Simple Harmonic Motion (SHM), differential equation for SHM (No derivation), Sprig mass and applications. Theory of damped oscillations (Derivation), Types of damping (Graphical Approach). Enginee: applications of damped oscillations, Theory of forced oscillations (Qualitative), resonance and sharpness resonance. Numerical problems.       09 H         Elastic properties of materials:         Stress-Strain Curve, Stress hardening and softening. Elastic Moduli, Poisson's ratio and its limiting val Relation among elastic constants (qualitative), Bending of beams: neutral surface and neutral axis, expression bending moment of a beam, Single cantilever (derivation).       Torsion of a cylinder: expression for couple per unit twist of a solid cylinder, torsion pendulum: expression time period and rigidity modulus. Failures of engineering materials – ductile fracture, brittle fracture, st concentration, fatigue and factors affecting fatigue (only qualitative explanation) Numerical problems.         Unit – II       08 H         Mint – II         Unit – III       08 H <td< th=""><th></th><th></th><th></th><th>Semester – II</th><th></th><th></th><th></th></td<>                                                                                       |                                                                                                               |                      |                       | Semester – II        |                        |              |                      |         |
| Stream: Čivil (Only to CV Program)<br>(Theory and Practice)         Course Code       :       100 Marks         Credits: L:T:P       :       100 Marks         Course Code       :       22PHY22D       CIE       :       100 Marks         Coredits: L:T:P       :       3:0:1       SEE Duration       :       100 Marks         Total Hours       :       42 L+30P       SEE Duration       :       3 Hours         Unit – I       08 Hi         Oscillations:         Simple Harmonic Motion (SHM), differential equation for SHM (No derivation), Sprig mass and applications of damped oscillations (Derivation), Types of damping (Graphical Approach). Enginece applications of damped oscillations, Theory of forced oscillations (Qualitative), resonance and sharpness resonance. Numerical problems.         Unit – II       09 H         Elastic properties of materials:         Stress-Strain Curve, Stress hardening and softening. Elastic Moduli, Poisson's ratio and its limiting val Relation among elastic constants (qualitative), Bending of beams: neutral surface and neutral axis, expression bending moment of a beam, Single cantilever (derivation).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                               |                      | APPLIED P             | HYSICS FOR ENG       | NEERS                  |              |                      |         |
| (Theory and Practice)         Course Code       :       22PHY22D       CIE       :       100 Marks         Credits: L:T:P       :       3:0:1       SEE       :       100 Marks         Total Hours       :       42 L+30P       SEE Duration       :       3 Hours         Unit – I       08 H         Oscillations:         Simple Harmonic Motion (SHM), differential equation for SHM (No derivation), Sprig mass and applications. Theory of damped oscillations (Derivation), Types of damping (Graphical Approach). Engineer applications of damped oscillations, Theory of forced oscillations (Qualitative), resonance and sharpness resonance. Numerical problems.       09 Hi         Elastic properties of materials:       Stress-Strain Curve, Stress hardening and softening. Elastic Moduli, Poisson's ratio and its limiting val Relation among elastic constants (qualitative), Bending of beams: neutral surface and neutral axis, expression bending moment of a beam, Single cantilever (derivation).       Orsion of a cylinder: expression for couple per unit twist of a solid cylinder, torsion pendulum: expression time period and rigidity modulus. Failures of engineering materials – ductile fracture, brittle fracture, st concentration, fatigue and factors affecting fatigue (only qualitative explanation) Numerical problems.       08 H         Unit – II       08 H         Minematics:         Displacement, average velocity, instantaneous velocity, speed, acceleration, average acceleration, varia accele                                                                                                                      |                                                                                                               |                      | Category              | : Applied Science Co | ourse                  |              |                      |         |
| Course Code       :       22PHY22D       CIE       :       100 Marks         Credits: L:T:P       :       3:0:1       SEE       :       100 Marks         Total Hours       :       42 L+30P       SEE Duration       :       3 Hours         Unit – I       08 H         Oscillations:         Simple Harmonic Motion (SHM), differential equation for SHM (No derivation), Sprig mass and applications. Theory of damped oscillations (Derivation), Types of damping (Graphical Approach). Enginece applications of damped oscillations, Theory of forced oscillations (Qualitative), resonance and sharpness resonance. Numerical problems.         Unit – II       09 H         Elastic properties of materials:         Stress-Strain Curve, Stress hardening and softening. Elastic Moduli, Poisson's ratio and its limiting val Relation among elastic constants (qualitative), Bending of beams: neutral surface and neutral axis, expression bending moment of a beam, Single cantilever (derivation).       Torsion of a cylinder: expression for couple per unit twist of a solid cylinder, torsion pendulum: expression time period and rigidity modulus. Failures of engineering materials – ductile fracture, brittle fracture, st concentration, fatigue and factors affecting fatigue (only qualitative explanation) Numerical problems.         Unit – II         Vont – III         Vont – III         Vont – III <td colspan<="" th=""><th></th><th></th><th>Stream: C</th><th>ivil (Only to CV Pro</th><th>gram)</th><th></th><th></th></td>                                                                                                            | <th></th> <th></th> <th>Stream: C</th> <th>ivil (Only to CV Pro</th> <th>gram)</th> <th></th> <th></th>       |                      |                       | Stream: C            | ivil (Only to CV Pro   | gram)        |                      |         |
| Credits: L:T:P       :       3:0:1       SEE       :       100 Marks         Total Hours       :       42 L+30P       SEE Duration       :       3 Hours         Unit – I       08 H         Oscillations:         Simple Harmonic Motion (SHM), differential equation for SHM (No derivation), Sprig mass and applications. Theory of damped oscillations (Derivation), Types of damping (Graphical Approach). Enginee: applications of damped oscillations, Theory of forced oscillations (Qualitative), resonance and sharpness resonance. Numerical problems.       09 H         Unit – II       09 H         Elastic properties of materials:         Stress-Strain Curve, Stress hardening and softening. Elastic Moduli, Poisson's ratio and its limiting val Relation among elastic constants (qualitative), Bending of beams: neutral surface and neutral axis, expression bending moment of a beam, Single cantilever (derivation).       09 H         Torsion of a cylinder: expression for couple per unit twist of a solid cylinder, torsion pendulum: expression time period and rigidity modulus. Failures of engineering materials – ductile fracture, brittle fracture, st concentration, fatigue and factors affecting fatigue (only qualitative explanation) Numerical problems.         Unit – III         Os H         Kinematics:         Displacement, average velocity, instantaneous velocity, speed, acceleration, average acceleration, varia acceleration, acceleration d                                                                                                                                                                       |                                                                                                               |                      | (Tl                   | heory and Practice)  |                        |              |                      |         |
| Total Hours       :       42 L+30P       SEE Duration       :       3 Hours         Unit – I       08 H         Oscillations:         Simple Harmonic Motion (SHM), differential equation for SHM (No derivation), Sprig mass and applications. Theory of damped oscillations (Derivation), Types of damping (Graphical Approach). Enginee: applications of damped oscillations, Theory of forced oscillations (Qualitative), resonance and sharpness resonance. Numerical problems.       09 H         Unit – II       09 H         Elastic properties of materials:         Stress-Strain Curve, Stress hardening and softening. Elastic Moduli, Poisson's ratio and its limiting val Relation among elastic constants (qualitative), Bending of beams: neutral surface and neutral axis, expression bending moment of a beam, Single cantilever (derivation).       09 H         Torsion of a cylinder: expression for couple per unit twist of a solid cylinder, torsion pendulum: expression time period and rigidity modulus. Failures of engineering materials – ductile fracture, brittle fracture, st concentration, fatigue and factors affecting fatigue (only qualitative explanation) Numerical problems.       08 H         Unit – III       08 H         Minematics:         Unit – III         Oscillations affecting fatigue (only qualitative explanation) Numerical problems.         Unit – III         Minematics:         Disp                                                                                                                                                                                                                        | Course Code                                                                                                   | :                    | 22PHY22D              |                      | CIE                    | :            | 100 Marks            |         |
| Unit – I       08 H         Oscillations:       Simple Harmonic Motion (SHM), differential equation for SHM (No derivation), Sprig mass and applications. Theory of damped oscillations (Derivation), Types of damping (Graphical Approach). Engineer applications of damped oscillations, Theory of forced oscillations (Qualitative), resonance and sharpness resonance. Numerical problems.         Unit – II         Unit – II         Plastic properties of materials:         Stress-Strain Curve, Stress hardening and softening. Elastic Moduli, Poisson's ratio and its limiting val Relation among elastic constants (qualitative), Bending of beams: neutral surface and neutral axis, expression bending moment of a beam, Single cantilever (derivation).         Torsion of a cylinder: expression for couple per unit twist of a solid cylinder, torsion pendulum: expression time period and rigidity modulus. Failures of engineering materials – ductile fracture, brittle fracture, st concentration, fatigue and factors affecting fatigue (only qualitative explanation) Numerical problems.         Unit – III         VB H         Kinematics:         Displacement, average velocity, instantaneous velocity, speed, acceleration, average acceleration, varia acceleration, acceleration due to gravity, Newton's law of motion, rectilinear motion and numerical problems.         Kinematics:         Displacement, average velocity, instantaneous velocity, speed, acceleration, average acceleration, varia acceleration, superelevation, projectile motion, relative motion, numer                                                           | Credits: L:T:P                                                                                                | :                    | 3:0:1                 |                      | SEE                    | :            | 100 Marks            |         |
| Oscillations:         Simple Harmonic Motion (SHM), differential equation for SHM (No derivation), Sprig mass and applications. Theory of damped oscillations (Derivation), Types of damping (Graphical Approach). Engineer applications of damped oscillations, Theory of forced oscillations (Qualitative), resonance and sharpness resonance. Numerical problems.         Unit – II         09 H         Elastic properties of materials:         Stress-Strain Curve, Stress hardening and softening. Elastic Moduli, Poisson's ratio and its limiting val Relation among elastic constants (qualitative), Bending of beams: neutral surface and neutral axis, expression bending moment of a beam, Single cantilever (derivation).         Torsion of a cylinder: expression for couple per unit twist of a solid cylinder, torsion pendulum: expression time period and rigidity modulus. Failures of engineering materials – ductile fracture, brittle fracture, st concentration, fatigue and factors affecting fatigue (only qualitative explanation) Numerical problems.         Unit – III <b>08 H</b> Kinematics:         Displacement, average velocity, instantaneous velocity, speed, acceleration, average acceleration, varia acceleration, acceleration due to gravity, Newton's law of motion, rectilinear motion and numerical problems.         Kinematics:         Displacement, average velocity, projectile motion, relative motion, numerical problems, motion under grav numerical problems.         Lurit – III <td colsp<="" td=""><td>Total Hours</td><td>:</td><td>42 L+30P</td><td></td><th>SEE Duration</th><td>:</td><td>3 Hours</td></td> | <td>Total Hours</td> <td>:</td> <td>42 L+30P</td> <td></td> <th>SEE Duration</th> <td>:</td> <td>3 Hours</td> | Total Hours          | :                     | 42 L+30P             |                        | SEE Duration | :                    | 3 Hours |
| Oscillations:         Simple Harmonic Motion (SHM), differential equation for SHM (No derivation), Sprig mass and applications. Theory of damped oscillations (Derivation), Types of damping (Graphical Approach). Engineer applications of damped oscillations, Theory of forced oscillations (Qualitative), resonance and sharpness resonance. Numerical problems.         Unit – II         09 H         Elastic properties of materials:         Stress-Strain Curve, Stress hardening and softening. Elastic Moduli, Poisson's ratio and its limiting val Relation among elastic constants (qualitative), Bending of beams: neutral surface and neutral axis, expression bending moment of a beam, Single cantilever (derivation).         Torsion of a cylinder: expression for couple per unit twist of a solid cylinder, torsion pendulum: expression time period and rigidity modulus. Failures of engineering materials – ductile fracture, brittle fracture, st concentration, fatigue and factors affecting fatigue (only qualitative explanation) Numerical problems.       08 H         Minematics:         Displacement, average velocity, instantaneous velocity, speed, acceleration, average acceleration, varia acceleration, acceleration due to gravity, Newton's law of motion, rectilinear motion and numerical problems.         Minematics:         Displacement, average velocity, projectile motion, relative motion, numerical problems, motion under grav numerical problems.         Unit – III         Os H         Kinematics:       Displacement, aver                                                                                     |                                                                                                               |                      | •                     |                      |                        |              |                      |         |
| Simple Harmonic Motion (SHM), differential equation for SHM (No derivation), Sprig mass and applications. Theory of damped oscillations (Derivation), Types of damping (Graphical Approach). Enginee: applications of damped oscillations, Theory of forced oscillations (Qualitative), resonance and sharpness resonance. Numerical problems.           Unit – II         09 Hi           Elastic properties of materials:         Stress-Strain Curve, Stress hardening and softening. Elastic Moduli, Poisson's ratio and its limiting val Relation among elastic constants (qualitative), Bending of beams: neutral surface and neutral axis, expression bending moment of a beam, Single cantilever (derivation).           Torsion of a cylinder:         expression for couple per unit twist of a solid cylinder, torsion pendulum: expression time period and rigidity modulus. Failures of engineering materials – ductile fracture, brittle fracture, st concentration, fatigue and factors affecting fatigue (only qualitative explanation) Numerical problems.           Kinematics:         Displacement, average velocity, instantaneous velocity, speed, acceleration, average acceleration, varia acceleration, acceleration due to gravity, Newton's law of motion, rectilinear motion and numerical problems.           Kinetics:         Displacement, superelevation, projectile motion, relative motion, numerical problems, motion under grav numerical problems.           Kinetics:         Displacement and its application in-plane motion and connected bodies including pulleys.                                                               |                                                                                                               |                      | U                     | nit – I              |                        |              | 08 Hrs               |         |
| applications. Theory of damped oscillations (Derivation), Types of damping (Graphical Approach). Enginee:         applications of damped oscillations, Theory of forced oscillations (Qualitative), resonance and sharpness         resonance. Numerical problems.         Unit – II         O9 H         Elastic properties of materials:         Stress-Strain Curve, Stress hardening and softening. Elastic Moduli, Poisson's ratio and its limiting val         Relation among elastic constants (qualitative), Bending of beams: neutral surface and neutral axis, expression         bending moment of a beam, Single cantilever (derivation).         Torsion of a cylinder: expression for couple per unit twist of a solid cylinder, torsion pendulum: expression         time period and rigidity modulus. Failures of engineering materials – ductile fracture, brittle fracture, st         concentration, fatigue and factors affecting fatigue (only qualitative explanation) Numerical problems.         Unit – III         WB H         Kinematics:         Displacement, average velocity, instantaneous velocity, speed, acceleration, average acceleration, varia         acceleration due to gravity, Newton's law of motion, rectilinear motion and numerical problems.         Kinetics:         Displacement, supreseivation, projectile motion, relative motion, numerical problem                                                                                                                                                                                                                                                                 | Oscillations:                                                                                                 |                      |                       |                      |                        |              |                      |         |
| applications. Theory of damped oscillations (Derivation), Types of damping (Graphical Approach). Enginee:         applications of damped oscillations, Theory of forced oscillations (Qualitative), resonance and sharpness         resonance. Numerical problems.         Unit – II         O9 H         Elastic properties of materials:         Stress-Strain Curve, Stress hardening and softening. Elastic Moduli, Poisson's ratio and its limiting val         Relation among elastic constants (qualitative), Bending of beams: neutral surface and neutral axis, expression         bending moment of a beam, Single cantilever (derivation).         Torsion of a cylinder: expression for couple per unit twist of a solid cylinder, torsion pendulum: expression         time period and rigidity modulus. Failures of engineering materials – ductile fracture, brittle fracture, st         concentration, fatigue and factors affecting fatigue (only qualitative explanation) Numerical problems.         Unit – III         WB H         Kinematics:         Displacement, average velocity, instantaneous velocity, speed, acceleration, average acceleration, varia         acceleration due to gravity, Newton's law of motion, rectilinear motion and numerical problems.         Kinetics:         Displacement, supreseivation, projectile motion, relative motion, numerical problem                                                                                                                                                                                                                                                                 |                                                                                                               | on                   | (SHM). differentia    | al equation for SH   | M (No derivation)      | . s          | brig mass and its    |         |
| unit – II       09 H         Elastic properties of materials:       Stress-Strain Curve, Stress hardening and softening. Elastic Moduli, Poisson's ratio and its limiting val Relation among elastic constants (qualitative), Bending of beams: neutral surface and neutral axis, expression bending moment of a beam, Single cantilever (derivation).       Og H         Torsion of a cylinder:       expression for couple per unit twist of a solid cylinder, torsion pendulum: expression time period and rigidity modulus. Failures of engineering materials – ductile fracture, brittle fracture, st concentration, fatigue and factors affecting fatigue (only qualitative explanation) Numerical problems.       08 H         Kinematics:       Displacement, average velocity, instantaneous velocity, speed, acceleration, average acceleration, varia acceleration, acceleration due to gravity, Newton's law of motion, rectilinear motion and numerical problems.         Kinemics:       Numerical problems.         Kinetics:       Displacement, superelevation, projectile motion, relative motion, numerical problems, motion under grav numerical problems.         Kinetics:       D'Alembert's principle and its application in-plane motion and connected bodies including pulleys.                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                               |                      |                       |                      |                        |              |                      |         |
| Unit – II       09 H         Elastic properties of materials:         Stress-Strain Curve, Stress hardening and softening. Elastic Moduli, Poisson's ratio and its limiting val         Relation among elastic constants (qualitative), Bending of beams: neutral surface and neutral axis, expression bending moment of a beam, Single cantilever (derivation).         Torsion of a cylinder: expression for couple per unit twist of a solid cylinder, torsion pendulum: expression time period and rigidity modulus. Failures of engineering materials – ductile fracture, brittle fracture, st concentration, fatigue and factors affecting fatigue (only qualitative explanation) Numerical problems.         Unit – III         W H         Kinematics:         Displacement, average velocity, instantaneous velocity, speed, acceleration, average acceleration, varia acceleration, superelevation, projectile motion, relative motion, numerical problems, motion under gravity numerical problems.         Kinetics:         D 'Alembert's principle and its application in-plane motion and connected bodies including pulleys.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                      |                       |                      |                        |              |                      |         |
| Unit – II         09 H           Elastic properties of materials:         Stress-Strain Curve, Stress hardening and softening. Elastic Moduli, Poisson's ratio and its limiting val Relation among elastic constants (qualitative), Bending of beams: neutral surface and neutral axis, expression bending moment of a beam, Single cantilever (derivation).           Torsion of a cylinder: expression for couple per unit twist of a solid cylinder, torsion pendulum: expression time period and rigidity modulus. Failures of engineering materials – ductile fracture, brittle fracture, st concentration, fatigue and factors affecting fatigue (only qualitative explanation) Numerical problems.           Unit – III         08 Hit           Kinematics:         Displacement, average velocity, instantaneous velocity, speed, acceleration, average acceleration, varia acceleration, acceleration due to gravity, Newton's law of motion, rectilinear motion and numerical problems.           Kinetics:         Displacement.           Displement.         Material motion, relative motion, numerical problems, motion under grave numerical problems.           Kinetics:         D' Alembert's principle and its application in-plane motion and connected bodies including pulleys.                                                                                                                                                                                                                                                                                                                                                                     | 11 1                                                                                                          |                      |                       | i loiced osemations  | (Qualitative), iesoi   | iuiiv        | te and sharphess of  |         |
| Elastic properties of materials:         Stress-Strain Curve, Stress hardening and softening. Elastic Moduli, Poisson's ratio and its limiting val         Relation among elastic constants (qualitative), Bending of beams: neutral surface and neutral axis, expression         bending moment of a beam, Single cantilever (derivation).         Torsion of a cylinder: expression for couple per unit twist of a solid cylinder, torsion pendulum: expression         twist of a cylinder: expression for couple per unit twist of a solid cylinder, torsion pendulum: expression         torsion of a cylinder: expression for couple per unit twist of a solid cylinder, torsion pendulum: expression         twist of a cylinder: expression for couple per unit twist of a solid cylinder, torsion pendulum: expression         twist of a cylinder: expression for couple per unit twist of a solid cylinder, torsion pendulum: expression         twist of a cylinder: expression for couple per unit twist of a solid cylinder, torsion pendulum: expression         torsion of a cylinder: expression for couple per unit twist of a solid cylinder, torsion pendulum: expression         torsion of a cylinder: expression for couple per unit twist of a solid cylinder, torsion pendulum: expression         torner of a cylinder: expression for couple per unit twist of a solid cylinder, torsion pendulum: expression         Unit - III         Wolth         torner                                                                                                                                                                                    | resonance. runnerrear pro                                                                                     |                      |                       | oit – II             |                        |              | 09 Hrs               |         |
| Stress-Strain Curve, Stress hardening and softening. Elastic Moduli, Poisson's ratio and its limiting val Relation among elastic constants (qualitative), Bending of beams: neutral surface and neutral axis, expression bending moment of a beam, Single cantilever (derivation).         Torsion of a cylinder: expression for couple per unit twist of a solid cylinder, torsion pendulum: expression time period and rigidity modulus. Failures of engineering materials – ductile fracture, brittle fracture, st concentration, fatigue and factors affecting fatigue (only qualitative explanation) Numerical problems.         Unit – III       08 Hit         Kinematics:       Displacement, average velocity, instantaneous velocity, speed, acceleration, average acceleration, varia acceleration, superelevation, projectile motion, relative motion, numerical problems, motion under grav numerical problems.         Kinetics:       D 'Alembert's principle and its application in-plane motion and connected bodies including pulleys.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Elastic properties of mat                                                                                     | teria                |                       |                      |                        |              | 07 1115              |         |
| Relation among elastic constants (qualitative), Bending of beams: neutral surface and neutral axis, expression bending moment of a beam, Single cantilever (derivation). <b>Torsion of a cylinder:</b> expression for couple per unit twist of a solid cylinder, torsion pendulum: expression time period and rigidity modulus. Failures of engineering materials – ductile fracture, brittle fracture, st concentration, fatigue and factors affecting fatigue (only qualitative explanation) Numerical problems. <b>Unit – III 08 H Kinematics:</b> Displacement, average velocity, instantaneous velocity, speed, acceleration, average acceleration, varia acceleration, superelevation, projectile motion, relative motion, numerical problems, motion under grav numerical problems. <b>Kinetics:</b> D 'Alembert's principle and its application in-plane motion and connected bodies including pulleys.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                               |                      |                       | ening Elastic Modu   | li Poisson's ratio a   | and          | its limiting values  |         |
| bending moment of a beam, Single cantilever (derivation).<br><b>Torsion of a cylinder:</b> expression for couple per unit twist of a solid cylinder, torsion pendulum: expression<br>time period and rigidity modulus. Failures of engineering materials – ductile fracture, brittle fracture, st<br>concentration, fatigue and factors affecting fatigue (only qualitative explanation) Numerical problems.<br><u>Unit – III</u> 08 H<br>Kinematics:<br>Displacement, average velocity, instantaneous velocity, speed, acceleration, average acceleration, varia<br>acceleration, acceleration due to gravity, Newton's law of motion, rectilinear motion and numerical proble<br>curvilinear motion, superelevation, projectile motion, relative motion, numerical problems, motion under grav<br>numerical problems.<br>Kinetics:<br>D 'Alembert's principle and its application in-plane motion and connected bodies including pulleys.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                               |                      | 0                     | e                    | -                      |              | e                    |         |
| Torsion of a cylinder: expression for couple per unit twist of a solid cylinder, torsion pendulum: expression time period and rigidity modulus. Failures of engineering materials – ductile fracture, brittle fracture, st concentration, fatigue and factors affecting fatigue (only qualitative explanation) Numerical problems.         Unit – III       08 Hi         Kinematics:         Displacement, average velocity, instantaneous velocity, speed, acceleration, average acceleration, varia acceleration due to gravity, Newton's law of motion, rectilinear motion and numerical problem under graving numerical problems.       Kinetics:         D'Alembert's principle and its application in-plane motion and connected bodies including pulleys.       D'Alembert's principle and its application in-plane motion and connected bodies including pulleys.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                               |                      |                       |                      |                        |              | unis, empression for |         |
| time period and rigidity modulus. Failures of engineering materials – ductile fracture, brittle fracture, st<br>concentration, fatigue and factors affecting fatigue (only qualitative explanation) Numerical problems.<br>Unit – III 08 H<br>Kinematics:<br>Displacement, average velocity, instantaneous velocity, speed, acceleration, average acceleration, varia<br>acceleration, acceleration due to gravity, Newton's law of motion, rectilinear motion and numerical proble<br>curvilinear motion, superelevation, projectile motion, relative motion, numerical problems, motion under grav<br>numerical problems.<br>Kinetics:<br>D 'Alembert's principle and its application in-plane motion and connected bodies including pulleys.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                               |                      |                       |                      | l cylinder, torsion pe | endi         | ulum: expression for |         |
| concentration, fatigue and factors affecting fatigue (only qualitative explanation) Numerical problems.         Unit – III       08 Hi         Kinematics:         Displacement, average velocity, instantaneous velocity, speed, acceleration, average acceleration, varia acceleration, acceleration due to gravity, Newton's law of motion, rectilinear motion and numerical problem curvilinear motion, superelevation, projectile motion, relative motion, numerical problems, motion under graving numerical problems.         Kinetics:         D 'Alembert's principle and its application in-plane motion and connected bodies including pulleys.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                               |                      |                       |                      |                        |              |                      |         |
| Unit – III       08 H         Kinematics:       Displacement, average velocity, instantaneous velocity, speed, acceleration, average acceleration, varia acceleration, acceleration due to gravity, Newton's law of motion, rectilinear motion and numerical proble curvilinear motion, superelevation, projectile motion, relative motion, numerical problems, motion under grav numerical problems.         Kinetics:       D 'Alembert's principle and its application in-plane motion and connected bodies including pulleys.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                               |                      |                       |                      |                        |              |                      |         |
| <b>Kinematics:</b><br>Displacement, average velocity, instantaneous velocity, speed, acceleration, average acceleration, varia<br>acceleration, acceleration due to gravity, Newton's law of motion, rectilinear motion and numerical proble<br>curvilinear motion, superelevation, projectile motion, relative motion, numerical problems, motion under grav<br>numerical problems.<br><b>Kinetics:</b><br>D 'Alembert's principle and its application in-plane motion and connected bodies including pulleys.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | concentration, langue and                                                                                     | 100                  |                       |                      | planation) i (america  | <u>- p-</u>  | 08 Hrs               |         |
| Displacement, average velocity, instantaneous velocity, speed, acceleration, average acceleration, varia acceleration, acceleration due to gravity, Newton's law of motion, rectilinear motion and numerical proble curvilinear motion, superelevation, projectile motion, relative motion, numerical problems, motion under grav numerical problems.<br><b>Kinetics:</b><br>D 'Alembert's principle and its application in-plane motion and connected bodies including pulleys.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Kinematics.                                                                                                   |                      | 0.1                   |                      |                        |              | 00 1115              |         |
| acceleration, acceleration due to gravity, Newton's law of motion, rectilinear motion and numerical proble<br>curvilinear motion, superelevation, projectile motion, relative motion, numerical problems, motion under grav<br>numerical problems.<br><b>Kinetics:</b><br>D 'Alembert's principle and its application in-plane motion and connected bodies including pulleys.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                               | zelo                 | city instantaneous    | velocity speed a     | celeration average     | - 20         | celeration variable  |         |
| curvilinear motion, superelevation, projectile motion, relative motion, numerical problems, motion under grav<br>numerical problems.<br><b>Kinetics:</b><br>D 'Alembert's principle and its application in-plane motion and connected bodies including pulleys.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                               |                      |                       |                      |                        |              |                      |         |
| numerical problems.<br><b>Kinetics:</b><br>D 'Alembert's principle and its application in-plane motion and connected bodies including pulleys.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ·                                                                                                             |                      | 0 1                   | -                    |                        |              | 1                    |         |
| Kinetics:<br>D 'Alembert's principle and its application in-plane motion and connected bodies including pulleys.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                               |                      | ation, projectile ind |                      | numericai problem      | 5, 11        | ionon under gravity  |         |
| D 'Alembert's principle and its application in-plane motion and connected bodies including pulleys.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                               |                      |                       |                      |                        |              |                      |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                               | nd it                | te application in pla | ne motion and conner | ated hadies including  | 1 101        | 11000                |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D Alemoert's principle a                                                                                      | .iu 1                |                       |                      |                        | s pu         | <b>09 Hrs</b>        |         |

#### Fluid Mechanics:

Definition of fluid and its properties, Fluid statics, buoyancy, Poiseuille's equation, determination of co-efficient of viscosity of liquid by Poiseuille's flow method. Error and correction applied to Poiseuille's formula. Variation in viscosity of liquids and gases with temperature. Bernoulli's theorem and its application. Description of fluids (qualitative). Type of fluid flows- stream line, streak line, path line, turbulence. Numerical problems. Unit – V 08 Hrs

#### **Fundamentals of Sensors:**

Introduction to Sensors, Sensor systems and overview of sensor technologies, Classification of sensors, Sensor's characteristics.

Sensors: principles & Applications: Temperature sensors: RTD, Thermistor, Thermocouple. Vibration sensor, Optical fiber sensor for structural health monitoring, Strain gauge sensor, Piezo electric sensors for energy harvesting.

| Course | Course Outcomes: After completing the course, the students will be able to                              |  |  |  |  |  |
|--------|---------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| CO1    | Explain the concepts in oscillations, elasticity, kinematics, Fluid dynamics and sensor techniques.     |  |  |  |  |  |
| CO2    | Apply the fundamentals of oscillations, elasticity, kinematics, fluid dynamics and sensor techniques to |  |  |  |  |  |
|        | Civil engineering applications.                                                                         |  |  |  |  |  |
| CO3    | Develop analytical thinking by solving numerical.                                                       |  |  |  |  |  |
| CO4    | Design & develop simulating models and validate with real time experimentation.                         |  |  |  |  |  |



Approved by AICTE, New Delhi

#### Reference Books

| 1 | A Textbook of Engineering Physics, M N Avadhanulu, P G Kshirsagar and TVS Arun Murthy, S Chand     |
|---|----------------------------------------------------------------------------------------------------|
|   | and Company Limited, New Delhi, Revised Edition 2019, ISBN: 978-93-528-3399-3.                     |
| 2 | Jacob Fraden, Handbook of Modern Sensors: Physics, Designs, and Applications, PHI Publication, 5th |
|   | Edition 2016, ISBN: 978-1-4419-6465-6.                                                             |
| 3 | Elements of Properties of matter, D S Mathur, S Chand and Company PVT LTD , 2010, ISBN-13:978-     |
|   | 8121908153.                                                                                        |
| 4 | Engineering Physics, Gaur and Gupta, Dhanpat Rai Publications LTD, 2012, ISBN-13: 978-8189928223.  |
| 5 | Physics for Degree students, C L Arora and P S Hemne, S Chand and Company PVT. LTD, 2016, ISBN:    |
|   | 978-81-219-4059-7.                                                                                 |
| 6 | Engineering Physics, Hitendra K Mallik and A K Singh, Tata McGraw Hill Education, 2010, ISBN 978-  |
|   | 0-07-067153-9.                                                                                     |

|    | Laboratory Experiments (CV stream)                                            |  |  |  |  |
|----|-------------------------------------------------------------------------------|--|--|--|--|
| 1  | Spring constant experiment using expEYES17.                                   |  |  |  |  |
| 2  | Moment of Inertia of irregular body and rigidity modulus by Torsion pendulum. |  |  |  |  |
| 3  | Young's modulus by Single cantilever.                                         |  |  |  |  |
| 4  | Young's modulus by Uniform bending.                                           |  |  |  |  |
| 5  | Ultrasonic Interferometer.                                                    |  |  |  |  |
| 6  | Wavelength of laser by diffraction.                                           |  |  |  |  |
| 7  | Forced mechanical Oscillations and Resonance.                                 |  |  |  |  |
| 8  | Fermi Energy of Copper.                                                       |  |  |  |  |
| 9  | Four Probe Experiment.                                                        |  |  |  |  |
| 10 | Newton's rings.                                                               |  |  |  |  |
| 11 | Exp Eyes experiment: LCR                                                      |  |  |  |  |

|   | <b>RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY WITH LAB)</b>                                                                                                                                                                                                                                                                                                                       |       |  |  |  |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|
| # | COMPONENTS                                                                                                                                                                                                                                                                                                                                                                                   | MARKS |  |  |  |
| 1 | QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.                                                                                                                                                                                                | 10    |  |  |  |
| 2 | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). <b>THREE tests will be conducted</b> . Each test will be evaluated for <b>50 Marks</b> , adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 30 MARKS</b> . | 30    |  |  |  |
| 3 | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) <b>ADDING UPTO 30 MARKS</b> .                                                                                                    | 30    |  |  |  |
| 4 | LAB: Conduction of laboratory exercises, lab report, observation and analysis (30 Marks),<br>lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10<br>Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE REDUCED TO 30<br>MARKS                                                                                                                            | 30    |  |  |  |
|   | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                                                                                                                                             | 100   |  |  |  |



|        | <b>RUBRIC FOR SEMESTER END EXAMINATION (THEORY)</b> |       |  |  |  |
|--------|-----------------------------------------------------|-------|--|--|--|
| Q. NO. | CONTENTS                                            | MARKS |  |  |  |
|        | PART A                                              |       |  |  |  |
| 1      | Objective type questions covering entire syllabus   | 10    |  |  |  |
|        | PART B                                              |       |  |  |  |
|        | (Maximum of TWO Sub-divisions only)                 |       |  |  |  |
| 2      | Unit 1 : (Compulsory)                               | 14    |  |  |  |
| 3 & 4  | Unit 2 : Question 3 or 4                            | 14    |  |  |  |
| 5&6    | Unit 3 : Question 5 or 6                            | 14    |  |  |  |
| 7 & 8  | Unit 4 : Question 7 or 8                            | 14    |  |  |  |
| 9 & 10 | Unit 5 : Question 9 or 10                           | 14    |  |  |  |
| 11     | Lab Component (Compulsory)                          | 20    |  |  |  |
|        | MAXIMUM MARKS FOR THE SEE THEORY                    | 100   |  |  |  |



Approved by AICTE, New Delhi

#### Semester – I CHEMISTRY OF SMART MATERIALS AND DEVICES Category: Applied Science Course Stream: Computer Science (Common to AI, BT, CS, CY, CD & IS Programs)

(Theory and Practice)

|                |   | (11      | icory and reactice) |              |   |           |
|----------------|---|----------|---------------------|--------------|---|-----------|
| Course Code    | : | 22CHY12A |                     | CIE          | : | 100 Marks |
| Credits: L:T:P | : | 3:0:1    |                     | SEE          | : | 100 Marks |
| Total Hours    | : | 42L+ 30P |                     | SEE Duration | : | 3 Hours   |
|                |   |          |                     |              |   |           |

| Unit – I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 08 Hrs                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Sustainable chemistry and E-waste management:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                 |
| Biomaterials: Introduction, bio-degradable and bio-compatible polymeric materials: synthesis and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | applications                                                    |
| (Polymers and hydrogels in drug delivery).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                 |
| Green Chemistry: Introduction, 12 principles with real life examples, validation of greenness.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                 |
| E-waste: Hazards and toxicity, segregation and recycling (Hydrometallurgy, pyrometallurgy and direc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                 |
| Extraction of valuable metals from E-waste. Battery waste management and recycling, circular eco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | onomy- case                                                     |
| studies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |
| Unit – II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 08 Hrs                                                          |
| Computational chemistry: Scope, cost and efficiency of computational modeling. Stabilizing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                 |
| Bonded and non-bonded interactions. Molecular topology, topological matrix representation, topolog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                 |
| QSAR/QSPC concept for insilico prediction of properties. 3D co-ordinate generation for small                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | molecules,                                                      |
| geometry optimization.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |
| Unit – III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 08 Hrs                                                          |
| Materials for memory and display technology:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <i>.</i>                                                        |
| Materials for memory storage: Introduction to materials for electronic memory, classification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                 |
| polymeric and hybrid materials), manufacturing of semiconductor chips. Green computing: Bio-comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | posite based                                                    |
| memory devices.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 |
| <b>Fabrication of smart materials and devices:</b> photo and electro active materials for memory device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |
| for display technology (Liquid crystals display, organic light emitting diode and light emitting elected).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ctrochemical                                                    |
| Unit – IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 09 Hrs                                                          |
| Smart sensors and devices:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 09 1118                                                         |
| <b>RFID and IONT materials:</b> Synthesis, properties and applications in logistic information, intelligent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nackaging                                                       |
| systems (Graphene oxide, carbon nanotubes (CNTs) and polyaniline).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | packaging                                                       |
| Sensors: Introduction, types of sensors (Piezoelectric and electrochemical), nanomaterials for sensing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 |
| (Strain sensors, gas sensor, biomolecules and volatile organic compounds).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | applications                                                    |
| (Strain sensors, gas sensor, biomolecules and volatile organic compounds).<br>Unit – V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |
| (Strain sensors, gas sensor, biomolecules and volatile organic compounds).<br>Unit – V<br>Advanced energy systems:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | applications 09 Hrs                                             |
| (Strain sensors, gas sensor, biomolecules and volatile organic compounds).<br>Unit – V<br>Advanced energy systems:<br>Battery technology: Introduction to electrochemistry, characteristics of battery, Lithium-ion battery                                                                                                                                                                                                                                                                                                                                                                                                                                                           | applications 09 Hrs                                             |
| (Strain sensors, gas sensor, biomolecules and volatile organic compounds).<br>Unit – V<br>Advanced energy systems:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | applications<br>09 Hrs<br>ry metal air                          |
| (Strain sensors, gas sensor, biomolecules and volatile organic compounds).<br>Unit – V<br>Advanced energy systems:<br>Battery technology: Introduction to electrochemistry, characteristics of battery, Lithium-ion batter<br>batteries. Battery technology for e-mobility.<br>Super capacitors: Storage principle, types (EDLC, pseudo and asymmetric capacitor) with ex                                                                                                                                                                                                                                                                                                             | applications<br>09 Hrs<br>ry metal air                          |
| (Strain sensors, gas sensor, biomolecules and volatile organic compounds).<br>Unit – V<br>Advanced energy systems:<br>Battery technology: Introduction to electrochemistry, characteristics of battery, Lithium-ion batter<br>batteries. Battery technology for e-mobility.<br>Super capacitors: Storage principle, types (EDLC, pseudo and asymmetric capacitor) with ex<br>applications.                                                                                                                                                                                                                                                                                            | applications<br>09 Hrs<br>ry metal air<br>camples and           |
| (Strain sensors, gas sensor, biomolecules and volatile organic compounds).<br>Unit – V<br>Advanced energy systems:<br>Battery technology: Introduction to electrochemistry, characteristics of battery, Lithium-ion batter<br>batteries. Battery technology for e-mobility.<br>Super capacitors: Storage principle, types (EDLC, pseudo and asymmetric capacitor) with ex                                                                                                                                                                                                                                                                                                             | applications<br>09 Hrs<br>ry metal air<br>camples and           |
| (Strain sensors, gas sensor, biomolecules and volatile organic compounds).<br>Unit – V<br>Advanced energy systems:<br>Battery technology: Introduction to electrochemistry, characteristics of battery, Lithium-ion batter<br>batteries. Battery technology for e-mobility.<br>Super capacitors: Storage principle, types (EDLC, pseudo and asymmetric capacitor) with ex<br>applications.                                                                                                                                                                                                                                                                                            | applications<br>09 Hrs<br>ry metal air<br>camples and           |
| (Strain sensors, gas sensor, biomolecules and volatile organic compounds).<br>Unit – V<br>Advanced energy systems:<br>Battery technology: Introduction to electrochemistry, characteristics of battery, Lithium-ion batteris<br>batteries. Battery technology for e-mobility.<br>Super capacitors: Storage principle, types (EDLC, pseudo and asymmetric capacitor) with exapplications.<br>Photovoltaics: Inorganic solar cells, organic solar cells, quantum dot sensitized (QDSSC's). Green hy<br>Course Outcomes: After completing the course, the students will be able to<br>CO1 Identify the materials, conventional & non-conventional energy systems for engineering applied | applications<br>09 Hrs<br>ry metal air<br>amples and<br>ydrogen |
| (Strain sensors, gas sensor, biomolecules and volatile organic compounds).<br>Unit – V<br>Advanced energy systems:<br>Battery technology: Introduction to electrochemistry, characteristics of battery, Lithium-ion batteris<br>batteries. Battery technology for e-mobility.<br>Super capacitors: Storage principle, types (EDLC, pseudo and asymmetric capacitor) with ex<br>applications.<br>Photovoltaics: Inorganic solar cells, organic solar cells, quantum dot sensitized (QDSSC's). Green hy<br>Course Outcomes: After completing the course, the students will be able to                                                                                                   | applications<br>09 Hrs<br>ry metal air<br>amples and<br>ydrogen |
| (Strain sensors, gas sensor, biomolecules and volatile organic compounds).<br>Unit – V<br>Advanced energy systems:<br>Battery technology: Introduction to electrochemistry, characteristics of battery, Lithium-ion batteris<br>batteries. Battery technology for e-mobility.<br>Super capacitors: Storage principle, types (EDLC, pseudo and asymmetric capacitor) with exapplications.<br>Photovoltaics: Inorganic solar cells, organic solar cells, quantum dot sensitized (QDSSC's). Green hy<br>Course Outcomes: After completing the course, the students will be able to<br>CO1 Identify the materials, conventional & non-conventional energy systems for engineering applied | applications<br>09 Hrs<br>ry metal air<br>amples and<br>ydrogen |

CO4 Develop solutions in the areas of applied materials and energy systems for sustainable engineering application.



| Refere | nce Books                                                                                                    |
|--------|--------------------------------------------------------------------------------------------------------------|
| 1      | E-waste recycling and management: present scenarios and environmental issues, Khan, Anish, and               |
|        | Abdullah M. Asiri. 2019, Springer, Vol. 33. ISBN: 978-3-030-14186-8.                                         |
| 2      | Essentials of computational chemistry: theories and models, Christopher J Cramer, 2013, John Wiley &         |
|        | Sons. ISBN: 978-0-470-09182-1.                                                                               |
| 3      | Energy storage and conversion devices: Supercapacitors, batteries and hydroelectric cells, Anurag Gaur,      |
|        | A. L. Sharma, Anil Arya. 2021, CRC press, 1 <sup>st</sup> edition, ISBN: 978-1-003-14176-1.                  |
| 4      | Fundamentals of analytical chemistry: An introduction, Douglas A. Skooget etal., 2004 Thomson Asia pte       |
|        | Ltd., 8 <sup>th</sup> , ISBN: 978-0-495-55828-6                                                              |
| E-book | XS                                                                                                           |
| 5      | Functional and smart materials, Chander Prakash, Sunpreet Singh, J. Paulo Davim, 2020, CRC Press,            |
|        | ISBN: 978-036-727-510-5.                                                                                     |
| 6      | Electrical and electronic devices, circuits and materials: Technological challenges and solutions. Tripathi, |
|        | S. L., Alvi, P. A., & Subramaniam, U, 2021, John Wiley & Sons, ISBN: 978-0367564261.                         |

|    | Laboratory Experiments                                                                                                                                    |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Estimation of copper from PCB.                                                                                                                            |
| 2  | Determination of total acidity of the soft drinks using pH sensors.                                                                                       |
| 3  | Potentiometric estimation of iron.                                                                                                                        |
| 4  | Conductometric estimation.                                                                                                                                |
| 5  | Determination of viscosity coefficient of a given liquid using Ostwald's viscometer.                                                                      |
| 6  | Flame photometric estimation of sodium.                                                                                                                   |
| 7  | Colorimetric estimation of copper from E-waste.                                                                                                           |
| 8  | Electroplating of copper.                                                                                                                                 |
| 9  | Synthesis and fabrication of conducting polyaniline and its application in gas sensing (Demonstration experiment).                                        |
| 10 | Study the surface morphology of nanomaterials using scanning electron microscopy (Demonstration experiment).                                              |
| 11 | Fabrication of thin-film gas sensors using spin coating and electro-spinning technique (Demonstration experiment).                                        |
| 12 | Separation of organic compounds using column chromatographic technique and monitoring by thin layer chromatographic technique (Demonstration experiment). |
| 13 | Synthesis of metal oxide nanomaterials using solution combustion synthesis.                                                                               |
| 14 | Green synthesis of nanomaterials.                                                                                                                         |

| <b>RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY WITH LA</b> |                                                                                                                                                                                                                                                                                                                                                                                              |       |  |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|
| #                                                                    | COMPONENTS                                                                                                                                                                                                                                                                                                                                                                                   | MARKS |  |
| 1                                                                    | QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.                                                                                                                                                                                                | 10    |  |
| 2                                                                    | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). <b>THREE tests will be conducted</b> . Each test will be evaluated for <b>50 Marks</b> , adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 30 MARKS</b> . | 30    |  |
| 3                                                                    | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) <b>ADDING UPTO 30 MARKS</b> .                                                                                                    | 30    |  |



Approved by AICTE, New Delhi

| LAB: Conduction of laboratory exercises, lab report, observation and analysis (30 Marks),<br>lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10<br>Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE REDUCED TO 30<br>MARKS | 30  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                  | 100 |

#### MAXIMUM MARKS FOR THE CIE THEORY

|        | RUBRIC FOR SEMESTER END EXAMINATION (THEORY)      |       |  |  |  |  |
|--------|---------------------------------------------------|-------|--|--|--|--|
| Q. NO. | CONTENTS                                          | MARKS |  |  |  |  |
|        | PART A                                            |       |  |  |  |  |
| 1      | Objective type questions covering entire syllabus | 10    |  |  |  |  |
|        | PART B                                            |       |  |  |  |  |
|        | (Maximum of TWO Sub-divisions only)               |       |  |  |  |  |
| 2      | Unit 1 : (Compulsory)                             | 14    |  |  |  |  |
| 3 & 4  | Unit 2 : Question 3 or 4                          | 14    |  |  |  |  |
| 5&6    | Unit 3 : Question 5 or 6                          | 14    |  |  |  |  |
| 7 & 8  | Unit 4 : Question 7 or 8                          | 14    |  |  |  |  |
| 9 & 10 | Unit 5 : Question 9 or 10                         | 14    |  |  |  |  |
| 11     | Lab Component (Compulsory)                        | 20    |  |  |  |  |
|        | MAXIMUM MARKS FOR THE SEE THEORY                  | 100   |  |  |  |  |



Approved by AICTE, New Delhi

| University, Belagavi                                                                                                                                                                  |                                                                                          |                                                                  |                                            |                                            |         |                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------|--------------------------------------------|---------|-----------------------|
|                                                                                                                                                                                       |                                                                                          |                                                                  | Semester – I                               |                                            |         |                       |
| ŀ                                                                                                                                                                                     | ENC                                                                                      | GINEERING AND                                                    | <b>ENVIRONMENT</b>                         | AL CHEMISTRY                               |         |                       |
|                                                                                                                                                                                       |                                                                                          | Category                                                         | : Applied Science Co                       | ourse                                      |         |                       |
|                                                                                                                                                                                       |                                                                                          | 0.                                                               | ivil (Only to CV Pro                       |                                            |         |                       |
|                                                                                                                                                                                       |                                                                                          |                                                                  | eory and Practice)                         | · · · · · · · · · · · · · · · · · · ·      |         |                       |
| Course Code                                                                                                                                                                           | :                                                                                        | 22CHY12B                                                         |                                            | CIE                                        | :       | 100 Marks             |
| Credits: L:T:P                                                                                                                                                                        | :                                                                                        | 3:0:1                                                            |                                            | SEE                                        | :       | 100 Marks             |
| Total Hours                                                                                                                                                                           | :                                                                                        | 42L+ 30P                                                         |                                            | SEE Duration                               | :       | 3 Hours               |
|                                                                                                                                                                                       | -                                                                                        |                                                                  |                                            |                                            | -       |                       |
|                                                                                                                                                                                       |                                                                                          | Ur                                                               | nit – I                                    |                                            |         | 08 Hrs                |
| Green Chemistry: Intro                                                                                                                                                                | duc                                                                                      | tion, principles of                                              | f green chemistry,                         | E-factor, atom eco                         | non     |                       |
| ultrasound assisted reaction                                                                                                                                                          |                                                                                          |                                                                  |                                            | )                                          |         | 57                    |
| Water Chemistry: Impuri                                                                                                                                                               |                                                                                          |                                                                  |                                            | ality parameters as p                      | er E    | BIS. determination of |
| fluoride, DO, BOD and CO                                                                                                                                                              |                                                                                          |                                                                  |                                            |                                            |         |                       |
| , ,                                                                                                                                                                                   | - ,                                                                                      |                                                                  | it – II                                    | 0                                          |         | 09 Hrs                |
| Materials in civil enginee                                                                                                                                                            | rin                                                                                      |                                                                  |                                            |                                            |         |                       |
| <b>Cement:</b> Chemical compo                                                                                                                                                         |                                                                                          |                                                                  | nufacturing process                        | of portland cement.                        | pro     | ocess of setting and  |
| hardening, types (Mortar, c                                                                                                                                                           |                                                                                          |                                                                  |                                            |                                            | P.,     | and and               |
| Glass: Manufacture, prope                                                                                                                                                             |                                                                                          |                                                                  |                                            |                                            |         |                       |
| Ceramics and refractory                                                                                                                                                               |                                                                                          |                                                                  |                                            | 15                                         |         |                       |
| Cerannes and refractory                                                                                                                                                               | 1114                                                                                     |                                                                  | it – III                                   | 10.                                        |         | 08 Hrs                |
| Corrosion science and e                                                                                                                                                               | nai                                                                                      |                                                                  |                                            | eory types differen                        | ntia    |                       |
| and pitting), differential mo<br>Corrosion control: Meta<br>phosphating. Cathodic pro<br>penetration rate (CPR), nur<br>Metal finishing: Electroph                                    | al (<br>tect<br>mer                                                                      | coating-galvanization<br>tion - sacrificial an<br>ical problems. | on and tinning, sur<br>ode method. Corrosi | face conversion co<br>on testing by weight | atin    | ng - anodizing and    |
| <u>_</u>                                                                                                                                                                              |                                                                                          |                                                                  | $\frac{1}{1}$ it – IV                      | 11                                         |         | 09 Hrs                |
| Polymers and polymer co                                                                                                                                                               | mr                                                                                       |                                                                  |                                            | ations of PMMA, PV                         | C.      |                       |
| polystyrene. Polymer conc                                                                                                                                                             |                                                                                          |                                                                  | properties, and appro-                     |                                            | -,      | polyester,            |
| Smart polymers: Thermo                                                                                                                                                                |                                                                                          |                                                                  | ctrochromic polymer                        | s. polymer coatings.                       | poly    | vmer binders and      |
| self-healing polymers.                                                                                                                                                                | • • • •                                                                                  | enne perfinenc, ere                                              | en com chine porjuier                      | s, porjaner comings,                       | p • • • | ,                     |
| Polymer composites: Carl                                                                                                                                                              | on                                                                                       | fiber composites (                                               | CNT and graphene-ba                        | used composites                            |         |                       |
| Adhesives: Synthesis and a                                                                                                                                                            |                                                                                          |                                                                  |                                            | ioea composites:                           |         |                       |
| Geo polymers: Properties,                                                                                                                                                             |                                                                                          |                                                                  |                                            |                                            |         |                       |
| Biodegradable polymers:                                                                                                                                                               |                                                                                          |                                                                  |                                            |                                            |         |                       |
| Diouegradable polymers.                                                                                                                                                               | 10                                                                                       | <i>u</i>                                                         | it – V                                     |                                            |         | 08 Hrs                |
| Chemistry of nanomateri                                                                                                                                                               | ials                                                                                     |                                                                  |                                            | (surface area_electric                     | ral     |                       |
|                                                                                                                                                                                       |                                                                                          |                                                                  |                                            |                                            |         |                       |
| properties), synthesis of nanomaterials: Top down and bottom-up approaches, synthesis by sol-gel, and solution combustion method. Civil engineering applications of carbon nanotubes. |                                                                                          |                                                                  |                                            |                                            |         |                       |
| Analytical techniques: Principle, instrumentation and applications of conductometry, potentiometry, colorimetry                                                                       |                                                                                          |                                                                  |                                            |                                            |         |                       |
|                                                                                                                                                                                       | and pH-sensor (glass electrode).                                                         |                                                                  |                                            |                                            |         |                       |
| una pri sensor (Siuss electi                                                                                                                                                          | out                                                                                      |                                                                  |                                            |                                            |         |                       |
| Course Outcomes: After                                                                                                                                                                | con                                                                                      | nnleting the course                                              | e, the students will h                     | e able to                                  |         |                       |
|                                                                                                                                                                                       |                                                                                          |                                                                  | on-conventional energy                     |                                            | eri     | ng applications       |
|                                                                                                                                                                                       |                                                                                          |                                                                  |                                            |                                            |         | ng approations.       |
|                                                                                                                                                                                       |                                                                                          |                                                                  |                                            |                                            |         |                       |
|                                                                                                                                                                                       | CO3 Apply the knowledge of material property and energy to analyze environmental issues. |                                                                  |                                            |                                            |         |                       |

CO4 Develop solutions in the areas of applied materials and energy systems for sustainable engineering application.

RV Educational Institutions <sup>®</sup> RV College of Engineering <sup>®</sup>

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

| Refere | ence Books                                                                                                                            |
|--------|---------------------------------------------------------------------------------------------------------------------------------------|
| 1      | Chemistry for Engineers, Teh Fu Yen, Imperial college press, 2008, ISBN: 97818609747742.                                              |
| 2      | Advances in corrosion science and technology, M.G. Fontana, R.W. Staettle, Springer publications, 2012, ISBN: 9781461590620.          |
| 3      | Fundamentals of analytical chemistry, Douglas A. Skoog et.al., 8 <sup>th</sup> edition, 2004, Thomson Asia pte Ltd. ISBN: 9812435131. |
| 4      | Engineering chemistry, Shubha Ramesh et.al., Wiley India, 1 <sup>st</sup> Edition, 2011, ISBN: 9788126519880.                         |

| Laboratory Experiments |  |
|------------------------|--|
|------------------------|--|

| 1  | Volumetric analysis.                                                                                         |
|----|--------------------------------------------------------------------------------------------------------------|
| 2  | Estimation of water quality parameter: chemical oxygen demand.                                               |
| 3  | Estimation of CaO in cement solution.                                                                        |
| 4  | Determination of pKa of a weak acid using pH meter.                                                          |
| 5  | Potentiometric estimation of iron.                                                                           |
| 6  | Colorimetric estimation of copper.                                                                           |
| 7  | Conductometric estimation.                                                                                   |
| 8  | Determination of viscosity coefficient of a given liquid using Ostwald's viscometer.                         |
| 9  | Flame photometric estimation of sodium.                                                                      |
| 10 | Determination of relative and kinematic viscosities of given lubricating oil at different temperatures using |
|    | Redwood viscometer (Demonstration Experiment).                                                               |
| 11 | To find of Tg of polymer using DSC. (Demonstration Experiment).                                              |
| 12 | Study of surface morphology of materials using SEM (Demonstration Experiment).                               |
| 13 | Synthesis of iron oxide nanomaterials using solution combustion synthesis                                    |
| 14 | Green synthesis of nanomaterials.                                                                            |

|   | RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY WITH LA                                                                                                                                                                                                                                                                                                                                | AB)   |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| # | COMPONENTS                                                                                                                                                                                                                                                                                                                                                                                   | MARKS |
| 1 | QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.                                                                                                                                                                                                | 10    |
| 2 | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). <b>THREE tests will be conducted</b> . Each test will be evaluated for <b>50 Marks</b> , adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 30 MARKS</b> . | 30    |
| 3 | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) <b>ADDING UPTO 30 MARKS</b> .                                                                                                    | 30    |
| 4 | LAB: Conduction of laboratory exercises, lab report, observation and analysis (30 Marks),<br>lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10<br>Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE REDUCED TO 30<br>MARKS                                                                                                                            | 30    |
|   | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                                                                                                                                             | 100   |



|               | <b>RUBRIC FOR SEMESTER END EXAMINATION (THEORY)</b> |       |  |  |  |
|---------------|-----------------------------------------------------|-------|--|--|--|
| <b>Q. NO.</b> | CONTENTS                                            | MARKS |  |  |  |
|               | PART A                                              |       |  |  |  |
| 1             | Objective type questions covering entire syllabus   | 10    |  |  |  |
|               | PART B                                              |       |  |  |  |
|               | (Maximum of TWO Sub-divisions only)                 |       |  |  |  |
| 2             | Unit 1 : (Compulsory)                               | 14    |  |  |  |
| 3 & 4         | Unit 2 : Question 3 or 4                            | 14    |  |  |  |
| 5&6           | Unit 3 : Question 5 or 6                            | 14    |  |  |  |
| 7&8           | Unit 4 : Question 7 or 8                            | 14    |  |  |  |
| 9 & 10        | Unit 5 : Question 9 or 10                           | 14    |  |  |  |
| 11            | Lab Component (Compulsory)                          | 20    |  |  |  |
|               | MAXIMUM MARKS FOR THE SEE THEORY 100                |       |  |  |  |



Approved by AICTE, New Delhi

| University, Belaga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |                                                                                |                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Semester – II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |                                                                                |                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OF FUNCTIONAL N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |                                                                                |                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                               | Category                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | y: Applied Science C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |                                                                                |                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Streau                                                                                                                                                                                                                        | m: Electronics (C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Common to EC, EE,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EI & ET Program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ms)                                               |                                                                                |                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                               | (T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | heory and Practice)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                 |                                                                                |                                                                                                                                                                                      |
| Course Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                             | 22CHY22C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | :                                                 | 100                                                                            | ) Marks                                                                                                                                                                              |
| Credits: L:T:P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | :                                                                                                                                                                                                                             | 3:0:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | :                                                 | 100                                                                            | Marks                                                                                                                                                                                |
| Total Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                             | 42L+ 30P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>SEE Duration</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | :                                                 | 3 H                                                                            | ours                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |                                                                                |                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                               | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nit – I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |                                                                                | 08 Hrs                                                                                                                                                                               |
| Energy storage and c                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | conversi                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |                                                                                | •                                                                                                                                                                                    |
| Battery: Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | omponents/materials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | working and app                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lication                                          | ns of                                                                          | Lithium coba                                                                                                                                                                         |
| oxide and metal air ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                               | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |                                                                                |                                                                                                                                                                                      |
| Super-capacitors: In                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                               | ion, types (EDLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . pseudo capacitors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s. asymmetric car                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | pacitor                                           | s). m                                                                          | echanism wit                                                                                                                                                                         |
| examples and applicat                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                               | (LLLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , pour uputiti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   | .,                                                                             |                                                                                                                                                                                      |
| Energy conversion d                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                               | Introduction, chara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | acteristics, materials,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | working and appli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | cations                                           | s of H                                                                         | 2-O2 fuel cell                                                                                                                                                                       |
| amorphous Si and qua                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | and approximation of the second |                                                   |                                                                                |                                                                                                                                                                                      |
| anterprie an or and qua                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u></u>                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nit – II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |                                                                                | 09 Hrs                                                                                                                                                                               |
| Nanomaterials and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | hin film                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |                                                                                | 07 1115                                                                                                                                                                              |
| Nanomaterials: Intro                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sis- solution comb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nustion                                           | sol                                                                            | gel method fo                                                                                                                                                                        |
| thin films.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Junction,                                                                                                                                                                                                                     | , classification and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | a properties. Synthes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sis- solution come                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Justion                                           | , 501-                                                                         | ger method it                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ale. Tune                                                                                                                                                                                                                     | a aunthoria mon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | an and annliastion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a of C                                            | 100                                                                            | 10 1                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\mathbf{us.}$ rypc                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | artian tunntianalizatu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   | VI OF                                                                          | d ( tranhana                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | erties, functionalization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |                                                                                |                                                                                                                                                                                      |
| Thin film deposition                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | techniq                                                                                                                                                                                                                       | ques: Fabrication of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | of thin films using C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |                                                                                |                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | techniq                                                                                                                                                                                                                       | ques: Fabrication of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | of thin films using C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |                                                                                |                                                                                                                                                                                      |
| Thin film deposition                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | techniq                                                                                                                                                                                                                       | ques: Fabrication corinciple, fabricatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | of thin films using C<br>on and applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |                                                                                | rganic chemica                                                                                                                                                                       |
| Thin film deposition<br>vapor deposition (MO                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>techniq</b><br>DCVD)-p                                                                                                                                                                                                     | ques: Fabrication corrinciple, fabricatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of thin films using C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |                                                                                |                                                                                                                                                                                      |
| Thin film deposition<br>vapor deposition (MO<br>Chemistry of electron                                                                                                                                                                                                                                                                                                                                                                                                                             | n techniq<br>DCVD)-p                                                                                                                                                                                                          | ques: Fabrication of<br>principle, fabricatio<br>Un<br>erials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of thin films using C<br>on and applications.<br>hit – III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VD and PECVD a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and Me                                            | etal o                                                                         | rganic chemica                                                                                                                                                                       |
| Thin film deposition<br>vapor deposition (MO<br>Chemistry of electron<br>Inorganic semicond                                                                                                                                                                                                                                                                                                                                                                                                       | n techniq<br>DCVD)-p<br>nic mate                                                                                                                                                                                              | ques: Fabrication corrinciple, fabrication<br>Un<br>erials<br>materials: Introd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of thin films using C<br>on and applications.<br>hit – III<br>luction, types with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | VD and PECVD a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and Me                                            | tors-                                                                          | rganic chemica 09 Hrs p-type, n-typ                                                                                                                                                  |
| Thin film deposition<br>vapor deposition (MO<br>Chemistry of electron<br>Inorganic semicond<br>materials. Production                                                                                                                                                                                                                                                                                                                                                                              | nic mate<br>lucting                                                                                                                                                                                                           | ques: Fabrication corrinciple, fabrication<br>Un<br>erials<br>materials: Introd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of thin films using C<br>on and applications.<br><b>hit – III</b><br>luction, types with<br>on-Czochralski proc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VD and PECVD a<br>examples. Semic<br>ess and float zon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | conduce                                           | tors-                                                                          | rganic chemica<br>09 Hrs<br>p-type, n-typ<br>Electronic an                                                                                                                           |
| Thin film deposition<br>vapor deposition (MO<br>Chemistry of electron<br>Inorganic semicond<br>materials. Production<br>chemical properties, a                                                                                                                                                                                                                                                                                                                                                    | nic mate<br>lucting                                                                                                                                                                                                           | ques: Fabrication corrinciple, fabrication<br>Un<br>erials<br>materials: Introd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of thin films using C<br>on and applications.<br><b>hit – III</b><br>luction, types with<br>on-Czochralski proc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VD and PECVD a<br>examples. Semic<br>ess and float zon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | conduce                                           | tors-                                                                          | rganic chemica<br>09 Hrs<br>p-type, n-typ<br>Electronic an                                                                                                                           |
| Thin film deposition<br>vapor deposition (MO<br>Chemistry of electron<br>Inorganic semicond<br>materials. Production<br>chemical properties, a<br>(InP).                                                                                                                                                                                                                                                                                                                                          | n techniq<br>DCVD)-p<br>nic mate<br>lucting<br>n of elec<br>applicatio                                                                                                                                                        | ques: Fabrication of<br>principle, fabrication<br>Un<br>erials<br>materials: Introd<br>otronic grade silico<br>ons of Gallium ars                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of thin films using C<br>on and applications.<br><b>hit – III</b><br>luction, types with<br>on-Czochralski proc<br>senide (GaAs), Silico                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | VD and PECVD a<br>examples. Semic<br>ess and float zon<br>on-germanium (Sie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | conduc<br>e metl<br>Ge), ar                       | tors-<br>nods.<br>nd Inc                                                       | rganic chemica<br>09 Hrs<br>p-type, n-typ<br>Electronic an<br>dium phosphic                                                                                                          |
| Thin film deposition<br>vapor deposition (MO<br>Chemistry of electron<br>Inorganic semicond<br>materials. Production<br>chemical properties, a<br>(InP).<br>Organic semiconduc                                                                                                                                                                                                                                                                                                                    | n techniq<br>DCVD)-p<br>nic mate<br>lucting<br>n of elect<br>application<br>cting m                                                                                                                                           | ques: Fabrication of<br>principle, fabrication<br>Un<br>erials<br>materials: Introd<br>ctronic grade silico<br>ons of Gallium ars<br>materials: Introduc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | of thin films using C<br>on and applications.<br><b>hit – III</b><br>luction, types with<br>on-Czochralski proc<br>senide (GaAs), Silico<br>ction, pentacene and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VD and PECVD a<br>examples. Semic<br>ess and float zon<br>on-germanium (Sig<br>fullerene derivat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | conduc<br>e metl<br>Ge), ar                       | tors-<br>nods.<br>nd Inc                                                       | rganic chemica<br>09 Hrs<br>p-type, n-typ<br>Electronic an<br>dium phosphic                                                                                                          |
| Thin film deposition<br>vapor deposition (MO<br>Chemistry of electron<br>Inorganic semicond<br>materials. Production<br>chemical properties, a<br>(InP).<br>Organic semiconduc<br>principle, synthesis of                                                                                                                                                                                                                                                                                         | n techniq<br>DCVD)-p<br>nic mate<br>lucting<br>of elec<br>application<br>cting m<br>f polyani                                                                                                                                 | ques: Fabrication of<br>principle, fabrication<br>Un<br>erials<br>materials: Introductronic grade silico<br>ons of Gallium ars<br>materials: Introduc<br>line, applications in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | of thin films using C<br>on and applications.<br><b>hit – III</b><br>huction, types with<br>on-Czochralski proc<br>senide (GaAs), Silico<br>etion, pentacene and<br>in electronic devices.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VD and PECVD a<br>examples. Semic<br>ess and float zon<br>on-germanium (Sid<br>fullerene derivat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | conduc<br>e metl<br>Ge), ar                       | tors-<br>nods.<br>nd Ind                                                       | rganic chemica<br>09 Hrs<br>p-type, n-typ<br>Electronic an<br>dium phosphic<br>acting polyme                                                                                         |
| Thin film deposition<br>vapor deposition (MO<br>Chemistry of electron<br>Inorganic semicond<br>materials. Production<br>chemical properties, a<br>(InP).<br>Organic semiconduc<br>principle, synthesis of                                                                                                                                                                                                                                                                                         | n techniq<br>DCVD)-p<br>nic mate<br>lucting<br>of elec<br>application<br>cting m<br>f polyani                                                                                                                                 | ques: Fabrication of<br>principle, fabrication<br>Un<br>erials<br>materials: Introductronic grade silico<br>ons of Gallium ars<br>materials: Introductions in<br>prage materials, die                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of thin films using C<br>on and applications.<br><b>hit – III</b><br>huction, types with<br>on-Czochralski proc<br>senide (GaAs), Silico<br>etion, pentacene and<br>in electronic devices.<br>electric materials: Exa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VD and PECVD a<br>examples. Semic<br>ess and float zon<br>on-germanium (Sid<br>fullerene derivat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | conduc<br>e metl<br>Ge), ar                       | tors-<br>nods.<br>nd Ind                                                       | rganic chemica<br>09 Hrs<br>p-type, n-typ<br>Electronic an<br>dium phosphic<br>acting polyme<br>tions.                                                                               |
| Thin film deposition<br>vapor deposition (MO<br>Chemistry of electron<br>Inorganic semicond<br>materials. Production<br>chemical properties, a<br>(InP).<br>Organic semiconduc<br>principle, synthesis of<br>Magnetic materials:                                                                                                                                                                                                                                                                  | n techniq<br>DCVD)-p<br>nic mate<br>lucting<br>n of elec<br>application<br>cting m<br>f polyani<br>Data sto                                                                                                                   | ques: Fabrication of<br>principle, fabrication<br>Un<br>erials<br>materials: Introde<br>etronic grade silico<br>ons of Gallium ars<br>materials: Introduc<br>lline, applications in<br>prage materials, die<br>Un                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of thin films using C<br>on and applications.<br><b>hit – III</b><br>Huction, types with<br>on-Czochralski proc<br>senide (GaAs), Silico<br>etion, pentacene and<br>in electronic devices.<br>electric materials: Exa<br><b>hit – IV</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | VD and PECVD a<br>examples. Semic<br>ess and float zon<br>on-germanium (Si<br>fullerene derivat<br>amples, properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | conduc<br>e metl<br>Ge), ar<br>tives, o<br>and ap | tors-<br>nods.<br>nd Ind<br>condu                                              | rganic chemica<br>09 Hrs<br>p-type, n-typ<br>Electronic an<br>dium phosphic<br>ucting polyme<br>tions.<br>08 Hrs                                                                     |
| Thin film deposition<br>vapor deposition (MO<br>Chemistry of electron<br>Inorganic semicond<br>materials. Production<br>chemical properties, a<br>(InP).<br>Organic semiconduc<br>principle, synthesis of<br>Magnetic materials:<br>Advanced electronic                                                                                                                                                                                                                                           | nic materia<br>nic materia<br>nic materia<br>nic materia<br>nic materia<br>nic materia                                                                                                                                        | ques: Fabrication of<br>principle, fabrication<br>un<br>erials<br>materials: Introductions of Gallium ars<br>paterials: Introductions in<br>prage materials, die<br>un<br>als and E –waste:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | of thin films using C<br>on and applications.<br><b>hit – III</b><br>duction, types with<br>on-Czochralski proc<br>senide (GaAs), Silico<br>etion, pentacene and<br>in electronic devices.<br>electric materials: Exa<br><b>hit – IV</b><br>Materials, mechanis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VD and PECVD a<br>examples. Semic<br>ess and float zon<br>on-germanium (Sid<br>fullerene derivat<br>amples, properties<br>m, examples and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | conduc<br>e metl<br>Ge), ar<br>tives, o<br>and ap | tors-<br>nods.<br>nd Ind<br>condu<br>plicat                                    | rganic chemica<br>09 Hrs<br>p-type, n-typ<br>Electronic an<br>dium phosphic<br>acting polyme<br>tions.<br>08 Hrs<br>of                                                               |
| Thin film deposition<br>vapor deposition (MO<br>Chemistry of electron<br>Inorganic semicond<br>materials. Production<br>chemical properties, a<br>(InP).<br>Organic semiconduc<br>principle, synthesis of<br>Magnetic materials:<br>Advanced electronic<br>photochromic, thermo                                                                                                                                                                                                                   | nic materia<br>nic materia<br>nic materia<br>nic materia<br>nic materia<br>nic materia                                                                                                                                        | ques: Fabrication of<br>principle, fabrication<br>un<br>erials<br>materials: Introductions of Gallium ars<br>paterials: Introductions in<br>prage materials, die<br>un<br>als and E –waste:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | of thin films using C<br>on and applications.<br><b>hit – III</b><br>duction, types with<br>on-Czochralski proc<br>senide (GaAs), Silico<br>etion, pentacene and<br>in electronic devices.<br>electric materials: Exa<br><b>hit – IV</b><br>Materials, mechanis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VD and PECVD a<br>examples. Semic<br>ess and float zon<br>on-germanium (Sid<br>fullerene derivat<br>amples, properties<br>m, examples and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | conduc<br>e metl<br>Ge), ar<br>tives, o<br>and ap | tors-<br>nods.<br>nd Ind<br>condu<br>plicat                                    | rganic chemica<br>09 Hrs<br>p-type, n-typ<br>Electronic an<br>dium phosphic<br>acting polyme<br>tions.<br>08 Hrs<br>of                                                               |
| Thin film deposition<br>vapor deposition (MO<br>Chemistry of electron<br>Inorganic semicond<br>materials. Production<br>chemical properties, a<br>(InP).<br>Organic semiconduc<br>principle, synthesis of<br>Magnetic materials: I<br>Advanced electronic<br>photochromic, thermo<br>skin, e-nose devices.                                                                                                                                                                                        | nic materia<br>pCVD)-p<br>nic materia<br>lucting<br>of election<br>cting m<br>f polyani<br>Data sto<br>materia                                                                                                                | ques: Fabrication of<br>principle, fabrication<br>un<br>erials<br>materials: Introductor<br>ons of Gallium ars<br>materials: Introductor<br>line, applications in<br>prage materials, die<br>Un<br>als and E –waste:<br>c, electrochromic, e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | of thin films using C<br>on and applications.<br><b>hit – III</b><br>huction, types with<br>on-Czochralski proc<br>senide (GaAs), Silico<br>etion, pentacene and<br>in electronic devices.<br>electric materials: Exa<br><b>hit – IV</b><br>e Materials, mechanis<br>electrostrictive, magn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VD and PECVD a<br>examples. Semic<br>ess and float zon<br>on-germanium (Sid<br>fullerene derivat<br>amples, properties<br>m, examples and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | conduc<br>e metl<br>Ge), ar<br>tives, o<br>and ap | tors-<br>nods.<br>nd Ind<br>condu<br>plicat                                    | rganic chemica<br>09 Hrs<br>p-type, n-typ<br>Electronic an<br>dium phosphic<br>acting polyme<br>tions.<br>08 Hrs<br>of                                                               |
| Thin film deposition<br>vapor deposition (MO<br>Chemistry of electron<br>Inorganic semicond<br>materials. Production<br>chemical properties, a<br>(InP).<br>Organic semiconduc<br>principle, synthesis of<br>Magnetic materials:<br>Advanced electronic<br>photochromic, thermo                                                                                                                                                                                                                   | nic materia<br>pCVD)-p<br>nic materia<br>lucting<br>of election<br>cting m<br>f polyani<br>Data sto<br>materia                                                                                                                | ques: Fabrication of<br>principle, fabrication<br>un<br>erials<br>materials: Introductronic grade silico<br>ons of Gallium ars<br>materials: Introductions in<br>prage materials, die<br>un<br>als and E –waste:<br>c, electrochromic, et<br>tal risks, recycle m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of thin films using C<br>on and applications.<br><b>hit – III</b><br>huction, types with<br>on-Czochralski proc<br>senide (GaAs), Silico<br>etion, pentacene and<br>in electronic devices.<br>electric materials: Exa<br><b>hit – IV</b><br>Materials, mechanis<br>electrostrictive, magn<br>management.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | VD and PECVD a<br>examples. Semic<br>ess and float zon<br>on-germanium (Sid<br>fullerene derivat<br>amples, properties<br>m, examples and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | conduc<br>e metl<br>Ge), ar<br>tives, o<br>and ap | tors-<br>nods.<br>nd Ind<br>condu<br>plicat                                    | rganic chemica<br>09 Hrs<br>p-type, n-typ<br>Electronic an<br>dium phosphic<br>icting polyme<br>tions.<br>08 Hrs<br>of<br>d NEMS, e-                                                 |
| Thin film deposition<br>vapor deposition (MO<br>Chemistry of electron<br>Inorganic semicond<br>materials. Production<br>chemical properties, a<br>(InP).<br>Organic semiconduc<br>principle, synthesis of<br>Magnetic materials:<br>Advanced electronic<br>photochromic, thermo<br>skin, e-nose devices.<br>E-waste - Types, envi                                                                                                                                                                 | nic materia<br>DCVD)-p<br>nic materia<br>of electing<br>nof electing<br>cting m<br>f polyani<br>Data sto<br>materia<br>ochromic                                                                                               | ques: Fabrication of<br>principle, fabrication<br>Un<br>erials<br>materials: Introductions of Gallium ars<br>naterials: Introductions in<br>prage materials, die<br>Un<br>als and E –waste:<br>c, electrochromic, et<br>tal risks, recycle m<br>Ur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | of thin films using C<br>on and applications.<br><b>hit – III</b><br>huction, types with<br>on-Czochralski proc<br>senide (GaAs), Silico<br>etion, pentacene and<br>in electronic devices.<br>electric materials: Exa<br><b>hit – IV</b><br>a Materials, mechanis<br>electrostrictive, magn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VD and PECVD a<br>examples. Semic<br>ess and float zon<br>on-germanium (Sid<br>fullerene derivat<br>amples, properties<br>m, examples and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | conduc<br>e metl<br>Ge), ar<br>tives, o<br>and ap | tors-<br>nods.<br>nd Ind<br>condu<br>plicat                                    | rganic chemica<br>09 Hrs<br>p-type, n-typ<br>Electronic an<br>dium phosphic<br>icting polyme<br>tions.<br>08 Hrs<br>of<br>d NEMS, e-                                                 |
| Thin film deposition<br>vapor deposition (MO<br>Chemistry of electron<br>Inorganic semicond<br>materials. Production<br>chemical properties, a<br>(InP).<br>Organic semiconduc<br>principle, synthesis of<br>Magnetic materials:<br>Advanced electronic<br>photochromic, thermo<br>skin, e-nose devices.<br>E-waste - Types, envi<br>Sensors and Instrume                                                                                                                                         | n techniq<br>DCVD)-p<br>nic materia<br>of electronic<br>application<br>to f electronic<br>cting m<br>f polyani<br>Data sto<br>materia<br>behromic<br>ironment                                                                 | ques: Fabrication of<br>principle, fabrication<br>un<br>erials<br>materials: Introductions of Gallium ars<br>paterials: Introductions in<br>prage materials, die<br>un<br>als and E –waste:<br>c, electrochromic, et<br>tal risks, recycle m<br>ur<br>ethods of analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | of thin films using C<br>on and applications.<br>hit - III<br>huction, types with on-Czochralski proc senide (GaAs), Silico etion, pentacene and in electronic devices. electric materials: Exa $hit - IVMaterials, mechaniselectrostrictive, magnhanagement.hit - V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VD and PECVD a<br>examples. Semic<br>ess and float zon<br>on-germanium (Sid<br>fullerene derivat<br>amples, properties<br>m, examples and a<br>tetostrictive, RFID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and Me                                            | tors-<br>nods.<br>nd Ind<br>condu<br>plications<br>IS an                       | rganic chemica<br>09 Hrs<br>p-type, n-typ<br>Electronic and<br>dium phosphic<br>neting polyme<br>tions.<br>08 Hrs<br>of<br>d NEMS, e-<br>08 Hrs                                      |
| Thin film deposition<br>vapor deposition (MO<br>Chemistry of electron<br>Inorganic semicond<br>materials. Production<br>chemical properties, a<br>(InP).<br>Organic semiconduc<br>principle, synthesis of<br>Magnetic materials:<br>Advanced electronic<br>photochromic, thermo<br>skin, e-nose devices.<br>E-waste - Types, envi<br>Sensors and Instrume<br>Sensors: Introduction                                                                                                                | n techniq<br>DCVD)-p<br>nic materia<br>lucting<br>a of elect<br>application<br>cting m<br>f polyani<br>Data sto<br>materia<br>ochromic<br>ironment<br>ental me<br>n, types,                                                   | ques: Fabrication of<br>principle, fabrication<br>un<br>erials<br>materials: Introductions of Gallium ars<br>aterials: Introductions of Gallium ars<br>aterials: Introductions in<br>prage materials, die<br>Un<br>als and E –waste:<br>c, electrochromic, et<br>tal risks, recycle m<br>Ur<br>ethods of analysis<br>principle, materia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | of thin films using C<br>on and applications.<br>hit - III<br>huction, types with on-Czochralski proc senide (GaAs), Silico etion, pentacene and in electronic devices. electric materials: Exa $hit - IVMaterials, mechaniselectrostrictive, magnhanagement.hit - V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VD and PECVD a<br>examples. Semic<br>ess and float zon<br>on-germanium (Sid<br>fullerene derivat<br>amples, properties<br>m, examples and a<br>tetostrictive, RFID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and Me                                            | tors-<br>nods.<br>nd Ind<br>condu<br>plications<br>IS an                       | rganic chemica<br>09 Hrs<br>p-type, n-typ<br>Electronic and<br>dium phosphic<br>neting polyme<br>tions.<br>08 Hrs<br>of<br>d NEMS, e-<br>08 Hrs                                      |
| Thin film deposition<br>vapor deposition (MO<br>Chemistry of electron<br>Inorganic semicond<br>materials. Production<br>chemical properties, a<br>(InP).<br>Organic semiconduc<br>principle, synthesis of<br>Magnetic materials: I<br>Advanced electronic<br>photochromic, thermo<br>skin, e-nose devices.<br>E-waste - Types, envi<br>Sensors and Instrume<br>Sensors: Introduction<br>sensor, electrochemica                                                                                    | n techniq<br>DCVD)-p<br>nic mate<br>lucting<br>of elect<br>application<br>cting m<br>f polyani<br>Data sto<br>materia<br>ochromic<br>ironment<br>ental mes<br>a l sensor                                                      | ques: Fabrication of<br>principle, fabrication<br>un<br>erials<br>materials: Introductions of Gallium ars<br>aterials: Introductions of Gallium ars<br>aterials: Introductions in<br>prage materials, die<br>Un<br>als and E –waste:<br>c, electrochromic, et<br>tal risks, recycle m<br>Ur<br>ethods of analysis<br>principle, materia<br>r and gas sensors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of thin films using C<br>on and applications.<br>hit - III<br>huction, types with<br>on-Czochralski proc<br>senide (GaAs), Silico<br>etion, pentacene and<br>in electronic devices.<br>electric materials: Exa<br>hit - IV<br>Materials, mechanis<br>electrostrictive, magn<br>hanagement.<br>hit - V<br>als used and applicat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VD and PECVD a<br>examples. Semic<br>ess and float zon<br>on-germanium (Si<br>fullerene derivat<br>amples, properties<br>m, examples and a<br>letostrictive, RFID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and Me                                            | tors-<br>nods.<br>nd Ind<br>condu<br>plica<br>tions<br>IS an                   | rganic chemica<br>09 Hrs<br>p-type, n-typ<br>Electronic and<br>dium phosphic<br>icting polyme<br>tions.<br>08 Hrs<br>of<br>d NEMS, e-<br>08 Hrs<br>rs, piezoelectri                  |
| Thin film deposition<br>vapor deposition (MO<br>Chemistry of electron<br>Inorganic semicond<br>materials. Production<br>chemical properties, a<br>(InP).<br>Organic semiconduc<br>principle, synthesis of<br>Magnetic materials:<br>Advanced electronic<br>photochromic, thermo<br>skin, e-nose devices.<br>E-waste - Types, envi<br>Sensors and Instrume<br>Sensors: Introduction                                                                                                                | n techniq<br>DCVD)-p<br>nic mate<br>lucting<br>of elect<br>application<br>cting m<br>f polyani<br>Data sto<br>materia<br>ochromic<br>ironment<br>ental mes<br>a l sensor                                                      | ques: Fabrication of<br>principle, fabrication<br>un<br>erials<br>materials: Introductions of Gallium ars<br>aterials: Introductions of Gallium ars<br>aterials: Introductions in<br>prage materials, die<br>Un<br>als and E –waste:<br>c, electrochromic, et<br>tal risks, recycle m<br>Ur<br>ethods of analysis<br>principle, materia<br>r and gas sensors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of thin films using C<br>on and applications.<br>hit - III<br>huction, types with<br>on-Czochralski proc<br>senide (GaAs), Silico<br>etion, pentacene and<br>in electronic devices.<br>electric materials: Exa<br>hit - IV<br>Materials, mechanis<br>electrostrictive, magn<br>hanagement.<br>hit - V<br>als used and applicat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VD and PECVD a<br>examples. Semic<br>ess and float zon<br>on-germanium (Si<br>fullerene derivat<br>amples, properties<br>m, examples and a<br>letostrictive, RFID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and Me                                            | tors-<br>nods.<br>nd Ind<br>condu<br>plica<br>tions<br>IS an                   | rganic chemica<br>09 Hrs<br>p-type, n-typ<br>Electronic and<br>dium phosphic<br>icting polyme<br>tions.<br>08 Hrs<br>of<br>d NEMS, e-<br>08 Hrs<br>rs, piezoelectri                  |
| Thin film deposition<br>vapor deposition (MO<br>Chemistry of electron<br>Inorganic semicond<br>materials. Production<br>chemical properties, a<br>(InP).<br>Organic semiconduc<br>principle, synthesis of<br>Magnetic materials: I<br>Advanced electronic<br>photochromic, thermo<br>skin, e-nose devices.<br>E-waste - Types, envi<br>Sensors and Instrume<br>Sensors: Introduction<br>sensor, electrochemica                                                                                    | n techniq<br>DCVD)-p<br>nic mate<br>lucting<br>of elect<br>application<br>cting m<br>f polyani<br>Data sto<br>materia<br>ochromic<br>ironment<br>ental mes<br>a l sensor                                                      | ques: Fabrication of<br>principle, fabrication<br>un<br>erials<br>materials: Introductions of Gallium ars<br>aterials: Introductions of Gallium ars<br>aterials: Introductions in<br>prage materials, die<br>Un<br>als and E –waste:<br>c, electrochromic, et<br>tal risks, recycle m<br>Ur<br>ethods of analysis<br>principle, materia<br>r and gas sensors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of thin films using C<br>on and applications.<br>hit - III<br>huction, types with<br>on-Czochralski proc<br>senide (GaAs), Silico<br>etion, pentacene and<br>in electronic devices.<br>electric materials: Exa<br>hit - IV<br>Materials, mechanis<br>electrostrictive, magn<br>hanagement.<br>hit - V<br>als used and applicat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VD and PECVD a<br>examples. Semic<br>ess and float zon<br>on-germanium (Si<br>fullerene derivat<br>amples, properties<br>m, examples and a<br>letostrictive, RFID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and Me                                            | tors-<br>nods.<br>nd Ind<br>condu<br>plica<br>tions<br>IS an                   | rganic chemica<br>09 Hrs<br>p-type, n-typ<br>Electronic and<br>dium phosphic<br>icting polyme<br>tions.<br>08 Hrs<br>of<br>d NEMS, e-<br>08 Hrs<br>rs, piezoelectri                  |
| Thin film deposition<br>vapor deposition (MO<br>Chemistry of electron<br>Inorganic semicond<br>materials. Production<br>chemical properties, a<br>(InP).<br>Organic semiconduc<br>principle, synthesis of<br>Magnetic materials: 1<br>Advanced electronic<br>photochromic, thermo<br>skin, e-nose devices.<br>E-waste - Types, envi<br>Sensors and Instrume<br>Sensors: Introduction<br>sensor, electrochemica<br>Instrumental method                                                             | n techniq<br>DCVD)-p<br>nic mate<br>lucting<br>of elect<br>application<br>cting m<br>f polyani<br>Data sto<br>materia<br>ochromic<br>ironment<br>ental mes<br>a l sensor                                                      | ques: Fabrication of<br>principle, fabrication<br>un<br>erials<br>materials: Introductions of Gallium ars<br>aterials: Introductions of Gallium ars<br>aterials: Introductions in<br>prage materials, die<br>Un<br>als and E –waste:<br>c, electrochromic, et<br>tal risks, recycle m<br>Ur<br>ethods of analysis<br>principle, materia<br>r and gas sensors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of thin films using C<br>on and applications.<br>hit - III<br>huction, types with<br>on-Czochralski proc<br>senide (GaAs), Silico<br>etion, pentacene and<br>in electronic devices.<br>electric materials: Exa<br>hit - IV<br>Materials, mechanis<br>electrostrictive, magn<br>hanagement.<br>hit - V<br>als used and applicat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VD and PECVD a<br>examples. Semic<br>ess and float zon<br>on-germanium (Si<br>fullerene derivat<br>amples, properties<br>m, examples and a<br>letostrictive, RFID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and Me                                            | tors-<br>nods.<br>nd Ind<br>condu<br>plica<br>tions<br>IS an                   | rganic chemica<br>09 Hrs<br>p-type, n-typ<br>Electronic and<br>dium phosphic<br>icting polyme<br>tions.<br>08 Hrs<br>of<br>d NEMS, e-<br>08 Hrs<br>rs, piezoelectri                  |
| Thin film deposition<br>vapor deposition (MO<br>Chemistry of electron<br>Inorganic semicond<br>materials. Production<br>chemical properties, a<br>(InP).<br>Organic semiconduc<br>principle, synthesis of<br>Magnetic materials: 1<br>Advanced electronic<br>photochromic, thermo<br>skin, e-nose devices.<br>E-waste - Types, envi<br>Sensors and Instrume<br>Sensors: Introduction<br>sensor, electrochemica<br>Instrumental method                                                             | nic materia<br>pCVD)-p<br>nic materia<br>of electron<br>application<br>cting m<br>f polyani<br>Data stop<br>materia<br>ochromic<br>ironment<br>ental me<br>n, types,<br>al sensor<br>d of ana                                 | ques: Fabrication of<br>principle, fabrication<br>Un<br>erials<br>materials: Introductions of Gallium arses<br>exterials: Introductions in<br>prage materials, die<br>Un<br>als and E –waste:<br>c, electrochromic, et<br>tal risks, recycle m<br>Ur<br>ethods of analysis<br>principle, materia<br>r and gas sensors.<br>alysis: Principle, in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of thin films using C<br>on and applications.<br>iit - III<br>duction, types with<br>on-Czochralski proc<br>senide (GaAs), Silico<br>etion, pentacene and<br>in electronic devices.<br>electric materials: Exa<br>iit - IV<br>Materials, mechanis<br>electrostrictive, magn<br>nanagement.<br>nit - V<br>als used and application<br>in trumentation: Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VD and PECVD a<br>examples. Semic<br>ess and float zon<br>on-germanium (Sid<br>fullerene derivat<br>amples, properties<br>m, examples and a<br>tetostrictive, RFID<br>tions of optoelectur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | and Me                                            | tors-<br>nods.<br>nd Ind<br>condu<br>plica<br>tions<br>IS an                   | rganic chemica<br>09 Hrs<br>p-type, n-typ<br>Electronic and<br>dium phosphic<br>icting polyme<br>tions.<br>08 Hrs<br>of<br>d NEMS, e-<br>08 Hrs<br>rs, piezoelectri                  |
| Thin film deposition<br>vapor deposition (MO<br>Chemistry of electron<br>Inorganic semicond<br>materials. Production<br>chemical properties, a<br>(InP).<br>Organic semiconduc<br>principle, synthesis of<br>Magnetic materials:<br>Advanced electronic<br>photochromic, thermo<br>skin, e-nose devices.<br>E-waste - Types, envi<br>Sensors and Instrume<br>Sensors: Introduction<br>sensor, electrochemica<br>Instrumental method<br>conductometry.                                             | n techniq<br>DCVD)-p<br>nic materia<br>lucting<br>a of elect<br>application<br>cting m<br>f polyani<br>Data sto<br>Data sto<br>materia<br>ochromic<br>ironment<br>ental me<br>n, types,<br>al sensor<br>d of ana              | ques: Fabrication of<br>principle, fabrication<br>Un<br>erials<br>materials: Introductions of Gallium arsus<br>enterials: Introductions in<br>prage materials, die<br>Un<br>als and E –waste:<br>c, electrochromic, et<br>tal risks, recycle m<br>Un<br>ethods of analysis<br>principle, materia<br>r and gas sensors.<br>Ilysis: Principle, in<br>mpleting the course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | of thin films using C<br>on and applications.<br>iit - III<br>duction, types with<br>on-Czochralski proc<br>senide (GaAs), Silico<br>etion, pentacene and<br>in electronic devices.<br>electric materials: Exa<br>iit - IV<br>Materials, mechanis<br>electrostrictive, magn<br>nanagement.<br>nit - V<br>als used and application<br>in trumentation: Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VD and PECVD a<br>examples. Semic<br>ess and float zon<br>on-germanium (Sid<br>fullerene derivat<br>amples, properties<br>m, examples and a<br>tetostrictive, RFID<br>tions of optoelectur<br>rimetry, potentiom<br><b>be able to</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | and Me                                            | tors-<br>nods.<br>nd Ind<br>condu<br>plica<br>tions<br>IS an<br>sensor<br>lame | rganic chemica<br>09 Hrs<br>p-type, n-typ<br>Electronic and<br>dium phosphic<br>acting polyme<br>tions.<br>08 Hrs<br>of<br>d NEMS, e-<br>08 Hrs<br>rs, piezoelectri<br>photometry an |
| Thin film deposition<br>vapor deposition (MO<br>Chemistry of electron<br>Inorganic semicond<br>materials. Production<br>chemical properties, a<br>(InP).<br>Organic semiconduc<br>principle, synthesis of<br>Magnetic materials:<br>Advanced electronic<br>photochromic, thermo<br>skin, e-nose devices.<br>E-waste - Types, envi<br>Sensors and Instrume<br>Sensors: Introduction<br>sensor, electrochemica<br>Instrumental method<br>conductometry.<br>Course Outcomes: A<br>CO1 Identify the n | nic materials                                                                                                                                                                                                                 | ques: Fabrication of<br>principle, fabrication<br>Un<br>erials<br>materials: Introductor<br>tronic grade silicon<br>ons of Gallium arse<br>eaterials: Introductor<br>line, applications in<br>prage materials, die<br>Un<br>als and E –waste:<br>c, electrochromic, en-<br>tal risks, recycle m<br>Un<br>ethods of analysis<br>principle, materials<br>r and gas sensors.<br>Ilysis: Principle, in<br>mpleting the course<br>s, conventional & n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of thin films using C<br>on and applications.<br><b>hit – III</b><br>huction, types with<br>on-Czochralski proc<br>senide (GaAs), Silico<br>etion, pentacene and<br>in electronic devices.<br>electric materials: Exa<br><b>hit – IV</b><br>Materials, mechanis<br>electrostrictive, magn<br>management.<br><b>nit – V</b><br>als used and application<br><b>herefore</b> and <b>herefore</b> a | VD and PECVD a<br>examples. Semic<br>ess and float zon<br>on-germanium (Si<br>fullerene derivat<br>amples, properties<br>m, examples and a<br>letostrictive, RFID<br>tions of optoelectur<br>rimetry, potentiom<br><u>be able to</u><br>rgy systems for en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | and Me                                            | tors-<br>nods.<br>nd Ind<br>condu<br>plica<br>tions<br>IS an<br>sensor<br>lame | rganic chemica<br>09 Hrs<br>p-type, n-typ<br>Electronic and<br>dium phosphic<br>acting polyme<br>tions.<br>08 Hrs<br>of<br>d NEMS, e-<br>08 Hrs<br>rs, piezoelectri<br>photometry an |
| Thin film deposition<br>vapor deposition (MO<br>Chemistry of electron<br>Inorganic semicond<br>materials. Production<br>chemical properties, a<br>(InP).<br>Organic semiconduc<br>principle, synthesis of<br>Magnetic materials: I<br>Advanced electronic<br>photochromic, thermo<br>skin, e-nose devices.<br>E-waste - Types, envi<br>Sensors: Introduction<br>sensor, electrochemica<br>Instrumental method<br>conductometry.<br>Course Outcomes: A<br>CO1 Identify the n<br>CO2 Investigate ch | nic materia<br>pCVD)-p<br>nic materia<br>lucting<br>of election<br>cting m<br>f polyani<br>Data sto<br>materia<br>ochromic<br>ironment<br>ental me<br>n, types,<br>al sensor<br>d of ana<br>After con<br>materials<br>hemical | ques: Fabrication of<br>principle, fabrication<br>Un<br>erials<br>materials: Introductor<br>ctronic grade silico<br>ons of Gallium ars<br>materials: Introductor<br>interials: Interials: Inte | of thin films using C<br>on and applications.<br><b>hit – III</b><br>Huction, types with<br>on-Czochralski proc<br>senide (GaAs), Silico<br>etion, pentacene and<br>in electronic devices.<br>electric materials: Exa<br><b>hit – IV</b><br>Materials, mechanis<br>electrostrictive, magn<br>nanagement.<br><b>nit – V</b><br>als used and application<br>hereitals will<br><b>se, the students will</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | VD and PECVD a<br>examples. Semic<br>ess and float zon<br>on-germanium (Sid<br>fullerene derivat<br>amples, properties<br>m, examples and a<br>tetostrictive, RFID<br>tions of optoelectr<br>rimetry, potentiom<br><b>be able to</b><br>rgy systems for en<br>nological application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and Me                                            | tors-<br>nods.<br>nd Ind<br>condu<br>plications<br>IS an<br>sensor<br>lame     | rganic chemica<br>09 Hrs<br>p-type, n-typ<br>Electronic and<br>dium phosphic<br>acting polyme<br>tions.<br>08 Hrs<br>of<br>d NEMS, e-<br>08 Hrs<br>rs, piezoelectri<br>photometry an |

**CO4** Develop solutions in the areas of applied materials and energy systems for sustainable engineering application.

RV Educational Institutions ° RV College of Engineering °

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

| Refere | nce Books                                                                                                                                                           |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1      | Chemistry in microelectronics, Yannick Le Tiec, 2013, Wiley Publications, ISBN: 9781848214361.                                                                      |
| 2      | Electronics properties of materials, Rolf E, Hummel, 2012, Springer Publications New York, 4 <sup>th</sup> Edition, ISBN 9781441981639.                             |
| 3      | Smart nanomaterials for sensor application, Li S, Ge Y, Li H, 2012, Bentham Science Publishers, ISBN: 9781608055425.                                                |
| 4      | Energy storage and conversion materials, Skinner S, 2019, Royal society of chemistry, ISBN: 9781788010900.                                                          |
| E-Boo  | lks                                                                                                                                                                 |
| 5      | Smart materials, Harvey, James A. Handbook of materials selection, 2002, John Wiley & Sons Canada, Limited, ISBN: 9780471359241.                                    |
| 6      | Engineering Chemistry, Suba Ramesh, Vairam, Ananda Murthy, 2011, Wiley India, ISBN: 9788126519880.                                                                  |
| 7      | Energy storage and conversion devices; Supercapacitors, batteries and hydroelectric Cells Editor: Anurag Gaur, 2021, CRC Press, ISBN: 9781000470512.                |
| 8      | An overview of advanced nanomaterials for sensor applications, Rohilla D, Chaudhary S, Umar A. Engineered Science publisher. 2021, 16:47-70. DOI: 10.30919/es8d552. |

|    | Laboratory Experiments (ME stream)                                                                             |
|----|----------------------------------------------------------------------------------------------------------------|
| 1  | Estimation of copper in the E-waste.                                                                           |
| 2  | Determination of pKa of a weak acid using pH sensor.                                                           |
| 3  | Potentiometric estimation of iron.                                                                             |
| 4  | Colorimetric estimation of copper from PCBs.                                                                   |
| 5  | Conductometric estimations.                                                                                    |
| 6  | Flame photometric estimation of sodium.                                                                        |
| 7  | Determination of viscosity coefficient.                                                                        |
| 8  | Electroplating of copper.                                                                                      |
| 9  | Preparation of polyaniline for sensor application (Demonstration experiment).                                  |
| 10 | Preparation of semiconducting TiO <sub>2</sub> nanoparticles for DSSC applications (Demonstration experiment). |
| 11 | Determination of band gap of semiconducting material using UV-vis spectrophotometer (Demonstration             |
|    | experiment).                                                                                                   |
| 12 | Study the surface morphology of nanomaterials using scanning electron microscopy (Demonstration                |
|    | experiment).                                                                                                   |
| 13 | Thin films fabrication using PECVD and sputtering technique (Demonstration Experiment).                        |
| 14 | Fabrication of coin cell super capacitor prototype (Demonstration experiment).                                 |
| 15 | Synthesis of iron oxide nanomaterials using solution combustion synthesis.                                     |
| 16 | Green synthesis of nanomaterials.                                                                              |

|   | RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY WITH LA                                                                                                                                                                                                                                                                                                                                | AB)   |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| # | COMPONENTS                                                                                                                                                                                                                                                                                                                                                                                   | MARKS |
| 1 | QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be                                                                                                                                                                                                                                                                                                               |       |
|   | conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO                                                                                                                                                                                                                                                                                                                     | 10    |
|   | QUIZZES WILL BE THE FINAL QUIZ MARKS.                                                                                                                                                                                                                                                                                                                                                        |       |
| 2 | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). <b>THREE tests will be conducted</b> . Each test will be evaluated for <b>50 Marks</b> , adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 30 MARKS</b> . | 30    |
| 3 | EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and                                                                                                                                                                                                                                                                                                                   | 30    |



Approved by AICTE, New Delhi

|   | practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) <b>ADDING UPTO 30 MARKS</b> .                                                  |     |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 4 | LAB: Conduction of laboratory exercises, lab report, observation and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE REDUCED TO 30 MARKS | 30  |
|   | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                         | 100 |

#### MAXIMUM MARKS FOR THE CIE THEORY

| <b>RUBRIC FOR SEMESTER END EXAMINATION (THEORY)</b> |                                                   |       |  |  |
|-----------------------------------------------------|---------------------------------------------------|-------|--|--|
| <b>Q. NO.</b>                                       | CONTENTS                                          | MARKS |  |  |
|                                                     | PART A                                            |       |  |  |
| 1                                                   | Objective type questions covering entire syllabus | 10    |  |  |
|                                                     | PART B                                            |       |  |  |
|                                                     | (Maximum of TWO Sub-divisions only)               |       |  |  |
| 2                                                   | Unit 1 : (Compulsory)                             | 14    |  |  |
| 3 & 4                                               | Unit 2 : Question 3 or 4                          | 14    |  |  |
| 5&6                                                 | Unit 3 : Question 5 or 6                          | 14    |  |  |
| 7 & 8                                               | Unit 4 : Question 7 or 8                          | 14    |  |  |
| 9 & 10                                              | Unit 5 : Question 9 or 10                         | 14    |  |  |
| 11                                                  | Lab Component (Compulsory)                        | 20    |  |  |
|                                                     | MAXIMUM MARKS FOR THE SEE THEORY                  | 100   |  |  |



Approved by AICTE, New Delhi

| University, Belaga                                                                                                                                                      | ni                                                        |                                                                                                    |                                                                                                    |                                                                                  |                                  |                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------|
|                                                                                                                                                                         |                                                           |                                                                                                    | emester – II                                                                                       |                                                                                  |                                  |                                                                                           |
|                                                                                                                                                                         | С                                                         | HEMISTRY OF EN                                                                                     | NGINEERING M                                                                                       | ATERIALS                                                                         |                                  |                                                                                           |
|                                                                                                                                                                         |                                                           |                                                                                                    | pplied Science Cour                                                                                |                                                                                  |                                  |                                                                                           |
|                                                                                                                                                                         | Stream                                                    | n: Mechanical (Comm                                                                                |                                                                                                    | & ME Program                                                                     | s)                               |                                                                                           |
|                                                                                                                                                                         |                                                           | <u>`````````````````````````````````````</u>                                                       | ory & Practice)                                                                                    |                                                                                  |                                  |                                                                                           |
| Course Code                                                                                                                                                             | :                                                         | 22CHY22D                                                                                           |                                                                                                    | IE                                                                               | :                                | 100 Marks                                                                                 |
| Credits: L:T:P                                                                                                                                                          | :                                                         | 3:0:1                                                                                              |                                                                                                    | EIE                                                                              | :                                | 100 Marks                                                                                 |
| Total Hours                                                                                                                                                             | :                                                         | 42L+ 30P                                                                                           | S                                                                                                  | EE Duration                                                                      | :                                | 3 Hours                                                                                   |
|                                                                                                                                                                         |                                                           | <b>T</b> T •/                                                                                      | *                                                                                                  |                                                                                  |                                  | 0.0 11                                                                                    |
| Fuels: Thermochemis                                                                                                                                                     | traz oolo                                                 | Unit -                                                                                             |                                                                                                    | internal combu                                                                   | ation                            | 08 Hrs                                                                                    |
| knocking, octane and                                                                                                                                                    |                                                           | -                                                                                                  | , e                                                                                                |                                                                                  | stion                            | engines, reasons to                                                                       |
| Alternative Fuels: G                                                                                                                                                    |                                                           |                                                                                                    |                                                                                                    |                                                                                  | ertie                            | characteristics and                                                                       |
| types.                                                                                                                                                                  |                                                           | - nyurogen produette                                                                               | fill and storage. Roef                                                                             | cets Fuels. Flop                                                                 |                                  | s, characteristics and                                                                    |
| <u></u>                                                                                                                                                                 |                                                           | Unit –                                                                                             | · II                                                                                               |                                                                                  |                                  | 09 Hrs                                                                                    |
| Energy storage and                                                                                                                                                      | conve                                                     |                                                                                                    |                                                                                                    | citors: Working                                                                  | prir                             |                                                                                           |
| fabrication and applica                                                                                                                                                 |                                                           |                                                                                                    |                                                                                                    |                                                                                  |                                  |                                                                                           |
|                                                                                                                                                                         |                                                           | ergy: Hydrogen - ox                                                                                |                                                                                                    |                                                                                  |                                  |                                                                                           |
| Solar cell – principle,                                                                                                                                                 |                                                           |                                                                                                    |                                                                                                    |                                                                                  |                                  |                                                                                           |
| 1 1 )                                                                                                                                                                   |                                                           | Unit –                                                                                             |                                                                                                    |                                                                                  |                                  | 08 Hrs                                                                                    |
| Corrosion Science a                                                                                                                                                     | and Ma                                                    |                                                                                                    |                                                                                                    | theory of corro                                                                  | sion                             |                                                                                           |
| <b>Corrosion control:</b><br>phosphating. Cathodic<br>penetration rate (CPR<br>of copper:                                                                               | c protect                                                 | tion - sacrificial anode                                                                           | e method. Corrosion                                                                                | testing by weigh                                                                 | t los                            | s method. Corrosion                                                                       |
|                                                                                                                                                                         |                                                           | Unit –                                                                                             | IV                                                                                                 |                                                                                  |                                  | 08 Hrs                                                                                    |
| Chemistry of nano                                                                                                                                                       | materia                                                   |                                                                                                    |                                                                                                    | area, optical a                                                                  | and                              |                                                                                           |
| Classification of nano                                                                                                                                                  | material                                                  | s. Synthesis: Solution                                                                             | combustion and Sol-                                                                                | gel methods.                                                                     |                                  |                                                                                           |
| Synthesis and applic                                                                                                                                                    | cations:                                                  | Synthesis, properties                                                                              | and applications of                                                                                | carbon nano tub                                                                  | bes a                            | nd graphenes. Nand                                                                        |
| lubricants: Types of                                                                                                                                                    | nanopa                                                    | rticles as lubricant a                                                                             | additives and their                                                                                | application in d                                                                 | lefer                            | ice, automobile and                                                                       |
| spacecrafts.                                                                                                                                                            |                                                           |                                                                                                    |                                                                                                    |                                                                                  |                                  | 1                                                                                         |
|                                                                                                                                                                         |                                                           | Unit –                                                                                             |                                                                                                    |                                                                                  |                                  | 09 Hrs                                                                                    |
| Engineering polymer<br>polyether sulfones- p<br>synthesis, properties,<br>and factors affecting T<br>Reinforcements and<br>composites. ASTM st<br>Applications of polym | oreparati<br>and app<br>Ig.<br><b>testing</b><br>tandards | on and specific appli<br>lication of poly lactic<br>Glass, carbon and na<br>of material testing-to | ications in industrie<br>acid (PLA). Signific<br>atural fibre - synthesi<br>ensile strength, flexi | s. Biodegradable<br>ance of glass tra<br>is, properties and<br>ural strength, IL | e po<br>ansiti<br>1 app<br>.SS a | lymer: Introduction<br>ion temperature (Tg<br>plications in polyme<br>and impact strength |
| Course Outerman A                                                                                                                                                       | Char                                                      | unloting the second (1)                                                                            | h o atu donte                                                                                      | bla 4a                                                                           |                                  |                                                                                           |
| Course Outcomes: A                                                                                                                                                      |                                                           |                                                                                                    |                                                                                                    |                                                                                  | near                             | na applications                                                                           |
|                                                                                                                                                                         |                                                           | , conventional & non-opproperties of materials                                                     |                                                                                                    |                                                                                  |                                  | ng applications.                                                                          |
|                                                                                                                                                                         |                                                           |                                                                                                    |                                                                                                    |                                                                                  |                                  | 9                                                                                         |
| CO3 Apply the know                                                                                                                                                      | owieage                                                   | of material property a                                                                             | ind energy to analyze                                                                              | environmental 1                                                                  | ssue                             | 8.                                                                                        |

CO4 Develop solutions in the areas of applied materials and energy systems for sustainable engineering application.

RV Educational Institutions ° RV College of Engineering °

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

# Reference Books 1 Understanding nanomaterials, Malkiat S. Johal, Lewis E. Johnson, 2017, CRC Press, Taylor and Francis Group, ISBN: 9780815354383. 2 Engineering chemistry, Shubha Ramesh et.al., 2011, Wiley India, 1<sup>st</sup> Edition, ISBN: 9788126519880. 3 Fundamentals of analytical chemistry, Douglas A. Skoog et.al., 2004, 9<sup>th</sup> edition, Thomson Asia pte Ltd., ISBN: 9780495558286

4 Energy storage and conversion devices, Anurag Gaur, A. L. Sharma, Anil Arya, 2021, CRC Press, Taylor and Francis Group, 1<sup>st</sup> Edition, ISBN: 9781003141761.

|    | Laboratory Experiments                                                                                       |
|----|--------------------------------------------------------------------------------------------------------------|
| 1  | Volumetric analysis.                                                                                         |
| 2  | Analysis of alloy (Brass).                                                                                   |
| 3  | Ore analysis (Haematite).                                                                                    |
| 4  | Determination of pKa of a weak acid.                                                                         |
| 5  | Potentiometric estimation of iron in rust.                                                                   |
| 6  | Colorimetric estimation of copper.                                                                           |
| 7  | Conductometric estimations.                                                                                  |
| 8  | Determination of viscosity coefficient of a given liquid using Ostwald's viscometer.                         |
| 9  | Flame photometric estimation of sodium in the given saline solution.                                         |
| 10 | Preparation of nanomaterials by solution combustion method.                                                  |
| 11 | Preparation of thin films by dipcoating technique and characterization of thin film.                         |
| 12 | Determination of relative and kinematic viscosities of given lubricating oil at different temperatures using |
|    | Redwood viscometer (Demonstration experiment).                                                               |
| 13 | To find of Tg of polymer using DSC (Demonstration Experiment).                                               |
| 14 | Study of surface morphology of materials using SEM (Demonstration experiment).                               |
| 15 | Phase analysis of alloys by XRD (Demonstration experiment).                                                  |
| 16 | Synthesis of metal oxide nanomaterials using solution combustion synthesis (Demonstration experiment).       |
| 17 | Green synthesis of nanomaterials (Demonstration experiment).                                                 |

|   | RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY WITH LA                                                                                                                                                                                                                                                                                                                                | AB)   |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| # | COMPONENTS                                                                                                                                                                                                                                                                                                                                                                                   | MARKS |
| 1 | QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.                                                                                                                                                                                                | 10    |
| 2 | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). <b>THREE tests will be conducted</b> . Each test will be evaluated for <b>50 Marks</b> , adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 30 MARKS</b> . | 30    |
| 3 | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) <b>ADDING UPTO 30 MARKS</b> .                                                                                                    | 30    |
| 4 | LAB: Conduction of laboratory exercises, lab report, observation and analysis (30 Marks),<br>lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10<br>Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE REDUCED TO 30<br>MARKS                                                                                                                            | 30    |
|   | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                                                                                                                                             | 100   |



|                                           | <b>RUBRIC FOR SEMESTER END EXAMINATION (THEORY)</b> |       |  |  |  |  |
|-------------------------------------------|-----------------------------------------------------|-------|--|--|--|--|
| Q. NO.                                    | CONTENTS                                            | MARKS |  |  |  |  |
|                                           | PART A                                              |       |  |  |  |  |
| 1                                         | Objective type questions covering entire syllabus   | 10    |  |  |  |  |
|                                           | PART B                                              |       |  |  |  |  |
|                                           | (Maximum of TWO Sub-divisions only)                 |       |  |  |  |  |
| 2                                         | Unit 1 : (Compulsory)                               | 14    |  |  |  |  |
| 3 & 4                                     | Unit 2 : Question 3 or 4                            | 14    |  |  |  |  |
| <b>5 &amp; 6</b> Unit 3 : Question 5 or 6 |                                                     |       |  |  |  |  |
| 7 & 8                                     | Unit 4 : Question 7 or 8                            | 14    |  |  |  |  |
| 9 & 10                                    | Unit 5 : Question 9 or 10                           | 14    |  |  |  |  |
| 11                                        | Lab Component (Compulsory)                          | 20    |  |  |  |  |
|                                           | MAXIMUM MARKS FOR THE SEE THEORY                    | 100   |  |  |  |  |

Go, change the world



Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

## Professional Core Courses

- **> BASIC ELECTRONICS (22EC13)**
- > ELEMENTS OF ELECTRICAL ENGINEERING (22EE13)
- > ELEMENTS OF MECHANICAL ENGINEERING (22ME13)
- > PRINCIPLES OF PROGRAMMING USING C (22CS23)
- > ENGINEERING MECHANICS (22CV23)



Approved by AICTE, New Delhi

|                                                                                                                                                                                                                            |        |                     | Semester – I            |                      |              |                       |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------|-------------------------|----------------------|--------------|-----------------------|--|--|
|                                                                                                                                                                                                                            | _      |                     | SIC ELECTRONICS         |                      |              |                       |  |  |
| Category: Professional Core Course                                                                                                                                                                                         |        |                     |                         |                      |              |                       |  |  |
| Stream: Electronics (Common to EC, ET & EI Programs)                                                                                                                                                                       |        |                     |                         |                      |              |                       |  |  |
| (Theory)           Course Code         :         22EC13         CIE         :         100 Marks                                                                                                                            |        |                     |                         |                      |              |                       |  |  |
| Credits: L:T:P                                                                                                                                                                                                             | :      | 3:0:0               |                         | SEE                  | •            |                       |  |  |
| Total Hours                                                                                                                                                                                                                | :      | 40L                 |                         | SEE Duration         | :            | 100 Marks<br>3 Hours  |  |  |
| Total Hours                                                                                                                                                                                                                | •      | 40L                 |                         | SEE Duration         | •            | 5 110018              |  |  |
|                                                                                                                                                                                                                            |        | U                   | nit – I                 |                      |              | 08Hrs                 |  |  |
| <b>Bipolar Junction Tran</b>                                                                                                                                                                                               | sisto  |                     |                         | Regulated Power      | Supp         |                       |  |  |
| Transistors- Transistor C                                                                                                                                                                                                  |        |                     | -                       | 0                    |              | <i>v</i> 1            |  |  |
| Divider Bias Configuration                                                                                                                                                                                                 |        |                     |                         |                      |              |                       |  |  |
| The re Transistor Model                                                                                                                                                                                                    | for    | CE Configuration    | , RC Coupled Ampl       | ifier, Gain, Input 1 | Resist       | ance and Frequency    |  |  |
| Response, Cascaded Syst                                                                                                                                                                                                    | ems.   | Numerical Examp     | les.                    |                      |              |                       |  |  |
|                                                                                                                                                                                                                            |        |                     | nit – II                |                      |              | 08 Hrs                |  |  |
| <b>MOSFET:</b> Differences b                                                                                                                                                                                               |        |                     |                         |                      |              |                       |  |  |
| Regions of Operation, C                                                                                                                                                                                                    |        |                     |                         |                      |              |                       |  |  |
| Trans-Conductance and                                                                                                                                                                                                      | Volt   | age Gain, rDS, O    | peration of CMOS        | Inverter, CMOS N     | IANI         | and CMOS NOR,         |  |  |
| Numerical Examples.                                                                                                                                                                                                        |        |                     |                         | 1 .                  | <b>C N T</b> | · F 11 1              |  |  |
| Basic Principles and Adv                                                                                                                                                                                                   |        |                     |                         | ncept, Advantages    | of Ne        | egative Feedback,     |  |  |
| Analysis of Gain and Gai                                                                                                                                                                                                   | n Sta  | <i>.</i>            | *                       |                      |              | 08 Hrs                |  |  |
| Digital Floatuanias                                                                                                                                                                                                        |        | Un                  | it – III                |                      |              | 08 Hrs                |  |  |
| Digital Electronics<br>Boolean Algebra and S                                                                                                                                                                               | Simr   | lification. Boolea  | n Postulates and De     | Morgan's Theore      | me           | Simplification Using  |  |  |
| Postulates and Theorems.                                                                                                                                                                                                   |        |                     |                         |                      | 1113. 1      | Simplification Using  |  |  |
| Basic and Universal Ga                                                                                                                                                                                                     |        |                     |                         |                      | er. Fu       | ll Adder. Realization |  |  |
| Using Basic Gates and N.                                                                                                                                                                                                   |        |                     |                         |                      | ,            | -                     |  |  |
|                                                                                                                                                                                                                            |        | *                   | it – IV                 |                      |              | 08 Hrs                |  |  |
| Introduction To OP-AN                                                                                                                                                                                                      | /IP:   | Block Diagram of    | Op-Amp, Characteri      | stics of an Ideal O  | p-Am         | p: Gain, Bandwidth,   |  |  |
| Input & Output Impedan                                                                                                                                                                                                     | ces,   | CMRR, PSRR, SI      | ew Rate, Input Offse    | et Voltage. Typica   | l Para       | ameters of a General  |  |  |
| Purpose Op-Amp, Pin Co                                                                                                                                                                                                     |        |                     |                         |                      |              |                       |  |  |
| Non Inverting, Amplifi                                                                                                                                                                                                     |        |                     |                         |                      | Con          | nparator, Difference  |  |  |
| Amplifier, Schmitt Trigge                                                                                                                                                                                                  | er, Ir |                     |                         | amples.              |              | T                     |  |  |
|                                                                                                                                                                                                                            |        |                     | nit – V                 |                      |              | 08 Hrs                |  |  |
| Communication System                                                                                                                                                                                                       |        |                     |                         |                      |              |                       |  |  |
| Introduction to Comm                                                                                                                                                                                                       |        |                     |                         |                      |              |                       |  |  |
| Modulation, Types of Modulation: AM and FM. Modulation Index, Sideband Frequencies, Bandwidth and                                                                                                                          |        |                     |                         |                      |              |                       |  |  |
| Power, Differences Between AM and FM, Numerical Examples. Digital Communication Block Diagram.                                                                                                                             |        |                     |                         |                      |              |                       |  |  |
| <b>Introduction to Transducers:</b> Passive Electrical Transducers- Resistive Thermometer, Linear Variable Differential Transformer (LVDT), Proximity Transducer. Active Electrical Transducer- Piezo Electric Transducer, |        |                     |                         |                      |              |                       |  |  |
| Hall Effect Transducer.                                                                                                                                                                                                    | (LV    | D1), Proximity 1 ra | insducer. Active Elec   | trical Transducer-   | Piezo        | Electric Transducer,  |  |  |
| Case Studies:                                                                                                                                                                                                              |        |                     |                         |                      |              |                       |  |  |
| i. Automatic Headl                                                                                                                                                                                                         | ight   | System              |                         |                      |              |                       |  |  |
| ii. Pick and Place Re                                                                                                                                                                                                      | -      |                     |                         |                      |              |                       |  |  |
|                                                                                                                                                                                                                            | 0001   | 3.                  |                         |                      |              |                       |  |  |
| Course Outcomes: After                                                                                                                                                                                                     | r 001  | nnleting the cours  | e the students will b   | ne able to           |              |                       |  |  |
| Course Outcomes. After                                                                                                                                                                                                     |        |                     | e, the students will be |                      | 1            | 1                     |  |  |

**CO1** Realize the operation and the characteristics of the Electronic devices for modern day applications.

- **CO2** Analyze different electronic circuits for various system designs.
- **CO3** Demonstrate the role of different building blocks of Electronics Systems.

Professional Core Course

#### RV Educational Institutions <sup>®</sup> RV College of Engineering <sup>®</sup>

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

**CO4** Evaluate the performance of the Electronic Systems to meet given specifications using modern engineering tools.

| Refere | nce Books                                                                                                                                                          |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1      | Electronic Devices and Circuit Theory, Robert L Boylestad, Louis Nashelsky, Prentice Hall India publication, 10 <sup>th</sup> Edition, 2009, ISBN: 978-317-2700-3. |
|        |                                                                                                                                                                    |
| 2      | Basic Electronics, D P Kothari, I J Nagrath, MCGraw Higher Ed, 2 <sup>nd</sup> Edition, ISBN: 9789352606467.                                                       |
| 3      | Digital Logic and Computer Design, Morris Mano, , Prentice Hall India publication, 54 <sup>th</sup> Edition, 2007,                                                 |
|        | ISBN: 978-81-317-1450-8.                                                                                                                                           |
| 4      | Electronic Devices and Circuits, David A. Bell, Oxford University Press, 5 <sup>th</sup> Edition, 2008.                                                            |
|        | ISBN:9780195693409.                                                                                                                                                |
| 5      | Basic Electronics, Ravish Aradhya H V, McGraw Hill Education; 3rd edition, ISBN: 978-0071333108.                                                                   |

|   | <b>RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)</b>                                                                                                                                                                                                                                                                                                               |       |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| # | COMPONENTS                                                                                                                                                                                                                                                                                                                                                                  | MARKS |
| 1 | <b>QUIZZES:</b> Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. <b>THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.</b>                                                                                                                                                                     | 20    |
| 2 | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.</b> | 40    |
| 3 | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), <b>MATLAB (20) ADDING UPTO 40 MARKS</b> .                                                                      | 40    |
|   | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                                                                                                                            | 100   |

|        | RUBRIC FOR SEMESTER END EXAMINATION (THEORY)      |       |  |  |  |  |
|--------|---------------------------------------------------|-------|--|--|--|--|
| Q. NO. | CONTENTS                                          | MARKS |  |  |  |  |
|        | PART A                                            |       |  |  |  |  |
| 1      | Objective type questions covering entire syllabus | 20    |  |  |  |  |
|        | PART B                                            |       |  |  |  |  |
|        | (Maximum of TWO Sub-divisions only)               |       |  |  |  |  |
| 2      | Unit 1 : (Compulsory)                             | 16    |  |  |  |  |
| 3 & 4  | Unit 2 : Question 3 or 4                          | 16    |  |  |  |  |
| 5&6    | Unit 3 : Question 5 or 6                          | 16    |  |  |  |  |
| 7 & 8  | Unit 4 : Question 7 or 8                          | 16    |  |  |  |  |
| 9 & 10 | Unit 5: Question 9 or 10                          | 16    |  |  |  |  |
|        | MAXIMUM MARKS FOR THE SEE THEORY                  | 100   |  |  |  |  |



Approved by AICTE, New Delhi

| Chiverenty, Delegan                                                                                              |      |                      | Semester – I            |                       |       |                        |  |  |
|------------------------------------------------------------------------------------------------------------------|------|----------------------|-------------------------|-----------------------|-------|------------------------|--|--|
|                                                                                                                  |      | ELEMENTS OF          | ELECTRICAL EN           | GINEERING             |       |                        |  |  |
|                                                                                                                  |      |                      | Professional Core C     |                       |       |                        |  |  |
| Stream: Electronics (Only to EE Program)                                                                         |      |                      |                         |                       |       |                        |  |  |
|                                                                                                                  |      |                      | (Theory)                |                       |       |                        |  |  |
| Course Code                                                                                                      | :    | 22EE13               |                         | CIE                   | :     | 100 Marks              |  |  |
| Credits: L:T:P                                                                                                   | :    | 3:0:0                |                         | SEE                   | :     | 100 Marks              |  |  |
| Total Hours                                                                                                      | :    | 40 L                 |                         | SEE Duration          | :     | 3 Hours                |  |  |
|                                                                                                                  |      |                      |                         |                       |       |                        |  |  |
|                                                                                                                  |      | Uı                   | nit – I                 |                       |       | 08 Hrs                 |  |  |
| AC Circuits: Parameters                                                                                          | 5 0  | f sinusoidal quan    | tities, Generation of   | f sinusoidal voltage  | , V   | oltage and current     |  |  |
| relationship with phasor di                                                                                      | agr  | am in R, L and C o   | circuits. Analysis with | h phasor diagram of I | R-L   | L, R-C, R-L-C Series   |  |  |
| and Parallel circuits, Powe                                                                                      | r fa | ctor, real power, re | active power, apparen   | nt power, Examples.   |       |                        |  |  |
| Three-phase circuits: Gen                                                                                        | nera | ation of three phase | EMF, phase sequend      | ce, relation between  | pha   | se and line values of  |  |  |
| voltage and current from                                                                                         |      |                      |                         |                       |       |                        |  |  |
| circuit by two wattmeter m                                                                                       |      |                      |                         |                       | 1     | 1                      |  |  |
|                                                                                                                  |      | · · · · · /          | it – II                 |                       |       | 08 Hrs                 |  |  |
| DC Machines: DC Gener                                                                                            | ato  |                      |                         | ation for induced EM  | F. t  | L                      |  |  |
| Characteristics of shunt and                                                                                     |      |                      |                         |                       | ,     | J1 )                   |  |  |
| DC Motor: Introduction,                                                                                          |      |                      |                         | MF, types, Derivatio  | n fe  | or power & Torque.     |  |  |
| Characteristics- shunt, seri-                                                                                    |      |                      |                         |                       |       | 1 1 7                  |  |  |
| ,                                                                                                                |      |                      | it – III                | , 11                  |       | 08 Hrs                 |  |  |
| Single Phase Transformers: Necessity of transformer, principle of operation, Construction of core and shell type |      |                      |                         |                       |       |                        |  |  |
| for single - phase, ideal tra                                                                                    |      |                      |                         |                       |       |                        |  |  |
| constant and variable losse                                                                                      |      |                      |                         |                       |       |                        |  |  |
| Unit – IV 08 Hrs                                                                                                 |      |                      |                         |                       |       |                        |  |  |
| Three phase Induction Motor: Concept of rotating magnetic field, Principle of operation, constructions, types,   |      |                      |                         |                       |       |                        |  |  |
| slip and its significance, ap                                                                                    |      |                      |                         |                       | ,     | ·····, ·/····          |  |  |
| Alternators: Principle of                                                                                        |      |                      | struction, advantage    | of stationary armatu  | re.   | derivation for EMF     |  |  |
| equation with the concept                                                                                        |      |                      |                         |                       |       |                        |  |  |
| examples.                                                                                                        |      | U (                  | ,                       | 6                     |       | <i>,,,</i> 11 <i>,</i> |  |  |
| 1                                                                                                                |      | Un                   | it – V                  |                       |       | 08 Hrs                 |  |  |
| Power transmission and                                                                                           | di   | stribution: Conce    | pt of power transmi     | ssion and power dis   | strib |                        |  |  |
| distribution system (400 V                                                                                       |      |                      |                         |                       |       |                        |  |  |
| only.                                                                                                            |      | )                    | , , ,                   | 5                     |       | 0 0                    |  |  |
| Electricity bill: Power ra                                                                                       | tin  | g of household ap    | pliances including a    | ir conditioners, PCs  | , la  | aptops, printers, etc. |  |  |
| Definition of "unit" used f                                                                                      |      |                      |                         |                       |       |                        |  |  |
| bill for domestic consumers.                                                                                     |      |                      |                         |                       |       |                        |  |  |
| Equipment Safety measures: Fuse and Miniature circuit breaker (MCB), Electric Shock, Earthing and its types,     |      |                      |                         |                       |       |                        |  |  |
| Safety Precautions to avoid                                                                                      |      |                      | × ×                     |                       |       |                        |  |  |
| <i>.</i>                                                                                                         |      |                      |                         |                       |       |                        |  |  |
| <b>Course Outcomes: After</b>                                                                                    | con  | npleting the cours   | e. the students will h  | e able to             |       |                        |  |  |
|                                                                                                                  |      |                      | electrical circuits, T  |                       | m     | achines, and safety    |  |  |
|                                                                                                                  | net  | ers of AC Circuits   | AC, DC machines an      | d Transformer         |       |                        |  |  |
| 1                                                                                                                |      |                      |                         |                       | antic | on                     |  |  |
| CO3 Analyze the characteristics of AC and DC machines, power transmission & distribution.                        |      |                      |                         |                       |       |                        |  |  |

**CO4** Apply the knowledge of electrical safety equipment, measures, and tariffs to implement in the engineering applications for domestic and industrial wirings.

RV Educational Institutions ° RV College of Engineering °

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

| Refere | Reference Books                                                                                                    |  |  |  |  |  |
|--------|--------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 1      | Electrical and Electronics Technology, E. Hughes, 10 <sup>th</sup> Edition, 2010, Pearson, ISBN- 978-8131733660.   |  |  |  |  |  |
| 2      | Basic Electrical Engineering, C.L. Wadhwa, 1 <sup>st</sup> Edition, 2007, New Age international(P) Limited,        |  |  |  |  |  |
|        | ISBN- 10: 9788122421521.                                                                                           |  |  |  |  |  |
| 3      | Basic Electrical Engineering, M. V. Rao, 10 <sup>th</sup> Edition, 2018, Subhas Publications, ISBN- 9789383214136. |  |  |  |  |  |
| 4      | Basic Electrical Engineering, D C Kulshreshtha, Revised First Edition, 2017, Tata McGraw Hill,                     |  |  |  |  |  |
|        | ISBN- 13:978-0071328968.                                                                                           |  |  |  |  |  |

|   | <b>RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)</b>                                                                                                                                                                                                                                                                                                               |       |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| # | COMPONENTS                                                                                                                                                                                                                                                                                                                                                                  | MARKS |
| 1 | <b>QUIZZES:</b> Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. <b>THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.</b>                                                                                                                                                                     | 20    |
| 2 | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.</b> | 40    |
| 3 | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), <b>MATLAB (20) ADDING UPTO 40 MARKS</b> .                                                                      | 40    |
|   | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                                                                                                                            | 100   |

|        | RUBRIC FOR SEMESTER END EXAMINATION (THEORY)      |     |  |  |  |  |
|--------|---------------------------------------------------|-----|--|--|--|--|
| Q. NO. | CONTENTS                                          |     |  |  |  |  |
|        | PART A                                            |     |  |  |  |  |
| 1      | Objective type questions covering entire syllabus | 20  |  |  |  |  |
|        | PART B                                            |     |  |  |  |  |
|        | (Maximum of TWO Sub-divisions only)               |     |  |  |  |  |
| 2      | Unit 1 : (Compulsory)                             | 16  |  |  |  |  |
| 3 & 4  | Unit 2 : Question 3 or 4                          | 16  |  |  |  |  |
| 5&6    | Unit 3 : Question 5 or 6                          | 16  |  |  |  |  |
| 7 & 8  | Unit 4 : Question 7 or 8                          | 16  |  |  |  |  |
| 9 & 10 | Unit 5: Question 9 or 10                          | 16  |  |  |  |  |
|        | MAXIMUM MARKS FOR THE SEE THEORY                  | 100 |  |  |  |  |



Approved by AICTE, New Delhi

| Oliverally, Delagan                                                                            |        |                      | Semester – I                |                        |             |           |               |
|------------------------------------------------------------------------------------------------|--------|----------------------|-----------------------------|------------------------|-------------|-----------|---------------|
|                                                                                                |        | ELEMENTS OF          | MECHANICAL EN               | GINEERING              |             |           |               |
|                                                                                                |        |                      |                             |                        |             |           |               |
| Category: Professional Core Course<br>Stream: Mechanical (Common for AS, CH, IM & ME Programs) |        |                      |                             |                        |             |           |               |
| 5                                                                                              | u cam  | . Meenanical (Co     | (Theory)                    |                        | "           |           |               |
| Course Code                                                                                    |        | 22ME13               |                             | CIE                    | : 100 Marks |           |               |
| Credits: L:T:P                                                                                 | :      | 3:0:0                |                             | SEE                    | :           | 100 M     |               |
| Total Hours                                                                                    | :      | 40T                  |                             | SEE Duration           | :           | 3 Hou     |               |
|                                                                                                |        |                      |                             |                        |             |           |               |
|                                                                                                |        |                      | nit – I                     |                        |             |           | 08 Hrs        |
| Engineering Materials                                                                          |        |                      |                             |                        |             |           |               |
| Nonferrous, Polymers                                                                           | Ther   | noplastics, Therme   | osets and Elastomer         | s), Ceramics and C     | om          | posites.  | Thin films,   |
| Sensors, semiconductor                                                                         |        | T                    | :4 TT                       |                        |             |           | 10 11         |
| Lathe and Latha                                                                                | 4:     |                      | it – II                     | . Lotha an anation - ( | Гане        | ing T-    | 10 Hrs        |
| Lathe and Lathe opera<br>drilling, boring, knurling                                            |        |                      |                             |                        | ur          | inng, 1a  | iper Turning, |
| Joining processes & N                                                                          |        |                      |                             |                        | Perr        | nanent    | & temporary   |
| joints, Soldering & wel                                                                        |        |                      |                             |                        |             |           |               |
| causes, Non-Destructive                                                                        |        |                      |                             |                        |             |           |               |
| current testing.                                                                               |        | ing. Liquid penet    | ate testing, magneti        | e partiele testing, e  | /1110       | isonic i  | esting, Ludy  |
| eurrent testing.                                                                               |        | Uni                  | it – III                    |                        |             |           | 08 Hrs        |
| Turbines: Steam and its                                                                        | s prop |                      |                             | Classification of hvd  | rau         | lic turbi |               |
| of Pelton, Francis and                                                                         |        |                      |                             |                        |             |           |               |
| Turbines (Brayton cycle                                                                        |        | , 1                  | 1                           |                        |             | ,         | 8             |
| Refrigeration: Refriger                                                                        |        | effect, working p    | principle of Vapour         | Compression refrige    | erat        | ion sys   | tems, ton of  |
| refrigeration, COP, refri                                                                      |        |                      |                             |                        |             | -         |               |
|                                                                                                |        | Uni                  | it – IV                     |                        |             |           | 08 Hrs        |
| Mechanical Drives: C                                                                           |        |                      |                             |                        |             | ngines,   | Performance   |
| Characteristics, Classific                                                                     |        |                      |                             |                        |             |           |               |
| Electrical Drives: Hist                                                                        |        |                      |                             |                        |             |           |               |
| Performance, Traction N                                                                        | lotor  | Characteristics, Co  | ncept of Hybrid Elec        | tric Drive Trains, Cla | issit       | fication  | of hybrid     |
| electric vehicles.                                                                             |        |                      |                             |                        |             |           | 1             |
|                                                                                                |        |                      | it – V                      |                        |             |           | 06 Hrs        |
| Mechatronics: Introduc                                                                         |        |                      |                             |                        |             |           |               |
| control system, Applica                                                                        |        | water level control  | ler, washing machine        | e, Engine manageme     | nt s        | system (  | (EMS), Anti-  |
| lock Braking System (A                                                                         | /      |                      | 1                           |                        | 0.0         | 1         |               |
| Robotics: Robots- Basi                                                                         |        |                      |                             |                        |             | obots, F  | undamentals   |
| about Robot Technology                                                                         | , Basi | ic Robot Configura   | tions and their Relati      | ve Merits and Demer    | its.        |           |               |
| Course Outcomes. Aft                                                                           |        | inlating the source  | a the students will b       | a abla ta              |             |           |               |
| Course Outcomes: After                                                                         |        |                      |                             |                        | n Ia        | ininara   |               |
|                                                                                                |        |                      | operties of Engineeri       |                        |             |           |               |
|                                                                                                |        | ineering application | of lathe machine to         | ools, joining process  | es          | anu ino   | n-destructive |
|                                                                                                |        |                      | ns.<br>mamics in steam, hyd | traulic and gas turbin | <u> </u>    | and rafe  | geration      |
| systems.                                                                                       | or hu  | incipie of thermody  | mannes in steam, nyt        | naune and gas turbin   | 05 2        |           | geranoli      |
| systems.                                                                                       |        |                      |                             |                        |             |           |               |

CO4 Understand about Mechatronics, Automation and Robotics in Industrial Applications

RV Educational Institutions ° RV College of Engineering °

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

| Refere | nce Books                                                                                                       |
|--------|-----------------------------------------------------------------------------------------------------------------|
| 1      | Elements of Mechanical Engineering, K. R. Gopalakrishna, Subhas Publications, 18th Edition.                     |
|        | ISBN:5551234002884                                                                                              |
| 2      | Material Science & amp; Engineering- William D Callister, 2 / 10 <sup>th</sup> Edition, ISBN 978-1-119-45520-2. |
| 3      | Welding Technology (PB), Khanna O P, Dhanpat Rai publication, 4 th Edition, ISBN 9383182555.                    |
| 4      | Electric and Hybrid Vehicles, Design Fundamentals – Iqbal Husain, CRC Press, 2 <sup>nd</sup> Edition, 2010.     |
|        | ISBN – 13-978-1439811757.                                                                                       |
| 5      | Modern Electric, Hybrid Electric & amp; Fuel Cell Vehicles, Fundamentals, Theory and Design -                   |
|        | Mehrdad Ehsani, CRC Press, 1 <sup>st</sup> Edition, 2005. ISBN – 13- 978-0849331541.                            |
| 6      | Mechatronics – Electronic control systems in Mechanical and Electrical Engineering, William Bolton,             |
|        | Pearson, 6 <sup>th</sup> Edition, ISBN: 978-1-292-07668-3, 2015.                                                |

|   | <b>RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)</b>                                                                                                                                                                                                                                                                                                               |       |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| # | COMPONENTS                                                                                                                                                                                                                                                                                                                                                                  | MARKS |
| 1 | <b>QUIZZES:</b> Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. <b>THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.</b>                                                                                                                                                                     | 20    |
| 2 | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.</b> | 40    |
| 3 | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), <b>MATLAB (20) ADDING UPTO 40 MARKS</b> .                                                                      | 40    |
|   | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                                                                                                                            | 100   |

|        | <b>RUBRIC FOR SEMESTER END EXAMINATION (THEORY)</b> |       |
|--------|-----------------------------------------------------|-------|
| Q. NO. | CONTENTS                                            | MARKS |
|        | PART A                                              |       |
| 1      | Objective type questions covering entire syllabus   | 20    |
|        | PART B                                              |       |
|        | (Maximum of TWO Sub-divisions only)                 |       |
| 2      | Unit 1 : (Compulsory)                               | 16    |
| 3 & 4  | Unit 2 : Question 3 or 4                            | 16    |
| 5&6    | Unit 3 : Question 5 or 6                            | 16    |
| 7 & 8  | Unit 4 : Question 7 or 8                            | 16    |
| 9 & 10 | Unit 5: Question 9 or 10                            | 16    |
|        | MAXIMUM MARKS FOR THE SEE THEORY                    | 100   |



Approved by AICTE, New Delhi

#### Semester: II PRINCIPLES OF PROGRAMMING USING C Category: Professional Core Course Stream: Computer Science (Common to AI, BT, CS, CY, CD & IS Programs) (Theory and Practice)

| Course Code         :         22CS23         CIE         :         100 Marks           Credits: L:T:P         :         2:0:1         SEE         :         100 Marks |                  | (11)    | leory and i ractice) |   |           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------|----------------------|---|-----------|
| Credits: L:T:P         :         2:0:1         SEE         :         100 Marks                                                                                        | Course Code :    | 22CS23  | CIE                  | : | 100 Marks |
|                                                                                                                                                                       | Credits: L:T:P : | 2:0:1   | SEE                  | : | 100 Marks |
| Total Hours: 28L+30PSEE Duration: 3 Hours                                                                                                                             | Total Hours :    | 28L+30P | SEE Duration         | : | 3 Hours   |

| Unit-I                                                                                                        | 06 Hrs         |
|---------------------------------------------------------------------------------------------------------------|----------------|
| Logical Reasoning and Algorithmic Problem Solving: Skill development - Examples related to                    |                |
| Reasoning and Analytical Reasoning.                                                                           |                |
| Introduction to Programming: Design and Implementation of efficient programs. Program D                       | esign Tools:   |
| Algorithms, Flowcharts and Pseudo codes. Types of Errors.                                                     | e              |
| Introduction to C: Introduction, structure of a C program, writing the first program, Files used in a         | a C program.   |
| Compiling and executing C Programs using comments, C Tokens, Character set in C, Keywords, Iden               | tifiers, Basic |
| Data Types in C, Variables, Constants, I/O statements in C. Operators in C, Type conversion and               | type casting,  |
| scope of variables.                                                                                           |                |
| Unit – II                                                                                                     | 05 Hrs         |
| Decision Control and Looping Statements: Introduction to decision control, conditional branching              | g statements,  |
| iterative statements, Nested loops, Break and continue statements, goto statements                            |                |
| Arrays: Introduction, Declaration of Arrays, accessing elements of an array, Storing values in arrays         | s, Operations  |
| on Arrays. Two dimensional arrays- Operations on two dimensional arrays.                                      | <u>.</u>       |
| Unit –III                                                                                                     | 06 Hrs         |
| Strings: Introduction, Operations on strings- finding length of a string, converting characters of            |                |
| uppercase and lowercase, Concatenating two strings, appending a string to another string, comparin            | g two string,  |
| reversing a string, String and character Built in functions.                                                  |                |
| Functions: Introduction, using functions, Function declaration/function prototype, Function definition        |                |
| call, Return statement, passing parameters to a function, Built-in functions. Passing arrays                  | to functions.  |
| Recursion.                                                                                                    | Т              |
| Unit -IV                                                                                                      | 06 Hrs         |
| Structures: Introduction: Structure Declaration, Typedef declaration, initialization of structure             |                |
| members of a structures, copying and comparing structures, array of structures, Structures and function       |                |
| Pointers: Introduction to pointers, declaring pointer variables, pointer expressions and pointer ari          | thmetic, null  |
| pointers, passing arguments to functions using pointers, pointers and arrays.                                 | 1              |
| Unit-V                                                                                                        | 05Hrs          |
| Dynamic memory allocation: Memory allocation process, allocating a block of memory, release                   | ing the used   |
| space.                                                                                                        |                |
| Linked List and Files: Introduction, Linked lists vs Arrays, Memory allocation and deallocation for           |                |
| types of linked lists, singly linked lists. Introduction to files, using files in C, Reading data from files, | , writing data |
| to files, Detecting End-Of-File, Functions for selecting a record randomly, Remove().                         |                |
|                                                                                                               |                |
| Course Outcomes: After completing the course, the students will be able to                                    |                |
| CO1 Apply logical skills to solve the engineering problems using C programming constructs.                    |                |

|     | 11 5 8                                              | 8             | 01        | 0            | 1     | 0       | 0         |          |              |      |
|-----|-----------------------------------------------------|---------------|-----------|--------------|-------|---------|-----------|----------|--------------|------|
|     | Evaluate the appropriate investigating the problem. |               | structure | required in  | С     | progr   | amming to | deve l   | op solutions | s by |
| CO3 | Design a sustainable solut                          | ion using C p | rogrammi  | ng with soci | ietal | l and e | nvironmen | tal conc | ern by enga  | ging |

CO4 Demonstrate programming skills to solve inter-disciplinary problems using modern tools effectively by exhibiting team work through oral presentation and written reports.

**RV Educational Institutions RV College of Engineering** 

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

#### Reference Books

| Refere |                                                                                                                |
|--------|----------------------------------------------------------------------------------------------------------------|
| 1      | Programming in C, Reema Thareja, 2018, Oxford University Press. ISBN: 9780199492282.                           |
| 2      | Algorithmic Problem Solving, Roland Backhouse, 2011, Wiley, ISBN: 978-0-470-68453-5                            |
| 3      | The C Programming Language, Kernighan B.W and Dennis M. Ritchie, 2015, 2 <sup>nd</sup> Edition, Prentice Hall, |
|        | ISBN (13): 9780131103627.                                                                                      |
| 4      | Turbo C: The Complete Reference, H. Schildt, 2000, 4th Edition, Mcgraw Hill Education,                         |
|        | ISBN-13: 9780070411838.                                                                                        |

#### Laboratory Experiments

#### PART A

Implement the following programs using cc/gcc compiler

#### **Practice Programs:**

- Familiarization with programming environment: Concept of creating, naming and saving the program file a)
- in gedit/vi editor, Concept of compilation and execution, Concept of debugging in GDB environment.
- Implementation and execution of simple programs to understand working of b)
  - Printf, formatted printf, Escape sequences in C.
  - Using formula in a C program for specific computation.
  - Example: computing area of circle, converting Celsius to Fahrenheit, area of a triangle, converting distance in centimeters to inches, etc.
  - Preprocessor directives (#include, #define)
- Execution of erroneous C programs to understand debugging and correcting the errors like: c)
  - Syntax / compiler errors
  - Linker errors
  - Logical errors
  - Semantical errors
- d) Implementation and execution of simple programs to understand working of operators like:
  - Unary
  - Arithmetic
  - Logical
  - Relational
  - Conditional
  - Bitwise

#### **Programming Assignments:**

- Assignment statements. 1.
- Control Statements. 2.
- 3. Loop Statements.
- 4. One dimensional Arrays - Searching and sorting.
- 5. Two dimensional arrays – Matrix operations. Functions. 6.
- 7. Recursion.
- 8. Structures.
- 9. Pointers
- 10. Linked Lists
- - 12. Files.
  - PART B

#### Design and development of a working model using any of the following combination of hardware and software.

- Develop a model that helps the user to monitor whether, health condition, environment parameters etc using Arduino board.
- Develop a simple Robot that can assist the user to perform simple activities home sanitization, lifting things etc using Raspberry pi.
- Hardware interfacing (Ardunio Board, Finch, Lego WeDo 2.0) with scratch to design various models to solve simple problems.

Develop applications using Nvidia Jetson Kit.

11. Dynamic memory allocation

RV Educational Institutions ° RV College of Engineering °

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

|        | University, Belagan 1                                                                                                                                                                                                                                                                                                                                                                        |       |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|        | RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY WITH LA                                                                                                                                                                                                                                                                                                                                | AB)   |
| #      | COMPONENTS                                                                                                                                                                                                                                                                                                                                                                                   | MARKS |
| 1      | QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.                                                                                                                                                                                                | 10    |
| 2      | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). <b>THREE tests will be conducted</b> . Each test will be evaluated for <b>50 Marks</b> , adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 30 MARKS</b> . | 30    |
| 3      | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) <b>ADDING UPTO 30 MARKS</b> .                                                                                                    | 30    |
| 4      | LAB: Conduction of laboratory exercises, lab report, observation and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE REDUCED TO 30 MARKS                                                                                                                                     | 30    |
|        | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                                                                                                                                             | 100   |
|        |                                                                                                                                                                                                                                                                                                                                                                                              |       |
|        | <b>RUBRIC FOR SEMESTER END EXAMINATION (THEORY)</b>                                                                                                                                                                                                                                                                                                                                          |       |
| Q. NO. | CONTENTS                                                                                                                                                                                                                                                                                                                                                                                     | MARKS |
|        | PART A                                                                                                                                                                                                                                                                                                                                                                                       |       |
| 1      | Objective type questions covering entire syllabus                                                                                                                                                                                                                                                                                                                                            | 10    |
|        | PART B<br>(Maximum of TWO Sub-divisions only)                                                                                                                                                                                                                                                                                                                                                |       |
| 2      | Unit 1 : (Compulsory)                                                                                                                                                                                                                                                                                                                                                                        | 14    |
| 3 & 4  | Unit 2 : Question 3 or 4                                                                                                                                                                                                                                                                                                                                                                     | 14    |
| 5&6    | Unit 3 : Question 5 or 6                                                                                                                                                                                                                                                                                                                                                                     | 14    |
| 7 & 8  |                                                                                                                                                                                                                                                                                                                                                                                              | 14    |
| 9 & 10 | Unit 5 : Question 9 or 10                                                                                                                                                                                                                                                                                                                                                                    | 14    |
| 11     | Lab Component (Compulsory)                                                                                                                                                                                                                                                                                                                                                                   | 20    |
|        | MAXIMUM MARKS FOR THE SEE THEORY                                                                                                                                                                                                                                                                                                                                                             | 100   |
|        |                                                                                                                                                                                                                                                                                                                                                                                              |       |



Approved by AICTE, New Delhi

| Univers            | ty, Belagavi     |                    |                                  |                         |      |          |                           |
|--------------------|------------------|--------------------|----------------------------------|-------------------------|------|----------|---------------------------|
|                    |                  |                    | Semester – II                    |                         |      |          |                           |
|                    |                  | ENG                | <b>INEERING MECHAN</b>           | ICS                     |      |          |                           |
|                    |                  | (Catego            | ry: Professional Core (          | Course)                 |      |          |                           |
|                    |                  |                    | (Stream: Civil)                  |                         |      |          |                           |
|                    |                  | 1                  | (Theory)                         | 1                       |      |          |                           |
| <b>Course Code</b> | :                | 22CV23             |                                  | CIE                     | :    | 100 M    |                           |
| Credits: L:T:      |                  | 3:0:0              |                                  | SEE                     | :    |          |                           |
| Total Hours        | :                | 40L                |                                  | SEE Duration            | :    | 3 Hour   | S                         |
|                    |                  |                    | Unit – I                         |                         |      |          | 08 Hrs                    |
| Degultent of       | anlanan fanaa    | avatama Dagia      |                                  | Idealizationa Classif   |      | ion of f |                           |
|                    |                  |                    | dimensions and units,            |                         |      |          |                           |
|                    |                  |                    | osition of forces, resolut       |                         |      |          |                           |
|                    |                  | nerical examples   | of coplanar concurrent           | Torce system, Kesu      | Itai |          | pranar non-               |
|                    |                  | -                  | Unit – II                        |                         |      |          | 08 Hrs                    |
| Equilibrium        | of coplanar f    | orce system: E     | equilibrium of coplanar          | concurrent force sy     | yste | m, Lam   |                           |
|                    |                  |                    | , types of beams, types of       |                         |      |          |                           |
|                    |                  |                    | t reactions of statically        |                         |      |          |                           |
|                    | erical examples  |                    |                                  |                         | 5    |          | 21                        |
|                    |                  |                    | Unit – III                       |                         |      |          | 08 Hrs                    |
| Analysis of T      | russes: Introdu  | uction, Classific  | ation of trusses, analysi        | s of plane perfect tr   | uss  | es by th | e method of               |
| joints and met     | nod of sections, | , Numerical exa    | nples.                           |                         |      |          |                           |
| -                  |                  |                    | Unit – IV                        |                         |      |          | 08 Hrs                    |
| Centroid of I      | lane areas: In   | troduction, Loc    | ating the centroid of red        | ctangle, triangle, circ | ele, | semiciro | le, quadrant              |
| and sector of      | a circle using   | method of inte     | gration, centroid of con         | nposite areas and si    | mp   | le built | up sections,              |
| Numerical exa      | mples.           |                    |                                  |                         |      |          |                           |
|                    |                  |                    | Unit – V                         |                         |      |          | 08 Hrs                    |
|                    |                  |                    | ction, Polar moment of           |                         |      |          |                           |
|                    |                  |                    | rem, perpendicular axis          |                         |      |          |                           |
|                    |                  |                    | of integration, moment           | of inertia of composi   | te a | reas and | simple built              |
| up sections,, N    | umerical exam    | ples.              |                                  |                         |      |          |                           |
| Course Outer       | mas. After con   | mpleting the co    | urse, the students will <b>k</b> | a abla to               |      |          |                           |
|                    |                  |                    | f Mechanics - Force sy           |                         | hoo  | lies and | geometrical               |
| prope              |                  | entar concepts c   | i incontantes i cree sy          | stems, seams, rigia     | 000  | iles und | geometrieu                |
| 1 1                |                  | of mechanics in s  | solving simple engineering       | ng problems             |      |          |                           |
|                    |                  |                    | ructures under various f         | * -                     |      |          |                           |
|                    |                  |                    | hanics to solve engineeri        |                         |      |          |                           |
|                    |                  |                    |                                  |                         |      |          |                           |
| Reference Bo       | oks              |                    |                                  |                         |      |          |                           |
|                    |                  | neers, Statics and | l Dynamics, Beer F.P. a          | nd Johnston E. R., M    | [cG  | raw-Hill | Inc.,US; 4 <sup>th</sup>  |
|                    |                  |                    | 978-0070045842.                  | ,,                      |      |          | , , .                     |
|                    |                  |                    | Dynamics, Irving H. Sha          | mes, Dorling Kinders    | slev | Pvt Ltd  | . 4 <sup>th</sup> Edition |
|                    | ISBN: 978817     |                    |                                  | , 0                     | 5    |          |                           |

|   | 2003, ISBN: 9788177381232                                                                                                                         |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | Engineering Mechanics: Principles of Statics and Dynamics, Hibbler R. C., Pearson Press. 14 <sup>th</sup> Edition, 2017, ISBN-13: 978-9332584747. |
| 4 | Engineering Mechanics, Timoshenko S, Young D. H., Rao J. V., Pearson Press. 5th Edition, 2017,                                                    |

ISBN-13:978-1259062667.
5 Engineering Mechanics, Bhavikatti S S, New Age International Private Limited, 8<sup>th</sup> Edition, 2021, ISBN-13:978-9388818476.

RV Educational Institutions ° RV College of Engineering °

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

|   | <b>RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)</b>                                                                                                                                                                                                                                                                                                               |       |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| # | COMPONENTS                                                                                                                                                                                                                                                                                                                                                                  | MARKS |
| 1 | QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.                                                                                                                                                                                   | 20    |
| 2 | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.</b> | 40    |
| 3 | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), <b>MATLAB (20) ADDING UPTO 40 MARKS</b> .                                                                      | 40    |
|   | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                                                                                                                            | 100   |

|        | RUBRIC FOR SEMESTER END EXAMINATION (THEORY)      |       |
|--------|---------------------------------------------------|-------|
| Q. NO. | CONTENTS                                          | MARKS |
|        | PART A                                            |       |
| 1      | Objective type questions covering entire syllabus | 20    |
|        | PART B                                            |       |
|        | (Maximum of TWO Sub-divisions only)               |       |
| 2      | Unit 1 : (Compulsory)                             | 16    |
| 3 & 4  | Unit 2 : Question 3 or 4                          | 16    |
| 5&6    | Unit 3 : Question 5 or 6                          | 16    |
| 7 & 8  | Unit 4 : Question 7 or 8                          | 16    |
| 9 & 10 | Unit 5: Question 9 or 10                          | 16    |
|        | MAXIMUM MARKS FOR THE SEE THEORY                  | 100   |

Go, change the world



Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

## Courses Common to All Programs

- COMPUTER AIDED ENGINEERING GRAPHICS (22MCD13/23)
- > IDEA LAB (IDEA DEVELOPMENT, EVALUATION & APPLICATION) (22ME18/28)



Approved by AICTE, New Delhi

|                                                                                                                                                                                                                                                                                                                                                                                             |                      |                                                                                                                                                                        | Semester - I/II                                                                                                                                                 |                                                                       |                   |                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                             | (                    | COMPUTER AID                                                                                                                                                           | DED ENGINEERIN                                                                                                                                                  | G GRAPHICS                                                            |                   |                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                             |                      | (Com                                                                                                                                                                   | mon for all Progran                                                                                                                                             | ıs)                                                                   |                   |                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                             |                      |                                                                                                                                                                        | heory & Practice)                                                                                                                                               |                                                                       | -                 |                                                                          |
| Course Code                                                                                                                                                                                                                                                                                                                                                                                 | :                    | 22MECD13/23                                                                                                                                                            |                                                                                                                                                                 | CIE                                                                   | :                 | 50 Marks                                                                 |
| Credits: L:T:P                                                                                                                                                                                                                                                                                                                                                                              | :                    | 1:0:2                                                                                                                                                                  |                                                                                                                                                                 | SEE                                                                   | :                 | 50 Marks                                                                 |
| Total Hours                                                                                                                                                                                                                                                                                                                                                                                 | :                    | 15(T) + 60(P)                                                                                                                                                          |                                                                                                                                                                 | SEE Duration                                                          | :                 | 3 Hours                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                             |                      |                                                                                                                                                                        | • •                                                                                                                                                             |                                                                       |                   |                                                                          |
| Introduction: Significan                                                                                                                                                                                                                                                                                                                                                                    |                      |                                                                                                                                                                        | nit – I                                                                                                                                                         |                                                                       |                   | 12 Hrs                                                                   |
| riveted, welded, brazed and<br>Use of Simple CAD tools:<br>and commands].<br>Orthographic Projections<br>quadrants); Projection of 1<br>projection).                                                                                                                                                                                                                                        | : Ov<br>s: P<br>line | verview of CAD so<br>Principles of orthogo<br>s (first angle proje<br>Un                                                                                               | ftware [Menu bar, tak<br>raphic projections - q<br>ction); Projection of<br>iit – II                                                                            | os -sketch, modify, c<br>uadrant systems, pro<br>planes - inclined to | ime<br>ject<br>HP | nsion, annotation<br>ion of points (All<br>and VP (first angle<br>12 Hrs |
| Projection of Solids: Prisr                                                                                                                                                                                                                                                                                                                                                                 | ns,                  | pyramids, cylinder                                                                                                                                                     | • & cone with axis inc                                                                                                                                          | lined to HP and VP                                                    | (firs             | t angle projection).                                                     |
| (Computer Drafting)                                                                                                                                                                                                                                                                                                                                                                         |                      |                                                                                                                                                                        |                                                                                                                                                                 |                                                                       |                   |                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                             |                      |                                                                                                                                                                        | it – III                                                                                                                                                        |                                                                       |                   | 18 Hrs                                                                   |
| I                                                                                                                                                                                                                                                                                                                                                                                           | +                    |                                                                                                                                                                        |                                                                                                                                                                 | 1:                                                                    | 4                 | - f 4                                                                    |
| (Computer Drafting).<br>3D modelling of compo                                                                                                                                                                                                                                                                                                                                               |                      | nts: Conversion o                                                                                                                                                      | of isometric view to                                                                                                                                            |                                                                       |                   | nd sectional views                                                       |
| (Computer Drafting).<br><b>3D modelling of compo</b><br>(Computer Drafting)                                                                                                                                                                                                                                                                                                                 | onei                 | nts: Conversion o<br>Un                                                                                                                                                | of isometric view to<br>it – IV                                                                                                                                 | orthographic view                                                     | vs a              | nd sectional views                                                       |
| (Computer Drafting).<br><b>3D modelling of compo</b><br>(Computer Drafting)<br><b>Development of Lateral S</b><br>and radial line method – j                                                                                                                                                                                                                                                | onei                 | nts: Conversion o<br>Un<br>faces: Introduction                                                                                                                         | of isometric view to $it - IV$<br>to section planes, mo                                                                                                         | o orthographic view                                                   | vs a              | nd sectional views 15 Hrs parallel line method                           |
| (Computer Drafting).<br><b>3D modelling of compo</b><br>(Computer Drafting)<br><b>Development of Lateral S</b><br>and radial line method – j                                                                                                                                                                                                                                                | onei                 | nts: Conversion o<br>Un<br>faces: Introduction<br>sm and cylinder (tr                                                                                                  | of isometric view to $it - IV$<br>to section planes, mo                                                                                                         | o orthographic view                                                   | vs a              | nd sectional views 15 Hrs parallel line method                           |
| Isometric projection: Ison<br>(Computer Drafting).<br>3D modelling of compo<br>(Computer Drafting)<br>Development of Lateral S<br>and radial line method – p<br>Drafting).<br>Engineering components:<br>Assembly of Hexagonal bo<br>Riveted joint: - butt joint w<br>Union joint, butt muff coup<br>Basic building drawing (Pl<br>Electrical wiring and lighti<br>Electronic PCB drawings: | Sur<br>pris          | nts: Conversion o<br>Un<br>faces: Introduction<br>sm and cylinder (tr<br>Un<br>with nut (with wash<br>two covering plate<br>ug, socket and spigo<br>and Elevation): 2D | of isometric view to<br>it - IV<br>to section planes, more<br>runcated), pyramid a<br>iit - V<br>her)-3D<br>ther)-3D<br>to (chain riveting): 3D<br>of joint: 3D | o orthographic view                                                   | vs a              | nd sectional views 15 Hrs parallel line method runcated) (Compute        |

| COI | Understand the convention and methods of engineering drawing |
|-----|--------------------------------------------------------------|
| CO2 | Enhance their visualization skills to develop new products   |

**CO3** Elucidate the principles of multi-view drawings and pictorial drawings

**CO4** Apply the knowledge of engineering graphics to develop respective (simple) engineering assembly

#### **Reference Books**

| Ittitt |                                                                                                                 |  |
|--------|-----------------------------------------------------------------------------------------------------------------|--|
| 1      | Textbook of Engineering Graphics by K R Gopalakrishna, Sudhir Gopalakrishna, Subhash Publishers,                |  |
|        | 40 <sup>th</sup> Edition, 2018; ISBN 978-9383214204                                                             |  |
| 2      | SOLIDWORKS 2020 for Designers by Sham Tickoo Purdue University, CADCIM Technologies, 18 <sup>th</sup>           |  |
|        | Edition, 2019; ISBN: 978-1640570849                                                                             |  |
| 3      | Machine drawing by N. D. Bhatt, V. M. Panchal, Charotar Publishing House, 50 <sup>th</sup> Edition, 2016; ISBN: |  |



Approved by AICTE, New Delhi

978-9385039232

4 NPTEL :: Mechanical Engineering - Engineering Drawing

| <b>RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)</b>                                                                                                                                 |              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| ASSESSMENT AND EVALUATION PATTERN<br>Theory & quizzes questions are to be framed using Bloom's Taxonomy Levels - Remembering,<br>Understanding, Applying, Analyzing, Evaluating, and Creating | MARKS        |
| WEIGHTAGE                                                                                                                                                                                     | CIE<br>(50%) |
| Practice session                                                                                                                                                                              |              |
| Manual Drawing: Practice session                                                                                                                                                              | 10           |
| Computer Drafting: Practice Session                                                                                                                                                           |              |
| A. TESTS: Each test will be conducted for 50 Marks adding upto 100 marks. Final test marks w<br>reduced to 10                                                                                 | ill be       |
| Test – I for 50 Marks                                                                                                                                                                         |              |
| Test – II for 50 Marks                                                                                                                                                                        | 10           |
| <b>B. EXPERIENTIAL LEARNING:</b> Experiential Learning comprises of the modelling and simulation of various engineering components.                                                           | 15           |
| TOTAL MARKS FOR THE COURSE (Lab Course)                                                                                                                                                       | 50           |

|          | <b>RUBRIC FOR SEMESTER END EXAMINATION (THEORY)</b>                            |    |  |  |  |
|----------|--------------------------------------------------------------------------------|----|--|--|--|
| Q. NO.   | Q. NO. CONTENTS                                                                |    |  |  |  |
|          | PART A                                                                         |    |  |  |  |
|          | (TWO questions to be answered out of THREE Questions)                          |    |  |  |  |
| Unit-I   | One Question to be set from the chapters Points, Lines & Planes. Each question | 10 |  |  |  |
| Unit-1   | carrying 5 marks.                                                              | 10 |  |  |  |
|          | PART B                                                                         |    |  |  |  |
|          | (TWO questions to be answered out of THREE Questions)                          |    |  |  |  |
| Unit-II  | Question on Projection of Solids (15 marks)                                    | 15 |  |  |  |
| Unit-III | Question on Isometric Projection (15 marks)                                    | 15 |  |  |  |
| Unit-IV  | Question on Development of Surfaces (15marks)                                  | 15 |  |  |  |
|          | PART C                                                                         |    |  |  |  |
|          | (ONE question to be answered out of FOUR Questions)                            |    |  |  |  |
|          | Question on Assembly of Hexagonal bolt and nut or Riveted Joint                | 10 |  |  |  |
| Unit-V   | Question on Basic building drawing                                             | 10 |  |  |  |
| Unit-V   | Question on Electrical wiring and lighting drawings                            | 10 |  |  |  |
|          | Question on Electronic PCB drawings                                            | 10 |  |  |  |
|          | MAXIMUM MARKS FOR THE SEE THEORY 50                                            |    |  |  |  |



Approved by AICTE, New Delhi

CREWER DESIGNATION OF THE PROPERTY OF THE PROP

#### Semester - I/II

#### IDEA LAB (IDEA DEVELOPMENT, EVALUATION & APPLICATION)

#### (Common to all Programs)

|                |   |           | (Practice) |                     |   |          |
|----------------|---|-----------|------------|---------------------|---|----------|
| Course Code    | : | 22ME18/28 |            | CIE                 | : | 50 Marks |
| Credits: L:T:P | : | 0:0:1     |            | SEE                 | : | 50 Marks |
| Total Hours    | : | 30P       |            | <b>SEE Duration</b> | : | 3 Hours  |

#### LABORATORY EXPERIMENTS

- 1. Digital Reading & Writing: Motion controlled lighting.
- 2. Analog Reading & Writing: Laser based security system.
- **3.** Serial Communication & Bluetooth: Configuring Bluetooth module and building a home automation system.
- 4. Assembling chassis and configuring motor driver.
- 5. Line following robot.
- **6.** Mobile Bluetooth controlled robot.
- 7. IoT based Weather Station using Blynk.
- 8. Google Assistant based Home Automation using IFTTT & Adafruit IO.

Streaming real-time data to a web page via Firebase.

#### Course Outcomes: After completing the course, the students will be able to

- CO1 Hands-on experience to interface various Digital and Analog sensors with Arduino.
- CO2 Assembling Robotic Chassis & Arm (Mechanical and Electronic Components).
- **CO3** Connecting sensors and devices to various IoT Platforms.
- **CO4** Improved coding experience with C, C++, HTML and JavaScript.

#### PRACTICE EXPERIMENTS / DEMO

| l |   |                                                                              |  |  |  |
|---|---|------------------------------------------------------------------------------|--|--|--|
|   | 1 | Using Serial Plotter to plot potentiometer readings.                         |  |  |  |
|   | 2 | Interfacing Servo motor using PWM Techniques and performing sweep operation. |  |  |  |
|   | 3 | Voice Controlled Robot.                                                      |  |  |  |
|   | 4 | Robotic Arm to pick and place objects.                                       |  |  |  |
|   | 5 | Smart Garden.                                                                |  |  |  |
|   | 6 | Event based emails / push notifications.                                     |  |  |  |

### Reference Books 1 Arduino Pri

| 1 | Arduino Project Handbook: Volume One: Complete Guide to Creating with the Arduino by Mark Geddes |
|---|--------------------------------------------------------------------------------------------------|
|   | [ISBN-10 0992952603, Publisher: Sketch Publishing]                                               |
| 2 | Exploring Arduino: Tools and Techniques for Engineering Wizardry by Jeremy Blum                  |
|   | [ISBN-10 1119405378, Publisher: Wiley]                                                           |
| 3 | Internet of Things with ESP8266 by Marco Schwartz [ISBN-13 9781786468024, Publisher: Packt]      |
| 4 | https://www.arduino.cc/reference/en/                                                             |

| <b>RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)</b> |                                                                                                                                                                                                               |       |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| #                                                             | COMPONENTS                                                                                                                                                                                                    | MARKS |
| 1.                                                            | LAB: Conduction of laboratory exercises, lab report, observation, and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. |       |
|                                                               | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                              | 100   |

#### Common to All Courses



|           | <b>RUBRIC FOR SEMESTER END EXAMINATION (THEORY)</b>  |       |  |  |
|-----------|------------------------------------------------------|-------|--|--|
| Q.<br>NO. | CONTENTS                                             | MARKS |  |  |
| 1.        | TWO lab exercises with implementation of the program | 40    |  |  |
| 2.        | Viva                                                 | 10    |  |  |
|           | TOTAL                                                | 50    |  |  |

Go, change the world



Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

## Engineering Science Courses

- > FUNDAMENTALS OF PROGRAMMING USING C (22ES14A/24A)
- > ELEMENTS OF CIVIL ENGINEERING (22ES14B/24B)
- > PRINCIPLES OF ELECTRONICS ENGINEERING (22ES14C/24C)
- > BASICS OF ELECTRICAL ENGINEERING (22ES14D/24D)
- FUNDAMENTALS OF MECHANICAL ENGINEERING (22ES14E/24E)



|                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mester - I/II                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                    |                                                                                               |                                                                                                 |                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                       | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>UNDAMENTALS O</b>                                                                                                                                                                                                                                                                                                                                                                                                                                             | F PROGRAMM                                                                                                                                                                                                                                                                                                                                                                       | IING USING C                                                                                                                                                                                                                                                                       |                                                                                               |                                                                                                 |                                                                                                                                                                              |
|                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ineering Science                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                    |                                                                                               |                                                                                                 |                                                                                                                                                                              |
|                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                       | (C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ommon to all Progra                                                                                                                                                                                                                                                                                                                                                                                                                                              | ms Except CS St                                                                                                                                                                                                                                                                                                                                                                  | ream Programs)                                                                                                                                                                                                                                                                     |                                                                                               |                                                                                                 |                                                                                                                                                                              |
|                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (Theory)                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                    |                                                                                               |                                                                                                 |                                                                                                                                                                              |
| Course                                                                                                                                                                                     | Code                                                                                                                                                                                                                                                                                                                                                                                                                                  | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22ES14A/24A                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                  | CIE                                                                                                                                                                                                                                                                                | :                                                                                             | 100 M                                                                                           | arks                                                                                                                                                                         |
| Credits                                                                                                                                                                                    | : L:T:P                                                                                                                                                                                                                                                                                                                                                                                                                               | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3:0:0                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                  | SEE                                                                                                                                                                                                                                                                                | :                                                                                             | 100 M                                                                                           | arks                                                                                                                                                                         |
| Fotal H                                                                                                                                                                                    | lours                                                                                                                                                                                                                                                                                                                                                                                                                                 | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40L                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                  | SEE Duration                                                                                                                                                                                                                                                                       | :                                                                                             | 3 Hou                                                                                           | rs                                                                                                                                                                           |
|                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unit -                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                    |                                                                                               |                                                                                                 | 06Hrs                                                                                                                                                                        |
| Introdu                                                                                                                                                                                    | ation to Dragna                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>ing:</b> Definition of a                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                  | ananta of compu                                                                                                                                                                                                                                                                    | tor a                                                                                         | retorn I                                                                                        |                                                                                                                                                                              |
|                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mentation of efficient                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                    |                                                                                               |                                                                                                 |                                                                                                                                                                              |
|                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | programs. Program                                                                                                                                                                                                                                                                                                                                                                | in Design Tools. A                                                                                                                                                                                                                                                                 | Igom                                                                                          | mins, fio                                                                                       | Swellarts an                                                                                                                                                                 |
| rseudoc                                                                                                                                                                                    | codes. Types of Er                                                                                                                                                                                                                                                                                                                                                                                                                    | rors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | п                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                    |                                                                                               |                                                                                                 | 0011                                                                                                                                                                         |
|                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Unit –                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                  | (1 C° )                                                                                                                                                                                                                                                                            |                                                                                               | 1 '                                                                                             | 08Hrs                                                                                                                                                                        |
|                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ion, structure of a C p                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                    |                                                                                               |                                                                                                 |                                                                                                                                                                              |
|                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ograms using commen                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                  | aracter set in C, Ke                                                                                                                                                                                                                                                               | eywoi                                                                                         | ds, Iden                                                                                        | tifiers, Basi                                                                                                                                                                |
|                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | onstants, I/O statemen                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                    |                                                                                               |                                                                                                 |                                                                                                                                                                              |
| Inorata                                                                                                                                                                                    | rs in C Type conv                                                                                                                                                                                                                                                                                                                                                                                                                     | versi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | on and type casting, so                                                                                                                                                                                                                                                                                                                                                                                                                                          | cope of variables.                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                    |                                                                                               |                                                                                                 |                                                                                                                                                                              |
| operato                                                                                                                                                                                    | is me, type conv                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                    |                                                                                               |                                                                                                 |                                                                                                                                                                              |
| Decision<br>terative<br>Arrays:<br>on Array                                                                                                                                                | n Control and Lo<br>statements, Neste<br>Introduction, Dec<br>ys- Traversing, Ins<br>onal arrays.                                                                                                                                                                                                                                                                                                                                     | oopi<br>ed loe<br>elara<br>serti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Unit –<br><b>Ing Statements:</b> Intro-<br>ops, Break and continu-<br>tion of Arrays, Access<br>ng and Deletion of ele<br>Unit –                                                                                                                                                                                                                                                                                                                                 | III<br>duction to decisio<br>ue statements, goto<br>sing elements of a<br>ement in an array.                                                                                                                                                                                                                                                                                     | o statements.<br>an array, Storing va<br>Two dimensional                                                                                                                                                                                                                           | alues<br>array                                                                                | in arrays<br>s- Opera                                                                           | s, Operation<br>ations on tw                                                                                                                                                 |
| Decision<br>terative<br>Arrays:<br>on Array<br>limension<br>Strings:<br>apperca<br>reversin<br>Functio                                                                                     | n Control and Lo<br>e statements, Neste<br>: Introduction, Dec<br>ys- Traversing, Ins<br>onal arrays.<br>: Introduction, Op<br>se and lowercase,<br>g a string. String a                                                                                                                                                                                                                                                              | oopi<br>ed lo<br>clara<br>serti<br>berat<br>Cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unit –<br>Ing Statements: Intro-<br>ops, Break and continu-<br>ation of Arrays, Access<br>ng and Deletion of ele                                                                                                                                                                                                                                                                                                                                                 | III         duction to decision         ue statements, got         sing elements of a         ement in an array.         IV         ing length of a state         s, appending a state         tions.                                                                                                                                                                            | o statements.<br>an array, Storing va<br>Two dimensional<br>tring, converting c<br>ring to another stri                                                                                                                                                                            | alues<br>array<br>charac<br>ng, co                                                            | in arrays<br>s- Opera<br>eters of<br>omparin                                                    | s, Operation<br>tions on tw<br><b>10Hrs</b><br>a string int<br>g two string                                                                                                  |
| Decision<br>iterative<br>Arrays:<br>on Array<br>dimension<br>dimension<br>dimension<br>Strings:<br>uppercas<br>reversin<br>Function<br>call, Ret                                           | n Control and Lo<br>e statements, Neste<br>: Introduction, Dec<br>ys- Traversing, Ins<br>onal arrays.<br>: Introduction, Op<br>se and lowercase,<br>g a string. String a<br>ons: Introduction,<br>turn statement.                                                                                                                                                                                                                     | oopi<br>ed lo<br>clara<br>serti<br>oerat<br>Cor<br>und c<br>Usir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Unit –<br>Unit –<br>Ong Statements: Intro-<br>ops, Break and continu-<br>tion of Arrays, Access<br>ng and Deletion of ele<br>Unit –<br>tions on strings- findincatenating two string<br>character Built in function<br>g functions, Function<br>Unit –                                                                                                                                                                                                           | III<br>duction to decision<br>ue statements, got<br>sing elements of a<br>ement in an array.<br>IV<br>ing length of a station<br>s, appending a stations.<br>I declaration/funct                                                                                                                                                                                                 | o statements.<br>an array, Storing va<br>Two dimensional<br>tring, converting c<br>ring to another stri<br>tion prototype, Fur                                                                                                                                                     | alues<br>array:<br>charac<br>ng, co<br>nction                                                 | in arrays<br>s- Opera<br>eters of<br>omparin<br>definiti                                        | g statement<br>s, Operation<br>ttions on tw<br><b>10Hrs</b><br>a string int<br>g two string<br>on, Functio<br><b>08 Hrs</b>                                                  |
| Decision<br>iterative<br>Arrays:<br>on Array<br>dimension<br>Strings:<br>uppercas<br>reversin<br>Functio<br>call, Ret<br>Functio<br>Structu                                                | n Control and Lo<br>e statements, Neste<br>: Introduction, Dec<br>ys- Traversing, Ins<br>onal arrays.<br>: Introduction, Op<br>se and lowercase,<br>g a string. String a<br>ons: Introduction,<br>turn statement.<br>: Introduction,<br>turn statement.                                                                                                                                                                               | oopi<br>ed lo<br>clara<br>serti<br>oerat<br>Cor<br>und c<br>Usir<br>meter<br>:: In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Unit –<br>Unit –<br>Ung Statements: Intro-<br>ops, Break and continu-<br>tion of Arrays, Access<br>ng and Deletion of ele<br><u>Unit –</u><br>tions on strings- findincatenating two string<br>character Built in function<br>of functions, Function                                                                                                                                                                                                             | III<br>duction to decision<br>ue statements, got<br>sing elements of a<br>ement in an array.<br>IV<br>ing length of a station<br>s, appending a stations.<br>a declaration/funct<br>-V<br>n functions. Passi<br>Declaration, Type                                                                                                                                                | o statements.<br>an array, Storing va<br>Two dimensional<br>tring, converting c<br>ring to another stri<br>tion prototype, Fur<br>ing arrays to functi<br>edef declaration, i                                                                                                      | alues<br>array<br>charac<br>ng, co<br>nction<br>ons. I<br>nitiali                             | in arrays<br>s- Opera<br>eters of<br>omparin<br>definiti<br>Recursio<br>ization o               | s, Operation<br>tions on tw<br><b>10Hrs</b><br>a string int<br>g two string<br>on, Function<br><b>08 Hrs</b><br>n.<br>of structure                                           |
| Decision<br>iterative<br>Arrays:<br>on Array<br>dimension<br>Strings:<br>uppercas<br>reversin<br>Functio<br>Structu<br>accessin<br>variable<br>Course                                      | n Control and Lo<br>e statements, Neste<br>: Introduction, Dec<br>ys- Traversing, Ins<br>onal arrays.<br>: Introduction, Op<br>se and lowercase,<br>g a string. String a<br>ons: Introduction,<br>turn statement.<br>ons: Passing param<br>res and Pointers<br>og members of a<br>s.<br>Outcomes: After                                                                                                                               | oopi<br>ed lo<br>clara<br>serti<br>ooerat<br>Cor<br>und c<br>Usir<br>neter<br>s: In<br>stru<br>con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Unit –<br>Unit –<br>Ing Statements: Intro-<br>ops, Break and continu-<br>tion of Arrays, Access<br>ng and Deletion of ele<br>Unit –<br>tions on strings- findi-<br>neatenating two string<br>character Built in funct<br>ng functions, Function<br>Unit –<br>s to a function, Built-ir<br>troduction: Structure<br>uctures, structure wit                                                                                                                        | III<br>duction to decision<br>ue statements, got<br>sing elements of a<br>ement in an array.<br>IV<br>ing length of a station<br>s, appending a stations.<br>a declaration/funct<br>-V<br>n functions. Passa<br>Declaration, Type<br>thin structures.                                                                                                                            | o statements.<br>an array, Storing va<br>Two dimensional<br>tring, converting c<br>ring to another stri<br>tion prototype, Fur<br>ing arrays to functi<br>edef declaration, i<br>Introduction to p                                                                                 | alues<br>array<br>charac<br>ng, co<br>nction<br>ons. I<br>nitiali                             | in arrays<br>s- Opera<br>eters of<br>omparin<br>definiti<br>Recursio<br>ization o               | s, Operation<br>titions on tw<br><b>10Hrs</b><br>a string int<br>g two string<br>on, Functio<br><b>08 Hrs</b><br>n.<br>of structures                                         |
| Decision<br>terative<br>Arrays:<br>on Array<br>dimension<br>Strings:<br>oppercas<br>reversin<br>Functio<br>call, Ret<br>Functio<br>Structu<br>accessin<br>variable<br>Course<br>CO1        | n Control and Lo<br>e statements, Neste<br>: Introduction, Dec<br>ys- Traversing, Ins<br>onal arrays.<br>: Introduction, Op<br>se and lowercase,<br>g a string. String a<br>ons: Introduction,<br>turn statement.<br>ons: Passing param<br>res and Pointers<br>ag members of a<br>s.<br>Outcomes: After<br>Analyse problems                                                                                                           | conpi<br>conpi<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>co | Unit –<br>Unit –<br>Ing Statements: Intro-<br>ops, Break and continu-<br>tion of Arrays, Access<br>ng and Deletion of ele<br>Unit –<br>tions on strings- findi-<br>neatenating two string<br>character Built in funct-<br>ng functions, Function<br>Unit –<br>s to a function, Built-ir-<br>troduction: Structure<br>uctures, structure wit<br>npleting the course, the<br>d design solution using                                                               | III<br>duction to decision<br>ue statements, got<br>sing elements of a<br>ement in an array.<br>IV<br>ing length of a station<br>s, appending a stations.<br>a declaration/funct<br>-V<br>n functions. Passi<br>Declaration, Type<br>thin structures.                                                                                                                            | o statements.<br>an array, Storing va<br>Two dimensional<br>tring, converting c<br>ring to another stri<br>tion prototype, Fur<br>ing arrays to functi<br>edef declaration, i<br>Introduction to p<br><u>be able to</u><br>tools.                                                  | alues<br>arrays<br>charac<br>ng, co<br>nction<br>ons. I<br>nitiali<br>ointer                  | in arrays<br>s- Opera<br>eters of<br>omparin<br>definiti<br>Recursio<br>ization o<br>rs, decla  | g statement<br>s, Operation<br>a string int<br>g two string<br>on, Function<br>08 Hrs<br>n.<br>of structure<br>uring point                                                   |
| Decision<br>terative<br>Arrays:<br>on Array<br>dimension<br>Strings:<br>oppercas<br>reversin<br>Functio<br>call, Ret<br>Functio<br>Structu<br>accessin<br>variable<br>Course<br>CO1        | n Control and Lo<br>e statements, Neste<br>: Introduction, Dec<br>ys- Traversing, Ins<br>onal arrays.<br>: Introduction, Op<br>se and lowercase,<br>g a string. String a<br>ons: Introduction,<br>turn statement.<br>: Introduction,<br>turn statement.<br>: Introduction,<br>turn statement.<br>: Outcomes: After<br>Analyse problems<br>Evaluate the appr                                                                           | oopi<br>ed lo<br>clara<br>serti<br>ooerat<br>Cor<br>und c<br>Usir<br>und c<br>Usir<br>stru<br>stru<br>con<br>s and<br>opri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Unit –<br>Unit –<br>Ing Statements: Intro-<br>ops, Break and continu-<br>tion of Arrays, Access<br>ng and Deletion of ele<br>Unit –<br>tions on strings- findi-<br>neatenating two string<br>character Built in funct-<br>ing functions, Function<br>Unit –<br>s to a function, Built-i-<br>troduction: Structure<br>uctures, structure wite<br>npleting the course, the<br>d design solution using<br>ate method/data struct                                    | III<br>duction to decision<br>ue statements, got<br>sing elements of a<br>ement in an array.<br>IV<br>ing length of a station<br>s, appending a stations.<br>a declaration/funct<br>-V<br>n functions. Passi<br>Declaration, Type<br>thin structures.                                                                                                                            | o statements.<br>an array, Storing va<br>Two dimensional<br>tring, converting c<br>ring to another stri<br>tion prototype, Fur<br>ing arrays to functi<br>edef declaration, i<br>Introduction to p<br><u>be able to</u><br>tools.                                                  | alues<br>arrays<br>charac<br>ng, co<br>nction<br>ons. I<br>nitiali<br>ointer                  | in arrays<br>s- Opera<br>eters of<br>omparin<br>definiti<br>Recursio<br>ization o<br>rs, decla  | g statement<br>s, Operation<br>a string int<br>g two string<br>on, Functio<br>08 Hrs<br>n.<br>of structure<br>aring point                                                    |
| Decision<br>terative<br>Arrays:<br>on Array<br>dimension<br>Strings:<br>appercas<br>reversin<br>Functio<br>call, Ret<br>Functio<br>Structu<br>accessin<br>variable<br>Course<br>CO1<br>CO2 | n Control and Lo<br>e statements, Neste<br>: Introduction, Dec<br>ys- Traversing, Ins<br>onal arrays.<br>: Introduction, Or<br>se and lowercase,<br>g a string. String a<br>ons: Introduction,<br>turn statement.<br>ons: Passing param<br>res and Pointers<br>ag members of a<br>s.<br>Outcomes: After<br>Analyse problems<br>Evaluate the appr<br>investigating the<br>Design a sustaina                                            | oopi<br>ed lo<br>clara<br>serti<br>operat<br>Cor<br>und c<br>Usir<br>neter<br>s: In<br>stru-<br>con<br>s and<br>opri<br>prob                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Unit –<br>Unit –<br>Ing Statements: Intro-<br>ops, Break and continu-<br>tion of Arrays, Access<br>ng and Deletion of ele<br>Unit –<br>tions on strings- findi-<br>neatenating two string<br>character Built in funct<br>ng functions, Function<br>Unit –<br>troduction: Structure<br>uctures, structure wit<br>npleting the course, the<br>d design solution using<br>ate method/data struct<br>blem.<br>solution using C progr                                 | III<br>duction to decision<br>ue statements, got<br>sing elements of a<br>ement in an array.<br>IV<br>ing length of a station<br>ing length of a stations.<br>In declaration/funct<br>-V<br>n functions. Passa<br>Declaration, Type<br>thin structures.<br>he students will he<br>g program design for<br>ure required in C                                                      | o statements.<br>an array, Storing va<br>Two dimensional<br>tring, converting c<br>ring to another stri<br>tion prototype, Fur<br>ing arrays to functi<br>edef declaration, i<br>Introduction to p<br><b>De able to</b><br>tools.<br>programming to de                             | alues<br>arrays<br>characeng, concentration<br>nection<br>ons. I<br>nitialition<br>ointer     | in arrays<br>s- Opera<br>eters of<br>omparin<br>definiti<br>Recursio<br>ization o<br>s, decla   | g statement<br>s, Operation<br>tions on tw<br><b>10Hrs</b><br>a string int<br>g two string<br>on, Functio<br><b>08 Hrs</b><br>n.<br>of structure<br>uring pointe             |
| Decision<br>terative<br>Arrays:<br>on Array<br>dimension<br>Strings:<br>appercas<br>reversin<br>Functio<br>Structu<br>accessin<br>variable<br>Course<br>CO1<br>CO2<br>CO3                  | n Control and Lo<br>e statements, Neste<br>: Introduction, Dec<br>ys- Traversing, Ins<br>onal arrays.<br>: Introduction, Or<br>se and lowercase,<br>g a string. String a<br>ons: Introduction,<br>turn statement.<br>ons: Passing param<br>res and Pointers<br>ag members of a<br>s.<br>Outcomes: After<br>Analyse problems<br>Evaluate the appr<br>investigating the<br>Design a sustaina<br>in lifelong learnir                     | oopi<br>ed lo<br>clara<br>serti<br>operat<br>Cor<br>und c<br>Usir<br>neter<br>s: In<br>stru-<br>stru-<br>con<br>s and<br>opri<br>prob<br>bble s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unit –<br>Unit –<br>Ing Statements: Intro-<br>ops, Break and continu-<br>tion of Arrays, Access<br>ng and Deletion of ele<br>Unit –<br>tions on strings- findi-<br>neatenating two string<br>character Built in funct<br>ng functions, Function<br>Unit –<br>troduction: Structure<br>uctures, structure wit<br>npleting the course, the<br>d design solution using<br>ate method/data struct<br>blem.<br>solution using C progromered<br>or emerging technology | III<br>duction to decision<br>ue statements, got<br>sing elements of a<br>ement in an array.<br>IV<br>ing length of a state<br>ing length of a state<br>ing length of a state<br>s, appending a state<br>tions.<br>In declaration/funct<br>- V<br>n functions. Passa<br>Declaration, Type<br>thin structures.<br>he students will he<br>g program design to<br>ure required in C | o statements.<br>an array, Storing va<br>Two dimensional<br>tring, converting c<br>ring to another stri<br>tion prototype, Fur<br>ing arrays to functi<br>edef declaration, i<br>Introduction to p<br><b>De able to</b><br>tools.<br>programming to de                             | alues arrays<br>characeng, concentration<br>ons. Initialition<br>ointer<br>evelop<br>ental of | in arrays<br>s- Opera<br>eters of<br>omparin<br>definiti<br>Recursio<br>ization of<br>rs, decla | g statement<br>s, Operation<br>a string int<br>g two string<br>on, Function<br>08 Hrs<br>n.<br>of structure<br>uring point<br>ns by<br>by engagin                            |
| Decision<br>iterative<br>Arrays:<br>on Array<br>dimension<br>Strings:<br>uppercas<br>reversin<br>Functio<br>Structu<br>accessin<br>variable                                                | n Control and Lo<br>e statements, Neste<br>: Introduction, Dec<br>ys- Traversing, Ins<br>onal arrays.<br>: Introduction, Op<br>se and lowercase,<br>g a string. String a<br>ons: Introduction,<br>turn statement.<br>ons: Passing param<br>res and Pointers<br>ag members of a<br>s.<br>Outcomes: After<br>Analyse problems<br>Evaluate the appr<br>investigating the<br>Design a sustaina<br>in lifelong learnir<br>Demonstrate prog | oopi<br>ad lo<br>clara<br>serti<br>cor<br>und c<br>Usir<br>und c<br>Usir<br>inter<br>stru-<br>stru-<br>stru-<br>stru-<br>stru-<br>stru-<br>opri<br>bble s<br>ang fc<br>gram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Unit –<br>Unit –<br>Ing Statements: Intro-<br>ops, Break and continu-<br>tion of Arrays, Access<br>ng and Deletion of ele<br>Unit –<br>tions on strings- findi-<br>neatenating two string<br>character Built in funct<br>ng functions, Function<br>Unit –<br>troduction: Structure<br>uctures, structure wit<br>npleting the course, the<br>d design solution using<br>ate method/data struct<br>blem.<br>solution using C progr                                 | III<br>duction to decision<br>ue statements, got<br>sing elements of a<br>ement in an array.<br>IV<br>ing length of a station<br>s, appending a stations.<br>a declaration/funct<br>- V<br>n functions. Passi<br>Declaration, Type<br>thin structures.<br>he students will the<br>g program design fure required in C<br>amming with soci<br>y<br>atter-disciplinary pro-        | o statements.<br>an array, Storing va<br>Two dimensional<br>tring, converting c<br>ring to another stri<br>tion prototype, Fur<br>ing arrays to functi<br>edef declaration, i<br>Introduction to p<br><b>De able to</b><br>tools.<br>programming to decide<br>ietal and environmed | alues arrays<br>characeng, concentration<br>ons. Initialition<br>ointer<br>evelop<br>ental of | in arrays<br>s- Opera<br>eters of<br>omparin<br>definiti<br>Recursio<br>ization of<br>rs, decla | g statement<br>s, Operation<br>tions on tw<br>10Hrs<br>a string int<br>g two string<br>on, Function<br>08 Hrs<br>n.<br>of structure<br>wring pointed<br>ns by<br>by engaging |

|   | Reference Books |                                                                                                                                          |  |  |  |  |  |
|---|-----------------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|   | 1               | Programming in C, Reema Thareja, 2018, Oxford University Press. ISBN: 9780199492282.                                                     |  |  |  |  |  |
|   | 2               | The C Programming Language, Kernighan B.W and Dennis M. Ritchie, 2015, 2 <sup>nd</sup> Edition, Prentice Hall, ISBN (13): 9780131103627. |  |  |  |  |  |
| ſ | 3               | Turbo C: The Complete Reference, H. Schildt, 2000, 4th Edition, Mcgraw Hill Education,                                                   |  |  |  |  |  |

RV Educational Institutions ° RV College of Engineering °

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

 ISBN-13: 9780070411838.

 4
 Let Us C: Authentic Guide to C PROGRAMMING Language, YashavantKanetkar 17<sup>th</sup> Edition, 2020, BPB PUBN , ISBN- 9789389845686.

| RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY) |                                                                                                                                                                                                                                                                                                                                                                             |       |  |  |  |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|
| #                                                      | COMPONENTS                                                                                                                                                                                                                                                                                                                                                                  | MARKS |  |  |  |
| 1                                                      | <b>QUIZZES:</b> Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. <b>THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.</b>                                                                                                                                                                     | 20    |  |  |  |
| 2                                                      | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.</b> | 40    |  |  |  |
| 3                                                      | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), <b>MATLAB (20) ADDING UPTO 40 MARKS</b> .                                                                      | 40    |  |  |  |
|                                                        | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                                                                                                                            | 100   |  |  |  |

|               | RUBRIC FOR SEMESTER END EXAMINATION (THEORY)      |       |  |  |  |  |
|---------------|---------------------------------------------------|-------|--|--|--|--|
| <b>Q. NO.</b> | CONTENTS                                          | MARKS |  |  |  |  |
|               | PART A                                            |       |  |  |  |  |
| 1             | Objective type questions covering entire syllabus | 20    |  |  |  |  |
|               | PART B                                            |       |  |  |  |  |
|               | (Maximum of TWO Sub-divisions only)               |       |  |  |  |  |
| 2             | Unit 1 : (Compulsory)                             | 16    |  |  |  |  |
| 3 & 4         | Unit 2 : Question 3 or 4                          | 16    |  |  |  |  |
| 5&6           | Unit 3 : Question 5 or 6                          | 16    |  |  |  |  |
| 7 & 8         | Unit 4 : Question 7 or 8                          | 16    |  |  |  |  |
| 9 & 10        | Unit 5: Question 9 or 10                          | 16    |  |  |  |  |
|               | MAXIMUM MARKS FOR THE SEE THEORY                  | 100   |  |  |  |  |



| University, Belagavi                                                                                                 |              |                                             |                                                      |                                             |       |                        |               |
|----------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------|------------------------------------------------------|---------------------------------------------|-------|------------------------|---------------|
|                                                                                                                      |              |                                             | Semester - I/II                                      |                                             |       |                        |               |
|                                                                                                                      |              |                                             | OF CIVIL ENGIN                                       |                                             |       |                        |               |
|                                                                                                                      |              |                                             | Engineering Science                                  |                                             |       |                        |               |
|                                                                                                                      |              | (Common to all                              | Programs Except C                                    | V Program)                                  |       |                        |               |
|                                                                                                                      |              |                                             | (Theory)                                             | 1                                           |       | 1                      |               |
| Course Code                                                                                                          | :            | 22ES14B/24B                                 |                                                      | CIE                                         | :     | 100 M                  |               |
| Credits: L:T:P                                                                                                       | :            | 3:0:0                                       |                                                      | SEE                                         | :     | 100 M                  |               |
| Total Hours                                                                                                          | :            | 40L                                         |                                                      | <b>SEE Duration</b>                         | :     | 3 Hour                 | S             |
|                                                                                                                      |              | T                                           | •/ <b>T</b>                                          |                                             |       |                        | 0.0 11        |
|                                                                                                                      | •            |                                             | $\frac{\text{nit} - I}{\text{St} + 1} = \frac{1}{1}$ |                                             | , .   |                        | 08 Hrs        |
| Introduction to Civil En<br>& Water Resources, Tran<br>management.                                                   |              |                                             |                                                      |                                             |       |                        |               |
| Analysis of force syst<br>transmissibility, Resolutio<br>and non-concurrent copla                                    | on a<br>inar | nd composition of force systems, mo         | forces, Law of Paral<br>ment of forces, coup         | llelogram of forces,<br>le, Varignon's theo | Rea   | sultant o<br>, free bo | f concurrent  |
| equations of equilibrium,                                                                                            | equi         |                                             |                                                      | nt coplanar force sys                       | stem  | s.                     |               |
|                                                                                                                      |              |                                             | nit – II                                             |                                             |       |                        | 08 Hrs        |
| Basic Materials of Cor                                                                                               |              |                                             | ement & mortars, Pl                                  | ain, Reinforced &                           | Pre   | e-stressed             | d Concrete,   |
| Structural steel, Construct                                                                                          |              |                                             | 11. 1 1 1                                            |                                             | 1     |                        | 1.1           |
| Structural elements of                                                                                               |              |                                             |                                                      |                                             |       |                        |               |
| staircase including geome                                                                                            | etric        | design. Plinth area                         | i, carpet area, floor ai                             | rea ratio, numerical                        | prol  | olems, lo              | ocal building |
| byelaws.                                                                                                             |              | TT -                                        | •/ 111                                               |                                             |       |                        | 00 11         |
| Environmental Enginee                                                                                                | •            |                                             | it – III                                             | W/-4                                        |       | <u>C</u>               | 08 Hrs        |
| pollution -causes and ren<br>methods, Urban flood- typ<br><b>Built-Environment:</b> Ene<br>systems, Smart buildings. | pes,<br>rgy  | causes and control.<br>efficient buildings, | recycling, Temperat                                  | ure and Sound cont                          |       |                        | ngs, Security |
|                                                                                                                      | •            |                                             | it – IV                                              |                                             |       |                        | 08 Hrs        |
| <b>Transportation Engineer</b><br>Importance and classifica<br>types of Tunnels, Harbour                             | tion         | of roads and railwa                         |                                                      | -                                           |       |                        | egration.     |
|                                                                                                                      |              |                                             |                                                      |                                             |       | 1 T                    | 08 Hrs        |
| Geotechnical Engineerin<br>considered in selection of<br>Novel areas: Concepts<br>Engineering, Introduction          | four<br>of   | ndations.<br>Automation and                 | Robotics in Constru                                  | action, Concept of                          | Su    | stainabil              |               |
| Course Outcomes: After                                                                                               |              | nnlating the course                         | a tha students will b                                | a abla ta                                   |       |                        |               |
|                                                                                                                      |              |                                             | engineering, material                                |                                             | huil  | ding                   |               |
|                                                                                                                      |              | ·                                           | ngineering and built e                               |                                             | oull  | ung                    |               |
|                                                                                                                      |              |                                             | and resolution of a fo                               |                                             |       |                        |               |
|                                                                                                                      |              |                                             |                                                      |                                             | na :  | naludina               | noval area    |
| CO4 Identify the conc                                                                                                | epts         | and importance of                           | transportation and ge                                | otecninical engineeri                       | ing 1 | neruaing               | g novel areas |
| Defenence Deeler                                                                                                     |              |                                             |                                                      |                                             |       |                        |               |
| Reference Books                                                                                                      |              |                                             |                                                      |                                             |       |                        |               |
| 1 Principles of Tra                                                                                                  | -            | mation Engine                               | g, <u>Partha Chakroborty</u>                         | Animach Dea DI                              | TT -  | nuin ~ D               | ut I tal 2nd  |

|   | Edition, 2003, ISBN: 9788120320840.                                                                                |
|---|--------------------------------------------------------------------------------------------------------------------|
| 2 | Engineering Mechanics, Bhavikatti S S, New Age International Private Limited, 8 <sup>th</sup> Edition, 2021, ISBN- |
|   | 13.978-9388818476                                                                                                  |

RV Educational Institutions ° RV College of Engineering °

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

| 3 | Basic Civil Engineering, <u>G.K. Hiraskar</u> , Dhanpat Rai Publications, 1 <sup>st</sup> Edition, ISBN-13 : 978-<br>9383182022.                     |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | Basic Civil Engineering and Engineering Mechanics, R.K. Bansal, Laxmi Publications, 3rd Edition, 2015, ISBN-13:978-9380856674                        |
| 5 | Basic Civil Engineering, B.C. Punmia, Ashok Kumar Jain, Arun Kumar Jain, Laxmi Publications; 1 <sup>st</sup> Edition, 2003, ISBN-13: 978-8170084037. |

| RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY) |                                                                                                                                                                                                                                                                                                                                                                             |       |  |  |  |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|
| #                                                      | COMPONENTS                                                                                                                                                                                                                                                                                                                                                                  | MARKS |  |  |  |
| 1                                                      | <b>QUIZZES:</b> Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. <b>THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.</b>                                                                                                                                                                     | 20    |  |  |  |
| 2                                                      | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.</b> | 40    |  |  |  |
| 3                                                      | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), <b>MATLAB (20) ADDING UPTO 40 MARKS</b> .                                                                      | 40    |  |  |  |
|                                                        | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                                                                                                                            | 100   |  |  |  |

|        | <b>RUBRIC FOR SEMESTER END EXAMINATION (THEORY)</b> |     |  |  |  |  |
|--------|-----------------------------------------------------|-----|--|--|--|--|
| Q. NO. | CONTENTS                                            |     |  |  |  |  |
|        | PART A                                              |     |  |  |  |  |
| 1      | Objective type questions covering entire syllabus   | 20  |  |  |  |  |
|        | PART B                                              |     |  |  |  |  |
|        | (Maximum of TWO Sub-divisions only)                 |     |  |  |  |  |
| 2      | Unit 1 : (Compulsory)                               | 16  |  |  |  |  |
| 3 & 4  | Unit 2 : Question 3 or 4                            | 16  |  |  |  |  |
| 5&6    | Unit 3 : Question 5 or 6                            | 16  |  |  |  |  |
| 7 & 8  | Unit 4 : Question 7 or 8                            | 16  |  |  |  |  |
| 9 & 10 | Unit 5: Question 9 or 10                            | 16  |  |  |  |  |
|        | MAXIMUM MARKS FOR THE SEE THEORY                    | 100 |  |  |  |  |



Approved by AICTE, New Delhi

|                                                                                                                                                                               |                                                                                                                                                    |                                                                                                                                                                                                                                         | Semester - I / II                                                                                                                                                                                            |                                                                                                      |                                       |                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------|
|                                                                                                                                                                               | I                                                                                                                                                  |                                                                                                                                                                                                                                         | ELECTRONICS ENG                                                                                                                                                                                              | GINEERING                                                                                            |                                       |                                                                                           |
|                                                                                                                                                                               |                                                                                                                                                    | <b>Category: E</b>                                                                                                                                                                                                                      | ngineering Science C                                                                                                                                                                                         | ourse                                                                                                |                                       |                                                                                           |
|                                                                                                                                                                               | (Co                                                                                                                                                |                                                                                                                                                                                                                                         | ams Except EC, EI &                                                                                                                                                                                          |                                                                                                      | )                                     |                                                                                           |
|                                                                                                                                                                               |                                                                                                                                                    | 8                                                                                                                                                                                                                                       | (Theory)                                                                                                                                                                                                     | 6 /                                                                                                  |                                       |                                                                                           |
| Course Code                                                                                                                                                                   | •                                                                                                                                                  | 22ES14C/24C                                                                                                                                                                                                                             | (                                                                                                                                                                                                            | CIE                                                                                                  |                                       | 100 Marks                                                                                 |
| Credits: L:T:P                                                                                                                                                                | :                                                                                                                                                  | 3:0:0                                                                                                                                                                                                                                   | 5                                                                                                                                                                                                            | SEE                                                                                                  | :                                     | 100 Marks                                                                                 |
| Total Hours                                                                                                                                                                   | :                                                                                                                                                  | 40L                                                                                                                                                                                                                                     | \$                                                                                                                                                                                                           | SEE Duration                                                                                         | :                                     | 3 Hours                                                                                   |
|                                                                                                                                                                               | •                                                                                                                                                  |                                                                                                                                                                                                                                         |                                                                                                                                                                                                              |                                                                                                      |                                       |                                                                                           |
|                                                                                                                                                                               |                                                                                                                                                    | Un                                                                                                                                                                                                                                      | it – I                                                                                                                                                                                                       |                                                                                                      |                                       | 08Hrs                                                                                     |
| <b>REGULATED POV</b>                                                                                                                                                          | VER S                                                                                                                                              | UPPLY: Block Di                                                                                                                                                                                                                         | agram, Bridge Rectif                                                                                                                                                                                         | ier with filter,                                                                                     | Zene                                  | r diode as Voltag                                                                         |
| Regulator, Photo diod                                                                                                                                                         | le, LED.                                                                                                                                           |                                                                                                                                                                                                                                         |                                                                                                                                                                                                              |                                                                                                      |                                       |                                                                                           |
| AMPLIFIERS: CE                                                                                                                                                                | Amplifi                                                                                                                                            | er with and withou                                                                                                                                                                                                                      | t feedback, Multistag                                                                                                                                                                                        | e amplifier, BJ                                                                                      | Гasa                                  | switch, Cutoff an                                                                         |
| Saturation modes.                                                                                                                                                             |                                                                                                                                                    |                                                                                                                                                                                                                                         |                                                                                                                                                                                                              |                                                                                                      |                                       |                                                                                           |
|                                                                                                                                                                               |                                                                                                                                                    |                                                                                                                                                                                                                                         | t – II                                                                                                                                                                                                       |                                                                                                      |                                       | 08 Hrs                                                                                    |
|                                                                                                                                                                               |                                                                                                                                                    |                                                                                                                                                                                                                                         | : Feedback Concepts                                                                                                                                                                                          | 0                                                                                                    |                                       | 0 0                                                                                       |
|                                                                                                                                                                               |                                                                                                                                                    |                                                                                                                                                                                                                                         | rion, RC Phase Shift (                                                                                                                                                                                       |                                                                                                      | Bridg                                 | ge Oscillator, Crysta                                                                     |
|                                                                                                                                                                               |                                                                                                                                                    |                                                                                                                                                                                                                                         | No mathematical deri                                                                                                                                                                                         |                                                                                                      |                                       |                                                                                           |
|                                                                                                                                                                               |                                                                                                                                                    |                                                                                                                                                                                                                                         | asics, Practical Op-                                                                                                                                                                                         |                                                                                                      |                                       |                                                                                           |
|                                                                                                                                                                               |                                                                                                                                                    |                                                                                                                                                                                                                                         | Integrator, Differentia                                                                                                                                                                                      | tor(Only Conce                                                                                       | pts, W                                | orking, Waveform                                                                          |
| No mathematical deriv                                                                                                                                                         | vations)                                                                                                                                           |                                                                                                                                                                                                                                         |                                                                                                                                                                                                              |                                                                                                      |                                       | 00 11                                                                                     |
|                                                                                                                                                                               |                                                                                                                                                    |                                                                                                                                                                                                                                         |                                                                                                                                                                                                              | NT 1 1                                                                                               |                                       | 08 Hrs                                                                                    |
|                                                                                                                                                                               |                                                                                                                                                    |                                                                                                                                                                                                                                         | <b>TS:</b> Binary numbers,                                                                                                                                                                                   |                                                                                                      |                                       |                                                                                           |
|                                                                                                                                                                               |                                                                                                                                                    |                                                                                                                                                                                                                                         | theorems and properti                                                                                                                                                                                        |                                                                                                      |                                       |                                                                                           |
|                                                                                                                                                                               |                                                                                                                                                    | s, Digital Logic gate                                                                                                                                                                                                                   | s, Demorgan's Laws, I                                                                                                                                                                                        | Ex-OK realizatio                                                                                     | on usu                                | ng NAND and NOP                                                                           |
| Kmaps (Up-to 4 varia<br>COMBINATIONAL                                                                                                                                         |                                                                                                                                                    | C. Introduction Dec                                                                                                                                                                                                                     | ion procedure Adders                                                                                                                                                                                         | Half adder Ful                                                                                       | 1 adda                                | . <b>1</b> .                                                                              |
| COMBINATIONAL                                                                                                                                                                 |                                                                                                                                                    |                                                                                                                                                                                                                                         | t – IV                                                                                                                                                                                                       |                                                                                                      | 1 auuc                                | 08 Hrs                                                                                    |
| COMMUNICATION                                                                                                                                                                 | N SVST                                                                                                                                             |                                                                                                                                                                                                                                         |                                                                                                                                                                                                              | unication system                                                                                     | m M                                   |                                                                                           |
| (Only concepts, we                                                                                                                                                            |                                                                                                                                                    |                                                                                                                                                                                                                                         |                                                                                                                                                                                                              |                                                                                                      |                                       |                                                                                           |
| Communication block                                                                                                                                                           |                                                                                                                                                    |                                                                                                                                                                                                                                         | in and companion                                                                                                                                                                                             | ), super nece                                                                                        | j                                     |                                                                                           |
| INTRODUCTION                                                                                                                                                                  | ΤÕ                                                                                                                                                 | MICROPROCES                                                                                                                                                                                                                             | SOR AND MIC                                                                                                                                                                                                  | ROCONTROI                                                                                            | LER                                   | : Microprocesso                                                                           |
| Microcontroller (Only                                                                                                                                                         | / concep                                                                                                                                           | ts, working principle                                                                                                                                                                                                                   |                                                                                                                                                                                                              |                                                                                                      |                                       | 1                                                                                         |
| Case studies:                                                                                                                                                                 | 1                                                                                                                                                  |                                                                                                                                                                                                                                         | · · · · ·                                                                                                                                                                                                    |                                                                                                      |                                       |                                                                                           |
| i. Development board                                                                                                                                                          |                                                                                                                                                    |                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                            |                                                                                                      |                                       |                                                                                           |
| ii. Development board                                                                                                                                                         | based o                                                                                                                                            | n Microprocessor(R                                                                                                                                                                                                                      | aspberry P1).                                                                                                                                                                                                |                                                                                                      |                                       |                                                                                           |
|                                                                                                                                                                               |                                                                                                                                                    | 1                                                                                                                                                                                                                                       | 1 5 /                                                                                                                                                                                                        |                                                                                                      |                                       |                                                                                           |
|                                                                                                                                                                               |                                                                                                                                                    | on Micro controller(                                                                                                                                                                                                                    | 1 5 /                                                                                                                                                                                                        |                                                                                                      |                                       | 08 Hrs                                                                                    |
|                                                                                                                                                                               | d based of                                                                                                                                         | on Micro controller(<br>Uni<br>ion to Transducers:                                                                                                                                                                                      | Arduino).<br>t - V<br>Passive Electrical tra                                                                                                                                                                 |                                                                                                      |                                       | thermometer, Linea                                                                        |
|                                                                                                                                                                               | d based of                                                                                                                                         | on Micro controller(<br>Uni<br>ion to Transducers:                                                                                                                                                                                      | Arduino).<br>t - V<br>Passive Electrical tra                                                                                                                                                                 |                                                                                                      |                                       | thermometer, Linea                                                                        |
| variable differential                                                                                                                                                         | d based of<br>ntroduct<br>transfor                                                                                                                 | on Micro controller(<br>Uni<br>ion to Transducers:<br>mer (LVDT), Prox                                                                                                                                                                  | Arduino).<br>t - V<br>Passive Electrical tra                                                                                                                                                                 |                                                                                                      |                                       | thermometer, Linea                                                                        |
| variable differential transducer, Hall effect                                                                                                                                 | d based of<br>ntroduct<br>transfor<br>t Transd                                                                                                     | on Micro controller(<br>Uni<br>ion to Transducers:<br>mer (LVDT), Prox<br>ucer.                                                                                                                                                         | Arduino).<br>t - V<br>Passive Electrical trainity transducer. Action                                                                                                                                         | tive Electrical                                                                                      | transd                                | thermometer, Linea<br>ucer- Piezo electri                                                 |
| variable differential transducer, Hall effect <b>SENSORS:</b> Introduct                                                                                                       | d based of<br>ntroduct<br>transfor<br>t Transd<br>tion to se                                                                                       | on Micro controller(<br>Uni<br>ion to Transducers:<br>mer (LVDT), Prox<br>ucer.<br>ensors: LDR, Biome                                                                                                                                   | Arduino).<br>t - V<br>Passive Electrical trainity transducer. Action                                                                                                                                         | tive Electrical                                                                                      | transd<br>onic S                      | thermometer, Linea<br>ucer- Piezo electri<br>Sensor, Touch Senso                          |
| variable differential transducer, Hall effect <b>SENSORS:</b> Introduct                                                                                                       | d based of<br>ntroduct<br>transfor<br>t Transd<br>tion to se                                                                                       | on Micro controller(<br>Uni<br>ion to Transducers:<br>mer (LVDT), Prox<br>ucer.<br>ensors: LDR, Biome                                                                                                                                   | Arduino).<br>t - V<br>Passive Electrical trainity transducer. Action<br>dical Sensor, Humidity                                                                                                               | tive Electrical                                                                                      | transd<br>onic S                      | thermometer, Linea<br>ucer- Piezo electri<br>Sensor, Touch Senso                          |
| variable differential<br>transducer, Hall effect<br><b>SENSORS:</b> Introduct<br>(Only concepts, worki                                                                        | d based on<br>ntroduct<br>transfor<br>t Transd<br>tion to so<br>ing princ                                                                          | on Micro controller(<br>Uni<br>ion to Transducers:<br>mer (LVDT), Prox<br>ucer.<br>ensors: LDR, Biome<br>ciple). Case studies:                                                                                                          | Arduino).<br>t – V<br>Passive Electrical trainity transducer. Ac<br>dical Sensor, Humidit<br>Automatic Headlight                                                                                             | tive Electrical<br>y sensor, Ultra s<br>System, Pick and                                             | transd<br>onic S                      | thermometer, Linea<br>ucer- Piezo electri<br>Sensor, Touch Senso                          |
| variable differential<br>transducer, Hall effect<br>SENSORS: Introduct<br>(Only concepts, worki<br>Course Outcomes: A                                                         | d based of<br>ntroduct<br>transfor<br>t Transd<br>tion to so<br>ing princ<br><b>fter co</b>                                                        | on Micro controller(<br>Uni<br>ion to Transducers:<br>mer (LVDT), Prox<br>ucer.<br>ensors: LDR, Biome<br>ciple). Case studies:<br>npleting the course                                                                                   | Arduino).<br>t – V<br>Passive Electrical trainity transducer. Ac<br>dical Sensor, Humidit<br>Automatic Headlight                                                                                             | tive Electrical system, Pick and able to                                                             | transd<br>onic S<br>d Place           | thermometer, Linea<br>ucer- Piezo electri<br>Sensor, Touch Senso<br>e Robots.             |
| variable differential<br>transducer, Hall effect<br>SENSORS: Introduct<br>(Only concepts, worki<br>Course Outcomes: A                                                         | d based of<br>ntroduct<br>transfor<br>t Transd<br>tion to so<br>ing princ<br><b>fter co</b>                                                        | on Micro controller(<br>Uni<br>ion to Transducers:<br>mer (LVDT), Prox<br>ucer.<br>ensors: LDR, Biome<br>ciple). Case studies:<br>npleting the course                                                                                   | Arduino).<br>t - V<br>Passive Electrical trainity transducer. Activity dical Sensor, Humidity<br>Automatic Headlight S<br>, the students will be                                                             | tive Electrical system, Pick and able to                                                             | transd<br>onic S<br>d Place           | thermometer, Linea<br>ucer- Piezo electri<br>Sensor, Touch Senso<br>e Robots.             |
| variable differential<br>transducer, Hall effect<br>SENSORS: Introduct<br>(Only concepts, worki<br>Course Outcomes: A<br>CO1 Comprehendi<br>applications.                     | d based of<br>ntroduct<br>transfor<br>t Transd<br>tion to so<br>ing princ<br><b>After cor</b><br>ing the c                                         | on Micro controller(<br>Uni<br>ion to Transducers:<br>mer (LVDT), Prox<br>ucer.<br>ensors: LDR, Biome<br>ciple). Case studies:<br>npleting the course<br>operations and the ch                                                          | Arduino).<br>t - V<br>Passive Electrical trainity transducer. Activity dical Sensor, Humidity<br>Automatic Headlight S<br>, the students will be                                                             | tive Electrical<br>y sensor, Ultra s<br>System, Pick and<br>able to<br>ectronic devices              | transd<br>onic S<br>d Place           | thermometer, Linea<br>ucer- Piezo electri<br>Sensor, Touch Senso<br>e Robots.             |
| variable differential<br>transducer, Hall effect<br>SENSORS: Introduct<br>(Only concepts, worki<br>Course Outcomes: A<br>CO1 Comprehendi<br>applications.<br>CO2 Analyze Diff | d based of<br>ntroduct<br>transfor<br>t Transd<br>tion to so<br>ing princ<br><b>fter cor</b><br>ing the c                                          | on Micro controller(<br>Uni<br>ion to Transducers:<br>mer (LVDT), Prox<br>ucer.<br>ensors: LDR, Biome<br>ciple). Case studies:<br>npleting the course<br>operations and the ch<br>ectronic circuits for                                 | Arduino).<br>t – V<br>Passive Electrical trainity transducer. Ac<br>dical Sensor, Humidit<br>Automatic Headlight S<br>, the students will be<br>haracteristics of the Electric                               | tive Electrical<br>y sensor, Ultra s<br>System, Pick and<br>able to<br>ectronic devices<br>s.        | transd<br>onic S<br>d Place           | thermometer, Linea<br>ucer- Piezo electri<br>Sensor, Touch Senso<br>e Robots.             |
| Course Outcomes: ACO1Comprehendi<br>applications.CO2Analyze DiffCO3Demonstrate                                                                                                | d based of<br>ntroduct<br>transfor<br>t Transd<br>tion to so<br>ing prince<br><b>fiter cor</b><br>ing the construction<br>ferent Ele-<br>the diffe | on Micro controller(<br>Uni<br>ion to Transducers:<br>mer (LVDT), Prox<br>ucer.<br>ensors: LDR, Biome<br>ciple). Case studies:<br><b>npleting the course</b><br>operations and the ch<br>ectronic circuits for<br>erent building blocks | Arduino).<br>t – V<br>Passive Electrical trainity transducer. Active<br>dical Sensor, Humidit<br>Automatic Headlight<br>, the students will be<br>haracteristics of the Electronic<br>various system designs | tive Electrical<br>y sensor, Ultra s<br>System, Pick and<br>able to<br>ectronic devices<br>s.<br>is. | transd<br>onic S<br>1 Place<br>for me | thermometer, Linea<br>ucer- Piezo electri<br>ensor, Touch Senso<br>e Robots.<br>odern day |

Engineering tools.

RV Educational Institutions <sup>®</sup> RV College of Engineering <sup>®</sup>

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

| Refere | ence Books                                                                                                            |
|--------|-----------------------------------------------------------------------------------------------------------------------|
| 1      | Basic Electronics, D P Kothari, I J Nagrath, 2 <sup>nd</sup> Edition, McGraw Hill Education (India), Private Limited, |
|        | 2018.                                                                                                                 |
| 2      | Electronic Devices and Circuit Theory, Robert L Boylestad, Louis Nashelsky, Prentice Hall India                       |
|        | publication, 11 <sup>th</sup> Edition, 2009.                                                                          |
| 3      | Digital Logic and Computer Design, Morris Mano, Prentice Hall India publication, 54 <sup>th</sup> Edition, 2007,      |
|        | ISBN: 978-81-317-1450-8.                                                                                              |
| 4      | Electronic Devices and Circuits, David A. Bell, Oxford University Press, 5th Edition, 2008, ISBN:                     |
|        | 9780195693409.                                                                                                        |
| 5      | Microelectronics circuits: Theory and applications, Adel S Sedra& Kenneth C Smith, Oxford University                  |
|        | Press, 5 <sup>th</sup> Edition, ISBN: 9780198062257.                                                                  |

| RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY) |                                                                                                                                                                                                                                                                                                                                                                             |       |  |  |  |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|
| #                                                      | COMPONENTS                                                                                                                                                                                                                                                                                                                                                                  | MARKS |  |  |  |
| 1                                                      | <b>QUIZZES:</b> Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. <b>THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.</b>                                                                                                                                                                     | 20    |  |  |  |
| 2                                                      | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.</b> | 40    |  |  |  |
| 3                                                      | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), <b>MATLAB (20) ADDING UPTO 40 MARKS</b> .                                                                      | 40    |  |  |  |
|                                                        | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                                                                                                                            | 100   |  |  |  |

| <b>RUBRIC FOR SEMESTER END EXAMINATION (THEORY)</b> |                                                   |       |  |  |  |
|-----------------------------------------------------|---------------------------------------------------|-------|--|--|--|
| Q. NO.                                              | CONTENTS                                          | MARKS |  |  |  |
|                                                     | PART A                                            |       |  |  |  |
| 1                                                   | Objective type questions covering entire syllabus | 20    |  |  |  |
|                                                     | PART B                                            |       |  |  |  |
|                                                     | (Maximum of TWO Sub-divisions only)               |       |  |  |  |
| 2                                                   | Unit 1 : (Compulsory)                             | 16    |  |  |  |
| 3 & 4                                               | Unit 2 : Question 3 or 4                          | 16    |  |  |  |
| 5&6                                                 | Unit 3 : Question 5 or 6                          | 16    |  |  |  |
| 7 & 8                                               | Unit 4 : Question 7 or 8                          | 16    |  |  |  |
| 9 & 10                                              | Unit 5: Question 9 or 10                          | 16    |  |  |  |
|                                                     | MAXIMUM MARKS FOR THE SEE THEORY                  | 100   |  |  |  |



Approved by AICTE, New Delhi

|                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                      |                                                                                                                                                                                                                                                                                                             | Somoston I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | / 11                                                                                                                                                                                                                                                                                               |                                                                                                                                                            |                                                                          |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                      | BASICS OF F                                                                                                                                                                                                                                                                                                 | Semester - I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ENGINEERING                                                                                                                                                                                                                                                                                        |                                                                                                                                                            |                                                                          |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                      |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                            |                                                                          |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                      |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Science Course<br>(cept EE Program)                                                                                                                                                                                                                                                                |                                                                                                                                                            |                                                                          |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                      |                                                                                                                                                                                                                                                                                                             | (Theory)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (cept BE flogram)                                                                                                                                                                                                                                                                                  |                                                                                                                                                            |                                                                          |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Course                                                                                                                                                            | Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                      | 22ES14D/24D                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CIE                                                                                                                                                                                                                                                                                                |                                                                                                                                                            | •                                                                        | 100 N                                                                                                        | Marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                   | s: L:T:P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | :                                                                                                                                    | 3:0:0                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SEE                                                                                                                                                                                                                                                                                                |                                                                                                                                                            | :                                                                        | 100 N                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Total H                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | :                                                                                                                                    | 40L                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SEE Durat                                                                                                                                                                                                                                                                                          |                                                                                                                                                            | :                                                                        | 3 Hot                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                      |                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                                                                                                                                                                                                                                                                                  |                                                                                                                                                            |                                                                          |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                      | U                                                                                                                                                                                                                                                                                                           | nit – I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                            |                                                                          |                                                                                                              | 08 Hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DC cir                                                                                                                                                            | cuits: Ohm's law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | and                                                                                                                                  | Kirchhoff's laws,                                                                                                                                                                                                                                                                                           | analysis of so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | eries, parallel and se                                                                                                                                                                                                                                                                             | eries-para                                                                                                                                                 | lle                                                                      | l circu                                                                                                      | its excited by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                      |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | y, Thevenin Theorer                                                                                                                                                                                                                                                                                | n & Max                                                                                                                                                    | xin                                                                      | um P                                                                                                         | ower Transfer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Theorem                                                                                                                                                           | m applied to the ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ries                                                                                                                                 | circuit and its appl                                                                                                                                                                                                                                                                                        | lications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                            |                                                                          |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                      | -                                                                                                                                                                                                                                                                                                           | nit – II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                            |                                                                          |                                                                                                              | 08 Hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                      |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | cy of generated volta                                                                                                                                                                                                                                                                              |                                                                                                                                                            |                                                                          |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                      |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | phasor diagrams, in I                                                                                                                                                                                                                                                                              |                                                                                                                                                            |                                                                          |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | naly                                                                                                                                 | vsis of single-phase                                                                                                                                                                                                                                                                                        | e ac series circ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | uits R, L, C, RL, RC                                                                                                                                                                                                                                                                               | , RLC, re                                                                                                                                                  | eso                                                                      | nance                                                                                                        | in series RLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| circuit.                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                      | T                                                                                                                                                                                                                                                                                                           | •. •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                            |                                                                          |                                                                                                              | 00 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                      |                                                                                                                                                                                                                                                                                                             | it – III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C1 1                                                                                                                                                                                                                                                                                               | 1 .                                                                                                                                                        | 1 1                                                                      | 1.                                                                                                           | 08 Hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                      |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | sentation of balanced                                                                                                                                                                                                                                                                              |                                                                                                                                                            |                                                                          |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| the rela                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                      |                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | current from phasor                                                                                                                                                                                                                                                                                | diagram                                                                                                                                                    | s, a                                                                     | idvant                                                                                                       | ages of three-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                   | ystems. Measureme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                      |                                                                                                                                                                                                                                                                                                             | ver by two-wat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tmeter method.                                                                                                                                                                                                                                                                                     |                                                                                                                                                            |                                                                          |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                      | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                       | , <u>,</u> , .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · · 1 C 1·                                                                                                                                                                                                                                                                                         | EME                                                                                                                                                        |                                                                          | · ·                                                                                                          | 1, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                   | <b>U</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                      |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | inciple of working,                                                                                                                                                                                                                                                                                | , EMF e                                                                                                                                                    | equ                                                                      | ations                                                                                                       | , voltage and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                   | ormers: Single pl<br>ratios, losses, defir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                      | n of regulation and                                                                                                                                                                                                                                                                                         | d efficiency.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | inciple of working,                                                                                                                                                                                                                                                                                | , EMF e                                                                                                                                                    | equ                                                                      | ations                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| current                                                                                                                                                           | ratios, losses, defin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nitio                                                                                                                                | n of regulation and Un                                                                                                                                                                                                                                                                                      | d efficiency.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                            | •                                                                        |                                                                                                              | 08 Hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| current<br>Three                                                                                                                                                  | ratios, losses, defir<br>Phase Induction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nitio<br>mo                                                                                                                          | n of regulation and<br>Un<br>tors: Three-phase                                                                                                                                                                                                                                                              | 1 efficiency.<br><b>hit – IV</b><br>e induction m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | otors. Principle of                                                                                                                                                                                                                                                                                |                                                                                                                                                            | •                                                                        |                                                                                                              | 08 Hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| current<br>Three<br>Rotatin                                                                                                                                       | ratios, losses, defir<br><b>Phase Induction</b><br>ng magnetic field, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nition<br>mo                                                                                                                         | n of regulation and<br>Un<br>tors: Three-phase<br>ficance of torque-s                                                                                                                                                                                                                                       | l efficiency.<br><b>it – IV</b><br>e induction m<br>slip characteris                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | otors. Principle of tic.                                                                                                                                                                                                                                                                           | operation                                                                                                                                                  | n,                                                                       | constr                                                                                                       | 08 Hrs<br>uction, types.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| current<br>Three<br>Rotatin<br>Single                                                                                                                             | ratios, losses, defir<br>Phase Induction<br>ng magnetic field, s<br>Phase Induction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mition<br>mo<br>signit<br>Mot                                                                                                        | n of regulation and<br>Un<br>tors: Three-phase<br>ficance of torque-s<br>tor: Single-phase                                                                                                                                                                                                                  | l efficiency.<br><b>it – IV</b><br>e induction m<br>slip characteris                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | otors. Principle of                                                                                                                                                                                                                                                                                | operation                                                                                                                                                  | n,                                                                       | constr                                                                                                       | 08 Hrs<br>uction, types.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| current<br>Three<br>Rotatin<br>Single                                                                                                                             | ratios, losses, defir<br><b>Phase Induction</b><br>ng magnetic field, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mition<br>mo<br>signit<br>Mot                                                                                                        | n of regulation and<br>Un<br>tors: Three-phase<br>ficance of torque-s<br>tor: Single-phase                                                                                                                                                                                                                  | l efficiency.<br><b>iit – IV</b><br>e induction m<br>slip characteris<br>induction mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | otors. Principle of tic.                                                                                                                                                                                                                                                                           | operation                                                                                                                                                  | n,                                                                       | constr                                                                                                       | 08 Hrs<br>uction, types.<br>ion, Types of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Current<br>Three<br>Rotatin<br>Single<br>single-p                                                                                                                 | ratios, losses, defin<br><b>Phase Induction</b><br>ng magnetic field, s<br><b>Phase Induction</b><br>phase induction mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mo<br>ignit<br>Mot<br>otors                                                                                                          | n of regulation and<br>Un<br>tors: Three-phase<br>ficance of torque-s<br>tor: Single-phase<br>Ur                                                                                                                                                                                                            | $\frac{1 \text{ efficiency.}}{\text{int} - IV}$ $\frac{1}{2} \text{ induction module}$ $\frac{1}{2} \text{ induction module}$ $\frac{1}{2} \text{ induction module}$ $\frac{1}{2} \text{ induction module}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | otors. Principle of<br>tic.<br>tor. Construction, Pr                                                                                                                                                                                                                                               | operation                                                                                                                                                  | n,<br>of                                                                 | constr                                                                                                       | 08 Hrs<br>uction, types.<br>ion, Types of<br>08 Hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Current<br>Three<br>Rotatin<br>Single<br>single-1<br>Power                                                                                                        | ratios, losses, defin<br><b>Phase Induction</b><br>ng magnetic field, so<br><b>Phase Induction</b><br>phase induction mon<br><b>transmission and</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mo<br>ignit<br>Mot<br>otors                                                                                                          | n of regulation and<br>Un<br>tors: Three-phase<br>ficance of torque-s<br>tor: Single-phase<br>Ur                                                                                                                                                                                                            | $\frac{1 \text{ efficiency.}}{\text{int} - IV}$ $\frac{1}{2} \text{ induction module}$ $\frac{1}{2} \text{ induction module}$ $\frac{1}{2} \text{ induction module}$ $\frac{1}{2} \text{ induction module}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | otors. Principle of tic.                                                                                                                                                                                                                                                                           | operation                                                                                                                                                  | n,<br>of                                                                 | constr                                                                                                       | 08 Hrs<br>uction, types.<br>ion, Types of<br>08 Hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| current<br>Three<br>Rotatin<br>Single<br>single-p<br>Dower<br>diagram                                                                                             | ratios, losses, defir<br><b>Phase Induction</b><br>ng magnetic field, so<br><b>Phase Induction</b><br>phase induction mon<br><b>transmission and</b><br>ns only.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mo<br>ignit<br>Mot<br>otors<br>dist                                                                                                  | n of regulation and<br>Un<br>tors: Three-phase<br>ficance of torque-s<br>tor: Single-phase<br>Un<br>ribution: Concep                                                                                                                                                                                        | $\frac{d}{dt} = \frac{d}{dt} + \frac{d}{dt} + \frac{d}{dt} + \frac{d}{dt}$ $\frac{d}{dt} = \frac{d}{dt}$                                                                                                                                                                                                                                                                                                                                                                                  | otors. Principle of<br>tic.<br>tor. Construction, Pr                                                                                                                                                                                                                                               | operation                                                                                                                                                  | n,<br>of                                                                 | constr                                                                                                       | 08 Hrs<br>uction, types.<br>ion, Types of<br>08 Hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Current<br>Three<br>Rotatin<br>Single<br>single-j<br>diagram<br>Electric                                                                                          | ratios, losses, defin<br>Phase Induction<br>ag magnetic field, si<br>Phase Induction mo-<br>phase induction mo-<br>transmission and<br>ns only.<br>city bill: Calculation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mition<br>mo<br>signif<br>Mot<br>otors<br>dist                                                                                       | n of regulation and<br>Un<br>tors: Three-phase<br>ficance of torque-s<br>tor: Single-phase<br>Un<br>ribution: Concep                                                                                                                                                                                        | $\frac{d \text{ efficiency.}}{\text{int} - IV}$ $d \text{ induction moduli for the second se$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | otors. Principle of<br>tic.<br>tor. Construction, Pr<br>sumission and power<br>sumers.                                                                                                                                                                                                             | operation<br>rinciple o                                                                                                                                    | n,<br>of                                                                 | constr<br>operat                                                                                             | 08 Hrs<br>uction, types.<br>ion, Types of<br>08 Hrs<br>ugh block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Current<br>Three<br>Rotatin<br>Single<br>single- <u>1</u><br>diagram<br>Electric<br>Equipm                                                                        | ratios, losses, defin<br>Phase Induction<br>ag magnetic field, s:<br>Phase Induction mo<br>phase induction mo<br>transmission and<br>ns only.<br>city bill: Calculation<br>nent Safety measu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mition<br>mo<br>signif<br>Mot<br>otors<br>dist                                                                                       | n of regulation and<br>Un<br>tors: Three-phase<br>ficance of torque-s<br>tor: Single-phase<br>Un<br>ribution: Concep                                                                                                                                                                                        | $\frac{d \text{ efficiency.}}{\text{int} - IV}$ $d \text{ induction moduli for the second se$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | otors. Principle of<br>tic.<br>tor. Construction, Pr                                                                                                                                                                                                                                               | operation<br>rinciple o                                                                                                                                    | n,<br>of                                                                 | constr<br>operat                                                                                             | 08 Hrs<br>uction, types.<br>ion, Types of<br>08 Hrs<br>ugh block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| current<br>Three<br>Rotatin<br>Single<br>single- <u>1</u><br>Power<br>diagram<br>Electric<br>Equipn<br>demerit                                                    | ratios, losses, defin<br>Phase Induction<br>ag magnetic field, s:<br>Phase Induction<br>phase induction mo<br>transmission and<br>ns only.<br>city bill: Calculation<br>nent Safety measunds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mition<br>mo<br>signif<br>Mot<br>otors<br>dist<br>on o<br>ures:                                                                      | n of regulation and<br>Un<br>tors: Three-phase<br>ficance of torque-s<br>tor: Single-phase<br>Un<br>ribution: Concep<br>f electricity bill for<br>Working principl                                                                                                                                          | $\frac{d \text{ efficiency.}}{\text{iit} - IV}$ $\frac{d \text{ induction module}}{d \text{ induction module}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | otors. Principle of<br>tic.<br>tor. Construction, Pr<br>sumission and power<br>sumers.<br>Miniature circuit bre                                                                                                                                                                                    | operation<br>rinciple o<br>distribut                                                                                                                       | n,<br>of<br>tior                                                         | constr<br>operat                                                                                             | 08 Hrs         uction, types.         ion, Types of         08 Hrs         ugh block         ts and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Current<br>Three<br>Rotatin<br>Single<br>single- <u>1</u><br>Power<br>diagram<br>Electric<br>Equipn<br>demerit                                                    | ratios, losses, defin<br>Phase Induction<br>ag magnetic field, s:<br>Phase Induction<br>phase induction mo<br>transmission and<br>ns only.<br>city bill: Calculation<br>nent Safety measunds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mition<br>mo<br>signif<br>Mot<br>otors<br>dist<br>on o<br>ures:                                                                      | n of regulation and<br>Un<br>tors: Three-phase<br>ficance of torque-s<br>tor: Single-phase<br>Un<br>ribution: Concep<br>f electricity bill for<br>Working principl                                                                                                                                          | $\frac{d \text{ efficiency.}}{\text{iit} - IV}$ $\frac{d \text{ induction module}}{d \text{ induction module}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | otors. Principle of<br>tic.<br>tor. Construction, Pr<br>sumission and power<br>sumers.                                                                                                                                                                                                             | operation<br>rinciple o<br>distribut                                                                                                                       | n,<br>of<br>tior                                                         | constr<br>operat                                                                                             | 08 Hrs         uction, types.         ion, Types of         08 Hrs         ugh block         ts and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| current<br>Three<br>Rotatin<br>Single<br>single-p<br>diagram<br>Electric<br>Equipm<br>demerit<br>Person                                                           | ratios, losses, defir<br>Phase Induction<br>ag magnetic field, so<br>Phase Induction mo<br>phase induction mo<br>transmission and<br>ns only.<br>city bill: Calculation<br>nent Safety measures<br>al safety measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mition<br>mo<br>ignif<br>Mot<br>otors<br>dist<br>on o:<br>s: El                                                                      | n of regulation and<br>Un<br>tors: Three-phase<br>ficance of torque-s<br>tor: Single-phase<br>Un<br>ribution: Concep<br>f electricity bill for<br>Working principl<br>ectric Shock, Eartl                                                                                                                   | $\frac{d}{dt} = \text{efficiency.}$ $\frac{d}{dt} = IV$ $\frac{d}{dt} = IV$ $\frac{d}{dt} = IV$ $\frac{d}{dt} = V$ $d$ | otors. Principle of<br>tic.<br>tor. Construction, Pr<br>msmission and power<br>sumers.<br>Miniature circuit bre<br>pes, Safety Precautio                                                                                                                                                           | operation<br>rinciple o<br>distribut                                                                                                                       | n,<br>of<br>tior                                                         | constr<br>operat                                                                                             | 08 Hrs         uction, types.         ion, Types of         08 Hrs         ugh block         ts and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| current<br>Three<br>Rotatin<br>Single<br>single-p<br>diagram<br>Electric<br>Equipm<br>demerit<br>Person<br>Course                                                 | ratios, losses, defir<br>Phase Induction<br>ag magnetic field, si<br>Phase Induction mo<br>phase induction mo<br>transmission and<br>ns only.<br>city bill: Calculation<br>nent Safety measures<br>al safety measures<br>e Outcomes: After                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nition<br>mo<br>signif<br>Mot<br>otors<br>dist<br>on o<br>ures:<br>El                                                                | n of regulation and<br>Un<br>tors: Three-phase<br>ficance of torque-s<br>tor: Single-phase<br>Un<br>ribution: Concep<br>f electricity bill for<br>Working principl<br>ectric Shock, Earth                                                                                                                   | $\frac{d}{dt} = \text{efficiency.}$ $\frac{d}{dt} = \frac{1}{1} \text{V}$ $\frac{d}{dt} = \frac{1}{1} induction momentum moment$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | otors. Principle of<br>tic.<br>tor. Construction, Pr<br>ssmission and power<br>sumers.<br>Miniature circuit bre<br>pes, Safety Precautio                                                                                                                                                           | operation<br>rinciple o<br>distribut<br>eaker (MC                                                                                                          | n,<br>of<br>tior                                                         | constr<br>operat<br>a. throu<br>), meri<br>shock                                                             | 08 Hrs<br>uction, types.<br>ion, Types of<br>08 Hrs<br>ugh block<br>ts and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| current<br>Three<br>Rotatin<br>Single<br>single- <u>1</u><br>Power<br>diagram<br>Electric<br>Equipm<br>demerit<br>Person<br>Course<br>CO1                         | ratios, losses, defin<br>Phase Induction<br>ag magnetic field, s:<br>Phase Induction<br>phase induction mo<br>transmission and<br>ns only.<br>city bill: Calculation<br>nent Safety measures<br>al safety measures<br>e Outcomes: After<br>Understand the w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nition<br>mo<br>ignif<br>Mot<br>otors<br>distr<br>on o:<br>ures:<br>s: El                                                            | n of regulation and<br>Un<br>tors: Three-phase<br>ficance of torque-s<br>tor: Single-phase<br>Un<br>ribution: Concep<br>f electricity bill for<br>Working principl<br>ectric Shock, Earth<br>npleting the cours<br>ng of electric circu                                                                     | $\frac{d}{dt} = efficiency.$ $\frac{dt}{dt} = IV$ $\frac{dt}{dt} = IV$ $\frac{dt}{dt} = IV$ $\frac{dt}{dt} = IV$ $\frac{dt}{dt} = V$                                     | otors. Principle of<br>tic.<br>tor. Construction, Pr<br>ssmission and power<br>sumers.<br>Miniature circuit bre<br>pes, Safety Precautio                                                                                                                                                           | operation<br>rinciple o<br>distribut<br>eaker (MC<br>ons to ave<br>es, and sa                                                                              | n,<br>of<br>tior<br>CB)<br>oid                                           | constr<br>operat<br>a. throu<br>), meri<br>shock                                                             | 08 Hrs         uction, types.         ion, Types of         08 Hrs         ugh block         ts and         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         . <t< td=""></t<> |
| current<br>Three<br>Rotatin<br>Single<br>single-p<br>diagram<br>Electric<br>Equipm<br>demerit<br>Person<br>Course<br>CO1<br>CO2                                   | ratios, losses, defin<br>Phase Induction<br>ag magnetic field, si<br>Phase Induction mo<br>phase induction mo<br>transmission and<br>ns only.<br>city bill: Calculation<br>nent Safety measures<br>al safety measures<br>Phase Induction mo<br>transmission and<br>ms only.<br>city bill: Calculation<br>measures<br>al safety measures<br>Phase Induction mo<br>transmission and<br>ms only.<br>city bill: Calculation<br>measures<br>Phase Induction mo<br>transmission and<br>ma only.<br>city bill: Calculation<br>measures<br>Phase Induction mo<br>transmission and<br>ma only.<br>city bill: Calculation<br>measures<br>Phase Induction mo<br>measures<br>Phase Induction and<br>ma only.<br>city bill: Calculation<br>phase Induction and<br>ma only.<br>city bill: Calculation<br>phase Induction and<br>phase Indu | nition<br>mo<br>ignif<br>Mot<br>otors<br>dist<br>on o<br>ures:<br>s: El<br>con<br>vorki<br>& D                                       | n of regulation and<br>Un<br>tors: Three-phase<br>ficance of torque-s<br>tor: Single-phase<br>Un<br>ribution: Concep<br>f electricity bill for<br>Working principl<br>ectric Shock, Earth<br>npleting the cours<br>ng of electric circu<br>C circuit paramete                                               | $\frac{d}{dt} = \text{fficiency.}$ $\frac{dt}{dt} = IV$ $\frac{dt}{dt} = IV$ $\frac{dt}{dt} = IV$ $\frac{dt}{dt} = IV$ $\frac{dt}{dt} = V$                               | otors. Principle of<br>tic.<br>tor. Construction, Pr<br>ssmission and power<br>sumers.<br>Miniature circuit bre<br>pes, Safety Precautio<br>ts will be able to<br>er, electrical machine<br>eristics of A.C mach                                                                                   | operation<br>rinciple of<br>distribut<br>eaker (MC<br>ons to avc<br>es, and sa<br>ines and                                                                 | n,<br>of<br>tior<br>CB)<br><u>oid</u>                                    | constr<br>operat<br>a. throu<br>), meri<br>shock<br>y devi<br>nsforn                                         | 08 Hrs         uction, types.         ion, Types of         08 Hrs         ugh block         ts and         .         cces.         ners                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| current<br>Three<br>Rotatin<br>Single<br>single-p<br>diagram<br>Electric<br>Equipm<br>demerit<br>Person<br>Course<br>CO1<br>CO2<br>CO3                            | ratios, losses, defin<br>Phase Induction<br>ag magnetic field, si<br>Phase Induction mo<br>phase induction mo<br>transmission and<br>ns only.<br>city bill: Calculation<br>nent Safety measures<br>e Outcomes: After<br>Understand the w<br>Evaluate the AC of<br>Analyze the performance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nition<br>mo<br>ignif<br>Mot<br>otors<br>dist<br>on o:<br>ures:<br>s: El<br>con<br>vorki<br>& D                                      | n of regulation and<br>Un<br>tors: Three-phase<br>ficance of torque-s<br>tor: Single-phase                                                                                                                                                                                                                  | d efficiency.<br>iit - IV<br>e induction m<br>slip characteris<br>induction mo<br>nit - V<br>t of power tran-<br>r domestic con<br>e of Fuse and<br>hing and its ty<br>se, the student<br>uits, transformers<br>and charact<br>nachines and n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | otors. Principle of<br>tic.<br>tor. Construction, Pr<br>sumers.<br>Miniature circuit bre<br>pes, Safety Precautio<br><b>s will be able to</b><br>er, electrical machine<br>eristics of A.C machine<br>hethods of power trai                                                                        | operation<br>rinciple of<br>distribut<br>eaker (MC<br>ons to avo<br>es, and sa<br>ines and<br>nsmissio                                                     | n,<br>of<br>tior<br>CB)<br><u>bid</u>                                    | constr<br>operat<br>a. throu<br>), meri<br>shock<br>y devi<br>nsforn<br>z distr                              | 08 Hrs         uction, types.         ion, Types of         08 Hrs         ugh block         ts and         .         cces.         ners         ibution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Coursee<br>Course<br>CO1<br>CO2                                                                                                                                   | ratios, losses, defin<br>Phase Induction<br>ag magnetic field, si<br>Phase Induction mo<br>phase induction mo<br>transmission and<br>ns only.<br>city bill: Calculation<br>nent Safety measures<br>e Outcomes: After<br>Understand the w<br>Evaluate the AC of<br>Analyze the performance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nition<br>mo<br>ignif<br>Mot<br>otors<br>dist<br>on o:<br>ures:<br>s: El<br>con<br>vorki<br>& D                                      | n of regulation and<br>Un<br>tors: Three-phase<br>ficance of torque-s<br>tor: Single-phase                                                                                                                                                                                                                  | d efficiency.<br>iit - IV<br>e induction m<br>slip characteris<br>induction mo<br>nit - V<br>t of power tran-<br>r domestic con<br>e of Fuse and<br>hing and its ty<br>se, the student<br>uits, transformers<br>and charact<br>nachines and n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | otors. Principle of<br>tic.<br>tor. Construction, Pr<br>ssmission and power<br>sumers.<br>Miniature circuit bre<br>pes, Safety Precautio<br>ts will be able to<br>er, electrical machine<br>eristics of A.C mach                                                                                   | operation<br>rinciple of<br>distribut<br>eaker (MC<br>ons to avo<br>es, and sa<br>ines and<br>nsmissio                                                     | n,<br>of<br>tior<br>CB)<br><u>bid</u>                                    | constr<br>operat<br>a. throu<br>), meri<br>shock<br>y devi<br>nsforn<br>z distr                              | 08 Hrs         uction, types.         ion, Types of         08 Hrs         ugh block         ts and         .         cces.         ners         ibution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| current<br>Three<br>Rotatin<br>Single<br>single-j<br>Power<br>diagram<br>Electric<br>Equipm<br>demerit<br>Person<br>Course<br>CO1<br>CO2<br>CO3<br>CO4            | ratios, losses, defir<br>Phase Induction<br>Ing magnetic field, si<br>Phase Induction mo<br>phase induction mo<br>transmission and<br>ns only.<br>city bill: Calculation<br>nent Safety measures<br>e Outcomes: After<br>Understand the w<br>Evaluate the AC of<br>Analyze the performance<br>Apply the knowle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nition<br>mo<br>ignif<br>Mot<br>otors<br>dist<br>on o:<br>ures:<br>s: El<br>con<br>vorki<br>& D                                      | n of regulation and<br>Un<br>tors: Three-phase<br>ficance of torque-s<br>tor: Single-phase                                                                                                                                                                                                                  | d efficiency.<br>iit - IV<br>e induction m<br>slip characteris<br>induction mo<br>nit - V<br>t of power tran-<br>r domestic con<br>e of Fuse and<br>hing and its ty<br>se, the student<br>uits, transformers<br>and charact<br>nachines and n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | otors. Principle of<br>tic.<br>tor. Construction, Pr<br>sumers.<br>Miniature circuit bre<br>pes, Safety Precautio<br><b>s will be able to</b><br>er, electrical machine<br>eristics of A.C machine<br>hethods of power trai                                                                        | operation<br>rinciple of<br>distribut<br>eaker (MC<br>ons to avo<br>es, and sa<br>ines and<br>nsmissio                                                     | n,<br>of<br>tior<br>CB)<br><u>bid</u>                                    | constr<br>operat<br>a. throu<br>), meri<br>shock<br>y devi<br>nsforn<br>z distr                              | 08 Hrs         uction, types.         ion, Types of         08 Hrs         ugh block         ts and         .         cces.         ners         ibution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| current<br>Three<br>Rotatin<br>Single<br>single-p<br>Power<br>diagram<br>Electric<br>Equipm<br>demerit<br>Person<br>Course<br>CO1<br>CO2<br>CO3<br>CO4<br>Referen | ratios, losses, defir<br>Phase Induction<br>Ing magnetic field, si<br>Phase Induction mo<br>phase induction mo<br>transmission and<br>ns only.<br>city bill: Calculation<br>nent Safety measures<br>e Outcomes: After<br>Understand the w<br>Evaluate the AC of<br>Analyze the performance<br>Apply the knowle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nition<br>mo<br>iignif<br>Otors<br>dist<br>on o:<br>ures: El<br>con<br>vorki<br>& D<br>prma<br>edge                                  | n of regulation and<br>Un<br>tors: Three-phase<br>ficance of torque-s<br>tor: Single-phase                                                                                                                                                                                                                  | d efficiency.<br>iit - IV<br>e induction m<br>slip characteris<br>induction mo<br>nit - V<br>t of power tran-<br>r domestic con-<br>e of Fuse and<br>hing and its ty<br>se, the student<br>uits, transformers<br>and charact<br>machines and r<br>pment, tariff, sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | otors. Principle of<br>tic.<br>tor. Construction, Principle<br>asmission and power<br>sumers.<br>Miniature circuit bre<br>pes, Safety Precaution<br>s will be able to<br>er, electrical machine<br>eristics of A.C machine<br>thods of power trans-<br>afety measures for er                       | operation<br>rinciple of<br>distribut<br>eaker (MC<br>ons to avc<br>es, and sa<br>ines and<br>nsmission<br>ngineerin                                       | n,<br>of<br>tior<br>CB)<br><u>oid</u><br>afet<br>train &<br>g a          | constr<br>operat<br>a. throu<br>), meri<br>shock<br>y devi<br>nsforn<br>z distri<br>pplica                   | 08 Hrs<br>uction, types.<br>ion, Types of<br>08 Hrs<br>ugh block<br>ts and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| current<br>Three<br>Rotatin<br>Single<br>single-j<br>Power<br>diagram<br>Electric<br>Equipm<br>demerit<br>Person<br>Course<br>CO1<br>CO2<br>CO3<br>CO4            | ratios, losses, defin<br>Phase Induction<br>ag magnetic field, si<br>Phase Induction mo<br>transmission and<br>ns only.<br>city bill: Calculation<br>nent Safety measures<br>e Outcomes: After<br>Understand the w<br>Evaluate the AC of<br>Analyze the perfor<br>Apply the knowle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nition<br>mo<br>ignif<br>Mot<br>otors<br>dist<br>on o:<br>ures:<br>s: El<br>con<br>vorki<br>& D<br>orma<br>edge                      | n of regulation and<br>Un<br>tors: Three-phase<br>ficance of torque-s<br>tor: Single-phase                                                                                                                                                                                                                  | d efficiency.<br>iit - IV<br>e induction m<br>slip characteris<br>induction mo<br>nit - V<br>t of power tran-<br>r domestic con-<br>e of Fuse and<br>hing and its ty<br>se, the student<br>uits, transformers<br>and charact<br>machines and r<br>pment, tariff, sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | otors. Principle of<br>tic.<br>tor. Construction, Pr<br>sumers.<br>Miniature circuit bre<br>pes, Safety Precautio<br><b>s will be able to</b><br>er, electrical machine<br>eristics of A.C machine<br>hethods of power trai                                                                        | operation<br>rinciple of<br>distribut<br>eaker (MC<br>ons to avc<br>es, and sa<br>ines and<br>nsmission<br>ngineerin                                       | n,<br>of<br>tior<br>CB)<br><u>oid</u><br>afet<br>train &<br>g a          | constr<br>operat<br>a. throu<br>), meri<br>shock<br>y devi<br>nsforn<br>z distri<br>pplica                   | 08 Hrs         uction, types.         ion, Types of         08 Hrs         ugh block         ts and         .         cces.         ners         ibution.         tions.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| current<br>Three<br>Rotatin<br>Single<br>single-p<br>Power<br>diagram<br>Electric<br>Equipm<br>demerit<br>Person<br>CO1<br>CO2<br>CO3<br>CO4<br>Referen<br>1      | ratios, losses, defin<br>Phase Induction<br>ag magnetic field, si<br>Phase Induction mo<br>phase induction mo<br>transmission and<br>ns only.<br>city bill: Calculation<br>nent Safety measures<br>e Outcomes: After<br>Understand the w<br>Evaluate the AC of<br>Analyze the perfor<br>Apply the knowled<br>nce Books<br>D. C. Kulshreshth<br>ISBN- 13:978-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nition<br>mo<br>iignif<br>Mot<br>otors<br>dist<br>dist<br>on o<br>ures:<br>s: El<br>con<br>vorki<br>& D<br>orma<br>edge              | n of regulation and<br>Un<br>tors: Three-phase<br>ficance of torque-s<br>tor: Single-phase<br>Un<br>ribution: Concep<br>f electricity bill for<br>Working principl<br>ectric Shock, Earth<br>npleting the cours<br>ng of electric circu<br>C circuit paramete<br>nce of Electrical n<br>of electrical equip | d efficiency.<br>iit - IV<br>e induction m<br>slip characteris<br>induction mo<br>nit - V<br>t of power trans-<br>r domestic content<br>e of Fuse and the student<br>hing and its types<br>se, the student<br>uits, transformers and charact<br>nachines and re-<br>poment, tariff, satisfy the student<br>gineering, Mc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | otors. Principle of<br>tic.<br>tor. Construction, Principle<br>asmission and power<br>sumers.<br>Miniature circuit bre<br>pes, Safety Precautio<br>er, electrical machine<br>eristics of A.C machine<br>eristics of A.C machine<br>thods of power transfety measures for er<br>Graw-Hill Education | operation<br>rinciple of<br>distribut<br>eaker (MC<br>ons to avc<br>es, and sa<br>ines and<br>nsmission<br>ngineerin                                       | n,<br>of<br>tior<br>CB<br><u>oid</u><br><u>afet</u><br>tra<br><u>g</u> a | constr<br>operat<br>a. throu<br>b, meri<br>shock<br>y devi<br>nsform<br>z distri<br>pplica                   | 08 Hrs         uction, types.         ion, Types of         08 Hrs         ugh block         ts and         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         . <t< td=""></t<> |
| current<br>Three<br>Rotatin<br>Single<br>single-p<br>Power<br>diagram<br>Electric<br>Equipm<br>demerit<br>Person<br>Course<br>CO1<br>CO2<br>CO3<br>CO4<br>Referen | ratios, losses, defin<br>Phase Induction<br>Ing magnetic field, si<br>Phase Induction mo<br>phase induction mo<br>transmission and<br>ns only.<br>city bill: Calculation<br>nent Safety measures<br>coutcomes: After<br>Understand the w<br>Evaluate the ACC of<br>Analyze the perfor<br>Apply the knowle<br>nce Books<br>D. C. Kulshreshth<br>ISBN- 13:978-00<br>D.P. Kothari and<br>ISBN-978-81-203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nition<br>mo<br>iignif<br>Mot<br>otors<br>dist<br>on o<br>ures:<br>El<br>con<br>vorki<br>& D<br>orma<br>edge<br>(7132<br>Nag<br>3-52 | n of regulation and<br>Un<br>tors: Three-phase<br>ficance of torque-s<br>tor: Single-phase                                                                                                                                                                                                                  | d efficiency.<br>iit - IV<br>e induction m<br>slip characteris<br>induction mo<br>nit - V<br>t of power tran<br>r domestic con<br>e of Fuse and<br>hing and its ty<br>se, the student<br>uits, transformers<br>and charact<br>nachines and n<br>pment, tariff, sa<br>gineering, Mc<br>roblems in ele                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | otors. Principle of<br>tic.<br>tor. Construction, Principle<br>asmission and power<br>sumers.<br>Miniature circuit bre<br>pes, Safety Precaution<br>s will be able to<br>er, electrical machine<br>eristics of A.C machine<br>thods of power trans-<br>afety measures for er                       | operation<br>rinciple of<br>distribut<br>eaker (MC<br>ons to avc<br>es, and sa<br>ines and<br>nsmission<br>ngineerin<br>n , 1 <sup>st</sup> Ed<br>PHI Edit | n,<br>of<br>tior<br>CB)<br><u>oid</u><br>afet<br>train<br>g a<br>litic   | constr<br>operat<br>a. throu<br>), meri<br>shock<br>y devi<br>nsforn<br>z distr<br>pplica<br>on, 20<br>2016, | 08 Hrs         uction, types.         ion, Types of         08 Hrs         ugh block         ts and         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         . <t< td=""></t<> |

ISBN-13: 978-8121908719.

RV Educational Institutions ° RV College of Engineering °

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

4 V. N. Mittal, Basic Electrical Engineering, TMH Publication, New Delhi, 2006, ISBN: 9780070593572.

|   | <b>RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)</b>                                                                                                                                                                                                                                                                                                               |       |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| # | COMPONENTS                                                                                                                                                                                                                                                                                                                                                                  | MARKS |
| 1 | <b>QUIZZES:</b> Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. <b>THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.</b>                                                                                                                                                                     | 20    |
| 2 | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.</b> | 40    |
| 3 | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), <b>MATLAB (20) ADDING UPTO 40 MARKS</b> .                                                                      | 40    |
|   | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                                                                                                                            | 100   |

| RUBRIC FOR SEMESTER END EXAMINATION (THEORY) |                                                   |       |  |  |  |
|----------------------------------------------|---------------------------------------------------|-------|--|--|--|
| Q. NO.                                       | CONTENTS                                          | MARKS |  |  |  |
|                                              | PART A                                            |       |  |  |  |
| 1                                            | Objective type questions covering entire syllabus | 20    |  |  |  |
|                                              | PART B                                            |       |  |  |  |
|                                              | (Maximum of TWO Sub-divisions only)               |       |  |  |  |
| 2                                            | Unit 1 : (Compulsory)                             | 16    |  |  |  |
| 3 & 4                                        | Unit 2 : Question 3 or 4                          | 16    |  |  |  |
| 5&6                                          | Unit 3 : Question 5 or 6                          | 16    |  |  |  |
| 7 & 8                                        | Unit 4 : Question 7 or 8                          | 16    |  |  |  |
| 9 & 10                                       | Unit 5: Question 9 or 10                          | 16    |  |  |  |
|                                              | MAXIMUM MARKS FOR THE SEE THEORY                  | 100   |  |  |  |



| University, Belagay                               | 4          |                       |                                                                           |                        |          |            |               |
|---------------------------------------------------|------------|-----------------------|---------------------------------------------------------------------------|------------------------|----------|------------|---------------|
|                                                   |            |                       | Semester - I/II                                                           |                        |          |            |               |
|                                                   | FUNI       | DAMENTALS O           | F MECHANICAI                                                              | L ENGINEERING          | r<br>II  |            |               |
|                                                   |            | Category: <b>H</b>    | Engineering Science                                                       | Course                 |          |            |               |
|                                                   | (Co        | ommon to all Prog     | grams Except ME St                                                        | tream Programs)        |          |            |               |
|                                                   |            |                       | (Theory)                                                                  | -                      |          |            |               |
| Course Code                                       | :          | 22ES14E/24E           |                                                                           | CIE                    | :        | 100 Ma     |               |
| Credits: L:T:P                                    | :          | 3:0:0                 |                                                                           | SEE                    | :        | 100 Ma     |               |
| Total Hours                                       | :          | 40T                   |                                                                           | <b>SEE Duration</b>    | :        | 3 Hour     | S             |
|                                                   |            |                       |                                                                           |                        |          |            |               |
|                                                   |            |                       | nit – I                                                                   |                        |          |            | 08 Hrs        |
| Engineering Material                              |            |                       |                                                                           |                        |          |            | -             |
| & applications: phys                              |            | · •                   |                                                                           | ectronics, thermal,    | Che      | emical,    | Properties.   |
| Applications: Aerospac                            | ce, Auto   |                       |                                                                           |                        |          |            | 00.11         |
| <b>X</b> 7•• <b>A</b> • <b>XT</b>                 | 6 (        |                       | $\frac{\mathbf{it} - \mathbf{II}}{\mathbf{D} + \mathbf{I} + \mathbf{CI}}$ | • • • • •              |          |            | 08 Hrs        |
| Vision system in Man                              |            |                       |                                                                           |                        |          |            |               |
| types of computer visi                            |            |                       |                                                                           |                        |          |            |               |
| vision, applications of<br>Soldering Defect in PC |            |                       | ous industries, A cas                                                     | e study: Computer      | insp     | bection o  | 1 Two-stage   |
| Joining process: Weld                             |            |                       | For welding defects                                                       | types of flames Sol    | dari     | ng and h   | rozina        |
| Johning process. were                             | iiiig- Ai  |                       | it – III                                                                  | types of fiames, son   | ucri     | iig aliu U | <b>10 Hrs</b> |
| Automation in Man                                 | ufactu     |                       |                                                                           | tion Historical De     | velo     | nment      |               |
| Introduction to CNC M                             |            |                       |                                                                           |                        |          |            | Definitions   |
| Robotics in Manufact                              |            |                       |                                                                           | Liements, merits, ac   |          | 1051       |               |
| Robots- Basic Structu                             | 0          | Robots, Robot Ana     | atomy, Complete Cla                                                       | assification of Robo   | ts.      | Fundame    | entals about  |
| Robot Technology, Ba                              |            |                       |                                                                           |                        |          |            |               |
|                                                   |            |                       | it – IV                                                                   |                        |          |            | 08 Hrs        |
| Mechanical Drives:                                | Classif    | ication of IC Eng     | gines, Working of                                                         | 4-S direct injection   | e e      | ngines, I  | Performance   |
| characteristics, Classifi                         | ication of | of gears, velocity ra | atio for simple and co                                                    | mpound gear trains.    |          | -          |               |
| Electrical Drives: Hi                             |            |                       |                                                                           |                        |          |            |               |
| Performance, Traction                             | Motor      | Characteristics, Co   | ncept of Hybrid Elect                                                     | tric Drive Trains, Cla | issi     | fication c | of hybrid     |
| electric vehicles.                                |            |                       |                                                                           |                        |          |            |               |
|                                                   |            | Un                    | it – V                                                                    |                        |          |            | 06 Hrs        |
| Mechatronics:                                     | -          |                       |                                                                           |                        |          |            |               |
| Introduction: Evolution                           |            |                       |                                                                           |                        |          |            |               |
| system, Applications-                             |            | evel controller, wa   | ashing machine, Eng                                                       | gine management sy     | ste      | n (EMS     | ), Anti-locl  |
| Braking System (ABS)                              | ).         |                       |                                                                           |                        |          |            |               |
| Energy Sources:                                   |            | 0.5                   |                                                                           |                        |          |            | 11. 0 1       |
| Introduction and applic                           |            |                       |                                                                           | lear fuels, Hydel, Sol | lar,     | wind, an   | d bio- fuels  |
| Environmental issues l                            | ike Glo    | bal warming and O     | zone depletion.                                                           |                        |          |            |               |
|                                                   | P4         | 1 /* /1               |                                                                           | 11 /                   |          |            |               |
| Course Outcomes: Af                               |            |                       | /                                                                         |                        | <b>.</b> |            |               |
|                                                   |            | 0 1                   | operties of Engineering                                                   | 0                      | r Jc     | ining pro  | ocesses       |
| <b>FILL</b> I Hundate the s                       | nrinoin    | ac and anonation of   | Trigion gratom in nro                                                     | durat unamontion       |          |            |               |

- **CO2** Elucidate the principles and operation of vision system in product inspection.
- **CO3** Illustrate the Energy sources, mechanical drives and electrical drives in industrial applications
- CO4 Understand about Mechatronics, Automation and Robotics in Industrial Applications

RV Educational Institutions ° RV College of Engineering °

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

| Refer | ence Books                                                                                                  |
|-------|-------------------------------------------------------------------------------------------------------------|
| 1     | Elements of Mechanical Engineering, K. R. Gopalakrishna, Subhas Publications, 18th Edition.                 |
|       | ISBN 5551234002884                                                                                          |
| 2     | Material Science & amp; Engineering- William D Callister, 2 / 10th Edition, ISBN 978-1-119-45520-2.         |
| 3     | Welding Technology (PB), Khanna O P, Dhanpat Rai publication, 4th Edition, ISBN 9383182555.                 |
| 4     | Electric and Hybrid Vehicles, Design Fundamentals – Iqbal Husain, CRC Press, 2 <sup>nd</sup> Edition, 2010. |
|       | ISBN -13-978-1439811757.                                                                                    |
| 5     | Modern Electric, Hybrid Electric & amp; Fuel Cell Vehicles, Fundamentals, Theory and Design -               |
|       | Mehrdad Ehsani, CRC Press, 1 <sup>st</sup> Edition, 2005. ISBN – 13- 978-0849331541.                        |
| 6     | Mechatronics - Electronic control systems in Mechanical and Electrical Engineering, William Bolton,         |
|       | Pearson, 6 <sup>th</sup> Edition, ISBN: 978-1-292-07668-3, 2015.                                            |

|   | <b>RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)</b>                                                                                                                                                                                                                                                                                                               |       |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| # | COMPONENTS                                                                                                                                                                                                                                                                                                                                                                  | MARKS |
| 1 | <b>QUIZZES:</b> Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. <b>THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.</b>                                                                                                                                                                     | 20    |
| 2 | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.</b> | 40    |
| 3 | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), <b>MATLAB (20) ADDING UPTO 40 MARKS</b> .                                                                      | 40    |
|   | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                                                                                                                            | 100   |

|        | RUBRIC FOR SEMESTER END EXAMINATION (THEORY)      |       |  |  |  |  |
|--------|---------------------------------------------------|-------|--|--|--|--|
| Q. NO. | CONTENTS                                          | MARKS |  |  |  |  |
|        | PART A                                            |       |  |  |  |  |
| 1      | Objective type questions covering entire syllabus | 20    |  |  |  |  |
|        | PART B                                            |       |  |  |  |  |
|        | (Maximum of TWO Sub-divisions only)               |       |  |  |  |  |
| 2      | Unit 1 : (Compulsory)                             | 16    |  |  |  |  |
| 3 & 4  | Unit 2 : Question 3 or 4                          | 16    |  |  |  |  |
| 5&6    | Unit 3 : Question 5 or 6                          | 16    |  |  |  |  |
| 7 & 8  | Unit 4 : Question 7 or 8                          | 16    |  |  |  |  |
| 9 & 10 | Unit 5: Question 9 or 10                          | 16    |  |  |  |  |
|        | MAXIMUM MARKS FOR THE SEE THEORY                  | 100   |  |  |  |  |

Go, change the world



Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

## Programming Language Lab Courses

- > INTRODUCTION TO PYTHON PROGRAMMING (22PL15A/25A)
- > INTRODUCTION TO WEB PROGRAMMING (22PL15B/25B)
- > BASICS TO JAVA PROGRAMMING (22PL15C/25C)
- > INTRODUCTION TO C++ PROGRAMMING (22PL15D/25D)



Approved by AICTE, New Delhi

| University, Belagavi                                     |        |                         |                     |                      |       |           |              |
|----------------------------------------------------------|--------|-------------------------|---------------------|----------------------|-------|-----------|--------------|
|                                                          |        |                         | nester - I / II     |                      |       |           |              |
|                                                          | ]      | NTRODUCTION TO          |                     |                      |       |           |              |
|                                                          |        | Category: Progra        |                     |                      |       |           |              |
|                                                          |        |                         | n to all Programs   | 5)                   |       |           |              |
| Course Code                                              |        | 22PL15A/25A             | ry & Practice)      | CIE                  |       | 100 Ma    | arke         |
| Credits: L:T:P                                           | :      | 2:0:1                   |                     | SEE                  | :     | 100 Ma    |              |
| Total Hours                                              | :      | 28L+28P                 |                     | SEE Duration         | :     | 3 Hour    |              |
|                                                          | 1.     |                         |                     |                      |       |           |              |
|                                                          |        | Unit –                  | I                   |                      |       |           | 05 Hrs       |
| Getting Started: Introdu                                 |        | g Python, Setting Up    | Python in windo     | ws, Setting Up Py    | thor  | n in othe | er Operating |
| Systems, introducing IDL                                 |        |                         |                     |                      |       |           |              |
| Types, Variable, and Si                                  |        |                         |                     |                      | oeati | ng String | gs, Working  |
| with Numbers, Understan                                  | ding   |                         |                     | erting Values.       |       |           |              |
|                                                          |        | Unit –                  |                     |                      |       |           | 05 Hrs       |
| Branching, While Loops                                   |        |                         |                     |                      |       |           |              |
| clause, creating while Lo Conditions.                    | oops   | , Avoiding Infinite Lo  | pops, Creating In   | tentional infinite L | .oop  | s, Using  | Compound     |
| Conditions.                                              |        | Unit – I                | III                 |                      |       |           | 06 Hrs       |
| For Loops, Strings, and                                  | I Tu   |                         |                     | - For Loons Using    | Sea   | uence O   |              |
| Functions with Strings, In                               |        |                         |                     |                      |       |           | perators and |
| Lists and Dictionaries: U                                |        |                         |                     |                      |       |           | of Lists.    |
|                                                          |        | Unit – I                | IV                  |                      |       |           | 06 Hrs       |
| Functions: Creating Fun                                  | ctio   | ns, Using Parameters a  | and Return Value    | es, Using Keyword    | Arg   | guments   | and Defaul   |
| Parameters Values, Using                                 |        |                         |                     |                      |       |           |              |
| Files and Exceptions: Re                                 | eadir  | •                       | <b>v</b>            | , Handling Exceptio  | ns.   |           |              |
|                                                          |        | Unit –                  |                     |                      |       |           | 06 Hrs       |
| Software Objects: Defin                                  |        |                         |                     |                      |       |           | hods, Using  |
| Constructor, Using Class                                 |        |                         |                     |                      |       |           | ···· .       |
| <b>Object-Oriented Progra</b><br>a Base Class, extending |        |                         |                     |                      |       |           |              |
| Understanding Polymorph                                  |        |                         | une Derived Clas    | ss, extending a Ci   | ass   | unougn    | mmernance    |
| enderstanding i orymorpi                                 | 115111 | •                       |                     |                      |       |           |              |
| Course Outcomes: After                                   | · cor  | npleting the course, th | e students will b   | e able to            |       |           |              |
|                                                          |        | nowledge of Python pro  |                     |                      | orob  | lems      |              |
|                                                          |        | in various application  |                     |                      |       |           | of Python    |
| 1 0 0                                                    | n usi  | ng Python programming   | g with societal, er | vironmental, and o   | ther  | concerns  | s by         |
|                                                          |        | earning for emerging te |                     | ,                    |       |           | J            |
|                                                          |        | - f 1 4 1 . 1           |                     | 1 66 4               | •     | . 1       | •11          |

**CO4** Demonstrate the use of modern tools by exhibiting teamwork and effective communication skills

| Refere | nce Books                                                                                                     |
|--------|---------------------------------------------------------------------------------------------------------------|
| 1      | Michael Dawson, Python programming for the absolute beginner, 3 <sup>rd</sup> Edition, CENGAGE,               |
|        | ISBN-13:978-93-86668-00-4, ISBN-10: 93-86668-00-9, 2010.                                                      |
| 2      | John V. Guttag. Introduction to Computation and Programming using Python, The MIT Press,                      |
|        | Cambridge, Massachusetts, London, ISBN: 978-0-262-51963-2, 2013                                               |
| 3      | Mark Summerfield, Programming in Python 3: A Complete Introduction to the Python Language, 2 <sup>nd</sup>    |
|        | Edition, ISBN-13: 978-0-321-68056-3, ISBN-10: 0-321-68056-1.                                                  |
| 4      | Paul Gries, Jennifer Campbell, Jason Montojo, Practical Programming: An Introduction to Computer              |
|        | Science Using Python 3.6, 3 <sup>rd</sup> Edition, The Pragmatic Bookshelf, ISBN-13: 978-1-6805026-8-8, 2017. |

RV Educational Institutions <sup>®</sup> RV College of Engineering

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Mark Lutz, Learning Python, 5<sup>th</sup> Edition, 2013, Oreilly Media, ISBN: 978-1-449-35573-9.
Burkhard A. Meier, Python GUI Programming Cookbook, Packt Publishing, 2015, ISBN 978-1-78528-375-8.

|     | Laboratory Experiments                                                                                                                                                                                                   |  |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|     | PART-A                                                                                                                                                                                                                   |  |  |  |  |  |
| 1   | Introductory Lab-Installation and Working with the Sample Programs.                                                                                                                                                      |  |  |  |  |  |
| 2   | Write a program to find the largest prime factor of a given integer.                                                                                                                                                     |  |  |  |  |  |
| 3   | Write a program to find the height of the ball thrown by a basketball player.                                                                                                                                            |  |  |  |  |  |
| 4   | Write a program to find the Golden ratio.                                                                                                                                                                                |  |  |  |  |  |
| 5   | Read a paragraph from the user and count the number of words, and frequency of Words appearing, and search for the specific word.                                                                                        |  |  |  |  |  |
| 6   | Consider a sequence of numbers with some missing values. Write a python program for inserting the missing values, and remove some of the values from the sequence. Also, add a few more values to the existing sequence. |  |  |  |  |  |
| 7   | Create an Employee 'Employee' Database using dictionaries and perform the insert, search and display operations.                                                                                                         |  |  |  |  |  |
| 8   | Implement Set and Tuple Operations.                                                                                                                                                                                      |  |  |  |  |  |
| 9   | Create a text file called my_file.txt with some content, capitalize the first letter of every word, and print the content of the file in reverse order.                                                                  |  |  |  |  |  |
|     | PROGRAMMING ASSIGNMENT                                                                                                                                                                                                   |  |  |  |  |  |
| р · |                                                                                                                                                                                                                          |  |  |  |  |  |

Design and develop a python GUI application connected to interested Sustainable Development Goals (SDG)

|   | RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY WITH LAB)                                                                                                                                                                                                                                                                                                                              |       |  |  |  |  |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|--|
| # | COMPONENTS                                                                                                                                                                                                                                                                                                                                                                                   | MARKS |  |  |  |  |
| 1 | QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.                                                                                                                                                                                                | 10    |  |  |  |  |
| 2 | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). <b>THREE tests will be conducted</b> . Each test will be evaluated for <b>50 Marks</b> , adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 30 MARKS</b> . | 30    |  |  |  |  |
| 3 | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) <b>ADDING UPTO 30 MARKS</b> .                                                                                                    | 30    |  |  |  |  |
| 4 | LAB: Conduction of laboratory exercises, lab report, observation and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE REDUCED TO 30 MARKS.                                                                                                                                    | 30    |  |  |  |  |
|   | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                                                                                                                                             | 100   |  |  |  |  |

|               | RUBRIC FOR SEMESTER END EXAMINATION (THEORY)      |    |  |  |  |  |
|---------------|---------------------------------------------------|----|--|--|--|--|
| <b>Q. NO.</b> | O. CONTENTS MARKS                                 |    |  |  |  |  |
|               | PART A                                            |    |  |  |  |  |
| 1             | Objective type questions covering entire syllabus | 10 |  |  |  |  |
|               | PART B                                            |    |  |  |  |  |
|               | (Maximum of TWO Sub-divisions only)               |    |  |  |  |  |

Programming Language Lab Courses

RV Educational Institutions \* RV College of Engineering \*

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

|        | University, Belagavi 1           |     |
|--------|----------------------------------|-----|
| 2      | Unit 1 : (Compulsory)            | 14  |
| 3 & 4  | Unit 2 : Question 3 or 4         | 14  |
| 5&6    | Unit 3 : Question 5 or 6         | 14  |
| 7 & 8  | Unit 4 : Question 7 or 8         | 14  |
| 9 & 10 | Unit 5 : Question 9 or 10        | 14  |
| 11     | Lab Component (Compulsory)       | 20  |
|        | MAXIMUM MARKS FOR THE SEE THEORY | 100 |



Approved by AICTE, New Delhi

| Crimerany, Delagar              |                                                                                |               |                    |                     |   |           |  |  |
|---------------------------------|--------------------------------------------------------------------------------|---------------|--------------------|---------------------|---|-----------|--|--|
|                                 | Semester - I/II                                                                |               |                    |                     |   |           |  |  |
| INTRODUCTION TO WEB PROGRAMMING |                                                                                |               |                    |                     |   |           |  |  |
|                                 |                                                                                | Category: Pro | ogramming Langua   | ge Course           |   |           |  |  |
|                                 |                                                                                | (Com          | mon to all Program | s)                  |   |           |  |  |
|                                 |                                                                                | (T            | heory & Practice)  |                     |   |           |  |  |
| Course Code                     | :                                                                              | 22PL15B/25B   |                    | CIE                 | : | 100 Marks |  |  |
| Credits: L:T:P                  | Credits: L:T:P         :         2:0:1         SEE         :         100 Marks |               |                    |                     |   |           |  |  |
| Total Hours                     | :                                                                              | 28L+28P       |                    | <b>SEE Duration</b> | : | 3 Hours   |  |  |

| Unit – I                                                                                                         | 05 Hrs        |  |  |  |
|------------------------------------------------------------------------------------------------------------------|---------------|--|--|--|
| Introduction to Web Concepts: Fundamentals of Web -Introduction to Internet, World Wide                          | Web, Web      |  |  |  |
| Browsers and Web Servers, Uniform Resource Locators, MIME (Multipurpose Internet Mail                            | Extensions),  |  |  |  |
| Hypertext Transfer Protocol -HTTP Request Phase, HTTP Response Phase.                                            |               |  |  |  |
| Unit – II                                                                                                        | 06 Hrs        |  |  |  |
| XHTML: Basic syntax, Standard XHTML document structure, Basic text markup, Images, Hype                          | ertext Links, |  |  |  |
| Lists, Tables, Forms, Frames, Syntactic differences between HTML and XHTML.                                      |               |  |  |  |
| Unit – III                                                                                                       | 06 Hrs        |  |  |  |
| CSS (Cascading Style Sheets): Introduction, Levels of style sheets, Style specification formats, Selector forms, |               |  |  |  |
| Property value forms, Font properties, List properties, Color, Alignment of text, The box model,                 | Background    |  |  |  |
| images, The <span> and <div> tags, Conflict resolution.</div></span>                                             |               |  |  |  |
| Unit - IV                                                                                                        | 06 Hrs        |  |  |  |
| The Basics of JavaScript: Overview of JavaScript; Object orientation and JavaScript; Gener                       | al syntactic  |  |  |  |
| characteristics; Primitives, operations, and expressions; Screen output and keyboard input; Control stat         | ements,       |  |  |  |
| Object creation and modification; Arrays; Functions; Constructor; Pattern matching using regular expr            | essions.      |  |  |  |
| Unit – V                                                                                                         | 05 Hrs        |  |  |  |
| Database access through Web: Relational databases, Introduction to SQL, Architecture for database                | access, The   |  |  |  |
| MySQL Database System, Programming Examples and Demonstration of Connectivity Example code                       |               |  |  |  |

| Course | Course Outcomes: After completing the course, the students will be able to                  |  |  |  |  |
|--------|---------------------------------------------------------------------------------------------|--|--|--|--|
| CO1    | Understand the basic syntax and semantics of HTML/XHTML                                     |  |  |  |  |
| CO2    | Apply HTML/XHTML tags for designing static web pages and forms using Cascading Style Sheet. |  |  |  |  |
| CO3    | Develop Client-Side Scripts using JavaScript.                                               |  |  |  |  |
| CO4    | Demonstrate web-based applications with database.                                           |  |  |  |  |

# Reference Books 1 Programming the World Wide Web – Robert W. Sebesta, 7<sup>th</sup> Edition, Pearson Education, 2013, ISBN-13:978-0132665810. 2 Web Programming Building Internet Applications – Chris Bates, 3<sup>rd</sup> Edition, Wiley India, 2006, ISBN: 978-81-265-1290-4. 3 Internet & World Wide Web How to H program – M. Deitel, P.J. Deitel, A. B. Goldberg, 3<sup>rd</sup> Edition, Pearson Education / PHI, 2004, ISBN-10: 0-130-89550-4 4 The Complete Reference to HTML and XHTML- Thomas A Powell, 4<sup>th</sup> Edition, Tata McGraw Hill, 2003, ISBN: 978-0-07-222942-4.

|   | Laboratory Experiments                                                                      |  |  |  |  |  |  |
|---|---------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 1 | Familiarization with IDE -Compilation, Debugging and execution considering simple programs. |  |  |  |  |  |  |
| 2 | Implementation and execution of simple HTML/XHTML programs to understand working of         |  |  |  |  |  |  |
|   | • Tables                                                                                    |  |  |  |  |  |  |
|   | • Lists                                                                                     |  |  |  |  |  |  |
|   | • Frames                                                                                    |  |  |  |  |  |  |

RV Educational Institutions ° RV College of Engineering °

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Approved by AICTE, New Delhi

|   | ernirereng)                           | Design I                                       |  |  |  |  |  |  |  |  |
|---|---------------------------------------|------------------------------------------------|--|--|--|--|--|--|--|--|
|   | •                                     | Forms                                          |  |  |  |  |  |  |  |  |
| 3 | Web pa                                | age styling with CSS                           |  |  |  |  |  |  |  |  |
|   | • Font Properties                     |                                                |  |  |  |  |  |  |  |  |
|   | •                                     | List Properties                                |  |  |  |  |  |  |  |  |
|   | •                                     | Color Properties                               |  |  |  |  |  |  |  |  |
|   | •                                     | Box Model                                      |  |  |  |  |  |  |  |  |
|   | Background Image                      |                                                |  |  |  |  |  |  |  |  |
|   | Conflict Resolution                   |                                                |  |  |  |  |  |  |  |  |
| 4 | Web Page validation using JavaScript  |                                                |  |  |  |  |  |  |  |  |
|   | Data Types, Operators and Expressions |                                                |  |  |  |  |  |  |  |  |
|   | •                                     | Object creation, modification and Constructors |  |  |  |  |  |  |  |  |
|   | •                                     | Screen output and keyboard input               |  |  |  |  |  |  |  |  |
|   | •                                     | Pattern matching using regular expressions     |  |  |  |  |  |  |  |  |
| 5 | Web a                                 | pplication using JavaScript with MySQL         |  |  |  |  |  |  |  |  |

|   | RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY WITH LA                                                                                                                                                                                                                                                                                                                                | AB)   |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| # | COMPONENTS                                                                                                                                                                                                                                                                                                                                                                                   | MARKS |
| 1 | QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.                                                                                                                                                                                                | 10    |
| 2 | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). <b>THREE tests will be conducted</b> . Each test will be evaluated for <b>50 Marks</b> , adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 30 MARKS</b> . | 30    |
| 3 | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) <b>ADDING UPTO 30 MARKS</b> .                                                                                                    | 30    |
| 4 | LAB: Conduction of laboratory exercises, lab report, observation and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE REDUCED TO 30 MARKS                                                                                                                                     | 30    |
|   | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                                                                                                                                             | 100   |

|        | RUBRIC FOR SEMESTER END EXAMINATION (THEORY)      |     |  |  |  |
|--------|---------------------------------------------------|-----|--|--|--|
| Q. NO. | CONTENTS                                          |     |  |  |  |
|        | PART A                                            |     |  |  |  |
| 1      | Objective type questions covering entire syllabus | 10  |  |  |  |
|        | PART B                                            |     |  |  |  |
|        | (Maximum of TWO Sub-divisions only)               |     |  |  |  |
| 2      | Unit 1 : (Compulsory)                             | 14  |  |  |  |
| 3 & 4  | Unit 2 : Question 3 or 4                          | 14  |  |  |  |
| 5&6    | Unit 3 : Question 5 or 6                          | 14  |  |  |  |
| 7 & 8  | Unit 4 : Question 7 or 8                          | 14  |  |  |  |
| 9 & 10 | Unit 5 : Question 9 or 10                         | 14  |  |  |  |
| 11     | Lab Component (Compulsory)                        | 20  |  |  |  |
|        | MAXIMUM MARKS FOR THE SEE THEORY                  | 100 |  |  |  |

Programming Language Lab Courses



|                |                                                                                | Semeste            | er - I/II           |   |           |  |  |
|----------------|--------------------------------------------------------------------------------|--------------------|---------------------|---|-----------|--|--|
|                | BASICS TO JAVA PROGRAMMING                                                     |                    |                     |   |           |  |  |
|                |                                                                                | Category: Programm | ing Language Course |   |           |  |  |
|                |                                                                                | (Common to a       | all Programs)       |   |           |  |  |
|                |                                                                                | (Theory &          | Practice)           |   |           |  |  |
| Course Code    | :                                                                              | 22PL15C/25C        | CIE                 | : | 100 Marks |  |  |
| Credits: L:T:P | Credits: L:T:P         :         2:0:1         SEE         :         100 Marks |                    |                     |   |           |  |  |
| Total Hours    | :                                                                              | 28L+28P            | SEE Duration        | : | 3 Hours   |  |  |

|                      |                |              | Unit – I            |                   |                |               | 06 Hrs      |
|----------------------|----------------|--------------|---------------------|-------------------|----------------|---------------|-------------|
| An Overview          | of Java: Ol    | oject-Orient | ted Programming,    | The Java Class    | s Libraries,   | Data Types,   | Variables,  |
| Operators, Cont      | rol Statements | s, Arrays ar | d Strings.          |                   |                |               |             |
|                      |                |              | Unit – II           |                   |                |               | 05 Hrs      |
| Introducing          | Classes:       | Class        | Fundamentals,       | Declaring         | Objects,       | Assigning     | Object      |
| Reference Varia      | bles, Introduc | ing Method   | ls, Constructors, M | ethod overloadir  | ng.            |               | -           |
|                      |                |              | Unit – III          |                   |                |               | 06 Hrs      |
| Inheritance:         |                |              |                     |                   |                | ·             |             |
| Inheritance Basi     | cs, Using Sup  | er, Method   | Overriding, Abstra  | act Classes, Usin | g final with I | nheritance.   |             |
|                      |                |              | Unit – IV           |                   |                |               | 05 Hrs      |
| Packages :Defin      | ning a Packag  | e, Importin  | g Packages,         |                   |                |               |             |
| Interfaces: Defi     | ining an Inter | ace, Defau   | It Interface Method | s.                |                |               |             |
| <b>Exception Han</b> | dling: Except  | ion-Handliı  | ng Fundamentals –   | Exception Class   | es, Exceptior  | n Types.      |             |
|                      |                |              | Unit – V            |                   |                |               | 06 Hrs      |
| Multithreaded        | Programmi      | ng : The J   | ava Thread Mode     | l , The Main T    | hread , Crea   | ting a Thread | l, Creating |
| Multiple Thread      | s, Thread Prio | orities.     |                     |                   |                | -             | -           |

| Course | Outcomes: After completing the course, the students will be able to                                    |
|--------|--------------------------------------------------------------------------------------------------------|
| CO1    | Explore the fundamentals of Object-oriented concepts and apply features of object-oriented programming |
|        | of Java to solve real world problems.                                                                  |
| CO2    | Design Classes and establish relationship among Classes for various applications from problem          |
|        | definition.                                                                                            |
| CO3    | Analyze and implement reliable object-oriented applications using Java features such as Exception      |
|        | Handling, Multithreaded Programming, Collection framework and Strings,                                 |
| CO4    | Design and develop real world applications using Object Oriented concepts and Java programming         |

| Refere | nce Books                                                                                                    |
|--------|--------------------------------------------------------------------------------------------------------------|
| 1      | The Complete Reference - Java , Herbert Schildt , 10th Edition , 2017, McGraw Hill Education                 |
|        | Publications, ISBN-10: 9789387432291, ISBN-13: 978-9387432291                                                |
| 2      | Introduction to Java Programming, Y Daniel Liang, 10th Edition, 2014, Comprehensive Version Pearson          |
|        | education, ISBN 10: 0-13-376131-2, ISBN 13: 978-0-13-376131-3                                                |
| 3      | Core Java – Vol 1, Cay S. Horstmann, 10 <sup>th</sup> Edition, 2016, Pearson Education, ISBN-10: 9332582718, |
|        | ISBN-13: 978-9332582712                                                                                      |
| 4      | Object-Oriented Analysis And Design With applications, Grady Booch, Robert A Maksimchuk, Michael             |
|        | W Eagle, Bobbi J Young, 3 <sup>rd</sup> Edition, 2013, Pearson education, ISBN :978-81-317-2287-9.           |



Approved by AICTE, New Delhi

|        | PART A                                                                                       |
|--------|----------------------------------------------------------------------------------------------|
| Famil  | iarization with IDE - compilation, debugging and execution considering simple Java programs. |
| Imple  | ment programs on Fundamentals of Java Programming: Data Types, Variables and Arrays,         |
| Opera  | tors, Control Statements.                                                                    |
| 1      | Classes, Objects and Methods                                                                 |
|        | • Create user defined classes and objects.                                                   |
|        | • Define class members and their properties.                                                 |
|        | • Define Methods, constructors, demonstrate method / constructor overloading.                |
|        | • Make necessary changes to the classes by making all the instance variables private and     |
|        | adding getter and setter methods for the instance variables.                                 |
| 2      | Inheritance and Polymorphism                                                                 |
|        | Create user defined classes and objects using Inheritance concept                            |
|        | Define class members to demonstrate Polymorphism                                             |
| 3      | Package and Interfaces                                                                       |
|        | • Creation of simple package.                                                                |
|        | Accessing a package/ use of different Access Specifiers                                      |
|        | Implementing interfaces                                                                      |
| 4      | Exception handling                                                                           |
|        | • Handling predefined exceptions.                                                            |
| 5      | Multithreading                                                                               |
|        | Create multiple threads: a) Using Thread class. b) Using Runnable interface                  |
|        | PART B                                                                                       |
| Design | 1 and develop an application to demonstrate appropriateObject-Oriented conceptsand Core Java |
|        | mming features:                                                                              |

**Develop standalone Java application** to demonstrate the important features of Object-Oriented approach (Abstraction/Encapsulation/Data Hiding, Inheritance and Polymorphism) and also the important features of Java such as Inheritance, Interfaces, Packages,Exception Handling, Multithreaded Programming and Collection Framework

|   | RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY WITH LA                                                                                                                                                                                                                                                                                                                                | AB)   |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| # | COMPONENTS                                                                                                                                                                                                                                                                                                                                                                                   | MARKS |
| 1 | QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.                                                                                                                                                                                                | 10    |
| 2 | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). <b>THREE tests will be conducted</b> . Each test will be evaluated for <b>50 Marks</b> , adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 30 MARKS</b> . | 30    |
| 3 | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) <b>ADDING UPTO 30 MARKS</b> .                                                                                                    | 30    |
| 4 | LAB: Conduction of laboratory exercises, lab report, observation and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE REDUCED TO 30 MARKS                                                                                                                                     | 30    |
|   | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                                                                                                                                             | 100   |

Programming Language Lab Courses



|        | RUBRIC FOR SEMESTER END EXAMINATION (THEORY)      |       |  |  |  |
|--------|---------------------------------------------------|-------|--|--|--|
| Q. NO. | CONTENTS                                          | MARKS |  |  |  |
|        | PART A                                            |       |  |  |  |
| 1      | Objective type questions covering entire syllabus | 10    |  |  |  |
|        | PART B                                            |       |  |  |  |
|        | (Maximum of TWO Sub-divisions only)               |       |  |  |  |
| 2      | Unit 1 : (Compulsory)                             | 14    |  |  |  |
| 3 & 4  | Unit 2 : Question 3 or 4                          | 14    |  |  |  |
| 5&6    | Unit 3 : Question 5 or 6                          | 14    |  |  |  |
| 7 & 8  | Unit 4 : Question 7 or 8                          | 14    |  |  |  |
| 9 & 10 | Unit 5 : Question 9 or 10                         | 14    |  |  |  |
| 11     | Lab Component (Compulsory)                        | 20    |  |  |  |
|        | MAXIMUM MARKS FOR THE SEE THEORY                  | 100   |  |  |  |



| Semester - I/II                 |                                           |                     |                    |   |           |  |  |  |
|---------------------------------|-------------------------------------------|---------------------|--------------------|---|-----------|--|--|--|
| INTRODUCTION TO C++ PROGRAMMING |                                           |                     |                    |   |           |  |  |  |
|                                 |                                           | Category: Programmi | ng Language Course |   |           |  |  |  |
|                                 |                                           | (Common to a        | ll Programs)       |   |           |  |  |  |
|                                 |                                           | (Theory &           | Practice)          |   |           |  |  |  |
| Course Code                     | :                                         | 22PL15D/25D         | CIE                | : | 100 Marks |  |  |  |
| Credits: L:T:P                  | Credits: L:T:P : 2:0:1 SEE : 100 Marks    |                     |                    |   |           |  |  |  |
| <b>Total Hours</b>              | Cotal Hours: 28L+28PSEE Duration: 3 Hours |                     |                    |   |           |  |  |  |

| Unit – I                                                                                                  | 05 Hrs       |  |  |  |
|-----------------------------------------------------------------------------------------------------------|--------------|--|--|--|
| Introduction to Object Oriented Programming Concepts: Principles of object oriented pr                    | ogramming:   |  |  |  |
| Procedure oriented programming Vs object oriented programming, Underlying concepts of object oriented     |              |  |  |  |
| programming, Benefits and applications of object oriented programming. The Origins of C++, A Clo          | oser Look at |  |  |  |
| the I/O Operators, The bool Data Type, The C++ Headers, Namespaces, C++ programming fu                    | indamentals, |  |  |  |
| Introducing C++ Classes & objects, Constructors and Destructors, The C++ Keywords.                        |              |  |  |  |
| Unit – II                                                                                                 | 06 Hrs       |  |  |  |
| Classes & Objects: Discovering Classes, Interfaces, Encapsulation, Abstraction, Member Functions,         | Classes and  |  |  |  |
| Objects, Object has an interface, Structures and Classes, Unions and Classes, Friend Functions, Friend    | end Classes, |  |  |  |
| Inline Functions, Static Class Members, Static Data, Static Member Functions, Constructors and Dest       | ructors, The |  |  |  |
| Scope Resolution Operator, Nested Classes, Local Classes, Passing Objects to Functions, Return            | ing Objects, |  |  |  |
| Object Assignment and Accessing Data Fields.                                                              |              |  |  |  |
| Unit – III 06 Hrs                                                                                         |              |  |  |  |
| Inheritance and Polymorphism: Inheritance, Access Control in derived classes, Encapsulation &             | k protected  |  |  |  |
| access, Advanced operations with inheritance, Function Overloading and Default arguments, Poly            | /morphism,   |  |  |  |
| operator overloading, Virtual functions and Abstract Classes.                                             |              |  |  |  |
| Unit – IV                                                                                                 | 05 Hrs       |  |  |  |
| Exception Handling: Exception Handling Fundamentals, Catching Class Types, Using Mul                      | tiple catch  |  |  |  |
| Statements, Handling Derived-Class Exceptions, Exception Handling Options, Catching All                   | Exceptions,  |  |  |  |
| Understanding terminate() and unexpected().                                                               |              |  |  |  |
| Unit – V                                                                                                  | 06 Hrs       |  |  |  |
| Generic Programming: Template Functions, compile-time Polymorphism, Template Classes, Temp                | late Linked  |  |  |  |
| List, Nontype Template Arguments, Setting Behavior Using Template Arguments, Standard                     | Template     |  |  |  |
| Library (STL) of C++: Template Class "vector", Template Class "map", Template Class "list", Iterators and |              |  |  |  |
| Algorithms The Standard Function Library and The Standard C++ Class Library.                              |              |  |  |  |
|                                                                                                           |              |  |  |  |

| Course | Course Outcomes: After completing the course, the students will be able to                             |  |  |  |
|--------|--------------------------------------------------------------------------------------------------------|--|--|--|
| CO1    | Exhibit program design and implementation competence through the choice of appropriate object oriented |  |  |  |
|        | concept and explain the benefits of the same.                                                          |  |  |  |
| CO2    | Design and analyse the classes and objects using object oriented programming paradigm, for real world  |  |  |  |
|        | case studies.                                                                                          |  |  |  |
| CO3    | Implement the solutions for real-time problems using Object Oriented concepts.                         |  |  |  |
| CO4    | Apply and analyze the advanced features of C++ specifically templates and operator overloading which   |  |  |  |
|        | influences the performance of programs.                                                                |  |  |  |

| Refere | Reference Books                                                                                           |  |  |  |  |  |  |
|--------|-----------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 1      | The Complete Reference C++, Herbert Schildt, 5 <sup>th</sup> Edition, 2020, McGrawHill,                   |  |  |  |  |  |  |
|        | ISBN: 9780070532465.                                                                                      |  |  |  |  |  |  |
| 2      | C++ How to Program, Paul Deitel and Harvey Deitel, 8th Edition, 2018, Prentice Hall, ISBN: 9780132990448. |  |  |  |  |  |  |

RV Educational Institutions <sup>®</sup> RV College of Engineering <sup>®</sup>

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Approved by AICTE, New Delhi

| 3 | Big C++, Cay S. Horstmann, Timothy Budd, 1 <sup>st</sup> Edition, 2020, Wiley India (P.) Ltd |       |                       |       |            |         |             |          |                |          |
|---|----------------------------------------------------------------------------------------------|-------|-----------------------|-------|------------|---------|-------------|----------|----------------|----------|
|   | ISBN: 978                                                                                    | 81265 | 509201.               |       |            |         |             |          |                |          |
| 4 |                                                                                              |       | C++-Introduction      |       |            |         |             |          |                | courses  |
|   | seas.harvar                                                                                  | d.edu | l/courses/cs207/resou | irces | /TIC2Vone. | pdf Vol | 1, $2^{nd}$ | Edition, | 2002, Pearson, | ISBN:10: |
|   | 813170661                                                                                    | 3     |                       |       |            |         |             |          |                |          |

|   | Laboratory Experiments                                                                                           |  |  |  |  |  |
|---|------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|   | Implement the following programs using cc/gcc compiler                                                           |  |  |  |  |  |
| 1 | Implement the following requirement: An electricity board charges the following rates to domestic users          |  |  |  |  |  |
|   | to discourage large conceptions of energy.                                                                       |  |  |  |  |  |
|   | 0 - 100 units : Rs 1.50 per unit                                                                                 |  |  |  |  |  |
|   | 101 - 200 units : Rs 1.80 per unit                                                                               |  |  |  |  |  |
|   | Beyond 200 units: Rs 2.50 per unit                                                                               |  |  |  |  |  |
|   | All users are charged a minimum of Rs 50. If the total amount is more than Rs 300 then an additional             |  |  |  |  |  |
|   | surcharge of 15% is added. The C++ program must read the names of users, number of units consumed                |  |  |  |  |  |
|   | and display the calculated charges.                                                                              |  |  |  |  |  |
| 2 | Design and implement a class STUDENT with attributes like: roll number, name, 3 tests marks.                     |  |  |  |  |  |
|   | Implement member functions                                                                                       |  |  |  |  |  |
|   | a. to read student data like name and test marks,                                                                |  |  |  |  |  |
|   | b. to compute average marks (considering best two out of three test marks) and                                   |  |  |  |  |  |
|   | c. to display the student information.                                                                           |  |  |  |  |  |
|   | Declare an array of STUDENT objects in the main function, use static data member to generate unique              |  |  |  |  |  |
|   | student roll number.                                                                                             |  |  |  |  |  |
| 3 | Design and implement a C++ program using class to process Shopping list for a departmental store. The            |  |  |  |  |  |
|   | list include details such as the Code No., Name, Price of each item and operations like adding, deleting         |  |  |  |  |  |
|   | items to the list and printing the total value of an order.                                                      |  |  |  |  |  |
| 4 | Design and implement a C++ class POLYNOMIAL. The internal representation of a POLYNOMIAL is                      |  |  |  |  |  |
|   | an array of terms. Each term contains a coefficient and an exponent, e.g., the term $2x^4$ has the coefficient 2 |  |  |  |  |  |
|   | and the exponent 4. Implement a class containing constructors and the following capabilities:                    |  |  |  |  |  |
|   | a. Overload the addition operator (+) to add two polynomials                                                     |  |  |  |  |  |
|   | b. Overload the assignment operator to assign one polynomial to another                                          |  |  |  |  |  |
|   | c. Overload the multiplication operator (*) to multiple two polynomials                                          |  |  |  |  |  |
|   | d. Overload the >> operator to enable input through in.                                                          |  |  |  |  |  |
|   | e. Overload the << operator to enable output throughout.                                                         |  |  |  |  |  |
|   | f. Member function to compute value of the polynomial, given the value of x.                                     |  |  |  |  |  |
| 5 | Design and implement a C++ program to create an abstract class - SHAPE to represent any shape                    |  |  |  |  |  |
|   | in general. The class should have two pure virtual functions to read dimensions and to compute                   |  |  |  |  |  |
|   | the area. Create three derived classes - CIRCLE, RECTANGLE, and SQUARE by inheriting the                         |  |  |  |  |  |
|   | features of class SHAPE. Implement the functions to read and compute the area. Add                               |  |  |  |  |  |
|   | constructors, method to display the results as required. (Assume appropriate attributes).                        |  |  |  |  |  |
| 6 | Write a C++ program using generic class to implement queue of integers, floating point numbers and               |  |  |  |  |  |
|   | strings. Support the queue operations like insert, delete and display in the queue class.                        |  |  |  |  |  |
| 7 | Write a C++ program to create a vector of integers. Copy the vector contents into a list, sort the contents,     |  |  |  |  |  |
|   | then copy selected items into another vector (like elements less than 10 etc).                                   |  |  |  |  |  |
| 8 | Write a template function to search for a given key element from an array. Illustrate how you perform            |  |  |  |  |  |
|   | search in integer, character as well as double arrays using the same template function.                          |  |  |  |  |  |

Programming Language Lab Courses



|   | RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY WITH LA                                                                                                                                                                                                                                                                                                                                | AB)   |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| # | COMPONENTS                                                                                                                                                                                                                                                                                                                                                                                   | MARKS |
| 1 | QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.                                                                                                                                                                                                | 10    |
| 2 | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). <b>THREE tests will be conducted</b> . Each test will be evaluated for <b>50 Marks</b> , adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 30 MARKS</b> . | 30    |
| 3 | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) <b>ADDING UPTO 30 MARKS</b> .                                                                                                    | 30    |
| 4 | LAB: Conduction of laboratory exercises, lab report, observation and analysis (30 Marks),<br>lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10<br>Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE REDUCED TO 30<br>MARKS                                                                                                                            | 30    |
|   | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                                                                                                                                             | 100   |

|        | <b>RUBRIC FOR SEMESTER END EXAMINATION (THEORY)</b> |       |  |  |  |
|--------|-----------------------------------------------------|-------|--|--|--|
| Q. NO. | CONTENTS                                            | MARKS |  |  |  |
|        | PART A                                              |       |  |  |  |
| 1      | Objective type questions covering entire syllabus   | 10    |  |  |  |
|        | PART B                                              |       |  |  |  |
|        | (Maximum of TWO Sub-divisions only)                 |       |  |  |  |
| 2      | Unit 1 : (Compulsory)                               | 14    |  |  |  |
| 3 & 4  | Unit 2 : Question 3 or 4                            | 14    |  |  |  |
| 5&6    | Unit 3 : Question 5 or 6                            | 14    |  |  |  |
| 7 & 8  | Unit 4 : Question 7 or 8                            | 14    |  |  |  |
| 9 & 10 | Unit 5 : Question 9 or 10                           | 14    |  |  |  |
| 11     | Lab Component (Compulsory)                          | 20    |  |  |  |
|        | MAXIMUM MARKS FOR THE SEE THEORY                    | 100   |  |  |  |

Go, change the world

RV Educational Institutions \* RV College of Engineering



Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

# Emerging Technology Courses

- > INTRODUCTION TO INTERNET OF THINGS (22EM101/201)
- > INTRODUCTION TO DRONE TECHNOLOGY (22EM102/202)
- > BIOINSPIRED ENGINEERING (22EM103/203)
- > GLOBAL CLIMATE CHANGE (22EM104/204)
- > ELEMENTS OF BLOCKCHAIN TECHNOLOGY (22EM105/205)
- > INTRODUCTION TO CYBER SECURITY (22EM106/206)
- GREEN BUILDINGS (22EM107/207)
- > INFRASTRUCTURE FOR SMART CITIES (22EM108/208)
- FUNDAMENTALS OF NANOSCIENCE AND TECHNOLOGY (22EM109/209)
- > FUNDAMENTALS OF SEMICONDUCTOR DEVICES (22EM110/210)
- > INTRODUCTION TO EMBEDDED SYSTEMS (22EM111/211)
- RENEWABLE ENERGY SOURCES (22EM112/212)
- > FUNDAMENTALS OF SENSOR TECHNOLOGY (22EM113/213)
- HUMAN FACTORS IN ENGINEERING (22EM114/214)
- > DIGITAL HUMANITIES (22EM115/215)
- > SMART MATERIALS AND SYSTEMS (22EM116/216)
- > ELEMENTS OF INDUSTRY 4.0 (22EM117/217)



Approved by AICTE, New Delhi

|                |                                 | Semeste            | r - I/II         |   |           |
|----------------|---------------------------------|--------------------|------------------|---|-----------|
|                |                                 | INTRODUCTION TO IN | TERNET OF THINGS |   |           |
|                | Category: Emerging Technologies |                    |                  |   |           |
|                | (Common to all Programs)        |                    |                  |   |           |
|                |                                 | (The               | ory)             |   |           |
| Course Code    | :                               | 22EM101/201        | CIE              | : | 100 Marks |
| Credits: L:T:P | :                               | 3:0:0              | SEE              | : | 100 Marks |
| Total Hours    | :                               | 40L                | SEE Duration     | : | 3 Hours   |

 
 Unit – I
 09 Hrs

 Applications: Asset Management, Biometrics Identification, Smart Home, Bird Strike Avoidance Radar System, River Navigation Safety System.
 Introduction – IoT Concept Related Concepts to IoT. The Intrinsic Characteristics of IoT. IoT Development and

**Introduction** - IoT Concept, Related Concepts to IoT, The Intrinsic Characteristics of IoT, IoT Development and Application, Future IoT Vision.

Architecture and Fundamentals-Research on IoT Architecture, Ubiquitous IoT (U2IoT) Architecture, Layered Models for IoT, Layered Model Proposed and Social Attributes Discussion for U2IoT, IoT Development Phases Summary and Discussion, Science Category and Supporting Technologies for IoT.

 Unit – II
 07 Hrs

 Sensors and Actuators for IoT - Introduction, Sensors and Actuators, Ubiquitous Sensing, Networking and Communications, Management and Data Centers (M&DCs), Case Study for IoT.
 07 Hrs

Unit – III08 HrsUbiquitous Internet of Things- Introduction, Local Internet of Things, Industrial Internet of Things, National<br/>Internet of Things Application, Global Application IoT and a Typical<br/>Example.Unit – IV08 Hrs

**Resource Management** - Introduction, Object Coding and Resolving, Resolving Discussion for nID Objects, Resource Naming, Recourse Addressing, Resource Discovery, Resource Allocation, Resource Management Scheme in U2IoT.

Unit – V08 HrsSecurity and Privacy for IoT-Introduction, Security Challenges in U2IoT, The Security Framework for U2IoT,<br/>Hybrid Authentication and Hierarchical Authorization Scheme, Entity Activity Cycle–Based Security Solution.

| Course | Course Outcomes: After completing the course, the students will be able to                              |  |
|--------|---------------------------------------------------------------------------------------------------------|--|
| CO1    | Apply the knowledge of IoT and related science to solve the engineering problems                        |  |
| CO2    | Analyse the applicability of IoT in various application domains                                         |  |
| CO3    | Design a sustainable solution using IoT with societal and environmental concern by engaging in lifelong |  |
|        | learning for emerging technology                                                                        |  |
| CO4    | Demonstrate the solutions using various IoT principles by exhibiting team work and effective            |  |
|        | communication.                                                                                          |  |

#### **Reference Books**

| 1 | Huansheng Ning - Unit and Ubiquitous Internet of Things, CRC Press; 1st edition,2018, ISBN-10: 113837475X, ISBN-13: 978-1138374751                |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | Hakima Chaouchi - The Internet of Things Connecting Objects to the Web, Wiley-ISTE; 1st Edition,2010, ISBN-10:1848211406, ISBN-13: 978-1848211407 |
| 3 | Adrian McEwen, Hakim Cassimally - Designing the Internet of Things, Wiley,1st edition,2013, ISBN-10:111843062X,ISBN-13:978-1118430620             |
| 4 | Dawid Borycki - Programming for the Internet of Things PHI Learning Pvt. Ltd, Microsoft Press,2019,ISBN-10: 9387472558, ISBN-13: 978-9387472556   |



|   | <b>RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)</b>                                                                                                                                                                                                                                                                                                               |       |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| # | COMPONENTS                                                                                                                                                                                                                                                                                                                                                                  | MARKS |
| 1 | <b>QUIZZES:</b> Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. <b>THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.</b>                                                                                                                                                                     | 20    |
| 2 | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.</b> | 40    |
| 3 | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), <b>MATLAB (20) ADDING UPTO 40 MARKS</b> .                                                                      | 40    |
|   | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                                                                                                                            | 100   |

|        | <b>RUBRIC FOR SEMESTER END EXAMINATION (THEORY)</b> |       |
|--------|-----------------------------------------------------|-------|
| Q. NO. | CONTENTS                                            | MARKS |
|        | PART A                                              |       |
| 1      | Objective type questions covering entire syllabus   | 20    |
|        | PART B                                              |       |
|        | (Maximum of TWO Sub-divisions only)                 |       |
| 2      | Unit 1 : (Compulsory)                               | 16    |
| 3 & 4  | Unit 2 : Question 3 or 4                            | 16    |
| 5&6    | Unit 3 : Question 5 or 6                            | 16    |
| 7 & 8  | Unit 4 : Question 7 or 8                            | 16    |
| 9 & 10 | Unit 5: Question 9 or 10                            | 16    |
|        | MAXIMUM MARKS FOR THE SEE THEORY                    | 100   |



Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

|                                        |                                                                                   | Semeste          | r - I/II     |   |         |
|----------------------------------------|-----------------------------------------------------------------------------------|------------------|--------------|---|---------|
| INTRODUCTION TO DRONE TECHNOLOGY       |                                                                                   |                  |              |   |         |
|                                        |                                                                                   | Category: Emergi |              |   |         |
|                                        |                                                                                   | (Common to a     | ll Programs) |   |         |
|                                        |                                                                                   | (Theo            | ory)         |   |         |
| <b>Course Code</b>                     | Course Code         :         22EM102/202         CIE         :         100 Marks |                  |              |   |         |
| Credits: L:T:P : 3:0:0 SEE : 100 Marks |                                                                                   |                  |              |   |         |
| Total Hours                            | :                                                                                 | 40L              | SEE Duration | : | 3 Hours |

| Unit – I                                                                                      | 08 Hrs       |
|-----------------------------------------------------------------------------------------------|--------------|
| Basics of Drones: History of UAVs, Need of unmanned aerial systems, India and drones, Overvi  |              |
| Systems-System Composition, Classes and Missions of UAVs-Classification of UAVs based on size | e, range and |
| endurance.                                                                                    |              |

| Unit – II                                                                                          | 08 Hrs    |
|----------------------------------------------------------------------------------------------------|-----------|
| Aerodynamics of Drones: Airfoil nomenclature, Generation of Lift on Airfoils and Wings, Basic aero | odynamics |
| of fixed, rotary and flapping wing UAVs.                                                           |           |
| Unit III                                                                                           | 00 II.wa  |

| Unit – III                                                                                     | 08 Hrs      |
|------------------------------------------------------------------------------------------------|-------------|
| Drones Propulsion Systems: Thrust Generation, Powered Lift, Sources of Power for UAVs- Piston, | Rotary, Gas |
| turbine engines, electric or battery powered UAVs.                                             |             |

| Unit – IV                                                                                    | <b>08 Hrs</b> |
|----------------------------------------------------------------------------------------------|---------------|
| Drone Airframe Systems: Loads on UAVs, Materials for UAV construction, and Construction Tech | niques        |
| Unit – V                                                                                     | 08 Hrs        |
|                                                                                              |               |

Sensors and Payloads: Barometers, Accelerometer, Magnetometer, RADAR and range finder, Non-dispensable and dispensable Payloads- Optical, electrical, weapon, imaging payloads. Regulations: DGCA regulations, Operational and procedural requirements, No drone zones.

| Course | Course Outcomes: After completing the course, the students will be able to                                  |  |  |
|--------|-------------------------------------------------------------------------------------------------------------|--|--|
| CO1    | Appreciate and apply the basic principles of aviation in the development of aerospace vehicles              |  |  |
| CO2    | Survey the important fundamental factors that significantly influence the performance of aerospace vehicles |  |  |
| CO3    | Evaluate the various factors affecting the performance of flight vehicles                                   |  |  |
| CO4    | Criticize the design strategy involved in the development of aerospace vehicles                             |  |  |

| Refere | nce Books                                                                                                    |
|--------|--------------------------------------------------------------------------------------------------------------|
| 1      | Unmanned Aircraft Systems UAV design, development and deployment, Reg Austin, 1 <sup>st</sup> Edition, 2010, |
|        | Wiley, ISBN 9780470058190.                                                                                   |
| 2      | Introduction to UAV Systems, Paul G Fahlstrom, Thomas J Gleason, 4th Edition, 2012, Wiley,                   |
|        | ISBN: 978-1-119-97866-4                                                                                      |
| 3      | Advances in Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy, Kimon P.                    |
|        | Valavanis, 1 <sup>st</sup> Edition,2007, Springer ISBN 9781402061141                                         |
| 4      | Design of Unmanned Air Vehicle Systems, Dr. Armand J. Chaput, 3 <sup>rd</sup> Edition, 2001, Lockheed Martin |
|        | Aeronautics Company, ISBN: 978-1-60086-843-6                                                                 |

|   | <b>RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)</b>                                                                                                                                           |       |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| # | COMPONENTS                                                                                                                                                                                              | MARKS |
| 1 | <b>QUIZZES:</b> Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. <b>THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.</b> | 20    |
| 2 | TESTS: Students will be evaluated in test, descriptive questions with different complexity                                                                                                              | 40    |



|   | levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying,            |     |
|---|-------------------------------------------------------------------------------------------|-----|
|   | Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be    |     |
|   | evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE                   |     |
|   | REDUCED TO 40 MARKS.                                                                      |     |
| 3 | EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and                |     |
|   | practical implementation of the problem. Case study-based teaching learning (05), Program | 40  |
|   | specific requirements (05), Video based seminar/presentation/demonstration (10),          | 40  |
|   | MATLAB (20) ADDING UPTO 40 MARKS.                                                         |     |
|   | MAXIMUM MARKS FOR THE CIE THEORY                                                          | 100 |

|               | <b>RUBRIC FOR SEMESTER END EXAMINATION (THEORY)</b> |       |  |  |
|---------------|-----------------------------------------------------|-------|--|--|
| <b>Q. NO.</b> | CONTENTS                                            | MARKS |  |  |
|               | PART A                                              |       |  |  |
| 1             | Objective type questions covering entire syllabus   | 20    |  |  |
|               | PART B                                              |       |  |  |
|               | (Maximum of TWO Sub-divisions only)                 |       |  |  |
| 2             | Unit 1 : (Compulsory)                               | 16    |  |  |
| 3 & 4         | Unit 2 : Question 3 or 4                            | 16    |  |  |
| 5&6           | Unit 3 : Question 5 or 6                            | 16    |  |  |
| 7 & 8         | Unit 4 : Question 7 or 8                            | 16    |  |  |
| 9 & 10        | Unit 5: Question 9 or 10                            | 16    |  |  |
|               | MAXIMUM MARKS FOR THE SEE THEORY                    | 100   |  |  |



Approved by AICTE, New Delhi

| University, Belagavi                                                                                                                                                                            |                                                                                                                                                                                                          |                      |                      |                              |       |                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|------------------------------|-------|-----------------------|
|                                                                                                                                                                                                 |                                                                                                                                                                                                          |                      | Semester - I/II      |                              |       |                       |
|                                                                                                                                                                                                 |                                                                                                                                                                                                          | BIOINS               | PIRED ENGINEER       | ING                          |       |                       |
|                                                                                                                                                                                                 |                                                                                                                                                                                                          | Category             | : Emerging Technol   | ogies                        |       |                       |
|                                                                                                                                                                                                 |                                                                                                                                                                                                          | (Com                 | mon to all Program   | s)                           |       |                       |
|                                                                                                                                                                                                 |                                                                                                                                                                                                          |                      | (Theory)             |                              |       |                       |
| Course Code                                                                                                                                                                                     | :                                                                                                                                                                                                        | 22EM103/203          |                      | CIE                          | :     | 100 Marks             |
| Credits: L:T:P                                                                                                                                                                                  | :                                                                                                                                                                                                        | 3:0:0                |                      | SEE                          | :     | 100 Marks             |
| Total Hours                                                                                                                                                                                     | :                                                                                                                                                                                                        | 40L                  |                      | SEE Duration                 | :     | 3 Hours               |
|                                                                                                                                                                                                 |                                                                                                                                                                                                          |                      |                      |                              |       |                       |
|                                                                                                                                                                                                 |                                                                                                                                                                                                          | Ur                   | nit — I              |                              |       | 07 Hrs                |
| Introduction to Bio-in                                                                                                                                                                          | spir                                                                                                                                                                                                     | ed Engineering:      | Prologue to cell     | ular entities. Ster          | m     | cells; types and      |
|                                                                                                                                                                                                 |                                                                                                                                                                                                          | iology; Bottom-      |                      |                              |       | oaches. Synthetic/    |
| artificial life. Biological C                                                                                                                                                                   |                                                                                                                                                                                                          |                      |                      | in singhievering u           | rpr   | sachool Synchotio     |
| urtificial file. Diological e                                                                                                                                                                   | 1001                                                                                                                                                                                                     |                      | iit – II             |                              |       | 00 11.40              |
| Principles of bioinspired                                                                                                                                                                       |                                                                                                                                                                                                          |                      |                      | 1. C.1f                      | •     | 08 Hrs                |
|                                                                                                                                                                                                 |                                                                                                                                                                                                          |                      |                      |                              |       |                       |
| Biopolymers, Bio-steel, B                                                                                                                                                                       |                                                                                                                                                                                                          |                      |                      |                              |       |                       |
| and photo-thermal biomat                                                                                                                                                                        | eria                                                                                                                                                                                                     | is, Microfiuldics in | biology, invasive an | d non-invasive therm         | nal c | letection inspired by |
| skin.                                                                                                                                                                                           |                                                                                                                                                                                                          | TT                   |                      |                              |       | 10 11                 |
|                                                                                                                                                                                                 | <u>D'</u>                                                                                                                                                                                                |                      | it – III             | <b>D</b> ' (I <b>D</b> ' 1 ' |       | 10 Hrs                |
|                                                                                                                                                                                                 |                                                                                                                                                                                                          | inspired Materia     |                      | n: Firefly-Biolumi           |       |                       |
|                                                                                                                                                                                                 | -Velcro, Lotus leaf - Self-cleaning materials, Gecko - Gecko tape, Whale fins - Turbine blades, Box Fish / Bone - Bionic car, Shark skin - Friction reducing swim suits, Kingfisher beak - Bullet train, |                      |                      |                              |       |                       |
|                                                                                                                                                                                                 |                                                                                                                                                                                                          |                      |                      |                              |       |                       |
| Coral - Calera cement, Morpho butterfly- Structural color, Namib beetle- Water collecting, Termite mound passive cooling, Birds/Insects- flights/ aerodynamics, Mosquito inspired micro needle. |                                                                                                                                                                                                          |                      |                      |                              |       |                       |
| mound passive cooling, B                                                                                                                                                                        | irds/                                                                                                                                                                                                    |                      |                      | o inspired micro need        | ile.  | 0.5.11                |
|                                                                                                                                                                                                 | ~                                                                                                                                                                                                        |                      | it – IV              |                              |       | 07 Hrs                |
| Biomedical Inspiration                                                                                                                                                                          |                                                                                                                                                                                                          |                      | applications: Org    |                              |       | ulatory- artificial   |
| blood, artificial heart, pacemaker. Respiratory- artificial lungs. Excretory- Artificial kidney                                                                                                 |                                                                                                                                                                                                          |                      |                      |                              |       |                       |
| and skin. Artificial Support and replacement of human organs: artificial liver and pancreas. Total joint replacements- artificial limbs. Visual prosthesis -artificial eye/ bionic eye.         |                                                                                                                                                                                                          |                      |                      |                              |       |                       |
| Total joint replacements-                                                                                                                                                                       | artıf                                                                                                                                                                                                    |                      |                      | ye/ bionic eye.              |       |                       |
|                                                                                                                                                                                                 |                                                                                                                                                                                                          | -                    | it – V               |                              |       | 08 Hrs                |
| Biomimetics: Inventions                                                                                                                                                                         |                                                                                                                                                                                                          |                      |                      |                              |       |                       |
| Bionic/Artificial leaf. Bio-ink and 3D-Bioprinting. Biosensors: Artificial tongue and nose.                                                                                                     |                                                                                                                                                                                                          |                      |                      |                              |       |                       |
| Biomimetic echolation. Insect foot adaptations for adhesion. Thermal insulation and storage                                                                                                     |                                                                                                                                                                                                          |                      |                      |                              |       |                       |
| materials. Bees and Honeycomb Structure. Artificial Intelligence, Neural Networking and bio-                                                                                                    |                                                                                                                                                                                                          |                      |                      |                              |       |                       |
| robotics.                                                                                                                                                                                       |                                                                                                                                                                                                          |                      |                      |                              |       |                       |
|                                                                                                                                                                                                 |                                                                                                                                                                                                          |                      |                      |                              |       |                       |

| Course | Course Outcomes: After completing the course, the students will be able to      |  |  |  |
|--------|---------------------------------------------------------------------------------|--|--|--|
| CO1    | Elucidate the concepts and phenomenon of natural processes                      |  |  |  |
| CO2    | Apply the basic principles for design and development of bioinspired structures |  |  |  |
| CO3    | Analyse and append the concept of biomimetics for diverse applications          |  |  |  |
| CO4    | Designing technical solutions by utilization of bioinspiration modules.         |  |  |  |
|        |                                                                                 |  |  |  |

| Refere | nce Books                                                                                            |
|--------|------------------------------------------------------------------------------------------------------|
| 1      | Yoseph Bar-Cohen. Biomimetics: Biologically Inspired Technologies D. Floreano and C.Mattiussi, "Bio- |
|        | Inspired Artificial Intelligence", CRC Press, 2018. ISBN: 9781420037715.                             |
| 2      | Guang Yang, Lin Xiao, and Lallepak Lamboni. Bioinspired Materials Science and Engineering. John      |
|        | Wiley, 2018. ISBN: 978-1-119-390336.                                                                 |
| 3      | M.A. Meyers and P.Y. Chen. Biological Materials, Bioinspired Materials, and Biomaterials             |
|        | Cambridge University Press, 2014 ISBN 978-1-107-01045.                                               |
| 4      | Tao Deng. Bioinspired Engineering of Thermal Materials. Wiley-VCH Press, 2018. ISBN:                 |

Emerging Technology Courses

RV Educational Institutions ° RV College of Engineering ° Autonomous Institution Affiliated Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

978-3-527-33834-4.

|   | RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)                                                                                                                                                                                                                                                                                                                      |       |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| # | COMPONENTS                                                                                                                                                                                                                                                                                                                                                                  | MARKS |
| 1 | <b>QUIZZES:</b> Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. <b>THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.</b>                                                                                                                                                                     | 20    |
| 2 | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.</b> | 40    |
| 3 | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), <b>MATLAB (20) ADDING UPTO 40 MARKS</b> .                                                                      | 40    |
|   | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                                                                                                                            | 100   |

|        | <b>RUBRIC FOR SEMESTER END EXAMINATION (THEORY)</b> |       |  |  |  |  |
|--------|-----------------------------------------------------|-------|--|--|--|--|
| Q. NO. | CONTENTS                                            | MARKS |  |  |  |  |
|        | PART A                                              |       |  |  |  |  |
| 1      | Objective type questions covering entire syllabus   | 20    |  |  |  |  |
|        | PART B                                              |       |  |  |  |  |
|        | (Maximum of TWO Sub-divisions only)                 |       |  |  |  |  |
| 2      | Unit 1 : (Compulsory)                               | 16    |  |  |  |  |
| 3 & 4  | Unit 2 : Question 3 or 4                            | 16    |  |  |  |  |
| 5&6    | Unit 3 : Question 5 or 6                            | 16    |  |  |  |  |
| 7 & 8  | Unit 4 : Question 7 or 8                            | 16    |  |  |  |  |
| 9 & 10 | Unit 5: Question 9 or 10                            | 16    |  |  |  |  |
|        | MAXIMUM MARKS FOR THE SEE THEORY                    | 100   |  |  |  |  |



| Semester - I/II                                                                |                       |             |                    |        |   |           |
|--------------------------------------------------------------------------------|-----------------------|-------------|--------------------|--------|---|-----------|
|                                                                                | GLOBAL CLIMATE CHANGE |             |                    |        |   |           |
|                                                                                |                       | Category    | : Emerging Technol | logies |   |           |
|                                                                                |                       | (Com        | mon to all Program | s)     |   |           |
|                                                                                |                       |             | (Theory)           |        |   |           |
| Course Code                                                                    | :                     | 22EM104/204 |                    | CIE    | : | 100 Marks |
| Credits: L:T:P         :         3:0:0         SEE         :         100 Marks |                       |             |                    |        |   |           |
| Fotal Hours     : 40L     SEE Duration     : 3 Hours                           |                       |             |                    |        |   |           |

| Unit – I                                                                                                                                                                                                                                                                                                  | 08 Hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Introduction to the climate change: Climate, climate change, temperature anomalies, radiation                                                                                                                                                                                                             | and energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| balance.                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Unit – II                                                                                                                                                                                                                                                                                                 | 08 Hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Simple Climate models: Source of energy, energy loss, greenhouse effect, carbon cycle, atmo                                                                                                                                                                                                               | sphere-land-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| biosphere-ocean carbon exchange.                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Unit – III                                                                                                                                                                                                                                                                                                | 08 Hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                           | 00 1115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Prediction and impacts of climate change: Factors that control emissions, emissions scenarios, phys                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Prediction and impacts of climate change: Factors that control emissions, emissions scenarios, phys                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>Prediction and impacts of climate change:</b> Factors that control emissions, emissions scenarios, physiabrupt climate changes.                                                                                                                                                                        | old impacts,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Prediction and impacts of climate change: Factors that control emissions, emissions scenarios, physiabrupt climate changes.<br>Unit – IV                                                                                                                                                                  | old impacts,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Prediction and impacts of climate change: Factors that control emissions, emissions scenarios, physiabrupt climate changes. Unit – IV Strategies to mitigate climate change: Adaptation: technology, politics personal actions,                                                                           | old impacts,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Prediction and impacts of climate change: Factors that control emissions, emissions scenarios, physiabrupt climate changes. Unit – IV Strategies to mitigate climate change: Adaptation: technology, politics personal actions, regulations, market-based regulations, information and voluntary methods. | or the second se |

| Course | Course Outcomes: After completing the course, the students will be able to |  |  |  |
|--------|----------------------------------------------------------------------------|--|--|--|
| CO1    | Understand climate change and the global climate crisis                    |  |  |  |
| CO2    | Assess the factors influencing the climate change                          |  |  |  |
| CO3    | Analyse climate change data                                                |  |  |  |
| CO4    | Articulate climate change mitigation strategies                            |  |  |  |

| Refere | ence Books                                                                                     |  |  |  |  |  |
|--------|------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 1      | Introduction to Modern Climate Change, Andrew E. Dessler, Cambridge University Press, ISBN-10- |  |  |  |  |  |
|        | 1108793878, ISBN-13- 978-1108793872, 3rd edition, 2021                                         |  |  |  |  |  |
| 2      | Introduction to Climate Science, Andreas Schmittner, Oregon State University,                  |  |  |  |  |  |
|        | https://open.oregonstate.education/climatechange/                                              |  |  |  |  |  |
| 3      | IPCC — Intergovernmental Panel on Climate Change                                               |  |  |  |  |  |
|        | https://www.ipcc.ch                                                                            |  |  |  |  |  |
| 4      | UNFCC – United nations framework convention on climate change                                  |  |  |  |  |  |
|        | https://unfccc.int                                                                             |  |  |  |  |  |

|   | <b>RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)</b>                                                                                                                                                                                                           |       |  |  |  |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|
| # | COMPONENTS                                                                                                                                                                                                                                                              | MARKS |  |  |  |
| 1 | QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.                                                                               | 20    |  |  |  |
| 2 | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be | 40    |  |  |  |



|   | evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE                   |     |
|---|-------------------------------------------------------------------------------------------|-----|
|   | REDUCED TO 40 MARKS.                                                                      |     |
| 3 | EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and                |     |
|   | practical implementation of the problem. Case study-based teaching learning (05), Program | 40  |
|   | specific requirements (05), Video based seminar/presentation/demonstration (10),          | 40  |
| l | MATLAB (20) ADDING UPTO 40 MARKS.                                                         |     |
|   | MAXIMUM MARKS FOR THE CIE THEORY                                                          | 100 |

| <b>RUBRIC FOR SEMESTER END EXAMINATION (THEORY)</b> |                                                   |     |  |  |  |  |
|-----------------------------------------------------|---------------------------------------------------|-----|--|--|--|--|
| <b>Q. NO.</b>                                       | O. CONTENTS                                       |     |  |  |  |  |
|                                                     | PART A                                            |     |  |  |  |  |
| 1                                                   | Objective type questions covering entire syllabus | 20  |  |  |  |  |
|                                                     | PART B                                            |     |  |  |  |  |
|                                                     | (Maximum of TWO Sub-divisions only)               |     |  |  |  |  |
| 2                                                   | Unit 1 : (Compulsory)                             | 16  |  |  |  |  |
| 3 & 4                                               | Unit 2 : Question 3 or 4                          | 16  |  |  |  |  |
| 5&6                                                 | Unit 3 : Question 5 or 6                          | 16  |  |  |  |  |
| 7 & 8                                               | Unit 4 : Question 7 or 8                          | 16  |  |  |  |  |
| 9 & 10                                              | Unit 5: Question 9 or 10                          | 16  |  |  |  |  |
|                                                     | MAXIMUM MARKS FOR THE SEE THEORY                  | 100 |  |  |  |  |



Approved by AICTE, New Delhi

| Semester - I/II                                                |   |                  |                 |   |           |
|----------------------------------------------------------------|---|------------------|-----------------|---|-----------|
| ELEMENTS OF BLOCKCHAIN TECHNOLOGY                              |   |                  |                 |   |           |
|                                                                |   | Category: Emergi | ng Technologies |   |           |
|                                                                |   | (Common to a     | ll Programs)    |   |           |
|                                                                |   | (Theo            | ory)            |   |           |
| <b>Course Code</b>                                             | : | 22EM105/205      | CIE             | : | 100 Marks |
| Credits: L:T:P         : 3:0:0         SEE         : 100 Marks |   |                  |                 |   |           |
| <b>Total Hours</b>                                             | : | 36L              | SEE Duration    | : | 3 Hours   |

| Unit – I                                                                                                 | 07 Hrs        |  |  |  |
|----------------------------------------------------------------------------------------------------------|---------------|--|--|--|
| Blockchain Fundamentals: Defining Blockchain, Elements of Blockchain, Qualities of Blockchain,           | Blockchain    |  |  |  |
| and Economics, Blockchain Technology, Origins of Bitcoin and Blockchain, Types of Blockchains, H         | Business and  |  |  |  |
| Blockchain, Use cases, Ethical issues with Blockchain.                                                   |               |  |  |  |
| Unit – II                                                                                                | 07 Hrs        |  |  |  |
| Blockchain Technology: Blockchain technology stack, monetizing the Blockchain, Blockchain Wa             | llet, Sorting |  |  |  |
| Blocks, Consensus, Blockchain as a Service, IT Use cases for Blockchain-Storage, IPFS, Edge Com          | puting, Web   |  |  |  |
| 3.0 and Blockchain, Obstacles in Blockchain.                                                             | _             |  |  |  |
| Unit – III                                                                                               | 07 Hrs        |  |  |  |
| Bitcoin and Crypto-assets: Introduction to Crypto-assets, Crypto-currencies, Crypto-commodities, Crypto- |               |  |  |  |
| tokens, Bitcoin, Ethereum, Digital Token Exchanges, Financial modelling for cryptocurrencies.            |               |  |  |  |
| Unit - IV                                                                                                | 07 Hrs        |  |  |  |
| Ethereum and Smart Contracts: Basics of Ethereum, Ethereum Virtual Machine, Ether, Smart Contract, On-   |               |  |  |  |
| chain versus Off-chain versus Side chain, Mining Ethereum.                                               |               |  |  |  |
| Unit – V                                                                                                 | 08 Hrs        |  |  |  |
| Blockchain Use Cases: Cross-functional Blockchain Use cases - Identity management, Asset Tracking, IoT   |               |  |  |  |
| integration; Functional Area Blockchain Use Cases for Business - Finance, Marketing/Sales, Supply Chain  |               |  |  |  |
| Management, Accounting, Human Resources; Use Cases for Specific Industries - Insurance, Real Estate,     |               |  |  |  |
| Healthcare, Energy.                                                                                      |               |  |  |  |
| Treatation of Energy.                                                                                    |               |  |  |  |

| Course     | Course Outcomes: After completing the course, the students will be able to                |  |  |  |  |
|------------|-------------------------------------------------------------------------------------------|--|--|--|--|
| CO1 /      | Apply the knowledge of Blockchain in some of the Industrial Use Cases                     |  |  |  |  |
| <b>CO2</b> | Analyse the working of some of the Blockchain solutions in Business Use Cases             |  |  |  |  |
| CO3 U      | Use some of the modern tools of Blockchain, such as Ethereum to solve real world problems |  |  |  |  |
| <b>CO4</b> | Appreciate ethical implications of using Blockchain technologies                          |  |  |  |  |
| CO5 /      | Assess the impact and importance of the Blockchain technologies on social security        |  |  |  |  |

| Text B | ooks                                                                                              |  |  |  |  |
|--------|---------------------------------------------------------------------------------------------------|--|--|--|--|
| 1      | Basics of Blockchain - A guide for building literacy in the economics, technology and business of |  |  |  |  |
|        | blockchain, Bettina Warburg, Bill Wagner, and Tom Serres, 2019, Animal Ventures LLC, Edition 1.0  |  |  |  |  |
| Refere | Reference Books                                                                                   |  |  |  |  |
| 1      | Mastering Blockchain - Distributed ledger technology, decentralization and smart contracts, Imran |  |  |  |  |
|        | Bashir, 2018, Packt, Second Edition                                                               |  |  |  |  |

| <b>RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)</b> |                                                                                                                                                                                                         |       |  |  |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|
| #                                                             | COMPONENTS                                                                                                                                                                                              | MARKS |  |  |
| 1                                                             | <b>QUIZZES:</b> Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. <b>THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.</b> | 20    |  |  |
| 2                                                             | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying,                        | 40    |  |  |

Emerging Technology Courses



|   | Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.</b>                                                                                                             |     |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 3 | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), <b>MATLAB (20) ADDING UPTO 40 MARKS</b> . | 40  |
|   | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                                                       | 100 |

|        | <b>RUBRIC FOR SEMESTER END EXAMINATION (THEORY)</b>  |     |  |  |  |  |
|--------|------------------------------------------------------|-----|--|--|--|--|
| Q. NO. | CONTENTS                                             |     |  |  |  |  |
|        | PART A                                               |     |  |  |  |  |
| 1      | Objective type questions covering entire syllabus    | 20  |  |  |  |  |
|        | <b>PART B</b><br>(Maximum of TWO Sub-divisions only) |     |  |  |  |  |
| 2      | Unit 1 : (Compulsory)                                | 16  |  |  |  |  |
| 3 & 4  | Unit 2 : Question 3 or 4                             | 16  |  |  |  |  |
| 5&6    | Unit 3 : Question 5 or 6                             | 16  |  |  |  |  |
| 7 & 8  | Unit 4 : Question 7 or 8                             | 16  |  |  |  |  |
| 9 & 10 | Unit 5: Question 9 or 10                             | 16  |  |  |  |  |
|        | MAXIMUM MARKS FOR THE SEE THEORY                     | 100 |  |  |  |  |



Approved by AICTE, New Delhi

| Oniversity, Dela                                                                                              |       | S                               | amostor I/II           |                      |       |                         |
|---------------------------------------------------------------------------------------------------------------|-------|---------------------------------|------------------------|----------------------|-------|-------------------------|
| Semester - I/II<br>INTRODUCTION TO CYBER SECURITY                                                             |       |                                 |                        |                      |       |                         |
|                                                                                                               |       |                                 |                        |                      |       |                         |
| Category: Emerging Technologies                                                                               |       |                                 |                        |                      |       |                         |
| (Common to all Programs)<br>(Theory)                                                                          |       |                                 |                        |                      |       |                         |
| Course Code                                                                                                   |       | 22EM106/206                     | CIE                    | 1                    | :     | 100 Marks               |
| Credits: L:T:P                                                                                                | :     | 3:0:0                           | SEE                    |                      | :     | 100 Marks               |
| Total Hours                                                                                                   | :     | 40L                             |                        | Duration             | :     | 3 Hours                 |
| Total nours                                                                                                   | •     | 40L                             | SEL                    | Duration             | •     | 5 Hours                 |
|                                                                                                               |       | Unit                            | +_ <b>T</b>            |                      |       | 08 Hrs                  |
| Introduction to Cv                                                                                            | her ( | Space: History of Internet, H   |                        | n of Information S   | ecur  |                         |
|                                                                                                               |       | ce and information security,    |                        |                      | ceur  | ny and cyber becany,    |
|                                                                                                               |       | rime: Definition and Origi      |                        |                      | Info  | rmation Security, who   |
|                                                                                                               |       | ssifications of Cybercrimes     |                        |                      |       | d Indian Laws, Global   |
|                                                                                                               |       | ypes of Cyber Crimes, Scam      |                        |                      | ,     |                         |
|                                                                                                               |       | Unit                            |                        |                      |       | 08 Hrs                  |
| Cyber Offenses: He                                                                                            | ow C  | Criminals Plan Them: Introdu    |                        | ls plan the attacks. | Soc   |                         |
|                                                                                                               |       | ybercrimes, Botnets: The fue    |                        |                      | 200   |                         |
|                                                                                                               |       | nd Motivations: How Hacke       |                        |                      | ). H  | ow and Why Attackers    |
|                                                                                                               |       | Techniques, Fraud Techniqu      |                        | (                    | ,,    | 5                       |
| ,                                                                                                             |       | Unit -                          |                        |                      |       | 08 Hrs                  |
| Social Media Ove                                                                                              | rvie  | w and Security: Introduction    |                        | orks. Types of so    | cial  |                         |
|                                                                                                               |       | ۱ monitoring, Hashtag, V        |                        |                      |       |                         |
|                                                                                                               |       | s and pitfalls in online soc    |                        |                      |       |                         |
|                                                                                                               |       | opriate content, Laws rega      |                        |                      |       |                         |
| use of social media                                                                                           |       |                                 |                        |                      | ĺ.    | 1                       |
|                                                                                                               |       | Unit                            | - IV                   |                      |       | 08 Hrs                  |
|                                                                                                               |       | tal Payments: Definition of     |                        |                      |       |                         |
|                                                                                                               |       | Commerce threats, E-Comm        |                        |                      |       |                         |
|                                                                                                               |       | payment and stake holde         |                        |                      |       |                         |
|                                                                                                               |       | ts, Unstructured Supplemen      |                        |                      |       |                         |
|                                                                                                               |       | non frauds and preventiv        |                        |                      |       |                         |
| protection in unaut                                                                                           | noris | ed banking transactions. Rel    |                        | Payment Settlemen    | t Ac  |                         |
|                                                                                                               |       | Unit                            |                        |                      |       | 08 Hrs                  |
|                                                                                                               |       | y, Tools, and Technologies      |                        |                      |       |                         |
|                                                                                                               |       | cy, Security patch manage       |                        |                      |       |                         |
| party software, Device security policy, Cyber Security best practices, Significance of host firewall and Ant- |       |                                 |                        |                      |       |                         |
| -                                                                                                             | of h  | ost firewall and Anti-virus,    | , W1-F1 security,      | Configuration of     | bas   | sic security policy and |
| permissions.                                                                                                  |       |                                 |                        |                      |       |                         |
| Come C to                                                                                                     | A.£4  |                                 | 4 J4 - 11 1 - 1        |                      |       |                         |
|                                                                                                               |       | r completing the course, the    |                        |                      | :. F  |                         |
| CO1 Understand t<br>devices.                                                                                  | ne c  | yber-attacks and their princi   | pies for different do  | omains- social med   | ıa,E∙ | -commerce, and digital  |
|                                                                                                               | erab  | ilities in different domains th | hat the attacker capit | alizes for attack.   |       |                         |
|                                                                                                               |       |                                 |                        |                      |       |                         |
|                                                                                                               |       | to cover different vulnerabi    |                        |                      |       |                         |
|                                                                                                               | -     |                                 |                        |                      | -     |                         |

**CO5** Investigate modern tools and technologies available to mitigate cybercrime attacks.

RV Educational Institutions ° RV College of Engineering °

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Approved by AICTE, New Delhi

| Refere | ence Books                                                                                                         |
|--------|--------------------------------------------------------------------------------------------------------------------|
| 1      | Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal Perspectives by                            |
|        | SumitBelapure and Nina Godbole, Wiley India Pvt. Ltd, 1 <sup>st</sup> Edition 2011, Reprint 2022, ISBN:978-81-265- |
|        | 2179-1.                                                                                                            |
| 2      | Cyber Security Essentials by James Graham, Richard Howard, Ryan Olson, CRC Press, 2011 Taylor and                  |
|        | Francis Group. ISBN13: 978-1-4398-5126-5.                                                                          |
| 3      | Information Systems Security: Security Management, Metrics, Frameworks and Best Practices by Nina                  |
|        | Godbole, 2 <sup>nd</sup> Edition, Wiley publishers, 2017. ISBN: 9788126564057.                                     |
| 4      | Network Security Bible, Eric Cole, Ronald Krutz, James W. Conley, 2 <sup>nd</sup> Edition, John Wiley & Sons,      |
|        | 2005, ISBN: 978-0764573972.                                                                                        |
| 5      | Security in the Digital Age: Social Media Security Threats and Vulnerabilities by Henry A. Oliver,                 |
|        | Create Space Independent Publishing Platform, Pearson, 2001, ISBN: 9781516821020.                                  |
| 6      | Electronic Commerce by Elias M. Awad, Pearson, 1 <sup>st</sup> edition, 2001, ISBN: 978-0130193223.                |
| 7      | Cyber Laws: Intellectual Property & E-Commerce Security by Kumar K, Dominant Publishers & Distributors,            |
|        | 2011, ISBN: 978-8187336891.                                                                                        |

|                                  | <b>RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)</b>                                                                                                                                                                                                                                                                                                               |       |  |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|
| #                                | COMPONENTS                                                                                                                                                                                                                                                                                                                                                                  | MARKS |  |
| 1                                | QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.                                                                                                                                                                                   | 20    |  |
| 2                                | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.</b> | 40    |  |
| 3                                | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS.                                                                              | 40    |  |
| MAXIMUM MARKS FOR THE CIE THEORY |                                                                                                                                                                                                                                                                                                                                                                             | 100   |  |

| <b>RUBRIC FOR SEMESTER END EXAMINATION (THEORY)</b> |                                                      |       |
|-----------------------------------------------------|------------------------------------------------------|-------|
| Q.<br>NO.                                           | CONTENTS                                             | MARKS |
|                                                     | PART A                                               |       |
| 1                                                   | Objective type questions covering entire syllabus    | 20    |
|                                                     | <b>PART B</b><br>(Maximum of TWO Sub-divisions only) |       |
| 2                                                   | Unit 1 : (Compulsory)                                | 16    |
| 3 & 4                                               | Unit 2 : Question 3 or 4                             | 16    |
| 5&6                                                 | Unit 3 : Question 5 or 6                             | 16    |
| 7 & 8                                               | Unit 4 : Question 7 or 8                             | 16    |
| 9 &<br>10                                           | Unit 5: Question 9 or 10                             | 16    |
|                                                     | MAXIMUM MARKS FOR THE SEE THEORY                     | 100   |

Emerging Technology Courses



Approved by AICTE, New Delhi

|                                                                                                                                                                        |                                                                                                                                                                                                                               |                                                                                                                      |                                                                                                                                                                                                                                                                                                      | Semester - I/II                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                 |                                            |                                                                                                                                                                               |                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
|                                                                                                                                                                        |                                                                                                                                                                                                                               |                                                                                                                      | G                                                                                                                                                                                                                                                                                                    | REEN BUILDINGS                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                 |                                            |                                                                                                                                                                               |                                                          |
|                                                                                                                                                                        |                                                                                                                                                                                                                               |                                                                                                                      | Categor                                                                                                                                                                                                                                                                                              | y: Emerging Technol                                                                                                                                                                                                                                                                                                                       | ogies                                                                                                                                                                                           |                                            |                                                                                                                                                                               |                                                          |
| (Common to all Programs)                                                                                                                                               |                                                                                                                                                                                                                               |                                                                                                                      |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                 |                                            |                                                                                                                                                                               |                                                          |
|                                                                                                                                                                        |                                                                                                                                                                                                                               |                                                                                                                      | × ×                                                                                                                                                                                                                                                                                                  | (Theory)                                                                                                                                                                                                                                                                                                                                  | ,                                                                                                                                                                                               |                                            |                                                                                                                                                                               |                                                          |
| Course C                                                                                                                                                               | Code                                                                                                                                                                                                                          | :                                                                                                                    | 22EM107/207                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                           | CIE                                                                                                                                                                                             | :                                          | 100 Marks                                                                                                                                                                     |                                                          |
| Credits:                                                                                                                                                               | L:T:P                                                                                                                                                                                                                         | :                                                                                                                    | 3:0:0                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                           | SEE                                                                                                                                                                                             | :                                          | 100 Marks                                                                                                                                                                     |                                                          |
| Total Ho                                                                                                                                                               | urs                                                                                                                                                                                                                           | :                                                                                                                    | 40L                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                           | <b>SEE Duration</b>                                                                                                                                                                             | :                                          | 3 Hours                                                                                                                                                                       |                                                          |
|                                                                                                                                                                        |                                                                                                                                                                                                                               |                                                                                                                      |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                 |                                            |                                                                                                                                                                               |                                                          |
| T ( 1                                                                                                                                                                  |                                                                                                                                                                                                                               |                                                                                                                      |                                                                                                                                                                                                                                                                                                      | <u>nit – I</u>                                                                                                                                                                                                                                                                                                                            | 6 1.66                                                                                                                                                                                          |                                            |                                                                                                                                                                               | Hrs                                                      |
| availabilit                                                                                                                                                            |                                                                                                                                                                                                                               | ateri                                                                                                                | te blocks-M Sand                                                                                                                                                                                                                                                                                     | e construction: Use<br>- Burnt Bricks- Conc                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                 |                                            |                                                                                                                                                                               |                                                          |
| Light wei                                                                                                                                                              | ght beams- Fibe                                                                                                                                                                                                               | r Re                                                                                                                 | inforced Cement C                                                                                                                                                                                                                                                                                    | Components- Fiber Re                                                                                                                                                                                                                                                                                                                      | inforced Polymer Co                                                                                                                                                                             | mp                                         | osite- Bamboo.                                                                                                                                                                |                                                          |
| Availabili                                                                                                                                                             | ity of different                                                                                                                                                                                                              | t ma                                                                                                                 | aterials- Recycling                                                                                                                                                                                                                                                                                  | g of building mater                                                                                                                                                                                                                                                                                                                       | ials – Brick- Cond                                                                                                                                                                              | eret                                       | e- Steel- Plas                                                                                                                                                                | tics .                                                   |
|                                                                                                                                                                        |                                                                                                                                                                                                                               |                                                                                                                      | o building materia                                                                                                                                                                                                                                                                                   | 6                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                 |                                            |                                                                                                                                                                               |                                                          |
|                                                                                                                                                                        |                                                                                                                                                                                                                               |                                                                                                                      | -                                                                                                                                                                                                                                                                                                    | nit – II                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                 |                                            | 08                                                                                                                                                                            | Hrs                                                      |
| Environr                                                                                                                                                               | nent friendly a                                                                                                                                                                                                               | ind                                                                                                                  |                                                                                                                                                                                                                                                                                                      | ilding Technologies:                                                                                                                                                                                                                                                                                                                      | Different substitute                                                                                                                                                                            | e fo                                       |                                                                                                                                                                               |                                                          |
| Cavity W                                                                                                                                                               | •                                                                                                                                                                                                                             |                                                                                                                      |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                 |                                            |                                                                                                                                                                               |                                                          |
|                                                                                                                                                                        |                                                                                                                                                                                                                               | Conc                                                                                                                 | rete constructions                                                                                                                                                                                                                                                                                   | - different pre cast me                                                                                                                                                                                                                                                                                                                   | embers using these m                                                                                                                                                                            | ate                                        | rials.                                                                                                                                                                        |                                                          |
|                                                                                                                                                                        |                                                                                                                                                                                                                               |                                                                                                                      |                                                                                                                                                                                                                                                                                                      | oor and Window fran                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                 |                                            |                                                                                                                                                                               | ernat                                                    |
|                                                                                                                                                                        |                                                                                                                                                                                                                               |                                                                                                                      |                                                                                                                                                                                                                                                                                                      | am and Panel Roof.                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                 |                                            |                                                                                                                                                                               |                                                          |
|                                                                                                                                                                        | - wood products                                                                                                                                                                                                               |                                                                                                                      | -                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                               |                                            | -                                                                                                                                                                             |                                                          |
|                                                                                                                                                                        | -                                                                                                                                                                                                                             |                                                                                                                      | Ur                                                                                                                                                                                                                                                                                                   | nit – III                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                 |                                            | 08                                                                                                                                                                            | Hrs                                                      |
| <b>Global W</b>                                                                                                                                                        | /arming – Defir                                                                                                                                                                                                               | nition                                                                                                               | n - Causes and Eff                                                                                                                                                                                                                                                                                   | ects - Contribution of                                                                                                                                                                                                                                                                                                                    | buildings towards Gl                                                                                                                                                                            | oba                                        | l Warming.                                                                                                                                                                    |                                                          |
|                                                                                                                                                                        |                                                                                                                                                                                                                               |                                                                                                                      | forts to reduce carl                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                 |                                            |                                                                                                                                                                               |                                                          |
| Green Bu                                                                                                                                                               | ildings – Defini                                                                                                                                                                                                              | ition                                                                                                                | - Features- Neces                                                                                                                                                                                                                                                                                    | ssity - Environmental                                                                                                                                                                                                                                                                                                                     | benefit - Economic                                                                                                                                                                              | al t                                       | enefits - Healt                                                                                                                                                               | h ano                                                    |
| Social ber                                                                                                                                                             | nefits.                                                                                                                                                                                                                       |                                                                                                                      |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                 |                                            |                                                                                                                                                                               |                                                          |
|                                                                                                                                                                        |                                                                                                                                                                                                                               |                                                                                                                      |                                                                                                                                                                                                                                                                                                      | hadiad Enganger in Mat                                                                                                                                                                                                                                                                                                                    | arials                                                                                                                                                                                          |                                            |                                                                                                                                                                               |                                                          |
|                                                                                                                                                                        | ergy efficient are                                                                                                                                                                                                            | eas f                                                                                                                | or buildings – Em                                                                                                                                                                                                                                                                                    | bodied Energy in Mat                                                                                                                                                                                                                                                                                                                      | J11a15.                                                                                                                                                                                         |                                            |                                                                                                                                                                               |                                                          |
| Major En                                                                                                                                                               |                                                                                                                                                                                                                               |                                                                                                                      |                                                                                                                                                                                                                                                                                                      | Green V/s Convention                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                 | cle                                        | cost of Building                                                                                                                                                              | gs.                                                      |
| Major En                                                                                                                                                               |                                                                                                                                                                                                                               |                                                                                                                      | n of Initial cost of (                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                 | cle                                        |                                                                                                                                                                               | gs.<br>Hrs                                               |
| Major En<br>Green Ma                                                                                                                                                   | aterials - Compar                                                                                                                                                                                                             | rison                                                                                                                | n of Initial cost of (<br>Ur                                                                                                                                                                                                                                                                         | Green V/s Convention                                                                                                                                                                                                                                                                                                                      | al Building - Life cy                                                                                                                                                                           |                                            | 08                                                                                                                                                                            | Hrs                                                      |
| Major End<br>Green Ma                                                                                                                                                  | uilding rating                                                                                                                                                                                                                | rison<br>Syst                                                                                                        | n of Initial cost of (<br>Ur<br>ems- BREEAM -                                                                                                                                                                                                                                                        | Green V/s Convention<br>nit – IV                                                                                                                                                                                                                                                                                                          | al Building - Life cy                                                                                                                                                                           |                                            | 08                                                                                                                                                                            | Hrs                                                      |
| Major End<br>Green Ma<br>Green Ba<br>Purpose -                                                                                                                         | uilding rating<br>Key highlights                                                                                                                                                                                              | rison<br>Syst<br>- Poi                                                                                               | n of Initial cost of (<br>Ur<br>ems- BREEAM -<br>int System with Di                                                                                                                                                                                                                                  | Green V/s Convention<br>hit – IV<br>- LEED - GREEN S                                                                                                                                                                                                                                                                                      | al Building - Life cy<br>TAR –GRIHA, IGE                                                                                                                                                        | BC :                                       | for new buildi                                                                                                                                                                | Hrs<br>ngs -                                             |
| Major End<br>Green Ma<br>Green B<br>Purpose -<br>Green De                                                                                                              | uilding rating<br>Key highlights<br>esign – Definiti                                                                                                                                                                          | rison<br>Syst<br>- Poi                                                                                               | n of Initial cost of (<br>Ur<br>ems- BREEAM -<br>int System with Di<br>- Principles of su                                                                                                                                                                                                            | Green V/s Convention<br><b>hit – IV</b><br>- LEED - GREEN S<br>fferential weightage.                                                                                                                                                                                                                                                      | al Building - Life cy<br>TAR -GRIHA, IGE<br>nt in Building Desi                                                                                                                                 | BC :<br>gn                                 | 08<br>for new buildi<br>- Characteristi                                                                                                                                       | Hrs<br>ngs -<br>ics o                                    |
| Major End<br>Green Ma<br>Green B<br>Purpose -<br>Green De                                                                                                              | uilding rating<br>Wey highlights<br>esign – Definiti<br>le Buildings – S                                                                                                                                                      | rison<br>Syst<br>- Poi                                                                                               | n of Initial cost of (<br>Ur<br>ems- BREEAM -<br>int System with Di<br>- Principles of su<br>inably managed N                                                                                                                                                                                        | Green V/s Convention<br><u>nit – IV</u><br>– LEED - GREEN S<br>ifferential weightage.<br>Istainable development<br>Materials - Integrated I                                                                                                                                                                                               | al Building - Life cy<br>TAR -GRIHA, IGE<br>nt in Building Desi                                                                                                                                 | BC :<br>gn                                 | 08<br>for new buildi<br>- Characteristi                                                                                                                                       | Hrs<br>ngs -<br>ics o                                    |
| Major En<br>Green Ma<br>Green B<br>Purpose -<br>Green De<br>Sustainab                                                                                                  | uilding rating<br>Wey highlights<br>esign – Definiti<br>le Buildings – S                                                                                                                                                      | rison<br>Syst<br>- Poi                                                                                               | n of Initial cost of (<br>Ur<br>ems- BREEAM -<br>int System with Di<br>- Principles of su<br>inably managed N                                                                                                                                                                                        | Green V/s Convention<br><b>hit – IV</b><br>– LEED - GREEN S<br>ifferential weightage.<br>Istainable development                                                                                                                                                                                                                           | al Building - Life cy<br>TAR -GRIHA, IGE<br>nt in Building Desi                                                                                                                                 | BC :<br>gn                                 | 08<br>for new buildi<br>- Characteristi<br>erials and Strue                                                                                                                   | Hrs<br>ngs -<br>ics o                                    |
| Major End<br>Green Ma<br>Oreen Ba<br>Purpose -<br>Green Da<br>Sustainab<br>(Concepts<br>Utility of                                                                     | uilding rating<br>Key highlights<br>esign – Definiti<br>le Buildings – S<br>s only).                                                                                                                                          | rison<br>Syst<br>- Poi<br>ion -<br>Susta<br>n Bu                                                                     | n of Initial cost of (<br>Ur<br>ems- BREEAM -<br>int System with Di<br>- Principles of su<br>inably managed M<br>Utility of                                                                                                                                                                          | Green V/s Convention<br>hit - IV<br>- LEED - GREEN S<br>ifferential weightage.<br>istainable development<br>Materials - Integrated if<br>hit - V<br>f Solar energy in build                                                                                                                                                               | al Building - Life cy<br>TAR –GRIHA, IGE<br>nt in Building Desi<br>Lifecycle design of I                                                                                                        | BC :<br>gn<br>Mat                          | 08       for new buildi       - Characteristic       erials and Struct       08       08       08       08                                                                    | Hrs<br>ngs -<br>ics o<br>cture<br>Hrs                    |
| Major End<br>Green Ma<br>Oreen Ba<br>Purpose -<br>Green Da<br>Sustainab<br>(Concepts)<br>Utility of<br>Heating o                                                       | uilding rating<br>Key highlights<br>esign – Definiti<br>le Buildings – S<br>s only).<br>Solar Energy i<br>f Buildings. Low                                                                                                    | rison<br>Syst<br>- Poi<br>ion -<br>Susta<br>n Bu<br>w En                                                             | n of Initial cost of (<br>Ur<br>ems- BREEAM -<br>int System with Di<br>- Principles of su<br>inably managed M<br>Un<br>aildings: Utility of<br>nergy Cooling. Cas                                                                                                                                    | Green V/s Convention<br><b>hit – IV</b><br>– LEED - GREEN S<br>ifferential weightage.<br>Istainable development<br>Aaterials - Integrated I<br><b>hit – V</b><br>f Solar energy in build<br>e studies of Solar Pase                                                                                                                       | al Building - Life cy<br>TAR –GRIHA, IGE<br>nt in Building Desi<br>Lifecycle design of I<br>ings - concepts of So<br>sive Cooled and Heat                                                       | BC :<br>gn<br>Mat                          | 08       for new buildi       - Characteristi       erials and Structure       08       Passive Coolin       Buildings.                                                       | Hrs<br>ngs -<br>ics o<br>ctures<br>Hrs<br>g and          |
| Major End<br>Green Ma<br>Oreen Bo<br>Purpose -<br>Green De<br>Sustainab<br>(Concepts)<br>Utility of<br>Heating o<br>Green Co                                           | uilding rating<br>Key highlights<br>esign – Definiti<br>le Buildings – S<br>s only).<br>Solar Energy i<br>f Buildings. Low<br>omposites for E                                                                                 | rison<br>Syst<br>- Poi<br>ion -<br>Susta<br>n Bu<br>W En<br>Build                                                    | n of Initial cost of (<br>Ur<br>ems- BREEAM -<br>int System with Di<br>- Principles of su<br>inably managed N<br>Un<br>uldings: Utility of<br>aergy Cooling. Cas<br>lings: Concepts o                                                                                                                | Green V/s Convention<br>hit - IV<br>- LEED - GREEN S<br>ifferential weightage.<br>Istainable development<br>Aaterials - Integrated D<br>hit - V<br>f Solar energy in build<br>e studies of Solar Pass<br>f Green Composites.                                                                                                              | al Building - Life cy<br>TAR –GRIHA, IGE<br>nt in Building Desi<br>Lifecycle design of I<br>ings - concepts of So<br>sive Cooled and Heat<br>Water Utilisation in                               | BC :<br>gn<br>Mat<br>olar<br>i.ed I<br>Bui | 08         for new buildi         - Characteristi         erials and Struct         08         Passive Coolin         Buildings,         ildings, Low E                       | Hrs<br>ngs -<br>ics o<br>cture:<br>Hrs<br>g and<br>nergy |
| Major End<br>Green Ma<br>Oreen Ba<br>Purpose -<br>Green Da<br>Sustainab<br>(Concepts)<br>Utility of<br>Heating o<br>Green Co<br>approache                              | uilding rating<br>Key highlights<br>esign – Definiti<br>le Buildings – S<br>s only).<br>Solar Energy i<br>f Buildings. Low<br>omposites for H<br>es to Water Ma                                                               | rison<br>Syst<br>- Poi<br>ion -<br>Susta<br><b>n Bu</b><br>W En<br><b>Build</b><br>nage                              | n of Initial cost of (<br>Ur<br>ems- BREEAM -<br>int System with Di<br>- Principles of su<br>inably managed M<br>Un<br>nildings: Utility of<br>lergy Cooling. Cas<br>lings: Concepts o<br>ement. Manageme                                                                                            | Green V/s Convention<br><b>hit – IV</b><br>- LEED - GREEN S<br>ifferential weightage.<br>Istainable development<br>Aaterials - Integrated I<br><b>nit – V</b><br>f Solar energy in build<br>e studies of Solar Passe<br>f Green Composites. In<br>nt of Solid Wastes. M                                                                   | al Building - Life cy<br>TAR –GRIHA, IGE<br>nt in Building Desi<br>Lifecycle design of I<br>ings - concepts of So<br>sive Cooled and Heat<br>Water Utilisation in<br>Management of Sulla        | BC :<br>gn<br>Mat<br>olar<br>i.ed I<br>Bui | 08         for new buildi         - Characteristi         erials and Struct         08         Passive Coolin         Buildings,         ildings, Low E                       | Hrs<br>ngs -<br>ics o<br>cture<br>Hrs<br>g and<br>nergy  |
| Major End<br>Green Ma<br>Oreen Ba<br>Purpose -<br>Green Da<br>Sustainab<br>(Concepts)<br>Utility of<br>Heating o<br>Green Co<br>approaches                             | uilding rating<br>Key highlights<br>esign – Definiti<br>le Buildings – S<br>s only).<br>Solar Energy i<br>f Buildings. Low<br>omposites for H<br>es to Water Ma                                                               | rison<br>Syst<br>- Poi<br>ion -<br>Susta<br><b>n Bu</b><br>W En<br><b>Build</b><br>nage                              | n of Initial cost of (<br>Ur<br>ems- BREEAM -<br>int System with Di<br>- Principles of su<br>inably managed M<br>Un<br>nildings: Utility of<br>lergy Cooling. Cas<br>lings: Concepts o<br>ement. Manageme                                                                                            | Green V/s Convention<br>hit - IV<br>- LEED - GREEN S<br>ifferential weightage.<br>Istainable development<br>Aaterials - Integrated D<br>hit - V<br>f Solar energy in build<br>e studies of Solar Pass<br>f Green Composites.                                                                                                              | al Building - Life cy<br>TAR –GRIHA, IGE<br>nt in Building Desi<br>Lifecycle design of I<br>ings - concepts of So<br>sive Cooled and Heat<br>Water Utilisation in<br>Management of Sulla        | BC :<br>gn<br>Mat<br>olar<br>i.ed I<br>Bui | 08         for new buildi         - Characteristi         erials and Struct         08         Passive Coolin         Buildings,         ildings, Low E                       | Hrs<br>ngs -<br>ics o<br>cture<br>Hrs<br>g and<br>nerg   |
| Major End<br>Green Ma<br>Oreen Ba<br>Purpose -<br>Green Da<br>Sustainab<br>(Concepts)<br>Utility of<br>Heating o<br>Green Co<br>approaches                             | uilding rating<br>Key highlights<br>esign – Definiti<br>le Buildings – S<br>s only).<br>Solar Energy i<br>f Buildings. Low<br>omposites for H<br>es to Water Ma                                                               | rison<br>Syst<br>- Poi<br>ion -<br>Susta<br><b>n Bu</b><br>W En<br><b>Build</b><br>nage                              | n of Initial cost of (<br>Ur<br>ems- BREEAM -<br>int System with Di<br>- Principles of su<br>inably managed M<br>Un<br>nildings: Utility of<br>lergy Cooling. Cas<br>lings: Concepts o<br>ement. Manageme                                                                                            | Green V/s Convention<br><b>hit – IV</b><br>- LEED - GREEN S<br>ifferential weightage.<br>Istainable development<br>Aaterials - Integrated I<br><b>nit – V</b><br>f Solar energy in build<br>e studies of Solar Passe<br>f Green Composites. In<br>nt of Solid Wastes. M                                                                   | al Building - Life cy<br>TAR –GRIHA, IGE<br>nt in Building Desi<br>Lifecycle design of I<br>ings - concepts of So<br>sive Cooled and Heat<br>Water Utilisation in<br>Management of Sulla        | BC :<br>gn<br>Mat<br>olar<br>i.ed I<br>Bui | 08         for new buildi         - Characteristi         erials and Struct         08         Passive Coolin         Buildings,         ildings, Low E                       | Hrs<br>ngs -<br>ics o<br>cture<br>Hrs<br>g and<br>nergy  |
| Major End<br>Green Ma<br>Purpose -<br>Green De<br>Sustainab<br>(Concepts<br>Utility of<br>Heating o<br>Green Ce<br>approache<br>Environm                               | uilding rating<br>Key highlights<br>esign – Definiti<br>le Buildings – S<br>s only).<br>Solar Energy i<br>f Buildings. Low<br>omposites for H<br>es to Water Ma<br>nent and Green E<br>Dutcomes: After                        | rison<br>Syst<br>- Poi<br>ion -<br>Susta<br>n Bu<br>W En<br>Build<br>nage<br>Build                                   | n of Initial cost of 0<br>Ur<br>ems- BREEAM -<br>int System with Di<br>- Principles of su<br>inably managed M<br>Un<br>aildings: Utility of<br>tergy Cooling. Cas<br>lings: Concepts o<br>ement. Manageme<br>lings. Green Cover                                                                      | Green V/s Convention<br>iit - IV<br>- LEED - GREEN S<br>ifferential weightage.<br>Istainable development<br>Aaterials - Integrated I<br>iit - V<br>f Solar energy in build<br>e studies of Solar Pass<br>f Green Composites.<br>Int of Solid Wastes. More<br>and Built Environme<br>se, the students will b                               | al Building - Life cy<br>TAR –GRIHA, IGE<br>nt in Building Desi<br>Lifecycle design of I<br>ings - concepts of So<br>sive Cooled and Heat<br>Water Utilisation in<br>Management of Sulla<br>nt. | gn<br>Mat<br>blar<br>Bui<br>age            | 08         for new buildi         - Characteristi         erials and Struct         08         Passive Coolin         Buildings.         ildings, Low E         and Sewage. I | Hrs<br>ngs -<br>ics o<br>cture<br>Hrs<br>g and<br>nergy  |
| Major End<br>Green Ma<br>Purpose -<br>Green De<br>Sustainab<br>(Concepts<br>Utility of<br>Heating o<br>Green Ce<br>approache<br>Environm<br>Course O<br>CO1 S          | uilding rating<br>Key highlights<br>esign – Definiti<br>le Buildings – S<br>s only).<br>Solar Energy i<br>of Buildings. Low<br>omposites for H<br>es to Water Ma<br>nent and Green H<br>Dutcomes: After<br>Select suitable bu | rison<br>Syst<br>- Poi<br>ion -<br>Susta<br>n Bu<br>w En<br>Build<br>nage<br>Build                                   | n of Initial cost of (<br>Ur<br>ems- BREEAM -<br>int System with Di<br>- Principles of su<br>inably managed M<br>Un<br>nildings: Utility of<br>ergy Cooling. Cas<br>lings: Concepts o<br>ement. Manageme<br>lings. Green Cover<br>npleting the course<br>ng material and ap                          | Green V/s Convention<br>hit - IV<br>- LEED - GREEN S<br>ifferential weightage.<br>Istainable development<br>Aaterials - Integrated if<br>hit - V<br>f Solar energy in build<br>e studies of Solar Passe<br>f Green Composites.<br>Int of Solid Wastes. More<br>and Built Environment<br>se, the students will b<br>ply effective environm | al Building - Life cy<br>TAR –GRIHA, IGE<br>nt in Building Desi<br>Lifecycle design of I<br>ings - concepts of So<br>sive Cooled and Heat<br>Water Utilisation in<br>Management of Sulla<br>nt. | gn<br>Mat<br>blar<br>Bui<br>age            | 08         for new buildi         - Characteristi         erials and Struct         08         Passive Coolin         Buildings.         ildings, Low E         and Sewage. I | Hrs<br>ngs -<br>ics o<br>cture<br>Hrs<br>g and<br>nerg   |
| Major End<br>Green Ma<br>Purpose -<br>Green De<br>Sustainab<br>(Concepts<br>Utility of<br>Heating o<br>Green Ce<br>approache<br>Environm<br>Course O<br>CO1 S<br>CO2 A | uilding rating<br>Key highlights<br>esign – Definiti<br>le Buildings – S<br>s only).<br>Solar Energy i<br>of Buildings. Low<br>omposites for H<br>es to Water Ma<br>nent and Green H<br>Dutcomes: After<br>Select suitable bu | rison<br>Syst<br>- Poi<br>ion -<br>Susta<br>m Bu<br>W En<br>Build<br>nage<br>Build<br>suild<br>con<br>uildin<br>varm | n of Initial cost of (<br>Ur<br>ems- BREEAM -<br>int System with Di<br>- Principles of su<br>inably managed N<br>Un<br>indings: Utility of<br>aergy Cooling. Cas<br>lings: Concepts o<br>ement. Management<br>lings. Green Cover<br>npleting the course<br>ng material and ap<br>ing due to differer | Green V/s Convention<br>iit - IV<br>- LEED - GREEN S<br>ifferential weightage.<br>Istainable development<br>Aaterials - Integrated I<br>iit - V<br>f Solar energy in build<br>e studies of Solar Pass<br>f Green Composites.<br>Int of Solid Wastes. More<br>and Built Environme<br>se, the students will b                               | al Building - Life cy<br>TAR –GRIHA, IGE<br>nt in Building Desi<br>Lifecycle design of I<br>ings - concepts of So<br>sive Cooled and Heat<br>Water Utilisation in<br>Management of Sulla<br>nt. | gn<br>Mat<br>blar<br>Bui<br>age            | 08         for new buildi         - Characteristi         erials and Struct         08         Passive Coolin         Buildings.         ildings, Low E         and Sewage. I | Hrs<br>ngs -<br>ics o<br>cture<br>Hrs<br>g and<br>nerg   |

**CO4** Use alternate source of energy and effective use of water in building.

RV Educational Institutions ° RV College of Engineering °

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

| Refere | ence Books                                                                                              |
|--------|---------------------------------------------------------------------------------------------------------|
| 1      | Green Building Fundamentals, G Harihara Iyer, Notion Press, 1st Edition, 2022,                          |
|        | ISBN-13:979-8886416091.                                                                                 |
| 2      | Green Building: Principles & Practices, Harshul Savla, Notion Press, 1st Edition, 2021,                 |
|        | ISBN-13: 978-1685866044.                                                                                |
| 3      | Green Building Guidance: The Ultimate Guide for IGBC Accredited Professional Examination, Karthik       |
|        | Karuppu, Notion Press; 1 <sup>st</sup> Edition, 2019, ISBN-13: 978-1684667291.                          |
| 4      | Handbook of Green Building Design and Construction LEED, BREEAM, and Green Globes, Sam Kubba,           |
|        | Joe Hayton publisher, 1 <sup>st</sup> Edition, 2017, ISBN: 978-0-12-810433-0.                           |
| 5      | Sustainable Construction: Green Building Design and Delivery, Charles J. Kibert, Wiley Publication, 5th |
|        | Edition, 2022, ISBN-13:978-1119706458.                                                                  |

| RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY) |                                                                                                                                                                                                                                                                                                                                                                             |       |  |  |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|
| #                                                      | COMPONENTS                                                                                                                                                                                                                                                                                                                                                                  | MARKS |  |  |
| 1                                                      | <b>QUIZZES:</b> Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. <b>THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.</b>                                                                                                                                                                     | 20    |  |  |
| 2                                                      | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.</b> | 40    |  |  |
| 3                                                      | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), <b>MATLAB (20) ADDING UPTO 40 MARKS</b> .                                                                      | 40    |  |  |
|                                                        | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                                                                                                                            | 100   |  |  |

| <b>RUBRIC FOR SEMESTER END EXAMINATION (THEORY)</b> |                                                   |    |  |  |
|-----------------------------------------------------|---------------------------------------------------|----|--|--|
| Q. NO.                                              | Q. NO. CONTENTS                                   |    |  |  |
|                                                     | PART A                                            |    |  |  |
| 1                                                   | Objective type questions covering entire syllabus | 20 |  |  |
|                                                     | PART B                                            |    |  |  |
|                                                     | (Maximum of TWO Sub-divisions only)               |    |  |  |
| 2                                                   | Unit 1 : (Compulsory)                             | 16 |  |  |
| 3 & 4                                               | Unit 2 : Question 3 or 4                          | 16 |  |  |
| <b>5 &amp; 6</b> Unit 3 : Question 5 or 6           |                                                   |    |  |  |
| 7 & 8                                               | Unit 4 : Question 7 or 8                          | 16 |  |  |
| 9 & 10                                              | Unit 5: Question 9 or 10                          | 16 |  |  |
| MAXIMUM MARKS FOR THE SEE THEORY 100                |                                                   |    |  |  |



Approved by AICTE, New Delhi

| entreenty, seeight t            |                                                                |             |                         |                     |   |           |  |
|---------------------------------|----------------------------------------------------------------|-------------|-------------------------|---------------------|---|-----------|--|
| Semester - I/II                 |                                                                |             |                         |                     |   |           |  |
| INFRASTRUCTURE FOR SMART CITIES |                                                                |             |                         |                     |   |           |  |
|                                 |                                                                | Category:   | <b>Emerging Technol</b> | logies              |   |           |  |
|                                 |                                                                | (Comn       | non to all Program      | s)                  |   |           |  |
|                                 |                                                                | x           | (Theory)                | ,<br>,              |   |           |  |
| Course Code                     | :                                                              | 22EM108/208 |                         | CIE                 | : | 100 Marks |  |
| Credits: L:T:P                  | Credits: L:T:P         : 3:0:0         SEE         : 100 Marks |             |                         |                     |   |           |  |
| Total Hours                     | :                                                              | 40L         |                         | <b>SEE Duration</b> | : | 3 Hours   |  |

| Unit – I                                                                                                                                                                                     | 08 Hrs       |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|
| Fundamental of smart city & Infrastructure: Importance of livability, Introduction of Smart City, need and                                                                                   |              |  |  |  |
| concept of smart city systems, Challenges of managing infrastructure in India and world, vario                                                                                               | us types of  |  |  |  |
| Infrastructure systems. Various stake holders in smart city. IoT applications in smart cities.                                                                                               |              |  |  |  |
| Unit – II                                                                                                                                                                                    | 08 Hrs       |  |  |  |
| Planning and development of Smart city Infrastructure: Affordable housing, smart and green                                                                                                   | n buildings- |  |  |  |
| Objectives, features, benefits, different parameters considered -photo voltaic, water, materials and envir                                                                                   | ironment.    |  |  |  |
| Unit – III                                                                                                                                                                                   | 08 Hrs       |  |  |  |
| Intelligent transport systems: Public transportation management, Smart vehicles and fuels, transport, mobility services, E-ticketing. Smart mobility requirements, Smart City cases of G.I.S |              |  |  |  |
| smart roads.                                                                                                                                                                                 | 00 11        |  |  |  |
| Unit – IV                                                                                                                                                                                    | 08 Hrs       |  |  |  |
| Management of water resources and related infrastructure: Storage and conveyance system                                                                                                      | n of water,  |  |  |  |
| sustainable water and sanitation, sewerage system, flood management, conservation system.                                                                                                    |              |  |  |  |
| Unit – V                                                                                                                                                                                     | 08 Hrs       |  |  |  |
| Infrastructure Management system & Policy for Smart city: Integrated infrastructure management systems for                                                                                   |              |  |  |  |
| smart city, Infrastructure management system applications for existing smart city. Worldwide policies for smart                                                                              |              |  |  |  |
| city Government of India - policy for smart city, Mission statement & guidelines, Smart cities in studies of smart city.                                                                     | India, Case  |  |  |  |

| Course | Course Outcomes: After completing the course, the students will be able to                         |  |  |  |  |  |
|--------|----------------------------------------------------------------------------------------------------|--|--|--|--|--|
| CO1    | Comprehend the necessity and various types of infrastructural development for smart cities.        |  |  |  |  |  |
| CO2    | Identify components of building infrastructure and Prepare infrastructure plan for smart city      |  |  |  |  |  |
| CO3    | Understand smart transport system and water resources systems for smart cities and its application |  |  |  |  |  |
| CO4    | Understand National and Global policies to implement for smart city development.                   |  |  |  |  |  |

| Refere | nce Books                                                                                                 |
|--------|-----------------------------------------------------------------------------------------------------------|
| 1      | Sustainable Smart Cities in India: Challenges and Future Perspectives, Poonam Sharma, Swati Rajput,       |
|        | Springer; 1 <sup>st</sup> Edition, 2017, ISBN-13: 978-3319471440.                                         |
| 2      | Smart City in India Urban Laboratory, Paradigm or Trajectory?, Binti Singh, Manoj Parmar, , Routledge     |
|        | India, 1 <sup>st</sup> Edition, 2019, ISBN 9780367462598.                                                 |
| 3      | The Age of Intelligent Cities: Smart Environments and Innovation-for-all Strategies (Regions and Cities), |
|        | Nicos Komninos, Routledge India, 1 <sup>st</sup> Edition, 2014, ISBN-13: 978-1138782198,                  |
| 4      | Smart Cities, Germaine Halegoua, The MIT Press, 1 <sup>st</sup> Edition, 2020, ISBN-13 : 978-0262538053.  |
| 5      | Smart Cities, Smart Future: Showcasing Tomorrow, Mike Barlow , Cornelia Levy-Bencheton, Wiley; 1st        |
|        | Edition, 2018, ISBN-13: 978-111951618.                                                                    |

|   | <b>RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)</b>                                                                                                             |    |  |  |  |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|
| # | # COMPONENTS                                                                                                                                                              |    |  |  |  |
| 1 | <b>QUIZZES:</b> Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. <b>THE SUM OF TWO QUIZZES</b> | 20 |  |  |  |

Emerging Technology Courses

RV Educational Institutions ° RV College of Engineering °

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

| - |                                                                                                                                                                                                                                                                                                                                                                             |     |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|   | WILL BE THE FINAL QUIZ MARKS.                                                                                                                                                                                                                                                                                                                                               |     |
| 2 | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.</b> | 40  |
| 3 | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), <b>MATLAB (20) ADDING UPTO 40 MARKS</b> .                                                                      | 40  |
|   | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                                                                                                                            | 100 |

| <b>RUBRIC FOR SEMESTER END EXAMINATION (THEORY)</b> |                                                   |    |  |  |  |
|-----------------------------------------------------|---------------------------------------------------|----|--|--|--|
| <b>Q. NO.</b>                                       | Q. NO. CONTENTS                                   |    |  |  |  |
|                                                     | PART A                                            |    |  |  |  |
| 1                                                   | Objective type questions covering entire syllabus | 20 |  |  |  |
|                                                     | PART B<br>(Maximum of TWO Sub-divisions only)     |    |  |  |  |
| 2                                                   | Unit 1 : (Compulsory)                             | 16 |  |  |  |
| 3 & 4                                               | Unit 2 : Question 3 or 4                          | 16 |  |  |  |
| 5&6                                                 | <b>5 &amp; 6</b> Unit 3 : Question 5 or 6         |    |  |  |  |
| <b>7 &amp; 8</b> Unit 4 : Question 7 or 8           |                                                   |    |  |  |  |
| 9 & 10                                              | Unit 5: Question 9 or 10                          | 16 |  |  |  |
|                                                     | MAXIMUM MARKS FOR THE SEE THEORY 100              |    |  |  |  |



Approved by AICTE, New Delhi

#### Semester - I/II FUNDAMENTALS OF NANOSCIENCE AND TECHNOLOGY Category: Emerging Technologies (Common to all Programs) (Theory)

| (Theory)       |   |             |  |                     |   |           |
|----------------|---|-------------|--|---------------------|---|-----------|
| Course Code    | : | 22EM109/209 |  | CIE                 | : | 100 Marks |
| Credits: L:T:P | : | 3:0:0       |  | SEE                 | : | 100 Marks |
| Total Hours    | : | 42L         |  | <b>SEE Duration</b> | : | 3 Hours   |

| Unit – I                                                                                          | 08 Hrs       |
|---------------------------------------------------------------------------------------------------|--------------|
| History of nano science and technology: Historical developments of nanomaterials, nanotechnolog   | y in ancient |
| Indian practices: Ayurveda medicine, cosmetics, and metallurgy.                                   |              |
| Learning from nature: Gecko feet, spider web and lotus leaf. Fundamentals of nanotech             | nology and   |
| classification of nanomaterials.                                                                  |              |
| Unit – II                                                                                         | 08Hrs        |
| Preparation of nanomaterials: Top-down approach: physical vapor deposition (PVD), molecular be    | eam epitaxy, |
| sputtering and ion beam process.                                                                  |              |
| Bottom-up approach: Chemical vapor deposition (CVD), precipitation method, electrochemical method | od and       |
| green synthesis of nanomaterials.                                                                 |              |
| Unit – III                                                                                        | 09Hrs        |
| Characterization of nanomaterials and their properties: Characterization: Introduction, UV-V i    | s absorption |
| spectroscopy, Scanning electron microscopy, scattering techniques (particle size analyzer).       | 1            |
| Properties: Physical properties: Size, surface area and optical properties), Chemical properties  | - catalytic  |
| properties.                                                                                       | 2            |
| Unit – IV                                                                                         | 08 Hrs       |
| Nanomaterials for agriculture and healthcare: Agriculture: Application of nanotechnology in       | modern day   |
| agriculture practices, micronutrients.                                                            | -            |
| Water and food technology: Membrane technology, nanomaterials for water purifications.            |              |
| Nanomaterials in healthcare: Cosmetics and nano medicine.                                         |              |
| Unit – V                                                                                          | 09Hrs        |
| Engineering applications of nanomaterials: Energy: Materials for energy production and storage.   |              |
| Electronics: Nano materials for display technology, circuit elements and their advantages over o  | conventional |
| materials.                                                                                        |              |
| Mechanical industry: Self-cleaning surfaces, automobile industry and nanocomposites.              |              |
| Civil construction: High strength materials and fire-retardant materials.                         |              |
|                                                                                                   |              |
| Course Outcomes: After completing the course, the students will be able to                        |              |

| Course Outcomes: After completing the course, the students will be able to |                                                                                                          |  |  |  |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|--|--|
| CO1                                                                        | Identify the nano science and nanotechnology applications associated with engineering problems.          |  |  |  |
| CO2                                                                        | Investigate chemical properties of nano materials for technological applications.                        |  |  |  |
| CO3                                                                        | Apply the knowledge of material property and energy to analyze environmental issues.                     |  |  |  |
| <b>CO4</b>                                                                 | Design and develop solutions in the areas of applied materials for sustainable engineering applications. |  |  |  |
|                                                                            |                                                                                                          |  |  |  |

# Reference Books 1 Nanostructures and nanomaterials synthesis, properties, and applications, Guozhong Cao and Ying Wang, 2011, 2<sup>nd</sup>, ISBN: 9789814324557. 2 Nanoscience: The Science of the small in physics, engineering, chemistry, biology and medicine", Hans-Eckhardt Schaefer, 2010, Springer. ISBN: 3642105580. 3 Introduction to nanoscience and nanotechnology, Gabor L. Hornyak, H.F. Tibbals, Joydeep Dutta, John J. Moore, 2020, CRC press, ISBN: 9781420047790. 4 Nano biotechnology-concepts, applications in health, agriculture and environment, R. Tomar, 2020,



Approved by AICTE, New Delhi

Apple Academic Press: ISBN: 9780429292750.

#### E-book

5 Nanotechnology advances and real-life applications, Bhargava and Amit Sachdeva, 2021, CRC press, ISBN: 9780367536732.

|   | RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)                                                                                                                                                                                                                                                                                                                      |       |  |  |  |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|
| # | COMPONENTS                                                                                                                                                                                                                                                                                                                                                                  | MARKS |  |  |  |
| 1 | <b>QUIZZES:</b> Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. <b>THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.</b>                                                                                                                                                                     | 20    |  |  |  |
| 2 | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.</b> | 40    |  |  |  |
| 3 | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), <b>MATLAB (20) ADDING UPTO 40 MARKS</b> .                                                                      | 40    |  |  |  |
|   | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                                                                                                                            | 100   |  |  |  |

| RUBRIC FOR SEMESTER END EXAMINATION (THEORY) |                                                   |    |  |  |  |  |
|----------------------------------------------|---------------------------------------------------|----|--|--|--|--|
| Q. NO.                                       | Q. NO. CONTENTS                                   |    |  |  |  |  |
|                                              | PART A                                            |    |  |  |  |  |
| 1                                            | Objective type questions covering entire syllabus | 20 |  |  |  |  |
|                                              | PART B                                            |    |  |  |  |  |
|                                              | (Maximum of TWO Sub-divisions only)               |    |  |  |  |  |
| 2                                            | 2 Unit 1 : (Compulsory)                           |    |  |  |  |  |
| 3 & 4                                        | Unit 2 : Question 3 or 4                          | 16 |  |  |  |  |
| 5&6                                          | Unit 3 : Question 5 or 6                          | 16 |  |  |  |  |
| <b>7 &amp; 8</b> Unit 4 : Question 7 or 8    |                                                   |    |  |  |  |  |
| 9 & 10                                       | Unit 5: Question 9 or 10                          | 16 |  |  |  |  |
|                                              | MAXIMUM MARKS FOR THE SEE THEORY 100              |    |  |  |  |  |



Approved by AICTE, New Delhi

| Semester - I / II                                                                                    |   |             |          |              |   |           |
|------------------------------------------------------------------------------------------------------|---|-------------|----------|--------------|---|-----------|
| FUNDAMENTALS OF SEMICONDUCTOR DEVICES<br>Category: Emerging Technologies<br>(Common to all Programs) |   |             |          |              |   |           |
|                                                                                                      |   |             | (Theory) |              |   |           |
| Course Code                                                                                          | : | 22EM110/210 |          | CIE          | : | 100 Marks |
| Credits: L:T:P         : 3:0:0         SEE         : 100 Marks                                       |   |             |          |              |   |           |
| Total Hours                                                                                          | : | 40L         |          | SEE Duration | : | 3 Hours   |

| Unit – I                                                                                                 | 08Hrs        |  |  |  |
|----------------------------------------------------------------------------------------------------------|--------------|--|--|--|
| Semiconductor Basics: Energy Levels to Energy Bands, Crystalline, Polycrystalline, and                   | Amorphous    |  |  |  |
| Semiconductors, Miller Indices, Properties of Common Semiconductors, Free Carriers in Semi               | iconductors, |  |  |  |
| Doping.                                                                                                  |              |  |  |  |
| Unit – II                                                                                                | 08 Hrs       |  |  |  |
| Semiconductor Quantum behaviour: The Wave Equation, Quantum Confinement, Quantum Tur                     | nneling and  |  |  |  |
| Reflection, Electron Waves in Crystals, Density of States, Fermi Function, Carrier Concentrations.       |              |  |  |  |
| Unit – III                                                                                               | 08 Hrs       |  |  |  |
| Semiconductor Transport: Carrier Transport, Generation, and Recombination- The Landauer Approx           | ach, Current |  |  |  |
| from the Nanoscale to Macroscale, Drift-Diffusion Equation, Carrier Recombination, Carrier               | Generation,  |  |  |  |
| Mathematical Formulation, Energy Band Diagrams, Quasi-Fermi Levels, Minority Carrier Diffusion Education | quation.     |  |  |  |
| Unit – IV                                                                                                | 08 Hrs       |  |  |  |
| Quantum Computing Basics: Difference between classical & quantum computing, Quantum Qubits, Single       |              |  |  |  |
| Qubits states, Postulates of Quantum Mechanics.                                                          |              |  |  |  |
| Unit – V                                                                                                 | 08 Hrs       |  |  |  |
| Hardware of Quantum Computers: Quantum measurement, Quantum Gates and Circuits, Introduction to          |              |  |  |  |
| building blocks of a quantum computer, Quantum materials, Spin Qubits.                                   |              |  |  |  |

| Course Outcomes: After completing the course, the students will be able to |                                                                                                      |  |  |  |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|--|
| CO1                                                                        | Identify electron behavior in crystals, semiconductors and quantum Qubits, models Entangled states.  |  |  |  |
| CO2                                                                        | Analyze electron transport in semiconductors and quantum gates and circuits                          |  |  |  |
| CO3                                                                        | Evaluate the carrier concentration and transport behaviour in semiconductor quantum computation      |  |  |  |
| CO4                                                                        | Apply computation behaviour of electrons and quits in real time semiconductor devices, quantum gates |  |  |  |
|                                                                            | and circuits.                                                                                        |  |  |  |

| Refere | nce Books                                                                                                  |  |  |  |  |  |  |  |
|--------|------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 1      | Semiconductor Device Fundamentals, Robert F. Pierret, 2006, Pearson, ISBN 9780201543933                    |  |  |  |  |  |  |  |
| 2      | Advanced Semiconductor Fundamentals, R.F. Pierret, 2nd ed., Pearson Education, Inc., 2003, ISBN-0-         |  |  |  |  |  |  |  |
|        | 13-061792-X                                                                                                |  |  |  |  |  |  |  |
| 3      | Operation and Modeling of the MOS Transitor, Y.P. Tsividis, Colin McAndrew, 3 <sup>rd</sup> Edition, 2014, |  |  |  |  |  |  |  |
|        | Oxford Univ Press, ISBN:978-0195170153                                                                     |  |  |  |  |  |  |  |
| 4      | Nielsen, M., & Chuang, I. (2010). Quantum Computation and Quantum Information: 10th Anniversary            |  |  |  |  |  |  |  |
|        | Edition. Cambridge: Cambridge University Press.                                                            |  |  |  |  |  |  |  |
| 5      | Lecture Notes, Quantum Computation, California Institute of Technology,                                    |  |  |  |  |  |  |  |
|        | http://theory.caltech.edu/~preskill/ph219/ph219 2021-22.html [accessed as on 30-11-2022]                   |  |  |  |  |  |  |  |
| 6      | Learn Quantum Computation using Qiskit, Online Textbook, https://qiskit.org/textbook/preface.html,         |  |  |  |  |  |  |  |
|        | [accessed as on 30-11-2022]                                                                                |  |  |  |  |  |  |  |
|        |                                                                                                            |  |  |  |  |  |  |  |

|              | <b>RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)</b>                  |    |  |  |  |
|--------------|--------------------------------------------------------------------------------|----|--|--|--|
| # COMPONENTS |                                                                                |    |  |  |  |
| 1            | QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be | 20 |  |  |  |

Emerging Technology Courses



|   | conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES                                                                                                                                                                                                                                                                                                |     |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|   | WILL BE THE FINAL QUIZ MARKS.                                                                                                                                                                                                                                                                                                                                               |     |
| 2 | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.</b> | 40  |
| 3 | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), <b>MATLAB (20) ADDING UPTO 40 MARKS</b> .                                                                      | 40  |
|   | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                                                                                                                            | 100 |

| RUBRIC FOR SEMESTER END EXAMINATION (THEORY) |                                                   |    |  |  |  |  |
|----------------------------------------------|---------------------------------------------------|----|--|--|--|--|
| Q. NO. CONTENTS                              |                                                   |    |  |  |  |  |
|                                              | PART A                                            |    |  |  |  |  |
| 1                                            | Objective type questions covering entire syllabus | 20 |  |  |  |  |
|                                              | PART B                                            |    |  |  |  |  |
|                                              | (Maximum of TWO Sub-divisions only)               |    |  |  |  |  |
| 2                                            | Unit 1 : (Compulsory)                             | 16 |  |  |  |  |
| 3 & 4                                        | Unit 2 : Question 3 or 4                          | 16 |  |  |  |  |
| 5&6                                          | Unit 3 : Question 5 or 6                          | 16 |  |  |  |  |
| <b>7 &amp; 8</b> Unit 4 : Question 7 or 8    |                                                   |    |  |  |  |  |
| 9 & 10                                       | Unit 5: Question 9 or 10                          | 16 |  |  |  |  |
|                                              | MAXIMUM MARKS FOR THE SEE THEORY 100              |    |  |  |  |  |



Approved by AICTE, New Delhi

| University, Belagav              |                                                                                |             |                    |                     |   |           |  |  |
|----------------------------------|--------------------------------------------------------------------------------|-------------|--------------------|---------------------|---|-----------|--|--|
|                                  | Semester - I / II                                                              |             |                    |                     |   |           |  |  |
| INTRODUCTION TO EMBEDDED SYSTEMS |                                                                                |             |                    |                     |   |           |  |  |
|                                  |                                                                                | Category    | : Emerging Technol | logies              |   |           |  |  |
|                                  |                                                                                | 0.          | mon to all Program | 8                   |   |           |  |  |
|                                  |                                                                                |             | (Theory)           | ,                   |   |           |  |  |
| Course Code                      | :                                                                              | 22EM111/211 |                    | CIE                 | : | 100 Marks |  |  |
| Credits: L:T:P                   | Credits: L:T:P         :         3:0:0         SEE         :         100 Marks |             |                    |                     |   |           |  |  |
| Total Hours                      | :                                                                              | 40L         |                    | <b>SEE Duration</b> | : | 3 Hours   |  |  |
| Total Hours                      | :                                                                              | 40L         |                    | SEE Duration        | : | 3 Hours   |  |  |

| Unit – I                                                                                          | 08 Hrs        |
|---------------------------------------------------------------------------------------------------|---------------|
| Introduction: Definition of Embedded Systems, Typical examples, and Application domains (         | Automotive,   |
| Consumer, etc), Characteristics, Typical block diagram, Input, Core, Output, Commercial Of        | ff the Shelf  |
| Components (COTS). ProcessingComponents, Microprocessors & Microcontrollers, Indicative           | e Examples    |
| (Microcontrollers on Arduino boards), Development boards (Arduino boards), Concepts and brief int | troduction to |
| Memory, Interrupts, Power Supply, Clocks, Reset. Case Studies: Washing Machine, Antilock Bra      | ake Systems   |
| (Block diagram & Working Principle).                                                              |               |

 Unit – II
 08 Hrs

 Integrated Development Environment(Ide) And Programming: Basics of Embedded C Programming, Data Types, Arithmetic & Logical Operators, Loops, Functions, #define Macros, Structures (Declaration and Accessing data members). Integrated Development Environment tools: Editor, Compiler, Linker,Loader, Debugger (Definitions only). Practice: Working with Arduino IDE(Simple programs on Operators, Loops and Functions).

 Unit – III
 08 Hrs

 Serial And Parallel Interfaces: Digital Data, Analog data, Serial Vs Parallel Data Transfer, UART, I2C, SPI (only block diagram and working), Arduino board with schematics, Port pins and GPIOs, Data Sheets Practice: Interfacing Serial Modules like GSM, GPS, LEDs, Switches, Interfacing Temperature & Humidity Sensors, Interfacing LCD Module.

Unit – IV

08 Hrs

**Data Converters:** Real world analog signals (Temperature, Bio medical signals, etc), Analog to digital conversion, Successive Approximation ADC Type, FLASH Type (Block Diagram and Explanation). Digital to Analog Conversion, R-2R DAC type, (Block Diagram and Explanation). Selection criteria of ADC and DAC for different applications.

**Practice**: Programming ADC of Arduino Board, Interfacing Analog Temperature Sensor, Gas sensor, Generation of PWM Wave.

 Unit – V
 08 Hrs

 Electro Mechanical Acturators: DC motor, Principle of Operation, DC Motor Driver, Stepper Motor, Principle of Operation, Stepper Motor Driver, Servo Motor, Principle of Operation, Servo Motor Driver. (Working principles and Typical Diagrams).

Planning, Design and Implementation: Smart Street Lights.

Practice: Interfacing, Speed Control and Direction control of DC motor, Servo Motor, Stepper Motors.

| Course | Outcomes: After completing the course, the students will be able to                                      |
|--------|----------------------------------------------------------------------------------------------------------|
| CO1    | Analyse the architecture of embedded systems, importance of different functional units and their mapping |
|        | toreal-world requirements.                                                                               |
| CO2    | Interpret the embedded programming constructs, tools usage and their suitability to develop embedded     |
|        | applications.                                                                                            |
| CO3    | Identify the data converter specifications to match with real world needs and programming with suitable  |
|        | configurations to achieve the same.                                                                      |
| CO4    | Demonstrate the use of serial and parallel ports for data transfer and motors for actuation.             |

RV Educational Institutions ° RV College of Engineering °

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

#### **Reference Books**

| Rului | IICE DOOKS                                                                                         |
|-------|----------------------------------------------------------------------------------------------------|
| 1     | Embedded System Design: A Unified Hardware / Software Introduction, Tony Givargis and Frank Vahid. |
|       | Wiley. ISBN-10: 812650837X.                                                                        |
| 2     | Designing EmbeddedSystems with Arduino: A Fundamental Technology for Makers, Tianhong Pan, Yi      |
|       | Zhu, Springer, ISBN 978-981-10-4417-5.                                                             |
| 3     | Embedded Systems: Architecture, Programming and Design, Raj Kamal, 2nd Edition, The McGraw Hill,   |
|       | ISBN: 13:978-0-07-066764-8                                                                         |
| 4     | Introduction to Embedded Systems, Shibu K V, 2009, Tata McGraw Hill Education Private Limited,     |
|       | ISBN: 10: 0070678790.                                                                              |
| 5     | Embedded System Design: A Unified Hardware / Software Introduction, Tony Givargis and Frank Vahid. |
|       | Wiley. ISBN-10: 812650837X.                                                                        |

|   | <b>RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)</b>                                                                                                                                                                                                                                                                                                               |       |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| # | COMPONENTS                                                                                                                                                                                                                                                                                                                                                                  | MARKS |
| 1 | <b>QUIZZES:</b> Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. <b>THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.</b>                                                                                                                                                                     | 20    |
| 2 | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.</b> | 40    |
| 3 | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), <b>MATLAB (20) ADDING UPTO 40 MARKS</b> .                                                                      | 40    |
|   | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                                                                                                                            | 100   |

| <b>RUBRIC FOR SEMESTER END EXAMINATION (THEORY)</b> |                                                   |       |  |  |  |  |
|-----------------------------------------------------|---------------------------------------------------|-------|--|--|--|--|
| <b>Q. NO.</b>                                       | CONTENTS                                          | MARKS |  |  |  |  |
|                                                     | PART A                                            |       |  |  |  |  |
| 1                                                   | Objective type questions covering entire syllabus | 20    |  |  |  |  |
|                                                     | PART B                                            |       |  |  |  |  |
|                                                     | (Maximum of TWO Sub-divisions only)               |       |  |  |  |  |
| 2                                                   | Unit 1 : (Compulsory)                             | 16    |  |  |  |  |
| 3 & 4                                               | Unit 2 : Question 3 or 4                          | 16    |  |  |  |  |
| 5&6                                                 | Unit 3 : Question 5 or 6                          | 16    |  |  |  |  |
| 7 & 8                                               | Unit 4 : Question 7 or 8                          | 16    |  |  |  |  |
| 9 & 10                                              | Unit 5: Question 9 or 10                          | 16    |  |  |  |  |
| ·                                                   | MAXIMUM MARKS FOR THE SEE THEORY                  | 100   |  |  |  |  |



Approved by AICTE, New Delhi

| University, Belagay       | 4         |                       |                        |                       |       |                        |
|---------------------------|-----------|-----------------------|------------------------|-----------------------|-------|------------------------|
|                           |           |                       | Semester - I / II      |                       |       |                        |
|                           |           | RENEWA                | BLE ENERGY SOU         | JRCES                 |       |                        |
|                           |           | Category              | : Emerging Technol     | logies                |       |                        |
|                           |           |                       | mon to all Program     |                       |       |                        |
|                           |           | × ×                   | (Theory)               | ,                     |       |                        |
| Course Code               | :         | 22EM112/212           |                        | CIE                   | :     | 100 Marks              |
| Credits: L:T:P            | :         | 3:0:0                 |                        | SEE                   | :     | 100 Marks              |
| Total Hours               | :         | 40L                   |                        | SEE Duration          | :     | 3 Hours                |
|                           |           | L                     | •                      | •                     | _     | •                      |
|                           |           | Uı                    | nit – I                |                       |       | 08 Hrs                 |
| Introduction: Energy      | system    | s model causes of     | Energy Scarcity, So    | lution to Energy Sc   | arci  |                        |
| Energy Resource Deve      |           |                       |                        | 01                    |       |                        |
| Energy Availability, R    | -         | •••                   |                        |                       |       |                        |
| Solar Energy: Sun- ea     |           |                       |                        | Earth – Sun Angles    | and   | d their Relationships, |
| Solar Energy Reachin      | g the E   | arth's Surface, So    | lar Thermal Energy     | Application. Block    | diag  | gram of solar energy   |
| conversion.               | -         |                       |                        |                       | -     |                        |
|                           |           | Un                    | nit – II               |                       |       | 08 Hrs                 |
| Photo Voltaic System      | s: PV     | Cell, Module and a    | rray, equivalent elect | rical circuit, OC Vol | Itage | e and SC Current I-V   |
| and V-I characteristics   |           |                       |                        |                       |       |                        |
| system- Standalone, G     | rid com   | nected, Hybrid, Ap    | plications of Solar PV | / Systems.            |       |                        |
| Wind Energy: Basic I      | Principl  | es of wind energy     | conversion, nature of  | wind, power in wind   | d, fo | orces on blades, wind  |
| energy conversion, w      | ind dat   | a and energy esti     | mation, site selection | n considerations, B   | lock  | diagram and basic      |
| components of WECS,       | , Advan   | tages & disadvanta    | iges.                  |                       |       | -                      |
|                           |           | Un                    | it – III               |                       |       | 08 Hrs                 |
| Hydrogen Energy: Be       | enefits ( | of Hydrogen Energ     | y, Hydrogen Product    | ion through block di  | agra  | am, Use of Hydrogen    |
| Energy, Merits and De     |           |                       |                        |                       |       |                        |
| Biomass Energy: In        |           |                       |                        |                       |       |                        |
| Gasification, Theory      |           |                       |                        |                       |       |                        |
| Gasifiers, Use of Biom    | nass Gas  | sifier, Gasifier Bior | nass Feed Characteria  | stics, Applications o | f Bi  | omass Gasifier.        |
|                           |           |                       | it – IV                |                       |       | 08 Hrs                 |
| <b>Geothermal Energy:</b> |           |                       |                        |                       |       |                        |
| Utilization, Resource     |           | oration, Geotherm     | al Based Electric      | Power Generation,     | A     | ssociated Problems,    |
| environmental Effects.    |           |                       |                        |                       |       |                        |
| Tidal Energy: Introdu     |           |                       |                        |                       |       |                        |
| Country in Tidal Pow      |           |                       |                        |                       |       |                        |
| Power, Advantages and     | d Disad   | U                     | /                      | n Exploiting Tidal E  | nerg  |                        |
|                           |           |                       | nit – V                |                       |       | 08 Hrs                 |
| Energy storage: Hydro     | -         | • •                   |                        |                       |       | cal Storage or Battery |
| Storage, Hydrogen Ener    |           |                       |                        |                       |       | · . 11 . · · · · · · · |
| Challenges in Renew       |           |                       |                        |                       |       |                        |
| infrastructure, Non-rene  | ewable e  | energy monopoly, L    | ack of knowledge and   | awareness, Lack of p  | 0110  | ies, subsidies.        |
|                           |           |                       |                        |                       |       |                        |
| Course Outcomes: Af       |           |                       |                        |                       |       |                        |
|                           |           | 1 07 0                | ration and storage fro |                       | e so  | urces.                 |
| CO2 Evaluate the r        | aromat    | are of different ren  | avable energy avator   |                       |       |                        |

**CO3** Analyze the characteristics and performances of renewable energy resources.

**CO4** Apply the knowledge of efficient energy management and implement sustainable energy solutions.

Emerging Technology Courses

**CO2** Evaluate the parameters of different renewable energy system.

RV Educational Institutions ° RV College of Engineering °

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

| Refere | ence Books                                                                                           |
|--------|------------------------------------------------------------------------------------------------------|
| 1      | Non-conventional Energy Resources, Shobh Nath Singh, 1st Edition, 2015, Pearson, ISBN- 978-93-325-   |
|        | 4357-7                                                                                               |
| 2      | Solar photo voltaic Technology and systems, Chetan Singh Solanki, third edition(2013), 2 PHI,        |
|        | Learning Private limited New Delhi ISBN: 978-81-203-4711-3.                                          |
| 3      | Wind and solar Power system design, Analysis and operation, Mukund R. Patel, 2 <sup>nd</sup> Edition |
| 4      | Non-Conventional sources of energy, G.D.Rai, 4th Edition, 2009, Khanna Publishers, ISBN8174090738,   |
|        | 9788174090737                                                                                        |

|   | <b>RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)</b>                                                                                                                                                                                                                                                                                                               |       |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| # | COMPONENTS                                                                                                                                                                                                                                                                                                                                                                  | MARKS |
| 1 | <b>QUIZZES:</b> Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. <b>THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.</b>                                                                                                                                                                     | 20    |
| 2 | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.</b> | 40    |
| 3 | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), <b>MATLAB (20) ADDING UPTO 40 MARKS</b> .                                                                      | 40    |
|   | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                                                                                                                            | 100   |

|        | RUBRIC FOR SEMESTER END EXAMINATION (THEORY)      |       |  |  |  |  |
|--------|---------------------------------------------------|-------|--|--|--|--|
| Q. NO. | CONTENTS                                          | MARKS |  |  |  |  |
|        | PART A                                            |       |  |  |  |  |
| 1      | Objective type questions covering entire syllabus | 20    |  |  |  |  |
|        | PART B                                            |       |  |  |  |  |
|        | (Maximum of TWO Sub-divisions only)               |       |  |  |  |  |
| 2      | Unit 1 : (Compulsory)                             | 16    |  |  |  |  |
| 3 & 4  | Unit 2 : Question 3 or 4                          | 16    |  |  |  |  |
| 5&6    | Unit 3 : Question 5 or 6                          | 16    |  |  |  |  |
| 7 & 8  | Unit 4 : Question 7 or 8                          | 16    |  |  |  |  |
| 9 & 10 | Unit 5: Question 9 or 10                          | 16    |  |  |  |  |
|        | MAXIMUM MARKS FOR THE SEE THEORY                  | 100   |  |  |  |  |



|                                                                                                                                                                                                                                                 |                                                                                                               |                                                                                                                                                                                                                                                                | Semester - I /II                                                                                                                                                                           |                                                                        |      |                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------|-------------------------------------------------------------------|
|                                                                                                                                                                                                                                                 |                                                                                                               |                                                                                                                                                                                                                                                                | LS OF SENSOR TE                                                                                                                                                                            |                                                                        |      |                                                                   |
|                                                                                                                                                                                                                                                 |                                                                                                               |                                                                                                                                                                                                                                                                | : Emerging Technol                                                                                                                                                                         |                                                                        |      |                                                                   |
|                                                                                                                                                                                                                                                 |                                                                                                               | (Com                                                                                                                                                                                                                                                           | mon to all Program                                                                                                                                                                         | s)                                                                     |      |                                                                   |
|                                                                                                                                                                                                                                                 |                                                                                                               |                                                                                                                                                                                                                                                                | (Theory)                                                                                                                                                                                   | <b>I</b>                                                               |      | 1                                                                 |
| Course Code                                                                                                                                                                                                                                     | :                                                                                                             | 22EM113/213                                                                                                                                                                                                                                                    |                                                                                                                                                                                            | CIE                                                                    | :    | 100 Marks                                                         |
| Credits: L:T:P                                                                                                                                                                                                                                  | :                                                                                                             | 3:0:0                                                                                                                                                                                                                                                          |                                                                                                                                                                                            | SEE                                                                    | :    | 100 Marks                                                         |
| Total Hours                                                                                                                                                                                                                                     | :                                                                                                             | 40L                                                                                                                                                                                                                                                            |                                                                                                                                                                                            | <b>SEE Duration</b>                                                    | :    | 3 Hours                                                           |
|                                                                                                                                                                                                                                                 |                                                                                                               | TT                                                                                                                                                                                                                                                             | ·•4 T                                                                                                                                                                                      |                                                                        |      | 00 11                                                             |
| <b>C 1 C</b>                                                                                                                                                                                                                                    | <u> </u>                                                                                                      | -                                                                                                                                                                                                                                                              | nit – I                                                                                                                                                                                    | <u> </u>                                                               | 1    | 08 Hrs                                                            |
| Sensing and Sensor                                                                                                                                                                                                                              |                                                                                                               |                                                                                                                                                                                                                                                                |                                                                                                                                                                                            | Sensor systems and                                                     | d    | overview of senso                                                 |
| technologies, Classific                                                                                                                                                                                                                         |                                                                                                               |                                                                                                                                                                                                                                                                | eristics of sensors.                                                                                                                                                                       |                                                                        |      |                                                                   |
| Principle of operation                                                                                                                                                                                                                          |                                                                                                               |                                                                                                                                                                                                                                                                | amma a a sum la Druma a la a                                                                                                                                                               | tuis sausau                                                            |      |                                                                   |
| Measurement of Tem<br>Measurement of Forc                                                                                                                                                                                                       |                                                                                                               |                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                          |                                                                        | itit | a Sangara                                                         |
| Measurement of Forc                                                                                                                                                                                                                             | e, rres                                                                                                       |                                                                                                                                                                                                                                                                | nit – II                                                                                                                                                                                   | inductive and Capac                                                    | IUV  | 10 Hrs                                                            |
| Miscellaneous sensors                                                                                                                                                                                                                           | ~                                                                                                             | UI                                                                                                                                                                                                                                                             | 111 – 11                                                                                                                                                                                   |                                                                        |      | 10 Hrs                                                            |
|                                                                                                                                                                                                                                                 |                                                                                                               |                                                                                                                                                                                                                                                                |                                                                                                                                                                                            |                                                                        |      |                                                                   |
| Principle of operatio                                                                                                                                                                                                                           | n. Mai                                                                                                        | istura concor hum                                                                                                                                                                                                                                              | idity concore and co                                                                                                                                                                       | nears Direction con                                                    | cor  | Illtracound concor                                                |
|                                                                                                                                                                                                                                                 |                                                                                                               |                                                                                                                                                                                                                                                                | idity sensors, gas se                                                                                                                                                                      | nsors, Direction sen                                                   | sor  | , Ultrasound sensor                                               |
| Accelerometers, Alcoh                                                                                                                                                                                                                           | nol sens                                                                                                      | or, SpO <sub>2</sub> sensor, Co                                                                                                                                                                                                                                | olor sensor.                                                                                                                                                                               | nsors, Direction sen                                                   | sor  | , Ultrasound sensor                                               |
| Accelerometers, Alcoh<br>Photo sensors: Photov                                                                                                                                                                                                  | ol sens<br>oltaic c                                                                                           | or, SpO <sub>2</sub> sensor, Co<br>cell, Photo resistor,                                                                                                                                                                                                       | olor sensor.<br>Phototransistor.                                                                                                                                                           | nsors, Direction sen                                                   | sor  | , Ultrasound sensor                                               |
| Accelerometers, Alcoh                                                                                                                                                                                                                           | ol sens<br>oltaic c                                                                                           | or, SpO <sub>2</sub> sensor, Co<br>cell, Photo resistor,<br>and operation, typ                                                                                                                                                                                 | olor sensor.<br>Phototransistor.<br>es.                                                                                                                                                    | nsors, Direction sen                                                   | sor  |                                                                   |
| Accelerometers, Alcoh<br>Photo sensors: Photov<br>Tactile sensors: Const                                                                                                                                                                        | ol sens<br>oltaic c<br>truction                                                                               | or, SpO <sub>2</sub> sensor, Ce<br>cell, Photo resistor,<br>and operation, typ<br>Un                                                                                                                                                                           | olor sensor.<br>Phototransistor.<br>es.<br><b>it – III</b>                                                                                                                                 | -<br>                                                                  |      | 07 Hrs                                                            |
| Accelerometers, Alcoh<br>Photo sensors: Photov<br>Tactile sensors: Const<br>Special Sensors: Thin                                                                                                                                               | ol sens<br>voltaic c<br>truction                                                                              | or, SpO <sub>2</sub> sensor, Co<br>cell, Photo resistor,<br>and operation, typ<br>Un<br>ensors and deposition                                                                                                                                                  | olor sensor.<br>Phototransistor.<br>es.<br><b>it – III</b><br>on techniques, Smart s                                                                                                       | sensors: Principles ar                                                 |      | 07 Hrs                                                            |
| Accelerometers, Alcoh<br>Photo sensors: Photov<br>Tactile sensors: Const                                                                                                                                                                        | ol sens<br>voltaic c<br>truction                                                                              | or, SpO <sub>2</sub> sensor, Ce<br>cell, Photo resistor,<br>and operation, typ<br>Un<br>ensors and deposition<br>astics, Metals, Cera                                                                                                                          | olor sensor.<br>Phototransistor.<br>es.<br><b>it – III</b><br>on techniques, Smart s                                                                                                       | sensors: Principles ar                                                 |      | 07 Hrs                                                            |
| Accelerometers, Alcoh<br>Photo sensors: Photov<br>Tactile sensors: Const<br>Special Sensors: Thin<br>Sensor materials: Sili                                                                                                                     | ol sens<br>voltaic c<br>truction<br>film se<br>con, Pla                                                       | or, SpO <sub>2</sub> sensor, Co<br>cell, Photo resistor,<br>and operation, typ<br>Un<br>ensors and deposition<br>astics, Metals, Cera<br>Un                                                                                                                    | olor sensor.<br>Phototransistor.<br>es.<br><b>it – III</b><br>on techniques, Smart s<br>amics, Glasses, Nanor<br><b>it – IV</b>                                                            | sensors: Principles ar<br>naterials.                                   | nd a | 07 Hrs<br>pplications.<br>09 Hrs                                  |
| Accelerometers, Alcoh<br>Photo sensors: Photov<br>Tactile sensors: Const<br>Special Sensors: Thin<br>Sensor materials: Sili<br>Sensor technologies:                                                                                             | ol sens<br>voltaic c<br>truction<br>film se<br>con, Pla<br>Key Se                                             | or, SpO <sub>2</sub> sensor, Co<br>cell, Photo resistor,<br>and operation, typ<br>Un<br>ensors and deposition<br>astics, Metals, Cera<br>Un<br>ensor Technology (                                                                                              | olor sensor.<br>Phototransistor.<br>es.<br><b>it – III</b><br>on techniques, Smart s<br>umics, Glasses, Nanor<br><b>it – IV</b><br>Components: Hardwar                                     | sensors: Principles ar<br>naterials.                                   | nd a | 07 Hrs<br>pplications.<br>09 Hrs                                  |
| Accelerometers, Alcoh<br>Photo sensors: Photov<br>Tactile sensors: Const<br>Special Sensors: Thin<br>Sensor materials: Sili<br>Sensor technologies:<br>Introduction to MEMS                                                                     | ol sens<br>voltaic c<br>truction<br>film se<br>con, Pla<br>Key Se                                             | or, SpO <sub>2</sub> sensor, Co<br>cell, Photo resistor,<br>and operation, typ<br>Un<br>ensors and deposition<br>astics, Metals, Cera<br>Un<br>ensor Technology (                                                                                              | olor sensor.<br>Phototransistor.<br>es.<br><b>it – III</b><br>on techniques, Smart s<br>umics, Glasses, Nanor<br><b>it – IV</b><br>Components: Hardwar                                     | sensors: Principles ar<br>naterials.                                   | nd a | 07 Hrs<br>pplications.<br>09 Hrs                                  |
| Accelerometers, Alcoh<br>Photo sensors: Photov<br>Tactile sensors: Const<br>Special Sensors: Thin<br>Sensor materials: Sili<br>Sensor technologies:<br>Introduction to MEMS<br>MEMS Technology                                                  | nol sens<br>voltaic c<br>truction<br>film se<br>con, Pla<br>Key Se<br>Sensor                                  | or, SpO <sub>2</sub> sensor, Co<br>cell, Photo resistor,<br>and operation, typ<br>Un<br>ensors and deposition<br>astics, Metals, Cera<br>Un<br>ensor Technology C<br>rs and Nano Sensor                                                                        | olor sensor.<br>Phototransistor.<br>es.<br>it – III<br>on techniques, Smart s<br>amics, Glasses, Nanor<br>it – IV<br>Components: Hardwar<br>rs.                                            | sensors: Principles ar<br>naterials.<br>re and Software Over           | nd a | 07 Hrs<br>pplications.<br>09 Hrs                                  |
| Accelerometers, Alcoh<br>Photo sensors: Photov<br>Tactile sensors: Const<br>Special Sensors: Thin<br>Sensor materials: Sili<br>Sensor technologies:<br>Introduction to MEMS<br>MEMS Technology<br>Surface processing: S                         | nol sens<br>roltaic c<br>truction<br>film se<br>con, Pla<br>Key Se<br>Sensor<br>putterir                      | or, SpO <sub>2</sub> sensor, Co<br>cell, Photo resistor,<br>and operation, typ<br>Un<br>ensors and deposition<br>astics, Metals, Cera<br>Un<br>ensor Technology O<br>rs and Nano Sensor                                                                        | olor sensor.<br>Phototransistor.<br>es.<br>it – III<br>on techniques, Smart s<br>amics, Glasses, Nanor<br>it – IV<br>Components: Hardwar<br>s.<br>deposition, Electropl                    | sensors: Principles ar<br>naterials.<br>re and Software Over           | nd a | 07 Hrs<br>pplications.<br>09 Hrs                                  |
| Accelerometers, Alcoh<br>Photo sensors: Photov<br>Tactile sensors: Const<br>Special Sensors: Thin<br>Sensor materials: Sili<br>Sensor technologies:<br>Introduction to MEMS                                                                     | nol sens<br>roltaic c<br>truction<br>film se<br>con, Pla<br>Key Se<br>Sensor<br>putterir                      | or, SpO <sub>2</sub> sensor, Co<br>cell, Photo resistor,<br>and operation, typ<br>Un<br>ensors and deposition<br>astics, Metals, Cera<br>Un<br>ensor Technology Co<br>rs and Nano Sensor<br>ng, Chemical vapor<br>graphy, LIGA proc                            | olor sensor.<br>Phototransistor.<br>es.<br>it – III<br>on techniques, Smart s<br>umics, Glasses, Nanor<br>it – IV<br>Components: Hardwar<br>rs.<br>deposition, Electropl<br>cess.          | sensors: Principles ar<br>naterials.<br>re and Software Over           | nd a | 07 Hrs<br>pplications.<br>09 Hrs<br>w: Sensor platforms           |
| Accelerometers, Alcoh<br>Photo sensors: Photov<br>Tactile sensors: Const<br>Special Sensors: Thin<br>Sensor materials: Sili<br>Sensor technologies:<br>Introduction to MEMS<br>MEMS Technology<br>Surface processing: S<br>Microtechnology: Pho | ol sens<br>voltaic c<br>truction<br>film se<br>con, Pla<br>Key Se<br>Sensor<br>putterir<br>ptolitho           | or, SpO <sub>2</sub> sensor, Co<br>cell, Photo resistor,<br>and operation, typ<br>Un<br>ensors and deposition<br>astics, Metals, Cera<br>Un<br>ensor Technology C<br>rs and Nano Sensor<br>ng, Chemical vapor<br>graphy, LIGA proc<br>Ur                       | olor sensor.<br>Phototransistor.<br>es.<br>it – III<br>on techniques, Smart s<br>unics, Glasses, Nanor<br>it – IV<br>Components: Hardwar<br>s.<br>deposition, Electropl<br>cess.<br>it – V | sensors: Principles ar<br>naterials.<br>re and Software Over<br>ating. | nd a | 07 Hrs<br>pplications.<br>09 Hrs<br>w: Sensor platforms<br>06 Hrs |
| Accelerometers, Alcoh<br>Photo sensors: Photov<br>Tactile sensors: Const<br>Special Sensors: Thin<br>Sensor materials: Sili<br>Sensor technologies:<br>Introduction to MEMS<br>MEMS Technology<br>Surface processing: S                         | ol sens<br>voltaic c<br>truction<br>film se<br>con, Pla<br>Key Se<br>Sensor<br>putterir<br>otolitho<br>for Sm | or, SpO <sub>2</sub> sensor, Co<br>cell, Photo resistor,<br>and operation, typ<br>Un<br>ensors and deposition<br>astics, Metals, Cera<br>Un<br>ensor Technology C<br>rs and Nano Sensor<br>ng, Chemical vapor<br>graphy, LIGA proc<br>Ur<br>nart home automati | olor sensor.<br>Phototransistor.<br>es.<br>it – III<br>on techniques, Smart s<br>unics, Glasses, Nanor<br>it – IV<br>Components: Hardwar<br>s.<br>deposition, Electropl<br>cess.<br>it – V | sensors: Principles ar<br>naterials.<br>re and Software Over<br>ating. | nd a | 07 Hrs<br>pplications.<br>09 Hrs<br>w: Sensor platforms<br>06 Hrs |

| Course | Course Outcomes: After completing the course, the students will be able to          |  |  |  |  |
|--------|-------------------------------------------------------------------------------------|--|--|--|--|
| CO1    | Understand the basic principles and applications of different sensors.              |  |  |  |  |
| CO2    | Apply the knowledge of sensors to comprehend digital instrumentation systems.       |  |  |  |  |
| CO3    | Analyze and evaluate the performance of different sensors for various applications. |  |  |  |  |
| CO4    | Create a system using appropriate sensors for a particular application.             |  |  |  |  |
|        |                                                                                     |  |  |  |  |

| Refere | nce Books                                                                                                      |
|--------|----------------------------------------------------------------------------------------------------------------|
| 1      | Handbook of Modern Sensors: Physics, Designs, and Applications, Jacob Fraden, PHI Publication, 5 <sup>th</sup> |
|        | Edition, 2016, ISBN: 978-1-4419-6465-6.                                                                        |
| 2      | Sensors and Actuators: Control systems Instrumentation, Clarence W.de Silva, CRC Press, 2013 Edition,          |
|        | ISBN: 978-1-4200-4483-6.                                                                                       |
| 3      | Electrical and Electronic Measurements and Instrumentation, A.K. Sawhney, Dhanpat Rai and Sons,                |
|        | 18 <sup>th</sup> Edition, 2008, ISBN: 81-7700-016-0.                                                           |
| 4      | Sensor technologies, Michael J McGrath, Intel Labs, 2013 Edition, ISBN: 9781430260141.                         |



|   | <b>RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)</b>                                                                                                                                                                                                                                                                                                               |       |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| # | COMPONENTS                                                                                                                                                                                                                                                                                                                                                                  | MARKS |
| 1 | <b>QUIZZES:</b> Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. <b>THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.</b>                                                                                                                                                                     | 20    |
| 2 | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.</b> | 40    |
| 3 | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), <b>MATLAB (20) ADDING UPTO 40 MARKS</b> .                                                                      | 40    |
|   | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                                                                                                                            | 100   |

|                                           | <b>RUBRIC FOR SEMESTER END EXAMINATION (THEORY)</b> |       |  |  |  |
|-------------------------------------------|-----------------------------------------------------|-------|--|--|--|
| <b>Q. NO.</b>                             | CONTENTS                                            | MARKS |  |  |  |
|                                           | PART A                                              |       |  |  |  |
| 1                                         | Objective type questions covering entire syllabus   | 20    |  |  |  |
|                                           | PART B                                              |       |  |  |  |
|                                           | (Maximum of TWO Sub-divisions only)                 |       |  |  |  |
| 2                                         | Unit 1 : (Compulsory)                               | 16    |  |  |  |
| 3 & 4                                     | Unit 2 : Question 3 or 4                            | 16    |  |  |  |
| 5&6                                       | <b>5 &amp; 6</b> Unit 3 : Question 5 or 6           |       |  |  |  |
| <b>7 &amp; 8</b> Unit 4 : Question 7 or 8 |                                                     | 16    |  |  |  |
| 9 & 10                                    | Unit 5: Question 9 or 10                            | 16    |  |  |  |
|                                           | MAXIMUM MARKS FOR THE SEE THEORY                    | 100   |  |  |  |



Approved by AICTE, New Delhi

| University, Belagavi                                                               |                                                               |                           |                       |         |                       |
|------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------|-----------------------|---------|-----------------------|
|                                                                                    |                                                               | Semester - I/II           |                       |         |                       |
|                                                                                    | HUMAN ]                                                       | FACTORS IN ENGIN          | EERING                |         |                       |
|                                                                                    | Catego                                                        | ory: Emerging Techno      | logies                |         |                       |
|                                                                                    | (Č                                                            | ommon to all Program      | ns)                   |         |                       |
|                                                                                    |                                                               | (Theory)                  |                       |         |                       |
| Course Code                                                                        | : 22EM114/214                                                 |                           | CIE                   | :       | 100 Marks             |
| Credits: L:T:P                                                                     | : 3:0:0                                                       |                           | SEE                   | :       | 100 Marks             |
| Total Hours                                                                        | : 42L                                                         |                           | SEE Duration          | :       | 3 Hours               |
|                                                                                    |                                                               |                           |                       |         |                       |
|                                                                                    |                                                               | Unit – I                  |                       |         | 09 Hrs                |
| Introduction to Ergone                                                             |                                                               |                           |                       |         |                       |
| ergonomics, Ergonomic                                                              |                                                               |                           |                       |         |                       |
| Criteria, Models of hu                                                             |                                                               |                           | ends in Industry t    | hat     | impact Ergonomics     |
| Organizations associated                                                           |                                                               | 2                         |                       |         |                       |
|                                                                                    |                                                               | Unit – II                 |                       |         | 08 Hrs                |
| Human System: Compo                                                                |                                                               | y, skeletal sub system, N | Iuscles, Anthropom    | etry,   | Body movements,       |
| Musculoskeletal systems                                                            |                                                               |                           |                       |         | 0.0.77                |
|                                                                                    |                                                               | Unit – III                |                       |         | 08 Hrs                |
| Human System: Sensor                                                               |                                                               |                           |                       |         |                       |
| areas: Introduction, App                                                           |                                                               |                           |                       | reas    | and stations, Basic   |
| ergonomic design princip                                                           | · <b>1</b>                                                    | 0                         | lesign.               |         |                       |
|                                                                                    |                                                               | Unit – IV                 |                       |         | 09 Hrs                |
| Design of tools and equ                                                            | 1 0                                                           | 1 1                       | d related principles, | Prot    | tective equipment for |
| the operator, Accommoda                                                            |                                                               |                           | 1                     | 1 D     | · 1 T·1/·             |
| Assessment and Design                                                              |                                                               |                           |                       |         |                       |
| Illumination, Conceptual                                                           |                                                               | Unit – V                  | e (Conceptuar Trea    | ume     |                       |
| Assassment and Design                                                              |                                                               |                           | and Humidity Cont     |         | 08 Hrs                |
| Assessment and Design cold environments, Haz                                       |                                                               |                           |                       |         |                       |
| incorporating Ergonomic                                                            |                                                               |                           |                       |         |                       |
| guidelines, Smart cities in                                                        |                                                               |                           | s and Digital Ital    | 51011   | nation. statement o   |
| guidennes, Smart etties n                                                          | i india, Case studies                                         | of smart city.            |                       |         |                       |
| Course Outcomes: After                                                             | r completing the cou                                          | urse the students will    | he able to            |         |                       |
|                                                                                    |                                                               | nics and human factors    |                       | ·k sn   | aces                  |
|                                                                                    |                                                               | and psychology from a     |                       |         | uees.                 |
| CO3 Analyze the role                                                               | of anthronometric d                                           | ata and modelling techn   | iques in the worknly  | ace d   | lesion                |
|                                                                                    |                                                               | nvironment in ergonomi    |                       |         |                       |
|                                                                                    | situnce of physical ci                                        |                           | to design of work se  | ung     | J.                    |
| Reference Books                                                                    |                                                               |                           |                       |         |                       |
|                                                                                    | Human Factors and F                                           | Ergonomics for Enginee    | ers Lehto Mark Ster   | ven I   | Landry 2nd Edition    |
|                                                                                    | s, ISBN:978-1-4398-5                                          |                           |                       | , C11 J | Landi y,211d Lattion  |
|                                                                                    |                                                               |                           | ul Bernard Weerd      | mees    | ter 3rd Edition 2008  |
|                                                                                    |                                                               |                           | ui, Demaiu weelu      | nees    |                       |
|                                                                                    |                                                               |                           | OOS CRC Press I       | SBN     | J. 0780840373060      |
|                                                                                    |                                                               |                           |                       |         |                       |
| <ul> <li>2 Ergonomics for<br/>CRC Press, ISB</li> <li>3 Introduction to</li> </ul> | Beginners-A quick<br>N 978-1-4200-7751-3<br>Ergonomics, R S E | reference guide, Jan D    | 008, CRC Press, I     | SBN     | J: 978084937          |

4 Human Factors in Engineering and Design; Mark S. Sanders and Ernest J McCormick; 7th Edition, McGraw-Hill and Co. Singapore 1992. ISBN 0-07-112826-3.

|   | <b>RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)</b>                  |       |
|---|--------------------------------------------------------------------------------|-------|
| # | COMPONENTS                                                                     | MARKS |
| 1 | QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be | 20    |

Emerging Technology Courses



|   | conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES                                                                                                                                                                                                                                                                                                |     |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|   | WILL BE THE FINAL QUIZ MARKS.                                                                                                                                                                                                                                                                                                                                               |     |
| 2 | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.</b> | 40  |
| 3 | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), <b>MATLAB (20) ADDING UPTO 40 MARKS</b> .                                                                      | 40  |
|   | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                                                                                                                            | 100 |

|               | <b>RUBRIC FOR SEMESTER END EXAMINATION (THEORY)</b> |       |  |  |  |
|---------------|-----------------------------------------------------|-------|--|--|--|
| <b>Q. NO.</b> | CONTENTS                                            | MARKS |  |  |  |
|               | PART A                                              |       |  |  |  |
| 1             | Objective type questions covering entire syllabus   | 20    |  |  |  |
|               | PART B                                              |       |  |  |  |
|               | (Maximum of TWO Sub-divisions only)                 |       |  |  |  |
| 2             | Unit 1 : (Compulsory)                               | 16    |  |  |  |
| 3 & 4         | Unit 2 : Question 3 or 4                            | 16    |  |  |  |
| 5&6           | Unit 3 : Question 5 or 6                            | 16    |  |  |  |
| 7 & 8         | 7 & 8 Unit 4 : Question 7 or 8                      |       |  |  |  |
| 9 & 10        | Unit 5: Question 9 or 10                            | 16    |  |  |  |
|               | MAXIMUM MARKS FOR THE SEE THEORY                    | 100   |  |  |  |

RV Educational Institutions <sup>®</sup> RV College of Engineering

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

| Semester - I/II                                                |                    |             |                    |       |   |           |
|----------------------------------------------------------------|--------------------|-------------|--------------------|-------|---|-----------|
|                                                                | DIGITAL HUMANITIES |             |                    |       |   |           |
|                                                                |                    | Category    | : Emerging Technol | ogies |   |           |
|                                                                |                    |             | mon to all Program | 8     |   |           |
|                                                                |                    | × ×         | (Theory)           | ,     |   |           |
| Course Code                                                    | :                  | 22EM115/215 |                    | CIE   | : | 100 Marks |
| Credits: L:T:P         : 3:0:0         SEE         : 100 Marks |                    |             |                    |       |   |           |
| Total Hours: 40LSEE Duration: 3 Hours                          |                    |             |                    |       |   |           |

| Unit – I                                                                                                         | 08 Hrs      |  |  |  |
|------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|
| Introduction to Digital Humanities: What is digital humanities? Principals and Scenarios for digital humanities. |             |  |  |  |
| Reasons to Engage with the Digital Humanities: Defining the Digital Humanities, Motivations f                    | or Engaging |  |  |  |
| with the Digital Humanities, Digital Futures.                                                                    |             |  |  |  |
| Unit – II                                                                                                        | 09 Hrs      |  |  |  |
| Humanities to Digital Humanities: Designing digital humanities. Computational activities                         | in digital  |  |  |  |
| humanities: Computation, Processing, Digitization, Classification, Organization, Navigation.                     |             |  |  |  |
| Unit – III                                                                                                       | 08 Hrs      |  |  |  |
| Generating Humanities: Humanities as the new core. Towards an Encounter between Hum                              | anities and |  |  |  |
| Computing: Formalisation in humanity computing, Cultures of formalization. Transdiciplinary                      | and digital |  |  |  |

 humanity: Beyond interdisciplinarity, Methodological transformation and transdisciplinarity.

 Unit – IV
 0 8Hrs

 Generating Humanities: Humanities as the new core. Towards an Encounter between Humanities and

Computing: Formalisation in humanities as the new core. Towards an Encounter between Humanities and Computing: Formalisation in humanity computing, Cultures of formalization. Transdiciplinary and digital humanity: Beyond interdisciplinarity, Methodological transformation and transdisciplinarity. Unit – V 07 Hrs

Designing class roam activities: Activity design, Digital events, Physical Computing and Critical Making.

| Course | Course Outcomes: After completing the course, the students will be able to                                                                                                                                      |  |  |  |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| CO1    | Demonstrate knowledge and understanding and significant in-depth knowledge in subcategories of the                                                                                                              |  |  |  |  |
|        | digital humanities                                                                                                                                                                                              |  |  |  |  |
| CO2    | Applying digital humanities in different sub areas their role in society, and the individual's responsibility pplying digital humanities in different sub areas their role in society, and the individual's res |  |  |  |  |
| CO3    | Analyze, assess, and manage complex phenomena, questions, and situations related to the digital                                                                                                                 |  |  |  |  |
|        | humanities as a field of study and work                                                                                                                                                                         |  |  |  |  |
| CO4    | Describe the prospects and limitations of science and technology in digital humanities                                                                                                                          |  |  |  |  |

#### **Reference Books**

| 1 | Introduction to Digital Humanities by Kathryn C. Wymer, Taylor & Francis, ISBN: 978-0-367-71110-8     |
|---|-------------------------------------------------------------------------------------------------------|
|   | published in 2021                                                                                     |
| 2 | An Introduction to Digital Methods for Research and Scholarship By Johanna Drucker, Taylor & Francis, |
|   | ISBN 9780367565756 Published March 25, 2021                                                           |
| 3 | Understanding Digital Humanities by David M. Berry, Palgrave Macmillan, ISBN: 978-0-230-29264-2,      |
|   | published in 2012                                                                                     |
| 4 | Digital Humanities by Anne Burdick, Johanna Drucker, Peter Lunenfeld, Todd Presner & Jeffrey          |
|   | Schnapp, The MIT Press Cambridge, Massachusetts London, England, ISBN 978-0-262-01847-0,              |
|   | published in 2012                                                                                     |
| 5 | Using Digital Humanities in the Classroom by Claire Battershill and Shawna Ross, Second Edition       |
|   | BloomsBurt Academic, ISBN: HB: 978-1-3501-8090-1 published in 2017                                    |



| <b>RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)</b> |                                                                                                                                                                                                                                                                                                                                                                             |       |  |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|
| #                                                             | COMPONENTS                                                                                                                                                                                                                                                                                                                                                                  | MARKS |  |
| 1                                                             | <b>QUIZZES:</b> Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. <b>THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.</b>                                                                                                                                                                     | 20    |  |
| 2                                                             | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.</b> | 40    |  |
| 3                                                             | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), <b>MATLAB (20) ADDING UPTO 40 MARKS</b> .                                                                      | 40    |  |
|                                                               | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                                                                                                                            | 100   |  |

|                                           | RUBRIC FOR SEMESTER END EXAMINATION (THEORY)      |       |  |  |  |
|-------------------------------------------|---------------------------------------------------|-------|--|--|--|
| Q. NO.                                    | CONTENTS                                          | MARKS |  |  |  |
|                                           | PART A                                            |       |  |  |  |
| 1                                         | Objective type questions covering entire syllabus | 20    |  |  |  |
|                                           | PART B                                            |       |  |  |  |
|                                           | (Maximum of TWO Sub-divisions only)               |       |  |  |  |
| 2                                         | Unit 1 : (Compulsory)                             | 16    |  |  |  |
| 3 & 4                                     | Unit 2 : Question 3 or 4                          | 16    |  |  |  |
| 5&6                                       | Unit 3 : Question 5 or 6                          | 16    |  |  |  |
| <b>7 &amp; 8</b> Unit 4 : Question 7 or 8 |                                                   |       |  |  |  |
| 9 & 10                                    | Unit 5: Question 9 or 10                          | 16    |  |  |  |
|                                           | MAXIMUM MARKS FOR THE SEE THEORY                  | 100   |  |  |  |



|                               |                                        |                     | Semester: I/II         |                       |      |                       |
|-------------------------------|----------------------------------------|---------------------|------------------------|-----------------------|------|-----------------------|
|                               |                                        | SMART MA            | <b>ATERIALS AND SY</b> | STEMS                 |      |                       |
|                               |                                        |                     | : Emerging Technol     |                       |      |                       |
|                               |                                        | (Com                | mon to all Program     | s)                    |      |                       |
|                               |                                        |                     | (Theory)               |                       |      |                       |
| Course Code                   | :                                      | 22EM116/216         |                        | CIE                   | :    | 100 Marks             |
| Credits: L:T:P                | redits: L:T:P : 3: 0:0 SEE : 100 Marks |                     |                        |                       |      | 100 Marks             |
| Total Hours                   | :                                      | 42T                 |                        | SEE Duration          | :    | 3 Hours               |
|                               |                                        |                     |                        |                       |      |                       |
|                               |                                        |                     | nit-I                  |                       |      | 06 Hr                 |
| Introduction: Characteris     |                                        |                     |                        |                       |      |                       |
| smart materials, Compor       |                                        |                     | stem, Applications     | of Smart Materials    | s ai | nd Smart Materials    |
| Manufacturing in Industrie    | s in                                   |                     |                        |                       |      |                       |
|                               |                                        | -                   | it – II                |                       |      | 08 Hrs                |
| Smart Materials: Piezoe       |                                        |                     |                        |                       | ater | ials, Magnetoelectric |
| Materials, Magnetorheolog     |                                        |                     |                        |                       |      |                       |
| Processing of Smart Ma        |                                        |                     |                        |                       |      |                       |
| Ceramics and their process    | sing                                   |                     |                        | tion curing of polym  | ers  |                       |
|                               |                                        |                     | it –III                |                       |      | 10 Hrs                |
| Advances in smart M           |                                        |                     | ing Piezoelectric Tr   |                       |      | U ,                   |
| Autophagous Materials, Se     |                                        |                     |                        |                       |      |                       |
| Sensors: Introduction, C      |                                        |                     |                        |                       |      |                       |
| sensors, Piezoresistive se    |                                        | · 1                 | s, semiconductor-ba    | sed sensors, Acous    | tic  | sensors, polymerize   |
| sensors, Carbon nanotube      | sens                                   |                     |                        |                       |      |                       |
|                               |                                        |                     | it –IV                 |                       |      | 10 Hrs                |
| Actuators: Introduction,      |                                        |                     |                        |                       |      |                       |
| Piezoelectric transducers,    |                                        |                     | ducers, Magneto-strie  | ctive transducers, El | ecti | ro thermal actuators, |
| Comparison of actuation, A    |                                        |                     |                        |                       |      |                       |
| Magnetostrictive Mini A       |                                        |                     |                        |                       | ctiv | e Vibration Control,  |
| Active Shape Control, Pass    | sive                                   |                     |                        | ontrol.               |      |                       |
|                               |                                        | -                   | nit –V                 |                       |      | 08 Hrs                |
| Measurement, Introduction     |                                        |                     |                        |                       |      |                       |
| type and closed type; Statio  |                                        |                     |                        |                       |      |                       |
| Calibration techniques;       |                                        |                     |                        |                       | on,  | Calibration method,   |
| Classification of calibration | n, L                                   | ab calibration, Cur | ve fitting method of a | calibration.          |      |                       |
|                               |                                        |                     |                        |                       |      |                       |
| <b>Course Outcomes: After</b> | con                                    | npleting the cours  | e, the students will b | be able to            |      |                       |
| <b>CO1</b> Identify the basic | con                                    | nnonents of smart M | Materials              |                       |      |                       |

|     | o uter mest inter completing the course, the statemes this is a site to         |  |  |  |  |
|-----|---------------------------------------------------------------------------------|--|--|--|--|
| CO1 | Identify the basic components of smart Materials                                |  |  |  |  |
| CO2 | Understanding processing of smart materials                                     |  |  |  |  |
| CO3 | Analysis of different types of sensor and actuators for industrial applications |  |  |  |  |
| CO4 | Illustrate measurement and calibration techniques for smart materials           |  |  |  |  |

| Refere | nce Books                                                                                           |
|--------|-----------------------------------------------------------------------------------------------------|
| 1      | Fundamentals of Smart Materials, (2020) Mohsen Shahinpoor, Print ISBN 978-1-78262-645-9, ePub       |
|        | eISBN, 978-1-78801-946-0                                                                            |
| 2      | Smart Material Systems and MEMS: Design and Development Methodologies, V. K. Varadan,               |
|        | K. J. Vinoy, S. Gopalakrishnan, John Wiley and Sons, England, 2006.                                 |
| 3      | Smart Structures: Analysis and Design, A. V. Srinivasan, Cambridge University Press, Cambridge, New |
|        | York, 2001.                                                                                         |

RV Educational Institutions RV College of Engineering \*

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

| 4 | Encyclopedia of Smart Materials, ISBN: 9780128157329, eBook ISBN: 97801281573                           |
|---|---------------------------------------------------------------------------------------------------------|
| 5 | Functional and Smart Materials, Chander Prakash, Sunpreet Singh, J. Paulo Davim, 2021, ISBN             |
|   | 9780367275105                                                                                           |
| 6 | Piezoelectric Sensorics: Force, Strain, Pressure, Acceleration and Acoustic Emission Sensors, Materials |
|   | and Amplifiers, G. Gautschi, Springer, Berlin, New York, 2002.                                          |

|   | <b>RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)</b>                                                                                                                                                                                                                                                                                                               |       |  |  |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|
| # | COMPONENTS                                                                                                                                                                                                                                                                                                                                                                  | MARKS |  |  |
| 1 | <b>QUIZZES:</b> Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. <b>THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.</b>                                                                                                                                                                     | 20    |  |  |
| 2 | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.</b> | 40    |  |  |
| 3 | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), <b>MATLAB (20) ADDING UPTO 40 MARKS</b> .                                                                      | 40    |  |  |
|   | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                                                                                                                            | 100   |  |  |

#### MAXIMUM MARKS FOR THE CIE THEORY 100

|        | RUBRIC FOR SEMESTER END EXAMINATION (THEORY)      |       |  |  |  |
|--------|---------------------------------------------------|-------|--|--|--|
| Q. NO. | CONTENTS                                          | MARKS |  |  |  |
|        | PART A                                            |       |  |  |  |
| 1      | Objective type questions covering entire syllabus | 20    |  |  |  |
|        | PART B                                            |       |  |  |  |
|        | (Maximum of TWO Sub-divisions only)               |       |  |  |  |
| 2      | Unit 1 : (Compulsory)                             | 16    |  |  |  |
| 3 & 4  | Unit 2 : Question 3 or 4                          | 16    |  |  |  |
| 5&6    | Unit 3 : Question 5 or 6                          | 16    |  |  |  |
| 7&8    | Unit 4 : Question 7 or 8                          | 16    |  |  |  |
| 9 & 10 | Unit 5: Question 9 or 10                          | 16    |  |  |  |
|        | MAXIMUM MARKS FOR THE SEE THEORY                  | 100   |  |  |  |



Approved by AICTE, New Delhi

|                                                                                                                                                                                                                                                                                                                                         |                                                                                             |                                                                                                                                                                                                                                                                       | Semester: I/II                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                     |                                              |                                                                                              |                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                         |                                                                                             | ELEME                                                                                                                                                                                                                                                                 | NTS OF INDUSTR                                                                                                                                                                                                                                                                                  | Y 4.0                                                                                                                                                                               |                                              |                                                                                              |                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                         |                                                                                             | Category                                                                                                                                                                                                                                                              | : Emerging Techno                                                                                                                                                                                                                                                                               | logies                                                                                                                                                                              |                                              |                                                                                              |                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                         |                                                                                             | (Com                                                                                                                                                                                                                                                                  | imon to all Program                                                                                                                                                                                                                                                                             | IS)                                                                                                                                                                                 |                                              |                                                                                              |                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                         |                                                                                             |                                                                                                                                                                                                                                                                       | (Theory)                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                     |                                              |                                                                                              |                                                                                                                                                                                               |
| Course Code                                                                                                                                                                                                                                                                                                                             | :                                                                                           | 22EM117/217                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                 | CIE                                                                                                                                                                                 | :                                            | 100 M                                                                                        | larks                                                                                                                                                                                         |
| Credits: L:T:P                                                                                                                                                                                                                                                                                                                          | :                                                                                           | 3:0:0                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                 | SEE                                                                                                                                                                                 | :                                            | 100 M                                                                                        | larks                                                                                                                                                                                         |
| Total Hours                                                                                                                                                                                                                                                                                                                             | :                                                                                           | 42L                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                 | SEE Duration                                                                                                                                                                        | :                                            | 3 Hou                                                                                        | rs                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                         |                                                                                             |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                     |                                              |                                                                                              |                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                         |                                                                                             | U                                                                                                                                                                                                                                                                     | J <b>nit-I</b>                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                     |                                              |                                                                                              | 06Hrs                                                                                                                                                                                         |
| Industry 4.0 – Introdu                                                                                                                                                                                                                                                                                                                  | ction                                                                                       | : The Various Inc                                                                                                                                                                                                                                                     | dustrial Revolutions,                                                                                                                                                                                                                                                                           | Need - Reason fo                                                                                                                                                                    | r Ac                                         | lopting                                                                                      | Industry 4.0                                                                                                                                                                                  |
| Definition, Goals and De                                                                                                                                                                                                                                                                                                                |                                                                                             |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                     |                                              |                                                                                              |                                                                                                                                                                                               |
| Road to Industry 4.0 – Ind                                                                                                                                                                                                                                                                                                              | lustr                                                                                       | ial Internet of Thin                                                                                                                                                                                                                                                  | ngs (IIoT).                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                     |                                              |                                                                                              |                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                         |                                                                                             | Un                                                                                                                                                                                                                                                                    | nit – II                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                     |                                              |                                                                                              | 10Hrs                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                         |                                                                                             | UI                                                                                                                                                                                                                                                                    | $\Pi t = \Pi$                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                     |                                              |                                                                                              | 101115                                                                                                                                                                                        |
| <b>Opportunities and Cha</b>                                                                                                                                                                                                                                                                                                            | llen                                                                                        |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                 | f skilled workers, I                                                                                                                                                                | Broa                                         | dband in                                                                                     |                                                                                                                                                                                               |
| <b>Opportunities and Cha</b><br>Policies, Future of Works                                                                                                                                                                                                                                                                               |                                                                                             | ges: Lack of resou                                                                                                                                                                                                                                                    | urces, Availability of                                                                                                                                                                                                                                                                          | f skilled workers, l                                                                                                                                                                | Broa                                         | dband in                                                                                     |                                                                                                                                                                                               |
| Policies, Future of Works                                                                                                                                                                                                                                                                                                               | and                                                                                         | ges: Lack of resou<br>Skills in the Indust                                                                                                                                                                                                                            | urces, Availability of<br>try 4.0 Era.                                                                                                                                                                                                                                                          |                                                                                                                                                                                     |                                              |                                                                                              | nfrastructure                                                                                                                                                                                 |
| Policies, Future of Works<br>Horizontal and Vertica                                                                                                                                                                                                                                                                                     | and<br>I In                                                                                 | ges: Lack of resou<br>Skills in the Indust<br>tegration: End-to-                                                                                                                                                                                                      | urces, Availability of<br>try 4.0 Era.<br>-end engineering of                                                                                                                                                                                                                                   | the overall value of                                                                                                                                                                | chair                                        | n, Digita                                                                                    | nfrastructure,<br>al integration                                                                                                                                                              |
| Policies, Future of Works<br>Horizontal and Vertica<br>platforms, Role of machin                                                                                                                                                                                                                                                        | and<br>I In                                                                                 | ges: Lack of resou<br>Skills in the Indust<br>tegration: End-to-                                                                                                                                                                                                      | urces, Availability of<br>try 4.0 Era.<br>-end engineering of                                                                                                                                                                                                                                   | the overall value of                                                                                                                                                                | chair                                        | n, Digita                                                                                    | nfrastructure,<br>al integration                                                                                                                                                              |
| Policies, Future of Works<br>Horizontal and Vertica<br>platforms, Role of machin                                                                                                                                                                                                                                                        | and<br>I In                                                                                 | ges: Lack of resou<br>Skills in the Indust<br>tegration: End-to-<br>ensors, Sensing class                                                                                                                                                                             | urces, Availability of<br>try 4.0 Era.<br>-end engineering of                                                                                                                                                                                                                                   | the overall value of                                                                                                                                                                | chair                                        | n, Digita                                                                                    | nfrastructure,<br>al integration                                                                                                                                                              |
| Policies, Future of Works<br><b>Horizontal and Vertica</b><br>platforms, Role of machin<br>communication.                                                                                                                                                                                                                               | and<br>I In<br>ne se                                                                        | ges: Lack of resou<br>Skills in the Indust<br>tegration: End-to-<br>ensors, Sensing class<br>Un                                                                                                                                                                       | urces, Availability of<br>try 4.0 Era.<br>-end engineering of<br>ssification according<br>iit –III                                                                                                                                                                                              | the overall value of to measuring variable                                                                                                                                          | chair<br>les,                                | n, Digita<br>Machino                                                                         | nfrastructure,<br>al integration<br>e-to-Machine<br><b>10Hrs</b>                                                                                                                              |
| Policies, Future of Works<br>Horizontal and Vertica<br>platforms, Role of machin<br>communication.<br>Smart Worker: Augmer                                                                                                                                                                                                              | and<br>I In<br>ne se                                                                        | ges: Lack of resou<br>Skills in the Indust<br>tegration: End-to-<br>ensors, Sensing class<br>Un                                                                                                                                                                       | urces, Availability of<br>try 4.0 Era.<br>-end engineering of<br>ssification according<br>iit –III                                                                                                                                                                                              | the overall value of to measuring variable                                                                                                                                          | chair<br>les,                                | n, Digita<br>Machino                                                                         | nfrastructure,<br>al integration<br>e-to-Machine                                                                                                                                              |
| Policies, Future of Works                                                                                                                                                                                                                                                                                                               | and<br>I In<br>ne se                                                                        | ges: Lack of resou<br>Skills in the Indust<br>tegration: End-to-<br>ensors, Sensing class<br>Un<br>and Virtual Reality                                                                                                                                                | urces, Availability of<br>try 4.0 Era.<br>-end engineering of<br>ssification according<br><b>it –III</b><br>7, Industrial Applicati                                                                                                                                                             | the overall value of<br>to measuring variab                                                                                                                                         | chair<br>les,<br>Ass                         | n, Digita<br>Machino<br>embly, (                                                             | nfrastructure,<br>al integration<br>e-to-Machine<br>10Hrs<br>Collaborative                                                                                                                    |
| Policies, Future of Works<br>Horizontal and Vertica<br>platforms, Role of machin<br>communication.<br>Smart Worker: Augmer<br>operations, Training.<br>Digital-to-Physical: Add                                                                                                                                                         | and<br>I In<br>ne se<br>ited a                                                              | ges: Lack of resou<br>Skills in the Indust<br>tegration: End-to-<br>ensors, Sensing class<br>Un<br>and Virtual Reality<br>Manufacturing te                                                                                                                            | urces, Availability of<br>try 4.0 Era.<br>-end engineering of<br>ssification according<br><b>ht –III</b><br>y, Industrial Application<br>echnologies, Advanta                                                                                                                                   | the overall value of<br>to measuring variab                                                                                                                                         | chair<br>les,<br>Ass                         | n, Digita<br>Machino<br>embly, (                                                             | nfrastructure,<br>al integration<br>e-to-Machine<br>10Hrs<br>Collaborative                                                                                                                    |
| Policies, Future of Works<br>Horizontal and Vertica<br>platforms, Role of machin<br>communication.<br>Smart Worker: Augmer<br>operations, Training.<br>Digital-to-Physical: Add                                                                                                                                                         | and<br>I In<br>ne se<br>ited a                                                              | ges: Lack of resou<br>Skills in the Indust<br>tegration: End-to-<br>ensors, Sensing clas<br>Un<br>and Virtual Reality<br>e Manufacturing te<br>ronics, and Medica                                                                                                     | urces, Availability of<br>try 4.0 Era.<br>-end engineering of<br>ssification according<br><b>ht –III</b><br>y, Industrial Application<br>echnologies, Advanta                                                                                                                                   | the overall value of<br>to measuring variab                                                                                                                                         | chair<br>les,<br>Ass                         | n, Digita<br>Machino<br>embly, (                                                             | nfrastructure,<br>al integration<br>e-to-Machine<br>10Hrs<br>Collaborative                                                                                                                    |
| Policies, Future of Works<br>Horizontal and Vertica<br>platforms, Role of machin<br>communication.<br>Smart Worker: Augmer<br>operations, Training.<br>Digital-to-Physical: Add<br>Automotive, Aerospace, 1                                                                                                                             | and<br>I In<br>ne se<br>ited a<br>litive<br>Elect                                           | ges: Lack of resou<br>Skills in the Indust<br>tegration: End-to-<br>ensors, Sensing class<br>Un<br>and Virtual Reality<br>e Manufacturing te<br>ronics, and Medica<br>Un                                                                                              | urces, Availability of<br>try 4.0 Era.<br>-end engineering of<br>ssification according<br><b>nit –III</b><br>7, Industrial Applicati<br>echnologies, Advanta<br>al.<br><b>nit –IV</b>                                                                                                           | the overall value of<br>to measuring variab<br>ons – Maintenance,<br>ges, impact on env                                                                                             | chair<br>les,<br>Ass<br>iron                 | n, Digita<br>Machino<br>embly, (<br>ment, A                                                  | nfrastructure,<br>al integration<br>e-to-Machine<br><b>10Hrs</b><br>Collaborative<br>pplications –<br><b>08Hrs</b>                                                                            |
| Policies, Future of Works<br>Horizontal and Vertica<br>platforms, Role of machin<br>communication.<br>Smart Worker: Augmer<br>operations, Training.<br>Digital-to-Physical: Add<br>Automotive, Aerospace, I<br>Digital Twin, Virtual fac                                                                                                | and<br>I In<br>ne se<br>ited a<br>litive<br>Elect                                           | ges: Lack of resou<br>Skills in the Indust<br>tegration: End-to-<br>ensors, Sensing class<br>Un<br>and Virtual Reality<br>Manufacturing te<br>ronics, and Medica<br>Un<br>Total Productive M                                                                          | urces, Availability of<br>try 4.0 Era.<br>-end engineering of<br>ssification according<br><b>it –III</b><br>7, Industrial Applicati<br>echnologies, Advanta<br>al.<br><b>iit –IV</b><br>Maintenance, Underst                                                                                    | the overall value of<br>to measuring variab<br>ons – Maintenance,<br>ges, impact on env<br>tanding I 4.0 in MSN                                                                     | Ass<br>ironi                                 | n, Digita<br>Machino<br>embly, (<br>ment, A                                                  | nfrastructure<br>al integration<br>e-to-Machine<br><b>10Hrs</b><br>Collaborative<br>pplications –<br><b>08Hrs</b><br>y 5.0                                                                    |
| Policies, Future of Works<br>Horizontal and Vertica<br>platforms, Role of machin<br>communication.<br>Smart Worker: Augmer<br>operations, Training.<br>Digital-to-Physical: Add<br>Automotive, Aerospace, I<br>Digital Twin, Virtual fac<br>Cloud Computing: Fun                                                                        | and<br>I In<br>ne se<br>ited a<br>litive<br>Elect                                           | ges: Lack of resou<br>Skills in the Indust<br>tegration: End-to-<br>ensors, Sensing class<br>Un<br>and Virtual Reality<br>Manufacturing te<br>ronics, and Medica<br>Un<br>Total Productive M                                                                          | urces, Availability of<br>try 4.0 Era.<br>-end engineering of<br>ssification according<br><b>it –III</b><br>7, Industrial Applicati<br>echnologies, Advanta<br>al.<br><b>iit –IV</b><br>Maintenance, Underst                                                                                    | the overall value of<br>to measuring variab<br>ons – Maintenance,<br>ges, impact on env<br>tanding I 4.0 in MSN                                                                     | Ass<br>ironi                                 | n, Digita<br>Machino<br>embly, (<br>ment, A                                                  | nfrastructure<br>al integration<br>e-to-Machine<br><b>10Hrs</b><br>Collaborative<br>pplications -<br><b>08Hrs</b><br>y 5.0                                                                    |
| Policies, Future of Works<br>Horizontal and Vertica<br>platforms, Role of machin<br>communication.<br>Smart Worker: Augmer<br>operations, Training.<br>Digital-to-Physical: Add<br>Automotive, Aerospace, I<br>Digital Twin, Virtual fac<br>Cloud Computing: Fun                                                                        | and<br>I In<br>ne se<br>ited a<br>litive<br>Elect                                           | ges: Lack of resou<br>Skills in the Indust<br>tegration: End-to-<br>ensors, Sensing class<br>Un<br>and Virtual Reality<br>Manufacturing te<br>ronics, and Medica<br>Un<br>Total Productive N<br>entals, Cloud / Edg                                                   | urces, Availability of<br>try 4.0 Era.<br>-end engineering of<br>ssification according<br><b>it –III</b><br>7, Industrial Applicati<br>echnologies, Advanta<br>al.<br><b>iit –IV</b><br>Maintenance, Underst                                                                                    | the overall value of<br>to measuring variab<br>ons – Maintenance,<br>ges, impact on env<br>tanding I 4.0 in MSN                                                                     | Ass<br>ironi                                 | n, Digita<br>Machino<br>embly, (<br>ment, A                                                  | nfrastructure<br>al integration<br>e-to-Machine<br><b>10Hrs</b><br>Collaborative<br>pplications –<br><b>08Hrs</b><br>y 5.0                                                                    |
| Policies, Future of Works<br>Horizontal and Vertica<br>platforms, Role of machin<br>communication.<br>Smart Worker: Augmer<br>operations, Training.<br>Digital-to-Physical: Add<br>Automotive, Aerospace, I<br>Digital Twin, Virtual fac<br>Cloud Computing: Fun<br>Security.                                                           | and<br><b>I In</b><br>ne se<br>ited a<br>litive<br>Elect<br>tory,<br>dame                   | ges: Lack of resou<br>Skills in the Indust<br>tegration: End-to-<br>ensors, Sensing class<br>Un<br>and Virtual Reality<br>e Manufacturing te<br>ronics, and Medica<br>Un<br>Total Productive M<br>entals, Cloud / Edg                                                 | urces, Availability of<br>try 4.0 Era.<br>-end engineering of<br>ssification according<br><u>nit –III</u><br>y, Industrial Applicati<br>echnologies, Advanta<br>al.<br><u>nit –IV</u><br>Maintenance, Underst<br>ge Computing and In<br><u>nit-V</u>                                            | the overall value of<br>to measuring variab<br>ons – Maintenance,<br>ges, impact on env<br>tanding I 4.0 in MSI<br>ndustry 4.0, The IT                                              | chair<br>les,<br>Ass<br>ironn<br>MEs,<br>/OT | n, Digita<br>Machino<br>embly, (<br>ment, A<br>, Industr<br>converg                          | nfrastructure,<br>al integration<br>e-to-Machine<br><b>10Hrs</b><br>Collaborative<br>pplications –<br><b>08Hrs</b><br>y 5.0<br>gence, Cyber<br><b>08Hrs</b>                                   |
| Policies, Future of Works<br>Horizontal and Vertica<br>platforms, Role of machin<br>communication.<br>Smart Worker: Augmer<br>operations, Training.<br>Digital-to-Physical: Add<br>Automotive, Aerospace, I<br>Digital Twin, Virtual fac<br>Cloud Computing: Fun-<br>Security.<br>Artificial Intelligence: F                            | and<br><b>I In</b><br>ne se<br>ited a<br>litive<br>Elect<br>tory,<br>dama                   | ges: Lack of resou<br>Skills in the Indust<br>tegration: End-to-<br>ensors, Sensing class<br>Un<br>and Virtual Reality<br>e Manufacturing te<br>ronics, and Medica<br>Un<br>Total Productive M<br>entals, Cloud / Edg<br>U<br>amentals, Case Stu                      | urces, Availability of<br>try 4.0 Era.<br>-end engineering of<br>ssification according<br><b>nit –III</b><br>7, Industrial Applicati<br>cchnologies, Advanta<br>al.<br><b>nit –IV</b><br>Maintenance, Underst<br>ge Computing and In<br><b>nit-V</b><br>udies, Technology pa                    | the overall value of<br>to measuring variab<br>ons – Maintenance,<br>ges, impact on env<br>tanding I 4.0 in MSN<br>ndustry 4.0, The IT                                              | Ass<br>ironn<br>MEs,<br>/OT                  | n, Digita<br>Machino<br>embly, (<br>ment, A<br>, Industr<br>convers                          | nfrastructure<br>al integration<br>e-to-Machine<br>Dollaborative<br>pplications -<br>08Hrs<br>y 5.0<br>gence, Cyber<br>08Hrs<br>- Intelligent                                                 |
| Policies, Future of Works<br>Horizontal and Vertica<br>platforms, Role of machin<br>communication.<br>Smart Worker: Augmer<br>operations, Training.<br>Digital-to-Physical: Add<br>Automotive, Aerospace, I<br>Digital Twin, Virtual fac<br>Cloud Computing: Fun<br>Security.<br>Artificial Intelligence: I<br>conveyor system, Intelli | and<br><b>I In</b><br>ne se<br>ited a<br>litive<br>Elect<br>tory,<br>dama                   | ges: Lack of resou<br>Skills in the Indust<br>tegration: End-to-<br>ensors, Sensing class<br>Un<br>and Virtual Reality<br>e Manufacturing te<br>ronics, and Medica<br>Un<br>Total Productive M<br>entals, Cloud / Edg<br>U<br>amentals, Case Stu                      | urces, Availability of<br>try 4.0 Era.<br>-end engineering of<br>ssification according<br><b>nit –III</b><br>7, Industrial Applicati<br>cchnologies, Advanta<br>al.<br><b>nit –IV</b><br>Maintenance, Underst<br>ge Computing and In<br><b>nit-V</b><br>udies, Technology pa                    | the overall value of<br>to measuring variab<br>ons – Maintenance,<br>ges, impact on env<br>tanding I 4.0 in MSN<br>ndustry 4.0, The IT                                              | Ass<br>ironn<br>MEs,<br>/OT                  | n, Digita<br>Machino<br>embly, (<br>ment, A<br>, Industr<br>convers                          | nfrastructure<br>al integration<br>e-to-Machine<br><b>10Hrs</b><br>Collaborative<br>pplications -<br><b>08Hrs</b><br>y 5.0<br>gence, Cyber<br><b>08Hrs</b><br>- Intelligen                    |
| Policies, Future of Works<br>Horizontal and Vertica<br>platforms, Role of machin<br>communication.<br>Smart Worker: Augmer<br>operations, Training.                                                                                                                                                                                     | and<br><b>I In</b><br>ne see<br>itted a<br>litive<br>Elect<br>tory,<br>damo<br>Fund<br>gent | ges: Lack of resou<br>Skills in the Indust<br>tegration: End-to-<br>ensors, Sensing class<br>Un<br>and Virtual Reality<br>e Manufacturing te<br>cronics, and Medica<br>Un<br>Total Productive M<br>entals, Cloud / Edg<br>U<br>amentals, Case Stu<br>commissioning st | urces, Availability of<br>try 4.0 Era.<br>-end engineering of<br>ssification according<br><b>nit –III</b><br>y, Industrial Application<br>chnologies, Advanta<br>al.<br><b>nit –IV</b><br>Maintenance, Understige Computing and In<br><b>nit-V</b><br>udies, Technology paystem, Intelligent pr | the overall value of<br>to measuring variab<br>ons – Maintenance,<br>ges, impact on env<br>tanding I 4.0 in MSN<br>ndustry 4.0, The IT<br>aradigms in product<br>roduction machine, | Ass<br>Ass<br>iron<br>MEs.<br>/OT            | n, Digita<br>Machino<br>embly, (<br>ment, A<br>, Industr<br>converg<br>logistics<br>elligent | nfrastructure,<br>al integration<br>e-to-Machine<br><b>10Hrs</b><br>Collaborative<br>pplications –<br><b>08Hrs</b><br>y 5.0<br>gence, Cyber<br><b>08Hrs</b><br>- Intelligent<br>load carrier, |

|         | Course Outcomes: After completing the course, the students will be able to |  |  |  |  |
|---------|----------------------------------------------------------------------------|--|--|--|--|
| CO1 Ide | dentify the basic components of Industry 4.0.                              |  |  |  |  |
| CO2 An  | analyze the role of digital twin and cloud for modern manufacturing.       |  |  |  |  |
| CO3 Cro | Create smart and digital models for industrial scenario.                   |  |  |  |  |
| CO4 Un  | Inderstand Artificial intelligence models for modern manufacturing.        |  |  |  |  |

#### **Reference Books**

| Kelere |                                                                                                          |
|--------|----------------------------------------------------------------------------------------------------------|
| 1      | Industry 4.0: Managing The Digital Transformation, Alp Ustundag, Emre Cevikcan, 2017, Springer,          |
|        | ISBN 978-3-319-57869-9 ISBN 978-3-319-57870-5.                                                           |
| 2      | The Concept Industry 4.0 - An Empirical Analysis of Technologies and Applications in Production          |
|        | Logistics, Christoph Jan Bartodziej, 2017, Springer Gabler, ISBN 978-3-658-16501-7 ISBN 978-3-658-       |
|        | 16502-4.                                                                                                 |
| 3      | Industry 4.0 - The Industrial Internet of Things, Alasdair Gilchrist, 2016, APRESS, ISBN-13 978-1-4842-  |
|        | 2046-7 ISBN-13 978-1-4842-2047-4.                                                                        |
| 4      | Digitizing the Industry – Internet of Things connecting the Physical, Digital and Virtual Worlds, Ovidiu |
|        |                                                                                                          |

٦

RV Educational Institutions ° RV College of Engineering °

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Vermesan, 2016, River Publishers, ISBN 978-87-93379-81-7 ISBN 978-87-93379-82-4.

|   | RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)                                                                                                                                                                                                                                                                                                                      |       |  |  |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|
| # | COMPONENTS                                                                                                                                                                                                                                                                                                                                                                  | MARKS |  |  |
| 1 | QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.                                                                                                                                                                                   | 20    |  |  |
| 2 | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.</b> | 40    |  |  |
| 3 | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), <b>MATLAB (20) ADDING UPTO 40 MARKS</b> .                                                                      | 40    |  |  |
|   | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                                                                                                                            | 100   |  |  |

|        | RUBRIC FOR SEMESTER END EXAMINATION (THEORY)      |       |  |  |  |  |
|--------|---------------------------------------------------|-------|--|--|--|--|
| Q. NO. | CONTENTS                                          | MARKS |  |  |  |  |
|        | PART A                                            |       |  |  |  |  |
| 1      | Objective type questions covering entire syllabus | 20    |  |  |  |  |
|        | PART B                                            |       |  |  |  |  |
|        | (Maximum of TWO Sub-divisions only)               |       |  |  |  |  |
| 2      | Unit 1 : (Compulsory)                             | 16    |  |  |  |  |
| 3 & 4  | Unit 2 : Question 3 or 4                          | 16    |  |  |  |  |
| 5&6    | Unit 3 : Question 5 or 6                          | 16    |  |  |  |  |
| 7 & 8  | Unit 4 : Question 7 or 8                          | 16    |  |  |  |  |
| 9 & 10 | Unit 5: Question 9 or 10                          | 16    |  |  |  |  |
|        | MAXIMUM MARKS FOR THE SEE THEORY                  | 100   |  |  |  |  |

Go, change the world





Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

- > COMMUNICATIVE ENGLISH I (22HSE16)
- > COMMUNICATIVE ENGLISH II (22HSE26)
- FUNDAMENTALS OF INDIAN CONSTITUTION (22HSI17/27)
- SCIENTIFIC FOUNDATIONS OF HEALTH: YOGA PRACTICE (22HSY18/28)
- BALAKE KANNADA (22HSBK17/27)
- > SAMSKRUTHIKA KANNADA (22HSSK17/27)



Approved by AICTE, New Delhi

|                                                                               |                                        | Semest       | er – I       |   |          |  |  |  |
|-------------------------------------------------------------------------------|----------------------------------------|--------------|--------------|---|----------|--|--|--|
| COMMUNICATIVE ENGLISH - I                                                     |                                        |              |              |   |          |  |  |  |
|                                                                               | Category: Humanities & Social Sciences |              |              |   |          |  |  |  |
| (Common to all Programs)                                                      |                                        |              |              |   |          |  |  |  |
|                                                                               |                                        | (Online Engl | ish Course)  |   |          |  |  |  |
| <b>Course Code</b>                                                            | :                                      | 22HSE16      | CIE          | : | 50 Marks |  |  |  |
| Credits: L:T:P         :         0:0:1         SEE         :         50 Marks |                                        |              |              |   |          |  |  |  |
| <b>Total Hours</b>                                                            | :                                      | 30P          | SEE Duration | : | 2 Hours  |  |  |  |

| Online English Course: Standardized Test Of English Proficieny – From The Hindu Group                                |  |  |  |
|----------------------------------------------------------------------------------------------------------------------|--|--|--|
| Unit – I 06 Hrs                                                                                                      |  |  |  |
| Chapter 1 & 2: Identifying main ideas and details in a reading text - Understanding places on a map -                |  |  |  |
| Understanding new words using Punctuation Clues - Previewing Vocabulary - Organizing, drafting, editing, and         |  |  |  |
| writing an email - Researching and Documenting, Listening for and visualizing directions, Listening to an            |  |  |  |
| advertisement - Role-play: talking about places on campus, Role-play: returning merchandise to a store -             |  |  |  |
| Comparing shopping in a store and online shopping - Conducting research and giving a presentation.                   |  |  |  |
| Unit – II 06 Hrs                                                                                                     |  |  |  |
| Chapter 3 & 4: Skimming a text using headings, subheadings, and images, identifying text organization -              |  |  |  |
| Reading and answering a questionnaire - Brainstorming and making notes on pros and cons, writing a paragraph         |  |  |  |
| using the words should and shouldn't - Listening for conversation starters, advice, instructions, complaints, Voice  |  |  |  |
| mail messages - Leaving voicemail messages, describing people, Changing nouns to adjectives - Using model            |  |  |  |
| verbs to give advice.                                                                                                |  |  |  |
| Unit – III 06 Hrs                                                                                                    |  |  |  |
| Chapter 5 & 6: Reading and Understanding graphs, Identifying a good summary - Reading faster: reading in             |  |  |  |
| phrases - Summarizing facts and ideas in a written text, Identifying narrative sequence, Recognizing and writing     |  |  |  |
| conclusions, Understanding pronouns and pronoun reference - Thinking critically about cultural events and            |  |  |  |
| celebrations - Recognizing polite and impolite expressions of disagreement.                                          |  |  |  |
| Unit – IV 06 Hrs                                                                                                     |  |  |  |
| Chapter 7 & 8: Understanding chronological events, Using Organizers to organize ideas in reading text -              |  |  |  |
| Summarizing Events and Describing feelings, Writing a summary statement, Understanding paragraph function -          |  |  |  |
| Listening to work-place complaints, Job interviews, future plans, Listening for expressions used in restaurant,      |  |  |  |
| instruction in following a recipe - Discussing future plans, careers, and work-related issues, healthy and unhealthy |  |  |  |
| eating habits and nutrition.                                                                                         |  |  |  |
| Unit – V 06 Hrs                                                                                                      |  |  |  |
| Chapter 9 & 10: Understanding relationships between ideas - writing a questionnaire and an opinion blog post -       |  |  |  |
| posting a comment - Expressing an opinion - Listening to conversations about travel plans, travel information,       |  |  |  |
| activities, an opinion, agreement and disagreement - Discussing travel plans, fares, transportation, sights, and     |  |  |  |
| activities, Using conditional forms to support an argument, Using parts of speech to classify word families.         |  |  |  |
|                                                                                                                      |  |  |  |
| Course Outcomes: After completing the course, the students will be able to                                           |  |  |  |
| CO1 Understand the fundamental concepts of Academic English LSRW skills with Grammar - Articles,                     |  |  |  |
|                                                                                                                      |  |  |  |
| Pronouns, Prepositions, Nouns, Verbs and Tenses.                                                                     |  |  |  |
| CO2 Use appropriate Vocabulary in real-life scenarios that students might face in professional and social            |  |  |  |
|                                                                                                                      |  |  |  |

CO4 Introduce Oneself in detail, preparing for interview, small talk, conversations, voice email messages, discussing future plans, careers, work related issues, environmental problem and travel conversations.



Approved by AICTE, New Delhi

| Refere | ence Books                                                                                           |
|--------|------------------------------------------------------------------------------------------------------|
| 1      | Standardized Test of English Proficiency-from The Hindu Group: e-books.                              |
| 2      | Mark Ibbotson, Professional English in Use - Technical English for Professionals, 1st ed. Cambridge: |
|        | UK, Cambridge University Press, 2009. ISBN-13: 978-05217348822.                                      |
| 3      | Leo Jones and Richard Alexander, New International Business English Workbook, 2nd ed.(revised),      |
|        | Cambridge: UK, Cambridge University Press, 1996 ISBN 13: 97805214557633.                             |
| 4      | Simon Sweeny, English For Business Communication, 2nd ed., Cambridge: UK, Cambridge University       |
|        | Press, 2003, I S B N 05217544964.                                                                    |
| 5      | Murphy, Intermediate English Grammar - With Answers, 2nd ed., Asia, Cambridge University Press,      |
|        | 2007.                                                                                                |

**About the Course:** STEP (Standardized Test of English Proficiency) train is a 20 hours of adoptive course. designed to improve every aspect of English language learning – Listening, Speaking, Reading and Writing skills. The STEP train course assesses learner's current language level as well learning intent against global standards. The online course includes the following:

- 1. 45-minute Diagnostic test (baseline) to ascertain the current level of English proficiency.
- 2. Personalized course content (50-Hours) based on baseline levels including Detailed instructions, practice sessions, interactions, feedback and assessments.

The course begins with a baseline test which determines the learner's current language levels. Based on their language levels, the course will provide the learner with webisodes suitable to their language levels. The course is also interspersed with exercises and mid-line tests. Based on the learner's performance in these tests, and their strengths and challenges/gaps, the course will adaptively provide webisodes matching their performance profile.

| ASSESSMENT AND EVALUATION                                     | PATTERN (ONLINE MODE        | E)                |
|---------------------------------------------------------------|-----------------------------|-------------------|
|                                                               | CIE                         | SEE               |
| WEIGHTAGE                                                     | 50%                         | 50%               |
| Test – I                                                      | Each test will be conducted |                   |
|                                                               | for 50 Marks adding upto    |                   |
| Test – II                                                     | 100 marks. Final test       |                   |
| 1  CSt - 11                                                   | marks will be reduced to 40 |                   |
|                                                               | MARKS                       |                   |
| EXPERIENTIAL LEARNING                                         |                             |                   |
| Communication Skills- Activity based test – Script writing,   |                             | Final Assessment  |
| Essay Writing, Role plays. Any other activity that enhances   |                             | will be conducted |
| the Communication skills. The students will be assigned       | 10                          | for 50 marks      |
| with a topic by the faculty handling the batch. The students  |                             | (ONLINE MODE)     |
| can either prepare a presentation/write essay/role play etc.  |                             |                   |
| for the duration (4-5 minutes per student.                    |                             |                   |
| Parameters for evaluation of the Presentation                 |                             |                   |
| a. Clarity in the presentation/ Speaking/Presentation skills. |                             |                   |
| b. Concept / Subject on which the drama is enacted/           |                             |                   |
| scripted.                                                     |                             |                   |
| MAXIMUM MARKS                                                 | 50 MARKS                    | 50 MARKS          |
| TOTAL MARKS FOR THE COURSE                                    | 50                          | 50                |



Approved by AICTE, New Delhi

|                            | Semester – II |                  |                        |   |          |  |
|----------------------------|---------------|------------------|------------------------|---|----------|--|
| COMMUNICATIVE ENGLISH – II |               |                  |                        |   |          |  |
|                            |               | Category: Humani | ties & Social Sciences |   |          |  |
|                            |               | (Common to       | all Programs)          |   |          |  |
|                            |               | (Online En       | glish Course)          |   |          |  |
| <b>Course Code</b>         | :             | 22HSE26          | CIE                    | : | 50 Marks |  |
| Credits: L:T:P             | :             | 0:0:1            | SEE                    | : | 50 Marks |  |
| Total Hours                | :             | 30P              | SEE Duration           | : | 2 Hours  |  |

|                                  | Online English Course: Standardized Test Of English Proficieny – From The Hindu Gr                                                                                                                                                                                                                                                                                                                                                                                                                 | oup                                          |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
|                                  | Unit – I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 06 Hrs                                       |
| effect –<br>yourself<br>habits a | <b>r 1 &amp; 2:</b> Describing a weather phenomenon – Using transition words and phrases to conner<br>Vocabulary words related to weather and climate situations – Listening to weather forecast –<br>f and others – speaking from notes and discussing study habits and body language – Assessing<br>and Evaluating why some students may not graduate – Casual expressions for making no<br>uish between Can and can't – Identifying the meaning and importance of sign – Words relate<br>story. | Introduction<br>g good study<br>ew friends – |
|                                  | Unit – II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 06 Hrs                                       |
| Creating<br>Using n              | <b>r</b> 3 & 4: Identifying and Expressing opinions, Using arguments and examples to support g an outline or mind map – Vocabulary on words related to food, healthy and unhealthy ea nodal verbs such as should, must and have to – Identifying paragraph, main text and support g, editing, reviewing and finalizing the text and Blogging – Speaking about food shopping and                                                                                                                    | ting habits –<br>rting ideas –               |
|                                  | Unit – III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 06 Hrs                                       |
| pronunc<br>apologiz              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | xpression for g apologies –                  |
|                                  | Unit – IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 06 Hrs                                       |
| benefits<br>symptor              | <b>r 7 &amp; 8:</b> Conducting a interview – Using a graphic organizer: Problem – Solution chart – D of a healthy lifestyle - Vocabulary words on health and stress issues and fitness issues ns – Summarizing a story plot – Vocabulary words and phrases about TV and Social Mog pronunciation.                                                                                                                                                                                                  | - Describing                                 |
|                                  | Unit – V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 06 Hrs                                       |
| survey r<br>speaker              | <b>r 9 &amp; 10:</b> Role-playing – Preparing a 30 second speech – Expression of like and Dislikes results – Conducting a review – Identifying and practicing stresses words and reduced forms attitudes - Understanding left-out words and reference - Understanding literal meaning and ting and rewording quotes - Identifying negative prefixes.                                                                                                                                               | - Identifying                                |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              |
| 1                                | Outcomes: After completing the course, the students will be able to                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| CO1                              | Understand the fundamental concepts of Academic English LSRW skills with Gramma<br>Pronouns, Prepositions, Nouns, Verbs and Tenses                                                                                                                                                                                                                                                                                                                                                                 | r - Articles,                                |
| CO2                              | Use appropriate Vocabulary in real-life scenarios that students might face in professional                                                                                                                                                                                                                                                                                                                                                                                                         | al and social                                |

 situations.

 CO3
 Construct grammatically correct sentences, Learn basics of professional e-mail writing, Blog post.

 CO4
 Introduce Oneself in detail, preparing for interview, small talk, conversations, voice email messages, discussing future plans, careers, work related issues, environmental problem and travel conversations.



Approved by AICTE, New Delhi

| Refere | nce Books                                                                                            |
|--------|------------------------------------------------------------------------------------------------------|
| 1      | Standardized Test of English Proficiency-from The Hindu Group: e-books.                              |
| 2      | Mark Ibbotson, Professional English in Use - Technical English for Professionals, 1st ed. Cambridge: |
|        | UK, Cambridge University Press, 2009. ISBN-13: 978-05217348822.                                      |
| 3      | Leo Jones and Richard Alexander, New International Business English Workbook, 2nd ed.(revised),      |
|        | Cambridge: UK, Cambridge University Press, 1996 ISBN 13: 97805214557633.                             |
| 4      | Simon Sweeny, English For Business Communication, 2nd ed., Cambridge: UK, Cambridge University       |
|        | Press, 2003, I S B N 05217544964.                                                                    |
| 5      | Murphy, Intermediate English Grammar - With Answers, 2nd ed., Asia, Cambridge University Press,      |
|        | 2007.                                                                                                |

**About the Course:** STEP (Standardized Test of English Proficiency) train is a 20 hours of adoptive course. designed to improve every aspect of English language learning – Listening, Speaking, Reading and Writing skills. The STEP train course assesses learner's current language level as well learning intent against global standards. The online course includes the following:

- 3. 45-minute Diagnostic test (baseline) to ascertain the current level of English proficiency.
- 4. Personalized course content (50-Hours) based on baseline levels including Detailed instructions, practice sessions, interactions, feedback and assessments.

The course begins with a baseline test which determines the learner's current language levels. Based on their language levels, the course will provide the learner with webisodes suitable to their language levels. The course is also interspersed with exercises and mid-line tests. Based on the learner's performance in these tests, and their strengths and challenges/gaps, the course will adaptively provide webisodes matching their performance profile.

| ASSESSMENT AND EVALUATION PATTERN (ONLINE MODE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                         |                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CIE                                                                                                     | SEE                                                                    |
| WEIGHTAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50%                                                                                                     | 50%                                                                    |
| Evaluation of CIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                         |                                                                        |
| (Bloom's Taxonomy Levels: Remembering, Understanding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | , Applying, Analyzing, Evalua                                                                           | ting, and Creating)                                                    |
| Test – I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Each test will be conducted                                                                             |                                                                        |
| Test – II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | for 50 Marks adding upto<br>100 marks. Final test<br>marks will be reduced to <b>40</b><br><b>MARKS</b> |                                                                        |
| EXPERIENTIAL LEARNING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                         |                                                                        |
| <ul> <li>Communication Skills- Activity based test – Script writing, Essay Writing, Role plays. Any other activity that enhances the Communication skills. The students will be assigned with a topic by the faculty handling the batch. The students can either prepare a presentation/write essay/role play etc. for the duration (4-5 minutes per student.</li> <li>Parameters for evaluation of the Presentation a. Clarity in the presentation/ Speaking/Presentation skills.</li> <li>b. Concept / Subject on which the drama is enacted/ scripted.</li> </ul> | 10                                                                                                      | Final Assessment<br>will be conducted<br>for 50 marks<br>(ONLINE MODE) |
| MAXIMUM MARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50 MARKS                                                                                                | 50 MARKS                                                               |
| TOTAL MARKS FOR THE COURSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50                                                                                                      | 50                                                                     |



Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

| 35 E.S.                                                                       |                                                                                 |             | Comoston I/II      |                     |   |         |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------|--------------------|---------------------|---|---------|
|                                                                               |                                                                                 |             | Semester - I/II    |                     |   |         |
|                                                                               | FUNDAMENTALS OF INDIAN CONSTITUTION                                             |             |                    |                     |   |         |
|                                                                               |                                                                                 | Category: H | umanities & Social | Sciences            |   |         |
|                                                                               | (Common to All Programs)                                                        |             |                    |                     |   |         |
|                                                                               |                                                                                 |             | (Theory)           |                     |   |         |
| Course Code                                                                   | Course Code         :         22HSI17/27         CIE         :         50 Marks |             |                    |                     |   |         |
| Credits: L:T:P         :         1:0:0         SEE         :         50 Marks |                                                                                 |             |                    |                     |   |         |
| Total Hours                                                                   | :                                                                               | 15          |                    | <b>SEE Duration</b> | : | 1 Hours |

| Unit – I                                                                                              | 05 Hrs       |
|-------------------------------------------------------------------------------------------------------|--------------|
| Indian Constitution- Necessity of Constitution, Societies before and after the constitution adoption, | Introduction |
| to Indian Constitution, Making of the constitution, Role of constituent assembly, Salient feature     | es of Indian |
| Constitution ,Preamble to the Indian Constitution and key concept of preamble. Fundamental Ri         | ghts and its |
| restrictions.                                                                                         | _            |

| Unit – II                                                                                            | 05 Hrs        |
|------------------------------------------------------------------------------------------------------|---------------|
| Directive Principles of State Policy and its present relevance in Indian Society, Fundamental Duties | and its scope |
| and significance in nation. Union Executive: Parliamentary system, President, Prime minister, Un     | ion Cabinet,  |
| Parliament- LS & RS, Parliamentary committees, Important Parliamentary terminologies. Judicial Sys   | tem of India, |
| Supreme court of India, and other courts, Judicial Reviews and Judicial activism.                    |               |

Unit – III 05 Hrs State Executive: Governor, CM, State cabinet Legislature: VS & VP, Election Commission, Election and Electoral Process, Amendment to Indian Constitution and Important constitutional amendments till today. Emergency provisions.

| Course | Outcomes: After completing the course, the students will be able to                                    |
|--------|--------------------------------------------------------------------------------------------------------|
| CO1    | Demonstrate the citizen's fundamental Rights, duties & consumer responsibility capability and to take  |
|        | affirmative action as a responsible citizen.                                                           |
| CO2    | Identify the conflict management in legal perspective and judicial systems pertaining to professional  |
|        | environment, strengthen the ability to contribute to the resolve of human rights & Ragging issues and  |
|        | problems through investigative and analytical skills.                                                  |
| CO3    | Understanding process of ethical and moral analysis in decision making scenarios and inculcate ethical |
|        | behavior as a trait for professional development.                                                      |
| CO4    | Apply the knowledge to solve practical problems with regard to personal issues & business Enterprises. |
|        |                                                                                                        |

| Refere | nce Books                                                                                            |
|--------|------------------------------------------------------------------------------------------------------|
| 1      | Dr. J. N Pandey, Constitutional Law of India, Central Law Agency, 2020 edition                       |
| 2      | Avtar Singh: Law of Consumer Protection: Principles and Practice, Eastern Book Company, 5th Edition, |
|        | 2015, ISBN -13:978-9351452461                                                                        |
| 3      | S.C. Srivastava: Industrial Relation and Labour Laws, Vikas Publishing House, 6th Edition,           |
|        | 2012, ISBN: 9789325955400                                                                            |
| 4      | Jr. Charles E Harris, Michael. S. Pritchard and Michael J Rabins, Engineering Ethics, Wadsworth      |
|        | Cengage Learning, 5 <sup>th</sup> Edition, 2009, ISBN-978-0495502791                                 |

|   | <b>RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)</b>                                                                                                                                 |       |  |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|
| # | COMPONENTS                                                                                                                                                                                    | MARKS |  |
| 1 | QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS. | 10    |  |
| 2 | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying,              | 20    |  |



|   | entreday, bengan i                                                                                                                                                                                                                                                                                                                   |    |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|   | Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 20 MARKS.                                                                                                                                                    |    |
| 3 | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) adding upto 40 marks. <b>THE FINAL EL MARKS IS REDUCED TO 20 MARKS</b> . | 20 |
|   | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                                                                                     | 50 |

|                                  | <b>RUBRIC FOR SEMESTER END EXAMINATION (THEORY)</b>          |       |  |
|----------------------------------|--------------------------------------------------------------|-------|--|
| Q.<br>NO.                        | CONTENTS                                                     | MARKS |  |
| 1                                | Objective type questions (MCQs) covering the entire syllabus | 50    |  |
| MAXIMUM MARKS FOR THE SEE THEORY |                                                              |       |  |



Approved by AICTE, New Delhi

Semester - I/II

#### SCIENTIFIC FOUNDATIONS OF HEALTH: YOGA PRACTICE Category: Humanities & Social Sciences (Common to all the Programs)

| (Practice)     |    |            |                     |    |          |
|----------------|----|------------|---------------------|----|----------|
| Course Code    | •• | 22HSY18/28 | CIE                 | •• | 50 Marks |
| Credits: L:T:P | :  | 0:0:1      | SEE                 | •• | 50 Marks |
| Total Hours    | :  | 30         | <b>SEE Duration</b> | :  | 2 Hours  |

| Unit – I                                                                                        | 10 Hrs       |
|-------------------------------------------------------------------------------------------------|--------------|
| Introduction to Yoga: Definition and Meaning of Yoga, Aims and Objectives, Historical developme | ent of Yoga, |
| Eight stages of Yoga, Relevance of Yoga in modern age and scope.                                |              |
| Prayers :Shanthi Mantra and Loka Kalyana Mantra.                                                |              |
| Starting Practice – Swasa Kriya, Marjalaswasa, Swanaswasa, Urasandhi chalane, Greeva sandhi ch  | nalane, Kati |

Starting Practice –Swasa Kriya, Marjalaswasa, Swanaswasa, Urasandhi chalane, Greeva sandhi chalane, Kati chalane, Super Brain yoga.

Suryanamaskara/Pragya Yoga: With Mantras & Breathing pattern.

 Unit – II
 10 Hrs

 Standing Asanas: Trikonasana, Veerabhadrasana, Vrikshasana, Tadasana, Tiryak Tadasana, Sarvangapushti, Utkatasana.

Sitting Asanas: Baddhakonasana, Bharadwajasana, Mandukasana, Ushtrasana, SuptaVeerasana, Vakrasana, Gomukhasana, Janushirasana, Dhanurasana, Shashankasana.

|         |            |     |                      | Unit – III    |            |           |             |    | 10 Hrs      |
|---------|------------|-----|----------------------|---------------|------------|-----------|-------------|----|-------------|
| Lying   | Asanas     | :   | Pawanamuktasana,     | Sarvangasana, | Naukasana, | Halasana, | Chakrasana, | Bh | ujangasana, |
| Shalabh | hasana, Dl | han | urasana, Yoga Nidra. |               |            |           |             |    |             |

Relaxative/ Meditative Asanas: Shavasana, Balasana, Makarasana, Sukhasana, Padmasana, Vajrasana.

**Pranayama**: Mantra, Breathing – Chest, Abdominal & Yogic, Puraka, Rechaka and Kumbhaka, Anulom-Vilom, Nadishodhan, Suryabhedan, Chadrabhedan, Bhastrika, Bhramri, Sheetali, Shitkari and Kapalabhati.

#### Course Outcomes: After completing the course, the students will be able to

|     | o accombs miter completing the course, the statemes will be asie to |  |
|-----|---------------------------------------------------------------------|--|
| CO1 | Demonstrate the various postures of Yoga                            |  |
| CO2 | Analyse the impact of Yoga on Health                                |  |
| CO3 | Identify the remedial measures if there are any health issues.      |  |
| CO4 | Develop concentration for better performance.                       |  |

Reference Books1Light on Yoga, B.K.S. Iyengar, 2017, Harper Collins Publishers, ISBN : 9780008267919.2Light on Pranayama, B.K.S. Iyengar, 2013, Harper Collins Publishers, ISBN: 978-8172235413.3Asana Pranayama Mudra Bandha, Swami Satyananda Saraswathi, 12<sup>th</sup> Edition, 2002, Published by Yoga<br/>Publications Trust, Bihar School of Yoga, ISBN:9788186336144.4Yoga Nidra, Swami Satyananda Saraswathi, 2009, Published by Yoga Publications Trust, ISBN:<br/>9788185787121.

| RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (PRACTICE) |                                                                                                                                                                                               |       |  |
|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|
| #                                                        | COMPONENTS                                                                                                                                                                                    | MARKS |  |
| 1                                                        | QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS. |       |  |
| 2                                                        | TESTS: One Demonstration Test will be conducted for 30 Marks                                                                                                                                  | 30    |  |
| 3                                                        | ACTIVITY BOOK: Students are asked to maintain an Activity Book, THE TOTAL MARKS FOR THE COMPILATION OF THE BOOK (05 Marks) AND STUDENT'S                                                      | 10    |  |



Approved by AICTE, New Delhi

## INVOLVEMENT IN THE ACTIVITY (05 Marks) WILL BE THE FINAL MARKS.MAXIMUM MARKS FOR THE CIE THEORY50

| Q.<br>NO. | CONTENTS                                                                                                                                                                                                                                                                                                                            | MARKS |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1         | Demonstration of Asanas and Pranayama SEE for 50 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of only objective type questions for 40 marks covering the complete syllabus. Part – B consists of essay type questions for 10 marks. | 50    |
|           | MAXIMUM MARKS FOR THE SEE THEORY                                                                                                                                                                                                                                                                                                    | 50    |

Theory - 01 Credit Course

#### ಬಳಕೆ ಕನ್ನಡ - Balake Kannada (Kannada for Usage)

#### ಕನ್ನಡ ಕಲಿಕೆಗಾಗಿ <u>ನಿಗದಿ</u>ಪಡಿಸಿದ ಪಠ್ಯಪುಸ್ತಕ - (Prescribed Textbook to Learn Kannada)

| Course Title:                             | ಬಳಕೆ ಕನ್ನಡ    |             |           |
|-------------------------------------------|---------------|-------------|-----------|
| Course Code:                              | 22HSBK17 / 27 | CIE Marks   | 50        |
| Course Type (Theory/Practical /Integrated | Theory        | SEE Marks   | 50        |
|                                           |               | Total Marks | 100       |
| Teaching Hours/Week (L:T:P: S)            | 1:0:0:0       | Exam Hours  | 01 Theory |
| Total Hours of Pedagogy                   | 15 hours      | Credits     | 01        |

#### Course objectives : ಬಳಕೆ ಕನ್ನಡ ಪಠ್ಯ ಕಲಿಕೆಯ ಉದ್ದೇಶಗಳು:

The course (22HSBK17/27) will enable the students,

- 1. To Create the awareness regarding the necessity of learning local language for comfortable and healthy life.
- 2. To enable learners to Listen and understand the Kannada language properly.
- 3. To speak, read and write Kannada language as per requirement.
- 4. To train the learners for correct and polite conservation.
- 5. To know about Karnataka state and its language, literature and General information about this state.

#### ಬೋಧನೆ ಮತ್ತು ಕಲಿಕಾ ವ್ಯವಸ್ಥೆ (Teaching-Learning Process - General Instructions) :

These are sample Strategies, which teacher can use to accelerate the attainment of the various course outcomes.

- 1. ಬಳಕೆ ಕನ್ನಡವನ್ನು ತರಗತಿಯಲ್ಲಿ ಶಿಕ್ಷಕರು ಬೋಧಿಸಲು ವಿಟಿಯು ಸೂಚಿಸಿರುವ ಪಠ್ಯಪುಸ್ತಕವನ್ನು ಉಪಯೊಗಿಸಬೇಕು.
- ಪ್ರಮುಖ ಅಂಶಗಳ ಚಾರ್ಟ್ ಗಳನ್ನು ತಯಾರಿಸಲು ವಿದ್ಯಾರ್ಥಿಗಳನ್ನು ಉತ್ತೇಜಿಸುವುದು ಮತ್ತು ತರಗತಿಯಲ್ಲಿ ಅವುಗಳನ್ನು ಚರ್ಚಿಸಲು ಅವಕಾಶ ಮಾಡಿಕೊಡುವುದು.
- 3. ಪ್ರತಿ ವಿದ್ಯಾರ್ಥಿ ಪುಸ್ತಕವನ್ನು ತರಗತಿಯಲ್ಲಿ ಬಳಸುವಂತೆ ನೋಡಿಕೊಳ್ಳುವುದು ಮತ್ತು ಪ್ರತಿ ಪಾಠ ಮತ್ತು ಪ್ರವಚನಗಳ ಮೂಲ ಅಂಶಗಳಿಗೆ ಸಂಬಂಧಪಟ್ಟಂತೆ ಪೂರಕ ಚಟುವಟಿಕೆಗಳಿಗೆ ತೊಡಗಿಸತಕ್ಕದ್ದು.
- 4. ಡಿಜಿಟಲ್ ತಂತ್ರಜ್ಞಾನದ ಮುಖಾಂತರ ಇತ್ತೀಚೆಗೆ ಡಿಜಿಟಲೀಕರಣ ಗೊಂಡಿರುವ ಭಾಷೆ ಕಲಿಕೆಯ ವಿಧಾನಗಳನ್ನು ಪಿಪಿಟಿ ಮತ್ತು ದೃಶ್ಯ ಮಾಧ್ಯಮದ ಮುಖಾಂತರ ಚರ್ಚಿಸಲು ಕ್ರಮಕೈಗೊಳ್ಳುವುದು. ಇದರಿಂದ ವಿದ್ಯಾರ್ಥಿಗಳನ್ನು ತರಗತಿಯಲ್ಲಿ ಹೆಚ್ಚು ಏಕಾಗ್ರತೆಯಿಂದ ಪಾಠ ಕೇಳಲು ಮತ್ತು ಅಧ್ಯಯನದಲ್ಲಿ ತೊಡಗಲು ಅನುಕೂಲವಾಗುತ್ತದೆ.
- ಭಾಷಾಕಲಿಕೆಯ ಪ್ರಯೋಗಾಲಯದ ಮುಖಾಂತರ ಬಹುಬೇಗ ಕನ್ನಡ ಭಾಷೆಯನ್ನು ಕಲಿಯಲು ಅನುಕೂಲವಾಗುವಂತೆ ಕಾರ್ಯಚಟುವಟಿಕೆಗಳನ್ನು ಮತ್ತು ಕ್ರಿಯಾ ಯೋಜನೆಗಳನ್ನು ರೂಪಿಸುವುದು.

|    | Module - 1                                                                 | (03 hours of pedagogy)       |
|----|----------------------------------------------------------------------------|------------------------------|
| 1. | Introduction, Necessity of learning a local language. Methods to learn the | Kannada language.            |
| 2. | Easy learning of a Kannada Language: A few tips. Hints for correct and po  | lite conservation, Listening |
|    | and Speaking Activities, Key to Transcription                              |                              |
| 3. | ವೈಯಕ್ತಿಕ, ಸ್ವಾಮ್ಯಸೂಚಕ/ಸಂಬಂಧಿತ ಸಾರ್ವನಾಮಗಳು ಮತ್ತು ಪ್ರಶ್ನಾರ್ಥಕ ಪದಗಳು          | - Personal Pronouns,         |
|    | Possessive Forms, Interrogative words                                      |                              |

| Module - 2                                                                     | (03 hours of pedagogy)                            |
|--------------------------------------------------------------------------------|---------------------------------------------------|
| <ol> <li>ನಾಮಪದಗಳ ಸಂಬಂಧಾರ್ಥಕ ರೂಪಗಳು, ಸಂದೇಹಾಸ್ಪದ</li> </ol>                      | ಪ್ರಶ್ನೆಗಳು ಮತ್ತು ಸಂಬಂಧವಾಚಕ                        |
| ನಾಮಪದಗಳು - Possessive forms of nouns, dubitive                                 | •                                                 |
| 2. ಗುಣ, ಪರಿಮಾಣ ಮತ್ತು ವರ್ಣಬಣ್ಣ ವಿಶೇಷಣಗಳು, ಸಂಖ್ಯಾ<br>Colour Adjectives, Numerals | ವಾಚಕಗಳು Qualitative, Quantitative and             |
| 3. ಕಾರಕ ರೂಪಗಳು ಮತ್ತು ವಿಭಕ್ತಿ ಪ್ರತ್ಯಯಗಳು –ಸಪ್ತಮಿ ವಿಭಕ್ತಿ ಪ್ರತ್ಯಯ – (ಆ, ಆ        | ಾದು, ಅವು, ಅಲ್ಲಿ) –Predictive Forms, Locative Case |
| Module - 3                                                                     | (03 hours of pedagogy)                            |
| 1. ಚತುರ್ಥಿ ವಿಭಕ್ತಿ ಪ್ರತ್ಯಯದ ಬಳಕೆ ಮತ್ತು ಸಂಖ್ಯಾವಾಚಕಗಳು - Dative Case             | es, and Numerals                                  |
| 2. ಸಂಖ್ಯಾಗುಣವಾಚಕಗಳು ಮತ್ತು ಬಹುವಚನ ನಾಮರೂಪಗಳು -Ordinal nu                         | umerals and Plural markers                        |
| 3. ನ್ಯೂನ/ನಿಷೇಧಾರ್ಥಕ ಕ್ರಿಯಾಪದಗಳು & ವರ್ಣ ಗುಣವಾಚಕಗಳು – Defect                     | ive/Negative Verbs & Colour Adjectives            |
| Module- 4                                                                      | (03 hours of pedagogy                             |
| 1. ಅಪ್ಪಣೆ / ಒಪ್ಪಿಗೆ, ನಿರ್ದೇಶನ, ಪ್ರೋತ್ಸಾಹ ಮತು ಒತ್ತಾಯ ಆರ್ಥ                       | ರೂಪ ಪದಗಳು ಮತ್ತು ವಾಕ್ಯಗಳು                          |
| Permission, Commands, encouraging and Urging words (Impo                       | erative words and sentences)                      |
| 2. ಸಾಮಾನ್ಯ ಸಂಭಾಷಣೆಗಳಲ್ಲಿ ದ್ವಿತೀಯ ವಿಭಕ್ತಿ ಪ್ರತ್ಯಯಗಳು ಮ                          | ತ್ತು ಸಂಭವನೀಯ ಪ್ರಕಾರಗಳು                            |
| Accusative Cases and Potential Forms used in General Commu                     | nication                                          |
| 3. "ಇರು ಮತ್ತು ಇರಲ್ಲ" ಸಹಾಯಕ ಕ್ರಿಯಾಪದಗಳು, ಸಂಭಾವ್ಯಸೂ                              | ಚಕ ಮತ್ತು ನಿಷೇಧಾರ್ಥಕ ಕ್ರಿಯಾ ಪದಗಳು -                |
| Helping Verbs "iru and iralla", Corresponding Future and Negation              | on Verbs                                          |
| 4. ಹೋಲಿಕೆ (ತರತಮ) , ಸಂಬಂಧ ಸೂಚಕ, ವಸ್ತು ಸೂಚಕ ಪ್ರತ್ಯಂ                              | ುಗಳು ಮತ್ತು ನಿಷೇಧಾರ್ಥಕ ಪದಗಳ ಬಳಕೆ-                  |
| Comparitive, Relationship, Identification and Negation Words                   |                                                   |
| Module - 5                                                                     | (03 hours of pedagogy)                            |
| 1. ಕಾಲ ಮತ್ತು ಸಮಯದ ಹಾಗೂ ಕ್ರಿಯಾಪದಗಳ ವಿವಿಧ ಪ್ರಕಾರಗಳ                               | な -Different types of Tense, Time and Verbs       |
| 2. ದ್, -ತ್, - ತು, - ಇತು, - ಆಗಿ, - ಅಲ್ಲ, - ಗ್, -ಕ್, ಇದೆ, ಕ್ರಿಯಾ ಪ್ರತ್ಯ          | ಯಗಳೊಂದಿಗೆ ಭೂತ, ಭವಿಷ್ಯತ್ ಮತ್ತು                     |
| ವರ್ತಮಾನ ಕಾಲ ವಾಕ್ಯ ರಚನೆ - Formation of Past, Future and                         | Present Tense Sentences with Verb Forms           |
| 3. Kannada Vocabulary List :ಸಂಭಾಷಣೆಯಲ್ಲಿ ದಿನೋಪಯೋಗಿ ಕನ                          |                                                   |

#### Course outcome (Course Skill Set)

ಬಳಕೆ ಕನ್ನಡ ಪಠ್ಯ ಕಲಿಕೆಯಿಂದ ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ಆಗುವ ಅನುಕೂಲಗಳು ಮತ್ತು ಫಲಿತಾಂಶಗಳು:

At the end of the course the student will be able to:

| C01 | To understand the necessity of learning of local language for comfortable life.          |  |
|-----|------------------------------------------------------------------------------------------|--|
| C02 | To speak, read and write Kannada language as per requirement.                            |  |
| C03 | To communicate (converse) in Kannada language in their daily life with kannada speakers. |  |
| C04 | To Listen and understand the Kannada language properly.                                  |  |
| C05 | To speak in polite conservation.                                                         |  |

#### **Assessment Details (both CIE and SEE)**

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). The minimum passing mark for the SEE is 35% of the maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than

35% (18 Marks out of 50) in the semester-end examination(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

#### **Continuous Internal Evaluation(CIE):**

#### Two Unit Tests each of 30 Marks (duration 01 hour)

- First test after the completion of 30-40 % of the syllabus
- Second test after completion of 80-90% of the syllabus

One Improvement test before the closing of the academic term may be conducted if necessary. However best two tests out of three shall be taken into consideration

#### Two assignments each of 20 Marks

The teacher has to plan the assignments and get them completed by the students well before the closing of the term so that marks entry in the examination portal shall be done in time. Formative (Successive) Assessments include Assignments/Quizzes/Seminars/ Course projects/Field surveys/ Case studies/ Hands-on practice (experiments)/Group Discussions/ others.. The Teachers shall choose the types of assignments depending on the requirement of the course and plan to attain the Cos and POs. (to have a less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the CIE. Each method of CIE should have a different syllabus portion of the course). CIE methods /test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

#### The sum of two tests, two assignments, will be out of 100 marks and will be scaled down to 50 marks Semester End Examinations (SEE)

SEE paper shall be set for 50 questions, each of the 01 mark. The pattern of the question paper is MCQ (multiple choice questions). The time allotted for SEE is **01 hour.** The student must secure a minimum of 35% of the maximum marks for SEE.

#### University Prescribed Textbook : ಬಳಕೆ ಕನ್ನಡ ಡಾ. ಎಲ್. ತಿಮ್ಮೇಶ ಪ್ರಕಟಣೆ : ಪ್ರಸಾರಾಂಗ, ವಿಶ್ವೇಶ್ವರಯ್ಯ ತಾಂತ್ರಿಕ ವಿಶ್ವವಿದ್ಯಾಲಯ, ಬೆಳಗಾವಿ. ಸೂಚನೆ : ವಿಶೇಷ ಸೂಚನೆ : 1. ಮೇಲಿನ ಪಠ್ಯಕ್ರಮಕ್ಕೆ ಸೀಮಿತವಾಗಿ ಅಂತಿಮ ಪರೀಕ್ರೆಯ ಪ್ರಶ್ನೆಪತ್ರಿಕೆ ಇರುತ್ತದೆ. 2. ಮೇಲಿನ ಪಠ್ಯಕ್ರಮವನ್ನು ಹೊರತುಪಡಿಸಿದ ಬಳಕೆ ಕನ್ನಡ ಪಠ್ಯಪುಸ್ತಕದಲ್ಲಿನ ಉಳಿದ ಭಾಗಳನ್ನು ಹೆಚ್ಚುವರಿ ಪೂರಕ ಓದಿಗಾಗಿ ಬಳಸಿಕೊಳ್ಳಬಹುದು. ಅಂತಿಮ ಪರೀಕ್ಷೆಯಲ್ಲಿ ಈ ಪಾಠಗಳಿಂದ ಪ್ರಶ್ನೆಗಳನ್ನು ಕೇಳಲಾಗುವುದಿಲ್ಲ. \_\_\_\_\_ 3. ಹೆಚ್ಚಿನ ಮಾಹಿತಿ ಮತ್ತು ವಿವರಣೆಗಳಿಗೆ ಡಾ. ಎಲ್. ತಿಮ್ಮೇಶ (9900832331) ಇವರನ್ನು ಸಂಪರ್ಕಿಸಿ. 4. ಮಾದರಿ ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆ, ಕೋರ್ಸ್ ಆಯ್ಕೆ ಮಾಹಿತಿ, ಅಧ್ಯಯನ ಸಾಮಗ್ರಿ & ಬಹು ಆಯ್ಕೆ ಮಾದರಿಯ ಪ್ರಶ್ನೆ ಗಳ ಕೈಪಿಡಿಗಾಗಿ ವಿಶ್ವವಿದ್ಯಾಲಯದ ವೆಬ್ ಸೈಟ್ ನೋಡುವುದು. Activity Based Learning (Suggested Activities in Class)/ Practical Based learning ✓ Contents related activities (Activity-based discussions) ✓ For active participation of students instruct the students to prepare Flowcharts and Handouts $\checkmark$ Organising Group wise discussions Connecting to placement activities ✓ Quizzes and Discussions.

Seminars and assignments.

#### Theory - 01 Credit Course

#### ಸಾಂಸ್ಕೃತಿಕ ಕನ್ನಡ - ಕನ್ನಡ ಬಲ್ಲ ಮತ್ತು ಕನ್ನಡ ಮಾತೃಭಾಷೆಯ ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ನಿಗದಿಪಡಿಸಿದ ಪಠ್ಯಕ್ರಮ

| Course Title:                             | ಸಾಂಸ್ಕೃತಿಕ ಕನ್ನಡ |             |           |
|-------------------------------------------|------------------|-------------|-----------|
| Course Code:                              | 22HSSK17 / 27    | CIE Marks   | 50        |
| Course Type (Theory/Practical /Integrated | Theory           | SEE Marks   | 50        |
| course Type (Theory/Flactical/Integrated  |                  | Total Marks | 100       |
| Teaching Hours/Week (L:T:P: S)            | 1:0:0:0          | Exam Hours  | 01 Theory |
| Total Hours of Pedagogy                   | 15 hours         | Credits     | 01        |

Course objectives : ಸಾಂಸ್ಕೃತಿಕ ಕನ್ನಡ ಪಠ್ಯ ಕಲಿಕೆಯ ಉದ್ದೇಶಗಳು:

The course (22HSSK17/27) will enable the students,

- 1. ಪದವಿ ವಿದ್ಯಾರ್ಥಿಗಳಾಗಿರುವುದರಿಂದ ಕನ್ನಡ ಭಾಷೆ, ಸಾಹಿತ್ಯ ಮತ್ತು ಸಂಸ್ಕೃತಿಯ ಪರಿಚಯ ಮಾಡಿಕೊಡುವುದು.
- 2. ಕನ್ನಡ ಸಾಹಿತ್ಯದ ಪ್ರಧಾನ ಭಾಗವಾದ ಆಧುನಿಕಪೂರ್ವ ಮತ್ತು ಆಧುನಿಕ ಕಾವ್ಯಗಳನ್ನು ಪರಿಚಯಿಸಿವುದು.
- 3. ವಿದ್ಯಾರ್ಥಿಗಳಲ್ಲಿ ಸಾಹಿತ್ಯ ಮತ್ತು ಸಂಸ್ಕೃತಿಯ ಬಗ್ಗೆ ಅರಿವು ಹಾಗೂ ಆಸಕ್ತಿಯನ್ನು ಮೂಡಿಸುವುದು.
- 4. ತಾಂತ್ರಿಕ ವ್ಯಕ್ತಿಗಳ ಪರಿಚಯವನ್ನು ಹಾಗೂ ಅವರುಗಳ ಸಾಧಿಸಿದ ವಿಷಯಗಳನ್ನು ಪರಿಚಯಿಸುವುದು.
- 5. ಸಾಂಸ್ಕೃತಿಕ, ಜನಪದ ಹಾಗೂ ಪ್ರವಾಸ ಕಥನಗಳ ಪರಿಚಯ ಮಾಡಿಕೊಡುವುದು.

ಬೋಧನೆ ಮತ್ತು ಕಲಿಕಾ ವ್ಯವಸ್ಥೆ (Teaching-Learning Process - General Instructions) :

These are sample Strategies, which teacher can use to accelerate the attainment of the course outcomes.

- ಸಾಂಸ್ಕೃತಿಕ ಕನ್ನಡವನ್ನು ಬೋಧಿಸಲು ತರಗತಿಯಲ್ಲಿ ಶಿಕ್ಷಕರು ಪ್ರಸ್ತುತ ಪುಸ್ತಕ ಆಧಾರಿಸಿ ಬ್ಲಾಕ್ ಬೋರ್ಡ್ ವಿಧಾನವನ್ನು ಅನುಸರಿಸುವುದು. ಪ್ರಮುಖ ಅಂಶಗಳ ಚಾರ್ಟ್ ಗಳನ್ನು ತಯಾರಿಸಲು ವಿದ್ಯಾರ್ಥಿಗಳನ್ನು ಪ್ರೇರೇಪಿಸುವುದು ಮತ್ತು ತರಗತಿಯಲ್ಲಿ ಅವುಗಳನ್ನು ಚರ್ಚಿಸಲು ಅವಕಾಶ ಮಾಡಿಕೊಡುವುದು.
- 2. ಇತ್ರೀಚಿನ ತಂತ್ರಜ್ಞಾನದ ಅನುಕೂಲಗಳನ್ನು ಬಳಸಿಕೊಳ್ಳುವುದು ಅಂದರೆ ಕವಿ-ಕಾವ್ಯ ಪರಿಚಯದಲ್ಲಿ ಕವಿಗಳ ಚಿತ್ರಣ ಮತ್ತು ಲೇಖನಗಳು ಮತ್ತು ಕಥೆ ಕಾವ್ಯಗಳ ಮೂಲ ಅಂಶಗಳಿಗೆ ಸಂಬಂಧಪಟ್ಟ ಧ್ವನಿ ಚಿತ್ರಗಳು, ಸಂಭಾಷಣೆಗಳು, ಈಗಾಗಲೇ ಇತರ ವಿಮರ್ಶಕರು ಬರೆದಿರುವ ವಿಮರ್ಶಾತ್ಮಕ ವಿಷಯಗಳನ್ನು ಟಿಪಿಟಿ, ಡಿಜಿಟಲ್ ಮಾಧ್ಯಮಗಳ ಮುಖಾಂತರ ವಿಶ್ಲೇಷಿಸುವುದು.
- ನವೀನ ಮಾದರಿಯ ಸಾಹಿತ್ಯ ಬೋಧನೆಗೆ ಸಂಬಂಧಪಟ್ಟ ವಿಧಾನಗಳನ್ನು ಶಿಕ್ಷಕರು ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ಅನುಕೂಲವಾಗುವ ರೀತಿಯಲ್ಲಿ ಅಳವಡಿಸಿಕೊಳ್ಳಬಹುದು.

ಘಟಕ -1 ಕನ್ನಡ ಸಂಸ್ಕೃತಿ ಮತ್ತು ಭಾಷೆ ಕುರಿತಾದ ಲೇಖನಗಳು (03 hours of pedagogy)

- 1. ಕರ್ನಾಟಕ ಸಂಸ್ಕೃತಿ ಹಂಪ ನಾಗರಾಜಯ್ಯ 2. ಕರ್ನಾಟಕದ ಏಕೀಕರಣ : ಒಂದು ಅಪೂರ್ವ ಚರಿತ್ರೆ - ಜಿ. ವೆಂಕಟಸುಬ್ಬಯ್ಯ
  - 3. ಆಡಳಿತ ಭಾಷೆಯಾಗಿ ಕನ್ನಡ ಡಾ. ಎಲ್. ತಿಮ್ಮೇಶ ಮತ್ತು ಪ್ರೋ. ವಿ. ಕೇಶವಮೂರ್ತಿ

|                                                       | ಘಟಕ - 2 ಆಧುನಿಕ ಪೂರ್ವದ ಕಾವ್ಯ ಭಾಗ                                   | (03 hours of pedagogy)         |  |  |
|-------------------------------------------------------|-------------------------------------------------------------------|--------------------------------|--|--|
| 1.                                                    | ವಚನಗಳು : ಬಸವಣ್ಣ, ಅಕ್ಕಮಹಾದೇವಿ, ಅಲ್ಲಮಪ್ರಭು, ಆಯ್ದಕ್ಕಿ ಮಾ             | ಾರಯ್ಯ,                         |  |  |
|                                                       | ಜೇಡರದಾಸಿಮಯ್ಯ, ಆಯ್ದಕ್ಕಿ ಲಕ್ಕಮ್ಮ.                                   |                                |  |  |
| 2.                                                    | ಕೀರ್ತನೆಗಳು : ಅದರಿಂದೇನು ಫಲ ಇದರಿಂದೇನು ಫಲ – ಪುರಂದರದಾಸ                | <b>ಸರು</b>                     |  |  |
|                                                       | ತಲ್ಲ ಣಿಸದಿರು ಕಂಡ್ಯ ತಾಳು ಮನವೇ - ಕನಕದಾಸರು                           |                                |  |  |
| 3.                                                    | ತತ್ವಪದಗಳು : ಸಾವಿರ ಕೊಡಗಳ ಸುಟ್ಟು - ಶಿಶುನಾಳ ಶರೀಫ                     |                                |  |  |
|                                                       | ಘಟಕ -3 ಆಧುನಿಕ ಕಾವ್ಯಭಾಗ                                            | (03 hours of pedagogy)         |  |  |
| 1.                                                    | ಡಿವಿಜಿ ರವರ ಮಂಕುತಿಮ್ಮನ ಕಗ್ಗದಿಂದ ಅಯ್ದ ಕೆಲವು ಭಾಗಗಳು                  |                                |  |  |
| 2.                                                    | ಕುರುಡು ಕಾಂಚಾಣ : ದಾ.ರಾ. ಬೇಂದ್ರೆ                                    |                                |  |  |
| 3.                                                    | ಹೊಸಬಾಳಿನ ಗೀತೆ : ಕುವೆಂಪು                                           |                                |  |  |
|                                                       | ಘಟಕ - 4 ತಾಂತ್ರಿಕ ವ್ಯಕ್ತಿಗಳ ಪರಿಚಯ                                  | (03 hours of pedagogy)         |  |  |
| 1.                                                    | ಡಾ. ಸರ್. ಎಂ. ವಿಶ್ವೇಶ್ವರಯ್ಯ : ವ್ಯಕ್ತಿ ಮತ್ತು ಐತಿಹ್ಯ – ಎ. ಎನ್. ಮೂತಿಃ | ೯ರಾವ್                          |  |  |
| 2.                                                    | ಕರಕುಶಲ ಕಲೆಗಳು ಮತ್ತು ಪರಂಪರೆಯ ವಿಜ್ಞಾನ : ಕರೀಗೌಡ ಬೀಚನಕ                | ಕಳ್ಳಿ                          |  |  |
|                                                       | ಘಟಕ - 5 ಸಾಂಸ್ಕೃತಿಕ, ಜನಪದ ಕಥೆ ಮತ್ತು ಪ್ರ                            | ವಾಸ ಕಥನ (03 hours of pedagogy) |  |  |
| 1.                                                    | ಯುಗಾದಿ : ವಸುಧೇಂದ್ರ                                                |                                |  |  |
| 2.                                                    | ಮೆಗಾನೆ ಎಂಬ ಗಿರಿಜನ ಪರ್ವತ : ಹಿ.ಚಿ. ಬೋರಲಿಂಗಯ್ಯ                       |                                |  |  |
| Course                                                | outcome (Course Skill Set)                                        |                                |  |  |
|                                                       | ೃತಿಕ ಕನ್ನಡ (22KSK17/27) ಪಠ್ಯ ಕಲಿಕೆಯ ನಂತರ ವಿದ್ಯಾರ್ಥಿಗಳ             | ಳಲ್ಲಿ :                        |  |  |
| At the end of the course the student will be able to: |                                                                   |                                |  |  |
| C01                                                   | ಕನ್ನಡ ಭಾಷೆ, ಸಾಹಿತ್ಯ ಮತ್ತು ಕನ್ನಡದ ಸಂಸ್ಕೃತಿಯ ಕುರಿತು ಅರಿವು           | ಮೂಡಿರುತ್ತದೆ.                   |  |  |
|                                                       |                                                                   |                                |  |  |

CO2 ಕನ್ನಡ ಸಾಹಿತ್ಯದ ಆಧುನಿಕ ಪೂರ್ವ ಮತ್ತು ಆಧುನಿಕ ಕಾವ್ಯಗಳನ್ನು ಸಾಂಕೇತಿಕವಾಗಿ ಕಲಿತು ಹೆಚ್ಚಿನ ಓದಿಗೆ

| Π |     | ಮತ್ತು ಜ್ಞಾನಕ್ಕೆ ಸ್ಪೂರ್ತಿ ಮೂಡುತ್ತದೆ.                                                  |  |
|---|-----|--------------------------------------------------------------------------------------|--|
| Í | CO3 | ವಿದ್ಯಾರ್ಥಿಗಳಲ್ಲಿ ಸಾಹಿತ್ಯ ಮತ್ತು ಸಂಸ್ಕೃತಿಯ ಬಗ್ಗೆ ಅರಿವು ಹಾಗೂ ಆಸಕ್ತಿಯನ್ನು ಹೆಚ್ಚಾಗುತ್ತದೆ. |  |
| Ī | CO4 | ತಾಂತ್ರಿಕ ವ್ಯಕ್ತಿಗಳ ಪರಿಚಯ ಹಾಗೂ ಅವರುಗಳ ಸಾಧಿಸಿದ ವಿಷಯಗಳನ್ನು ತಿಳಿದುಕೊಂಡು ನಾಡಿನ ಇನ್ನಿತರ    |  |
|   |     | ವ್ಯಕ್ತಿಗಳ ಬಗ್ಗೆ ತಿಳಿದುಕೊಳ್ಳಲು ಕೌತುಕತೆ ಹೆಚ್ಚಾಗುತ್ತದೆ.                                 |  |
|   | CO5 | ಸಾಂಸ್ಕೃತಿಕ, ಜನಪದ ಹಾಗೂ ಪ್ರವಾಸ ಕಥನಗಳ ಪರಿಚಯ ಮಾಡಿಕೊಡುವುದು.                               |  |

#### **Assessment Details (both CIE and SEE)**

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). The minimum passing mark for the SEE is 35% of the maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

#### Continuous Internal Evaluation(CIE):

#### Two Unit Tests each of 30 Marks (duration 01 hour)

- First test after the completion of 30-40 % of the syllabus
  - Second test after completion of 80-90% of the syllabus

One Improvement test before the closing of the academic term may be conducted if necessary. However best two tests out of three shall be taken into consideration

#### Two assignments each of 20 Marks

The teacher has to plan the assignments and get them completed by the students well before the closing of the term so that marks entry in the examination portal shall be done in time. Formative (Successive) Assessments include Assignments/Quizzes/Seminars/ Course projects/Field surveys/ Case studies/ Hands-on practice (experiments)/Group Discussions/ others. The Teachers shall choose the types of assignments depending on the requirement of the course and plan to attain the Cos and POs. (to have a less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the CIE. Each method of CIE should have a different syllabus portion of the course). CIE methods /test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

#### The sum of two tests, two assignments, will be out of 100 marks and will be scaled down to 50 marks Semester End Examinations (SEE)

SEE paper shall be set for **50 questions, each of the 01 mark**. The pattern of the **question paper is MCQ** (multiple choice questions). The time allotted for SEE is **01 hour**. The student must secure a minimum of 35% of the maximum

### University Prescribed Textbook :

#### ಸಾಂಸ್ಕೃತಿಕ ಕನ್ನಡ

ಡಾ. ಹಿ.ಚಿ.ಬೋರಲಿಂಗಯ್ಯ ಮತ್ತು ಡಾ. ಎಲ್. ತಿಮ್ಮೇಶ,

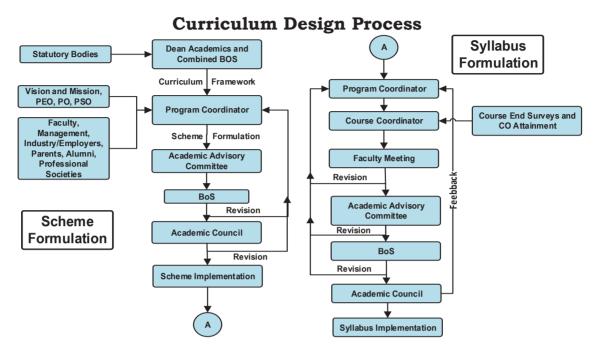
#### ಪ್ರಕಟಣೆ : ಪ್ರಸಾರಾಂಗ,

ವಿಶ್ವೇಶ್ವರಯ್ಯ ತಾಂತ್ರಿಕ ವಿಶ್ವವಿದ್ಯಾಲಯ, ಬೆಳಗಾವಿ.

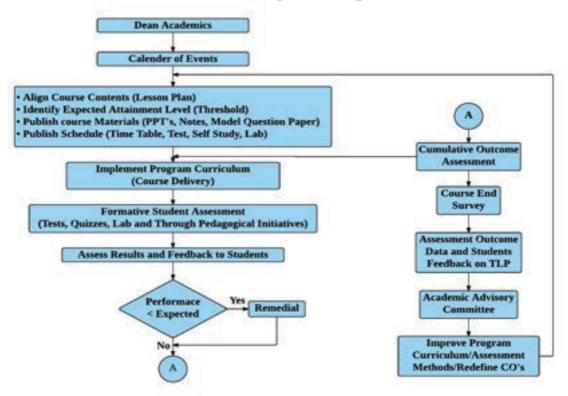
ವಿಶೇಷ ಸೂಚನೆ : 1. ಮೇಲಿನ ಪಠ್ಯಕ್ರಮಕ್ಕೆ ಸೀಮಿತವಾಗಿ ಅಂತಿಮ ಪರೀಕ್ಷೆಯ ಪ್ರಶ್ನೆಪತ್ರಿಕೆ ಇರುತ್ತದೆ.

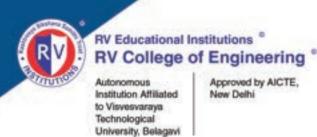
2. ಮೇಲಿನ ಪಠ್ಯಕ್ರಮವನ್ನು ಹೊರತುಪಡಿಸಿದ ಸಾಂಸ್ಕೃತಿಕ ಕನ್ನಡ ಪಠ್ಯಪುಸ್ತಕದಲ್ಲಿನ ಉಳಿದ ಪದ್ಯ & ಗದ್ಯ ಭಾಗ ಹಾಗೂ ಇತರ ಲೇಖನಗಳನ್ನು ಹೆಚ್ಚುವರಿ ಪೂರಕ ಓದಿಗಾಗಿ ಬಳಸಿಕೊಳ್ಳಬಹುದು. ಅಂತಿಮ ಪರೀಕ್ಷೆಯಲ್ಲಿ ಈ ಪಾಠಗಳಿಂದ ಪ್ರಶ್ನೆಗಳನ್ನು ಕೇಳಲಾಗುವುದಿಲ್ಲ.

-----


- 3. ಹೆಚ್ಚಿನ ಮಾಹಿತಿ ಮತ್ತು ವಿವರಣೆಗಳಿಗೆ ಡಾ. ಎಲ್. ತಿಮ್ಮೇಶ (9900832331) ಇವರನ್ನು ಸಂಪರ್ಕಿಸಿ.
- ಮಾದರಿ ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆ, ಕೋರ್ಸ್ ಆಯ್ಕೆ ಮಾಹಿತಿ, ಅಧ್ಯಯನ ಸಾಮಗ್ರಿ & ಬಹು ಆಯ್ಕೆ ಮಾದರಿಯ ಪ್ರಶ್ನೆ ಗಳ ಕೈಪಿಡಿಗಾಗಿ ವಿಶ್ವವಿದ್ಯಾಲಯದ ವೆಬ್ ಸೈಟ್ ನೋಡುವುದು.

#### Activity Based Learning (Suggested Activities in Class)/ Practical Based learning


- ✓ Contents related activities (Activity-based discussions)
- ✓ For active participation of students instruct the students to prepare Flowcharts and Handouts
- $\checkmark$  Organising Group wise discussions Connecting to placement activities
- ✓ Quizzes and Discussions, Seminars and assignments.


RV Educational Institutions <sup>®</sup> RV College of Engineering <sup>®</sup>

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

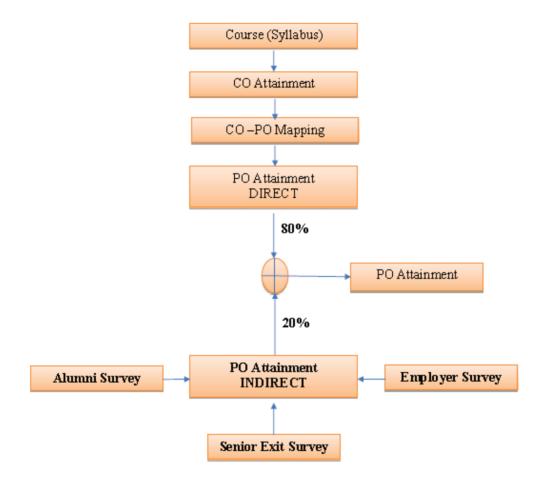


#### Academic Planning and Implementation





#### **Process For Course Outcome Attainment**




#### **Final CO Attainment Process**





#### **Program Outcome Attainment Process**



RV Educational Institutions <sup>®</sup> RV College of Engineering

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

#### **PROGRAM OUTCOMES (POs)**

1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.

2. **Problem analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.

4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.

6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. **Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. **Life-long learning:** Recognise the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

#### Innovative Clubs of RVCE

| 1  | Ashwa Racing                         | Ashwa Mobility Foundation (AMF) is a student R&D platform that designs and fabricates Formula theme race cars and future mobility solutions to tackle urban transportation problems.                                                                                                                                          |
|----|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | Astra Robites                        | Team involved in the design, fabrication and building application specific robots,                                                                                                                                                                                                                                            |
| 3  | Coding Club                          | To facilitate students the skills, confidence, and opportunity to change their world<br>using coding and help them become successful in GSoC, ACM-ICPC, and other<br>recognized coding competitions.                                                                                                                          |
| 4  | Entrepreneurship<br>Development Cell | E-Cell is a student run body that aims to promote entrepreneurship by conducting workshops, speaker sessions and discussions on business and its aspects. We possess a mentor board to help startups grow.                                                                                                                    |
| 5  | Frequency Club                       | Team aims at contributing in both software and hardware domains mainly focusing on<br>Artificial Intelligence, Machine Learning and it's advances.                                                                                                                                                                            |
| 6  | Garuda                               | Design and development of supermileage urban concept electric car. Indigenous development of E-mobility products.                                                                                                                                                                                                             |
| 7  | Jatayu                               | Build a low cost Unmanned Aerial Vehicle capable of Autonomous Navigation,<br>Obstacle Avoidance, Object Detection, Localization, Classification and Air Drop of a<br>package of optimum weight.                                                                                                                              |
| 8  | Solar Car                            | Build a rondworthy solar electric vehicle in order to build a green and sustainable environment.                                                                                                                                                                                                                              |
| 9  | Team Antariksh                       | Team Antariksh is a Space Technology Student Club whose goal is to understand,<br>disseminate and apply the engineering skills for innovation in the field of Space<br>technology. designing Nano-Satellite payload for ISRO PS4 Orbital platform,<br>RVSAT-1 along with developing experimental rockets of various altitude. |
| 10 | Team Chimera                         | Building a Formula Electric Car through Research and Development in E-Mobility.<br>Electrifying Formula Racing.                                                                                                                                                                                                               |
| 11 | Helios Racing                        | Team involved in design, manufacturing and testing of All-Terrain Vehicles and other<br>supportive tasks for the functioning of the team. Participating in BAJA competitions<br>organized by SAE in India and the USA.                                                                                                        |
| 12 | Team Hydra                           | Developing autonomous underwater vehicles and use it for various real world applications such as water purification, solid waste detection and disposal etc.                                                                                                                                                                  |
| 13 | Team Krushi                          | Develop low cost equipments, which help farmers in cultivating and harvesting the crops. Use new technology applications to reduce the labour time hand cost for farmers. Aims at developing implants for Tractors.                                                                                                           |
| 14 | Team vyoma                           | Design, fabrication and testing of radio controlled aircrafts and research on various types of unmanned aerial vehicles.                                                                                                                                                                                                      |
| 15 | Team Dhruva                          | Organizing activities like quizzes based on astronomy.Stargazing and telescope handling sessions.Construction of a standard observatory. working on small projects with organizations like ICTS, IIA, ARIES etc.                                                                                                              |
| 16 | Ham club                             | To popularize Amateur Radio as a hobby among students, alongside exploring technical innovations in the communications domain. Intended to provide human capital for service to the nation at times of natural calamities.                                                                                                    |

NCC





"Not me but you" " Education through Community Service & Community Service through education" Cultural Activity Teams

- 1. AALAP (Music club)
- 2. DEBSOC (Debating society)
- 3. CARV (Dramatics club)
- 4. FOOTPRINTS (Dance club)
- 5. QUIZCORP (Quizzing society)
- 6. ROTARACT (Social welfare club)
- 7. RAAG (Youth club)
- 8. EVOKE (Fashion team)
- 9. f/6.3 (Photography club)
- 10. CARV ACCESS (Film-making club)

## VISION

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology



## **MISSION**

- To deliver outcome based Quality education, emphasizing on experiential learning with the state of the art infrastructure.
- To create a conducive environment for interdisciplinary research and innovation.



- To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

## **QUALITY POLICY**

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

## **CORE VALUES**

Professionalism, Commitment, Integrity, Team Work, Innovation

