

RV College of Engineering[®]

ಆರ್ ವಿ ಕಾಲೇಜ್ ಆಫ್ ಇಂಜನಿಯರಿಂಗ್ ನಾಲ್ ಆರ್ ವಿ ಯೂನಿವರ್ಸಿಟ

Bachelor of Engineering (B.E.)

Scheme and Syllabus of I & II Semesters (2022 Scheme)

B.E. Programs : AI, AS, BT, CH, CS, CV, CD, CY, EC, EE, EI, ET, IM, IS, ME. M. Tech (13) MCA, M.Sc. (Engg.) Ph.D. Programs : All Departments are recognized as Research Centres by VTU Except AI & AS

		CURR	RICULUM	STRUC	TURE
96	1301+ 501-600	61 CREE PROFESSIO CORES (PC)	DITS NAL	2. BASI	3 CREDITS
IN ENGINEERING (2023)	BEST PRIVATE ENGINEERING UNIVERSITY (SOUTH) BY ZEE DIGITAL	22 ENGINEERING SCIENCE	18 PROJECT INTERNS	redits (Work / HIP	12 OTHER ELECTIVES
1001+ SUBJECT RANKING JENGINEERINGI	801+ SUBJECT RANKING (COMPUTER SCIENCE)	12 PROFESSIONAL FLECTIVES	12 HUMANITE SOCIAL SC	DITS IS & IENCE	160
HIRF 2023 ENGINEERING RANKING INDIA NATIONAL RANK-10 STATE RANK - 2 ZONE RANK - 5	QS-IGUAGE DIAMOND UNIVERSITY RATING (2021-2024)	*ABILITY ENHANCEI UNIVERSAL HUMAN INDIAN KNOWLEDG	MENT COURSE I VALUES (UHV E SYSTEM (IKS	s (AEC),),), YOGA.	CREDITS TOTAL
19 CENTRES OF EXCELLENCE	6 CENTRES OF COMPETENCE	MOUS: INDUST INSTITU ABROA	90+W RIES / TIONS D	ITH ACA 5 IN II	DEMIC NDIA &
318	1381				
HELCATIONS ON HEB OF SCENCE 1699 CITATIONS 11 SELL BASED	ABUCATIONS ON ELSEVER SCORUS 63 FILED PATENTS 50 PUBLISHED PATENTS 27	EXECUT RS. 40 SPONS RESEAF CONSU SINCE 3	TED M CROR ORED RCH P ILTAN 3 YEAI	ORE ES W ROJE CY W RS	THAN /ORTH ECTS & /ORKS

RV College of Engineering[®]

ಆರ್ ವಿ ಕಾಲೇಜ್ ಆರ್ಷ್ಞಾಂಜನಿಯರಿಂಗ್

Bachelor of Engineering (B.E.)

Scheme and Syllabus of I & II Semesters (2022 Scheme)

B.E. Programs : AI, AS, BT, CH, CS, CV, CD, CY, EC, EE, EI, ET, IM, IS, ME. M. Tech (13) MCA, M.Sc. (Engg.) Ph.D. Programs : All Departments are recognized as Research Centres by VTU Except AI & AS

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

ABBREVIATIONS

Sl. No.	Abbreviation	Meaning
1.	AI	Artificial Intelligence & Machine Learning
2.	AS	Aerospace Engineering
3.	BT	Biotechnology
4.	CD	Computer Science & Engineering – Data Science
5.	СН	Chemical Engineering
6.	СНУ	Chemistry
7.	CS	Computer Science & Engineering
8.	CV	Civil Engineering
9.	СҮ	Computer Science & Engineering – Cyber Security
10.	EC	Electronics & Communication Engineering
11.	EE	Electrical & Electronics Engineering
12.	EI	Electronics & Instrumentation Engineering
13.	ET	Electronics & Telecommunication Engineering
14.	IM	Industrial Engineering & Management
15.	IS	Information Science & Engineering
16.	MA	Mathematics
17.	ME	Mechanical Engineering
18.	РНҮ	Physics
19.	SPARK	Study through Projects & Activity for Renewing Knowledge
20.	ASC	Applied Sciences Course
21.	PC	Professional Core Course
22.	ES	Engineering Science Course
23.	PL	Programming Language Lab Course
24.	EM	Emerging Technology Course
25.	HSS	Humanities and Social Sciences
26.	CIE	Continuous Internal Evaluation
27.	SEE	Semester End Examination
28.	VTU	Visvesvaraya Technological University

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

INDEX

		I / II Semester	-
Sl. No.	Course Code	Course Title	Page No.
	1	APPLIED SCIENCE COURSES	
1.	MAT211AT	Fundamentals of Linear Algebra, Calculus & Numerical Methods	1
2.	MAT211BT	Fundamentals of Linear Algebra, Calculus & Differential Equations	3
3.	MAT211CT	Fundamentals of Linear Algebra, Calculus & Statistics	5
4.	MAT211DT	Applied Mathematics - I	7
5.	MAT221AT	Vector Calculus, Laplace Transform & Numerical Methods	9
6.	MAT221BT	Vector Calculus & Computational Methods	11
7.	MAT221CT	Number Theory, Vector Calculus & Computational Methods	13
8.	MAT221DT	Applied Mathematics - II	15
9.	PHY211AI	Condensed Matter Physics for Engineers	17
10.	PHY211BI	Classical Physics for Engineers	20
11.	PHY221CI	Quantum Physics for Engineers	23
12.	PHY211DI	Applied Physics for Engineers	26
13.	CHY211AI	Chemistry of Smart Materials & Devices	29
14.	CHY221BI	Chemistry of Functional Materials	32
15.	CHY221CI	Chemistry of Engineering Materials	35
16.	CHY221DI	Engineering & Environmental Chemistry	38
		PROFESSIONAL CORE COURSES	
17.	EC112AT	Basic Electronics	41
18.	EE112AT	Elements of Electrical Engineering	43
19.	ME112AT	Elements of Mechanical Engineering	45
20.	CS222AI	Principles of Programming Using C	47
21.	CV112AT	Engineering Mechanics	50
22.	ME112GL/ME122GL	Computer Aided Engineering Graphics	52
23.	ME111DL/ME121DL	IDEA LAB (Idea Development, Evaluation & Application)	54
		ENGINEERING SCIENCE COURSES	
24.	CS113AT/ CS123AT	Fundamentals of Programming Using C	56
25.	CV113AT/ CV123AT	Elements of Civil Engineering	58
26.	EC113AT / EC123AT	Principles of Electronics Engineering	60
27.	EE113AT / EE123AT	Basics of Electrical Engineering	62
28.	ME113AT/ME123AT	Fundamentals of Mechanical Engineering	64
		EMERGING TECHNOLOGY COURSES	
29.	AI114AT / AI124AT	Introduction to Internet of Things	66
30.	AS114AT / AS124AT	Introduction to Drone Technology	68
31.	BT114AT / BT124AT	Bioinspired Engineering	70
32.	CH114AT/ CH124AT	Global Climate Change	72
33.	CS114AT / CS124AT	Elements of Blockchain Technology	74

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

		-	
34.	CS114BT / CS124BT	Introduction to Cyber Security	76
35.	CV114AT/ CV124AT	Green Buildings	78
36.	CV114BT / CV124BT	Infrastructure For Smart Cities	80
37.	CHY114AT/CHY124AT	Fundamentals of Nanoscience and Technology	82
38.	EC114AT / EC124AT	Fundamentals of Semiconductor Devices	84
39.	EC114BT / EC124BT	Introduction to Embedded Systems	86
40.	EE114AT / EE124AT	Renewable Energy Sources	88
41.	EI114AT / EI124AT	Fundamentals of Sensor Technology	90
42.	IM114AT / IM124AT	Human Factors in Engineering	92
43.	IS114AT / IS124AT	Digital Humanities	94
44.	ME114AT/ ME124AT	Smart Materials and Systems	96
45.	ME114BT / M5124BT	Elements of Industry 4.0	98
	PRO	OGRAMMING LANGUAGE LAB COURSES	
46.	AI115AI / AI125AI	Introduction to Python Programming	100
47.	CS115AI / CS125AI	Introduction to Web Programming	103
48.	CS115BI / CS125BI	Basics to Java Programming	105
49.	IS115AI / IS125AI	Introduction to C++ Programming	108
	HUN	IANITIES & SOCIAL SCIENCES COURSES	
50.	HSS111EL	Communicative English - I	111
51.	HSS121EL	Communicative English - II	113
52.	HSS114CT/HSS124CT	Fundamentals of Indian Constitution	115
53.	HSS115YL/HSS125YL	Scientific Foundations of Health: Yoga Practice	117
54.	HSS112BK/HSS122BK	Samskruthika Kannada	119
55.	HSS113BK/HSS123BK	Balake Kannada	121

_	_	_	1	1		-	-	-	-	<u> </u>	_	-		r	1	-			-		_	_			1
			larks F.	Lab	***	***	50	***	***	50	***	50			larks E	Lab	***	***	***	***	***	50	***	50	
			Max N SF	Theory	100	100	***	100	100	***	50	***			Max N SE	Theory	100	100	100	100	100	***	50	***	
			SEE Duration	(Hrs)	3	3	3	3	3	2	2	2			SEE Duration	(Hrs)	3	3	3	3	3	2	2	2	
			arks	Lab	***	***	50	***	***	50	***	50			arks	Lab	***	***	***	***	***	50	***	50	
		S	Max Mi CIF	Theory	100	100	***	100	100	***	50	***			Max M CIE	Theory	100	100	100	100	100	***	50	***	
S.	2	D, CY & I	CIE Duration	(H)	1.5	1.5	1.5	1.5	1.5	1	1	1		, CY & IS	CIE Duration	(H)	1.5	1.5	1.5	1.5	1.5	1	1	2	
LDONEN'		BT, CS, CI	Category	0	Theory	Theory+Lab	Lab	Theory	Theory+Lab	Lab	Theory	Lab		T, CS, CD	Category	(Theory	Theory+Lab	Theory+Lab	Theory	Theory	Lab	Theory	Lab	
		. IN (IN	tion	Total	4	4	m	e	e	1	-	1	20	I) AI, B	tion	Total	4	4	e	3	з	1	1	1	20
		REA	Alloca	Ъ	0		0	0	1	1	0	1	9	EAN	Alloca	Р	0	1	1	0	0	1	0	1	4
U L	2	S ST	redit .	Ŧ	1	-	0	0	0	0	0	0	10	STR	redit .	Т	1	1	0	0	0	0	0	0	0
		E (C	с С	Ч	ю	7	1	ю	7	0	1	0	12	(CS	U U	г	ε	2	2	3	З	0	1	0	14
		CYCI	BoS		MAT	СНУ	ME	XX	XX	SSH	SSH	HSS		CACLE	BoS		MAT	ΥНЧ	cs	XX	XX	SSH	HSS	ME	
JOD2 SCHEME		I SEMESTER: CHEMISTRY	Course Title		Fundamentals of Linear Algebra, Calculus and Statistics	Chemistry of Smart Materials And Devices	Computer Aided Engineering Graphics	Engineering Science Course - I	Programming Languages Course	Communicative English-I	Fundamentals of Indian Constitution	Scientific Foundations of Health-Yoga Practice		II SEMESTER: PHYSICS (Course Title		Number Theory, Vector Calculus and Computational Methods	Quantum Physics for Engineers	Principles of Programming Using C	Engineering Science Course-II	Emerging Technology Course	Communicative English-II	Samskrutika Kannada/ Balake Kannada	IDEA LAB (Idea Development, Evaluation & Application)	
			Course Code		MAT211CT	CHY211AI	ME112GL	XX113XT	XX115XI	HSS111EL	HSS114CT	HSS115YL			Course Code		MAT221CT	PHY221CI	CS22AI	XX123XT	XX124XT	HSS121EL	HSS122BK/ HSS123BK	ME121DL	
			SI, No.		1	7	ε	4	ы	9	7	8			SI, No.		1	2	с	4	ъ.	9	7	8	

- v	L
Ľ	
- 57	
- 2	
- 57	2
6	2)
- 22	
- 2	2
1	
C	J
Ā	1
	ч
2	2
C	
- 2	~
C	_
-	
- 1-	4
÷,	
F	4
	1
	4
_	_
Z	Π
7	1
	=
Ē	
1	
	-
1.	2
. •	5
_	
	2
7)
	-
1	
- 14	4
	-
- 2	_
2	
Ģ	2
1	2
Lanca	ショーンク
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
	A U U U U U U
	A D C D C N S
	A A O C D D D A A
	ハゴロしつ ママロ
	メロトレット マレート

		I SEMESTER: PHYSIC	S CYC	ЦЕ (U E E	STR	CAM) E	C, EE, EI	& ET					
SI. No.	Course Code	Course Title	BoS	U U	cedit /	Alloca	tion	Category	CIE Duration	Max Mi CIE	arks	SEE Duration	Max M SEI	arks
			1	ч	۴	P	Total		(H)	Theory	Lab	(Hrs)	Theory	Lab
-	MATO 11 AT	Fundamentals of Linear Algebra, Calculus and	MAT	¢	-	-	-	Theoter	u T	100	***		5	***
T		Numerical Methods		n	Ŧ	2	t	TITEOT	L.U	TOO			201	
7	PHY211AI	Condensed Matter Physics for Engineers	үнд	7	1	1	4	Theory+Lab	1.5	100	***	ε	100	***
	EC110AT	Basic Electronics	ر ل						u F					
Ċ	ECTIZAT	(Common to EC, EI & ET Programs)	ĒČ	c	,	c	ç	Theory	0.1	100	***	ო	100	***
2	EE110AT	Elements of Electrical Engineering	ى ك	4	-	>	,		u T					
	DE112A1	(Only for EE Program)	- - - - -					Theory	0.1	100	***	ო	100	***
4	XX113XT	Engineering Science Course - I	XX	з	0	0	3	Theory	1.5	100	***	3	100	***
5	XX114XT	Emerging Technology Course	XX	3	0	0	3	Theory	1	100	***	3	100	***
9	HSS111EL	Communicative English-I	HSS	0	0	1	1	Lab	1	***	50	7	***	50
7	HSS112BK/	Samskruitika Kannada / Balake Kannada	SSH	1	U	0	L	Theory	Ļ	50	***	õ	50	***
-	HSS113BK	Damon uuna mannada/ Dalano nammada	2211	-	>	~	•	110011	Ŧ	2		1	3	
¢	ME111DL	IDEA LAB (Idea Development, Evaluation &	MF.	C	C	-	ŀ	Lah	6	***	20	2	***	50
>		Application)		,	,	4	1	2222	1		}	I		3
				14	ო	ო	20							

50 **50** *** Theory Lab 50 *** *** *** Max Marks *** SEE 100 100 100 50 *** 100 *** Duration (Hrs) SEE **m** m m ო ΜN 0 0 Theory Lab ** ¥* 50 Max Marks *** *** *** CIE 100 100 100 50 *** 100 Duration II SEMESTER: CHEMISTRY CYCLE (EC STREAM) EC, EE, EI & ET CIE 1.51.51.5 1.5 E Theory+Lab Theory+Lab Category Theory Theory Theory Lab Lab Lab Total ო 4 4 ო ო --**Credit Allocation ட** 0 C 0 -H 0 0 0 0 0 0 -Ч ო 2 0 с C) 2 0 BoS MAT XX HSS HSS HSS СНУ ME Vector Calculus, Laplace Transform and Numerical Scientific Foundations of Health-Yoga Practice Computer Aided Engineering Graphics Fundamentals of Indian Constitution Chemistry of functional materials **Course Title Programming Languages Course Engineering Science Course-II** Communicative English-II Methods **Course Code** MAT221AT HSS124CT HSS121EL HSS125YL CHY221BI **ME122GL** XX123XT XX125XI SI. No. -N 4 ъ 9 1 8 с

20

ŋ

2

13

		I SEMESTER: PHYSIC	S CYCI	LE (]	MES	TRE	AM) A	S, CH, IM	& ME					
il. No.	Course Code	Course Title	BoS	Ū	edit A	llocat	ion	Category	CIE Duration	Max Ma CIE	arks	SEE Duration	Max M SEI	arks E
			<u> </u>	r	Ŧ	Р	Total)	(H)	Theory	Lab	(Hrs)	Theory	Lab
1	MAT211BT	Fundamentals of Linear Algebra, Calculus and Differential Equations	MAT	ε	1	0	4	Theory	1.5	100	***	ю	100	***
0	PHY211BI	Classical Physics for Engineers	ΡНΥ	7	1		4	Theory+Lab	1.5	100	***	σ	100	***
с	ME112AT	Elements of Mechanical Engineering	ME	2	1	0	3	Theory	1.5	100	***	3	100	***
4	XX113XT	Engineering Science Course - I	XX	3	0	0	3	Theory	1.5	100	***	3	100	***
5	XX114XT	Emerging Technology Course	XX	3	0	0	3	Theory	1	100	***	3	100	***
6	HSS111EL	Communicative English-I	HSS	0	0	1	1	Lab	1	***	50	2	***	50
7	HSS112BK/ HSS113BK	Samskrutika Kannada/ Balake Kannada	SSH	1	0	0	1	Theory	1	50	***	2	50	***
8	ME111DL	IDEA LAB (Idea Development, Evaluation & Application)	ME	0	0	1	1	Lab	2	***	50	3	***	50
	r			14	ဗ	e	20							

		II SEMESTER: CHEMIS'	TRY C	VCLE	IM) 3	E ST	REAM	AS, CH, I	M & ME					
SL. No.	Course Code	Course Title	BoS	ပ	redit .	Alloca	tion	Category	CIE Duration	Max Mark CIE	s SEI Durat	B ion M	ax Mar SEE	ks
				L	т	Ρ	Total	r	(H)	Theory La	ab (Hrs	s) Th	eory I	,ab
1	MAT221BT	Vector Calculus and Computational Methods	MAT	3	1	0	4	Theory	1.5	100 **	3 *	1	00	***
0	CHY221CI	Chemistry of Engineering materials	СНҮ	0	1	1	4	Theory+Lab	1.5	100 *	с *	-	, 00	***
ю	ME122GL	Computer Aided Engineering Graphics	ME	1	0	7	ო	Lab	1.5	۵ ***	о О	*	**	20
4	XX123XT	Engineering Science Course-II	XX	3	0	0	3	Theory	1.5	100 *	** 3	1	· 00	***
വ	XX125XI	Programming Languages Course	XX	2	0	1	3	Theory+Lab	1.5	100 *	** 3	1	· 00	***
9	HSS121EL	Communicative English-II	SSH	0	0	1	1	Lab	1	2 ***	0 2	*	**	50
7	HSS124CT	Fundamentals of Indian Constitution	HSS	1	0	0	1	Theory	1	50 *	** 2		0	***
8	HSS125YL	Scientific Foundations of Health-Yoga Practice	HSS	0	0	1	1	Lab	1	*** 2	0 2	*	**	50
				12	2	9	20							

2022 SCHEME - CREDITS AND COMPONENTS

	I SEMESTER: 1	DISYHG	S S	YCLI	(C)	V STRI	CAM) CV												
Course Code	Course Title	BoS	0	redit A	Viloca	tion	Category	CIE Duration	Max Mi CIE	arks	SEE Duration	Max M SEI	arks E						
			ц	ħ	Ч	Total)	(H)	Theory	Lab	(Hrs)	Theory	Lab						
MAT211DT	Applied Mathematics – I	MAT	m	-	0	4	Theory	1.5	100	***	m	100	***						
PHY211CI	Quantum Physics for Engineers	ЪНΥ	0	1	1	4	Theory+Lab	1.5	100	***	ę	100	***						
CV112AT	Engineering Mechanics	ME	7	1	0	e	Theory	1.5	100	***	ę	100	***						
XX113XT	Engineering Science Course - I	X	ω	0	0	e	Theory	1.5	100	***	m	100	***						
XX114XT	Emerging Technology Course	XX	ω	0	0	ę	Theory	1	100	***	m	100	***						
HSS111EL	Communicative English-I	HSS	0	0	1	1	Lab	1	***	50	5	***	50						
HSS112BK/ HSS113BK	Samskrutika Kannada/ Balake Kannada	SSH	1	0	0	1	Theory	1	50	***	7	20	***						
ME111DL	IDEA LAB (Idea Development, Evaluation & Application)	ME	0	0	1	1	Lab	2	***	50	10	***	50						
			14	ဗ	ი	20													
	Course Code MAT211DT PHY211CI CV112AT XX113XT XX114XT HSS111EL HSS111EL HSS112BK/ HSS113BK ME111DL	I SEMESTER: JCourse CodeCourse TitleMAT211DTApplied Mathematics - IMAT211DTApplied Mathematics - IPHY211C1Quantum Physics for EngineersCV112ATEngineering MechanicsXX113XTEngineering Science Course - IXX114XTEngineering Science CourseHSS111ELCommunicative English-IHSS111ELCommunicative English-IHSS1112BK/Samskrutika Kannada/ Balake KannadaME111DLIDEA LAB (Idea Development, Evaluation &	I SEMESTER: PHYSICCourse CodeCourse TitleBosMAT211DTApplied Mathematics - IMATPHY211CIQuantum Physics for EngineersPHYCV112ATEngineering MechanicsMEXX113XTEngineering Science Course - IXXXX113XTEmerging Technology CourseXXHSS111ELCommunicative English-IHSSHSS111BLCommunicative English-IHSSHSS111BLIDEA LAB (Idea Development, Evaluation & MEMEME111DLMDIcationME	I SEMESTER: PHYSICS C Course Code Course Title Bos C MAT211DT Applied Mathematics - I MAT MAT MAT MAT211DT Applied Mathematics - I MAT MAT A MAT211DT Applied Mathematics - I MAT A A MAT211CI Quantum Physics for Engineers MAT A A VX112AT Engineering Mechanics ME 2 A XX113XT Engineering Science Course - I XX 3 XX114XT Emerging Technology Course ME 2 HSS111EL Communicative English-I HSS 1 HSS111BL Communicative English-I HSS 1 ME111DL ME111DL ME ME 0	I SEMESTER: PHYSICS CYCL Course Title Bos Credit / MAT211DT Applied Mathematics - I MAT MAT A A Course Code Course Title Bos Credit / T MAT211DT Applied Mathematics - I MAT MAT A </td <td>I SEMESTER: PHYSICS CYCLE (CCourse CodeCourse TitleBoS$T = T$$T$MAT211DTApplied Mathematics – IMAT$MAT$$3$$1$$0$PHY211CIQuantum Physics for EngineersMAT$3$$1$$0$PHY211CIQuantum Physics for EngineersMAT$3$$1$$0$CV112ATEngineering MechanicsMME$2$$1$$1$CV1112ATEngineering Science Course$1$$XX$$3$$0$$0$XX113XTEngineering Science Course$1$$XX$$3$$0$$0$XX114XTEmerging Technology Course$1$$HSS$$0$$0$$0$HSS111ELCommunicative English-I$HSS$$1$$1$$0$$0$HSS111BK/Samskrutika Kannada/ Balake Kannada$HSS$$1$$0$$0$$0$ME111DL<math>DEA LAB (Idea Development, Evaluation & ME$0$$0$$0$$0$$0$ME111DL$Application$$Application$$Application$<math>Application & Application<math>Application & Application & Application<math>Application & Application & Application$Application & Application & A$</math></math></math></math></td> <td>I SEMESTER: PHYSICS CYCLE (CY STRE I SEMESTER: PHYSICS CYCLE (CY STRE Course CodeCourse CodeCourse TitleBosCredit AllocationMAT211DTApplied Mathematics - IMAT$3$$1$$0$$4$PHY211CIQuantum Physics for EngineersPHY$2$$1$$1$$4$V2112ATEngineering MechanicsME$2$$1$$0$$4$XX113XTEngineering Science Course - IXX$3$$0$$0$$3$XX114XTEmerging Technology CourseXX$3$$0$$0$$3$HSS111ELCommunicative English-IHSS$1$$0$$0$$1$HSS113BKSamskrutika Kannada/ Balake KannadaHSS$1$$0$$0$$1$$1$ME111DLDEA LAB (Idea Development, Evaluation & ME$ME$$0$$0$$1$$1$$1$ME111DLApplication)ME$3$$3$$3$$20$</td> <td>I SEMESTER: PHYSICS CYCLE (CY STREAM) CVCourse TyteBosCredit AllocationCourse CodeCourse TyteBosCredit AllocationMAT211DTApplied Mathematics - IMATBosITPMAT211CIQuantum Physics for EngineersPHY2104TheoryPHY211CIQuantum Physics for EngineersMAT3104TheoryCV112ATEngineering MechanicsME2114TheoryCV112ATEngineering Science Course - IXX3003TheoryXX113XTEngineering Science Course - IXX3003TheoryXX114XTEmerging Technology CourseXX3003TheoryHSS111ELCommunicative English-IHSS1001LabHSS113BKBanskrutika KannadaHSS10011IheoryME111DLIDEA LAB (Idea Development, Evaluation &ME0011LabME111DLApplicationAbplicationABAAAABApplicationABAAAAABABAAAAAAABABAAAAAAABAAAAAAA<t< td=""><td>I SEMESTER: PHYSICS CYCLE (CV STREAM) CVCourse CodeConse TitleCredit AllocationCourse CodeConse TitleSetegoryCIEMAT211DTApplied Mathematics - 1MAT3104Theory1.5MAT211DTApplied Mathematics - 1MAT3104Theory1.5MAT211DTApplied Mathematics - 1MAT3104Theory1.5PHY211C1Quantum Physics for EngineersME2114Theory1.5CV112ATEngineering MechanicsME2103Theory1.5XX113XTEngineering Science Course - 1XX3003Theory1.5XX114XTEmerging Technology CourseXX3003Theory1.5XX114XTEmerging Technology CourseHSS10011.5HSS111ELCommunicative English-1HSS10011.5HSS111BK/Samskrutika Kannada/ Balake KannadaHSS10011.5HSS112BK/Bef LAB (Idea Development, Evaluation &ME00111.5HSS112BK/MBF111DLME0011111.5ME111DLApplication)ME333200111</td><td>I SEMESTER: PHYSICS CYCLE (CV STREAM) CVCourse TitleCredit AllocationCourse CodeCourse TitleBoSCredit AllocationMAT211DTApplied Mathematics - IMATBoSCredit AllocationMAT211DTApplied Mathematics - IMATCategoryCIEMAT211DTApplied Mathematics - IMATCategoryCIEMAT211DTApplied Mathematics - IMATCategoryCategoryCIEMAT211DTApplied Mathematics - IMATCategoryCategoryCategoryCIEMAT211DTApplied Mathematics - IMATCategoryCategoryCategoryCategoryCategoryCategoryCategoryCategoryCategoryCIEMAT211DTApplicating Science Course - IMAT2103Theory1.5100X113XTEnging Technology CourseME21214Theory1.5100X113XTEnging Technology CourseME2123Theory1.5100X111XTEnging Technology CourseME21111110X113XTEng</td><td>I SEMESTER: PHYSICS CYCLE (CV STREAM) CVCourse CodeCredit AllocationCIEMax MarksCourse CodeCredit AllocationCredit AllocationCIEMax MarksMAT211DTApplied Mathematics - IMax MarksCredit AllocationCIEMax MarksMAT211DTApplied Mathematics - IMATMAT3104Theory1.51000***MAT211DTApplied Mathematics - IMATMAT3104Theory1.51000***MAT211DTEngineering MechanicsMME2103Theory1.51000***MAT211DTEngineering Science Course - IMME2103Theory1.51000***MAT113TTEnerging Technology CourseMME2103Theory1.51000***XX114TTEnerging Technology CourseMME2103Theory1.51000***XX114TTEnerging Technology CourseXX3003Theory1.51000***XX114TTEnerging Technology CourseXX30011100***XX114TTEnerging Technology CourseXX30011100***</td><td>I SEMESTER: PHYSICS CYCLE (CV STREAM) CVCourse CodeCredit AllocationCredit AllocationCourse CodeNar Set Course TitleBosCredit AllocationMAT211DTApplied Mathematics - IBos$L$$T$$P$$Total$$Category$$Lis$$Ioo$<t< td=""><td>I SEMESTER: PHYSICS CYCLE (CV STREAM) CVCourse CodeI CIEMax MarksSEEMax MarksCourse Course IMATIIIIIIIPHY21IDTCless Course IMax MarksSEEMax MarksSEEMax MarksPHY21IDTCless Course INATIIIIIIIIIIIIIIIIIII<th <<="" colspan="6" td=""></th></td></t<></td></t<></td>	I SEMESTER: PHYSICS CYCLE (CCourse CodeCourse TitleBoS $T = T$ T MAT211DTApplied Mathematics – IMAT MAT 3 1 0 PHY211CIQuantum Physics for EngineersMAT 3 1 0 PHY211CIQuantum Physics for EngineersMAT 3 1 0 CV112ATEngineering MechanicsMME 2 1 1 CV1112ATEngineering Science Course 1 XX 3 0 0 XX113XTEngineering Science Course 1 XX 3 0 0 XX114XTEmerging Technology Course 1 HSS 0 0 0 HSS111ELCommunicative English-I HSS 1 1 0 0 HSS111BK/Samskrutika Kannada/ Balake Kannada HSS 1 0 0 0 ME111DL $DEA LAB (Idea Development, Evaluation & ME00000ME111DLApplicationApplicationApplicationApplication & ApplicationApplication & Application & ApplicationApplication & Application & ApplicationApplication & Application & A$	I SEMESTER: PHYSICS CYCLE (CY STRE I SEMESTER: PHYSICS CYCLE (CY STRE Course CodeCourse CodeCourse TitleBosCredit AllocationMAT211DTApplied Mathematics - IMAT 3 1 0 4 PHY211CIQuantum Physics for EngineersPHY 2 1 1 4 V2112ATEngineering MechanicsME 2 1 0 4 XX113XTEngineering Science Course - IXX 3 0 0 3 XX114XTEmerging Technology CourseXX 3 0 0 3 HSS111ELCommunicative English-IHSS 1 0 0 1 HSS113BKSamskrutika Kannada/ Balake KannadaHSS 1 0 0 1 1 ME111DLDEA LAB (Idea Development, Evaluation & ME ME 0 0 1 1 1 ME111DLApplication)ME 3 3 3 20	I SEMESTER: PHYSICS CYCLE (CY STREAM) CVCourse TyteBosCredit AllocationCourse CodeCourse TyteBosCredit AllocationMAT211DTApplied Mathematics - IMATBosITPMAT211CIQuantum Physics for EngineersPHY2104TheoryPHY211CIQuantum Physics for EngineersMAT3104TheoryCV112ATEngineering MechanicsME2114TheoryCV112ATEngineering Science Course - IXX3003TheoryXX113XTEngineering Science Course - IXX3003TheoryXX114XTEmerging Technology CourseXX3003TheoryHSS111ELCommunicative English-IHSS1001LabHSS113BKBanskrutika KannadaHSS10011IheoryME111DLIDEA LAB (Idea Development, Evaluation &ME0011LabME111DLApplicationAbplicationABAAAABApplicationABAAAAABABAAAAAAABABAAAAAAABAAAAAAA <t< td=""><td>I SEMESTER: PHYSICS CYCLE (CV STREAM) CVCourse CodeConse TitleCredit AllocationCourse CodeConse TitleSetegoryCIEMAT211DTApplied Mathematics - 1MAT3104Theory1.5MAT211DTApplied Mathematics - 1MAT3104Theory1.5MAT211DTApplied Mathematics - 1MAT3104Theory1.5PHY211C1Quantum Physics for EngineersME2114Theory1.5CV112ATEngineering MechanicsME2103Theory1.5XX113XTEngineering Science Course - 1XX3003Theory1.5XX114XTEmerging Technology CourseXX3003Theory1.5XX114XTEmerging Technology CourseHSS10011.5HSS111ELCommunicative English-1HSS10011.5HSS111BK/Samskrutika Kannada/ Balake KannadaHSS10011.5HSS112BK/Bef LAB (Idea Development, Evaluation &ME00111.5HSS112BK/MBF111DLME0011111.5ME111DLApplication)ME333200111</td><td>I SEMESTER: PHYSICS CYCLE (CV STREAM) CVCourse TitleCredit AllocationCourse CodeCourse TitleBoSCredit AllocationMAT211DTApplied Mathematics - IMATBoSCredit AllocationMAT211DTApplied Mathematics - IMATCategoryCIEMAT211DTApplied Mathematics - IMATCategoryCIEMAT211DTApplied Mathematics - IMATCategoryCategoryCIEMAT211DTApplied Mathematics - IMATCategoryCategoryCategoryCIEMAT211DTApplied Mathematics - IMATCategoryCategoryCategoryCategoryCategoryCategoryCategoryCategoryCategoryCIEMAT211DTApplicating Science Course - IMAT2103Theory1.5100X113XTEnging Technology CourseME21214Theory1.5100X113XTEnging Technology CourseME2123Theory1.5100X111XTEnging Technology CourseME21111110X113XTEng</td><td>I SEMESTER: PHYSICS CYCLE (CV STREAM) CVCourse CodeCredit AllocationCIEMax MarksCourse CodeCredit AllocationCredit AllocationCIEMax MarksMAT211DTApplied Mathematics - IMax MarksCredit AllocationCIEMax MarksMAT211DTApplied Mathematics - IMATMAT3104Theory1.51000***MAT211DTApplied Mathematics - IMATMAT3104Theory1.51000***MAT211DTEngineering MechanicsMME2103Theory1.51000***MAT211DTEngineering Science Course - IMME2103Theory1.51000***MAT113TTEnerging Technology CourseMME2103Theory1.51000***XX114TTEnerging Technology CourseMME2103Theory1.51000***XX114TTEnerging Technology CourseXX3003Theory1.51000***XX114TTEnerging Technology CourseXX30011100***XX114TTEnerging Technology CourseXX30011100***</td><td>I SEMESTER: PHYSICS CYCLE (CV STREAM) CVCourse CodeCredit AllocationCredit AllocationCourse CodeNar Set Course TitleBosCredit AllocationMAT211DTApplied Mathematics - IBos$L$$T$$P$$Total$$Category$$Lis$$Ioo$<t< td=""><td>I SEMESTER: PHYSICS CYCLE (CV STREAM) CVCourse CodeI CIEMax MarksSEEMax MarksCourse Course IMATIIIIIIIPHY21IDTCless Course IMax MarksSEEMax MarksSEEMax MarksPHY21IDTCless Course INATIIIIIIIIIIIIIIIIIII<th <<="" colspan="6" td=""></th></td></t<></td></t<>	I SEMESTER: PHYSICS CYCLE (CV STREAM) CVCourse CodeConse TitleCredit AllocationCourse CodeConse TitleSetegoryCIEMAT211DTApplied Mathematics - 1MAT3104Theory1.5MAT211DTApplied Mathematics - 1MAT3104Theory1.5MAT211DTApplied Mathematics - 1MAT3104Theory1.5PHY211C1Quantum Physics for EngineersME2114Theory1.5CV112ATEngineering MechanicsME2103Theory1.5XX113XTEngineering Science Course - 1XX3003Theory1.5XX114XTEmerging Technology CourseXX3003Theory1.5XX114XTEmerging Technology CourseHSS10011.5HSS111ELCommunicative English-1HSS10011.5HSS111BK/Samskrutika Kannada/ Balake KannadaHSS10011.5HSS112BK/Bef LAB (Idea Development, Evaluation &ME00111.5HSS112BK/MBF111DLME0011111.5ME111DLApplication)ME333200111	I SEMESTER: PHYSICS CYCLE (CV STREAM) CVCourse TitleCredit AllocationCourse CodeCourse TitleBoSCredit AllocationMAT211DTApplied Mathematics - IMATBoSCredit AllocationMAT211DTApplied Mathematics - IMATCategoryCIEMAT211DTApplied Mathematics - IMATCategoryCIEMAT211DTApplied Mathematics - IMATCategoryCategoryCIEMAT211DTApplied Mathematics - IMATCategoryCategoryCategoryCIEMAT211DTApplied Mathematics - IMATCategoryCategoryCategoryCategoryCategoryCategoryCategoryCategoryCategoryCIEMAT211DTApplicating Science Course - IMAT2103Theory1.5100X113XTEnging Technology CourseME21214Theory1.5100X113XTEnging Technology CourseME2123Theory1.5100X111XTEnging Technology CourseME21111110X113XTEng	I SEMESTER: PHYSICS CYCLE (CV STREAM) CVCourse CodeCredit AllocationCIEMax MarksCourse CodeCredit AllocationCredit AllocationCIEMax MarksMAT211DTApplied Mathematics - IMax MarksCredit AllocationCIEMax MarksMAT211DTApplied Mathematics - IMATMAT3104Theory1.51000***MAT211DTApplied Mathematics - IMATMAT3104Theory1.51000***MAT211DTEngineering MechanicsMME2103Theory1.51000***MAT211DTEngineering Science Course - IMME2103Theory1.51000***MAT113TTEnerging Technology CourseMME2103Theory1.51000***XX114TTEnerging Technology CourseMME2103Theory1.51000***XX114TTEnerging Technology CourseXX3003Theory1.51000***XX114TTEnerging Technology CourseXX30011100***XX114TTEnerging Technology CourseXX30011100***	I SEMESTER: PHYSICS CYCLE (CV STREAM) CVCourse CodeCredit AllocationCredit AllocationCourse CodeNar Set Course TitleBosCredit AllocationMAT211DTApplied Mathematics - IBos L T P $Total$ $Category$ Lis Ioo <t< td=""><td>I SEMESTER: PHYSICS CYCLE (CV STREAM) CVCourse CodeI CIEMax MarksSEEMax MarksCourse Course IMATIIIIIIIPHY21IDTCless Course IMax MarksSEEMax MarksSEEMax MarksPHY21IDTCless Course INATIIIIIIIIIIIIIIIIIII<th <<="" colspan="6" td=""></th></td></t<>	I SEMESTER: PHYSICS CYCLE (CV STREAM) CVCourse CodeI CIEMax MarksSEEMax MarksCourse Course IMATIIIIIIIPHY21IDTCless Course IMax MarksSEEMax MarksSEEMax MarksPHY21IDTCless Course INATIIIIIIIIIIIIIIIIIII <th <<="" colspan="6" td=""></th>						

		II SEMESTER: C	HEMIS	TRY	CYC	CLE	(CV ST	REAM) CV						
NO	Conree Code	Course Title	Ros	С	redit ,	Alloca	vtion	Category	CIE	Max Mi CIE	arks	SEE Duration	Max M SEI	arks E
				r	ť	P	Total	00000 A	(H)	Theory	Lab	(Hrs)	Theory	Lab
1	MAT221DT	Applied Mathematics – II	MAT	3	1	0	4	Theory	1.5	100	***	3	100	***
0	CHY221DI	Engineering And Environmental Chemistry	СНУ	2	1	1	4	Theory+Lab	1.5	100	***	3	100	***
ო	ME122GL	Computer Aided Engineering Graphics	ME	1	0	7	с	Lab	1.5	***	50	e	***	50
4	XX123XT	Engineering Science Course-II	XX	3	0	0	3	Theory	1.5	100	***	3	100	***
ъ	XX125XI	Programming Languages Course	XX	7	0	1	e	Theory+Lab	1.5	100	***	e	100	***
9	HSS121EL	Communicative English-II	HSS	0	0	1	1	Lab	1	***	50	ю	***	50
7	HSS124CT	Fundamentals of Indian Constitution	HSS	1	0	0	1	Theory	1	50	***	7	50	***
8	HSS125YL	Scientific Foundations of Health-Yoga Practice	SSH	0	0	1	1	Lab	1	***	50	2	***	50
				12	6	9	20							

2022 SCHEME - CREDITS AND COMPONENTS

Go, change the world

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Applied Science Courses

FUNDAMENTALS OF LINEAR ALGEBRA, CALCULUS AND NUMERICAL METHODS (MAT211AT) FUNDAMENTALS OF LINEAR ALGEBRA, CALCULUS AND DIFFERENTIAL EQUATIONS (MAT211BT) FUNDAMENTALS OF LINEAR ALGEBRA, CALCULUS AND STATISTICS (MAT211CT) APPLIED MATHEMATICS - I (MAT211DT) VECTOR CALCULUS, LAPLACE TRANSFORM AND NUMERICAL METHODS (MAT221AT) VECTOR CALCULUS AND COMPUTATIONAL METHODS (MAT221BT) NUMBER THEORY, VECTOR CALCULUS AND COMPUTATIONAL METHODS (MAT211CT) APPLIED MATHEMATICS - II (MAT221DT)

CONDENSED MATTER PHYSICS FOR ENGINEERS (PHY211AI) CLASSICAL PHYSICS FOR ENGINEERS (PHY211BI) QUANTUM PHYSICS FOR ENGINEERS (PHY221CI) APPLIED PHYSICS FOR ENGINEERS (PHY211DI)

CHEMISTRY OF SMART MATERIALS AND DEVICES (CHY211AI) CHEMISTRY OF FUNCTIONAL MATERIALS (CHY221BI) CHEMISTRY OF ENGINEERING MATERIALS (CHY221CI) ENGINEERING AND ENVIRONMENTAL CHEMISTRY (CHY221DI)

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Semester: I

FUNDAMENTALS OF LINEAR ALGEBRA, CALCULUS AND NUMERICAL METHODS

Category: Applied Science Course

Stream: Electronics (Common to EC, EE, EI & ET Programs)

(Theory)

Unit-I

Course Code	:	MAT211AT	CIE	:	100 Marks
Credits: L:T:P	:	3:1:0	SEE		100 Marks
Total Hours	••	42L+14T	SEE Duration	:	3 Hours

Elementary Linear Algebra

Rank of matrices-Rank of a matrix by Echelon form, consistency of system of linear equations- homogeneous and non-homogeneous equations, Gauss elimination, Gauss-Jordan and Gauss-Seidel methods. Eigenvalues and Eigenvectors-Properties, largest eigenvalue by Rayleigh's power method. Implementation using MATLAB. Unit – II

Differential Calculus

Basics of polar coordinates, polar curves, angle between radius vector and tangent. Curvature, radius of curvature-Cartesian, polar & parametric forms (without proof), centre and circle of curvature (formulae only) and problems. Taylor's and Maclaurin's series for a function of single variable (statements only) and problems. Simulation using MATLAB. Unit –III

				÷ .
Multivariable	Functions a	and Partial	Differentiation	

Functions of several variables, Partial derivatives-Definition and notations, higher order partial derivativesproblems, total differentials, total derivatives, composite functions and chain rule-Problems. Extreme values for function of two variables-Method of Lagrange multipliers. Jacobians - Properties and problems. Simulation using MATLAB.

Unit -IV

Unit –V

Multiple Integrals

Double integrals-Introduction and method of evaluation-Problems. Change of order of integration and change of variables to polar coordinates-Problems. Applications-Area, volume and center of gravity. Triple integrals-Introduction and method of evaluation and problems. Applications-Volume of a solid and center of gravity. Simulation using MATLAB.

Numerical Methods

Finite differences, concept of forward and backward differences, introduction to interpolation and extrapolation. Newton-Gregory (N-G) forward and backward interpolation formulae, Lagrange interpolation formula, application oriented problems. Numerical differentiation based on N-G forward and backward interpolation, applicationsvelocity and acceleration.

Numerical integration-Newton-Cotes approach–Simpson's 1/3rd, 3/8th rules and Weddle's rule. Implementation using MATLAB.

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Illustrate the fundamental concepts of linear algebra, differential calculus, partial differentiation, multiple				
	integrals and numerical methods.				
CO2	Apply the acquired knowledge of linear algebra, differential calculus, partial differentiation, multiple				
	integrals and numerical methods to solve the problems of engineering applications.				
CO3	Analyze the solution of the problems using appropriate techniques of linear algebra, differential calculus,				
	partial differentiation, multiple integrals and numerical methods to the real - world problem and optimize				
	the solution.				
CO4	Interpret the overall knowledge of linear algebra, calculus, integration and numerical methods gained to				
	demonstrate the problems arising in many practical situations.				

08 Hrs

08 Hrs

09 Hrs

09 Hrs

08 Hrs

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Referen	Reference Books				
1	Higher Engineering Mathematics, B. S. Grewal, 44 th Edition, 2015, Khanna Publishers,				
	ISBN: 978-81-933284-9-1.				
2	Calculus, Saturinino L. Salas, Einar Hille and Garret J. Etgen, 10 th Edition, 2022, Wiley India,				
	ISBN: 9789390421961.				
3	Schaum's Outline of Advanced Calculus, Robert Wrede and Murray Spiegel, 3 rd Edition, 2010, McGraw-				
	Hill Education, ISBN -10: 0071623663, ISBN -13: 978-0071623667.				
4	Advanced Engineering Mathematics, E. Kreyszig, 10 th Edition (Reprint), 2016, John Wiley & Sons,				
	ISBN: 978-0470458365.				
5	Calculus James Stewart 8 th Edition 2016 Cengage Learning JSBN: 978-1-285-74062-1				

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS	MARKS	
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40	
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40	
	MAXIMUM MARKS FOR THE CIE THEORY	100	

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS		
	PART A			
1	Objective type questions covering entire syllabus	20		
	PART B			
	(Maximum of TWO Sub-divisions only)			
2	Unit 1 : (Compulsory)	16		
3 & 4	Unit 2 : Question 3 or 4	16		
5&6	Unit 3 : Question 5 or 6	16		
7 & 8	Unit 4 : Question 7 or 8	16		
9 & 10	Unit 5: Question 9 or 10	16		
	MAXIMUM MARKS FOR THE SEE THEORY	100		

09 Hrs

09 Hrs

08 Hrs

08 Hrs

08 Hrs

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Semester: I

FUNDAMENTALS OF LINEAR ALGEBRA, CALCULUS AND DIFFERENTIAL EQUATIONS

Category: Applied Science Course

Stream: Mechanical (Common to AS, CH, IM & ME Programs)

(Theory)

Unit-I

Unit – II

Course Code	••	MAT211BT	CIE	••	100 Marks
Credits: L:T:P	••	3:1:0	SEE	••	100 Marks
Total Hours	••	42L+14T	SEE Duration	••	3 Hours

Elementary Linear Algebra

Rank of matrices-Rank of a matrix by Echelon form, consistency of system of linear equations- homogeneous and non-homogeneous equations, Gauss elimination, Gauss-Jordan and Gauss-Seidel methods. Eigenvalues and Eigenvectors-Properties, largest eigenvalue by Rayleigh's power method. Implementation using MATLAB.

Differential Calculus

Basics of polar coordinates, polar curves, angle between radius vector and tangent. Curvature, radius of curvature-Cartesian, polar & parametric forms (without proof), centre and circle of curvature (formulae only) and problems. Taylor's and Maclaurin's series for a function of single variable (statements only) and problems. Simulation using MATLAB.

		Unit –III
Multivariable Functions	and Partial	Differentiation

Functions of several variables, Partial derivatives-Definition and notations, higher order partial derivativesproblems, total differentials, total derivatives, composite functions and chain rule-Problems. Extreme values for function of two variables-Method of Lagrange multipliers. Jacobians - Properties and problems. Simulation using MATLAB.

Multiple Integrals

Unit –IV

Double integrals–Introduction and method of evaluation-Problems. Change of order of integration and change of variables to polar coordinates-Problems. Applications–Area, volume and centre of gravity. Triple integrals-Introduction and method of evaluation and problems. Applications-Volume of a solid and centre of gravity. Simulation using MATLAB.

Unit –V Linear Ordinary Differential Equations of Higher Order

Standard form of higher order linear differential equation with constant coefficients. Solution of homogeneous equations-complementary functions. Non homogeneous equations-Concept of Inverse differential operator, methods of finding particular integral based on input function (force function), method of variation of parameters. Equations with functional coefficients-Cauchy equation. Applications-Simple harmonic motion, LRC circuits. Implementation using MATLAB.

Course	Course Outcomes: After completing the course, the students will be able to					
CO1	Illustrate the fundamental concepts of linear algebra, differential calculus, partial differentiation, multiple					
	integrals and differential equations.					
CO2	Apply the acquired knowledge of linear algebra, differential calculus, partial differentiation, multiple					
	integrals and differential equations to solve the problems of engineering applications.					
CO3	Analyze the solution of the problems using appropriate techniques of linear algebra, differential calculus,					
	partial differentiation, multiple integrals and differential equations to the real - world problem and					
	optimize the solution.					
CO4	Interpret the overall knowledge of linear algebra, calculus and differential equations gained to					
	demonstrate the problems arising in many practical situations.					

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Refere	Reference Books				
1	Higher Engineering Mathematics, B. S. Grewal, 44 th Edition, 2015, Khanna Publishers,				
	ISBN: 978-81-933284-9-1.				
2	Calculus, Saturinino L. Salas, Einar Hille and Garret J. Etgen, 10th Edition, 2022, Wiley India,				
	ISBN: 9789390421961.				
3	Schaum's Outline of Advanced Calculus, Robert Wrede and Murray Spiegel, 3 rd Edition, 2010,				
	McGraw-Hill Education, ISBN -10: 0071623663, ISBN -13: 978-0071623667.				
4	Advanced Engineering Mathematics, E. Kreyszig, 10 th Edition (Reprint), 2016, John Wiley & Sons,				
	ISBN: 978-0470458365.				
5	Calculus James Stewart 8 th Edition 2016 Cengage Learning JSBN: 978-1-285-74062-1				

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS	MARKS	
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40	
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40	
	MAXIMUM MARKS FOR THE CIE THEORY	100	

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS		
	PART A			
1	Objective type questions covering entire syllabus	20		
	PART B			
	(Maximum of TWO Sub-divisions only)			
2	Unit 1 : (Compulsory)	16		
3 & 4	Unit 2 : Question 3 or 4	16		
5&6	Unit 3 : Question 5 or 6	16		
7 & 8	Unit 4 : Question 7 or 8	16		
9 & 10	Unit 5: Question 9 or 10	16		
	MAXIMUM MARKS FOR THE SEE THEORY	100		

09 Hrs

09 Hrs

08 Hrs

08 Hrs

08 Hrs

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Semester: I

FUNDAMENTALS OF LINEAR ALGEBRA, CALCULUS AND STATISTICS

Category: Applied Science Course

Stream: Computer Science (Common to AI, BT, CS, CY, CD & IS Programs)

(Theory)

Course Code	••	MAT211CT	CIE	•••	100 Marks
Credits: L:T:P	••	3:1:0	SEE	•••	100 Marks
Total Hours	••	42L+14T	SEE Duration	:	3 Hours

Unit-I

Unit – II

Unit -IV

Unit -V

Elementary Linear Algebra

Rank of matrices-Rank of a matrix by Echelon form, consistency of system of linear equations- homogeneous and non-homogeneous equations, Gauss elimination, Gauss-Jordan and Gauss-Seidel methods. Eigenvalues and Eigenvectors-Properties, largest eigenvalue by Rayleigh's power method. Implementation using MATLAB

Differential Calculus

Basics of polar coordinates, polar curves, angle between radius vector and tangent. Curvature, radius of curvature-Cartesian, polar & parametric forms (without proof), center and circle of curvature (formulae only) and problems. Taylor's and Maclaurin's series for a function of single variable (statements only) and problems. Simulation using MATLAB. Unit III

		Unit –m	
•	10 41	D'00 1' 1'	

Multivariable Functions and Partial Differentiation

Functions of several variables, Partial derivatives-Definition and notations, higher order partial derivativesproblems, total differentials, total derivatives, composite functions and chain rule-Problems. Extreme values for function of two variables-Method of Lagrange multipliers. Jacobians - Properties and problems. Simulation using MATLAB.

Multiple Integrals Double integrals-Introduction and method of evaluation-Problems. Change of order of integration and change of variables to polar coordinates-Problems. Applications-Area, volume and center of gravity. Triple integrals-Introduction and method of evaluation and problems. Applications-Volume of a solid and centre of gravity. Simulation using MATLAB.

Statistics

Central moments, mean, variance, coefficients of skewness and kurtosis in terms of moments. Curve fitting by method of least squares, fitting of curves-Polynomial, exponential and power functions. Correlation and linear regression analysis-Problems. Applications. Implementation using MATLAB.

Course	Outcomes: After completing the course, the students will be able to
CO1	Illustrate the fundamental concepts of linear algebra, differential calculus, partial differentiation, multiple
	integrals and statistics.
CO2	Apply the acquired knowledge of linear algebra, differential calculus, partial differentiation, multiple
	integrals and statistics to solve the problems of engineering applications.
CO3	Analyze the solution of the problems using appropriate techniques of linear algebra, differential calculus,
	partial differentiation, multiple integrals and statistics to the real - world problem and optimize the
	solution.
CO4	Interpret the overall knowledge of linear algebra, calculus, integration and statistics gained to demonstrate
	the problems arising in many practical situations.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Referen	nce Books
1	Higher Engineering Mathematics, B. S. Grewal, 44 th Edition, 2015, Khanna Publishers,
	ISBN: 978-81-933284-9-1.
2	Calculus, Saturinino L. Salas, Einar Hille and Garret J. Etgen, 10 th Edition, 2022, Wiley India,
	ISBN: 9789390421961.
3	Schaum's Outline of Advanced Calculus, Robert Wrede and Murray Spiegel, 3 rd Edition, 2010,
	McGraw-Hill Education, ISBN -10: 0071623663, ISBN -13: 978-0071623667.
4	Advanced Engineering Mathematics, E. Kreyszig, 10 th Edition (Reprint), 2016, John Wiley & Sons,
	ISBN: 978-0470458365.
5	Calculus, James Stewart, 8 th Edition, 2016, Cengage Learning, ISBN: 978-1-285-74062-1.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS			
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20			
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40			
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40			
	MAXIMUM MARKS FOR THE CIE THEORY	100			

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7 & 8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	MAXIMUM MARKS FOR THE SEE THEORY	100			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

			Semester: I			
		APPLI	ED MATHEMATIC	2S - I		
		Category	y: Applied Science C	ourse		
		Stream: C	Civil (Only to CV Pro	ogram)		
			(Theory)		-	
Course	Code :	MAT211DT		CIE	:	100 Marks
Credits	s: L:T:P :	3:1:0		SEE	:	100 Marks
Total E	Iours :	42L+14T		SEE Duration	:	3 Hours
r						
		t	Unit-I			09 Hrs
Elemen	tary Linear Algebra	a			_	
Rank of	f matrices-Rank of a	matrix by Echelon f	form, consistency of s	system of linear equa	tion	s- homogeneous and
non-hoi	mogeneous equation	s, Gauss elimination	on, Gauss-Jordan an	d Gauss-Seidel me	thoc	ls. Eigenvalues and
Eigenve	ectors-Properties, larg	gest eigenvalue by R	Rayleigh's power meth	nod. Implementation	usir	ng MATLAB.
		U	nit – II			09 Hrs
Multiv	ariable functions an	d Partial Different	iation			
Functio	ns of several variat	oles, Partial derivat	tives-Definition and	notations, higher o	rder	partial derivatives-
problen	ns, total differentials,	total derivatives, c	composite functions a	ind chain rule-Proble	ems.	Extreme values for
function	n of two variables-M	ethod of Lagrange	multipliers. Jacobian	s-Properties and pro	bler	ns. Simulation using
MATL	AB.	**	• • • • •			0.0 11
		Ui	nit –III			08 Hrs
Multip	le Integrals	1 1 1 0	1 (D 11 (C 1 C .		. 11 0
Double	integrals-Introductio	on and method of ev	valuation-Problems. C	hange of order of it	nteg	ration and change of
variable	es to polar coordina	tes-Problems. App.	lications–Area, volur	ne and centre of g	ravı	ty. I riple integrals-
Introdu	ction and method of	evaluation and pi	roblems. Application	s-Volume of a solic	1 an	d centre of gravity.
Simulation using MATLAB.						
Linear Ordinary Differential Equations of Higher Order						
Linear Ordinary Differential Equations of Higner Order						
Stanual	a form of higher of	functions. Non ho	an equation with con	Concert of Invest		differential operator
mothod	s of finding particula	r integral based on i	input function (force)	function) method of		interential operator,
Equation	s of filluling particula	r integral based on i	aquation Application	ng Simple hermoni	vai om	otion I PC circuits
Implom	α with functional C		equation. Application	ons-simple narmoni	c m	otion, LKC circuits.
mplem	cination using MAT	LAD.	nit V			08 Hrs
Statist	iog	U				00 111 5
Statist.	ICS	ionoo ooofficionta	of alterrance and land	easis in terms of mo		to Currio fitting has
Central	of loost coupros fit	ting of ourses. Doly	of skewness and kun	and nowar function		arrelation and linear
method	of least squares, In	a Applications Imp	lomantation using M	ATLAD	s. C	orrelation and intear
regressi	ion analysis–Problem	s. Applications. Imp	Siementation using M	AILAD.		
Course	Outcomes: After or	mplating the course	so the students will l	ha abla ta		
Course	Ullustrate the funde	montal concepts of	f lineer algebra mu	tiveriable functions	n	rtial differentiation
	multiple integrals d	ifferential equations	s and statistics		, pa	
CO2	Apply the acquired	knowledge of lines	s and statistics.	ale functions nartial	diff	ferentiation multiple
	integrals differentic	Anowicuge of filled	istics to solve the prol	blems of engineering	uIII	lications
CO2	Analyza the soluti	on of the problem	suce to solve the prop	toobniquos of lines	$\frac{app}{r}$	achra multivariable
	functions montical di	for on the problem	s using appropriate	isl equations and sta	i al	geora, multivariable
	nunctions, partial di	refermation, multip	ne miegrais, different	iai equations and sta	usu	us to the real - world
CO4	Interment the even	all knowledge of	linaar alaahra mul	ivariable differenti	1 0	alaulus integration

CO4 Interpret the overall knowledge of linear algebra, multivariable differential calculus, integration, differential equations and statistics gained to demonstrate the problems arising in many practical situations.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Refere	nce Books
1	Higher Engineering Mathematics, B. S. Grewal, 44 th Edition, 2015, Khanna Publishers,
	ISBN: 978-81-933284-9-1.
2	Calculus, Saturinino L. Salas, Einar Hille and Garret J. Etgen, 10th Edition, 2022, Wiley India,
	ISBN: 9789390421961.
3	Schaum's Outline of Advanced Calculus, Robert Wrede and Murray Spiegel, 3 rd Edition, 2010,
	McGraw-Hill Education, ISBN -10: 0071623663, ISBN -13: 978-0071623667.
4	Advanced Engineering Mathematics, E. Kreyszig, 10 th Edition (Reprint), 2016, John Wiley & Sons,
	ISBN: 978-0470458365.
5	Calculus James Stewart 8 th Edition 2016 Cengage Learning JSBN: 978-1-285-74062-1

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7 & 8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	MAXIMUM MARKS FOR THE SEE THEORY	100			

09 Hrs

09 Hrs

08 Hrs

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Approved by AICTE, New Delhi

Semester: II

VECTOR CALCULUS, LAPLACE TRANSFORM AND NUMERICAL METHODS

Category: Applied Science Course

Stream: Electronics (Common to EC, EE, EI & ET Programs)

(Theory)

Unit-I

Unit – II

Course Code	:	MAT221AT	CIE	:	100 Marks
Credits: L:T:P	••	3:1:0	SEE	:	100 Marks
Total Hours	••	42L+14T	SEE Duration	:	3 Hours

Vector Differentiation

Vector valued functions–2D and 3D scalar and vector fields. Gradient of a scalar field–Normal vector to the surface, directional derivative, scalar potential. Divergence and curl of a vector field, Laplacian of scalar field, Solenoidal and irrotational fields, physical interpretations. Expressions for gradient, divergence, curl and Laplacian in cylindrical, spherical-polar coordinates. Simulation using MATLAB.

Vector Integration

Line, surface and volume integrals. Green's theorem, Stokes theorem and Gauss divergence theorem (statements only)-Problems, solenoidal fields and irrotational fields. Work done by a force. Simulation using MATLAB.

Unit –III	08 Hrs
Lanlace Transform	

Existence and uniqueness of Laplace transform (LT), transform of elementary functions, region of convergence. Properties - linearity, scaling, s - domain shift, differentiation in the s - domain, division by t, differentiation and integration in the time domain. LT of special functions - Periodic functions (square wave, saw-tooth wave, triangular wave, full & half wave rectifier), Heaviside unit step function, unit impulse function, t - shift property. Implementation using MATLAB.

Inverse Laplace Transform Definition, properties, evaluation using different methods. Convolution theorem (without proof), problems.

Unit –IV

 Definition, properties, evaluation using different methods. Convolution theorem (without proof), problems.

 Application to solve ordinary linear differential equations. Implementation using MATLAB.

 Unit –V
 08 Hrs

Numerical Methods

Algebraic and transcendental equations–Roots of equations, intermediate value property, Regula-Falsi and Newton-Raphson methods. Methods of solving first order ordinary differential equation -Taylor's series method, 4th order Runge-Kutta method and Milne predictor–corrector method. Implementation using MATLAB.

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Illustrate the fundamental concepts of Laplace transforms, vector calculus and numerical methods.				
CO2	Apply the acquired knowledge of Laplace transforms, vector calculus and numerical methods to solve the				
	problems of engineering applications.				
CO3	Analyze the solution of the problems using appropriate techniques of Laplace transforms, vector calculus				
	and numerical methods to the real - world problem and optimize the solution.				
CO4	Interpret the overall knowledge of Laplace transforms, vector calculus and numerical methods gained to				
	demonstrate the problems arising in many practical situations.				

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Refere	nce Books
1	Higher Engineering Mathematics, B. S. Grewal, 44 th Edition, 2015, Khanna Publishers,
	ISBN: 978-81-933284-9-1.
2	Calculus, Saturinino L. Salas, Einar Hille and Garret J. Etgen, 10 th Edition, 2022, Wiley India,
	ISBN: 9789390421961.
3	Schaum's Outline of Advanced Calculus, Robert Wrede and Murray Spiegel, 3 rd Edition, 2010,
	McGraw-Hill Education, ISBN -10: 0071623663, ISBN -13: 978-0071623667.
4	Advanced Engineering Mathematics, E. Kreyszig, 10 th Edition (Reprint), 2016, John Wiley & Sons,
	ISBN: 978-0470458365.
5	Advanced Modern Engineering Mathematics, Glyn James and Phil Dyke, 5 th Edition, 2018,
	Pearson Education, ISBN-13 978-1292174341, ISBN-10 9780273719236.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40		
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7 & 8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	MAXIMUM MARKS FOR THE SEE THEORY	100			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	University, Belagavi						
				Semester: II			
	VECTOR CALCULUS AND COMPUTATIONAL METHODS						
			Category	y: Applied Science C	ourse		
	Str	ean	n: Mechanical (Co	ommon to AS, CH, I	M & ME Programs)	
				(Theory)		-	-
Course	Code	:	MAT221BT		CIE	:	100 Marks
Credits	s: L:T:P	:	3:1:0		SEE	:	100 Marks
Total H	Iours	:	42L+14T		SEE Duration	:	3 Hours
[T	• • •			00 11
X 7 4	D.66 4. 4.		U	nit-l			09 Hrs
Vector	Differentiation		and 2D sociar and	vaatan fialda Daniwat	ive of vector functio		oncont volocity ond
vector	valued functions-2	ມະ	and 5D scalar and v	vector fields. Derivat	ive of vector function	on, t voti	angent, velocity and
Diverge	anon. Oraclent of s	a c	ector field Laplac	ian of scalar field	Solenoidal and irro	vau tatic	ve, scalar potential.
internre	tations Simulation	u vu nisi	ng MATI AR	ian or scalar new,	Solenoidai and mo	ian	mai neids, physical
merpre	autons. Dimanation	ubi	IIn IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	it – II			09 Hrs
Vector	Integration						07 1115
Line, si	irface and volume	inte	egrals. Green's theo	orem. Stokes theorem	and Gauss diverger	nce	theorem (statements
only)-P	roblems, solenoidal	l fie	lds and irrotational	fields. Work done by	a force. Simulation	usi	ng MATLAB.
	,		Un	it –III			08 Hrs
Partial	Differential Equa	tio	18				
Format	ion of partial differ	ent	ial equations by eli	mination of arbitrary	constants/functions	, so	lution of Lagrange's
linear e	quation. Solution of	of p	artial differential e	quations by method	of separation of vari	able	es. Solution to wave
and hea	at equations in one	di	mension and Lapla	ace equation in two	dimensions by the r	netł	nod of separation of
variable	es, problems.						
			Un	it –IV			08 Hrs
Numer	ical Methods - I						
Algebra	aic and transcende	enta	1 equations–Roots	of equations, inter	mediate value prop	berty	y, Regula-Falsi and
Newton	-Raphson methods	. M	lethods of solving	first order ordinary d	ifferential equation-	-Tay	/lor's series method,
4th orde	er Runge-Kutta met	tho	and Milne predict	or-corrector method.	Implementation usi	ng N	AATLAB.
NT			Ui	nit –V			08 Hrs
Numer	ical Methods - II		£				
Finite C	Creation (N C) for	t of	forward and backy	ward differences, inti	oduction to interpol		n and extrapolation.
Newton-Gregory (N-G) forward and backward interpolation formulae, Lagrange interpolation formula, application							
velocity and acceleration							
Numerical integration-Newton-Cotes approach-Simpson's 1/3 rd 3/8 th rules and Weddle's rule Implementation							
using MATLAB							
Course Outcomes: After completing the course, the students will be able to							
CO1	Illustrate the fun	dar	nental concepts of	f vector calculus. na	artial differential ed	juat	ions and numerical
	methods.			, p		1	
CO2	Apply the acquire	d k	nowledge of vector	calculus, partial diff	erential equations ar	nd n	umerical methods to
-	solve the problem	s of	engineering applic	cations.	1		

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Referen	nce Books
1	Higher Engineering Mathematics, B. S. Grewal, 44 th Edition, 2015, Khanna Publishers,
	ISBN: 978-81-933284-9-1.
2	Calculus, Saturnino L. Salas, Einar Hille and Garret J. Etgen, 10 th Edition, 2022, Wiley India,
	ISBN: 9789390421961.
3	Advanced Engineering Mathematics, E. Kreyszig, 10 th Edition (Reprint), 2016, John Wiley & Sons,
	ISBN: 978-0470458365.
4	Numerical methods for scientific and engineering computation, M.K. Jain, S.R.K. Iyenger and R.K. Jain,
	6 th Edition, 2012, New Age International Publishers, ISBN: 9788122433234, 8122433235.
5	Advanced Modern Engineering Mathematics, Glyn James and Phil Dyke, 5 th Edition, 2018,
	Pearson Education, ISBN-13 978-1292174341, ISBN-10 9780273719236.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40		
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7 & 8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	MAXIMUM MARKS FOR THE SEE THEORY	100			

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Semester: II

NUMBER THEORY, VECTOR CALCULUS AND COMPUTATIONAL METHODS

Category: Applied Science Course

Stream: Computer Science (Common to AI, BT, CS, CY, CD & IS Programs)

(Theory)

Course Code	:	MAT221CT	CIE	:	100 Marks
Credits: L:T:P	:	3:1:0	SEE	•••	100 Marks
Total Hours	••	42L+14T	SEE Duration		3 Hours

Unit-I **09 Hrs** Number Theory Divisibility, greatest common divisor, prime numbers, properties of prime numbers, fundamental theorem of arithmetic, congruence, linear congruence, multiplicative inverses, Euler's theorem, Euler's totient function, RSA public key encryption. Implementation using MATLAB. Unit – II **09 Hrs** Vector Differentiation Vector valued functions-2D and 3D scalar and vector fields. Derivative of vector function, tangent, velocity and acceleration. Gradient of a scalar field-Normal vector to the surface, directional derivative, scalar potential. Divergence and curl of a vector field, Laplacian of scalar field, Solenoidal and irrotational fields, physical interpretations. Simulation using MATLAB. Unit –III 08 Hrs **Vector Integration** Line, surface and volume integrals. Green's theorem, Stokes theorem and Gauss divergence theorem (statements only)-Problems, solenoidal fields and irrotational fields. Work done by a force. Simulation using MATLAB. Unit –IV 08 Hrs Linear Ordinary Differential Equations of Higher Order Standard form of higher order linear differential equation with constant coefficients. Solution of homogeneous equations-Complementary functions. Non homogeneous equations-Concept of inverse differential operator, methods of finding particular integral based on input function (force function), method of variation of parameters. Equations with functional coefficients-Cauchy equation. Applications-Simple harmonic motion, LRC circuits. Implementation using MATLAB. Unit -- V 08 Hrs Numerical Methods

Finite differences, concept of forward and backward differences, introduction to interpolation and extrapolation. Newton-Gregory (N-G) forward and backward interpolation formulae, Lagrange interpolation formula, application oriented problems. Numerical differentiation based on N-G forward and backward interpolation, applications – velocity and acceleration. Implementation using MATLAB.

Course	Outcomes: After completing the course, the students will be able to
CO1	Illustrate the fundamental concepts of number theory, vector calculus, differential equations and
	numerical methods.
CO2	Apply the acquired knowledge of number theory, vector calculus, differential equations and numerical
	methods to solve the problems of engineering applications.
CO3	Analyze the solution of the problems using appropriate techniques of number theory, vector calculus,
	differential equations and numerical methods to the real - world problem and optimize the solution.
CO4	Interpret the overall knowledge of number theory, vector calculus, differential equations and numerical
	methods gained to demonstrate the problems arising in many practical situations.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Refere	Reference Books					
1	Higher Engineering Mathematics, B. S. Grewal, 44 th Edition, 2015, Khanna Publishers,					
	ISBN: 978-81-933284-9-1.					
2	Schaum's Outline of Advanced Calculus, Robert Wrede and Murray Spiegel, 3 rd Edition, 2010,					
	McGraw-Hill Education, ISBN -10: 0071623663, ISBN -13: 978-0071623667.					
3	Elementary Number Theory, David M. Burton, McGraw Hill, 7 th Edition, ISBN: 978-0-07-338314-9.					
4	Discrete and Combinatorial Mathematics, Ralph P. Grimaldi, 5 th Edition, 2006, Pearson Education,					
	ISBN-13: 978-81-7758-424-0.					
5	Advanced Modern Engineering Mathematics, Glyn James and Phil Dyke, 5 th Edition, 2018,					
	Pearson Education, ISBN-13 978-1292174341, ISBN-10 9780273719236.					

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	CONTENTS	MARKS				
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B					
	(Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7 & 8	Unit 4 : Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	MAXIMUM MARKS FOR THE SEE THEORY	100				

RV Educational Institutions [®] **RV College of Engineering**[®]

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological

	University, Belagavi						
				Semester: II			
			APPLIEI	D MATHEMATICS	5 – II		
			Category	: Applied Science C	Course		
			Stream: Ci	vil (Only to CV Pro	ogram)		
		1		(Theory)			
Course	Code	:	MAT221DT		CIE	:	100 Marks
Credits	: L:T:P	:	3:1:0		SEE	:	100 Marks
Total H	lours	:	42L+141		SEE Duration	:	3 Hours
			T.				00 11
Voctor	Differentiation			111-1			09 Hrs
Vector	valued functions_?	י חי	and 3D scalar and y	vector fields Derivat	tive of vector function	n t	angent velocity and
accelera	tion Gradient of	as	scalar field–Normal	l vector to the surf	ace directional deri	vati	ve scalar potential
Diverge	ence and curl of a	a ve	ector field. Laplaci	an of scalar field.	Solenoidal and irro	tatic	onal fields, physical
interpre	tations. Simulation	usi	ing MATLAB.				inal menus, prijerear
			Uni	it – II			09 Hrs
Vector	Integration						
Line, su	irface and volume	inte	egrals. Green's theo	orem, Stokes theorem	n and Gauss diverge	nce	theorem (statements
only)-P	roblems, solenoidal	l fie	elds and irrotational	fields. Work done by	y a force. Simulation	usi	ng MATLAB.
			Uni	it –III			08 Hrs
Laplace	e Transform						
Existen	ce and uniqueness	s of	f Laplace transform	n, transform of ele	mentary functions,	regi	on of convergence.
Properti	les - Linearity, scal	ling	, s - domain shift, d	lifferentiation in the	s - domain, division	by	t, differentiation and
integrat	ion in the time dom	nain			11.00	~	
Inverse	Laplace Transfor	m-l	Definition, properti	es, evaluation usin	g different methods	5. C	onvolution theorem
(withou	t proof), problems	s. 7	Application to solve	e ordinary linear d	ifferential equations	. In	nplementation using
MAIL	AD.		Uni	it_IV			08 Hrs
Numer	ical Methods - I			lt –1 V			00 111 5
Algebra	ic and Transcend	ent	al equations-Roots	of equations inte	rmediate value pro	nert	v Regula-Falsi and
Newton	-Raphson methods		ur equations reoots	or equations, inte	fine and the proj	,010	y, nogula i albi alla
Taylor's	s and Maclaurin's	ser	ties for a function of	of single variable ar	nd problems. Method	ds o	of solving first order
ordinary	y differential equa	tio	n–Taylor's series r	nethod, 4th order 1	Runge-Kutta method	1 ar	nd Milne predictor-
correcto	or method. Impleme	enta	ation using MATLA	B.	e		Ĩ
			Un	it –V			08 Hrs
Numeri	ical Methods - II						
Finite d	ifferences, concept	t of	forward and backv	ward differences, int	roduction to interpol	latio	on and extrapolation.
Newton	-Gregory (N-G)	for	ward and backwa	ard interpolation for	ormulae, Lagrange	int	erpolation formula,
applicat	ion-oriented probl	em	s. Numerical differ	rentiation based on	N-G forward and	bac	kward interpolation,
applicat	ions – velocity and	d a	cceleration. Numeri	cal integration- New	vton-Cotes approach	– S	Simpson's $1/3^{ra}$, $3/8^{tn}$
rules an	d Weddle's rule. Ir	npl	ementation using M	ATLAB.			
G				<u> </u>	11 4		
Course	Ultratest 1 5	cor	npleting the course	e, the students will b	be able to	<u> </u>	a a 1 a 4 la 1
	Inustrate the fund	$\frac{am}{1}$	ental concepts of ver	ctor calculus, Laplac	e transforms and nur	neri	cal methods.
002	Apply the acquire	a k	nowledge of vector	calculus, Laplace tra	ansforms and numeri	cal	methods to solve the
CO1	problems of engin	ieer	ing applications.	• • • • •	· · · · 1	1	T 1 (C

Interpret the overall knowledge of vector calculus, Laplace transforms and numerical methods gained to **CO4** demonstrate the problems arising in many practical situations.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Referen	nce Books
1	Higher Engineering Mathematics, B. S. Grewal, 44 th Edition, 2015, Khanna Publishers,
	ISBN: 978-81-933284-9-1.
2	Calculus, Saturnino L. Salas, Einar Hille and Garret J. Etgen, 10 th Edition, 2022, Wiley India,
	ISBN: 9789390421961.
3	Advanced Engineering Mathematics, E. Kreyszig, 10 th Edition (Reprint), 2016, John Wiley & Sons,
	ISBN: 978-0470458365.
4	Numerical methods for scientific and engineering computation, M. K. Jain, S. R. K. Iyenger and R. K.
	Jain, 6 th Edition, 2012, New Age International Publishers, ISBN: 9788122433234, 8122433235.
5	Advanced Modern Engineering Mathematics, Glyn James and Phil Dyke, 5 th Edition, 2018, Pearson
	Education, ISBN-13 978-1292174341, ISBN-10 9780273719236.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)	
Q. NO.	CONTENTS	MARKS
	PART A	
1	Objective type questions covering entire syllabus	20
	PART B	
	(Maximum of TWO Sub-divisions only)	
2	Unit 1 : (Compulsory)	16
3 & 4	Unit 2 : Question 3 or 4	16
5&6	Unit 3 : Question 5 or 6	16
7 & 8	Unit 4 : Question 7 or 8	16
9 & 10	Unit 5: Question 9 or 10	16
	MAXIMUM MARKS FOR THE SEE THEORY	100

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Shireleky, Belagari						
			Semester: I			
	C	ONDENSED MAT	TER PHYSICS FO	R ENGINEERS		
		Category:	Applied Science Co	ourse		
Str	ea	m: Electronics (Co	ommon to EC, EE, E	I & ET Programs)		
		<u>(Th</u>	eory and Practice)			
Course Code	:	PHY211AI		CIE	:	100 Marks
Credits: L:T:P	:	3:0:1		SEE	:	100 Marks
Total Hours	:	42 L + 30P		SEE Duration	:	3 Hours
		Ui	nit-I			08 Hrs
Quantum Mechanics: de	e :	Broglie Hypothesis	s and Matter Wave	es, Phase Velocity	ar	d Group Velocity,
Heisenberg's Uncertainty P	rin	ciple and its application	ation.			
Wave Mechanics: Wave	Fu	nction, Time indep	pendent Schrodinger	wave equation, Ex	spea	ctation value, Eigen
functions and Eigen Values	, N	Motion of a particle	in a one-dimensiona	l potential well of in	nfin	ite depth, Numerical
problems.						
		Uni	it – II			08 Hrs
Basics of Solid-State Physics	ics					
Electrical Conductivity in	n l	Metals: Quantum f	free electron theory	and failures. Band	theo	ory of solids, Fermi
energy and Fermi level, den	sit	y of states, carrier c	concentration in meta	ls at 0K.		
Electrical Conductivity in	Se	emiconductor: Ferr	mi level in intrinsic se	emiconductors, Expr	ess	ion for concentration
of electrons in conduction	ba	and (derivation), L	aw of mass action,	Electrical conductiv	ity	of a semiconductor
(derivation), Extrinsic sen	nic	onductors: Variation	on of fermi level v	with temperature an	nd	doping in extrinsic
semiconductor, Hall effect a	anc	l Hall coefficient (d	erivation).			
		Uni	t –III			09 Hrs
Lasers and Optical Fibers						
Lasers: Characteristics of I	.A	SER, Interaction of	radiation with matte	r, requisites of a Las	ser s	system. Construction
and working of semiconduc	to	laser. Application	of Lasers in Defence	and Laser Printing.		
Optical Fibers: Propagation	on	mechanism, Nume	rical aperture deriva	tion, Modes of prop	baga	tion. Attenuation in
fiber, Discussion of block d	iag	gram of Point-to-Po	int communication, C	Optical fiber sensor. I	Nur	nerical problems.
		Uni	it –IV			08 Hrs
Semiconductor devices						
Diodes: Direct and indirect	b	and gap, Band gap	engineering, P-N jun	ction diode-forward	and	d reverse bias, diode
equation, V-I characteristic	, <i>I</i>	Application: bridge	rectifier, breakdown	mechanism in diod	es:	Avalanche & Zener
breakdown, Zener diode as	vo	ltage regulator.				
Transistors: Bi-junction p	ola	r transistor, V-I ch	naracteristics in Com	mon Emitter, Comm	non	Base and Common
Collector configuration, CE	co	onfiguration as an a	mplifier. Numerical p	problems.		
		Un	it –V			09 Hrs
Dielectrics and Transduce	rs					
Dielectric Properties: Pol	ar	and non-polar diel	ectrics, Types of Pol	arization, internal fi	ield	s in solid, Clausius-
Mossotti equation (Derivat	ioı	n), solid, liquid and	l gaseous dielectrics.	Application of diel	lect	rics in transformers,
Capacitors, Frequency depe	enc	lency of dielectric of	constant, Electrical in	nsulation – Dielectri	c br	eakdown Numerical
problems.						
Transducers: Stress-Strain	n	curve, moduli of	elasticity, strain g	auge, ultrasonic p	iezc	electric transducer,
temperature transducer - Th	ner	mocouples. Numeri	ical problems.			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Course	Outcomes: After completing the course, the students will be able to
CO1	Explain the phenomenon of laser, fundamentals of quantum mechanics applicable to Electronics
	engineering, basics of semiconducting and dielectric materials.
CO2	Apply the knowledge of quantum mechanics in laser and semiconductors in engineering.
CO3	Develop analytical thinking by solving numerical.
CO4	Design & develop simulating models and validate with real time experimentation.

Refere	nce Books
1	Grob's basic electronics, Mitchel E Schultz, McGrahill editon, 10th ed, 2007, ISBN 978-0-07-3373874.
2	A Textbook of Engineering Physics, M. N. Avadhanulu and P G Kshirsagar,, S. Chand publications,
	2019, ISBN : 978-93-528-3399-3.
3	Physics for Degree students, C.L. Arora and Dr. P. S. Hemne, S Chand, revised 2010,
	ISBN: 978-81-219-33506.
4	Engineering Physics, R K Gaur and S L Gupta, Dhanpat Rai Publications, 2011, ISBN: 9788189928223.
5	Solid state electronic devices, Ben G Streetman and Sanjay Kumar Banerjee, 6 th edition, PHI learning,
	2009, ISBN: 978-81-203-30207.

Labora	tory Experiments (EE stream)
1	Wavelength of laser by diffraction.
2	Numerical aperture of an optical fiber.
3	Transistor characteristics.
4	Band gap of thermistor.
5	Hall coefficient experiment.
6	Black box experiment.
7	Four probe experiment.
8	Fermi Energy.
9	Charging & discharging of a capacitor.
10	Photo Diode.
11	Exp Eyes experiment: LCR
12	Exp Eyes experiment: Wavelength of LED and I-V characteristics of Zener diode.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY WITH LA	AB)
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be	
	conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO	10
	QUIZZES WILL BE THE FINAL QUIZ MARKS.	
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity	
	levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying,	20
	Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be	50
	evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 30 MARKS.	
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and	
	practical implementation of the problem. Case study based teaching learning (10), Program	30
	specific requirements (10), Video based seminar/presentation/demonstration (10) ADDING	30
	UPTO 30 MARKS.	
4	LAB: Conduction of laboratory exercises, lab report, observation and analysis (30 Marks),	
	lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10	20
	Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE REDUCED TO 30	50
	MARKS	
	MAXIMUM MARKS FOR THE CIE THEORY	100

RV Educational Institutions ® **RV College of Engineering**®

Autonomous

to Visvesvaraya

Approved by AICTE, New Delhi Institution Affiliated Technological University, Belagavi

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)	
Q. NO.	CONTENTS	MARKS
	PART A	
1	Objective type questions covering entire syllabus	10
	PART B	
	(Maximum of TWO Sub-divisions only)	
2	Unit 1 : (Compulsory)	14
3 & 4	Unit 2 : Question 3 or 4	14
5&6	Unit 3 : Question 5 or 6	14
7 & 8	Unit 4 : Question 7 or 8	14
9 & 10	Unit 5: Question 9 or 10	14
11	Lab Component (Compulsory)	20
	MAXIMUM MARKS FOR THE SEE THEORY	100

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

			Semester: I			
		CLASSICAL	PHYSICS FOR ENG	GINEERS		
C.		Category	: Applied Science Co	ourse	、 、	
Str	ean	n: Mecnanical (Co (Th	ommon to AS, CH, IN pearsy and Practice)	vi & ME Programs)	
Course Code	•	PHY211BI	leory and reactice)	CIE	•	100 Marks
Credits: L:T:P	:	3:0:1		SEE	:	100 Marks
Total Hours	:	42 L+30P		SEE Duration	:	3 Hours
		U	nit-I			06 Hrs
Free, Damped and Force	ced	Vibration: Simple	e Harmonic motion ((SHM), differential	equ	ation for SHM (No
derivation), Spring mass an	nd i	ts applications.				
Theory of damped oscilla	atio	ns: (Derivation), T	ypes of damping (Gra	aphical Approach). E	Engi	ineering applications
of damped oscillations,	The	ory of forced osc	illations (Qualitative), resonance and s	har	pness of resonance.
Numerical problems		T	:4 TT			00 11
Flastic Properties of Mat	tori	UII	u – II and Strain Strass St	rain aquivalanca ral	atio	ns Relation between
Elastic constants Bonding		hoome: noutrol sur	face and neutral axis	oversion for bond	ling	moment of a beam:
Elastic constants, Benuing	; 01 	Numerical mahlan		expression for bend	ing	moment of a beam.
Single cantilever (derivatio)n).	Numerical problem	ns. it tooligt of a set into a	1 £		· · · · · · · · · · · · · · · · · · ·
1 orsion of a Shait : Expre		on for couple per u	unit twist of a solid s	nait, torsion penduli	ım:	expression for time
	18, 1	uniencai problems	». ;4 TIT			00 Hrs
Fundamentals of Therm	nd	vnamics: Introduc	tion to thermodynam	ics: Quasi – static	nro	cess Zeroth law of
thermodynamics Liquid	nae	resistance thermor	neters Ioule's experi	ment (equivalence b	pro et a	veen heat and work)
Numerical problems	gas,	resistance mermor	neters. source's experi	ment (equivalence o	Clw	een neat and work),
First law of thermodynau	mic	s work done in the	ermodynamic quasi et	atic processes Isoth	orm	al process adjabatic
process and cyclic process	s A	pplication of first	law of thermodynami	cs for both closed s	vste	em and Steady State
System. Numerical problem	ms.	ppileation of mist	iaw of thermodynami		yst	eni una Steady State
		Un	it –IV			09 Hrs
Basic concepts of Fluid	Me	chanics: Definitio	n of Fluid, concept o	of continuum, classi	fica	tion of fluids, Fluid
Properties, Newton's Law	of	viscosity, Absolute	and Kinematic viscos	sity, No slip conditio	on,	Vapour pressure and
cavitation, Bulk Modulu	s a	nd Compressibilit	v. Ultrasonic interfe	rometer. Surface t	ens	ion and capillarity.
Numerical problems.		1				1 5
Fundamentals of Fluid F	low	s: Types of Fluid I	Flows, Stream line, St	reak line and Path li	ne.	Continuity Equation
in Integral form and three-	dim	ension Cartesian co	oordinates Numerical	problems		community Equation
	ann	I'r	nit _V	procients.		09 Hrs
Material Characterizatio	n:	Mechanical Charac	terizations (Tensile a	nd vield strength. D	uct	ility. Toughness and
Hardness). Optical charact	eriz	vation. current-Volt	age (IV) characterizat	tion. Surface charact	eriz	zation (Roughness &
Crystallinity particle distri	ihut	ion and magnetic n	roperties			(110 <i>u</i> g
Instrumentation Technic	ane	s. Principle const	truction and working	of X-ray Diffract	om	eter crystallite size
determination by Scherr	Yu t er	equation Principle	e construction working	king and applicati	000	of Atomic Force
Microscopy (AEM) V	rav	nhotoelectron or	\mathbf{v}	Sconning Electror		Aicroscopy (CEM)
Transmission Electron Mi	ray oroc	photoelection sp	priced problems	Scanning Electron	ı ľ	viiciuscupy (SEM),
		copy (TEM), Mulli	encai problems.			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Course Outcomes: After completing the course, the students will be able to CO1 Explain the concepts in oscillations, elasticity, thermodynamics, fluid mechanics & instrumentation techniques. CO2 Apply the fundamentals of oscillations, elasticity, thermodynamics, fluid mechanics and material characterization techniques to engineering applications.
 CO1 Explain the concepts in oscillations, elasticity, thermodynamics, fluid mechanics & instrumentation techniques. CO2 Apply the fundamentals of oscillations, elasticity, thermodynamics, fluid mechanics and material characterization techniques to engineering applications.
techniques. CO2 Apply the fundamentals of oscillations, elasticity, thermodynamics, fluid mechanics and material characterization techniques to engineering applications.
CO2 Apply the fundamentals of oscillations, elasticity, thermodynamics, fluid mechanics and material characterization techniques to engineering applications.
characterization techniques to engineering applications.
CO3 Develop analytical thinking by solving numerical.
CO4 Design & develop simulating models and validate with real time experimentation.

Reference Books		
1	Basic & Applied Thermodynamics, P K Nag, McGraw Hill Education, 2 nd Edition, 2017,	
	ISBN 10-0070151318, 13-978-0070151314.	
2	Fluid Mechanics: Fundamentals and Applications, John. M. CimbalaYunus A. Cengel, McGraw-Hill	
	Publications, 4 th Edition, 2019, ISBN 10-9353166217, 13-978-9353166212.	
3	A Textbook of Engineering Physics, M. N. Avadhanulu and P G Kshirsagar, S. Chand publications, 2019,	
	ISBN: 978-93-528-3399-3.	
4	Physics for Degree students, C.L. Arora and Dr. P. S. Hemne, S Chand, revised 2010,	
	ISBN: 9788121933506.	
5	Engineering Physics, R K Gaur and S L Gupta, Dhanpat Rai Publications, 2011, ISBN: 9788189928223.	

Laboratory Experiments (ME stream)		
1	Spring constant experiment using expEYES17.	
2	Moment of Inertia of irregular body and rigidity modulus by Torsion pendulum.	
3	Young's modulus by Single cantilever.	
4	Young's modulus by Uniform bending.	
5	Ultrasonic Interferometer.	
6	Wavelength of laser by diffraction.	
7	Forced mechanical Oscillations and Resonance.	
8	Fermi Energy of copper	
9	Four Probe.	
10	Newton's rings.	
11	Exp Eyes experiment: LCR	

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY WITH LA	AB)
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be	
	conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO	10
	QUIZZES WILL BE THE FINAL QUIZ MARKS.	
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50 Marks . FINAL TEST MARKS WILL BE REDUCED TO 30 MARKS .	30
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) ADDING UPTO 30 MARKS .	30
4	LAB: Conduction of laboratory exercises, lab report, observation and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE REDUCED TO 30 MARKS	30
	MAXIMUM MARKS FOR THE CIE THEORY	100

RV Educational Institutions ® **RV College of Engineering**®

Autonomous Institution Affiliated to Visvesvaraya

Approved by AICTE, New Delhi Technological University, Belagavi

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	10			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	14			
3 & 4	Unit 2 : Question 3 or 4	14			
5&6	Unit 3 : Question 5 or 6	14			
7 & 8	Unit 4 : Question 7 or 8	14			
9 & 10	Unit 5 : Question 9 or 10	14			
11	Lab Component (Compulsory)	20			
	MAXIMUM MARKS FOR THE SEE THEORY	100			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: II

QUANTUM PHYSICS FOR ENGINEERS

Category: Applied Science Course Stream: Computer Science (Common to AI, BT, CS, CY, CD & IS Programs)

(Theory and Practice)

Course Code	:	PHY221CI	CIE	:	100 Marks
Credits: L:T:P	••	3:0:1	SEE	••	100 Marks
Total Hours	:	42 L+30P	SEE Duration	:	3 Hours

Unit-I	08 Hrs
Quantum Mechanics: de Broglie Hypothesis and Matter Waves, Phase Velocity and Grou	p Velocity,
Heisenberg's Uncertainty Principle, and its application.	
Wave Mechanics: Wave Function, Time independent Schrodinger wave equation, Expectation v	value, Eigen
functions and Eigen Values, Motion of a particle in a one-dimensional potential well of infinite depth	ı, Numerical
problems.	1
Unit – II	08 Hrs
Principle of Quantum Computation	
Matric Mechanics: Wave Function in Ket Notation: Matrix form of wave function, Identi-	ty operator,
determination of $I \mid 0 >$ and $I \mid 1 >$, Pauli matrices and its operation on 0 and 1 states, mention of co	onjugate and
transpose, unitary matrix U, Examples: Row and Column Matrices and their multiplication (Inn Probability, Orthogonality.	er Product),
Principles of Quantum information and Quantum Computing: Introduction to Quantum Computi	ng, Moore's
law and its end. Single particle quantum interference, classical and quantum information comparison	1. Difference
between classical and quantum computing, quantum superposition and the concept of qubit.	
Properties of qubit: Mathematical representation, summation of probabilities, representation of qul	bit by Bloch
sphere.	-
Quantum Gates: Single qubit gates: Quantum not gate, Pauli – Z gate, Hadamard gate, Pauli matrices	s, Phase gate
(S gate), T gate. Multiple qubit gates: controlled gate, CNOT gate (discuss for 4 different input states)	
Unit –III	09 Hrs
Lasers and Optical Fibers	
Lasers: Characteristics of LASER, Interaction of radiation with matter, requisites of a Laser system.	Construction
and working of semiconductor laser. Application of laser: Bar Code scanner, Laser Printer, Las	ser Cooling,
Numerical problems.	
Optical Fibers: Propagation mechanism, Numerical aperture derivation, Modes of propagation. At	tenuation in
fiber, Discussion of block diagram of Point-to-Point communication, Optical fiber sensor. Numerical p	problems.
Unit –IV	08 Hrs
Electrical Conductivity in Solids: Postulates of Classical free electron theory (CFET), Concept	of Phonon,
Matheissen's rule. Quantum free electron theory (QFET), Density of states in three dimensions (qua	litative) and
Fermi factor. Fermi energy: variation of Fermi factor with temperature.	
Band theory of solids (qualitative approach), electron concentration in metals at 0K. Intrinsic sem	iconductors:
electronic concentration in conduction band and hole concentration (qualitative), Fermi level	in intrinsic
semiconductors, Extrinsic semiconductors: Variation of carrier concentration with temperature and F	ermi energy
with doping, Hall effect for metals and semiconductors, Numerical problems.	
Unit –V	09 Hrs
Super conductivity: Introduction to superconductors, temperature dependence of resistivity, Mei	ssner effect,
critical current, types of superconductors, temperature dependence of critical field.	
BCS theory (qualitative): Quantum tunneling, High temperature superconductivity, Josephson junct	10n, DC and
AC SQUIDs (qualitative), Applications in quantum computing, Numerical problems.	

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Course	Course Outcomes: After completing the course, the students will be able to		
CO1	Explain the fundamentals of quantum mechanics applicable to computer science engineering, basics of		
	electrical and superconducting materials.		
CO2	Apply the knowledge of quantum mechanics in lasers, semiconductors and super conductor devices for		
	engineering applications.		
CO3	Develop analytical thinking by solving numerical.		
CO4	Design & develop simulating models and validate with real time experimentation.		

Deference Deele		
Kelere		
1	Physics for Engineers, M R Srinivasan, New Age International Publishers, 2011,	
	ISBN: 978-81-224-2603-8.	
2	A Textbook of Engineering Physics, M. N. Avadhanulu and P G Kshirsagar, 2019, S. Chand publications,	
	ISBN: 978-93-528-3399-3.	
3	Physics for Degree students, C.L. Arora and Dr. P. S. Hemne, S Chand, revised 2010,	
	ISBN: 9788121933506.	
4	Engineering Physics, R K Gaur and S L Gupta, Dhanpat Rai Publications, 2011, ISBN: 9788189928223.	

Laboratory Experiments (CS Stream)	
1	Wavelength of laser by diffraction.
2	Numerical aperture of an optical fiber.
3	Transistor characteristics.
4	Band gap of thermistor.
5	Hall coefficient experiment.
6	Black box experiment.
7	Four probe experiment.
8	Fermi Energy.
9	Charging & discharging of a capacitor.
10	Photo Diode.
11	Exp Eyes experiment: LCR
12	Exp Eyes experiment: Wavelength of LED and I-V characteristics of Zener diode.

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY WITH LAB) # **COMPONENTS** MARKS QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be 1 conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO 10 **QUIZZES WILL BE THE FINAL QUIZ MARKS.** 2 **TESTS:** Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, 30 Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 30 MARKS. 3 EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program 30 specific requirements (10), Video based seminar/presentation/demonstration (10) ADDING UPTO 30 MARKS. LAB: Conduction of laboratory exercises, lab report, observation and analysis (30 Marks), 4 lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 30 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE REDUCED TO 30 MARKS MAXIMUM MARKS FOR THE CIE THEORY 100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY) Q. NO. CONTENTS MARKS PART A 1 Objective type questions covering entire syllabus 10 PART B (Maximum of TWO Sub-divisions only) 2 Unit 1 : (Compulsory) 14 3 & 4 Unit 2 : Question 3 or 4 14 **5 & 6** Unit 3 : Question 5 or 6 14 **7 & 8** Unit 4 : Question 7 or 8 14 **9 & 10** Unit 5 : Ouestion 9 or 10 14 Lab Component (Compulsory) 20 11 MAXIMUM MARKS FOR THE SEE THEORY 100

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

	Semester: I						
			APPLIED P	HYSICS FOR ENG	INEERS		
	Category: Applied Science Course						
	Stream: Civil (Only to CV Program)						
		1	(Tl	heory and Practice)		1	
Course	Code	:	PHY211DI		CIE	:	100 Marks
Credits	s: L:T:P	:	3:0:1		SEE	:	100 Marks
Total H	Iours	:	42 L+30P		SEE Duration	:	3 Hours
							00 T
0 11				nit-l		•	08 Hrs
Oscilla	tions: Simple Harn	non	ic Motion (SHM),	differential equation	tor SHM (No derivat	ion), Sprig mass and its
applica	tions. Theory of da	imp	ed oscillations (De	f formed and institutions	amping (Graphical	App	broach). Engineering
applica	tions of damped of	OSC1	liations, Theory o	f forced oscillations	(Qualitative), resor	anc	e and sharpness of
resonan	ice. Numerical proc	nen	llS.	.:4 TT			00 11.
Floatio	nuonautica of ma	tom	Ull Jolas Strong Stroin (III – II Cumra, Stragg hardani	ng and softening El	oct	U9 HIS
ratio on	d its limiting value		als: Suess-Sually	curve, Suess harden	tive) Bonding of bo	asu	: noutral surface and
neutral	avis expression for	8. Г r ba	nding moment of a	beem Single contile	uve), Denuing of Dea	ams	. neutral surface and
Torsion	n of a cylinder. Ex	i UC	assion for couple p	er unit twist of a soli	d cylinder torsion pe	andı	ulum: expression for
time ne	eriod and rigidity	mo	dulus Failures of	engineering materia	ls – ductile fracture	h	rittle fracture stress
concent	tration fatigue and	fac	tors affecting fation	e (only qualitative ex	nlanation) Numerica	1 pr	oblems
concent	Concentration, fatigue and factors affecting fatigue (only quantative explanation) Numerical problems.						
Vonrs Vonrs Vonrs							
variable	e acceleration. acc	elei	ation due to gravi	ity. Newton's law of	f motion. rectilinear	ma ma	otion and numerical
problen	ns. curvilinear mot	tior	superelevation.	projectile motion. re	lative motion. nume	rica	al problems, motion
under g	ravity, numerical p	rob	lems.	[- J	······································		I
Kinetic	s: D 'Alembert's p	rine	ciple and its applica	tion in-plane motion	and connected bodie	s in	cluding pulleys.
	Unit –IV 09 Hrs						
Fluid N	Aechanics:						
Definiti	Definition of fluid and its properties, Fluid statics, buoyancy, Poiseuille's equation, determination of co-efficient						
of viscosity of liquid by Poiseuille's flow method. Error and correction applied to Poiseuille's formula. Variation							
in visco	osity of liquids and	ga	ses with temperatu	re. Bernoulli's theore	em and its application	n. l	Description of fluids
(qualita	(qualitative). Type of fluid flows- stream line, streak line, path line, turbulence. Numerical problems.						
			Ur	nit –V			08 Hrs
Fundar	Fundamentals of Sensors: Introduction to Sensors, Sensor systems and overview of sensor technologies,						
Classifi	Classification of sensors, Sensor's characteristics.						
Sensor	s: principles & A	ppl	ications: Temperat	ture sensors: RTD, T	hermistor, Thermoco	oup	le. Vibration sensor,
Optical	fiber sensor for	stru	ctural health mon	itoring, Strain gauge	e sensor, Piezo elec	tric	sensors for energy
harvest	harvesting.						
~							
Course	Outcomes: After	cor	npleting the cours	e, the students will b	be able to		
C01	Explain the conce	pts	in oscillations, elas	sticity, kinematics, Flu	uid dynamics and ser	isor	techniques.
CO2	Apply the fundam	nen	tals of oscillations	, elasticity, kinematic	cs, fluid dynamics a	nd	sensor techniques to
	Civil engineering	app	olications.				

Develop analytical thinking by solving numerical.

Design & develop simulating models and validate with real time experimentation.

CO3

CO4

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Refere	nce Books
1	A Textbook of Engineering Physics, M N Avadhanulu, P G Kshirsagar and TVS Arun Murthy, S Chand
	and Company Limited, New Delhi, Revised Edition 2019, ISBN: 978-93-528-3399-3.
2	Jacob Fraden, Handbook of Modern Sensors: Physics, Designs, and Applications, PHI Publication, 5 th
	Edition 2016, ISBN: 978-1-4419-6465-6.
3	Elements of Properties of matter, D S Mathur, S Chand and Company PVT LTD, 2010,
	ISBN-13:978-8121908153.
4	Engineering Physics, Gaur and Gupta, Dhanpat Rai Publications LTD, 2012, ISBN-13: 978-8189928223.
5	Physics for Degree students, C L Arora and P S Hemne, S Chand and Company PVT. LTD, 2016,
	ISBN: 978-81-219-4059-7.
6	Engineering Physics, Hitendra K Mallik and A K Singh, Tata McGraw Hill Education, 2010,
	ISBN 978-0-07-067153-9.

Laboratory Experiments (CV stream)				
1	Spring constant experiment using expEYES17.			
2	Moment of Inertia of irregular body and rigidity modulus by Torsion pendulum.			
3	Young's modulus by Single cantilever.			
4	Young's modulus by Uniform bending.			
5	Ultrasonic Interferometer.			
6	Wavelength of laser by diffraction.			
7	Forced mechanical Oscillations and Resonance.			
8	Fermi Energy of Copper.			
9	Four Probe Experiment.			
10	Newton's rings.			
11	Exp Eyes experiment: LCR			

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY WITH LA	AB)
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be	
	conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO	10
	QUIZZES WILL BE THE FINAL QUIZ MARKS.	
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity	
	levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying,	20
	Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be	50
	evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 30 MARKS.	
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and	
	practical implementation of the problem. Case study based teaching learning (10), Program	20
	specific requirements (10), Video based seminar/presentation/demonstration (10) ADDING	50
	UPTO 30 MARKS.	
4	LAB: Conduction of laboratory exercises, lab report, observation and analysis (30 Marks),	
	lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10	20
	Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE REDUCED TO 30	50
	MARKS	
	MAXIMUM MARKS FOR THE CIE THEORY	100

Autonomous Institution Affiliated to Visvesvaraya

Approved by AICTE, New Delhi Technological University, Belagavi

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)	
Q. NO.	CONTENTS	MARKS
	PART A	
1	Objective type questions covering entire syllabus	10
	PART B	
	(Maximum of TWO Sub-divisions only)	
2	Unit 1 : (Compulsory)	14
3 & 4	Unit 2 : Question 3 or 4	14
5&6	Unit 3 : Question 5 or 6	14
7 & 8	Unit 4 : Question 7 or 8	14
9 & 10	Unit 5 : Question 9 or 10	14
11	Lab Component (Compulsory)	20
	MAXIMUM MARKS FOR THE SEE THEORY	100

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Semester: I

CHEMISTRY OF SMART MATERIALS AND DEVICES

Category: Applied Science Course

Stream: Computer Science (Common to AI, BT, CS, CY, CD & IS Programs)

(Theory and Practice)

Course Code	••	CHY211AI	CIE		100 Marks
Credits: L:T:P	••	3:0:1	SEE	••	100 Marks
Total Hours	:	42L+ 30P	SEE Duration		3 Hours

Unit-I	08 Hrs
Sustainable chemistry and E-waste management: Biomaterials: Introduction, bio-degradable	e and bio-
compatible polymeric materials: synthesis and applications (Polymers and hydrogels in drug delivery).	
Green Chemistry: Introduction, 12 principles with real life examples, validation of greenness.	
E-waste: Hazards and toxicity, segregation and recycling (Hydrometallurgy, pyrometallurgy and direc	t recycling).
Extraction of valuable metals from E-waste. Battery waste management and recycling, circular eco	onomy- case
studies.	2
Unit – II	08 Hrs
Computational chemistry: Scope, cost and efficiency of computational modeling. Stabilizing	interactions:
Bonded and non-bonded interactions. Molecular topology, topological matrix representation, topolog	ical indices,
OSAR/OSPC concept for insilico prediction of properties. 3D co-ordinate generation for small	molecules,
geometry optimization.	,
Unit –III	08 Hrs
Materials for memory and display technology: Materials for memory storage: Introduction to n	naterials for
electronic memory, classification (organic, polymeric and hybrid materials), manufacturing of set	miconductor
chips. Green computing: Bio-composite based memory devices.	
Fabrication of smart materials and devices: photo and electro active materials for memory device	es, materials
for display technology (Liquid crystals display, organic light emitting diode and light emitting elec	ctrochemical
cells).	
Unit –IV	09 Hrs
Smart sensors and devices	
RFID and IONT materials: Synthesis, properties and applications in logistic information, intelligent	packaging
systems (Graphene oxide, carbon nanotubes (CNTs) and polyaniline).	
Sensors: Introduction, types of sensors (Piezoelectric and electrochemical), nanomaterials for sensing	applications
(Strain sensors, gas sensor, biomolecules and volatile organic compounds).	••
Unit-V	09 Hrs
Advanced energy systems	
Battery technology: Introduction to electrochemistry, characteristics of battery, Lithium-ion batte	ry metal air
batteries. Battery technology for e-mobility.	-
Super capacitors: Storage principle types (EDLC pseudo and asymmetric capacitor) with ex	amples and

Super capacitors: Storage principle, types (EDLC, pseudo and asymmetric capacitor) with examples and applications.

Photovoltaics: Inorganic solar cells, organic solar cells, quantum dot sensitized (QDSSC's). Green hydrogen

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Identify the materials, conventional & non-conventional energy systems for engineering applications.				
CO2	Investigate chemical properties of materials for various technological applications.				
CO3	Apply the knowledge of material property and energy to analyze environmental issues.				
CO4	Develop solutions in the areas of applied materials and energy systems for sustainable engineering				
	application.				

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Refere	nce Books
1	E-waste recycling and management: present scenarios and environmental issues, Khan, Anish, and
	Abdullah M. Asiri. 2019, Springer, Vol. 33. ISBN: 978-3-030-14186-8.
2	Essentials of computational chemistry: theories and models, Christopher J Cramer, 2013, John Wiley &
	Sons. ISBN: 978-0-470-09182-1.
3	Energy storage and conversion devices: Supercapacitors, batteries and hydroelectric cells, Anurag Gaur,
	A. L. Sharma, Anil Arya. 2021, CRC press, 1 st edition, ISBN: 978-1-003-14176-1.
4	Fundamentals of analytical chemistry: An introduction, Douglas A. Skooget etal., 2004 Thomson Asia pte
	Ltd., 8 th , ISBN: 978-0-495-55828-6
E-book	ís
5	Functional and smart materials, Chander Prakash, Sunpreet Singh, J. Paulo Davim, 2020, CRC Press,
	ISBN: 978-036-727-510-5.
6	Electrical and electronic devices, circuits and materials: Technological challenges and solutions. Tripathi,
	S. L., Alvi, P. A., & Subramaniam, U, 2021, John Wiley & Sons, ISBN: 978-0367564261.

	Laboratory Experiments
1	Estimation of copper from PCB.
2	Determination of total acidity of the soft drinks using pH sensors.
3	Potentiometric estimation of iron.
4	Conductometric estimation.
5	Determination of viscosity coefficient of a given liquid using Ostwald's viscometer.
6	Flame photometric estimation of sodium.
7	Colorimetric estimation of copper from E-waste.
8	Electroplating of copper.
9	Synthesis and fabrication of conducting polyaniline and its application in gas sensing (Demonstration
	experiment).
10	Study the surface morphology of nanomaterials using scanning electron microscopy (Demonstration
	experiment).
11	Fabrication of thin-film gas sensors using spin coating and electro-spinning technique (Demonstration
	experiment).
12	Separation of organic compounds using column chromatographic technique and monitoring by thin layer
	chromatographic technique (Demonstration experiment).
13	Synthesis of metal oxide nanomaterials using solution combustion synthesis.
14	Green synthesis of nanomaterials.

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY WITH LAB) # **COMPONENTS** MARKS QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be 1 conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO 10 **QUIZZES WILL BE THE FINAL QUIZ MARKS.** 2 **TESTS:** Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, 30 Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 30 MARKS. 3 EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program 30 specific requirements (10), Video based seminar/presentation/demonstration (10) ADDING UPTO 30 MARKS. LAB: Conduction of laboratory exercises, lab report, observation and analysis (30 Marks), 4 lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 30 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE REDUCED TO 30 MARKS MAXIMUM MARKS FOR THE CIE THEORY 100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY) Q. NO. CONTENTS MARKS PART A 1 Objective type questions covering entire syllabus 10 PART B (Maximum of TWO Sub-divisions only) 2 Unit 1 : (Compulsory) 14 3 & 4 Unit 2 : Question 3 or 4 14 **5 & 6** Unit 3 : Question 5 or 6 14 **7 & 8** Unit 4 : Question 7 or 8 14 **9 & 10** Unit 5 : Ouestion 9 or 10 14 Lab Component (Compulsory) 20 11 MAXIMUM MARKS FOR THE SEE THEORY 100

Approved by AICTE, New Delhi

			Somestor: II				
		CHEMISTRV	FINCTIONAL N	MATERIALS			
			Applied Science (
	Stro	Calegory	Sommon to EC EE	UUISC	a a)		
	Sue	am: Electromics (C	been and Prostice)	EI & EI FIOGRAII	15)		
Course	Cada		heory and Practice)	CIE		100 M	ontro
Course					:	100 M	arks
Credits	<u>s: L:1:P</u> :	3:0:1		SEE (:	100 M	arks
Total F	iours :	42L+30P		SEE Duration	:	3 Hour	ſS
		t	J nit-I				08 Hrs
Energy	storage and conver-	sion devices					
Battery	y: Introduction, types	, characteristics, co	omponents/materials,	working and appli	ication	ns of Li	thium cobalt
oxide a	nd metal air batteries.						
Super-	capacitors: Introduc	tion, types (EDLC	C, pseudo capacitors	, asymmetric capa	acitors	s), mecl	nanism with
exampl	es and applications.						
Energy	conversion devices:	Introduction, chara	cteristics, materials,	working and applic	ations	s of H2- (D2 fuel cells,
amorph	ous Si and quantum d	lye sensitized solar	cells.				
		Uı	nit — II				09 Hrs
Nanom	naterials and thin film	n fabrication techr	niques				
Nanom	naterials: Introduction	n, classification and	d properties. Synthes	sis- solution combu	ustion	, sol-gel	method for
thin filr	ms.	,	r r			,	
Carbo	n nanomaterials: Tvt	oes, synthesis, prope	erties, functionalization	on and applications	of CN	NT and C	Graphene.
Thin fi	ilm denosition techn	iques: Fabrication of	of thin films using C	VD and PECVD ar	nd Me	tal orga	nic chemical
vapor d	leposition (MOCVD)-	principlo febricatio	I min min deposition techniques: Fabrication of thin films using UVD and PEUVD and Metal organic chemical				
vapor deposition (MOCVD)-principle, fabrication and applications.							
		principie, fabricatie	on and applications.				00 Hrs
Chemi	stry of electronic ma	terials	on and applications. nit –III				09 Hrs
Chemis	stry of electronic ma	Ur terials materials: Introd	n and applications. <u>nit –III</u>	examples Semico	onduc	tors- n-	09 Hrs
Chemis Inorga	stry of electronic ma nic semiconducting	terials materials: Introd	n and applications. nit –III luction, types with on-Czochralski proce	examples. Semico	onduc	tors- p-	09 Hrs
Chemis Inorga materia	stry of electronic ma nic semiconducting ils. Production of ele	terials materials: Introd	n and applications. hit –III luction, types with on-Czochralski processoride (CaAs) Silice	examples. Semico	onduct meth	tors- p- nods. El	09 Hrs type, n-type ectronic and
Chemis Inorga materia chemic	stry of electronic ma nic semiconducting ils. Production of ele al properties, applicat	terials materials: Introd ectronic grade silications of Gallium ars	n and applications. nit –III luction, types with on-Czochralski procession senide (GaAs), Silico	examples. Semico ess and float zone on-germanium (SiG	onduct meth de), ar	tors- p- nods. El nd Indiu	09 Hrs type, n-type ectronic and m phosphide
Chemis Inorga materia chemic (InP).	stry of electronic ma nic semiconducting ils. Production of ele al properties, applicat	terials materials: Introd ectronic grade silications of Gallium ars	n and applications. nit –III luction, types with on-Czochralski processenide (GaAs), Silice	examples. Semico ess and float zone on-germanium (SiG	onduct meth de), ar	tors- p- nods. El nd Indium	09 Hrs type, n-type ectronic and m phosphide
Chemis Inorga materia chemic (InP). Organi	stry of electronic ma nic semiconducting ils. Production of ele al properties, applicat ic semiconducting r	terials materials: Introde ectronic grade silications of Gallium ars	n and applications. nit –III luction, types with on-Czochralski processenide (GaAs), Silico senide, pentacene and	examples. Semico ess and float zone on-germanium (SiG fullerene derivati	onduct meth de), ar	tors- p- nods. El nd Indius	09 Hrs type, n-type ectronic and m phosphide ng polymer,
Chemis Inorga materia chemic (InP). Organi principl	stry of electronic ma nic semiconducting ils. Production of ele al properties, applicat ic semiconducting r le, synthesis of polyar	Ur terials materials: Introd ectronic grade silications of Gallium ars naterials: Introduc niline, applications i	n and applications. nit –III luction, types with on-Czochralski processenide (GaAs), Silico etion, pentacene and n electronic devices.	examples. Semico ess and float zone on-germanium (SiG fullerene derivati	onduct meth ie), ar ves, c	tors- p- nods. El nd Indiu conducti	09 Hrs type, n-type ectronic and m phosphide ng polymer,
Chemis Inorga materia chemic. (InP). Organi principl Magne	stry of electronic ma nic semiconducting ils. Production of ele al properties, applicat ic semiconducting r le, synthesis of polyar tic materials: Data st	Ur terials materials: Introd ectronic grade silica- tions of Gallium ars materials: Introduc niline, applications i orage materials, die	n and applications. nit –III luction, types with on-Czochralski processenide (GaAs), Silico senide (GaAs), Silico tion, pentacene and n electronic devices. electric materials: Exa	examples. Semico ess and float zone on-germanium (SiG fullerene derivati umples, properties a	onduct meth ie), ar ves, o nd ap	tors- p- nods. El nd Indiun conducti plicatior	09 Hrs type, n-type ectronic and m phosphide ng polymer, ns.
Chemis Inorga materia chemic (InP). Organi principl Magne	stry of electronic ma nic semiconducting ils. Production of ele al properties, applicat ic semiconducting r le, synthesis of polyar tic materials: Data st	terials materials: Introductions of Gallium ars materials: Introductions interials: Introductions interials: Introductions interials, die Unterials: Unterials, die	n and applications. nit –III luction, types with on-Czochralski proce- senide (GaAs), Silico etion, pentacene and n electronic devices. electric materials: Exa- nit –IV	examples. Semico ess and float zone on-germanium (SiG fullerene derivati umples, properties a	onduct meth de), ar ves, c ind ap	tors- p- nods. El nd Indium conducti plication	09 Hrs type, n-type ectronic and m phosphide ng polymer, ns. 08 Hrs
Chemis Inorga materia chemic (InP). Organi principl Magne Advand	stry of electronic ma nic semiconducting ils. Production of ele al properties, applicat ic semiconducting r le, synthesis of polyar tic materials: Data st ced electronic mat	United by the sector of the	n and applications. nit –III luction, types with on-Czochralski processenide (GaAs), Silice etion, pentacene and n electronic devices. electric materials: Exa nit –IV -waste: Materials, p	examples. Semico ess and float zone on-germanium (SiG fullerene derivati umples, properties a mechanism, examp	onduct meth de), an ves, c ind ap	tors- p- nods. El nd Indius conducti plicatior and app	09 Hrs type, n-type ectronic and m phosphide ng polymer, ns. 08 Hrs blications of
Chemis Inorga materia chemic (InP). Organi principl Magne Advance photoch	stry of electronic ma nic semiconducting ils. Production of ele al properties, applicat ic semiconducting r le, synthesis of polyar tic materials: Data st ced electronic mat hromic, thermochrom	United by the product of the produc	n and applications. nit –III luction, types with on-Czochralski processenide (GaAs), Silico senide (GaAs), Silico tion, pentacene and n electronic devices. electric materials: Exa nit –IV -waste: Materials, methods electrostrictive, magn	examples. Semico ess and float zone on-germanium (SiG fullerene derivati umples, properties a mechanism, examp etostrictive, RFID,	onduct meth fe), ar ves, o nd ap ples a MEM	tors- p- nods. El nod Indium conducti plication and app IS and N	09 Hrs type, n-type ectronic and m phosphide ng polymer, ns. 08 Hrs blications of IEMS,
Chemis Inorga materia chemic: (InP). Organi principl Magne Advance photoch e-skin,	stry of electronic ma nic semiconducting ils. Production of ele al properties, applicat ic semiconducting r le, synthesis of polyar tic materials: Data st ced electronic mat hromic, thermochromi e-nose devices.	Uniterials Uniterials materials: Introductions of Gallium ars materials: Introductions of Gallium ars materials: Introductions of Gallium ars materials: Introductions i orage materials, die Uniterials Uniterials: Antonio (Conterial) orage materials, die Uniterials uniterials: and E ic, electrochromic, eta Interials	n and applications. nit –III luction, types with on-Czochralski processenide (GaAs), Silico stion, pentacene and n electronic devices. electric materials: Exa nit –IV -waste: Materials, magn	examples. Semico ess and float zone on-germanium (SiG fullerene derivati umples, properties a mechanism, examp etostrictive, RFID,	onduct meth ie), ar ves, o ind ap ples a MEM	tors- p- nods. El- nd Indium conducti plication and app IS and N	09 Hrs type, n-type ectronic and m phosphide ng polymer, ns. 08 Hrs blications of IEMS,
Chemis Inorga materia chemic. (InP). Organi principl Magne Advane photoch e-skin, E-wast	stry of electronic ma nic semiconducting ils. Production of ele al properties, applicat ic semiconducting r le, synthesis of polyar tic materials: Data st ced electronic mat hromic, thermochromic e-nose devices. re - Types, environmet	United by the sector of the	nit –III huction, types with on-Czochralski processenide (GaAs), Silice etion, pentacene and n electronic devices. electric materials: Exan hit –IV waste: Materials, melectrostrictive, magn management.	examples. Semico ess and float zone on-germanium (SiG fullerene derivati umples, properties a mechanism, examp etostrictive, RFID,	onduct meth ie), ar ves, c nd ap ples a MEM	tors- p- nods. El- nd Indium conducti plication and app IS and N	09 Hrs type, n-type ectronic and m phosphide ng polymer, ns. 08 Hrs Dications of IEMS,
Chemis Inorga materia chemic (InP). Organi principl Magne Advan photoch e-skin, E-wast	stry of electronic ma nic semiconducting ils. Production of ele al properties, applicat ic semiconducting r le, synthesis of polyar tic materials: Data st ced electronic mat hromic, thermochromic e-nose devices. re - Types, environme	Uniterials terials materials: Introde ctronic grade silications of Gallium ars materials: Introduc niline, applications i orage materials, die Uritarials erials and E – ic, electrochromic, e ntal risks, recycle m U	nit –III huction, types with on-Czochralski processenide (GaAs), Silice etion, pentacene and n electronic devices. electric materials: Exa hit –IV -waste: Materials, melectrostrictive, magn hanagement. Juit-V	examples. Semico ess and float zone on-germanium (SiG fullerene derivati umples, properties a mechanism, examp etostrictive, RFID,	onduct meth de), ar ves, o nd ap ples a MEM	tors- p- nods. El nd Indium conducti plication and app IS and N	09 Hrs type, n-type ectronic and m phosphide ng polymer, ns. 08 Hrs blications of IEMS, 08 Hrs
Chemis Inorga materia chemic: (InP). Organi principl Magne Advane photoch e-skin, E-wast	stry of electronic ma nic semiconducting ils. Production of ele al properties, applicat ic semiconducting r le, synthesis of polyar tic materials: Data st ced electronic mat hromic, thermochromic e-nose devices. e - Types, environmer s and Instrumental r	Uniterials Uniterials materials: Introductions of Gallium ars materials: Introductions of Gallium ars naterials: Introductions i orage materials, die Uniterials erials and E ic, electrochromic, e uniterials ntal risks, recycle m Uniterials Uniterials Uniterials ntal risks, recycle m Uniterials Uniterials Uniterials and E - ic, electrochromic, e Uniterials uniterials	n and applications. nit –III luction, types with on-Czochralski procession senide (GaAs), Silico etion, pentacene and n electronic devices. electric materials: Exa nit –IV -waste: Materials, melectrostrictive, magn management. Juit-V S	examples. Semico ess and float zone on-germanium (SiG fullerene derivati umples, properties a mechanism, examp etostrictive, RFID,	onduct meth ie), ar ves, o nd ap ples a MEM	tors- p- nods. El nd Indium conducti plicatior and app IS and N	09 Hrs type, n-type ectronic and m phosphide ng polymer, ns. 08 Hrs blications of IEMS, 08 Hrs
Chemis Inorga materia chemic: (InP). Organi princip Magne Advane photoch e-skin, E-wast Sensor Sensor	stry of electronic ma nic semiconducting ils. Production of ele al properties, applicat ic semiconducting r le, synthesis of polyar tic materials: Data st ced electronic mat hromic, thermochromic e-nose devices. re - Types, environmer s and Instrumental r s: Introduction, types	United by the sector of th	n and applications. nit –III luction, types with on-Czochralski procession senide (GaAs), Silico etion, pentacene and n electronic devices. electric materials: Exa nit –IV -waste: Materials, melectrostrictive, magn management. mit-V s als used and applicat	examples. Semico ess and float zone on-germanium (SiG fullerene derivati amples, properties a mechanism, examp etostrictive, RFID,	onduct meth de), ar ves, o and ap ples a MEM	tors- p- nods. El nd Indiun conducti plicatior and app IS and N	09 Hrs type, n-type ectronic and m phosphide ng polymer, ns. 08 Hrs blications of IEMS, 08 Hrs piezoelectric
Chemis Inorga materia chemic. (InP). Organi principl Magne Advand photoch e-skin, E-wast Sensor Sensor sensor,	stry of electronic ma nic semiconducting ils. Production of ele al properties, applicat ic semiconducting r le, synthesis of polyar tic materials: Data st ced electronic mat hromic, thermochromi e-nose devices. re - Types, environmer s and Instrumental r s: Introduction, types electrochemical sense	Uniterials Uniterials materials: Introductions of Gallium arsenaterials: interials: Introductions of Gallium arsenaterials: interials: Introductions is orage materials, die uiline, applications is orage materials, die Uniterials erials and E – ic, electrochromic, end Uniterials ntal risks, recycle multiple, materials Uniterials or and gas sensors. Uniterials	n and applications. nit –III luction, types with on-Czochralski procession senide (GaAs), Silico etion, pentacene and n electronic devices. electric materials: Exa nit –IV -waste: Materials, me electrostrictive, magn management. Unit-V s als used and applicat	examples. Semico ess and float zone on-germanium (SiG fullerene derivati umples, properties a mechanism, examp etostrictive, RFID,	onduct meth ie), ar ves, o ind ap ples a MEM	tors- p- nods. El- nd Indius conducti plicatior and app IS and N ensors,	09 Hrs type, n-type ectronic and m phosphide ng polymer, ns. 08 Hrs blications of IEMS, 08 Hrs piezoelectric
Chemis Inorga materia chemic: (InP). Organi principl Magne Advane photoch e-skin, E-wast Sensor sensor, sensor, Instrum	stry of electronic ma nic semiconducting ils. Production of ele al properties, applicat ic semiconducting r le, synthesis of polyar etic materials: Data st ced electronic mat hromic, thermochromic e-nose devices. e - Types, environment s and Instrumental r s: Introduction, types electrochemical sense mental method of an	Uniterials Uriterials materials: Introductions of Gallium arsenaterials: ions of Gallium arsenaterials: Introductions of Gallium arsenaterials: materials: Introductions of Gallium arsenaterials: ionage materials: Introductions i orage materials: Introductions i ic, electrochromic, end U nethods of analysis s, principle, materia or and gas sensors. Interial gas sensors. alysis: Principle, in	nit –III huction, types with on-Czochralski processenide (GaAs), Silice etion, pentacene and n electronic devices. electric materials: Exa hit –IV waste: Materials, melectrostrictive, magn hanagement. mit-V sals used and applicate hastrumentation: Color	examples. Semico ess and float zone on-germanium (SiG fullerene derivati umples, properties a mechanism, examp etostrictive, RFID,	onduct meth ie), ar ves, o nd ap ples a MEM	tors- p- nods. El- nd Indiun conducti plication and app IS and N ensors, ame pho	09 Hrs type, n-type ectronic and m phosphide ng polymer, ns. 08 Hrs blications of IEMS, 08 Hrs piezoelectric btometry and
Chemis Inorga materia chemic: (InP). Organi principl Magne Advand photoch e-skin, E-wast Sensor sensor, Instrum conduc	stry of electronic ma nic semiconducting ils. Production of ele al properties, applicat ic semiconducting r le, synthesis of polyar tic materials: Data st ced electronic mat hromic, thermochromic e-nose devices. re - Types, environmer s and Instrumental r s: Introduction, types electrochemical sense mental method of an tometry.	$\frac{Ur}{terials}$ $materials: Introductions of Gallium arses materials: Introductions of Gallium arses materials: Introductions i orage materials, die \frac{Ur}{erials} and E ic, electrochromic, e intal risks, recycle m \frac{UU}{Ur} methods of analysis s, principle, materia or and gas sensors. malysis: Principle, interviewed article article$	nit –III huction, types with on-Czochralski procession senide (GaAs), Silico etion, pentacene and n electronic devices. electric materials: Exa hit –IV -waste: Materials, melectrostrictive, magn management. Juit-V s als used and applicat hstrumentation: Color	examples. Semico ess and float zone on-germanium (SiG fullerene derivati umples, properties a mechanism, examp etostrictive, RFID, tions of optoelectro	onduct meth de), ar ves, o nd ap ples a MEM	tors- p- nods. El nd Indium conducti plication and app IS and N ensors, ame pho	09 Hrs type, n-type ectronic and m phosphide ng polymer, ns. 08 Hrs blications of IEMS, 08 Hrs piezoelectric btometry and
Chemis Inorga materia chemic (InP). Organi principl Magne Advance photoch e-skin, E-wast Sensor sensor, Instrur conduc	stry of electronic ma nic semiconducting ils. Production of ele al properties, applicat ic semiconducting r le, synthesis of polyar tic materials: Data st ced electronic mat hromic, thermochromic e-nose devices. re - Types, environmer s and Instrumental r s: Introduction, types electrochemical sense mental method of an tometry.	Uniterials materials: materials: Introductions of Gallium arsenaterials: iniline, applications i orage materials, die Uritians erials and E - ic, electrochromic, e ntal risks, recycle m Unitians Unitians ic, and gas sensors. and gas sensors.	n and applications. nit –III luction, types with on-Czochralski procession senide (GaAs), Silico etion, pentacene and n electronic devices. electric materials: Exa nit –IV -waste: Materials, melectrostrictive, magn management. Mit-V sals used and applicate heterostrumentation: Color	examples. Semico ess and float zone on-germanium (SiG fullerene derivati umples, properties a mechanism, examp etostrictive, RFID,	onduct meth de), ar ves, o and ap ples a MEM	tors- p- nods. El nd Indiun conducti plicatior and app IS and N ensors, ame pho	09 Hrs type, n-type ectronic and m phosphide ng polymer, ns. 08 Hrs blications of IEMS, 08 Hrs piezoelectric btometry and
Chemis Inorga materia chemic: (InP). Organi principl Magne Advand photoch e-skin, E-wast Sensor Sensor, Instrum conduc	stry of electronic ma nic semiconducting ils. Production of ele al properties, applicat ic semiconducting r le, synthesis of polyar tic materials: Data st ced electronic mat hromic, thermochromic e-nose devices. re - Types, environmer s and Instrumental r s: Introduction, types electrochemical sense mental method of an tometry.	Uniterials Uriterials materials: Introductions of Gallium arsenaterials: interials: Introductions of Gallium arsenaterials: interials: Introductions i orage materials, die Uriterials erials and E ic, electrochromic, end Uriterials ic, electroch	n and applications. nit –III luction, types with on-Czochralski procession senide (GaAs), Silico etion, pentacene and n electronic devices. electric materials: Exa nit –IV -waste: Materials, melectrostrictive, magn management. Init-V s als used and applicat hstrumentation: Color se, the students will	examples. Semico ess and float zone on-germanium (SiG fullerene derivati amples, properties a mechanism, examp etostrictive, RFID, tions of optoelectro imetry, potentiome be able to	onduct meth de), an ves, o and ap ples a MEM	tors- p- nods. El nd Indiun conducti plicatior and app IS and N ensors, ame pho	09 Hrs type, n-type ectronic and m phosphide ng polymer, ns. 08 Hrs blications of IEMS, 08 Hrs piezoelectric btometry and
Chemis Inorga materia chemic. (InP). Organi principl Magne Advand photoch e-skin, E-wast Sensor Sensor sensor, Instrur conduct	stry of electronic ma nic semiconducting ils. Production of ele al properties, applicat ic semiconducting r le, synthesis of polyar tic materials: Data st ced electronic mat hromic, thermochromic e-nose devices. re - Types, environment s and Instrumental r s: Introduction, types electrochemical sense mental method of an tometry.	Uniterials Uriterials materials: Introductions of Gallium arsenaterials: interials: Introductions of Gallium arsenaterials: interials: Introductions is orage materials, die uinine, applications is orage materials, die Uniterials erials and E – ic, electrochromic, enaterials uniterials ntal risks, recycle m Uniterial uniterials: Principle, material or and gas sensors. Interial and gas sensors. Interial uniterials: Principle, interial or and gas sensors. Interial uniterials: Principle, interial uniterials: Principle: uniterials: Principle: uniterials: Principle: </th <th>n and applications. nit –III luction, types with on-Czochralski procession senide (GaAs), Silico etion, pentacene and n electronic devices. electric materials: Exa nit –IV waste: Materials, me electrostrictive, magn nanagement. Jnit-V s als used and applicat hstrumentation: Color se, the students will pon-conventional energy</th> <td>examples. Semico ess and float zone on-germanium (SiG fullerene derivati imples, properties a mechanism, examp etostrictive, RFID, tions of optoelectro imetry, potentiome be able to</td> <td>onduct meth ie), ar ves, o ind ap ples a MEM</td> <th>tors- p- nods. El- nd Indium conducti plication and app IS and N ensors, ame pho-</th> <th>09 Hrs type, n-type ectronic and m phosphide ng polymer, ns. 08 Hrs Dications of IEMS, 08 Hrs piezoelectric otometry and cations.</th>	n and applications. nit –III luction, types with on-Czochralski procession senide (GaAs), Silico etion, pentacene and n electronic devices. electric materials: Exa nit –IV waste: Materials, me electrostrictive, magn nanagement. Jnit-V s als used and applicat hstrumentation: Color se, the students will pon-conventional energy	examples. Semico ess and float zone on-germanium (SiG fullerene derivati imples, properties a mechanism, examp etostrictive, RFID, tions of optoelectro imetry, potentiome be able to	onduct meth ie), ar ves, o ind ap ples a MEM	tors- p- nods. El- nd Indium conducti plication and app IS and N ensors, ame pho-	09 Hrs type, n-type ectronic and m phosphide ng polymer, ns. 08 Hrs Dications of IEMS, 08 Hrs piezoelectric otometry and cations.
Chemis Inorga materia chemic: (InP). Organi principl Magne Advane photoch e-skin, E-wast Sensor Sensor sensor, Instrut conduc	stry of electronic ma nic semiconducting ils. Production of ele al properties, applicat ic semiconducting r le, synthesis of polyar tic materials: Data st ced electronic mat hromic, thermochromic e-nose devices. a - Types, environme s and Instrumental r s: Introduction, types electrochemical sense mental method of an tometry.	Uniterials Uriterials materials: Introductions of Gallium arsenaterials: inaterials: Introductions of Gallium arsenaterials: materials: Introductions of Gallium arsenaterials: inaterials: Introductions is orage materials, die uinitine, applications is orage materials, die Uritions erials and E ic, electrochromic, end Urition intal risks, recycle materia Urition uinition: Urition methods of analysis s, principle, materia or and gas sensors. Endysis: Principle, in empleting the course Is, conventional & material	n and applications. nit –III luction, types with on-Czochralski processenide (GaAs), Silico senide (GaAs), Silico etion, pentacene and n electronic devices. electric materials: Exa nit –IV -waste: Materials, ne electrostrictive, magn hanagement. Mit-V s als used and applicat hstrumentation: Color se, the students will non-conventional ener- rials for various techn	examples. Semico ess and float zone on-germanium (SiG fullerene derivati umples, properties a mechanism, examp etostrictive, RFID, tions of optoelectro imetry, potentiome <u>be able to</u> rgy systems for eng pological applicatio	onduct meth de), ar ves, o nd ap ples a MEM	tors- p- nods. El- nd Indium conducti plication and app IS and N ensors, ame pho- ng appli	09 Hrs type, n-type ectronic and m phosphide ng polymer, ns. 08 Hrs blications of IEMS, 08 Hrs piezoelectric btometry and cations.

CO4 Develop solutions in the areas of applied materials and energy systems for sustainable engineering application.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Referen	nce Books
1	Chemistry in microelectronics, Yannick Le Tiec, 2013, Wiley Publications, ISBN: 9781848214361.
2	Electronics properties of materials, Rolf E, Hummel, 2012, Springer Publications New York, 4 th Edition,
	ISBN 9781441981639.
3	Smart nanomaterials for sensor application, Li S, Ge Y, Li H, 2012, Bentham Science Publishers, ISBN: 9781608055425.
4	Energy storage and conversion materials, Skinner S, 2019, Royal society of chemistry, ISBN: 9781788010900.
E-Boo	ks
5	Smart materials, Harvey, James A. Handbook of materials selection, 2002, John Wiley & Sons Canada,
	Limited, ISBN: 9780471359241.
6	Engineering Chemistry, Suba Ramesh, Vairam, Ananda Murthy, 2011, Wiley India, ISBN: 9788126519880.
7	Energy storage and conversion devices; Supercapacitors, batteries and hydroelectric Cells Editor: Anurag Gaur, 2021, CRC Press, ISBN: 9781000470512.
8	An overview of advanced nanomaterials for sensor applications, Rohilla D, Chaudhary S, Umar A.
	Engineered Science publisher. 2021, 16:47-70. DOI: 10.30919/es8d552.

	Laboratory Experiments (ME stream)					
1	Estimation of copper in the E-waste.					
2	Determination of pKa of a weak acid using pH sensor.					
3	Potentiometric estimation of iron.					
4	Colorimetric estimation of copper from PCBs.					
5	Conductometric estimations.					
6	Flame photometric estimation of sodium.					
7	Determination of viscosity coefficient.					
8	Electroplating of copper.					
9	Preparation of polyaniline for sensor application (Demonstration experiment).					
10	Preparation of semiconducting TiO ₂ nanoparticles for DSSC applications (Demonstration experiment).					
11	Determination of band gap of semiconducting material using UV-vis spectrophotometer (Demonstration					
	experiment).					
12	Study the surface morphology of nanomaterials using scanning electron microscopy (Demonstration					
	experiment).					
13	Thin films fabrication using PECVD and sputtering technique (Demonstration Experiment).					
14	Fabrication of coin cell super capacitor prototype (Demonstration experiment).					
15	Synthesis of iron oxide nanomaterials using solution combustion synthesis.					
16	Green synthesis of nanomaterials.					

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY WITH LAB) # **COMPONENTS** MARKS QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be 1 conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO 10 **QUIZZES WILL BE THE FINAL QUIZ MARKS.** 2 **TESTS:** Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, 30 Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 30 MARKS. 3 EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program 30 specific requirements (10), Video based seminar/presentation/demonstration (10) ADDING UPTO 30 MARKS. LAB: Conduction of laboratory exercises, lab report, observation and analysis (30 Marks), 4 lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 30 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE REDUCED TO 30 MARKS 100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY) Q. NO. CONTENTS MARKS PART A 1 Objective type questions covering entire syllabus 10 PART B (Maximum of TWO Sub-divisions only) 2 Unit 1 : (Compulsory) 14 3 & 4 Unit 2 : Question 3 or 4 14 **5 & 6** Unit 3 : Question 5 or 6 14 **7 & 8** Unit 4 : Question 7 or 8 14

9 & 10 Unit 5 : Ouestion 9 or 10

11

Lab Component (Compulsory)

14

20

100

MAXIMUM MARKS FOR THE CIE THEORY

MAXIMUM MARKS FOR THE SEE THEORY

Approved by AICTE, New Delhi

				Semester · II			
CHEMISTRV OF ENCINEEDING MATEDIALS							
	COLORONUL ANDIOL Science Counce						
Category; Applieu Science Course Stream: Mechanical (Common to AS CH IM & MF Programs)							
		cun	(O) (T	heory & Practice)		,	
Course	Code	:	CHY221CI		CIE	:	100 Marks
Credits	: L:T:P	:	3:0:1		SEE	:	100 Marks
Total H	lours	:	42L + 30P		SEE Duration	:	3 Hours
		·			522 2 41 40101	•	
			U	nit-I			08 Hrs
Fuels:	Thermochemistry, c	alo	rific value of fuels,	numericals, knocking	g in internal combust	ion	engines, reasons for
knockin	ig, octane and cetan	e n	umber, antiknockin	ig agents. Biodiesel, r	ower alcohol		0 ,
Alterna	tive Fuels: Green	fue	el- hydrogen produ	ction and storage. Re	ockets Fuels: Proper	ties	, characteristics and
types.				C	*		
			Un	it – II			09 Hrs
Energy	storage and con	ve	rsion devices: Ba	tteries and super ca	pacitors: Working p	orin	ciple, classification,
fabricat	ion and application	s of	lithium-ion battery	y, metal air batteries,	supercapacitors and s	supe	er batteries.
Fuel ce	lls and renewable	en	ergy: Hydrogen -	oxygen fuel cell, dire	ect methanol fuel cel	1 ar	nd their applications.
Solar ce	ell – principle, const	truc	ction and working o	of Quantum Dot sensi	tized solar cells.		
			Uni	it –III			08 Hrs
Corrosi	ion Science and	Ma	nagement: Corro	sion: Electrochemica	al theory of corrosi	on.	Types: differential
aeration	(pitting and water	lin	e), differential met	al and stress corrosic	n. Factor affecting r	ate	of corrosion. Case
studies	on corrosion failure						
Corrosi	ion control: Meta	al (coating-galvanization	on and tinning, sur	face conversion co	atin	g - anodizing and
phospha	ating. Cathodic prot	tect	ion - sacrificial and	ode method. Corrosio	on testing by weight	los	s method. Corrosion
penetrat	tion rate (CPR)-nur	ner	ical problems. Met	tal finishing: Electrop	plating of chromium	and	d Electroless plating
of copp	er:						
Unit –IV 08 Hrs							
Chemis	stry of nanomate	eria	ls: Size depender	nt properties: Surfa	ce area, optical an	d	catalytic properties.
Classifi	cation of nanomate	rial	s. Synthesis: Soluti	on combustion and Se	ol-gel methods.		
Synthes	sis and application	ns:	Synthesis, propert	ies and applications	of carbon nano tube	s a	nd graphenes. Nano
lubrican	nts: Types of nanop	part	icles as lubricant a	additives and their ap	plication in defense	, aı	tomobile and space
crafts.							
			U	nit-V			09 Hrs
Engine	ering polymers an	d n	anocomposites: T	hermosets-bakelite ar	nd epoxy, thermoplas	stics	- polycarbonate and
polyethe	er sulfones- prepar	rati	on and specific a	pplications in indust	ries. Biodegradable	pol	ymer: Introduction,
synthesis, properties, and application of poly lactic acid (PLA). Significance of glass transition temperature (Tg)							
and factors affecting Tg.							
Reinforcements and testing - Glass, carbon and natural fibre - synthesis, properties and applications in polymer							
composites. ASIM standards of material testing-tensile strength, flexural strength, ILSS and impact strength.							
Applica	Applications of polymer nanocomposites in injection moulded products, paints and 3D printing.						
Carer	Outcomer A P	0.6-		• 4h • • • • • • • • • • • • • • • • • •	a abla 4a		
Course	Identify the met		apieung the course	e, the students will b	e able to		na annliastion -
	Identify the mater		, conventional & no	on-conventional energy	gy systems for engine	eri	ng applications.
CO2	Investigate chemic		properties of materi	ais for various techno	nogical applications.		

CO3 Apply the knowledge of material property and energy to analyze environmental issues.
 CO4 Develop solutions in the areas of applied materials and energy systems for sustainable engineering application.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Referen	Reference Books					
1	Understanding nanomaterials, Malkiat S. Johal, Lewis E. Johnson, 2017, CRC Press, Taylor and Francis					
	Group, ISBN: 9780815354383.					
2	Engineering chemistry, Shubha Ramesh et.al., 2011, Wiley India, 1 st Edition, ISBN: 9788126519880.					
3	Fundamentals of analytical chemistry, Douglas A. Skoog et.al., 2004, 9th edition, Thomson Asia pvt Ltd.,					
	ISBN: 9780495558286					
4	Energy storage and conversion devices, Anurag Gaur, A. L. Sharma, Anil Arya, 2021, CRC Press, Taylor					
	and Francis Group, 1 st Edition, ISBN: 9781003141761.					

Laboratory Experiments				
1	Volumetric analysis.			
2	Analysis of alloy (Brass).			
3	Ore analysis (Haematite).			
4	Determination of pKa of a weak acid.			
5	Potentiometric estimation of iron in rust.			
6	Colorimetric estimation of copper.			
7	Conductometric estimations.			
8	Determination of viscosity coefficient of a given liquid using Ostwald's viscometer.			
9	Flame photometric estimation of sodium in the given saline solution.			
10	Preparation of nanomaterials by solution combustion method.			
11	Preparation of thin films by dipcoating technique and characterization of thin film.			
12	Determination of relative and kinematic viscosities of given lubricating oil at different temperatures using			
	Redwood viscometer (Demonstration experiment).			
13	To find of Tg of polymer using DSC (Demonstration Experiment).			
14	Study of surface morphology of materials using SEM (Demonstration experiment).			
15	Phase analysis of alloys by XRD (Demonstration experiment).			
16	Synthesis of metal oxide nanomaterials using solution combustion synthesis (Demonstration experiment).			
17	Green synthesis of nanomaterials (Demonstration experiment).			

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY WITH LA			
#	COMPONENTS	MARKS	
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be		
	conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO	10	
	QUIZZES WILL BE THE FINAL QUIZ MARKS.		
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity		
	levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying,	20	
	Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be	30	
	evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 30 MARKS.		
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) ADDING UPTO 30 MARKS .	30	
4	LAB: Conduction of laboratory exercises, lab report, observation and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE REDUCED TO 30 MARKS	30	
	MAXIMUM MARKS FOR THE CIE THEORY	100	

Autonomous Institution Affiliated to Visvesvaraya

Approved by AICTE, New Delhi Technological University, Belagavi

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS		
	PART A			
1	Objective type questions covering entire syllabus	10		
	PART B			
	(Maximum of TWO Sub-divisions only)			
2	Unit 1 : (Compulsory)	14		
3 & 4	Unit 2 : Question 3 or 4	14		
5&6	Unit 3 : Question 5 or 6	14		
7 & 8	Unit 4 : Question 7 or 8	14		
9 & 10	Unit 5 : Question 9 or 10	14		
11	Lab Component (Compulsory)	20		
	MAXIMUM MARKS FOR THE SEE THEORY 100			

				Semester: II				
	E	EN(GINEERING AND	ENVIRONMENT	AL CHEMISTRY			
			Category	: Applied Science Co	ourse			
			Stream: C	ivil (Only to CV Pro	gram)			
a	<u> </u>			eory and Practice)	GTE		100 14	1
Course	Code	:	CHY221DI		CIE	: 100 Marks		
Credits	s: L:T:P	:	3:0:1		SEE	: 100 Marks		
Total E	lours	:	42L+30P		SEE Duration	:	3 Hour	S
			T	nit-I				08 Hrs
Green	Chemistry Intro	duc	tion principles of	f green chemistry	E-factor atom eco	nor	nv mic	rowave and
ultrasor	ind assisted reaction	ns (examples of green s	synthesis	L'incloi, mont ceo	non	ny, nne	lowave and
Water	Chemistry: Impuri	ties	in water, emerging	p pollutants, water qui	ality parameters as p	er F	BIS. dete	rmination of
fluoride	e, DO, BOD and CO)D,	numericals, desalin	nation of water by RC	D. Sewage treatment	pro	cess.	
			Un	it – II				09 Hrs
Materi	als in civil enginee	rin	g					
Cemen	t: Chemical compo	osit	ion of cement, ma	nufacturing process	of portland cement,	pro	ocess of	setting and
hardeni	ng, types (Mortar, c	cone	crete, RCC and CS	H Gel) and their appli	ications.	_		_
Glass:	Manufacture, prope	rtie	es, types and application	ations.				
Ceram	ics and refractory	ma	terials: Properties,	types and application	18.			•
			Un	it –III				08 Hrs
Corros	ion science and e	ngi	neering: Corrosion	n: Electrochemical th	eory, types: differen	ntia	l aeratio	on (waterline
and pitt	ing), differential me	etal	and stress corrosio	n (caustic embrittlem	ent). Factors affectin	ıg ra	ate of co	rrosion.
Corros	ion control: Meta	al (coating-galvanization	on and tinning, sur	face conversion co	atir	ng - an	odizing and
phosph	ating. Cathodic pro	tect	tion - sacrificial an	ode method. Corrosi	on testing by weight	los	ss metho	od, corrosion
penetra	tion rate (CPR), nu	ner	ical problems.					
Metal f	inishing: Electropl	atin	ig of chromium and	l electroless plating of	f copper			
D 1			Un	it –IV	11	0.0		09 Hrs
Polyme	ers and polymer	co	mposites: Synthe	sis, properties, and	applications of PN	1M.	A, PVC	, polyester,
polysty	rene. Polymer conc	rete	es and biopolymer.	1 . 1 • 1	1		1	1 • 1 1
Smart	polymers: Thermo	cn	romic polymers, e	lectrochromic polym	ers, polymer coating	;s, [polymer	binders and
Sell-nea	ung polymers.		fiber compositor ("NT and monhana ha	and compositor			
Polyme	er composites: Cart	bon	liber composites, C	IN I and graphene-ba	ised composites.			
Aullesi Coo po	ves: Synthesis and a	app	neation of epoxy re	esilis.				
Geo po Biodog	radabla nolymors:	Ly Do	lylactic acid and it	s application				
Dioueg	rauable porymers.	ru		s application. nit-V				08 Hrs
Chamia	stry of nonomator	ماد	and analytical ter	hniques: Properties	(surface area electric	cal	ontical	and catalytic
propert	ies) synthesis of n	ano	materials. Top dox	vn and bottom-up an	proaches synthesis	Jai, hv	optical sol-gel	and solution
combustion method. Civil engineering applications of carbon nanotubes								
Analytical techniques: Principle instrumentation and applications of conductometry potentiometry colorimetry								
and pH-sensor (glass electrode).								
und pri	Sensor (gluss creek	ou						
Course	Outcomes: After	con	npleting the cours	e. the students will h	e able to			
CO1	Identify the mater	ials	. conventional & no	on-conventional energy	ev systems for engine	eeri	ng appli	cations.
CO2	Investigate chemic	cal	properties of mater	ials for various technol	ological applications		6 Tri	
CO3	CO3 Apply the knowledge of material property and energy to analyze environmental issues							
CO4	Develop solutions	in	the areas of applied	I materials and energy	v systems for sustain	able	engine	ering
	application.	-			,		0	0

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Referen	nce Books
1	Chemistry for Engineers, Teh Fu Yen, Imperial college press, 2008, ISBN: 97818609747742.
2	Advances in corrosion science and technology, M.G. Fontana, R.W. Staettle, Springer publications, 2012,
	ISBN: 9781461590620.
3	Fundamentals of analytical chemistry, Douglas A. Skoog et.al., 8 th edition, 2004, Thomson Asia pvt Ltd.
	ISBN: 9812435131.
4	Engineering chemistry, Shubha Ramesh et.al., Wiley India, 1 st Edition, 2011, ISBN: 9788126519880.

Laboratory Experiments				
1	Volumetric analysis.			
2	Estimation of water quality parameter: chemical oxygen demand.			
3	Estimation of CaO in cement solution.			
4	Determination of pKa of a weak acid using pH meter.			
5	Potentiometric estimation of iron.			
6	Colorimetric estimation of copper.			
7	Conductometric estimation.			
8	Determination of viscosity coefficient of a given liquid using Ostwald's viscometer.			
9	Flame photometric estimation of sodium.			
10	Determination of relative and kinematic viscosities of given lubricating oil at different temperatures using			
	Redwood viscometer (Demonstration Experiment).			
11	To find of Tg of polymer using DSC. (Demonstration Experiment).			
12	Study of surface morphology of materials using SEM (Demonstration Experiment).			
13	Synthesis of iron oxide nanomaterials using solution combustion synthesis			
14	Green synthesis of nanomaterials.			

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY WITH LA				
#	COMPONENTS	MARKS		
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be			
	conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO	10		
	QUIZZES WILL BE THE FINAL QUIZ MARKS.			
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity			
	levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying,	20		
	Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be	30		
	evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 30 MARKS.			
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and			
	practical implementation of the problem. Case study based teaching learning (10), Program	20		
	specific requirements (10), Video based seminar/presentation/demonstration (10) ADDING	50		
	UPTO 30 MARKS.			
4	LAB: Conduction of laboratory exercises, lab report, observation and analysis (30 Marks),			
	lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10	30		
	Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE REDUCED TO 30	50		
	MARKS			
	MAXIMUM MARKS FOR THE CIE THEORY	100		

Autonomous Institution Affiliated to Visvesvaraya

Approved by AICTE, New Delhi Technological University, Belagavi

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	Q. NO. CONTENTS				
	PART A				
1	Objective type questions covering entire syllabus	10			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	14			
3 & 4	Unit 2 : Question 3 or 4	14			
5&6	Unit 3 : Question 5 or 6	14			
7 & 8	Unit 4 : Question 7 or 8	14			
9 & 10	Unit 5 : Question 9 or 10	14			
11	Lab Component (Compulsory)	20			
	MAXIMUM MARKS FOR THE SEE THEORY 100				

Go, change the world

RV RV

RV Educational Institutions[®] RV College of Engineering[®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Professional Core Courses

BASIC ELECTRONICS (EC112AT) ELEMENTS OF ELECTRICAL ENGINEERING (EE112AT) ELEMENTS OF MECHANICAL ENGINEERING (ME112AT) PRINCIPLES OF PROGRAMMING USING C (CS222AI) ENGINEERING MECHANICS (CV122AT)

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

			Semester: I			
		BAS	SIC ELECTRONICS	5		
		Category:	Professional Core (Course		
	Str	eam: Electronics ((Common to EC, ET	& EI Programs)		
			(Theory)		-	
Course Code	:	EC112AT		CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	40L		SEE Duration	:	3 Hours
[T	Init I			08Ums
Rinolar Junction Trans	isto	vrs. Semiconducto	r Diode Review R	Pegulated Power Su	unnl	v Bipolar Junction
Transistors- Transistor Co	nst	ruction and Operat	tion Load-Line Anal	vsis Operating Poin	ippi it F	Fixed Bias Voltage
Divider Bias Configuration	ns]	Bias Stabilization	Transistor Switching	Networks Amplific:	atio	n in the AC Domain
The re Transistor Model t	for	CE Configuration	RC Coupled Ampli	ifier Gain Input Re	sist	ance and Frequency
Response. Cascaded System	ms.	Numerical Examp	les.	iner, Suin, input ite	5150	and inequency
		Un	nit – II			08 Hrs
MOSFET: Differences be	twe	en BJT & FET, E	nhancement Type N-	MOSFET Operation	. Oı	tput Characteristics,
Regions of Operation, Cu	ırre	nt Equation and T	Fransfer Characteristi	c, Small Signal Eq	uiva	lent, Calculation of
Trans-Conductance and V	olt	age Gain, rDS, O	peration of CMOS	Inverter, CMOS NA	ND	and CMOS NOR,
Numerical Examples.		0	•			
Basic Principles and Advan	ntag	ges of Negative Fee	edback: Feedback Cor	ncept, Advantages of	Ne	gative Feedback,
Analysis of Gain and Gain	Sta	ability, Numerical H	Examples.			
		Un	it –III			08 Hrs
Digital Electronics						
Boolean Algebra and Si	mp	olification: Boolea	in Postulates and De	e-Morgan's Theorem	s. S	Simplification Using
Postulates and Theorems. S	Sim	plification using K	-Map up to 4-Variabl	es.		
Basic and Universal Gate	es:	Truth Tables of Al	1 Basic and Universa	l Gates. Half Adder,	Ful	l Adder, Realization
Using Basic Gates and NA	ND	Gates. Multiplexe	ers, De-Multiplexers,	Encoders and Decode	ers.	
Unit –IV 08 Hrs						
Introduction To OP-AM	P:]	Block Diagram of	Op-Amp, Characteris	stics of an Ideal Op-	Am	p: Gain, Bandwidth,
Input & Output Impedanc	es,	CMRR, PSRR, SI	ew Rate, Input Offse	et Voltage. Typical I	Para	meters of a General
Purpose Op-Amp, Pin Cor	fig	uration of Op-Amp	p (741). Differential A	Amplifier, Applicatio	ns:	Inverting Amplifier,
Non Inverting, Amplifier	r,	Voltage Follower,	, Summer, Integrate	or, Differentiator, C	Com	parator, Difference
Amplifier, Schmitt Trigger	, In	strumentation Amp	plifier, Numerical Exa	amples.		00 TT
	n		nit –V			08 Hrs
Communication Systems,	, Se	ensors and Transd	ucers		<i>.</i> .	
Introduction to Communication: Block Diagram of a General-Purpose Communication System, Need for						
Power Differences Between AM and FM Numerical Examples Digital Communication Block Diagram						
Introduction to Transducers: Passive Electrical Transducers: Pasistive Thermometer Linear Variable						
Differential Transformer (LVDT) Provimity Transducer Active Electrical Transducer Diago Electric Transducer						
Hall Effect Transducer						
Case Studies:						
i. Automatic Headlig	t	System				
ii. Pick and Place Rol	ii. Pick and Place Robots.					

Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	University, Belagavi
Course	Outcomes: After completing the course, the students will be able to
CO1	Realize the operation and the characteristics of the Electronic devices for modern day applications.
CO2	Analyze different electronic circuits for various system designs.
CO3	Demonstrate the role of different building blocks of Electronics Systems.
CO4	Evaluate the performance of the Electronic Systems to meet given specifications using modern
	engineering tools.

Refere	nce Books
1	Electronic Devices and Circuit Theory, Robert L Boylestad, Louis Nashelsky, Prentice Hall India
	publication, 10 th Edition, 2009, ISBN: 978-317-2700-3.
2	Basic Electronics, D P Kothari, I J Nagrath, MCGraw Higher Ed, 2 nd Edition, ISBN: 9789352606467.
3	Digital Logic and Computer Design, Morris Mano, , Prentice Hall India publication, 54 th Edition, 2007,
	ISBN: 978-81-317-1450-8.
4	Electronic Devices and Circuits, David A. Bell, Oxford University Press, 5 th Edition, 2008.
	ISBN:9780195693409.
5	Basic Electronics, Ravish Aradhya H V, McGraw Hill Education; 3rd edition, ISBN: 978-0071333108.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7 & 8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	MAXIMUM MARKS FOR THE SEE THEORY	100			

Approved by AICTE, New Delhi

				Semester: I			
			ELEMENTS OF	ELECTRICAL EN	GINEERING		
			Category:	Professional Core C	Course		
			Stream: Elect	tronics (Only to EE]	Program)		
			1	(Theory)			
Course	Code	:	EE112AT		CIE	:	100 Marks
Credits	s: L:T:P	:	3:0:0		SEE	:	100 Marks
Total H	Iours	:	40 L		SEE Duration	:	3 Hours
			U	nit-I			08 Hrs
AC Ci	ircuits: Parameters	5 0	f sinusoidal quan	tities, Generation of	f sinusoidal voltage	, V	Voltage and current
relation	ship with phasor di	agı	am in R, L and C o	circuits. Analysis with	h phasor diagram of	R-I	L, R-C, R-L-C Series
and Par	allel circuits, Powe	r fa	ctor, real power, re	active power, apparer	nt power, Examples.		
Three-	phase circuits: Gen	ner	ation of three phase	e EMF, phase sequend	ce, relation between	pha	se and line values of
voltage	and current from j	pha	sor diagrams in Y	and Δ connected sys	tems, measurement	of j	power in three phase
circuit l	by two wattmeter m	eth	od (Balanced load)	and examples.			
			Un	it — II			08 Hrs
DC Ma	chines: DC Gener	ato	ors: Basic principle	, construction, Deriva	ation for induced EM	IF,	types, OCC and load
Charact	teristics of shunt an	d se	eries, Application, a	and examples			
DC Mo	otor: Introduction,	wo	rking principle, sig	gnificance of back El	MF, types, Derivatio	n f	or power & Torque,
Charact	teristics- shunt, seri	es a	& compound, neces	sity of starters, 3-poin	nt starter, Application	n ar	id examples
			Un	it –III			08 Hrs
Single	Phase Transforme	rs:	Necessity of transf	former, principle of o	peration, Construction	n c	of core and shell type
for sing	gle - phase, ideal tra	nsf	ormer, derivation for	or induced EMF, trans	sformer on No-Load	&	On-Load (inductive),
constan	t and variable losse	s, (DC & SC tests, effic	ciency & regulation, c	condition for maximu	im (efficiency.
			Un	it –IV			08 Hrs
Three	phase Induction N	lot	or: Concept of rot	ating magnetic field,	Principle of operation	on,	constructions, types,
slip and	l its significance, ap	pli	cations, examples.				
Alterna	ators: Principle of	op	eration, types, con	struction, advantage	of stationary armatu	re,	derivation for EMF
equatio	n with the concept	t of	f winding factor (c	listribution factor, w	inding factor, bread	th :	factor), applications,
exampl	es.						
			Ur	nit –V			08 Hrs
Power	transmission and	di	stribution: Conce	pt of power transmi	ssion and power dis	stril	oution. Low voltage
distribu	tion system (400 V	an	d 230 V) for domes	stic, commercial, and	small-scale industry	thr	ough block diagrams
only.							
Electri	city bill: Power ra	ntin	g of household ap	pliances including a	ir conditioners, PCs	s, la	aptops, printers, etc.
Definit	ion of "unit" used f	or	consumption of ele	ctrical energy, two-pa	art electricity tariff, o	calc	culation of electricity
bill for domestic consumers.							
Equipment Safety measures: Fuse and Miniature circuit breaker (MCB), Electric Shock, Earthing and its types,							
Safety Precautions to avoid shock.							
Course	Outcomes: After	cor	npleting the cours	e, the students will b	e able to		
CO1	Understand the v devices.	vor	king principle of	electrical circuits, T	ransformer, Electric	m	achines, and safety
CO2	Evaluate the param	net	ers of AC Circuits,	AC, DC machines an	d Transformer.		

CO3 Analyze the characteristics of AC and DC machines, power transmission & distribution.

CO4 Apply the knowledge of electrical safety equipment, measures, and tariffs to implement in the engineering applications for domestic and industrial wirings.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Refere	nce Books
1	Electrical and Electronics Technology, E. Hughes, 10 th Edition, 2010, Pearson, ISBN- 978-8131733660.
2	Basic Electrical Engineering, C.L. Wadhwa, 1 st Edition, 2007, New Age international(P) Limited,
	ISBN- 10: 9788122421521.
3	Basic Electrical Engineering, M. V. Rao, 10 th Edition, 2018, Subhas Publications, ISBN- 9789383214136.
4	Basic Electrical Engineering, D C Kulshreshtha, Revised First Edition, 2017, Tata McGraw Hill,
	ISBN- 13.978-0071328968

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7 & 8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	MAXIMUM MARKS FOR THE SEE THEORY	100			

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Semester: I

ELEMENTS OF MECHANICAL ENGINEERING

Category: Professional Core Course Stream: Mechanical (Common for AS, CH, IM & ME Programs)

(Theory)

Course Code	:	ME112AT	CIE	:	100 Marks
Credits: L:T:P	••	3:0:0	SEE	••	100 Marks
Total Hours	:	40T	SEE Duration	:	3 Hours

Unit-I	08 Hrs
Engineering Materials: Introduction, Classification, fabrication and applications of Metals:	Ferrous and
Nonferrous, Polymers (Thermoplastics, Thermosets and Elastomers), Ceramics and Composites.	Thin films,
Sensors, semiconductor	
Unit – II	10 Hrs

Lathe and Lathe operations: Classification, specifications of a lathe. Lathe operations (Turning, Taper Turning, drilling, boring, knurling, and thread cutting). Introduction to CNC Machines.

Joining processes & Non-destructive testing: Introduction to metal joining process-permanent & temporary joints, Soldering & welding, types and applications, accessories consumables and safety, Welding defects and causes, Non-Destructive testing: Liquid penetrate testing, Magnetic particle testing, Ultrasonic testing, Eddy current testing.

	00 1115
Turbines: Steam and its properties, property charts, steam turbines. Classification of hydraulic turbin	nes, working
of Pelton, Francis and Kaplan turbines; comparison between impulse and reaction turbines, Wor	king of Gas
Turbines (Brayton cycle).	

Refrigeration: Refrigeration effect, working principle of Vapour Compression refrigeration systems, ton of refrigeration, COP, refrigerants and their properties.

Unit –IV	08 Hrs
Mechanical Drives: Classification of IC Engines, Working of 4-S direct injection engines,	Performance
Characteristics, Classification of gears, velocity ratio for simple and compound gear trains.	
Electrical Drives: History, Well to Wheel analysis, Electric vehicles, Configurations, EV/ICEV	comparison,
Performance, Traction Motor Characteristics, Concept of Hybrid Electric Drive Trains, Classification of	of hybrid
electric vehicles.	-
Unit-V	6 Hrs

Mechatronics: Introduction: Evolution of Mechatronic system, measurement & control system, basic elements of control system, Applications-water level controller, washing machine, Engine management system (EMS), Antilock Braking System (ABS).

Robotics: Robots- Basic Structure of Robots, Robot Anatomy, Complete Classification of Robots, Fundamentals about Robot Technology, Basic Robot Configurations and their Relative Merits and Demerits.

Course	Course Outcomes: After completing the course, the students will be able to			
CO1	Understand the knowledge of various properties of Engineering materials and their Joining processes			
CO2	Elucidate the principles and operation of lathe machine tools, joining processes and Non-destructive			
	testing in various engineering applications.			
CO3	Apply concepts of principle of thermodynamics in steam, hydraulic and gas turbines and refrigeration			
	systems.			
CO4	Understand about Mechatronics, Automation and Robotics in Industrial Applications			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Referen	nce Books
1	Elements of Mechanical Engineering, K. R. Gopalakrishna, Subhas Publications, 18th Edition.
	ISBN:5551234002884
2	Material Science & amp; Engineering- William D Callister, 2 / 10th Edition, ISBN 978-1-119-45520-2.
3	Welding Technology (PB), Khanna O P, Dhanpat Rai publication, 4 th Edition, ISBN 9383182555.
4	Electric and Hybrid Vehicles, Design Fundamentals – Iqbal Husain, CRC Press, 2 nd Edition, 2010.
	ISBN – 13-978-1439811757.
5	Modern Electric, Hybrid Electric & amp; Fuel Cell Vehicles, Fundamentals, Theory and Design -
	Mehrdad Ehsani, CRC Press, 1 st Edition, 2005. ISBN – 13- 978-0849331541.
6	Mechatronics – Electronic control systems in Mechanical and Electrical Engineering, William Bolton,
	Pearson, 6 th Edition, ISBN: 978-1-292-07668-3, 2015.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)		
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS		
	PART A			
1	Objective type questions covering entire syllabus	20		
	PART B			
	(Maximum of TWO Sub-divisions only)			
2	Unit 1 : (Compulsory)	16		
3 & 4	Unit 2 : Question 3 or 4	16		
5&6	Unit 3 : Question 5 or 6	16		
7 & 8	Unit 4 : Question 7 or 8	16		
9 & 10	Unit 5: Question 9 or 10	16		
	MAXIMUM MARKS FOR THE SEE THEORY	100		

Semester: II							
		PRIN	CIPLES (OF PROGRAMMIN	G USING C		
			Category	: Professional Core (Course		
	Stream: Co	omputer S	cience (C	ommon to AI, BT, C	S, CY, CD & IS P	rogra	ams)
9		GGAAA	<u>(T</u>	heory and Practice)	CIT		100 14 1
Course		: CS222	Al		CIE	:	100 Marks
Credits	5: L:T:P	: 2:0:1	0.0		SEE	:	100 Marks
Total F	lours	: 28L+3	OP		SEE Duration	:	3 Hours
			I	Init-I			06 Hrs
Logica	Reasoning and A	gorithmic	Problem	Solving: Skill devel	opment – Exampl	es rel	ated to Arithmetical
Reason	ing and Analytical R	easoning.					
Introdu	uction to Program	ming: De	sign and	Implementation of e	fficient programs.	Pro	gram Design Tools:
Algorit	hms, Flowcharts and	Pseudo co	odes. Type	s of Errors.	r o	- (5
Introdu	uction to C: Introd	uction, str	ucture of a	C program, writing	he first program, I	Files 1	used in a C program.
Compil	ing and executing C	Programs	using com	ments, C Tokens, Ch	aracter set in C, Ke	eywor	ds, Identifiers, Basic
Data T	ypes in C, Variables	, Constant	ts, I/O stat	tements in C. Operato	ors in C, Type cor	versi	on and type casting,
scope o	f variables.	,		Ĩ			V1 U/
<u>^</u>			Uı	nit – II			05 Hrs
Decisio	on Control and Loo	ping State	ements: I	ntroduction to decision	on control, condition	onal b	ranching statements,
iterative	e statements, Nested	loops, Bre	ak and con	ntinue statements, got	o statements		C I
Arrays	: Introduction, Decl	aration of	Arrays, ac	ccessing elements of a	n array, Storing va	lues	in arrays, Operations
on Arra	ys. Two dimensiona	l arrays- O	perations	on two dimensional a	rays.		
	•	•	Ūr	nit –III	•		06 Hrs
Strings	: Introduction, Ope	erations or	n strings-	finding length of a s	tring, converting c	harac	cters of a string into
upperca	ase and lowercase, C	Concatenati	ing two st	rings, appending a str	ing to another stri	ng, co	omparing two string,
reversir	ng a string, String an	d character	r Built in f	unctions.	C	0	
Function	ons: Introduction, u	sing functi	ions, Func	tion declaration/funct	ion prototype, Fur	oction	definition, Function
call, R	eturn statement, pa	ssing para	meters to	a function, Built-in	n functions. Pas	sing	arrays to functions.
Recursi	ion.						
			U	nit -IV			06 Hrs
Structu	ires: Introduction:	Structure	Declaratio	on, Typedef declarat	ion, initialization	of s	structures, accessing
membe	rs of a structures, cop	pying and o	comparing	structures, array of st	ructures, Structure	s and	functions.
Pointer	rs: Introduction to	pointers, d	leclaring p	ointer variables, poir	ter expressions ar	nd po	inter arithmetic, null
pointers	s, passing arguments	to function	ns using p	ointers, pointers and a	rrays.		
			U	nit-V			05Hrs
Dynam	ic memory allocat	ion: Mem	ory alloca	tion process, allocati	ng a block of me	mory	, releasing the used
space.							
Linked List and Files: Introduction, Linked lists vs Arrays, Memory allocation and deallocation for a linked list,							
types of linked lists, singly linked lists. Introduction to files, using files in C, Reading data from files, writing data							
to files, Detecting End-Of-File, Functions for selecting a record randomly, Remove().							
Course Outcomes: After completing the course, the students will be able to							
CO1 Apply logical skills to solve the engineering problems using C programming constructs.							
CO2 Evaluate the appropriate method/data structure required in C programming to develop solutions by							
investigating the problem.							
CO3	Design a sustainab	le solution	using C p	rogramming with soci	etal and environm	ental	concern by engaging
	in lifelong learning	for emerg	ing techno	logy			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Refere	nce Books
1	Programming in C, Reema Thareja, 2018, Oxford University Press. ISBN: 9780199492282.
2	Algorithmic Problem Solving, Roland Backhouse, 2011, Wiley, ISBN: 978-0-470-68453-5
3	The C Programming Language, Kernighan B.W and Dennis M. Ritchie, 2015, 2 nd Edition, Prentice Hall,
	ISBN (13): 9780131103627.
4	Turbo C: The Complete Reference, H. Schildt, 2000, 4 th Edition, Mcgraw Hill Education,
	ISBN-13: 9780070411838.

Laboratory Experiments PART A

Implement the following programs using cc/gcc compiler

Practice Programs:

Familiarization with programming environment: Concept of creating, naming and saving the program file a) in gedit/vi editor, Concept of compilation and execution, Concept of debugging in GDB environment. b)

- Implementation and execution of simple programs to understand working of
- Printf, formatted printf, Escape sequences in C.
- Using formula in a C program for specific computation.
- Example: computing area of circle, converting Celsius to Fahrenheit, area of a triangle, converting distance in centimeters to inches, etc.
 - Preprocessor directives (#include, #define)
- Execution of erroneous C programs to understand debugging and correcting the errors like: c)
 - Syntax / compiler errors
 - Linker errors
 - Logical errors
 - Semantical errors

d) Implementation and execution of simple programs to understand working of operators like:

- Unary
- Arithmetic
- Logical
- Relational
- Conditional
- Bitwise

Programming Assignments:

- 1. Assignment statements.
- 2. Control Statements.
- 3. Loop Statements.
- 4. One dimensional Arrays Searching and sorting.
- Two dimensional arrays Matrix operations. 5.
- 6. Functions.

- 7. Recursion. 8. Structures.
- 9. Pointers
- 10. Linked Lists
- 11. Dynamic memory allocation
- 12. Files. PART B

Design and development of a working model using any of the following combination of hardware and software.

- Develop a model that helps the user to monitor whether, health condition, environment parameters etc using Arduino board.
- Develop a simple Robot that can assist the user to perform simple activities home sanitization, lifting things etc using Raspberry pi.
- Hardware interfacing (Ardunio Board, Finch, Lego WeDo 2.0) with scratch to design various models to solve simple problems.

Develop applications using Nvidia Jetson Kit.

Autonomous

Approved by AICTE, New Delhi Institution Affiliated to Visvesvaraya Technological University, Belagavi

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY WITH LA			
#	COMPONENTS	MARKS		
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	10		
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 30 MARKS .	30		
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) ADDING UPTO 30 MARKS .	30		
4	LAB: Conduction of laboratory exercises, lab report, observation and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE REDUCED TO 30 MARKS	30		
	MAXIMUM MARKS FOR THE CIE THEORY	100		
	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)			
Q. NO.	CONTENTS	MARKS		
	PART A			
1	Objective type questions covering entire syllabus	10		
	PART B			
	(Maximum of TWO Sub-divisions only)	1.4		
2	Unit 1 : (Compulsory)	14		
5 & 4	Unit 2 : Question 5 or 4	14		
5 & 6	Unit 3 : Question 5 or 6	14		
7 & 8	Unit 4 : Question / or 8	14		
9 & 10 11	Unit 5 : Question 9 or 10	14		
11		20		
MAXIMUM MAKKS FOK THE SEE THEORY 100				

08 Hrs

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

University, Belagavi Semester: II **ENGINEERING MECHANICS** (Category: Professional Core Course) (Stream: Civil) (Theory) CV122AT **Course Code** CIE 100 Marks : : Credits: L:T:P SEE 100 Marks : 3:0:0 : **Total Hours** 40L **SEE Duration** 3 Hours : :

Resultant of coplanar force system: Basic dimensions and units, Idealisations, Classification of f	orce system,
principle of transmissibility of a force, composition of forces, resolution of a force, Free body diagram	ms, moment,
Principle of moments, couple, Resultant of coplanar concurrent force system, Resultant of co	oplanar non-
concurrent force system, Numerical examples.	-
TL-:4 TI	

Unit-I

Unit – II	08 Hrs
Equilibrium of coplanar force system: Equilibrium of coplanar concurrent force system, Lam	i's theorem,
Equilibrium of coplanar parallel force system, types of beams, types of loadings, types of supports, Eq	uilibrium of
coplanar non-concurrent force system, support reactions of statically determinate beams subjected to v	arious types
of loads, Numerical examples.	

 Unit –III
 08 Hrs

 Analysis of Trusses: Introduction, Classification of trusses, analysis of plane perfect trusses by the method of joints and method of sections, Numerical examples.
 08 Hrs

Unit –IV08 HrsCentroid of Plane areas: Introduction, Locating the centroid of rectangle, triangle, circle, semicircle, quadrant
and sector of a circle using method of integration, centroid of composite areas and simple built up sections,
Numerical examples.

Unit -V08 HrsMoment of inertia of plane areas: Introduction, Polar moment of inertia, polar moment of inertia, product of
inertia, radius of gyration, parallel axes theorem, perpendicular axis theorem, moment of inertia of rectangular,
triangular and circular areas from the method of integration, moment of inertia of composite areas and simple built
up sections,, Numerical examples.

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Explain the fundamental concepts of Mechanics - Force systems, beams, rigid bodies and geometrical				
	properties.				
CO2	Apply the concepts of mechanics in solving simple engineering problems.				
CO3	Analyze the bodies and pin jointed structures under various forces				
CO4	Demonstrate the applications of mechanics to solve engineering problems.				

nce Books
Mechanics for Engineers, Statics and Dynamics, Beer F.P. and Johnston E. R., McGraw-Hill Inc., US; 4 th Revised Edition, 1987, ISBN-13 : 978-0070045842.
Engineering Mechanics Statics and Dynamics, Irving H. Shames, Dorling Kindersley Pvt Ltd. 4 th Edition, 2005, ISBN: 9788177581232
Engineering Mechanics: Principles of Statics and Dynamics, Hibbler R. C., Pearson Press. 14 th Edition, 2017, ISBN-13: 978-9332584747.
Engineering Mechanics, Timoshenko S, Young D. H., Rao J. V., Pearson Press. 5th Edition, 2017, ISBN-13:978-1259062667.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

5 Engineering Mechanics, Bhavikatti S S, New Age International Private Limited, 8th Edition, 2021, ISBN-13:978-9388818476.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)		
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7 & 8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	MAXIMUM MARKS FOR THE SEE THEORY	100			

Go, change the world

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Common to All Programs Courses

COMPUTER AIDED ENGINEERING GRAPHICS (ME112GL / ME122GL) IDEA LAB (IDEA DEVELOPMENT, EVALUATION & APPLICATION) (ME111DL / ME121DL)

Oniversity, Delagavi								
Semester - I/II								
COMPUTER AIDED ENGINEERING GRAPHICS								
		(Co	mmon for all Prog	grams)				
(Incory & Practice)								
Course Coue	Joue : WIE112GL/WIE124GL UIE : SU Marks L.T.D. . 1.0.2 SEE . 50 Marks							
	dits: L:T:P : 1:0:2 SEE : 50				30 Marks			
Total Hours	Total Hours $: 15(T) + 60(P)$ SEE Duration $: 3$ Hours							
			Imit I			12 Hrs		
Introduction Signific	anc	e of engineering	$\frac{1}{\frac{1}{\frac{1}{2}}}$	onventions drawi	na cheeta	drawing scales		
dimensioning line con	ven	tions material co	ventions Symboli	c representation of	f fasteners	, that the second seco		
riveted welded brazed a	and	soldered joints ba	rs and profile section	ns electrical & elec	tronic ele	ments and nining		
Use of Simple CAD too	lice Ice	Overview of CAD	software [Menu ha	r tabs -sketch mod	ify dimen	sion apportation		
and commands]	1.5.		software [Mena ba	, tubs -sketch, mou	iry, uiiicii	sion, annotation		
Orthographic Projectic	ms	Principles of orth	ographic projection	s - quadrant systems	s projectio	on of points (All		
quadrants). Projection of	f li	nes (first angle pro	piection). Projection	of planes - incline	ed to HP	and VP (first angle		
projection)	1 11	nes (mst ungte pro	jeedon), 110jeedon	i or planes menny		and VI (mst angle		
		١	Init – II			12 Hrs		
Projection of Solids: Pr	ism	s pyramids cylind	ler & cone with axi	s inclined to HP and	I VP (first	angle projection)		
(Computer Drafting)	1511	is, pyrainas, cynik		, menned to m une	(1150	ungie projection).		
		τ	J nit – III			18 Hrs		
Isometric projection: Is	son	netric scale, Isomet	ric Projection of reg	gular solids and com	bination c	of two simple solids		
(Computer Drafting).								
3D modelling of com	ро	nents: Conversion	of isometric view	v to orthographic	views an	d sectional views.		
(Computer Drafting)								
		t	J nit – IV			15 Hrs		
Development of Latera	1 S	urfaces: Introducti	on to section plane	s, methods of devel	opment - p	barallel line method		
and radial line method	– p	orism and cylinder	(truncated), pyram	id and cone (frustu	im and tru	incated) (Computer		
Drafting).								
Unit – V 18 Hrs								
Engineering components:								
Assembly of Hexagonal bolt with nut (with washer)-3D								
Riveted joint: - butt joint with two covering plate (chain riveting): 3D								
Union joint, butt muff coupling, socket and spigot joint: 3D								
Basic building drawing (Plan and Elevation): 2D								
Electrical wiring and lighting drawing: 2D								
Electronic PCB drawings: 2D								
Course Outcomes: After completing the course, the students will be able to								

Course	Course Outcomes: After completing the course, the students will be able to					
CO1	Understand the convention and methods of engineering drawing					
CO2	Enhance their visualization skills to develop new products					
CO3	Elucidate the principles of multi-view drawings and pictorial drawings					
CO4	Apply the knowledge of engineering graphics to develop respective (simple) engineering assembly					

Referen	nce Books
1	Textbook of Engineering Graphics by K R Gopalakrishna, Sudhir Gopalakrishna, Subhash Publishers,
	40 th Edition, 2018; ISBN 978-9383214204
2	SOLIDWORKS 2020 for Designers by Sham Tickoo Purdue University, CADCIM Technologies, 18 th
	Edition, 2019; ISBN: 978-1640570849
3	Machine drawing by N. D. Bhatt, V. M. Panchal, Charotar Publishing House, 50th Edition, 2016; ISBN:

CIE

RV Educational Institutions [®] **RV College of Engineering**[®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

978-9385039232

NPTEL :: Mechanical Engineering - Engineering Drawing 4

Approved by AICTE,

New Delhi

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY) ASSESSMENT AND EVALUATION PATTERN

Theory & quizzes questions are to be framed using Bloom's Taxonomy Levels - Remembering, MARKS Understanding, Applying, Analyzing, Evaluating, and Creating

WEIGHTAGE

WEIGHTAGE				
Practice session				
Manual Drawing: Practice session	10			
Computer Drafting: Practice Session	15			
A. TESTS: Each test will be conducted for 50 Marks adding upto 100 marks. Final test marks wi	ll be			
reduced to 10				
Test – I for 50 Marks	10			
Test – II for 50 Marks				
B. EXPERIENTIAL LEARNING: Experiential Learning comprises of the modelling and	15			
simulation of various engineering components.	15			
TOTAL MARKS FOR THE COURSE (Lab Course)	50			

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)							
Q. NO.	CONTENTS	MARKS					
PART A							
	(TWO questions to be answered out of THREE Questions)						
Unit I	Unit I One Question to be set from the chapters Points, Lines & Planes. Each question carrying						
Unit-1	5 marks.						
	PART B						
	(TWO questions to be answered out of THREE Questions)						
Unit-II	Question on Projection of Solids (15 marks)	15					
Unit-III	Question on Isometric Projection (15 marks)	15					
Unit-IV	Question on Development of Surfaces (15marks)	15					
	PART C						
	(ONE question to be answered out of FOUR Questions)						
	Question on Assembly of Hexagonal bolt and nut or Riveted Joint	10					
Unit V	Question on Basic building drawing	10					
Unit-v	Question on Electrical wiring and lighting drawings	10					
	Question on Electronic PCB drawings	10					
	MAXIMUM MARKS FOR THE SEE THEORY 50						

Approved by AICTE, New Delhi

Semester - I/II								
]	IDEA LAB (Idea Development, Evaluation & Application)							
		Category:	Professional Core (Course				
		(Com	mon to all Program	s)				
	(Practice)							
Course Code	:	ME111DL/ME12	21DL	CIE	:	50 Marks		
Credits: L:T:P : 0:0:1 SEE : 50 Marks								
Fotal Hours: 30PSEE Duration: 3 Hours								

LABORATORY EXPERIMENTS

- 1. Design an Interface circuit to control LED light by push button switch using ESP8266.
- 2. Design an Interface circuit for LDR with ESP 8266 to measure the intensity of light and display it on a serial monitor.
- 3. Design an Interface circuit with 16X2 LCD and ESP8266 to display "Hello World" on LCD.
- 4. Design an Interface circuit for OLED with ESP8266 and write a program to display "RVCE" on OLED
- 5. Design an Interface circuit to rotate DC motor in clockwise and anti-clockwise direction using ESP8266 and demonstrate the same.
- 6. Design an Interface circuit for Ultrasonic sensor (HC-SR04) with ESP 8266. Write a program to measure the distance and display it on LCD.
- 7. Interface Bluetooth (HC-05) and LED with ESP8266. Write Interfacing to control LED (ON/OFF) using Bluetooth serial controller APP.
- 8. Design an Interface circuit for DHT11 (Temperature and Humidity) sensor with ESP8266. Write a program to display Temperature and Humidity on serial monitor.
- 9. Design an Interface circuit for DHT11 (Temperature and Humidity) sensor with ESP8266. Write program to display Temperature and Humidity on BLYNK app. (using BLYNK server).
- 10. Design and implement smart streetlight.

PRACTICE EXPERIMENTS / DEMO

1	Dismantling of Mini Robot components
2	Assembly of Mini Robot components
3	Inspecting robot joints for free and proper movements
4	Robot control by Jogging each joint
5	Robot programming using various control instructions.
6	Robot application programming for pick and place, loading and unloading etc.

Course Outcomes: After completing the course, the students will be able to					
CO1	Understand the fundamentals of microcontroller, sensors and assembly level programming.				
CO2	Experiment real time interfacing of ESP8266 with GPIO, serial ports, IoT, DAC and ADC				
CO3	Apply hardware and software-based knowledge to execute automation related projects				
CO4	Analyse abstract problems arising during interfacing and execution				

Reference Books1Arduino Project Handbook: Volume One: Complete Guide to Creating with the Arduino by Mark Geddes
[ISBN-10 0992952603, Publisher: Sketch Publishing]2Exploring Arduino: Tools and Techniques for Engineering Wizardry by Jeremy Blum
[ISBN-10 1119405378, Publisher: Wiley]3Internet of Things with ESP8266 by Marco Schwartz [ISBN-13 9781786468024, Publisher: Packt]4https://www.arduino.cc/reference/en/

> Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (LAB)						
#	COMPONENTS	MARKS				
1.	Conduction of laboratory exercises, lab report, observation, and analysis (30 Marks), lab					
	test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10	50				
	Marks) adding up to 50 Marks.					
	MAXIMUM MARKS FOR THE CIE	50				

	RUBRIC FOR SEMESTER END EXAMINATION (LAB)							
Q. NO.	CONTENTS	MARKS						
1.	TWO lab exercises with implementation of the program	40						
2.	Viva	10						
	TOTAL	50						

Go, change the world

RV Educational Institutions[®] RV College of Engineering[®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Engineering Science Courses

FUNDAMENTALS OF PROGRAMMING USING C (CS113AT / CS123AT) ELEMENTS OF CIVIL ENGINEERING (CV113AT / CV123AT) PRINCIPLES OF ELECTRONICS ENGINEERING (EC113AT / EC123AT) BASICS OF ELECTRICAL ENGINEERING (EE113AT / EE123AT) FUNDAMENTALS OF MECHANICAL ENGINEERING (ME113AT/ME123AT)

Semester: I/II							
	FUNDAMENTALS OF PROGRAMMING USING C						
	(_	Category: I	Engineering Science	Course			
	(C	ommon to all Prog	grams Except CS St	ream Programs)			
Comme Colle		CC112AT / CC12	(Theory)	CIE	Γ.	100 Maular	
Course Code	:	CS115A1 / CS12	3A I		:	100 Marks	
Total Hours	:	3:0:0 40 I		SEE SEE Duration	:	2 Hours	
Total Hours	•	40 L		SEE Duration	•	5 110015	
		U	nit-I			06 Hrs	
Introduction to Program	nm	ing: Definition of	a computer. Comp	onents of computer	r sy	stem, Programming	
Languages. Design and im	ple	mentation of efficie	ent programs. Program	n Design Tools: Alg	orit	hms, Flowcharts and	
Pseudocodes. Types of Err	ors						
		Un	it – II			08 Hrs	
Introduction to C: Introd	luct	ion, structure of a	C program, Writing t	he first program, Fil	es t	used in a C program.	
Compiling and executing ($C P_1$	rograms using com	ments, C Tokens, Ch	aracter set in C, Key	wor	ds, Identifiers, Basic	
Data Types in C, Variable	es, (Constants, I/O state	ements in C. Operat	ors in C, Type conv	ersi	on and type casting,	
scope of variables.							
		Un	it –III			08 Hrs	
Decision Control and Lo	opi	ing Statements: In	troduction to decision	on control, condition	al b	ranching statements,	
iterative statements, Nester		ops, Break and con	tinue statements, got	o statements			
Arrays: Introduction, Dec		ation of Arrays, Ac	cessing elements of a	in array, Storing Vall	ies i	in arrays, Operations	
dimensional arrays	eru	ing and Deletion of	element in an array.	i wo unnensionar ar	rays	s- Operations on two	
Unit IV 10 Unit							
Strings: Introduction On	era	tions on strings- fi	nding length of a st	ring converting ch	arac	ters of a string into	
uppercase and lowercase	Co	ncatenating two str	ings appending a str	ing to another string		omparing two string	
reversing a string. String a	nd o	character Built in fu	inctions.		, •	, , , , , , , , , , , , , , , , , , ,	
Functions: Introduction, U	Usiı	ng functions, Funct	ion declaration/funct	ion prototype, Funct	ion	definition, Function	
call, Return statement.							
Unit-V 08 Hrs							
Functions: Passing parameters to a function, Built-in functions. Passing arrays to functions. Recursion.							
Structures and Pointers: Introduction: Structure Declaration, Typedef declaration, initialization of structures,							
accessing members of a structures, structure within structures. Introduction to pointers, declaring pointer							
variables.							
Course Outcomes: After completing the course, the students will be able to							

Course	outcomes. There completing the course, the students will be usie to
CO1	Analyze problems and design solution using program design tools.
CO2	Evaluate the appropriate method/data structure required in C programming to develop solutions by
	investigating the problem.
CO3	Design a sustainable solution using C programming with societal and environmental concern by engaging
	in lifelong learning for emerging technology.
CO4	Demonstrate programming skills to solve inter-disciplinary problems using modern tools effectively by
	exhibiting teamwork through oral presentation and written reports.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Reference Books				
1	Programming in C, Reema Thareja, 2018, Oxford University Press. ISBN: 9780199492282.			
2	The C Programming Language, Kernighan B.W and Dennis M. Ritchie, 2015, 2 nd Edition, Prentice Hall,			
	ISBN (13): 9780131103627.			
3	Turbo C: The Complete Reference, H. Schildt, 2000, 4 th Edition, Mc Graw Hill Education,			
	ISBN-13: 9780070411838.			
4	Let Us C: Authentic Guide to C PROGRAMMING Language, Yashavant Kanetkar 17 th Edition, 2020,			
	BPB PUBN , ISBN- 9789389845686.			

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS		
	PART A			
1	Objective type questions covering entire syllabus	20		
	PART B			
	(Maximum of TWO Sub-divisions only)			
2	Unit 1 : (Compulsory)	16		
3 & 4	Unit 2 : Question 3 or 4	16		
5&6	Unit 3 : Question 5 or 6	16		
7 & 8	Unit 4 : Question 7 or 8	16		
9 & 10	Unit 5: Question 9 or 10	16		
	MAXIMUM MARKS FOR THE SEE THEORY	100		

Approved by AICTE, New Delhi

			Somoston, I/II									
Semester: 1/11 FI FMFNTS OF CIVIL FNCINFFPINC												
ELEMENTS OF CIVIL ENGINEERING												
Category: Engineering Science Course												
(Common to all Programs Except CV Program)												
(Theory)												
Course Code	:	CV113AT / CV1	123AT	CIE	:	100 Marks						
Credits: L: T: P	:	3:0:0		SEE	:	100 Marks						
Total Hours	:	40L		SEE Duration	:	3 Hours						
			J nit-I			08 Hrs						
Introduction to	Civil Engin	eering: Surveying,	, Structural Engineeri	ng, Geotechnical En	gine	eering, Hydraulics &						
Water Resources	, Transporta	tion Engineering,	Environmental En	gineering, Construct	tion	planning & Project						
management.												
Analysis of for	ce systems	: Concept of ide	ealization, system o	f forces, principles	of	f superposition and						
transmissibility.	Resolution a	nd composition of	forces. Law of Para	llelogram of forces.	Res	sultant of concurrent						
and non-concurre	ent coplanar	force systems mo	ment of forces cour	le Varianon's theor	em	free body diagram						
equations of equil	librium equi	librium of concurr	ent and non-concurrent	nt coplanar force syst	tem;	s nee oody alagram,						
equations of equi	ilenium, equi	TI-										
Dente Meteriele	ef Cometer		$\frac{111 - 11}{2}$	Lain Dainfana 1 0	D							
Basic Materials	of Constru	iction : Bricks, Ce	ement & mortars, P	lain, Reinforced &	Pre	e-stressed Concrete,						
Structural steel, C	onstruction	Chemicals.				Structural steel, Construction Chemicals.						
Structural elements of a building: foundation, plinth, lintel, chejja, Masonry wall, column, beam, slab and												
staircase including geometric design. Plinth area, carpet area. floor area ratio. numerical problems. local building												
staircase includin	g geometric	design. Plinth area	a, carpet area, floor a	ejja, Masonry wall, rea ratio, numerical	col prot	umn, beam, slab and plems, local building						
staircase includin byelaws.	g geometric	design. Plinth area	a, carpet area, floor a	ejja, Masonry wall, rea ratio, numerical	col prot	umn, beam, slab and blems, local building						
staircase includin byelaws.	g geometric	design. Plinth area	on, plinth, lintel, che a, carpet area, floor a hit –III	ejja, Masonry wall, rea ratio, numerical	col prot	umn, beam, slab and blems, local building 08 Hrs						
staircase includin byelaws. Environmental	g geometric Engineering	design. Plinth area Un g: Water Supply	a, carpet area, floor at it –III and Sanitary system	ejja, Masonry wall, rea ratio, numerical p ns, Water quality a	col prot	umn, beam, slab and plems, local building 08 Hrs Security. Urban air						
staircase includin byelaws. Environmental pollution -causes	g geometric Engineering and remedi	design. Plinth area Un g: Water Supply al measures, Solid	a, carpet area, floor a hit –III and Sanitary system waste managem	ejja, Masonry wall, rea ratio, numerical p s, Water quality as nent- types, sources,	col prot nd col	umn, beam, slab and blems, local building 08 Hrs Security. Urban air lection and disposal						
staircase includin byelaws. Environmental pollution -causes methods, Urban f	g geometric Engineering and remedi lood_types,	design. Plinth area Un g: Water Supply al measures, Solid causes and control	on, plinth, lintel, che a, carpet area, floor a hit –III and Sanitary system waste managem	ejja, Masonry wall, rea ratio, numerical p ns, Water quality an nent- types, sources,	col prot	umn, beam, slab and blems, local building 08 Hrs Security. Urban air lection and disposal						
staircase includin byelaws. Environmental pollution -causes methods, Urban f Built-Environme	g geometric Engineering and remedi lood- types, ent: Energy	design. Plinth area Un g: Water Supply al measures, Solid causes and control efficient buildings	on, plinth, lintel, che a, carpet area, floor a <u>nit –III</u> and Sanitary system waste managem , recycling, Temperat	ejja, Masonry wall, rea ratio, numerical j ns, Water quality an nent- types, sources, ure and Sound contr	col prot nd col rol i	umn, beam, slab and blems, local building 08 Hrs Security. Urban air lection and disposal nbuildings, Security						
staircase includin byelaws. Environmental pollution -causes methods, Urban f Built-Environme systems, Smart bu	g geometric Engineering and remedi lood- types, ent: Energy aildings.	design. Plinth area Un g: Water Supply al measures, Solid causes and control efficient buildings	n, plinth, lintel, che a, carpet area, floor a <u>nit –III</u> and Sanitary system waste managem , recycling, Temperat	ejja, Masonry wall, rea ratio, numerical p ns, Water quality an nent- types, sources, ure and Sound contr	col prob nd col rol i	umn, beam, slab and blems, local building 08 Hrs Security. Urban air lection and disposal n buildings, Security						
staircase includin byelaws. Environmental pollution -causes methods, Urban f Built-Environme systems, Smart bu	g geometric Engineering and remedi lood- types, ent: Energy aildings.	design. Plinth area Un g: Water Supply al measures, Solid causes and control efficient buildings Ur	n, plinth, lintel, che a, carpet area, floor a nit –III and Sanitary system waste managem , recycling, Temperat nit –IV	ejja, Masonry wall, rea ratio, numerical p ns, Water quality an nent- types, sources, ure and Sound contr	col prot nd col rol i	umn, beam, slab and blems, local building 08 Hrs Security. Urban air lection and disposal n buildings, Security 08 Hrs						
staircase includin byelaws. Environmental pollution -causes methods, Urban f Built-Environme systems, Smart bu Transportation I	g geometric Engineering and remedi lood- types, ent: Energy aildings. Engineering	design. Plinth area Un g: Water Supply al measures, Solid causes and control efficient buildings Ur	n, plinth, lintel, che a, carpet area, floor a <u>nit –III</u> and Sanitary system waste managem , recycling, Temperat nit –IV	ejja, Masonry wall, rea ratio, numerical p ns, Water quality a nent- types, sources, ure and Sound contr	col prot nd col rol i	umn, beam, slab and blems, local building 08 Hrs Security. Urban air lection and disposal n buildings, Security 08 Hrs						
staircase includin byelaws. Environmental pollution -causes methods, Urban f Built-Environme systems, Smart bu Transportation I Importance and c	g geometric Engineering and remedi lood- types, ent: Energy ildings. Engineering lassification	design. Plinth area Un g: Water Supply al measures, Solid causes and control efficient buildings Ur : of roads and railw	n, plinth, lintel, che a, carpet area, floor a <u>nit –III</u> and Sanitary system waste managem , recycling, Temperat <u>nit –IV</u> ays, types of highway	ejja, Masonry wall, rea ratio, numerical j ns, Water quality a nent- types, sources, ure and Sound contr y pavements and its f	col prob nd col rol i	umn, beam, slab and blems, local building 08 Hrs Security. Urban air lection and disposal n buildings, Security 08 Hrs ctions. Functions and						
staircase includin byelaws. Environmental pollution -causes methods, Urban f Built-Environme systems, Smart bu Transportation I Importance and c types of Tunnels,	g geometric Engineering and remedi lood- types, ent: Energy uildings. Engineering lassification Harbours, A	design. Plinth area Un g: Water Supply al measures, Solid causes and control efficient buildings Ur : of roads and railw irport. Concepts of	n, plinth, lintel, che a, carpet area, floor a <u>nit –III</u> and Sanitary system waste managem , recycling, Temperat <u>nit –IV</u> ays, types of highway f Multimodal transpor	ejja, Masonry wall, rea ratio, numerical j ns, Water quality an nent- types, sources, ure and Sound contr y pavements and its f tation system- releva	col prob nd col i col i	umn, beam, slab and blems, local building 08 Hrs Security. Urban air lection and disposal n buildings, Security 08 Hrs ctions. Functions and and integration.						
staircase includin byelaws. Environmental pollution -causes methods, Urban f Built-Environme systems, Smart bu Transportation I Importance and c types of Tunnels,	g geometric Engineering and remedi lood- types, ent: Energy ildings. Engineering lassification Harbours, A	design. Plinth area Un g: Water Supply al measures, Solid causes and control efficient buildings Ur : of roads and railw irport. Concepts of Uh	n, plinth, lintel, che a, carpet area, floor a <u>nit –III</u> and Sanitary system l waste managem , recycling, Temperat <u>nit –IV</u> ays, types of highway f Multimodal transpor nit –V	ejja, Masonry wall, rea ratio, numerical p ns, Water quality an nent- types, sources, ure and Sound contr y pavements and its f tation system- releva	col prob nd col rol i	umn, beam, slab and blems, local building 08 Hrs Security. Urban air lection and disposal n buildings, Security 08 Hrs ctions. Functions and and integration. 08 Hrs						
staircase includin byelaws. Environmental pollution -causes methods, Urban f Built-Environme systems, Smart bu Transportation I Importance and c types of Tunnels, Geotechnical En	g geometric Engineering and remedi lood- types, ent: Energy ildings. Engineering lassification Harbours, A gineering:	design. Plinth area Un g: Water Supply al measures, Solid causes and control efficient buildings. Ur : of roads and railw irport. Concepts of Un Origin and format	n, plinth, lintel, che a, carpet area, floor a <u>nit –III</u> and Sanitary system waste managem , recycling, Temperat <u>nit –IV</u> ays, types of highway <u>f Multimodal transpor</u> <u>nit –V</u> tion of soil, Foundati	ejja, Masonry wall, rea ratio, numerical p ns, Water quality at nent- types, sources, ure and Sound contr y pavements and its f rtation system- relevations- Importance, T	col prob	umn, beam, slab and olems, local building 08 Hrs Security. Urban air lection and disposal n buildings, Security 08 Hrs ctions. Functions and e and integration. 08 Hrs s, and Factors to be						
staircase includin byelaws. Environmental pollution -causes methods, Urban f Built-Environme systems, Smart bu Transportation I Importance and c types of Tunnels, Geotechnical Enconsidered in sele	g geometric Engineering and remedi lood- types, ent: Energy aildings. Engineering lassification Harbours, A egineering: ection of four	design. Plinth area Un g: Water Supply al measures, Solid causes and control efficient buildings Ur : of roads and railw <u>kirport. Concepts of</u> Un Origin and format ndations.	n, plinth, lintel, che a, carpet area, floor a <u>nit –III</u> and Sanitary system waste managem , recycling, Temperat <u>nit –IV</u> ays, types of highway <u>f Multimodal transpor</u> <u>nit –V</u> tion of soil, Foundati	ejja, Masonry wall, rea ratio, numerical p ns, Water quality at nent- types, sources, ure and Sound contr y pavements and its f rtation system- relevations for the system of the system	col prob nd col i col i	umn, beam, slab and olems, local building 08 Hrs Security. Urban air lection and disposal n buildings, Security 08 Hrs ctions. Functions and and integration. 08 Hrs s, and Factors to be						
staircase includin byelaws. Environmental pollution -causes methods, Urban f Built-Environme systems, Smart bu Transportation I Importance and c types of Tunnels, Geotechnical Enconsidered in selec Novel areas: C	g geometric Engineering and remedi lood- types, ent: Energy ildings. Engineering lassification Harbours, A gineering: ection of four oncepts of	design. Plinth area Un g: Water Supply al measures, Solid causes and control efficient buildings. Ur i of roads and railw irport. Concepts of Un Origin and format ndations. Automation and	n, plinth, lintel, che a, carpet area, floor a <u>nit –III</u> and Sanitary system waste managem , recycling, Temperat <u>nit –IV</u> ays, types of highway <u>f Multimodal transpor</u> <u>nit –V</u> tion of soil, Foundati Robotics in Constru	ejja, Masonry wall, rea ratio, numerical p as, Water quality a nent- types, sources, ure and Sound contr y pavements and its f tation system- releva tons- Importance, Ty action, Concept of	col prob nd col rol i funce ypes Sus	umn, beam, slab and blems, local building 08 Hrs Security. Urban air lection and disposal n buildings, Security 08 Hrs ctions. Functions and and integration. 08 Hrs s, and Factors to be stainability in Civil						
staircase includin byelaws. Environmental pollution -causes methods, Urban f Built-Environme systems, Smart bu Transportation I Importance and c types of Tunnels, Geotechnical En considered in sele Novel areas: Co Engineering, Intro	g geometric Engineering and remedi lood- types, ent: Energy uildings. Engineering lassification Harbours, A gineering: ection of four oncepts of oduction to s	design. Plinth area Un g: Water Supply al measures, Solid causes and control efficient buildings. Ur if roads and railw irport. Concepts of Un Origin and format ndations. Automation and ustainable develop	n, plinth, lintel, che a, carpet area, floor a <u>nit –III</u> and Sanitary system and Sanitary system waste managem , recycling, Temperat <u>nit –IV</u> ays, types of highway <u>f Multimodal transpor</u> <u>nit –V</u> tion of soil, Foundati Robotics in Constru- ment goals, Concept of	ejja, Masonry wall, rea ratio, numerical j ns, Water quality at nent- types, sources, ure and Sound contr y pavements and its f ration system- relevations- Importance, Typiction, Concept of of Smart, Clean and S	col prob nd col rol i funce ypes Sus	umn, beam, slab and olems, local building 08 Hrs Security. Urban air lection and disposal n buildings, Security 08 Hrs etions. Functions and and integration. 08 Hrs s, and Factors to be stainability in Civil e city.						
staircase includin byelaws. Environmental pollution -causes methods, Urban f Built-Environme systems, Smart bu Transportation I Importance and c types of Tunnels, Geotechnical En considered in sele Novel areas: Co Engineering, Intro	g geometric Engineering and remedi lood- types, ent: Energy aildings. Engineering lassification Harbours, A gineering: ection of four oncepts of oduction to s	design. Plinth area Um g: Water Supply al measures, Solid causes and control efficient buildings Ur : of roads and railw irport. Concepts of Un Origin and format ndations. Automation and ustainable develop	n, plinth, lintel, che a, carpet area, floor a nit –III and Sanitary system waste managem , recycling, Temperat nit –IV ays, types of highway f Multimodal transpor nit –V tion of soil, Foundati Robotics in Constru- ment goals, Concept of	ejja, Masonry wall, rea ratio, numerical p as, Water quality at nent- types, sources, ure and Sound contr y pavements and its f ration system- relevations- Importance, Typication, Concept of of Smart, Clean and S	col prob nd col rol i funce ypes Sus Safe	umn, beam, slab and olems, local building 08 Hrs Security. Urban air lection and disposal n buildings, Security 08 Hrs ctions. Functions and and integration. 08 Hrs s, and Factors to be stainability in Civil e city.						
staircase includin byelaws. Environmental pollution -causes methods, Urban f. Built-Environme systems, Smart bu Transportation I Importance and c types of Tunnels, Geotechnical Enconsidered in sele Novel areas: Co Engineering, Intro	g geometric Engineering and remedi lood- types, ent: Energy aildings. Engineering lassification Harbours, A egineering: ection of four oncepts of oduction to s es: After cor	design. Plinth area Un g: Water Supply al measures, Solid causes and control efficient buildings. Ur : of roads and railw irport. Concepts of Un Origin and format ndations. Automation and ustainable develop npleting the cours	n, plinth, lintel, che a, carpet area, floor a <u>nit –III</u> and Sanitary system waste managem , recycling, Temperat <u>nit –IV</u> ays, types of highway <u>f Multimodal transpor</u> <u>nit –V</u> tion of soil, Foundati Robotics in Constru- ment goals, Concept of se, the students will h	ejja, Masonry wall, rea ratio, numerical p as, Water quality at nent- types, sources, ure and Sound contr y pavements and its f tation system- releva tons- Importance, Ty action, Concept of of Smart, Clean and S be able to	col prob nd col func func sus Safe	umn, beam, slab and olems, local building 08 Hrs Security. Urban air lection and disposal n buildings, Security 08 Hrs ctions. Functions and and integration. 08 Hrs s, and Factors to be stainability in Civil e city.						
staircase includin byelaws. Environmental pollution -causes methods, Urban f Built-Environme systems, Smart bu Transportation I Importance and c types of Tunnels, Geotechnical Enconsidered in sele Novel areas: C Engineering, Intro Course Outcome CO1 Illustrate	g geometric Engineering and remedi lood- types, ent: Energy ildings. Engineering lassification Harbours, A gineering: ection of four oncepts of oduction to s es: After cor the various	design. Plinth area Un g: Water Supply al measures, Solid causes and control efficient buildings Ur : of roads and railw irport. Concepts of Un Origin and format ndations. Automation and ustainable develop npleting the cours disciplines of civil	n, plinth, lintel, che a, carpet area, floor a <u>nit –III</u> and Sanitary system and Sanitary system waste managem , recycling, Temperat <u>nit –IV</u> ays, types of highway <u>f Multimodal transpor</u> <u>nit –V</u> tion of soil, Foundati Robotics in Constru- ment goals, Concept of se, the students will the engineering, material	ejja, Masonry wall, rea ratio, numerical p as, Water quality a hent- types, sources, ure and Sound contr y pavements and its f tation system- releva ions- Importance, Ty action, Concept of of Smart, Clean and S be able to s and elements of a	col prob nd col func unce ypes Sus Safe buil	umn, beam, slab and olems, local building 08 Hrs Security. Urban air lection and disposal n buildings, Security 08 Hrs ctions. Functions and and integration. 08 Hrs s, and Factors to be stainability in Civil e city.						
staircase includin byelaws. Environmental pollution -causes methods, Urban f Built-Environme systems, Smart bu Transportation I Importance and c types of Tunnels, Geotechnical En considered in sele Novel areas: C Engineering, Intro Course Outcome CO1 Illustrate CO2 Outline t	g geometric Engineering and remedi lood- types, ent: Energy ildings. Engineering lassification Harbours, A gineering: ection of four oncepts of oduction to s es: After cor the various he concepts	design. Plinth area Um g: Water Supply al measures, Solid causes and control efficient buildings. Ur if roads and railw irport. Concepts of Un Origin and format ndations. Automation and ustainable develop mpleting the courss disciplines of civil of environmental e	n, plinth, lintel, che a, carpet area, floor a <u>nit –III</u> and Sanitary system and Sanitary system waste managem , recycling, Temperat <u>nit –IV</u> ays, types of highway <u>f Multimodal transpor</u> <u>nit –V</u> tion of soil, Foundati Robotics in Constru- ment goals, Concept of <u>se, the students will h</u> engineering, material engineering and built of	ejja, Masonry wall, rea ratio, numerical j as, Water quality at nent- types, sources, ure and Sound contr y pavements and its f tation system- relevations- Importance, Ty action, Concept of of Smart, Clean and State be able to s and elements of a environment.	col prob nd col func func ypes Sus Safe buil	umn, beam, slab and olems, local building 08 Hrs Security. Urban air lection and disposal n buildings, Security 08 Hrs ctions. Functions and and integration. 08 Hrs s, and Factors to be stainability in Civil e city.						

CO4 Identify the concepts and importance of transportation and geotechnical engineering including novel areas.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Referen	Reference Books							
1	Principles of Transportation Engineering, Partha Chakroborty, Animesh Das, PHI Learning Pvt. Ltd., 2 nd							
	Edition, 2003, ISBN: 9788120320840.							
2	Engineering Mechanics, Bhavikatti S S, New Age International Private Limited, 8th Edition, 2021,							
	ISBN-13:978-9388818476.							
3	Basic Civil Engineering, G.K. Hiraskar, Dhanpat Rai Publications, 1 st Edition, ISBN-13 : 978-							
	9383182022.							
4	Basic Civil Engineering and Engineering Mechanics, R.K. Bansal, Laxmi Publications, 3rd Edition, 2015,							
	ISBN-13:978-9380856674							
5	Basic Civil Engineering, B.C. Punmia, Ashok Kumar Jain, Arun Kumar Jain, Laxmi Publications; 1 st							
	Edition 2003 ISBN-13 · 978-8170084037							

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)					
#	COMPONENTS	MARKS			
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20			
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40			
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40			
	MAXIMUM MARKS FOR THE CIE THEORY	100			

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7 & 8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	MAXIMUM MARKS FOR THE SEE THEORY	100			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

			Semester: I / II				
	F	PRINCIPLES OF	ELECTRONICS EN	NGINEERING			
Catagory: Engineering Science Course							
(Common to all Programs Excent FC FI & FT Programs)							
	(Common to an i rograms Except EC, Er & Er i rograms) (Theory)						
Course Code	:	EC113AT / EC1	23AT	CIE	:	100 Marks	
Credits: L:T:P	•	3:0:0	_	SEE	:	100 Marks	
Total Hours	:	40 L		SEE Duration	:	3 Hours	
			I				
		U	nit-I			08Hrs	
REGULATED POWER	S	UPPLY: Block D	iagram, Bridge Rec	tifier with filter, Z	ene	r diode as Voltage	
Regulator, Photo diode, LE	ED.						
AMPLIFIERS: CE Amp	lifi	er with and without	ut feedback, Multista	age amplifier, BJT a	as a	switch, Cutoff and	
Saturation modes.							
		Un	it – II			08 Hrs	
FEEDBACK AND SIGN	IA	L GENERATORS	S: Feedback Concep	ots, Advantages of V	Volt	age series Negative	
feedback, Oscillator Opera	tio	n, Barkhausen Crit	erion, RC Phase Shif	t Oscillator, Wein B	ridg	ge Oscillator, Crystal	
Oscillator (Only Concepts,	W	orking, Waveforms	, No mathematical de	erivations).			
OPERATIONAL AMPI	JF	IERS: Op-Amp	basics, Practical O	p-amp circuits- Inv	erti	ng Amplifier, Non	
Inverting Amplifier, Volta	ge	Follower, Summer	, Integrator, Differen	tiator(Only Concepts	5, W	orking, Waveforms,	
No mathematical derivations)							
		Un	it –III			08 Hrs	
BOOLEAN ALGEBRA AND LOGIC CIRCUITS: Binary numbers, Number base conversion and Hexadecimal							
Numbers, Complements, Basic definitions, Basic theorems and properties of Boolean Algebra, Boolean functions,							
Canonical and Standard for	rms	, Digital Logic gat	es, Demorgan's Laws	s, Ex-OR realization	usn	ng NAND and NOR,	
Kmaps (Up-to 4 variable)	o TA		. 1 . 1 1		11		
COMBINATIONAL LO	GIG	: Introduction, De	sign procedure, Adde	ers-Half adder, Full a	ade	r oo u	
			$\frac{\mathbf{It} - \mathbf{IV}}{\mathbf{F}^{1}}$	• .• .			
COMMUNICATION SY	31 ~	EMS: Introductio	n, Elements of Con	munication system,	IVI Murit	odulation- AM, FM	
Communication block diag	g	principie, wavero	orm and Compariso	on), Super neterod	iyne	e receiver, Digital	
	ran	II. MICDODDOCE	SSOD AND M	ΙΟΡΟΟΟΝΤΡΟΙ Ι	FD	• Microprocessor	
Microcontrollor (Only concents, working principle, and Comparison)							
Case studies.							
i Development board based on Microprocessor(Raspherry Pi)							
ii. Development board based on Micro controller(Arduino)							
Unit –V 08 Hrs							
TRANSDUCERS: Introd	uct	ion to Transducers	s: Passive Electrical	transducers- Resisti	ve	thermometer, Linear	
variable differential trans	for	mer (LVDT), Pro	ximity transducer. A	Active Electrical tra	nsd	ucer- Piezo electric	
transducer, Hall effect Tran	ısd	ucer.	-				
SENSORS: Introduction to	o se	ensors: LDR, Biom	edical Sensor, Humic	lity sensor, Ultra son	ic S	ensor, Touch Sensor	

(Only concepts, working principle). Case studies: Automatic Headlight System, Pick and Place Robots.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Course	Course Outcomes: After completing the course, the students will be able to							
CO1	Comprehending the operations and the characteristics of the Electronic devices for modern day							
	applications.							
CO2	Analyze Different Electronic circuits for various system designs.							
CO3	Demonstrate the different building blocks of Electronics systems.							
CO4	Evaluate the performance of the Electronic Systems to meet given specifications using modern							
	Engineering tools.							

Refere	Reference Books					
1	Basic Electronics, D P Kothari, I J Nagrath, 2 nd Edition, McGraw Hill Education (India), Private Limited,					
	2018.					
2	Electronic Devices and Circuit Theory, Robert L Boylestad, Louis Nashelsky, Prentice Hall India					
	publication, 11 th Edition, 2009.					
3	Digital Logic and Computer Design, Morris Mano, Prentice Hall India publication, 54 th Edition, 2007,					
	ISBN: 978-81-317-1450-8.					
4	Electronic Devices and Circuits, David A. Bell, Oxford University Press, 5 th Edition, 2008,					
	ISBN: 9780195693409.					
5	Microelectronics circuits: Theory and applications, Adel S Sedra & Kenneth C Smith, Oxford University					
	Press 5 th Edition ISBN: 9780198062257					

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)					
#	COMPONENTS	MARKS			
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20			
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40			
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40			
	MAXIMUM MARKS FOR THE CIE THEORY	100			

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7 & 8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	MAXIMUM MARKS FOR THE SEE THEORY	100			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

			Semester: I / II			
		BASICS OF E	LECTRICAL ENGI	NEERING		
Category: Engineering Science Course						
(Common to all Programs Except EE Program)						
	-		(Theory)		1	
Course Code	:	EE113AT / EE12	23AT	CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	40L		SEE Duration	:	3 Hours
		U	Init-I			08 Hrs
DC circuits: Ohm's law	and	Kirchhoff's laws,	analysis of series, pa	arallel and series-par	alle	el circuits excited by
independent voltage source	ces.	Derivation for Pov	wer and energy, They	venin Theorem & Ma	ixir	num Power Transfer
Theorem applied to the se	ries	circuit and its appl	ications.			
		Un	nit — II			08 Hrs
AC Fundamentals: Gene	erati	on of sinusoidal vo	oltage, frequency of g	enerated voltage, ave	rag	e value, RMS value,
form, and peak factors. V	olta	ge and current relat	ionship, with phasor of	diagrams, in R, L, an	d C	circuits.
Single-phase Circuits: A	nal	ysis of single-phase	e ac series circuits R, I	L, C, RL, RC, RLC, 1	resc	onance in series RLC
circuit						
		Un	it –III			08 Hrs
Three phase circuits: Ge	nera	ation of three-phase	e power, representatio	on of balanced star ar	nd d	lelta connected loads
the relation between phase and line values of voltage and current from phasor diagrams, advantages of three-						
phase systems. Measurement of three-phase power by two-wattmeter method.						
Transformers : Single phase transformers: Construction, principle of working, EMF equations, voltage and						
current ratios, losses, definition of regulation and efficiency.						
Unit –IV 08 Hrs						
Three Phase Induction motors: Three-phase induction motors Principle of operation construction types						
Rotating magnetic field, s	igni	ficance of torque-s	lin characteristic.		,	·····, ., ., ., ., ., ., ., ., ., ., ., ., .,
Single Phase Induction	Mo	tor: Single-phase	induction motor. Co	nstruction. Principle	of	operation. Types of
single-phase induction mo	otor	sort single prose			01	operation, Types of
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u>.</u> Ur	nit –V			08 Hrs
Power transmission and	dist	ribution Concert	t of power transmission	on and nower distribu	itio	n through block
diagrams only	uisi	indución. Concep	t of power transmissio	on and power district		n. through block
Floatrigity bill: Calculation of electricity bill for domestic consumers						
Equipment Safety measures: Working principle of Fuse and Miniature circuit breaker (MCR) merits and						
demerits						
Personal safety measures: Electric Shock Earthing and its types Safety Precautions to avoid shock						
i cissinai sarcey measure						
Course Outcomes. After	COT	nnleting the cours	e the students will b	e able to		
CO1 Understand the working of electric circuits, transformer, electrical machines, and safety devices						
				and machines, allus	are	

CO2 Evaluate the AC & DC circuit parameters and characteristics of A.C machines and transformersCO3 Analyze the performance of Electrical machines and methods of power transmission & distribution.

CO4 Apply the knowledge of electrical equipment, tariff, safety measures for engineering applications.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Refere	Reference Books				
1	D. C. Kulshreshtha, Basic Electrical Engineering, McGraw-Hill Education, 1 st Edition, 2019,				
	ISBN- 13:978-0071328968.				
2	D.P. Kothari and Nagrath Theory and Problems in electrical Engineering, PHI Edition 2016,				
	ISBN-978-81-203-5279-7.				
3	V. K. Mehta, Basic Electrical Engineering, S.Chandand Company Ltd., New Delhi, 2006,				
	ISBN-13: 978-8121908719.				
4	V. N. Mittal, Basic Electrical Engineering, TMH Publication, New Delhi, 2006, ISBN: 9780070593572.				

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40		
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7 & 8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	MAXIMUM MARKS FOR THE SEE THEORY	100			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

			Semester: I/II			
FU	NI	DAMENTALS O	F MECHANICAI	L ENGINEERING	(F	
	Category: Engineering Science Course					
	(Co	ommon to all Prog	grams Except ME St	ream Programs)		
			(Theory)			
Course Code	:	ME113AT / ME	123AT	CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	40T		SEE Duration	:	3 Hours
		U	nit-I			08 Hrs
Engineering Materials: In	itro	duction, Classifica	tion, Metals (Magnet	ic and Non-Magneti	c), [Materials. Properties
& applications: physical,	, n	nechanical, optica	l, electrical and el	lectronics, thermal,	Cl	nemical, Properties.
Applications: Aerospace, A	uto	omotive, Electronic	and Biomedical.			
		Un	it – II			08 Hrs
Vision system in Manufac	tu	ring: Introduction,	Role of human visior	in computer interac	tior	i, importance,
types of computer vision i	n n	nanufacturing, Arc	hitecture of a Vision	System, Artificial I	ntel	ligent v/s Computer
vision, applications of Cor	npı	ater vision in vario	ous industries, A case	e study: Computer i	nsp	ection of Two-stage
Soldering Defect in PCB be	Sar	d.				
Joining process: Welding-	A	rc welding & amp; (Jas welding, defects,	types of flames, Solo	leri	ng and brazing
		Un	it –III		1	10 Hrs
Automation in Manufac	etu	ring: Automation,	Types of Automa	tion, Historical Dev	velo	pment, Definitions,
Introduction to CNC Mach	ine	s. Relative Merits a	and Demerits, CNC- I	Elements, merits, de-	mei	its.
Robotics in Manufacturi	ng:	Robots - Basic S	tructure of Robots, I	Robot Anatomy, Col	mpl	ete Classification of
Robots, Fundamentals abo	out	Robot Technolog	y, Basic Robot Cor	ifigurations and the	ar I	Relative Merits and
Demerits,		T	•4 187			00 11
			$\frac{\mathbf{I}\mathbf{t} - \mathbf{I}\mathbf{V}}{\mathbf{V}}$	4 0 1 4 1 4		08 Hrs
Mechanical Drives: Clas	3811	ication of IC En	gines, Working of	4-S direct injection	er	igines, Performance
characteristics, Classification	on o	of gears, velocity ra	atio for simple and co	mpound gear trains.		
Electrical Drives: History	<i>y</i> ,	Well to wheel and	alysis, Electric vehic	les, Configurations,	EN	//ICEV comparison,
Performance, I raction Mot	or	Characteristics, Co	ncept of Hybrid Elect	ric Drive Trains, Cla	ISS11	ication of hybrid
electric venicies.		TI	nit V			06 IIng
Machatranias Introduction	<u></u>	Evolution of Ma	ull-V	nageuramant kamp.	00	ontrol system basic
alaments of control system	л. Эп.	Applications water	lovel controller was	shing machina Engi	no	multi system, basic
(EMS) Apti lock Broking	.1, <i>1</i> Svc	stom (ABS)	level controller, was	sing machine, Engi	ne	management system
END, Anti-lock Blaking	Jys	n and applications	of Energy sources li	ka Eassil fuals Nucl	loor	fuels Hydel Solar
wind and bio-fuels. Envir	onr	n and applications	Contraction of the second s	Trope depletion	icai	iueis, ilyuei, solai,
wind, and 010- rucis, Elivity	<u>, 111</u>	nental issues like C				
Course Outcomes: After o	con	npleting the cours	e. the students will h	e able to		
CO1 Understand the kn	ow	ledge of various pr	operties of Engineeri	ng materials and their	r Jo	ining processes
CO2 Elucidate the princ	zipl	es and operation of	vision system in pro	duct inspection.		procession.

CO3 Illustrate the Energy sources, mechanical drives and electrical drives in industrial applications.

CO4 Understand about Mechatronics, Automation and Robotics in Industrial Applications.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Referen	nce Books
1	Elements of Mechanical Engineering, K. R. Gopalakrishna, Subhas Publications, 18th Edition.
	ISBN 5551234002884
2	Material Science & amp; Engineering- William D Callister, 2 / 10th Edition, ISBN 978-1-119-45520-2.
3	Welding Technology (PB), Khanna O P, Dhanpat Rai publication, 4 th Edition, ISBN 9383182555.
4	Electric and Hybrid Vehicles, Design Fundamentals – Iqbal Husain, CRC Press, 2 nd Edition, 2010.
	ISBN -13-978-1439811757.
5	Modern Electric, Hybrid Electric & amp; Fuel Cell Vehicles, Fundamentals, Theory and Design –
	Mehrdad Ehsani, CRC Press, 1 st Edition, 2005. ISBN – 13- 978-0849331541.
6	Mechatronics – Electronic control systems in Mechanical and Electrical Engineering, William Bolton,
	Pearson, 6 th Edition, ISBN: 978-1-292-07668-3, 2015.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)	
Q. NO.	CONTENTS	MARKS
	PART A	
1	Objective type questions covering entire syllabus	20
	PART B	
	(Maximum of TWO Sub-divisions only)	
2	Unit 1 : (Compulsory)	16
3 & 4	Unit 2 : Question 3 or 4	16
5&6	Unit 3 : Question 5 or 6	16
7 & 8	Unit 4 : Question 7 or 8	16
9 & 10	Unit 5: Question 9 or 10	16
	MAXIMUM MARKS FOR THE SEE THEORY	100

Go, change the world

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Emerging Technology Courses

INTRODUCTION TO INTERNET OF THINGS (AI114AT / AI124AT) INTRODUCTION TO DRONE TECHNOLOGY (AS114AT / AS 124AT) BIOINSPIRED ENGINEERING (BT114AT / BT124AT) GLOBAL CLIMATE CHANGE (CH114AT / CH124AT) ELEMENTS OF BLOCKCHAIN TECHNOLOGY (CS4AT / CS124AT) **INTRODUCTION TO CYBER SECURITY (CS114BT / CS124BT) GREEN BUILDINGS (CV114AT / CV124AT) INFRASTRUCTURE FOR SMART CITIES (CV114BT / CV124BT)** FUNDAMENTALS OF NANOSCIENCE AND TECHNOLOGY (CHY114AT / CHY124AT)FUNDAMENTALS OF SEMICONDUCTOR DEVICES (EC114AT / EC124AT) INTRODUCTION TO EMBEDDED SYSTEMS (EC114BT / EC124BT) **RENEWABLE ENERGY SOURCES (EE114AT / EE124AT)** FUNDAMENTALS OF SENSOR TECHNOLOGY (EI114AT / EI124AT) HUMAN FACTORS IN ENGINEERING (IM114AT / IM124AT) **DIGITAL HUMANITIES (IS114AT / IS124AT)** SMART MATERIALS AND SYSTEMS (ME114AT / ME124AT) ELEMENTS OF INDUSTRY 4.0 (ME114BT / ME124BT)

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

				Semester: I/II			
	INTRODUCTION TO INTERNET OF THINGS						
	Category: Emerging Technologies						
			(Com	mon to all Programs	S)		
				(Theory)		1	
Course	Code	:	AI114AT / AI124	4AT	CIE	:	100 Marks
Credits:	L:T:P	:	3:0:0		SEE	:	100 Marks
Total H	ours	:	40L		SEE Duration	:	3 Hours
			Ur	nit — I			09 Hrs
Applicat	tions: Asset Mana	agei	ment, Biometrics Id	lentification, Smart H	lome, Bird Strike Av	oida	ance Radar System,
River Na	avigation Safety Sy	yste	em.				
Introdu	ction: IoT Concer	pt, I	Related Concepts to	o IoT, The Intrinsic C	Characteristics of IoT	, Io'	T Development and
Applicat	ion, Future IoT Vi	sio	n.				
Archited	cture and Fundar	mer	ntals: Research on	IoT Architecture, Ub	piquitous IoT (U2IoT) A	rchitecture, Layered
Models :	for IoT, Layered N	Mo	del Proposed and S	ocial Attributes Disc	ussion for U2IoT, Id	DT I	Development Phases
Summar	y and Discussion,	Sci	ence Category and	Supporting Technolo	gies for IoT.		
~			U	nit – II			07 Hrs
Sensors	and Actuators f	for	IoT: Introduction	, Sensors and Actua	tors, Ubiquitous Se	nsii	ng, Networking and
Commu	nications, Manager	mer	nt and Data Centers	(M&DCs), Case Stu	dy for IoT.		
			Unit	- III			08 Hrs
Ubiquit	ous Internet of T	hin	gs: Introduction, 1	Local Internet of Thi	ngs, Industrial Interr	iet (of Things, National
Internet	of Things, Transna	atio	nal Internet of Thin	igs Application, Glob	al Application IoT a	nd a	Typical Example.
_			Uni	it – IV			08 Hrs
Resourc	e Management:	Inti	roduction, Object (Coding and Resolvin	g, Resolving Discus	ssio	n for nID Objects,
Resource	e Naming, Recou	rse	Addressing, Resc	ource Discovery, Res	source Allocation, I	Reso	ource Management
Scheme	in U2IoT.						
~ .			Un	it – V			08 Hrs
Security	and Privacy for	Iol	C: Introduction, Sec	curity Challenges in U	J2IoT, The Security	Fra	mework for U2IoT,
Hybrid A	Authentication and	Hi	erarchical Authoriz	ation Scheme, Entity	Activity Cycle–Base	ed S	Security Solution.
Course	Outcomes: After	con	npleting the cours	e, the students will b	e able to		
CO1	Apply the knowle	dge	of IoT and related	science to solve the e	engineering problems	5.	
CO2	Analyse the applic	cabi	ility of IoT in vario	us application domain	18.		
CO3	Decign a sustainal	hla	solution using IoT	with societal and env	vironmental concern	hv	angaging in lifelong

CO3 Design a sustainable solution using IoT with societal and environmental concern by engaging in lifelong learning for emerging technology.

CO4 Demonstrate the solutions using various IoT principles by exhibiting team work and effective communication.

Referen	nce Books
1	Huansheng Ning - Unit and Ubiquitous Internet of Things, CRC Press; 1st edition, 2018,
	ISBN-10: 113837475X, ISBN-13: 978-1138374751
2	Hakima Chaouchi - The Internet of Things Connecting Objects to the Web, Wiley-ISTE; 1st
	Edition,2010, ISBN-10:1848211406, ISBN-13: 978-1848211407
3	Adrian McEwen, Hakim Cassimally - Designing the Internet of Things, Wiley, 1st edition, 2013,
	ISBN-10:111843062X,ISBN-13:978-1118430620
4	Dawid Borycki - Programming for the Internet of Things PHI Learning Pvt. Ltd, Microsoft
	Press,2019,ISBN-10: 9387472558,ISBN-13: 978-9387472556

Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)	
Q. NO.	CONTENTS	MARKS
	PART A	
1	Objective type questions covering entire syllabus	20
	PART B	
	(Maximum of TWO Sub-divisions only)	
2	Unit 1 : (Compulsory)	16
3 & 4	Unit 2 : Question 3 or 4	16
5&6	Unit 3 : Question 5 or 6	16
7 & 8	Unit 4 : Question 7 or 8	16
9 & 10	Unit 5: Question 9 or 10	16
	MAXIMUM MARKS FOR THE SEE THEORY	100

Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Semester: I/II INTRODUCTION TO DRONE TECHNOLOGY Category: Emerging Technologies (Common to all Programs)

(Theory)

			(Incory)			
Course Code	:	AS114AT / AS12	4AT	CIE	••	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	••	40L		SEE Duration	:	3 Hours

Unit-I	08 Hrs
Basics of Drones: History of UAVs, Need of unmanned aerial systems, India and drones, Overvi	ew of UAV
Systems-System Composition, Classes and Missions of UAVs-Classification of UAVs based on size	e, range and
endurance.	
Unit – II	08 Hrs
Aerodynamics of Drones: Airfoil nomenclature, Generation of Lift on Airfoils and Wings, Basic aero	dynamics
of fixed, rotary and flapping wing UAVs.	
Unit –III	08 Hrs
Drones Propulsion Systems: Thrust Generation, Powered Lift, Sources of Power for UAVs- Piston,	Rotary, Gas
turbine engines, electric or battery powered UAVs.	
Unit –IV	08 Hrs
Drone Airframe Systems: Loads on UAVs, Materials for UAV construction, and Construction Techn	iques.
Unit –V	08 Hrs
Sensors and Payloads: Barometers, Accelerometer, Magnetometer, RADAR and range finder, Non and dispensable Payloads- Optical, electrical, weapon, imaging payloads.	-dispensable

Regulations: DGCA regulations, Operational and procedural requirements, No drone zones.

Course	Outcomes: After completing the course, the students will be able to
CO1	Appreciate and apply the basic principles of aviation in the development of aerospace vehicles.
CO2	Survey the important fundamental factors that significantly influence the performance of aerospace
	vehicles.
CO3	Evaluate the various factors affecting the performance of flight vehicles.
CO4	Criticize the design strategy involved in the development of aerospace vehicles.

Referen	nce Books
1	Unmanned Aircraft Systems UAV design, development and deployment, Reg Austin, 1 st Edition, 2010,
	Wiley, ISBN 9780470058190.
2	Introduction to UAV Systems, Paul G Fahlstrom, Thomas J Gleason, 4 th Edition, 2012, Wiley,
	ISBN: 978-1-119-97866-4 .
3	Advances in Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy, Kimon P.
	Valavanis, 1 st Edition,2007, Springer ISBN 9781402061141.
4	Design of Unmanned Air Vehicle Systems, Dr. Armand J. Chaput, 3 rd Edition, 2001, Lockheed Martin
	Aeronautics Company, ISBN: 978-1-60086-843-6.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)					
#	COMPONENTS	MARKS			
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20			
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40			
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40			
	MAXIMUM MARKS FOR THE CIE THEORY	100			

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	CONTENTS	MARKS				
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B					
	(Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7 & 8	Unit 4 : Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	MAXIMUM MARKS FOR THE SEE THEORY	100				

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: I/II							
BIOINSPIRED ENGINEERING							
		Category	: Emerging Technol	ogies			
		(Com	mon to all Programs	s)			
			(Theory)				
Course Code	:	BT114AT / BT12	24AT	CIE	:	100 Marks	
Credits: L:T:P : 3:0:0 SEE : 100 Marks						100 Marks	
Total Hours	:	40L		SEE Duration	:	3 Hours	

Unit-I						07 H	Irs				
Introduction	to Bio-in	spired	Engineering:	Prologue	to to	cellular	entities.	Stem	cells;	types	and
applications. artificial life. H	Synthetic Biological Cl	Biology ock, Gen	y; Bottom-up' netic Algorithms	and	'top-d	own' e	ngineering	appr	oaches.	Synth	netic/
											_

 Unit – II
 08 Hrs

 Principles of bioinspired materials: Biological and synthetic materials, Self-assembly, hierarchy and evolution.

 Biopolymers, Bio-steel, Bio-composites, multi-functional biological materials. Thermal Properties. Antireflection and photo-thermal biomaterials, Microfluidics in biology, Invasive and non-invasive thermal detection inspired by skin.

Umt –111	10 Hrs					
Lessons from Nature-Bioinspired Materials and mechanism: Firefly-Bioluminescence,	Cockleburs					
-Velcro, Lotus leaf - Self-cleaning materials, Gecko - Gecko tape, Whale fins - Turbine	blades, Box					
Fish / Bone - Bionic car, Shark skin - Friction reducing swimsuits, Kingfisher beak - I	Bullet train,					
Coral - Calera cement, Morpho butterfly- Structural color, Namib beetle- Water collecting	ng, Termite					
mound passive cooling, Birds/Insects- flights/ aerodynamics, Mosquito inspired micro needle.						
Unit IV	07 Hrs					

	0/1115							
Biomedical Inspiration-Concept and applications: Organ system- Circulatory	y- artificial							
blood, artificial heart, pacemaker. Respiratory- artificial lungs. Excretory- Artificial	icial kidney							
and skin. Artificial Support and replacement of human organs: artificial liver and	nd pancreas.							
Total joint replacements- artificial limbs. Visual prosthesis -artificial eye/ bionic eye.								
	0.0 77							

Unit –V **08 Hrs** Biomimetics: Inventions in nature for Human Innovation: Photosynthesis and Photovoltaic cells, **Bionic**/Artificial leaf. **Bio-ink** and **3D-Bioprinting**. **Biosensors**: Artificial tongue and nose. Biomimetic echolation. adaptations adhesion. Insect foot for Thermal insulation and storage materials. Bees and Honeycomb Structure. Artificial Intelligence, Neural Networking and biorobotics.

Course Outcomes: After completing the course, the students will be able to					
CO1	Elucidate the concepts and phenomenon of natural processes.				
CO2	Apply the basic principles for design and development of bioinspired structures.				
CO3	Analyse and append the concept of biomimetics for diverse applications.				
CO4	Designing technical solutions by utilization of bioinspiration modules.				

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Referen	nce Books
1	Yoseph Bar-Cohen. Biomimetics: Biologically Inspired Technologies D. Floreano and C.Mattiussi, "Bio-
	Inspired Artificial Intelligence", CRC Press, 2018. ISBN: 9781420037715.
2	Guang Yang, Lin Xiao, and Lallepak Lamboni. Bioinspired Materials Science and Engineering. John
	Wiley, 2018. ISBN: 978-1-119-390336.
3	M.A. Meyers and P.Y. Chen. Biological Materials, Bioinspired Materials, and Biomaterials
	Cambridge University Press, 2014 ISBN 978-1-107-01045.
4	Tao Deng. Bioinspired Engineering of Thermal Materials. Wiley-VCH Press, 2018.
	ISBN: 978-3-527-33834-4.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	CONTENTS	MARKS				
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B					
	(Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7 & 8	Unit 4 : Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	MAXIMUM MARKS FOR THE SEE THEORY	100				

Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

University, Belagavi						
Semester: I/II						
GLOBAL CLIMATE CHANGE						
		Category	: Emerging Technol	logies		
		(Com	mon to all Program	s)		
			(Theory)			
Course Code	:	CH114AT / CH1	24AT	CIE	:	100 Marks
Credits: L:T:P : 3:0:0 SEE : 100 Marks						
Total Hours	:	40L		SEE Duration	:	3 Hours

Unit-I	08 Hrs			
Introduction to the climate change: Climate, climate change, temperature anomalies, radiation	and energy			
balance.				
Unit – II	08 Hrs			
Simple Climate models: Source of energy, energy loss, greenhouse effect, carbon cycle, atmos	sphere-land-			
biosphere–ocean carbon exchange.	_			
Unit –III	08 Hrs			
Prediction and impacts of climate change: Factors that control emissions, emissions scenarios, phys abrupt climate changes	ical impacts,			
Unit –IV	08 Hrs			
Strategies to mitigate climate change: Adaptation: technology, politics personal actions, of	conventional			
regulations, market-based regulations, information and voluntary methods.				
Unit –V	08 Hrs			
Climate change conventions: Technical summary of IPCC reports, conference of parties and climate change				
protocols.	-			

Course	Course Outcomes: After completing the course, the students will be able to					
CO1	Understand climate change and the global climate crisis.					
CO2	Assess the factors influencing the climate change.					
CO3	Analyse climate change data.					
CO4	Articulate climate change mitigation strategies.					

Refere	nce Books								
1	Introduction to Modern Climate Change, Andrew E. Dessler, Cambridge University Press, ISBN-10-								
	1108793878, ISBN-13- 978-1108793872, 3rd edition, 2021.								
2	Introduction	to	Climate	Science,	Andreas	Schmittner,	Oregon	State	University,
	https://open.oregonstate.education/climatechange.								
3	IPCC — Interge	overr	nmental Pane	el on Climate	e Change, ht	tps://www.ipcc	.ch.		
4	UNFCC – Unite	ed na	tions framev	work conven	tion on clim	ate change, http	s://unfccc.i	nt.	

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40		
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	CONTENTS	MARKS				
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B					
	(Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7 & 8	Unit 4 : Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	MAXIMUM MARKS FOR THE SEE THEORY	100				

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: I/II									
		ELEMENTS OF	BLOCKCHAIN TE	CHNOLOGY					
		Category	: Emerging Technol	ogies					
		(Com	mon to all Programs	5)					
			(Theory)						
Course Code	:	CS114AT / CS12	24AT	CIE	:	100 Marks			
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks			
Total Hours	:	36L		SEE Duration	:	3 Hours			
		U	nit-I			07 Hrs			
Blockchain Fundamenta	ls:]	Defining Blockchai	in, Elements of Block	chain, Qualities of	Blo	ckchain, Blockchain			
and Economics, Blockchain Technology, Origins of Bitcoin and Blockchain, Types of Blockchains, Business and									
Blockchain, Use cases, Ethical issues with Blockchain.									
		Un	nit – II			07 Hrs			
Blockchain Technology	R1	ockchain technolog	w stack monetizing	Plackshain Technology: Plackshain technology stack monotizing the Plackshain Plackshain Wallet. Serting					

hain Technology: Blockchain technology stack, monetizing the Blockchain, Blockchain Wallet, Sorting Blocks, Consensus, Blockchain as a Service, IT Use cases for Blockchain-Storage, IPFS, Edge Computing, Web 3.0 and Blockchain, Obstacles in Blockchain.

Unit –III 07 Hrs Bitcoin and Crypto-assets: Introduction to Crypto-assets, Crypto-currencies, Crypto-commodities, Cryptotokens, Bitcoin, Ethereum, Digital Token Exchanges, Financial modelling for cryptocurrencies.

Unit -IV 07 Hrs Ethereum and Smart Contracts: Basics of Ethereum, Ethereum Virtual Machine, Ether, Smart Contract, Onchain versus Off-chain versus Side chain, Mining Ethereum. **08 Hrs**

Unit-V

Blockchain Use Cases: Cross-functional Blockchain Use cases - Identity management, Asset Tracking, IoT integration; Functional Area Blockchain Use Cases for Business - Finance, Marketing/Sales, Supply Chain Management, Accounting, Human Resources; Use Cases for Specific Industries - Insurance, Real Estate, Healthcare, Energy.

Course	Course Outcomes: After completing the course, the students will be able to					
CO1	Apply the knowledge of Blockchain in some of the Industrial Use Cases.					
CO2	Analyse the working of some of the Blockchain solutions in Business Use Cases.					
CO3	Use some of the modern tools of Blockchain, such as Ethereum to solve real world problems.					
CO4	Appreciate ethical implications of using Blockchain technologies.					
CO5	Assess the impact and importance of the Blockchain technologies on social security.					

Text B	ooks					
1	Basics of Blockchain – A guide for building literacy in the economics, technology and business of					
	blockchain, Bettina Warburg, Bill Wagner, and Tom Serres, 2019, Animal Ventures LLC, Edition 1.0.					
Referen	Reference Books					
1	Mastering Blockchain - Distributed ledger technology, decentralization and smart contracts, Imran					
	Bashir, 2018, Packt, Second Edition.					

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40		
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	CONTENTS	MARKS				
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B					
	(Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7 & 8	Unit 4 : Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	MAXIMUM MARKS FOR THE SEE THEORY	100				

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	University, Belag	gavi					
			Sen	nester: I/II			
			INTRODUCTION	TO CYBER	SECURITY		
			Category: En	nerging Techn	ologies		
			(Common	to all Program	ms)		
			((Theory)			
Cours	e Code	:	CS114BT / CS124BT		CIE	:	100 Marks
Credit	s: L:T:P	:	3:0:0		SEE	:	100 Marks
Total 1	Hours	:	40L		SEE Duration	:	3 Hours
		_	Unit-I			~	08 Hrs
Introd	uction to Cy	ber	Space: History of Internet,	History and	evolution of Informatio	n Se	curity and cyber-
Securit	y, introduction	n to c	yber space and information	security, comp	outer ethics and security	polic	cies.
Introd	uction to Cyl	Derci	Time: Definition and Origi	ins of the W	ord, Cybercrime and		rmation Security,
who a	Clabel Derer	nais?	Classifications of Cyberch	rimes, An I	ndian Perspective, Hac	King	and Indian
Laws.,	Global Perspe	ective	s. Different Types of Cyber	Crimes, Scam	s and Frauds.		00 11
Cubor	Offenges II	C	Unit – I	1 Justion hours of	niminals plan the ottagl	- C.	U8 Hrs
Cyber	Stalling Cub		fiminals Plan Them: Introd	The fuel for ever	hananima Attack	is, 50	ocial Engineering,
Attack	Statking, Cybe		d Mativations: How Ha	lie fuel for cy	beir Treaks (Anti form	noion	How and Why
Attack	er Techniqu	es al	in Motivations: How Had	Techniques	nen Tracks (Anti-totel	lisics), now and winy
Allack		<i>s</i> , 10	Unit I	Techniques.			08 Hrs
Social	Madia Ovar	viow	and Security: Introduction	to Social net	works Types of social	mad	ia Social media
nlatfor	ms Social m	edia	monitoring Hashtag Vira	al content So	cial media marketing	Soc	ial media privacy
Challer	nges opportui	nities	and pitfalls in online so	ar content, 50 acial network	Security issues relat	ted 1	to social media
Flaggi	iges, opportuning and report	ting	of inappropriate content	Laws regard	ing posting of inapp	ropri	ate content Best
practic	es for the use	e of	social media. Case studies.	Laws legala	ing posting of mapp	ropii	ate content, Dest
F			Unit -IV	V			08 Hrs
E - Co	mmerce and	Digit	al Payments: Definition of	E- Commerce	. Main components of H	E-Coi	nmerce, Elements
of E-C	ommerce secu	ırity,	E-Commerce threats, E-C	Commerce sec	curity best practices, I	ntrod	uction to digital
payme	nts, Compone	ntso	f digital payment and stal	ke holders, Mo	des of digital payments-	Ban	king
Cards,	Unified Payn	nent	Interface (UPI), e-Wallets,	Unstructured	Supplementary Service	Data	(USSD), Aadhar
enable	d payments,	Digit	al payments related comr	non frauds a	and preventive measur	res. I	RBI guidelines on
digital	payments and	cust	omer protection in unauth	orised banking	g transactions. Relevant	prov	isions of Payment
Settlen	nent Act,2007						
			Unit-V	7			08 Hrs
Digital	Devices secu	ırity,	Tools, and Technologies	for Cyber Sec	curity: End Point devic	e ar	nd Mobile phone
securit	y, Password	poli	cy, Security patch manag	ement, Data	backup, Downloading	and	management of
third-p	arty software.	, Dev	ice security policy, Cyber	Security best	t practices, Significance	e of	host firewall and
Ant-vi	rus, Managem	ent c	f host firewall and Anti-vir	us, Wi-Fi seo	curity, Configuration of	of bas	sic security policy
and per	rmissions.						
~							
Cours	e Outcomes:	After	completing the course, the	e students will	be able to		
CO1	Understand t	he c	yber-attacks and their princ	uples for diffe	rent domains- social m	edia,	E-commerce, and
Cours CO1	e Outcomes: A	After	completing the course, the	e students will	be able to	edia	E-commerce and
	digital device		1	•		,	·

CO2 Analyse vulnerabilities in different domains that the attacker capitalizes for attack.

CO3 Applydifferent attacking techniques that make use of vulnerabilities available in various domains.

CO4 Evaluate methods to cover different vulnerabilities to safeguard the systems against cyber-attacks.

CO5 Investigate modern tools and technologies available to mitigate cybercrime attacks.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Refer	ence Books
1	Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal Perspectives by
	SumitBelapure and Nina Godbole, Wiley India Pvt. Ltd, 1 st Edition 2011, Reprint 2022,
	ISBN:978-81-265-2179-1.
2	Cyber Security Essentials by James Graham, Richard Howard, Ryan Olson, CRC Press, 2011 Taylor and
	Francis Group. ISBN13: 978-1-4398-5126-5.
3	Information Systems Security: Security Management, Metrics, Frameworks and Best Practices by Nina
	Godbole, 2 nd Edition, Wiley publishers, 2017. ISBN: 9788126564057.
4	Network Security Bible, Eric Cole, Ronald Krutz, James W. Conley, 2 nd Edition, John Wiley & Sons,
	2005, ISBN: 978-0764573972.
5	Security in the Digital Age: Social Media Security Threats and Vulnerabilities by Henry A. Oliver,
	Create Space Independent Publishing Platform, Pearson, 2001, ISBN: 9781516821020.
6	Electronic Commerce by Elias M. Awad, Pearson, 1 st edition, 2001, ISBN: 978-0130193223.
7	Cyber Laws: Intellectual Property & E-Commerce Security by Kumar K, Dominant Publishers &
	Distributors, 2011, ISBN: 978-8187336891.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40		
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)			
Q. NO.	CONTENTS	MARKS	
	PART A		
1	Objective type questions covering entire syllabus	20	
	PART B		
	(Maximum of TWO Sub-divisions only)		
2	Unit 1 : (Compulsory)	16	
3 & 4	Unit 2 : Question 3 or 4	16	
5&6	Unit 3 : Question 5 or 6	16	
7 & 8	Unit 4 : Question 7 or 8	16	
9 & 10	Unit 5: Question 9 or 10	16	
MAXIMUM MARKS FOR THE SEE THEORY 100			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

				Semester: I/II			
			GR	EEN BUILDINGS			
			Category	: Emerging Technol	ogies		
			(Com	mon to all Program	s)		
				(Theory)			
Course	Code	:	CV114AT / CV1	24AT	CIE	:	100 Marks
Credits	:: L:T:P	:	3:0:0		SEE	:	100 Marks
Total H	lours	:	40L		SEE Duration	:	3 Hours
			U	nit-I			08 Hrs
Introdu	iction to the con	cep	t of cost effective	e construction: Use	s of different types	of	materials and their
availabi	lity -Stone and La	ateri	te blocks-M Sand-	Burnt Bricks- Conc	rete Blocks- Stabiliz	zed	Mud Blocks- Lime-
Pozzola	na Cement- Gypsu	ım E	Board.				
Light w	eight beams- Fiber	Re	inforced Cement C	omponents- Fiber Re	inforced Polymer Co	mp	osite- Bamboo.
Availah	ility of different	ma	terials- Recycling	of building mater	ials – Brick- Cone	ret	e- Steel- Plastics -
Enviror	mental issues relat	ted t	o building material	S.	Luis Drick Conk		e steel l'hustles
			<u> </u>	it – II			08 Hrs
Enviro	nment friendly a	nd	cost effective Bui	lding Technologies:	Different substitute	e fo	or wall construction-
Cavity	Wall.	nu		ining reenhologies.	Different Substitut	10	wan construction
Ferro C	ement and Ferro Co	onc	rete constructions -	- different pre cast me	embers using these m	ate	rials.
Wall an	d Roof Panels – E	Bear	ns – Columns - De	oor and Window fram	nes - Water tanks -	Ser	otic tanks - Alternate
roofing	systems - Filler sla	ab -	Composite Beam a	nd Panel Roof.		~ - r	
Pre-eng	ineered and ready t	to u	se building elemen	ts - wood products - s	teel - plastic.		
	j		Un	it –III	P		08 Hrs
Global Warming – Definition - Causes and Effects - Contribution of buildings towards Global Warming							
Carbon	Footprint – Global	Eff	forts to reduce carb	on Emissions.			
Green I	Buildings – Definit	tion	- Features- Neces	sitv – Environmental	benefit - Economic	al t	enefits - Health and
Social b	enefits.						
Maior E	Energy efficient are	eas f	or buildings – Emb	odied Energy in Mate	erials.		
Green M	Aaterials - Compari	isor	of Initial cost of C	Freen V/s Convention	al Building - Life cy	cle	cost of Buildings.
	1		Un	it –IV	<i>. . .</i>		08 Hrs
Green	Building rating S	Svst	ems- BREEAM –	LEED - GREEN S	TAR –GRIHA, IGE	BC	for new buildings –
Purpose	e - Key highlights -	Poi	int System with Dif	ferential weightage.	- , -	-	6
Green	Design – Definitio	on	- Principles of su	stainable development	nt in Building Desi	gn	- Characteristics of
Sustain	able Buildings – S	usta	inably managed M	aterials - Integrated	Lifecycle design of I	Mat	erials and Structures
(Concer	ots only)		<i>, , , , , , , , , ,</i>	6	,		
			Ur	nit –V			08 Hrs
Utility	of Solar Energy in	ı Bı	uildings: Utility of	Solar energy in build	ings - concepts of So	olar	Passive Cooling and
Heating of Buildings. Low Energy Cooling. Case studies of Solar Passive Cooled and Heated Buildings.							
Green Composites for Buildings: Concepts of Green Composites. Water Utilisation in Buildings, Low Energy							
approaches to Water Management. Management of Solid Wastes. Management of Sullage and Sewage. Urban							
Environ	ment and Green B	uild	ings. Green Cover	and Built Environme	nt.	υ	0
Course Outcomes: After completing the course, the students will be able to							
CO1	CO1 Select suitable building material and apply effective environmental friendly building technology						
CO2	CO2 Analyze global warming due to different materials in construction.						
CO3	Analyze buildings	s foi	r green rating.				

CO4 Use alternate source of energy and effective use of water in building.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Referen	Reference Books		
1	Green Building Fundamentals, G Harihara Iyer, Notion Press, 1 st Edition, 2022,		
	ISBN-13:979-8886416091.		
2	Green Building: Principles & Practices, Harshul Savla, Notion Press, 1st Edition, 2021,		
	ISBN-13: 978-1685866044.		
3	Green Building Guidance: The Ultimate Guide for IGBC Accredited Professional Examination, Karthik		
	Karuppu, Notion Press; 1 st Edition, 2019, ISBN-13: 978-1684667291.		
4	Handbook of Green Building Design and Construction LEED, BREEAM, and Green Globes, Sam Kubba,		
	Joe Hayton publisher, 1 st Edition, 2017, ISBN: 978-0-12-810433-0.		
5	Sustainable Construction: Green Building Design and Delivery, Charles J. Kibert, Wiley Publication, 5 th		
	Edition, 2022, ISBN-13:978-1119706458.		

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)			
Q. NO.	CONTENTS	MARKS	
	PART A		
1	Objective type questions covering entire syllabus	20	
	PART B		
	(Maximum of TWO Sub-divisions only)		
2	Unit 1 : (Compulsory)	16	
3 & 4	Unit 2 : Question 3 or 4	16	
5&6	Unit 3 : Question 5 or 6	16	
7&8	Unit 4 : Question 7 or 8	16	
9 & 10	Unit 5: Question 9 or 10	16	
	MAXIMUM MARKS FOR THE SEE THEORY	100	

Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Semester: I/II						
		INFRASTRUC	CTURE FOR SMAR	AT CITIES		
		Category	: Emerging Technol	ogies		
		(Com	mon to all Program	s)		
	1	ſ	(Theory)	1		
Course Code	:	CV114BT / CV12	24BT	CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	40L		SEE Duration	:	3 Hours
		U	nit-I			08 Hrs
Fundamental of smart ci	ty	& Infrastructure:	Importance of liva	bility, Introduction of	f S	mart City, need and
concept of smart city sys	ster	ns, Challenges of	managing infrastruc	ture in India and v	vorl	d, various types of
Infrastructure systems. Var	iou	is stake holders in s	mart city. IoT applica	ations in smart cities.		
Unit – II 08 Hrs				08 Hrs		
Planning and development of Smart city Infrastructure: Affordable housing, smart and green buildings-						
Objectives, features, benefits, different parameters considered -photo voltaic, water, materials and environment.						
Unit –III 08 Hrs			08 Hrs			
Intelligent transport systems: Public transportation management, Smart vehicles and fuels, traffic safety						
management, mobility serv	vice	es, E-ticketing. Sm	art mobility requirem	ents, Smart City cas	es o	of G.I.S in mobility,
smart roads.						
		Un	it –IV			08 Hrs
Management of water i	res	ources and relate	ed infrastructure:	Storage and convey	anc	e system of water,
sustainable water and sanit	atio	on, sewerage system	n, flood management,	conservation system	l .	
Unit –V 08 Hrs						
Infrastructure Management system & Policy for Smart city: Integrated infrastructure management systems for						
smart city, Infrastructure management system applications for existing smart city. Worldwide policies for smart						
city Government of India	- 1	policy for smart ci	ty, Mission statemen	t & guidelines, Sma	art o	cities in India, Case
studies of smart city.						

Course Outcomes: After completing the course, the students will be able to		
CO1	Comprehend the necessity and various types of infrastructural development for smart cities.	
CO2	Identify components of building infrastructure and Prepare infrastructure plan for smart city.	
CO3	Understand smart transport system and water resources systems for smart cities and its application.	
CO4	Understand National and Global policies to implement for smart city development.	
-		

Referen	nce Books
1	Sustainable Smart Cities in India: Challenges and Future Perspectives, Poonam Sharma, Swati Rajput,
	Springer; 1 st Edition, 2017, ISBN-13: 978-3319471440.
2	Smart City in India Urban Laboratory, Paradigm or Trajectory?, Binti Singh, Manoj Parmar, , Routledge
	India, 1 st Edition, 2019, ISBN 9780367462598.
3	The Age of Intelligent Cities: Smart Environments and Innovation-for-all Strategies (Regions and Cities),
	Nicos Komninos, Routledge India, 1 st Edition, 2014, ISBN-13: 978-1138782198,
4	Smart Cities, Germaine Halegoua, The MIT Press, 1 st Edition, 2020, ISBN-13 : 978-0262538053.
5	Smart Cities, Smart Future: Showcasing Tomorrow, Mike Barlow, Cornelia Levy-Bencheton, Wiley; 1 st Edition, 2018, ISBN-13: 978-111951618.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS		
	PART A			
1	Objective type questions covering entire syllabus	20		
	PART B			
	(Maximum of TWO Sub-divisions only)			
2	Unit 1 : (Compulsory)	16		
3 & 4	Unit 2 : Question 3 or 4	16		
5&6	Unit 3 : Question 5 or 6	16		
7 & 8	Unit 4 : Question 7 or 8	16		
9 & 10	Unit 5: Question 9 or 10	16		
	MAXIMUM MARKS FOR THE SEE THEORY	100		

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: I/II FUNDAMENTALS OF NANOSCIENCE AND TECHNOLOGY **Category: Emerging Technologies** (Common to all Programs) (Theory) CHY114AT / CHY124AT CIE **Course Code** 100 Marks : : Credits: L:T:P : 3:0:0 SEE : 100 Marks **Total Hours** 42L **SEE Duration** : 3 Hours :

Unit-I	08 Hrs	
History of nano science and technology: Historical developments of nanomaterials, nanotechnology	y in ancient	
Indian practices: Ayurveda medicine, cosmetics, and metallurgy.		
Learning from nature: Gecko feet, spider web and lotus leaf. Fundamentals of nanotechn	nology and	
classification of nanomaterials.		
Unit-II	08Hrs	
Preparation of nanomaterials: Top-down approach: physical vapor deposition (PVD), molecular be	am epitaxy,	
sputtering and ion beam process.		
Bottom-up approach: Chemical vapor deposition (CVD), precipitation method, electrochemical metho	od and	
green synthesis of nanomaterials.		
Unit-III	09Hrs	
Characterization of nanomaterials and their properties: Characterization: Introduction, UV-Vis	absorption	
spectroscopy, Scanning electron microscopy, scattering techniques (particle size analyzer).	•	
Properties: Physical properties: Size, surface area and optical properties), Chemical properties	- catalytic	
properties.	-	
Unit-IV	08 Hrs	
Nanomaterials for agriculture and healthcare: Agriculture: Application of nanotechnology in modern day		
agriculture practices, micronutrients.	-	
Water and food technology: Membrane technology, nanomaterials for water purifications.		
Nanomaterials in healthcare: Cosmetics and nano medicine.		
Unit-V	09Hrs	
Engineering applications of nanomaterials: Energy: Materials for energy production and storage.		
Electronics: Nano materials for display technology, circuit elements and their advantages over c	onventional	
materials.		
Mechanical industry: Self-cleaning surfaces, automobile industry and nanocomposites		
Civil construction: High strength materials and fire-retardant materials.		
Mechanical industry : Self-cleaning surfaces, automobile industry and nanocomposites Civil construction : High strength materials and fire-retardant materials.		

Course Outcomes: After completing the course, the students will be able to		
CO1	Identify the nano science and nanotechnology applications associated with engineering problems.	
CO2	Investigate chemical properties of nano materials for technological applications.	
CO3	Apply the knowledge of material property and energy to analyze environmental issues.	
CO4	Design and develop solutions in the areas of applied materials for sustainable engineering applications.	

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Referen	nce Books
1	Nanostructures and nanomaterials synthesis, properties, and applications, Guozhong Cao and Ying Wang,
	2011, 2 nd , ISBN: 9789814324557.
2	Nanoscience: The Science of the small in physics, engineering, chemistry, biology and medicine", Hans-
	Eckhardt Schaefer, 2010, Springer. ISBN: 3642105580.
3	Introduction to nanoscience and nanotechnology, Gabor L. Hornyak, H.F. Tibbals, Joydeep Dutta, John J.
	Moore, 2020, CRC press, ISBN: 9781420047790.
4	Nano biotechnology-concepts, applications in health, agriculture and environment, R. Tomar, 2020,
	Apple Academic Press: ISBN: 9780429292750.
E-book	
5	Nanotechnology advances and real-life applications, Bhargava and Amit Sachdeva, 2021, CRC press,
	ISBN: 9780367536732.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
[MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7 & 8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	MAXIMUM MARKS FOR THE SEE THEORY	100			

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

,						
Semester: I / II						
FUNDAMENTALS OF SEMICONDUCTOR DEVICES						
		Category	: Emerging Technol	ogies		
		(Com	mon to all Program	s)		
			(Theory)			
Course Code	Course Code : EC114AT / EC124AT CIE : 100 Marks					
Credits: L:T:P : 3:0:0 SEE : 100 M		100 Marks				
Total Hours	:	40L		SEE Duration	:	3 Hours

Unit-I	08 Hrs
Semiconductor Basics: Energy Levels to Energy Bands, Crystalline, Polycrystalline, and	Amorphous
Semiconductors, Miller Indices, Properties of Common Semiconductors, Free Carriers in Semiconductors	niconductors,
Doping.	
Unit – II	08 Hrs
Semiconductor Quantum behaviour: The Wave Equation, Quantum Confinement, Quantum T	unneling and
Reflection, Electron Waves in Crystals, Density of States, Fermi Function, Carrier Concentrations.	

Unit –III			
Semiconductor Transport: Carrier Transport, Generation, and Recombination- The Landauer Appro			
from the Nanoscale to Macroscale, Drift-Diffusion Equation, Carrier Recombination, Carrier	Generation,		
Mathematical Formulation, Energy Band Diagrams, Quasi-Fermi Levels, Minority Carrier Diffusion E	equation .		
Unit –IV	08 Hrs		
Quantum Computing Basics: Difference between classical & quantum computing, Quantum Qu	ubits, Single		
Qubits states, Postulates of Quantum Mechanics.	-		

Hardware of Quantum Computers: Quantum measurement, Quantum Gates and Circuits, Introduction to building blocks of a quantum computer, Quantum materials, Spin Qubits.

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Identify electron behavior in crystals, semiconductors and quantum Qubits, models Entangled states.				
CO2	Analyze electron transport in semiconductors and quantum gates and circuits .				
CO3	Evaluate the carrier concentration and transport behaviour in semiconductor quantum computation.				
CO4	Apply computation behaviour of electrons and quits in real time semiconductor devices, quantum gates				
	and circuits.				

Refere	nce Books			
1	Semiconductor Device Fundamentals, Robert F. Pierret, 2006, Pearson, ISBN 9780201543933.			
2	Advanced Semiconductor Fundamentals, R.F. Pierret, 2nd ed., Pearson Education, Inc., 2003,			
	ISBN-0-13-061792-X			
3	Operation and Modeling of the MOS Transitor, Y.P. Tsividis, Colin McAndrew, 3 rd Edition, 2014,			
	Oxford Univ Press, ISBN:978-0195170153.			
4	Nielsen, M., & Chuang, I. (2010). Quantum Computation and Quantum Information: 10th Anniversary			
	Edition. Cambridge: Cambridge University Press.			
5	Lecture Notes, Quantum Computation, California Institute of Technology,			
	http://theory.caltech.edu/~preskill/ph219/ph219_2021-22.html [accessed as on 30-11-2022].			
6	Learn Quantum Computation using Qiskit, Online Textbook, https://qiskit.org/textbook/preface.html,			
	[accessed as on 30-11-2022].			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7 & 8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	MAXIMUM MARKS FOR THE SEE THEORY	100			

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	University, Belagavi						
				Semester: I / II			
			INTRODUCTIO	ON TO EMBEDDED) SYSTEMS		
			Category	: Emerging Technol	ogies		
			(Com	mon to all Programs	s)		
				(Theory)			
Course	Code	:	EC114BT / EC12	24BT	CIE	:	100 Marks
Credits	: L:T:P	:	3:0:0		SEE	:	100 Marks
Total H	lours	:	40L		SEE Duration	:	3 Hours
			U	nit-l			08 Hrs
Introdu	iction: Definition	of	Embedded Syster	ns, Typical example	es, and Application	do	mains (Automotive,
Consum	her, etc), Characte	erist	tics, Typical bloc	k diagram, Input, (Core, Output, Com	mer	cial Off the Shelf
Compoi	nents (COTS). Pr	oce	essing Component	s, Microprocessors	& Microcontrollers	, I	ndicative Examples
(Microc	ontrollers on Ardu	ino	boards), Developm	nent boards (Arduino	boards), Concepts a	nd	brief introduction to
Memory	y, Interrupts, Powe	er S	Supply, Clocks, Re	eset. Case Studies: V	Vashing Machine, A	ntil	lock Brake Systems
(Block of	diagram & Working	g Pı	rinciple).				
			Un	it – II			08 Hrs
Integra	ted Development	En	vironment (Ide) A	And Programming:	Basics of Embedded	l C	Programming, Data
Types, A	Arithmetic & Logic	cal (Operators, Loops, I	Functions, #define Ma	acros, Structures (De	clar	ation and Accessing
data m	embers). Integrat	ed	Development Env	vironment tools: Edit	itor, Compiler, Linl	ker,	Loader, Debugger
(Definit	ions only). Practice	: W	Vorking with Ardui	no IDE (Simple progr	rams on Operators, L	oor	os and Functions).
			Un	it –III			08 Hrs
Serial A	And Parallel Inter	rfac	ces: Digital Data,	Analog data, Serial V	√s Parallel Data Tra	.nsfe	er, UART, I2C, SPI
(only bl	ock diagram and v	vor	king), Arduino boa	ard with schematics,	Port pins and GPIOs	s, D	Data Sheets Practice:
Interfac	ing Serial Module	s 1	ike GSM, GPS, L	EDs, Switches, Inte	rfacing Temperature	e &	Humidity Sensors,
Interfac	ing LCD Module.				0		
	0		Un	it –IV			08 Hrs
Data (Converters: Real	wo	rld analog signals	s (Temperature, Bio	medical signals, e	etc),	, Analog to digital
convers	ion, Successive Ap	opro	oximation ADC Ty	ype, FLASH Type (H	Block Diagram and I	Exp	lanation). Digital to
Analog	Conversion, R-2R	DA	AC type, (Block Di	agram and Explanation	on). Selection criteria	a of	f ADC and DAC for
differen	t applications.						
Practic	e: Programming Al	DC	of Arduino Board,	, Interfacing Analog	Femperature Sensor,	Ga	s sensor, Generation
of PWN	1 Wave.			•. •.			00 TT
				$\frac{\mathbf{nt} - \mathbf{V}}{\mathbf{V} + \mathbf{V}}$			08 Hrs
Electro	Mechanical Actu	rat	ors: DC motor, Pri	inciple of Operation,	DC Motor Driver, S	tep	per Motor, Principle
of Oper	ration, Stepper M	oto	r Driver, Servo M	fotor, Principle of	Operation, Servo M	.010	r Driver. (working
Plannin	a Design and Impl	grai	IIIS).	east Lights			
Practice: Interfacing Speed Control and Direction control of DC motor Sarvo Motor Stepper Motors							
Tacue	c. interfacing, spec	uc		De moto		per	Wittens.
Course	Outcomes: After	con	npleting the cours	e. the students will h	e able to		
CO1	Analyse the archit	ect	ure of embedded sy	stems, importance of	different functional	uni	ts and their mapping
	toreal-world requi	ren	nents.	· · · · · · · · · · · · · · · · · · ·			
CO2	Interpret the emb	edd	ed programming c	onstructs, tools usage	e and their suitabilit	y to	develop embedded
	applications		1 0 0	. 0		-	*

CO4 Demonstrate the use of serial and parallel ports for data transfer and motors for actuation.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Refere	Reference Books				
1	Embedded System Design: A Unified Hardware / Software Introduction, Tony Givargis and Frank Vahid.				
	Wiley. ISBN-10: 812650837X.				
2	Designing Embedded Systems with Arduino: A Fundamental Technology for Makers, Tianhong Pan, Yi				
	Zhu, Springer, ISBN 978-981-10-4417-5.				
3	Embedded Systems: Architecture, Programming and Design, Raj Kamal, 2nd Edition, The McGraw Hill,				
	ISBN: 13:978-0-07-066764-8				
4	Introduction to Embedded Systems, Shibu K V, 2009, Tata McGraw Hill Education Private Limited,				
	ISBN: 10: 0070678790.				
5	Embedded System Design: A Unified Hardware / Software Introduction, Tony Givargis and Frank Vahid.				
	Wiley, ISBN-10: 812650837X				

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40		
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7 & 8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	MAXIMUM MARKS FOR THE SEE THEORY	100			

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	University, Belagavi						
				Semester: I / II			
	RENEWABLE ENERGY SOURCES						
Category: Emerging Technologies							
	(Common to all Programs)						
				(Theory)			
Course	Code	•••	EE114AT / EE12	24AT	CIE	:	100 Marks
Credits	:: L:T:P	:	3:0:0		SEE	:	100 Marks
Total E	lours	:	40L		SEE Duration	:	3 Hours
			U	nit-I			08 Hrs
Introdu	iction: Energy sys	tem	s model causes of	Energy Scarcity, Sol	ution to Energy Sca	rcit	y, Factors Affecting
Energy	Resource Develop	men	t, Energy Resource	es and Classification,	Renewable Energy -	- W	orldwide Renewable
Energy	Availability, Renev	wab	le Energy in India.				
Solar E	Cnergy: Sun- earth	Ge	ometric Relationshi	p, Layer of the Sun,	Earth – Sun Angles	and	their Relationships,
Solar E	nergy Reaching th	e E	arth's Surface, Sol	ar Thermal Energy A	Application. Block d	iag	ram of solar energy
convers	ion.						
			Un	it – II			08 Hrs
Photo V	Voltaic Systems: H	PV (Cell, Module and and	rray, equivalent electr	rical circuit, OC Volt	age	and SC Current I-V
and V-I	characteristics, Ar	ray	design, peak power	r tracking, system cor	nponents of Solar Ce	ell S	System, Types of PV
system-	Standalone, Grid c	cont	nected, Hybrid, App	plications of Solar PV	Systems.		
Wind H	Energy: Basic Princ	cipl	es of wind energy o	conversion, nature of	wind, power in wind	, fo	rces on blades, wind
energy	conversion, wind	dat	a and energy estin	nation, site selectior	o considerations, Blo	ock	diagram and basic
components of WECS, Advantages & disadvantages.							
			Un	it –III			08 Hrs
Hydrog	gen Energy: Benef	its (of Hydrogen Energy	y, Hydrogen Producti	on through block dia	gra	m, Use of Hydrogen
Energy,	Merits and Demer	its,	Problems Associate	ed with Hydrogen En	ergy.		
Biomas	s Energy: Introd		ion, Biomass Pro	duction through blo	ick diagram, Energ	y ł	Plantation, Biomass
Gasifica	ation, Theory of (Jasi	ification, Gasifier	and their Classificat	tions, Updraft, Dow	ndr	aft and Cross-draft
Gasifiei	rs, Use of Biomass	Gas	sifier, Gasifier Bion	hass Feed Characteris	stics, Applications of	B10	omass Gasifier.
Unit –IV 08 Hrs							
Geothe	rmal Energy: Intr	odu	ction to Geotherma	al Systems, Block dia	gram, Classifications	3, G	eothermal Resource
Utilizat	ion, Resource Ex	(pio	ration, Geotherma	al Based Electric	Power Generation,	As	ssociated Problems,
	mental Effects.		Tidal Enamory Daga	una Diast diagnam	Tidal Dawan Canar		on in India I adding
	in Tidal Dawar D)II, Dom	Fluar Energy Reso	urce, block diagram	daa Tidal Dawar Da		Turbing for Tidal
Dowon	Advantages and Di	Tan	unstantation, Eller	gy Availability III II	ues, Tiuai Power Da	ISIII	, Turbines for Tidai
Power, Advantages and Disadvantages of Tidal Power, Issues Faced in Exploiting Tidal Energy.							
Fnoray	storage Hydro Du	mn	UI Storage Compresse	d Air Storage Therm	1 Storage Electroche	mic	val Storage or Battery
Storage	Hydrogen Energy	nip Stor	age Inertial Storage	Superconducting Ma	anotic Energy Storage	, ,	al Stolage of Dattery
Challen	ges in Renewable	e E	nergy Adoption:	Energy Storage The	high initial cost of	∕∙ ∋fi	nstallation Lack of
infrastru	cture, Non-renewab	ole e	energy monopoly, La	ack of knowledge and	awareness, Lack of po	olici	es, subsidies.
	,		<i>cs s</i> ,	0	, r -		,
Course	Outcomes: After	con	inleting the course	e the students will h	e able to		
CO1	Understand the co	nce	nts of energy gener	ation and storage from	n various renewable	SOL	irces
		mee	pus of energy gener	and storage II0		300	

CO2 Evaluate the parameters of different renewable energy system.

CO3 Analyze the characteristics and performances of renewable energy resources.

CO4 Apply the knowledge of efficient energy management and implement sustainable energy solutions.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Refere	nce Books
1	Non-conventional Energy Resources, Shobh Nath Singh, 1 st Edition, 2015, Pearson,
	ISBN- 978-93-325-4357-7
2	Solar photo voltaic Technology and systems, Chetan Singh Solanki, third edition(2013), 2 PHI,
	Learning Private limited New Delhi ISBN: 978-81-203-4711-3.
3	Wind and solar Power system design, Analysis and operation, Mukund R. Patel, 2 nd Edition
4	Non-Conventional sources of energy, G.D.Rai, 4 th Edition, 2009, Khanna Publishers, ISBN8174090738,
	9788174090737

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	CONTENTS	MARKS				
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B					
	(Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7 & 8	Unit 4 : Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	MAXIMUM MARKS FOR THE SEE THEORY	100				

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

	Semester: I /II						
			FUNDAMENTAI	LS OF SENSOR TE	CHNOLOGY		
			Category	: Emerging Technol	logies		
			(Com	mon to all Program	s)		
				(Theory)			
Course	e Code	:	EI114AT / EI124	4AT	CIE	:	100 Marks
Credits	s: L:T:P	:	3:0:0		SEE	:	100 Marks
Total H	Hours	:	40L		SEE Duration	:	3 Hours
			U	nit-I			08 Hrs
Sensing	g and Sensor fu	Ind	amentals: Introdu	iction to Sensors,	Sensor systems and	d d	overview of sensor
technol	ogies, Classification	n of	f sensors, Characte	eristics of sensors.	5		
Princip	ole of operation an	d a	pplications:				
Measu	rement of Temper	atu	re: Thermistor, Th	ermocouple, Pyroelec	ctric sensor.		
Measu	rement of Force, P	res	sure and Displace	ment: Strain gauges,	Inductive and Capac	itiv	e Sensors.
	,,		Un	nit – II	i		10 Hrs
Miscel	laneous sensors			-			
Princip	ole of operation:	Mo	isture sensor, hum	idity sensors, gas se	nsors, Direction sen	sor	Ultrasound sensor,
Acceler	rometers. Alcohol s	ens	or. SpO ₂ sensor. Co	olor sensor.			, ,
Photo s	sensors: Photovolta	ic c	ell. Photo resistor.	Phototransistor.			
Tactile	sensors: Construct	ion	and operation, typ	es.			
			Un	it –III			07 Hrs
Special	Sensors: Thin filn	n se	nsors and deposition	on techniques. Smart	sensors: Principles ar	nd a	pplications.
Sensor	materials: Silicon	, Pl	astics, Metals, Cera	amics, Glasses, Nanor	naterials.		rr
		-	Un	it –IV			09 Hrs
Sensor	r technologies: Key	/ Se	ensor Technology (Components: Hardwar	re and Software Over	vie	w: Sensor platforms.
Introdu	ction to MEMS Ser	1801	s and Nano Sensor	'S.			
MEMS	S Technology						
Surfac	e processing: Sputt	erin	ng Chemical vapor	deposition Electron	ating		
Microt	echnology. Photoli	tho	graphy I IGA proc	ress	aung.		
initer of		uno	<u>grupny, Eron proe</u>	nit –V			06 Hrs
Case st	tudies. Sensors for	Sm	art home automati	on Sensors for Auto	mobile applications	Set	sors for agriculture
Sensors	for mobile phone	ann	lications	ion, bensors for rate	moone applications,	501	isors for agriculture,
benson		app	incutions.				
Course	Outcomes: After	cor	nnleting the cours	e the students will b	e able to		
CO1	Understand the ba	sic	principles and appl	ications of different s	ensors		
$\frac{cor}{cor}$	Apply the knowle	ada	e of sensors to co	omprehend digital in	ensors.	ne	
CO2	Apply the known	luat	e the performance	of different sensor	rs for various applic	atic	ne.
C03	Create a system u	aina	appropriate conso	re for a particular app	lication	anc	/115.
04	Create a system u	SIII		is ior a particular app	neation.		
Defere	nca Rooks						
1	Handbook of Mo	dor	n Sansors: Dhusios	Designs and April	ications Isoch Frad	on	PHI Publication 5 th
1	Edition 2016 ISE	NIV	$\begin{array}{c} \text{IIII} \text{IIIII} \text{IIIII} \text{IIIII} \text{IIIII} \text{IIIII} IIIIIIIIII$	6 besigns, and Appl	ications, Jacob Frau	cii,	i i i ruuncation, J
2	Sensors and Actu	ato:		Instrumentation Cla	arence W de Silve C	RC	Press 2013 Edition
MEMS Technology Surface processing: Sputtering, Chemical vapor deposition, Electroplating. Microtechnology: Photolithography, LIGA process. Unit –V 06 Hrs Case studies: Sensors for Smart home automation, Sensors for Automobile applications, Sensors for agriculture, Sensors for mobile phone applications. Course Outcomes: After completing the course, the students will be able to CO1 Understand the basic principles and applications of different sensors. CO2 Apply the knowledge of sensors to comprehend digital instrumentation systems. CO3 Analyze and evaluate the performance of different sensors for various applications. CO4 Create a system using appropriate sensors for a particular application. Reference Books 1 Handbook of Modern Sensors: Physics, Designs, and Applications, Jacob Fraden, PHI Publication, 5 th Edition, 2016, ISBN: 978-1-4419-6465-6.							

ISBN: 978-1-4200-4483-6.3Electrical and Electronic Measurements and Instrumentation, A.K.Sawhney, Dhanpat Rai and Sons,
18th Edition, 2008, ISBN: 81-7700-016-0.

4 Sensor technologies, Michael J McGrath, Intel Labs, 2013 Edition, ISBN: 9781430260141.

Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	CONTENTS	MARKS				
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B					
	(Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7 & 8	Unit 4 : Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	MAXIMUM MARKS FOR THE SEE THEORY	100				

Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

011	Werenty, Delagavi			C 1/11			
	Semester: 1/11						
			HUMAN FA	CIORS IN ENGINE	LEKING		
			Category	: Emerging Technol	ogies		
			(Com	mon to all Programs	s)		
CC	. J.	_		(Ineory)	CIE	_	100 Maular
Course Co		:	1W114A1/1W112	24A I		:	100 Marks
Credits: L	.: I : P	:	3:0:0		SEE D 4	:	100 Marks
Total Hou	irs	:	42L		SEE Duration	:	3 Hours
			TT				00 11
T 4 J 4	4- F	•	U Destant Description	nit-i			U9 Hrs
Introduct	ion to Ergonon	nic	Design: Descripti	on of human-machin	ie systems, Introduc	2010	n to the concept of
ergonomic	s, Ergonomic L	Jesi	ign, history of erg	gonomics, Principles	of Human –Center	ed.	Design, Ergonomic
Criteria, I	voldels of hum	an	Performance, Ma	croergonomics, Irer	ids in Industry that	it 1	mpact Ergonomics,
Organizati	ons associated w	/1th	Ergonomics, Ergoi	nomic methods.			0.0 11
u c				$\frac{\mathbf{I}\mathbf{f} - \mathbf{I}\mathbf{I}}{\mathbf{I} + \mathbf{I} + \mathbf{I}}$	1 4 1		08 Hrs
Human Sy	ystem: Compone	ents	s of human body, sk	teletal sub system, Mi	iscles, Anthropometi	ry, I	Body movements,
Musculosk	celetal systems as	s le	vers.				
~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Un	it –III			08 Hrs
Human Sy	ystem: Sensory	sub	systems, Support	subsystems. Cognitiv	e ergonomics: an ov	ervi	ew. Design of work
areas: Intr	oduction, Appli	ied	Anthropometry, I	Drafting templates, I	Design of work are	as	and stations, Basic
ergonomic	design principle	es, p	principles for design	n of seating, Office de	esign.		
			Un	it –IV			09 Hrs
Design of	tools and equip	ome	ent: Design of tool	s and equipment and	related principles, P	rote	ective equipment for
the operato	or, Accommodat	ing	people with disabil	lities.			
Assessmen	nt and Design o	f P	hysical Environm	ent: Introduction, Cle	anliness, Clutter and	Di	sorder, Lighting and
Illuminatio	on, Conceptual o	ver	view of basic light	ing principles, Noise	(Conceptual Treatment of the second s	nen	t only).
			Un	nit –V			08 Hrs
Assessmen	nt and Design o	of I	Physical Environn	nent: Temperature ar	nd Humidity, Contro	ol st	rategies for hot and
cold envir	ronments, Haza	rds	and control mea	asures. (Conceptual	Treatment only),	Co	onsequences of not
incorporati	ing Ergonomics	in	design of work	spaces, Ergonomics	and Digital Transf	orn	nation. statement &
guidelines, Smart cities in India, Case studies of smart city.							
Course O	utcomes: After	con	npleting the course	e, the students will b	e able to		
CO1 R	ecognize the imp	oort	ance of ergonomic	s and human factors in	n the design of work	spa	ces.
CO2 In	terpret human a	nato	omy, physiology an	d psychology from a	system's perspective		
CO3 A	nalyze the role o	of ai	nthropometric data	and modelling technic	ques in the workplac	e de	esign.
CO4 E	xplain the impor	tan	ce of physical envir	conment in ergonomic	design of work setti	ngs	

Refere	nce Books
1	Introduction to Human Factors and Ergonomics for Engineers, Lehto Mark, Steven J Landry, 2nd Edition,
	2013,CRC Press, ISBN:978-1-4398-5394-8
2	Ergonomics for Beginners-A quick reference guide, Jan Dul, Bernard Weerdmeester, 3rd Edition, 2008,
	CRC Press, ISBN 978-1-4200-7751-3
3	Introduction to Ergonomics, R S Bridger, 3rd Edition, 2008, CRC Press, ISBN: 9780849373060.
4	Human Factors in Engineering and Design; Mark S. Sanders and Ernest J McCormick; 7th Edition,
	McGraw-Hill and Co. Singapore 1992. ISBN 0-07-112826-3.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)		
Q. NO.	CONTENTS	MARKS
PART A		
1	Objective type questions covering entire syllabus	20
PART B		
(Maximum of TWO Sub-divisions only)		
2	Unit 1 : (Compulsory)	16
3 & 4	Unit 2 : Question 3 or 4	16
5&6	Unit 3 : Question 5 or 6	16
7 & 8	Unit 4 : Question 7 or 8	16
9 & 10	Unit 5: Question 9 or 10	16
	MAXIMUM MARKS FOR THE SEE THEORY	100

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

, , , , , , , , , , , , , , , , , , , ,								
Semester: I/II								
DIGITAL HUMANITIES								
		Category	: Emerging Technol	ogies				
	(Common to all Programs)							
(Theory)								
Course Code	Course Code : IS114AT / IS124AT CIE : 100 Marks							
Credits: L:T:P : 3:0:0 SEE : 100 Marks						100 Marks		
Total Hours	:	40L		SEE Duration	:	3 Hours		
Credits: L:T:P Total Hours	:	3:0:0 40L		SEE SEE Duration	:	100 Marks 3 Hours		

Unit-I	08 Hrs	
Introduction to Digital Humanities: What is digital humanities? Principals and Scenarios for digital		
Reasons to Engage with the Digital Humanities: Defining the Digital Humanities, Motivations f	or Engaging	
with the Digital Humanities, Digital Futures.		
Unit – II	09 Hrs	
Humanities to Digital Humanities: Designing digital humanities. Computational activities in digital	վ	
humanities: Computation, Processing, Digitization, Classification, Organization, Navigation.		
Unit –III		
Generating Humanities: Humanities as the new core. Towards an Encounter between Humanities and		
Computing: Formalisation in humanity computing, Cultures of formalization. Transdisciplinary	and digital	
humanity: Beyond interdisciplinarity, Methodological transformation and transdisciplinary.		
Unit –IV	0 8Hrs	
Generating Humanities: Humanities as the new core. Towards an Encounter between Humanities and		
Computing: Formalisation in humanity computing, Cultures of formalization. Transdisciplinary ar		
humanity: Beyond interdisciplinarity, Methodological transformation and transdisciplinary.		
Unit –V	07 Hrs	

Designing class roam activities: Activity design, Digital events, Physical Computing and Critical Making.

Course	Outcomes: After completing the course, the students will be able to
CO1	Demonstrate knowledge and understanding and significant in-depth knowledge in subcategories of the
	digital humanities.
CO2	Applying digital humanities in different sub areas their role in society, and the individual's responsibility
	plying digital humanities in different sub areas their role in society and the individual's res.
CO3	Analyze, assess, and manage complex phenomena, questions, and situations related to the digital
	humanities as a field of study and work.
CO4	Describe the prospects and limitations of science and technology in digital humanities.

Refere	nce Books
1	Introduction to Digital Humanities by Kathryn C. Wymer, Taylor & Francis, ISBN: 978-0-367-71110-8
	published in 2021.
2	An Introduction to Digital Methods for Research and Scholarship By Johanna Drucker, Taylor & Francis,
	ISBN 9780367565756 Published March 25, 2021.
3	Understanding Digital Humanities by David M. Berry, Palgrave Macmillan, ISBN: 978–0–230–29264–2,
	published in 2012.
4	Digital Humanities by Anne Burdick, Johanna Drucker, Peter Lunenfeld, Todd Presner & Jeffrey
	Schnapp, The MIT Press Cambridge, Massachusetts London, England, ISBN 978-0-262-01847-0,
	published in 2012.
5	Using Digital Humanities in the Classroom by Claire Battershill and Shawna Ross, Second Edition
	Blooms Burt Academic, ISBN: HB: 978-1-3501-8090-1 published in 2017.

Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7 & 8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	MAXIMUM MARKS FOR THE SEE THEORY	100			

Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	Semester: I/II						
	SMART MATERIALS AND SYSTEMS						
		Category	: Emerging Technol	logies			
		(Com	mon to all Program	s)			
		1	(Theory)	1			
Course Code : ME114AT / ME124AT CIE : 100 Mat			arks				
Credits: L:T:P	:	3: 0:0		SEE	:	100 M	arks
Total Hours	:	42T		SEE Duration	:	3 Hour	`S
		U	nit-I				06 Hr
Introduction: Characterist	tics	of metals, polyme	rs and ceramics. Intro	oduction to smart ma	teri	als. Clas	sification of
smart materials, Compon	ient	ts of a smart Sy	stem, Applications	of Smart Materials	a	nd Sma	rt Materials
Manufacturing in Industrie	s ir	ı India.					
		Un	iit — II				08 Hrs
Smart Materials: Piezoel	lect	ric materials, Elect	ro strictive Materials,	Magnetostrictive ma	iter	ials, Mag	gnetoelectric
Materials, Magnetorheolog	gica	l fluids, Electrorhe	ological fluids, Shape	Memory materials.			
Processing of Smart Ma	iter	ials: Semiconduc	tors and their proce	ssing, Metals and n	neta	llization	techniques,
Ceramics and their process	ing	, Polymers and the	ir synthesis, UV radia	ation curing of polym	ers		
Unit –III 10 Hrs							
Advances in smart Materials: Self-Sensing Piezoelectric Transducers, Energy Harvesting Materials,							
Autophagous Materials, Se		Healing Polymers, I	Intelligent System De	sign, Emergent Syste	em I	Design.	
Sensors: Introduction, C	onc	luctometric sensor	s, Capacitive senso	rs, Piezoelectric se	nso	rs, Mag	netostrictive
sensors, Piezoresistive se	nsc	rs, Optical sensor	s, semiconductor-ba	sed sensors, Acoust	1C	sensors,	polymerize
sensors, Carbon nanotube sensors.							
Unit –IV 10 Hrs							
Actuators: Introduction, Electrostatic transducers, Electromagnetic transducers, Electrodynamic transducers,							
Piezoelectric transducers, Electro-strictive transducers, Magneto-strictive transducers, Electro thermal actuators,							
Comparison of actuation, Applications.							
Magnetostrictive Mini Actuators, Polymeric Actuators, Snape Memory Actuators, Active Vibration Control,							
Active Shape Control, Passive Violation Control, Hybrid Violation Control.							
Unit – v Uo HIS Mansurament Introduction Definition Signal and Signal Processing Device Drive and Control systems open							
type and closed type: Static and Dynamic Measurement Methods: Signal conditioning and devices:							
Calibration techniques: Calibration Significance of calibration Benefit of calibration Calibration method							
Classification of calibration, Lab calibration, Curve fitting method of calibration.							
Classification of canoration, Lab canoration, Curve numg incurou of canoration,							
Course Outcomes: After completing the course, the students will be able to							

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Identify the basic components of smart Materials.				
CO2	Understanding processing of smart materials.				
CO3	Analysis of different types of sensor and actuators for industrial applications.				
CO4	Illustrate measurement and calibration techniques for smart materials.				

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Referen	nce Books
1	Fundamentals of Smart Materials, (2020) Mohsen Shahinpoor, Print ISBN 978-1-78262-645-9, ePub
	eISBN, 978-1-78801-946-0.
2	Smart Material Systems and MEMS: Design and Development Methodologies, V. K. Varadan,
	K. J. Vinoy, S. Gopalakrishnan, John Wiley and Sons, England, 2006.
3	Smart Structures: Analysis and Design, A. V. Srinivasan, Cambridge University Press, Cambridge, New
	York, 2001.
4	Encyclopedia of Smart Materials, ISBN: 9780128157329, eBook ISBN: 97801281573
5	Functional and Smart Materials, Chander Prakash, Sunpreet Singh, J. Paulo Davim, 2021,
	ISBN 9780367275105.
6	Piezoelectric Sensorics: Force, Strain, Pressure, Acceleration and Acoustic Emission Sensors, Materials
	and Amplifiers, G. Gautschi, Springer, Berlin, New York, 2002.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)		
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7 & 8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	MAXIMUM MARKS FOR THE SEE THEORY	100			

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

- **CO3** Create smart and digital models for industrial scenario.
- **CO4** Understand Artificial intelligence models for modern manufacturing.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Referen	nce Books
1	Industry 4.0: Managing The Digital Transformation, Alp Ustundag, Emre Cevikcan, 2017, Springer,
	ISBN 978-3-319-57869-9 ISBN 978-3-319-57870-5.
2	The Concept Industry 4.0 - An Empirical Analysis of Technologies and Applications in Production
	Logistics, Christoph Jan Bartodziej, 2017, Springer Gabler, ISBN 978-3-658-16501-7 ISBN 978-3-658-
	16502-4.
3	Industry 4.0 - The Industrial Internet of Things, Alasdair Gilchrist, 2016, APRESS, ISBN-13 978-1-4842-
	2046-7 ISBN-13 978-1-4842-2047-4.
4	Digitizing the Industry – Internet of Things connecting the Physical, Digital and Virtual Worlds, Ovidiu
	Vermesan, 2016, River Publishers, ISBN 978-87-93379-81-7 ISBN 978-87-93379-82-4.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS			
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES	20			
	WILL BE THE FINAL QUIZ MARKS.				
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40			
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20) ADDING UPTO 40 MARKS .	40			
	MAXIMUM MARKS FOR THE CIE THEORY	100			

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7 & 8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	MAXIMUM MARKS FOR THE SEE THEORY	100			

Go, change the world

RV Educational Institutions[®] RV College of Engineering[®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Programming Language Lab Courses

INTRODUCTION TO PYTHON PROGRAMMING (AI115AI / AI125AI) INTRODUCTION TO WEB PROGRAMMING (CS115AI / CS125AI) BASICS TO JAVA PROGRAMMING (CS115BI / CS125BI) INTRODUCTION TO C++ PROGRAMMING (IS115AI / IS125AI)

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: I / II							
		Ι	NTRODUCTION	TO PYTHON PRO	GRAMMING		
Category: Programming Language Course							
			(Com	mon to all Programs	s)		
C	Colo		(1) 	heory & Practice)	CIE		100 Maular
Course		:	AIII5AI / AII25		CIE	:	100 Marks
Credits	S: L:1:P Journa	:	2:0:1		SEE SEE Duration	:	100 Marks
Total F	lours	:	28L+28P		SEE Duration	:	3 Hours
			T	nit_I			05 Hrs
Getting	Started. Introduc	rinc	Python Setting	Un Python in windo	ws Setting Un Pyt	hon	in other Operating
System	s introducing IDLE	2111 <u>8</u> 7	, i ymon, betting	op rython in windo	ws, betting op Tyt	lion	in other operating
Types.	Variable, and Sin	nnl	e I/O: Using Quo	tes with Strings. Con	catenating and Repe	eatir	ng Strings, Working
with N ₁	imbers. Understand	ing	the Variable. Getti	ing User Input. Conve	erting Values.		
	, <u>, , , , , , , , , , , , , , , , , , </u>	0	Un	iit – II	0		05 Hrs
Branch	ing, While Loops,	an	d Program Plann	ing: Using the If stat	ement, Using the els	e C	lause, Using the elif
clause,	creating while Lo	ops	, Avoiding Infinite	e Loops, Creating In	tentional infinite Lo	ops	s, Using Compound
Conditi	ons.	•	C			•	0
Unit –III 06 Hrs							
For Loops, Strings, and Tuples: Using for Loops, counting with the For Loops, Using Sequence Operators and							
Functions with Strings, Indexing Strings, Slicing the Strings, Creating the Tuple, Using Tuple.							
Lists and Dictionaries: Using Lists, Using List Methods, understanding when to use the tuple instead of Lists.							
Unit –IV 06 Hrs							
Function	ons: Creating Func	tio	ns, Using Paramete	ers and Return Value	es, Using Keyword	Arg	uments and Default
Parameters Values, Using Global Variables and Constants.							
Files and Exceptions: Reading from Text Files, Writing to Text Files, Handling Exceptions.							
<u> </u>			Ur	<u>nit – V</u>			06 Hrs
Softwa	re Objects: Defin	ing	a Class, Defining	g Method, Instantiati	ng an Object, invol	ting	g a Methods, Using
Constru	ictor, Using Class A	\ttri	butes and Static M	ethods, Understandin	g Object Encapsulati	on.	11 1 1 C
Object	-Oriented Program	nm	ing: Using Inherita	ince to Create New C	lasses, creating a Bas	e C	lass, inheriting from
a Base	Class, extending	a L	Derived Class, Usi	ing the Derived Cla	ss, extending a Cla	ss t	through Inneritance,
Understanding Polymorphism.							
Course	Outcomes: After	con	inleting the cours	o the students will h	a able to		
COII SC	Apply fundaments	al k	nowledge of Pytho	n programming to sol	ve the engineering p	obl	lems
CO2	Identify the proble	me	in various applicat	tion domains and solv	them using differen	nt co	oncepts of Python
	Programming.	-1110	in various applied	aon domains and solv	e alom asing amolo		sheepts of i ython
CO3	Design a solution	usi	ng Python program	ming with societal. er	nvironmental. and oth	ner	concerns by
	engaging in lifelo	1g]	earning for emergin	ng technology			

CO4 Demonstrate the use of modern tools by exhibiting teamwork and effective communication skills.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Referen	Reference Books					
1	Michael Dawson, Python programming for the absolute beginner, 3 rd Edition, CENGAGE,					
	ISBN-13:978-93-86668-00-4, ISBN-10: 93-86668-00-9, 2010.					
2	John V. Guttag. Introduction to Computation and Programming using Python, The MIT Press,					
	Cambridge, Massachusetts, London, ISBN: 978-0-262-51963-2, 2013					
3	Mark Summerfield, Programming in Python 3: A Complete Introduction to the Python Language, 2 nd					
	Edition, ISBN-13: 978-0-321-68056-3, ISBN-10: 0-321-68056-1.					
4	Paul Gries, Jennifer Campbell, Jason Montojo, Practical Programming: An Introduction to Computer					
	Science Using Python 3.6, 3 rd Edition, The Pragmatic Bookshelf, ISBN-13: 978-1-6805026-8-8, 2017.					
5	Mark Lutz, Learning Python, 5 th Edition, 2013, Oreilly Media, ISBN: 978-1-449-35573-9.					
6	Burkhard A. Meier, Python GUI Programming Cookbook, Packt Publishing, 2015,					
	ISBN 978-1-78528-375-8.					

	Laboratory Experiments			
	PART-A			
1	Introductory Lab-Installation and Working with the Sample Programs.			
2	Write a program to find the largest prime factor of a given integer.			
3	Write a program to find the height of the ball thrown by a basketball player.			
4	Write a program to find the Golden ratio.			
5	Read a paragraph from the user and count the number of words, and frequency of Words appearing, and			
	search for the specific word.			
6	Consider a sequence of numbers with some missing values. Write a python program for inserting the			
	missing values, and remove some of the values from the sequence. Also, add a few more values to the			
	existing sequence.			
7	Create an Employee 'Employee' Database using dictionaries and perform the insert, search and display			
	operations.			
8	Implement Set and Tuple Operations.			
9	Create a text file called my_file.txt with some content, capitalize the first letter of every word, and print			
	the content of the file in reverse order.			
	PROGRAMMING ASSIGNMENT			
Design	and develop a python GUI application connected to interested Sustainable Development Goals			
(SDG).				

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Approved by AICTE, New Delhi

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY WITH LA	AB)
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be	
	conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO	10
	QUIZZES WILL BE THE FINAL QUIZ MARKS.	
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity	
	levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying,	20
	Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be	50
	evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 30 MARKS.	
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and	
	practical implementation of the problem. Case study based teaching learning (10), Program	20
	specific requirements (10), Video based seminar/presentation/demonstration (10) ADDING	50
	UPTO 30 MARKS.	
4	LAB: Conduction of laboratory exercises, lab report, observation and analysis (30 Marks),	
	lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10	20
	Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE REDUCED TO 30	30
	MARKS.	
	MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	10			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	14			
3 & 4	Unit 2 : Question 3 or 4	14			
5&6	Unit 3 : Question 5 or 6	14			
7 & 8	Unit 4 : Question 7 or 8	14			
9 & 10	Unit 5 : Question 9 or 10	14			
11	Lab Component (Compulsory)	20			
	MAXIMUM MARKS FOR THE SEE THEORY	100			

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

			Semester: I/II			
INTRODUCTION TO WEB PROGRAMMING						
	Category: Programming Language Course					
		(Com	mon to all Programs	s)		
		T)	heory & Practice)	,		
Course Code	:	CS115AI / CS12	5AI	CIE	:	100 Marks
Credits: L:T:P	:	2:0:1		SEE	••	100 Marks
Total Hours	:	28L+28P		SEE Duration	:	3 Hours
		U	nit-I			05 Hrs
Introduction to Web Con	cep	ots: Fundamentals	of Web -Introduct	ion to Internet, W	orld	l Wide Web, Web
Browsers and Web Serve	ers,	, Uniform Resour	ce Locators, MIME	(Multipurpose Inte	rne	t Mail Extensions),
Hypertext Transfer Protoco) -]	HTTP Request Pha	se, HTTP Response P	hase.		
		Un	it – II			06 Hrs
XHTML: Basic syntax, S	Stai	ndard XHTML do	cument structure, Ba	sic text markup, Im	age	es, Hypertext Links,
Lists, Tables, Forms, Frames, Syntactic differences between HTML and XHTML.						
		Un	it –III			06 Hrs
CSS (Cascading Style Sheets): Introduction, Levels of style sheets, Style specification formats, Selector forms,						
Property value forms, For	nt p	properties, List pro	perties, Color, Align	ment of text, The b	ox	model, Background
images, The and <div> tags, Conflict resolution.</div>						
Unit -IV 06 Hrs						
The Basics of JavaScri	pt:	Overview of Jav	aScript; Object orie	ntation and JavaSc	ript	; General syntactic
characteristics; Primitives,	op	perations, and expr	essions; Screen outp	ut and keyboard inp	ut;	Control statements,
Object creation and modified	cat	ion; Arrays; Functi	ons; Constructor; Patt	ern matching using r	egu	lar expressions.
		U	nit-V			05 Hrs
Database access through Web: Relational databases, Introduction to SQL, Architecture for database access, The						
MySQL Database System,	Pro	ogramming Exampl	es and Demonstration	of Connectivity Exa	amp	ole code.
Course Outcomes: After	cor	npleting the cours	e, the students will b	e able to		
CO1 Understand the ba	sic	syntax and semant	ics of HTML/XHTMI			
		/T / f		16	11	- C(1 - C1(

CO2 Apply HTML/XHTML tags for designing static web pages and forms using Cascading Style Sheet.

- CO3 Develop Client-Side Scripts using JavaScript.
- **CO4** Demonstrate web-based applications with database.

Referen	Reference Books				
1	Programming the World Wide Web – Robert W. Sebesta, 7th Edition, Pearson Education, 2013,				
	ISBN-13:978-0132665810.				
2	Web Programming Building Internet Applications – Chris Bates, 3 rd Edition, Wiley India, 2006,				
	ISBN: 978-81-265-1290-4.				
3	Internet & World Wide Web How to H program – M. Deitel, P.J. Deitel, A. B. Goldberg, 3 rd Edition,				
	Pearson Education / PHI, 2004, ISBN-10: 0-130-89550-4				
4	The Complete Reference to HTML and XHTML- Thomas A Powell, 4 th Edition, Tata McGraw Hill,				
	2003, ISBN: 978-0-07-222942-4.				

	Laboratory Experiments				
1	Familiarization with IDE - Compilation, Debugging and execution considering simple programs.				
2	Implementation and execution of simple HTML/XHTML programs to understand working of				
	• Tables				
	• Lists				
	• Frames				

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

	• Forms
3	Web page styling with CSS
	• Font Properties
	List Properties
	Color Properties
	• Box Model
	Background Image
	Conflict Resolution
4	Web Page validation using JavaScript
	Data Types, Operators and Expressions
	Object creation, modification and Constructors
	Screen output and keyboard input
	Pattern matching using regular expressions
5	Web application using JavaSerint with MySOI

5 Web application using JavaScript with MySQL

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY WITH LA	AB)
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be	
	conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO	10
	QUIZZES WILL BE THE FINAL QUIZ MARKS.	
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity	
	levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying,	20
	Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be	30
	evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 30 MARKS.	
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and	
	practical implementation of the problem. Case study based teaching learning (10), Program	20
	specific requirements (10), Video based seminar/presentation/demonstration (10) ADDING	30
	UPTO 30 MARKS.	
4	LAB: Conduction of laboratory exercises, lab report, observation and analysis (30 Marks),	
	lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10	20
	Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE REDUCED TO 30	30
	MARKS.	
	MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS		
	PART A			
1	Objective type questions covering entire syllabus	10		
	PART B			
	(Maximum of TWO Sub-divisions only)			
2	Unit 1 : (Compulsory)	14		
3 & 4	Unit 2 : Question 3 or 4	14		
5&6	Unit 3 : Question 5 or 6	14		
7 & 8	Unit 4 : Question 7 or 8	14		
9 & 10	Unit 5 : Question 9 or 10	14		
11	Lab Component (Compulsory)	20		
	MAXIMUM MARKS FOR THE SEE THEORY	100		

Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

			Semester: I/II			
	BASICS TO JAVA PROGRAMMING					
		Category: Prog	gramming Languag	e Course		
		(Comm	ion to all Programs	5)		
		(Th	eory & Practice)			
Course Code	Course Code : CS115BI / CS125BI CIE : 100 Marks					
Credits: L:T:P : 2:0:1 SEE : 100 Marks						
Total Hours: 28L+28PSEE Duration: 3 Hours						

Unit-I	06 Hrs			
An Overview of Java: Object-Oriented Programming, The Java Class Libraries, Data Type	es, Variables,			
Operators, Control Statements, Arrays and Strings.				
Unit – II	05 Hrs			
Introducing Classes: Class Fundamentals, Declaring Objects, Assigning Object	Reference			
Variables, Introducing Methods, Constructors, Method overloading.				
Unit –III	06 Hrs			
Inheritance: Inheritance Basics, Using Super, Method Overriding, Abstract Classes, Using final with Inheritance.				
Unit -IV	05 Hrs			
Packages :Defining a Package, Importing Packages.				
Interfaces: Defining an Interface, Default Interface Methods.				
Exception Handling : Exception-Handling Fundamentals – Exception Classes , Exception Types.				
Unit-V	06 Hrs			
Multithreaded Programming : The Java Thread Model , The Main Thread , Creating a Thread, Creating				
Multiple Threads, Thread Priorities.	-			

Course	Outcomes: After completing the course, the students will be able to
CO1	Explore the fundamentals of Object-oriented concepts and apply features of object-oriented programming
	of Java to solve real world problems.
CO2	Design Classes and establish relationship among Classes for various applications from problem
	definition.
CO3	Analyze and implement reliable object-oriented applications using Java features such as Exception
	Handling, Multithreaded Programming, Collection framework and Strings.
CO4	Design and develop real world applications using Object Oriented concepts and Java programming.

Refere	nce Books
1	The Complete Reference - Java , Herbert Schildt , 10 th Edition , 2017, McGraw Hill Education
	Publications, ISBN-10: 9789387432291, ISBN-13: 978-9387432291.
2	Introduction to Java Programming, Y Daniel Liang, 10 th Edition, 2014, Comprehensive Version Pearson
	education, ISBN 10: 0-13-376131-2, ISBN 13: 978-0-13-376131-3.
3	Core Java – Vol 1, Cay S.Horstmann, 10 th Edition, 2016, Pearson Education, ISBN-10: 9332582718,
	ISBN-13: 978-9332582712.
4	Object-Oriented Analysis And Design With applications, Grady Booch, Robert A Maksimchuk, Michael
	W Eagle, Bobbi J Young, 3 rd Edition, 2013, Pearson education, ISBN :978-81-317-2287-9.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

	Laboratory Experiments (ME stream)
	PART A
Familia Implen	arization with IDE - compilation, debugging and execution considering simple Java programs. Then programs on Fundamentals of Java Programming: Data Types, Variables and Arrays,
Operato	ors, Control Statements.
1	Classes, Objects and Methods
	• Create user defined classes and objects.
	• Define class members and their properties.
	 Define Methods, constructors, demonstrate method / constructor overloading.
	 Make necessary changes to the classes by making all the instance variables private and
	adding getter and setter methods for the instance variables.
2	Inheritance and Polymorphism
	 Create user defined classes and objects using Inheritance concept
	Define class members to demonstrate Polymorphism
3	Package and Interfaces
	• Creation of simple package.
	 Accessing a package/ use of different Access Specifiers
	Implementing interfaces
4	Exception handling
	Handling predefined exceptions.
5	Multithreading
	Create multiple threads: a) Using Thread class. b) Using Runnable interface
	PART B
Design	and develop an application to demonstrate appropriate Object-Oriented concept sand Core Java
program	nming features.
Develo	p standalone Java application to demonstrate the important features of Object-Oriented
1	

approach (Abstraction/Encapsulation/Data Hiding, Inheritance and Polymorphism) and also the important features of Java such as Inheritance, Interfaces, Packages, Exception Handling, Multithreaded Programming and Collection Framework.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY WITH LA	AB)
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	10
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 30 MARKS .	30
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) ADDING UPTO 30 MARKS .	30
4	LAB: Conduction of laboratory exercises, lab report, observation and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE REDUCED TO 30 MARKS.	30
	MAXIMUM MARKS FOR THE CIE THEORY	100

Autonomous Institution Affiliated to Visvesvaraya

Approved by AICTE, New Delhi Technological University, Belagavi

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS		
	PART A			
1	Objective type questions covering entire syllabus	10		
	PART B			
	(Maximum of TWO Sub-divisions only)			
2	Unit 1 : (Compulsory)	14		
3 & 4	Unit 2 : Question 3 or 4	14		
5&6	Unit 3 : Question 5 or 6	14		
7&8	Unit 4 : Question 7 or 8	14		
9 & 10	Unit 5 : Question 9 or 10	14		
11	Lab Component (Compulsory)	20		
	MAXIMUM MARKS FOR THE SEE THEORY	100		

Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	University, Belagavi						
				Semester: I/II			
			INTRODUCTIO	ON TO C++ PROGR	AMMING		
			Category: Pro	ogramming Language	e Course		
			(Com	mon to all Programs)			
~		T	<u>(T)</u>	heory & Practice)			100.2.5.1
Course	Code	:	IS115AI / IS125A	AI	CIE	:	100 Marks
Credits	:: L:T:P	:	2:0:1		SEE	:	100 Marks
Total H	lours	:	28L+28P		SEE Duration	:	3 Hours
			T	.;4 T			05 Ung
Introdu	ution to Object	0	viontad Dragram	ning Concenter Driv	noinlas of object	orio	untad programming:
Drocedu	re oriented progr	U ami	ming Vs object o	riented programming	Underlying conce	onte	of object oriented
program	aming Benefits and	ann d ai	nnlig vs object of	t oriented programming,	ng The Origins of	c C	A Closer Look at
the I/O	Operators The h	u aj	Data Type The	C Headers Name	$\frac{112}{12} \frac{112}{12} \frac{112}{12$	U⊤. .am	r, A Closel Look at
Introduc	cing C_{++} Classes &	b ob	viects Constructors	and Destructors The	C++ Keywords	am	ining rundamentars,
muouu			<u>jeets, constructors</u>	nit – II	CTT Reywords.		06 Hrs
Classes	& Objects: Disco	over	ing Classes Interfa	ices Encapsulation A	hstraction Member	Fu	nctions Classes and
Objects	. Object has an int	erfa	ace. Structures and	Classes. Unions and	Classes. Friend Fu	ncti	ons. Friend Classes.
Inline F	Functions. Static Cla	ass	Members. Static D	ata. Static Member Fu	inctions. Constructo	rs a	and Destructors. The
Scope 1	Resolution Operato	or,	Nested Classes, Lo	ocal Classes, Passing	Objects to Function	ons,	Returning Objects,
Object A	Object Assignment and Accessing Data Fields.						
-			Unit	– III			06 Hrs
Inherita	ance and Polymo	rph	ism: Inheritance,	Access Control in de	rived classes, Enca	psu	lation & protected
access, Advanced operations with inheritance, Function Overloading and Default arguments, Polymorphism,							
,		0110	with mineritanee,		0	nei	its, Forymorphism,
operator	r overloading, Virtu	ial f	functions and Abstr	act Classes.		nei	its, Polymorphism,
operator	r overloading, Virtu	ial f	functions and Abstr Unit	act Classes. – IV			05 Hrs
operator Excepti	r overloading, Virtu on Handling: Ex	al f xce	functions and Abstr Unit ption Handling F	act Classes. – IV undamentals, Catchir	ng Class Types, V	Usin	05 Hrs ng Multiple catch
operator Excepti Stateme	r overloading, Virtu on Handling: Ex ents, Handling De	al f xcej erive	functions and Abstr Unit ption Handling F ed-Class Exception	act Classes. – IV undamentals, Catchir ns, Exception Handl	ng Class Types, I	Usin	05 Hrs ng Multiple catch g All Exceptions,
operator Excepti Stateme Underst	r overloading, Virtu on Handling: Ex ents, Handling De anding terminate()	al f xce erive	functions and Abstr Unit ption Handling F ed-Class Exception d unexpected().	act Classes. – IV undamentals, Catchir ns, Exception Handl	ng Class Types, I ing Options, Cate	Usin	05 Hrs ng Multiple catch g All Exceptions,
operator Excepti Stateme Underst	r overloading, Virtu on Handling: Exonts, Handling De anding terminate()	al f xce erive	functions and Abstr Unit ption Handling F ed-Class Exception d unexpected(). Unit	act Classes. -IV undamentals, Catchir ns, Exception Handl t-V	ng Class Types, I ing Options, Cate	Usin	05 Hrs ng Multiple catch g All Exceptions, 06 Hrs
operator Excepti Stateme Underst Generic	t overloading, Virtu on Handling: Ex- ents, Handling De- anding terminate() c Programming: T	xce erive and	functions and Abstr Unit ption Handling F ed-Class Exception d unexpected(). Unit plate Functions, co	act Classes. -IV undamentals, Catchir ns, Exception Handl t - V pompile-time Polymorpl	ng Class Types, I ing Options, Catc hism, Template Cla	Usin hin sse:	05 Hrs ng Multiple catch g g All Exceptions, 06 Hrs s, Template Linked 06 Hrs
operator Excepti Stateme Underst Generic List, No	to verloading, Virtu ton Handling: Exacts, Handling De anding terminate() c Programming: To ontype Template Ar	xce erive and fem	functions and Abstr Unit ption Handling F ed-Class Exception d unexpected(). Unit plate Functions, connents, Setting Beha	act Classes. – IV undamentals, Catchir ns, Exception Handl t – V pompile-time Polymorphy vior Using Template A	ng Class Types, I ing Options, Catc hism, Template Cla Arguments,	Usin hin sse	05 Hrs ng Multiple catch g All Exceptions, 06 Hrs s, Template Linked
operator Excepti Stateme Underst Generic List, No Standar	t overloading, Virtu fon Handling: Exonts, Handling De anding terminate() c Programming: To ontype Template Ar rd Template Libra	ial f xce erive and fem gur ary	functions and Abstr Unit ption Handling F ed-Class Exception d unexpected(). Unit plate Functions, con- nents, Setting Beha (STL) of C++: To	act Classes. -IV undamentals, Catchir ns, Exception Handl t - V ompile-time Polymorpl vior Using Template A emplate Class "vector	ng Class Types, I ing Options, Catc hism, Template Cla Arguments, ", Template Class "	Usin hin sse:	05 Hrs ng Multiple catch g All Exceptions, 06 Hrs s, Template Linked p", Template Class
operator Excepti Stateme Underst Generic List, No Standar "list", It	t overloading, Virtu on Handling: Ex- ents, Handling De- anding terminate() c Programming: To ontype Template Ar rd Template Libra erators and Algorith	ial f xce erive and fem gur ary	functions and Abstr Unit ption Handling F ed-Class Exception d unexpected(). Unit plate Functions, con- nents, Setting Beha (STL) of C++: To 3 The Standard Fun	act Classes. – IV undamentals, Catchir ns, Exception Handl t – V pompile-time Polymorphy vior Using Template A emplate Class "vector ction Library and The	ng Class Types, I ing Options, Catc hism, Template Cla Arguments, ", Template Class " Standard C++ Class	Usin hin sse	05 Hrs ng Multiple catch g All Exceptions, 06 Hrs s, Template Linked p", Template Class brary.
operator Excepti Stateme Underst Generic List, No Standar "list", It	t overloading, Virtu ton Handling: Ex- ents, Handling De- anding terminate() c Programming: Tontype Template Ar- rd Template Libra- erators and Algorith Outcomes: After	xce erive and fem gur hms	functions and Abstr Unit ption Handling F ed-Class Exception d unexpected(). Unit plate Functions, consents, Setting Beha (STL) of C++: To s The Standard Fun	act Classes. -IV undamentals, Catchir ns, Exception Handl t - V pompile-time Polymorph vior Using Template A emplate Class "vector ction Library and The	ng Class Types, I ing Options, Catc hism, Template Cla Arguments, ", Template Class " Standard C++ Class	Usin hin ssee	05 Hrs ng Multiple catch g All Exceptions, 06 Hrs s, Template Linked p", Template Class brary.
operator Excepti Stateme Underst Generic List, No Standau "list", It Course	t overloading, Virtu fon Handling: Ex- ents, Handling De- anding terminate() c Programming: To ontype Template Arr rd Template Libra erators and Algorith Outcomes: After Exhibit program d	xce erive and fem rgur ary hms con	functions and Abstr Unit ption Handling F ed-Class Exception d unexpected(). Unit plate Functions, con- nents, Setting Beha (STL) of C++: To s The Standard Fun apleting the course on and implementation	act Classes. – IV undamentals, Catchir ns, Exception Handl t - V ompile-time Polymorph vior Using Template A emplate Class "vector ction Library and The e, the students will be tion competence throw	ng Class Types, I ing Options, Catc hism, Template Cla Arguments, ", Template Class " Standard C++ Class e able to gh the choice of app	Usin hin ssee	05 Hrs ng Multiple catch g All Exceptions, 06 Hrs s, Template Linked p", Template Class brary.
Operator Excepti Stateme Underst Generic List, No Standar "list", It Course CO1	t overloading, Virtu on Handling: Ex- ents, Handling De- anding terminate() c Programming: To ontype Template Ar rd Template Libra erators and Algorith Outcomes: After Exhibit program d concept and explain	ial f xce eriv() and fem gur ary hms con lesi	functions and Abstr Unit ption Handling F ed-Class Exception d unexpected(). Unit plate Functions, connents, Setting Beha (STL) of C++: To s The Standard Fun npleting the course gn and implementation	act Classes. – IV undamentals, Catchir ns, Exception Handl t - V pompile-time Polymorpl vior Using Template A emplate Class "vector ction Library and The e, the students will be tion competence through	ng Class Types, I ing Options, Catc hism, Template Cla Arguments, ", Template Class " Standard C++ Class e able to gh the choice of app	Usin hin ssee s Li	05 Hrs ng Multiple catch g All Exceptions, 06 Hrs s, Template Linked p", Template Class brary.
Excepti Stateme Underst Generic List, No Standar "list", It Course CO1	 r overloading, Virtue on Handling: Exacts, Handling Detaining terminate() c Programming: Template Arrest rd Template Librate erators and Algorith Outcomes: After Exhibit program design and analys 	in t	functions and Abstr Unit ption Handling F ed-Class Exception d unexpected(). Unit plate Functions, consents, Setting Beha (STL) of C++: To s The Standard Fun npleting the course gn and implementation he benefits of the same plates and object	act Classes. -IV undamentals, Catchir ns, Exception Handl -V pompile-time Polymorpl vior Using Template A emplate Class "vector ction Library and The e, the students will be tion competence through ame. Cts using object orienter	ng Class Types, I ing Options, Catc hism, Template Cla Arguments, ", Template Class " Standard C++ Class e able to gh the choice of app ed programming pa	Usin hin sse: <u>ma</u> <u>s Li</u> prop	05 Hrs ng Multiple catch g All Exceptions, 06 Hrs s, Template Linked p", Template Class brary.

CO3	Implement the solutions for real-time problems using Object Oriented concepts.
CO4	Apply and analyze the advanced features of C++ specifically templates and operator overloading which

influences the performance of programs.

Reference Books					
1	The Complete Reference C++, Herbert Schildt, 5 th Edition, 2020, McGrawHill,				
	ISBN: 9780070532465.				
2	C++ How to Program, Paul Deitel and Harvey Deitel, 8th Edition, 2018, Prentice Hall, ISBN:				
	9780132990448.				
3	Big C++, Cay S. Horstmann, Timothy Budd, 1 st Edition, 2020, Wiley India (P.) Ltd				
	ISBN: 9788126509201.				

Autonomous

Approved by AICTE, New Delhi Institution Affiliated to Visvesvaraya Technological University, Belagavi

4	Thinking	in	C++-Introduction	to	standard	C++,	Bruce	Eckel,	http://iacs-courses	seas.
	harvard.ed	u/cou	urses/cs207/resources	s/TIC	C2Vone.pdf	Vol 1,	2 nd Editio	on, 2002	, Pearson,	
	ISBN:10: 8	8131′	706613							

	Laboratory Experiments						
1	Implement the following requirement: An electricity heard charges the following rates to domestic users						
1	to discourage large conceptions of energy						
	0 = 100 units · Rs 1 50 per unit						
	101 - 200 units : Rs 1.80 per unit						
	Boyond 200 units: Rs 2.50 per unit						
	All users are charged a minimum of Rs 50. If the total amount is more than Rs 200 then an additional						
	An users are charged a minimum of KS 50. If the total amount is more than KS 500 then an additional surpheres of 150% is added. The C \pm program must read the nemes of users, number of units consumed						
	surcharge of 15% is added. The C++ program must read the names of users, number of units consumed						
	and display the calculated charges.						
2	Design and implement a class STUDENT with attributes like: roll number, name, 3 tests marks.						
	Implement member functions						
	a. to read student data like name and test marks,						
	b. to compute average marks (considering best two out of three test marks) and						
	c. to display the student information.						
	Declare an array of STUDENT objects in the main function, use static data member to generate unique						
	student roll number.						
3	Design and implement a C++ program using class to process Shopping list for a departmental store. The						
	list include details such as the Code No., Name, Price of each item and operations like adding, deleting						
	items to the list and printing the total value of an order.						
4	Design and implement a C++ class POLYNOMIAL. The internal representation of a POLYNOMIAL is						
	an array of terms. Each term contains a coefficient and an exponent, e.g., the term $2x^4$ has the coefficient 2						
	and the exponent 4. Implement a class containing constructors and the following capabilities:						
	a. Overload the addition operator (+) to add two polynomials.						
	b. Overload the assignment operator to assign one polynomial to another.						
	c. Overload the multiplication operator (*) to multiple two polynomials.						
	d. Overload the >> operator to enable input through in.						
	e. Overload the << operator to enable output throughout.						
	f. Member function to compute value of the polynomial, given the value of x.						
5	Design and implement a C++ program to create an abstract class - SHAPE to represent any shape						
	in general. The class should have two pure virtual functions to read dimensions and to compute						
	the area. Create three derived classes - CIRCLE, RECTANGLE, and SQUARE by inheriting the						
	features of class SHAPE. Implement the functions to read and compute the area. Add						
	constructors, method to display the results as required. (Assume appropriate attributes).						
6	Write a C++ program using generic class to implement queue of integers, floating point numbers and						
-	strings. Support the queue operations like insert, delete and display in the queue class.						
7	Write a C++ program to create a vector of integers. Copy the vector contents into a list, sort the contents,						
	then copy selected items into another vector (like elements less than 10 etc).						
8	Write a template function to search for a given key element from an array. Illustrate how you perform						
	search in integer, character as well as double arrays using the same template function.						

Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY WITH LA				
#	COMPONENTS	MARKS		
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be			
	conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO	10		
	QUIZZES WILL BE THE FINAL QUIZ MARKS.			
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity			
	levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying,	20		
	Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be	50		
	evaluated for 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 30 MARKS.			
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and			
	practical implementation of the problem. Case study based teaching learning (10), Program	20		
	specific requirements (10), Video based seminar/presentation/demonstration (10) ADDING	50		
	UPTO 30 MARKS.			
4	LAB: Conduction of laboratory exercises, lab report, observation and analysis (30 Marks),			
	lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10	20		
	Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE REDUCED TO 30	50		
	MARKS.			
	MAXIMUM MARKS FOR THE CIE THEORY	100		

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	10			
	PART B				
	(Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	14			
3 & 4	Unit 2 : Question 3 or 4	14			
5&6	Unit 3 : Question 5 or 6	14			
7 & 8	Unit 4 : Question 7 or 8	14			
9 & 10	Unit 5 : Question 9 or 10	14			
11	Lab Component (Compulsory)	20			
	MAXIMUM MARKS FOR THE SEE THEORY	100			

Go, change the world

RV Educational Institutions[®] RV College of Engineering[®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Humanities & Social Science Courses

COMMUNICATIVE ENGLISH - I (HSS111EL) COMMUNICATIVE ENGLISH - II (HSS121EL) FUNDAMENTALS OF INDIAN CONSTITUTION (HSS114CT / HSS124CT) SCIENTIFIC FUNCATION OF HEALTH: YOGA PRACTICE (HSS115YL / HSS125YL) SAMSKRUTHIKA KANNADA (HSS112BK / HSS122BK) BALAKE KANNADA (HSS113BK / HSS123BK)

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	University, Belagavi						
				Semester: I			
	COMMUNICATIVE ENGLISH - I						
Category: Humanities & Social Sciences							
			(Com	mon to all Programs))		
			(On	line English Course)			
Course	Code	•	HSS111EL		CIE		50 Marks
Credits	·L·T·P	•	0.0.1		SEE	•	50 Marks
Total H	[0]]rs	•	30P		SEE SEE Duration	•	2 Hours
1014111		•	501			•	2 110013
	Online English C	oui	se: Standardized	Test Of English Profi	ciency – From The	Hi	ndu Group
	0		Ur	nit – I	·		06 Hrs
Identify	ing main ideas and	l de	tails in a reading t	ext - Understanding pl	laces on a map - Ur	Ider	standing new words
using F	Punctuation Clues	-]	Previewing Vocab	ulary - Organizing, d	lrafting, editing, a	nd	writing an email -
Researc	hing and Docume	ntin	g. Listening for an	nd visualizing direction	ns. Listening to an	adı	vertisement - Role-
play: tal	king about places of	on o	campus, Role-play:	returning merchandise	e to a store - Compa	ring	g shopping in a store
and onli	ine shopping - Con	duc	ting research and g	iving a presentation.	I I I I I I I I I I I I I I I I I I I	<u> </u>	
	<u> </u>		<u> </u>	<u>it – II</u>			06 Hrs
Skimmi	ng a text using hea	dir	gs, subheadings, a	nd images, identifying	text organization -	Rea	ading and answering
a questi	onnaire - Brainstor	mi	ng and making not	es on pros and cons. w	vriting a paragraph	usi	ng the words should
and sho	uldn't - Listening fo	or c	onversation starters	s advice instructions of	complaints Voice r	nail	messages - Leaving
voicema	ail messages, descri	ibir	g people. Changing	y nouns to adjectives -	Using model verbs	to s	vive advice.
			Uni	it – III		<u></u> E	06 Hrs
Reading and Understanding graphs Identifying a good summary - Reading faster: reading in phrases -							
Summa	rizing facts and i	ide	as in a written to	ext. Identifying narra	tive sequence Re	00	nizing and writing
conclus	ions Understandin	ιαει	pronouns and proj	oun reference - Thin	nking critically abo	unt	cultural events and
celebrat	ions - Recognizing	no	lite and impolite ex	pressions of disagreem	ent	ut	cultural events and
cerebrat	ions Recognizing	po		$\mathbf{I} = \mathbf{I} \mathbf{V}$	ient.		06 Hrs
Unit – IV UO HIS							
and Dec	anding chronologi acribing feelings V	Vri	ting a summary st	anizers to organize luc atamant Understandin	a paragraph function	 \n	Listening to work
nlace c	omplaints Ich int	tors	views future plans	Listening for expre	g paragraph function	ni - ctai	rant instruction in
followir	ompiantis, JOU int	ooir	a future plans car	s, Listening for expre	issues healthy and	unl	healthy eating habits
and nut	ig a recipe - Discus	5511	ig future plans, car	cers, and work-related	issues, nearing and	um	leaning earling habits
Unit – V 06 Hrs							
Understanding relationships between ideas - writing a questionnaire and an opinion blog post - posting a comment							
- Expressing an opinion - Listening to conversations about travel plans, travel information, activities, an opinion,							
agreement and disagreement - Discussing daver plans, lates, dansportation, signis, and activities, Using conditional forms to support on argument. Using ports of speech to close if y word families.							
conditional forms to support an argument, Using parts of speech to classify word fammes.							
Course Outcomes: After completing the course, the students will be able to							
Course Outcomes: After completing the course, the students will be able to							
COI	Dronouna Dromasi		amental concepts	of Academic English	I LOKW SKIIIS WIT	пC	frammar - Articles,
002	Fionouns, Preposi	u0	ns, mouns, veros al		uto micht for i		feeding 1 and and 1
002	Use appropriate	v oc	cabulary in real-lif	e scenarios that stude	and might face in	pro	ressional and social
	situations.						

CO3 Construct grammatically correct sentences, Learn basics of professional e-mail writing, Blog post.
 CO4 Introduce Oneself in detail, preparing for interview, small talk, conversations, voice email messages,

discussing future plans, careers, work related issues, environmental problem and travel conversations.

Refere	nce Books
1	Standardized Test of English Proficiency-from The Hindu Group: e-books.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

About the Course: STEP (Standardized Test of English Proficiency) train is a 20 hours of adoptive course. designed to improve every aspect of English language learning – Listening, Speaking, Reading and Writing skills. The STEP train course assesses learner's current language level as well learning intent against global standards. The online course includes the following:

- 1. 45-minute Diagnostic test (baseline) to ascertain the current level of English proficiency.
- 2. Personalized course content (50-Hours) based on baseline levels including Detailed instructions, practice sessions, interactions, feedback and assessments.

The course begins with a baseline test which determines the learner's current language levels. Based on their language levels, the course will provide the learner with webisodes suitable to their language levels. The course is also interspersed with exercises and mid-line tests. Based on the learner's performance in these tests, and their strengths and challenges/gaps, the course will adaptively provide webisodes matching their performance profile..

ASSESSMENT AND EVALUATION PATTERN (ONLINE MODE)					
	CIE	SEE			
WEIGHTAGE	50%	50%			
Test – I	Each test will be conducted				
	for 50 Marks adding upto				
Test II	100 marks. Final test				
$1 \text{ est} - \Pi$	marks will be reduced to 40				
	MARKS				
EXPERIENTIAL LEARNING					
Communication Skills- Activity based test – Script writing,		Final Assessment			
Essay Writing, Role plays. Any other activity that enhances		will be conducted			
the Communication skills. The students will be assigned		for 50 marks			
with a topic by the faculty handling the batch. The students		(ONLINE MODE)			
can either prepare a presentation/write essay/role play etc.	10				
for the duration (4-5 minutes per student).					
Parameters for evaluation of the Presentation					
a. Clarity in the presentation/ Speaking/Presentation skills.					
b. Concept / Subject on which the drama is enacted/					
scripted.					
MAXIMUM MARKS	50 MARKS	50 MARKS			
TOTAL MARKS FOR THE COURSE	50	50			

Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

University, Belagavi										
Semester: II										
COMMUNICATIVE ENGLISH - II										
		Category: H	umanities & Social	Sciences						
		(Com	mon to all Programs	5)						
		(On	ine English Course)							
Course Code	:	HSS121EL		CIE	:	50 Marks				
Credits: L:T:P	:	0:0:1		SEE	:	50 Marks				
Total Hours	:	30P		SEE Duration	:	2 Hours				

Online English Course: Standardized Test Of English Proficiency – From The Hindu Group					
Unit – I 06 Hrs					
Describing a weather phenomenon – Using transition words and phrases to connect cause and effect – Vocabulary					
words related to weather and climate situations - Listening to weather forecast - Introduction yourself and others -					
speaking from notes and discussing study habits and body language – Assessing good study habits and Evaluating					
why some students may not graduate - Casual expressions for making new friends - Distinguish between Can and					
can't – Identifying the meaning and importance of sign – Words related to learning from history.					
Unit – II 06 Hrs					
Identifying and Expressing opinions, Using arguments and examples to support an opinion, Creating an outline or					
mind map – Vocabulary on words related to food, healthy and unhealthy eating habits – Using modal verbs such					
as should, must and have to - Identifying paragraph, main text and supporting ideas - Drafting, editing, reviewing					
and finalizing the text and Blogging – Speaking about food shopping and recipes.					
Unit – III 06 Hrs					
Verbs and expression used to explain home maintenance - Comparing reduced and unreduced pronunciation -					
Identfying True or false information - Using idioms and discourse markers. Expression for apologizing -					
Identifying and practicing stressed words and reduced forms - Giving and receiving apologies - Vocabulary					
words related to homes through time, ancestry, home and family – Recognizing punctuation and phrase clues.					
Unit – IV 06 Hrs					
Conducting a interview – Using a graphic organizer: Problem – Solution chart – Discussing the benefits of a					
healthy lifestyle - Vocabulary words on health and stress issues and fitness issues - Describing symptoms -					
Summarizing a story plot - Vocabulary words and phrases about TV and Social Media - Using reducing					
pronunciation.					
Unit – V 06 Hrs					
Role-playing - Preparing a 30 second speech - Expression of like and Dislikes - Reporting survey results -					
Conducting a review – Identifying and practicing stresses words and reduced forms – Identifying speaker attitudes					
- Understanding left-out words and reference - Understanding literal meaning and reference - Interpreting and					
rewording quotes - Identifying negative prefixes.					

Course	Course Outcomes: After completing the course, the students will be able to						
CO1	Understand the fundamental concepts of Academic English LSRW skills with Grammar - Articles,						
	Pronouns, Prepositions, Nouns, Verbs and Tenses						
CO2	Use appropriate Vocabulary in real-life scenarios that students might face in professional and social						
	situations.						
CO3	Construct grammatically correct sentences, Learn basics of professional e-mail writing, Blog post.						
CO4	Introduce Oneself in detail, preparing for interview, small talk, conversations, voice email messages,						
	discussing future plans, careers, work related issues, environmental problem and travel conversations.						

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Reference Books

1 Standardized Test of English Proficiency-from The Hindu Group: e-books.

Approved by AICTE,

New Delhi

About the Course: STEP (Standardized Test of English Proficiency) train is a 20 hours of adoptive course. designed to improve every aspect of English language learning – Listening, Speaking, Reading and Writing skills. The STEP train course assesses learner's current language level as well learning intent against global standards. The online course includes the following:

- 3. 45-minute Diagnostic test (baseline) to ascertain the current level of English proficiency.
- 4. Personalized course content (50-Hours) based on baseline levels including Detailed instructions, practice sessions, interactions, feedback and assessments.

The course begins with a baseline test which determines the learner's current language levels. Based on their language levels, the course will provide the learner with webisodes suitable to their language levels. The course is also interspersed with exercises and mid-line tests. Based on the learner's performance in these tests, and their strengths and challenges/gaps, the course will adaptively provide webisodes matching their performance profile.

ASSESSMENT AND EVALUATION PATTERN (ONLINE MODE)					
	CIE	SEE			
WEIGHTAGE	50%	50%			
Evaluation of CIE					
(Bloom's Taxonomy Levels: Remembering, Understanding	, Applying, Analyzing, Evalua	ting, and Creating)			
Test – I	Each test will be conducted				
	for 50 Marks adding upto				
Test II	100 marks. Final test				
$1 \text{ est} - \Pi$	marks will be reduced to 40				
	MARKS				
EXPERIENTIAL LEARNING					
Communication Skills- Activity based test – Script writing,		Final Assessment			
Essay Writing, Role plays. Any other activity that enhances		will be conducted			
the Communication skills. The students will be assigned		for 50 marks			
with a topic by the faculty handling the batch. The students		(ONLINE MODE)			
can either prepare a presentation/write essay/role play etc.	10				
for the duration (4-5 minutes per student).					
Parameters for evaluation of the Presentation					
a. Clarity in the presentation/ Speaking/Presentation skills.					
b. Concept / Subject on which the drama is enacted/					
scripted.					
MAXIMUM MARKS	50 MARKS	50 MARKS			
TOTAL MARKS FOR THE COURSE	50	50			

05 Hrs

Approved by AICTE,

New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological

University, belagavi										
Semester: I/II										
FUNDAMENTALS OF INDIAN CONSTITUTION										
		Category: H	umanities & S	Social Sciences						
		(Com	mon to All Pro	ograms)						
			(Theory)							
Course Code	:	HSS114CT / HSS	S124CT	CIE	:	50 Marks				
Credits: L:T:P : 1:0:0 SEE : 50 Marks										
Total Hours	:	15		SEE Duration	:	1 Hours				

Indian Constitution- Necessity of Constitution, Societies before and after the constitution adoption, Introduction
to Indian Constitution, Making of the constitution, Role of constituent assembly, Salient features of Indian
Constitution ,Preamble to the Indian Constitution and key concept of preamble. Fundamental Rights and its
restrictions.

Unit - I

Unit – II	05 Hrs
Directive Principles of State Policy and its present relevance in Indian Society, Fundamental Duties a	and its scope
and significance in nation. Union Executive: Parliamentary system, President, Prime minister, Union	ion Cabinet,
Parliament- LS & RS, Parliamentary committees, Important Parliamentary terminologies. Judicial Systematics	em of India,
Supreme court of India, and other courts, Judicial Reviews and Judicial activism.	

Unit –III 05 Hrs State Executive: Governor, CM, State cabinet Legislature: VS & VP, Election Commission, Election and Electoral Process, Amendment to Indian Constitution and Important constitutional amendments till today. Emergency provisions.

Course	Course Outcomes: After completing the course, the students will be able to								
CO1	Demonstrate the citizen's fundamental Rights, duties & consumer responsibility capability and to take								
	affirmative action as a responsible citizen.								
CO2	CO2 Identify the conflict management in legal perspective and judicial systems pertaining to professiona								
	environment, strengthen the ability to contribute to the resolve of human rights & Ragging issues and								
	problems through investigative and analytical skills.								
CO3	Understanding process of ethical and moral analysis in decision making scenarios and inculcate ethical								
	behavior as a trait for professional development.								
CO4	Apply the knowledge to solve practical problems with regard to personal issues & business Enterprises.								

Reference Books									
1	Dr. J. N Pandey, Constitutional Law of India, Central Law Agency, 2020 edition								
2	Avtar Singh: Law of Consumer Protection: Principles and Practice, Eastern Book Company, 5th Edition,								
	2015, ISBN -13:978-9351452461								
3	S.C. Srivastava: Industrial Relation and Labour Laws, Vikas Publishing House, 6 th Edition,								
	2012, ISBN: 9789325955400								
4	Jr. Charles E Harris, Michael. S. Pritchard and Michael J Rabins, Engineering Ethics, Wadsworth								
	Cengage Learning, 5 th Edition, 2009, ISBN-978-0495502791								

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS			
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be				
	conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO	10			
	QUIZZES WILL BE THE FINAL QUIZ MARKS.				
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity				
	levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying,				
	Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be	20			
	evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE				
	REDUCED TO 20 MARKS.				
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and				
	practical implementation of the problem. Case study based teaching learning (10), Program	20			
	specific requirements (10), Video based seminar/presentation/demonstration (20) adding	20			
	upto 40 marks. THE FINAL EL MARKS IS REDUCED TO 20 MARKS.				
	MAXIMUM MARKS FOR THE CIE THEORY	50			

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	Q. NO. CONTENTS MARK				
1	Objective type questions (MCQs) covering the entire syllabus	50			
	MAXIMUM MARKS FOR THE SEE THEORY	50			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: I/II SCIENTIFIC FOUNDATIONS OF HEALTH: YOGA PRACTICE **Category: Humanities & Social Sciences (Common to all the Programs)** (Practice) **Course Code** : HSS115YL / HSS125YL CIE : 50 Marks Credits: L:T:P : 0:0:1 SEE 50 Marks : **Total Hours** 30 **SEE Duration** 2 Hours : :

Unit-I	10 Hrs			
Introduction to Yoga: Definition and Meaning of Yoga, Aims and Objectives, Historical development of Yoga,				
Eight stages of Yoga, Relevance of Yoga in modern age and scope.				
Prayers :Shanthi Mantra and Loka Kalyana Mantra.				
Starting Practice -Swasa Kriya, Marjalaswasa, Swanaswasa, Urasandhi chalane, Greeva sandhi ch	nalane, Kati			
chalane, Super Brain yoga.				
Suryanamaskara/Pragya Yoga: With Mantras & Breathing pattern.				
Unit – II	10 Hrs			
Standing Asanas: Trikonasana, Veerabhadrasana, Vrikshasana, Tadasana, Tiryak Tadasana, Sarv	angapushti,			
Utkatasana.				
Sitting Asanas: Baddhakonasana, Bharadwajasana, Mandukasana, Ushtrasana, SuptaVeerasana,	Vakrasana,			
Gomukhasana, Janushirasana, Dhanurasana, Shashankasana.				
Unit –III	10 Hrs			
Lying Asanas : Pawanamuktasana, Sarvangasana, Naukasana, Halasana, Chakrasana, Bl	hujangasana,			
Shalabhasana, Dhanurasana, Yoga Nidra.				
Relaxative/ Meditative Asanas: Shavasana, Balasana, Makarasana, Sukhasana, Padmasana, Vajrasan	a.			
Pranayama: Mantra, Breathing – Chest, Abdominal & Yogic, Puraka, Rechaka and Kumbhaka, Anulom-Vilom,				
Nadishodhan, Suryabhedan, Chadrabhedan, Bhastrika, Bhramri, Sheetali, Shitkari and Kapalabhati.				
Course Outcomes: After completing the course, the students will be able to				
CO1 Demonstrate the various postures of Yoga.				

		1 0
l	CO2	Analyse the impact of Yoga on Health.
	CO3	Identify the remedial measures if there are any health issues.

CO4 Develop concentration for better performance.

Reference Books									
1	Light on Yoga, B.K.S. Iyengar, 2017, Harper Collins Publishers, ISBN : 9780008267919.								
2	Light on Pranayama, B.K.S. Iyengar, 2013, Harper Collins Publishers, ISBN: 978-8172235413.								
3	Asana Pranayama Mudra Bandha, Swami Satyananda Saraswathi, 12 th Edition, 2002, Published by Yoga								
	Publications Trust, Bihar School of Yoga, ISBN:9788186336144.								
4	Yoga Nidra, Swami Satyananda Saraswathi, 2009, Published by Yoga Publications Trust, ISBN: 0788185787121								
	ISBN: 7/00103/0/121.								

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (PRACTICE)				
#	COMPONENTS	MARKS			
	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be				
1	conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO	10			
	QUIZZES WILL BE THE FINAL QUIZ MARKS.				
2	TESTS: One Demonstration Test will be conducted for 30 Marks	30			
	ACTIVITY BOOK: Students are asked to maintain an Activity Book, THE TOTAL				
3	MARKS FOR THE COMPILATION OF THE BOOK (05 Marks) AND STUDENT'S	10			
	INVOLVEMENT IN THE ACTIVITY (05 Marks) WILL BE THE FINAL MARKS.				
	MAXIMUM MARKS FOR THE CIE THEORY	50			

RUBRIC FOR SEMESTER END EXAMINATION (PRACTICE)				
Q. NO.	CONTENTS	MARKS		
1	Demonstration of Asanas and Pranayama SEE for 50 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of only objective type questions for 40 marks covering the complete syllabus. Part – B consists of essay type questions for 10 marks.	50		
	MAXIMUM MARKS FOR THE SEE THEORY	50		

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

	Semester: I / II						
	SAMSKRUTHIKA KANNADA						
	Category: Humanities & Social Sciences						
C	C. J.	Γ.	(Common to	all Prog	rams)		50 Marta
	Course Code : HSS112SK / HSS122SK CIE : 50 Marks			50 Marks			
	tal Hours	•	15		SEE SEE Duration	•	1 Hrs
10	<u>Init</u>	• -T .	<u>15</u> – ಣೀಉವರ <i>ಣು &</i> ಅದ್ದುವಿಕ	ಚಿತ್ರವರ	<u>SEE Duration</u>	•	06 Hrs
1		- ۱		မျှေစမ	က မစ္စစား ထုစ္က		vv ms
1.	ಕನಿರ್ಶಿ ಬಕ ಸC	ಸಿ	_ಿ ತ - ಹಿ೦ಪ ನಾಗಿ೦ಾಜಯ್ಯ				
2.	ಕರ್ನಾಟಕದ ಟ	ವಿಕೆ	(ಕರಣ: ಒಂದು ಅಪೂರ್ವ ಬ	ಕರಿತ್ರ - ಜಿ	ತೆ. ವಂಕಟಸುಬ್ಬಯ	ಬ್ಯ	
3.	ಆಡಳಿತ ಭಾಷ	ನೆಯ	ರಾಗಿ ಕನ್ನಡ - ಡಾ. ಎಲ್. ತಿಷ	ಬ್ಮೇಶ ಮ	ತ್ತು ಪ್ರೋ.ವಿ. ಕೇಶ	ವ	ಮೂರ್ತಿ
1.	ವಚನಗಳು: ಬ	ಸ	ವಣ್ಣ, ಅಕ್ಕಮಹಾದೇವಿ, ಅಲ್ಲ	್ಲಮ ಪ್ರಭ	ಗು, ಜೇಡರ ದಾಸಿವ	sa	ಗ್ಯು, ಆಯ್ದಕ್ಕಿ ಲಕ್ಕಮ್ಮ
2.	ಕೀರ್ತನೆಗಳು:	ಅ	ದರಿಂದೇನು ಫಲ ಇದರಿಂದೇ	ನು ಫಲ	- ಪುರಂದರದಾಸರ	రు	
	ತಲ್ಲಣಿಸದಿ	ರು	ಕಂಡ್ಯ ತಾಳು ಮನವೇ - ಕನ	ಕದಾಸರ	ರು		
3.	ತತ್ವಪದಗಳು:	ಸಾ	ವಿರ ಕೊಡಗಳ ಸಿಟ್ಟು - ಶಿಶು	ನಾಳ ಶರ	े (इ		
	Unit	–II	I ಆಧುನಿಕ ಕಾವ್ಯ ಭಾಗ &	ತಾಂತಿ	Jಕ ವ್ಯಕ್ತಿಗಳ ಪರಿ	ಚ	රා 06 Hrs
1.	ಡಿವಿಜಿರವರ ಪ	ಹಂ	ಶಕುತಿಮ್ಮನ ಕಗ್ಗದಿಂದ ಆಯ್ದ	್ಷ ಕೆಲವು	ಭಾಗಗಳು		
2.	ಕುರುಡು ಕಾಂ	C E S	ಣ: ದಾ.ರಾ. ಬೇಂದ್ರೆ				
3.	ಹೊಸಬಾಳಿನ	n	ತೆ: ಕುವೆಂಪು				
1.	1. ಡಾ. ಸರ್. ಎಂ. ವಿಶೈ ಶೃರಯ್ಯ: ವ್ಯಕ್ತಿ ಮತ್ತು ಐತಿಹ್ಯ- ಎ.ಎನ್. ಮೂರ್ತಿರಾವ್						
2.	2. ಕರಕುಶಲ ಕಲೆಗಳು ಮತ್ತು ಪರಂಪರೆಯ ವಿಜ್ಞಾನ: ಕರೀಗೌಡ ಬೀಚನಹಳ್ಳಿ						
	Unit –V ಕಥೆ ಮತ್ತು ಪ್ರವಾಸ ಕಥನ 03 Hrs						
1.	1. ಯುಗಾದಿ: ವಸುಧೇಂದ್ರ						
2.	2. ಮೆಗಾನೆ ಎಂಬ ಗಿರಿಜನ ಪರ್ವತ: ಹಿ.ಚಿ.ಬೋರಲಿಂಗಯ್ಯ						
Co	Course Outcomes: After completing the course, the students will be able to:-						

Course	• Outcomes: After completing the course, the students will be able to:-
CO1	ಕನ್ನಡ ಭಾಷೆ, ಸಾಹಿತ್ಯ ಮತ್ತು ಕನ್ನಡದ ಸಂಸ್ಕೃತಿಯ ಪರಿಚಯವಾಗುತ್ತದೆ.
CO2	ಕನ್ನಡ ಸಾಹಿತ್ಯದ ಆಧುನಿಕ ಪೂರ್ವ ಮತ್ತು ಸಂಸ್ಕೃತಿಯ ಬಗ್ಗೆ ಆಸಕ್ತಿಯು ಮೂಡುತ್ತದೆ.
CO3	ಕನ್ನಡ ಸಾಹಿತ್ಯದ ಆಧುನಿಕ ಕಾವ್ಯಗಳ ಬಗ್ಗೆ ಆಸಕ್ತಿಯು ಮೂಡುತ್ತದೆ.
CO4	ತಾಂತ್ರಿಕ ವ್ಯಕ್ತಿಗಳ ಪರಿಚಯವಾಗುತ್ತದೆ. ಕನ್ನಡ ಭಾಷಾಭ್ಯಾಸ, ಸಾಮಾನ್ಯ ಕನ್ನಡ ಹಾಗೂ
	ಆಡಳಿತ ಕನ್ನಡದ ಪದಗಳ ಪರಿಚಯವಾಗುತ್ತದೆ.

Refere	nce Books (ಪರಾಮಶ	-ನ ಪುಸ್ತಕ ⁾
1	ಸಾಂಸ್ಕೃತಿಕ ಕನ್ನಡ	ಪ್ರಸಾರಾಂಗ, ವಿಶ್ವೇಶ್ವರಯ್ಯ ತಾಂತ್ರಿಕ ವಿಶ್ವವಿದ್ಯಾಲಯ, ಬೆಳಗಾವಿ.

Approved by AICTE, New Delhi Autonomous Institution Affiliated Technological University, Belagavi

to Visvesvaraya

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	10
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 20 MARKS.	20
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) adding upto 40 marks. THE FINAL EL MARKS IS REDUCED TO 20 MARKS .	20
	MAXIMUM MARKS FOR THE CIE THEORY	50

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)	
Q. NO.	CONTENTS	MARKS
1	Objective type questions (MCQs) covering the entire syllabus	50
	MAXIMUM MARKS FOR THE SEE THEORY	50

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

				Semester: I / II			
			BA	LAKE KANNADA	L Contraction of the second se		
			Category: H	lumanities & Social	Sciences		
			(Com	mon to all Program	ns)		
Course	Code	:	HSS113BK / HSS	S123BK	CIE	:	50 Marks
Credits	Credits: L:T:P : 1:0:0 SEE : 50 Marks						
Total E	Total Hours : 16 SEE Duration : 90 Minutes						
Course	Learning Objecti	ves	of Vyavaharika K	Kannada: The stude	nts will be able to		
1	Motivate student	s to	learn Kannada lan	guage with active in	volvement.		
2	Learn basic com	mu	nication skills in Ka	annada language (Vy	vavaharika Kannada)		
3	Importance of le	arn	ing local language I	Kannada.			

To those students who does not know Kannada Unit – I 04 Hrs Parichaya (Introduction): Necessity of learning local language, Tips to learn the language with easy methods, Hints for correct and polite conversation, History of kannada language. Unit – II 04 Hrs Kannada alphabtets and Pronunciation: Kannada aksharmale, Kannada stress letters (vattakshara), Kannada Khagunitha, Pronunciation, memorisation and usage of the Kannada letters. Unit – III 04 Hrs Kannada vocabulary for communication: Singular and Plural nouns, Genders, Interrogative words, Antonyms, Inappropriate pronunciation, Number system, List of vegetables, Fractions, Menu of food items, Names of the food items, words relating to time, words relating to directions, words relating to human's feelings and emotion, Parts of the human body, words relating to relationship. 04Hrs Unit – IV Kannada Grammar in Conversations: Nouns, Pronouns, Use of pronouns in Kannada sentences, Adjectives and its usage, Verbs, Adverbs, Conjunctions, Prepositions, Questions constructing words, Simple communicative sentences in kannada. Activities in Kannada, Vocabulory, Conversation.

CO1Usage of local language in day today affairs.CO2Construction of simple sentences according to the situation.	n day today affairs.
CO2 Construction of simple sentences according to the situation.	
	ntences according to the situation.
CO3 Usage of honorific words with elderly people.	with elderly people.
CO4 Easy communication with everyone.	i everyone.

Referen	nce Books
1	Vyavaharika Kannada patyapusthaka, L. Thimmesh, and V. Keshavamurthy, Prasaranga
	Visveshvaraya University, Belgaum.
2	Kannada Kali, K. N. Subramanya, S. Narahari, H. G. Srinivasa Prasad, S. Ramamurthy and S.
	Sathyanarayana, 5 th Edition, 2019, RV College of Engineering Bengaluru.
3	Spoken Kannada, Kannada Sahithya Parishat, Bengaluru.

Approved by AICTE, New Delhi

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be	
	conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO	10
	QUIZZES WILL BE THE FINAL QUIZ MARKS.	
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 20 MARKS.	20
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) adding upto 40 marks. THE FINAL EL MARKS IS REDUCED TO 20 MARKS .	20
	MAXIMUM MARKS FOR THE CIE THEORY	50

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)	
Q. NO.	CONTENTS	MARKS
1	Objective type questions (MCQs) covering the entire syllabus	50
	MAXIMUM MARKS FOR THE SEE THEORY	50

Go, change the world

RV RV

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Skill Labs

RV College of Engineering

BASIC FABRICATION AND SERVICE

SKILL LAB

For First Year Students

8th Mail, Mysure Road Bengaluru Organized by Departments of Mechanical, Aerospace Engineering & Industrial Engineering

krishnam@rvce.edu.in

SUMMARY

9980480001

Improving the skills of engineering students is critical for the nation's economic development. Engineering students' adequate skills can help businesses to transform themselves structurally in the ways that are necessary to adapt to the emerging technologies. The future of skilled jobs requires attention to the labour market and to the employer needs for developing newer technologies. Training policies as per NEP 2020 for the skill development are addressed in this program.

Welding and Fabrication: Welding standards Design consideration, Mathematical calculation, Safety & checklist, cutting, joining, rebuilding, Filler material consumption, Arc welding, TiG welding and Gas welding, Fabrication, Design considerations, fabrication materials, Metal fabricator's toolbox, Occupation hazards and workplace

Plumbing work : Plumbing standards, Piping materials, Valve type, Common Sanitary Fixture, Fittings, Plumber chart, Fountain system, Garden water irrigation, Water management system, Drain Waste vent

Acceptance

with

signing

representatives

In order to accept and start the

training of the program,

students are required to sign in

the provided space. Please

remember that after signatures, the proposal will be set into

action by RVCE/ For any

queries, it is advised to discuss

appointed

before the

making it

the

and

Use of Hand tools

Pliers and Locking Devices, Clamps and Vices, Locking Nut Devices, Mallets and Non-Threaded Fasteners, Key Fasteners, Press Fit Assembly, Torque Wrench, Torque-Controlled Portable Power Tools.Drill/Drivers. etc

> Sheet Metal Work: Basic hand tools for sheet metal works, Design of Basics, CADD basics, Sheet metal equipment, Material selection, Patterns and layouts, Metal shaping, Hammerforming, Riveting , brazing, Restoration, Occupational hazards

Tyre repair Identification of tyre repair tools, Disassemble and assemble wheel from vehicles (only tubed wheels). Type of tyre damages, Examines and probes tyre with awl to determine extent of defect; Apply the puncher, replaces treads by cutting defective tread from plies,

Terms and Condition

Only students who have paid a special lab fee to the institution The students must maintain 90 % attendance

for obtaining the skill lab certificate Students must attend training as per scheduled time

Coordinators:

Dr. S K Harisha, Dept of Mech Engg, Phone: 9538300040, e-mail: harishsk@rvce.edu.in

Prof. Pranesh Kumar S R, Dept of Aerospace Egg. Phone: 8904484360, e-mail: praneshkumarsr@rvce.edu.in

Dr. Vijayakumar, Dept of IEM, Phone:973193233, e mail: <u>vijayakumar@rvce.edu.in</u>

Student Details

Name {______ USN:_____ Branch: ______ Phone: ______ e-mail: ______ Signature of Student

Job Opportunity

After training, the student Careers in Welding may include Automotive, Maintenance, Construction, Fabrication and Designing sectors. Despite limited employment growth, about 13,100 openings for sheet metal workers are projected each year on an average, over the decade. Plumbers, pipefitters, and steamfitters work in factories, homes, businesses, and other places where there are pipes and related systems

RV College of Engineering

IT ESSENTIALS SKILL LAB

For First Year Students

8th Mail, Mysuru Road Bengaluru

Organized by

Departments of Information Science and Engineering

sagarbm@rvce.edu.in

SUMMARY

9886332226

Improving the skills of engineering students is critical for the nation's economic development. Engineering students' adequate skills can help businesses to transform themselves structurally in the ways that are necessary to adapt to the emerging technologies. The future of skilled jobs requires attention to the labour market and to the employer needs for developing newer technologies. Training policies as per NEP 2020 for the skill development are addressed in this program.

Exploring visualization tools - 5 Hrs

- Google data Studio
 - M S Excel
- Tableau
- Power Bl

Data Processing Essentials - 5 Hrs

- Poster Design Using Canva
- Video Editing

Acceptance

In order to accept and start the training of the program,

students are required to sign in the provided space. Please

remember that after signatures,

the proposal will be set into action by RVCE/ For any

queries, it is advised to discuss

representatives before the

signing and making it officially

the

with

 Advanced features of MS word, MS Excel and MS Power Point

Basics of Operating System and Configuration - 5 Hrs

- OS Installation and Basics of Networking
- Dual OS Installation
- Virtual Box
- Antivirus installation and Scheduling
- Remote Login

Terms and Condition

Only students who have paid a special lab fee to the institution. The students must maintain 90 % attendance for obtaining the skill lab certificate

Coordinators:

Dr. Anala M R, Dept of ISE, Phone8618687573, e-mail: <u>analamr@rvce.edu.in</u>

Dr. Padmashree T, Dept of ISE. Phone: 9632076605, e-mail: <u>padmashreet@rvce.edu.in</u>

Prof. Priya D, Dept of ISE, Phone:9986997603 e-mail: <u>priyad@rvce.edu.in</u>

Student Details

Name	
USN:	
Branch:	
Phone:	
e-mail:	/
Signature of Student	

Job Opportunity

appointed

After training, the student will be able to take up roles such as IT Assistant, Computer Operator, Programmer, Assistant Engineer, Network Administrator and Data Analyst.

IT ESSENTIALS (IT SKILSS FOR ALL)

SKILL LAB

Organized by:

Department of Computer Science & Engineering

RV College of Engineering®

For First Year Students

8th Mail, Mysore Road, Bengaluru-59

Hod.cse@rvce.edu.in

Course Overview:

What you learn here Students apply skills and procedures to install, configure, and troubleshoot computers, mobile devices, and software.

Benefits Learn the fundamentals of connecting computers to networks. Plus, you'll enjoy working with advanced simulation tools with hands-on labs to hone your troubleshooting skills and immediately practice what you learn!

Mode of Conduction of each Module:

2 Hours Theory, 2 Hours Demo, 3 Lab Sessions of 2.5 Hours each Prepare for Careers / Employability options. Develop skills for entry-level technical support roles (IT Support Jobs, Level1 and Level2,Voice support Executive Jobs, IT service Engineer Jobs, Network Engineer Jobs, Cloud support Executive Jobs), Prepare for Certification exams like CompTIA A+ and CCNA-level courses.

Module 1: Basics of PC, Laptops & Components Introduction to PC Hardware: PC Components - CPUs and cooling system, Memory, Adapter cards and extension slots, Hard disk drives and SSDs, Optical storage devices, ports, cables and adapters, Input devices and output devices. Computer disassembly & Assembly, Preventive maintenance and trouble shooting. Advanced computer Hardware: Advanced computers. Laptops and other Mobile Devices: Laptop hardware and component installation and configuration, Preventive Maintenance and troubleshooting process.

Module 2: Networking Concepts and Components Network components and types, Internet connection types, Networking protocols & standards, Network services & Network Devices (Basic network devices like Network interface cards, repeaters, bridges and hubs, switches, wireless Access points, Routers).

Applied Networking: Device to network connection (network addressing, configure a NIC, configure a wired and wireless networks firewall settings, IoT device configuration), Basic trouble shooting process for networks, network problems and solutions

Acceptance

In order to accept and start the training of the program, students

are required to sign in the

provided space. Please

remember that after signatures,

the proposal will be set into

action by RVCE/for any queries,

it is advised to discuss with the

appointed representatives before

the signing and making it

Module 3: Basics of OS with Installations & Configurations

Windows Installation & Upgrades (Disk cloning, other installation methods, Remote network installation), Disk Management (storage device types, Hard drive partitioning, Partitions and logical drives), Windows Configuration - Configure Windows with Control Panels, System Administration

Linux OS tools and features, Linux OS best practices, BASIC CLI commands, Basic troubleshooting solutions for Linux operating systems.

Module 4: Basics of Virtualization, Cloud Computing & Security

Virtualization and Cloud Computing: Introduction to Virtualization, client side virtualization, type1, Type2 hypervisors, Virtual Machine Requirements, Cloud computing Applications: How we use clouds, cloud services, cloud Models.

Security: Security threats, Security Procedures (security Policy, Protecting Physical Equipment, Protecting Data, Data Destruction, Securing Devices and Data), Securing Windows Work station, Windows local security Policy, Managing users and groups, Windows Firewalls, Web security, Security Maintenance.

institution.

The students must maintain 90% attendance for obtaining the skill lab certificate. Students must attend training as per scheduled time.

Only students who have paid a special lab fee to the

Coordinators:

Dr. Vinay V Hegde,

Associate Professor, Department of CSE, RVCE Mobile: 9449782211, E-mail: vinayvhegde@rvce.edu.in

Dr. K Badari Nath,

Assistant Professor, Department of CSE, RVCE Mobile: 9945124747, E-mail: badarinath.kb@rvce.edu.in Prof. Pavithra H.

Assistant Professor, Department of CSE, RVCE Mobile: 9591830273, E-mail: pavithrah@rvce.edu.in

Student Details

Name:
USN:
Branch:
Phone:
e-mail:

Signature of Student

Job Opportunity:

officially.

IT Support Jobs, Level 1 and Level2, Voice support Executive Jobs, IT service Engineer Jobs, Network Engineer Jobs, Cloud support Executive Jobs.

Course Delivery:

- 18 Interactive Lectures with demos followed by practice labs.
- Hands on PC Hardware, Laptops, OS Installations (Windows & Linux Installations), virtual laptop, and virtual desktop learning tools, IT Preventive Maintenance & Troubleshooting.

.

RV College of Engineering

BASIC HARDWARE AND SERVICE

SKILL LAB

For First Year Students

Organized by **Departments of**

Electrical and Electronics Electronics and Communication Electronics and Instrumentation Electronics and Telecommunicate

SUMMARY

Skills are most demanded and perishable resource in all sectors of life. Engineering skills encompass the ability to use the insights, to conceive, model and scale an appropriate solution to a problem. In the era of rapid changes and fierce competition, efforts to learn new things and acquire certain skills not only make students confident and self-assured, but also give them an advantage in the career building. Laboratory courses are essential in skills and knowledge for all engineering programs. Training policies as per NEP 2020 for the skill development are addressed in this program.

Measurement of Solar cell parameters: Measurement of current and voltage due to varying radiation and temperature levels, shading, and tilt angle. Measuring Instruments : Multi meter: AC Measurements, DC Measurement, Component Testing, Continuity Testing. CRO: Blocks Identification, Signal Display, Measurements

Installation of Home appliances: Assembling and Dis-assembling of parts, Circuit testing, Testing the working condition of appliance. Basics of Computer Networking: Identification of network components, CAT6 cable color code and crimping, RJ-45 connectors, Network cable testing.

Electrical ratings, wiring, and controlling of lamps: Wiring skills and multi way control of lamps, Selection of lamp ratings, Relation between current, voltage and power.

> **Regulated Power Supply(RPS) :** RPS Blocks Identification, Signal measurement and troubleshooting at different stages.

Circuit rig up and testing on PCB: Identification of Circuits and components. Component placement rules: Placement and Soldering of components on the board, Wiring of components, Circuit testing and De soldering

Basics of Optical Fiber Communication

Identification of different types of optical cables, Transmission and receptions of analog and digitals signals via optical cable, Optical cable testing.

Terms and Condition

Only students who have paid a special lab fee to the institution The students must maintain 90 % attendance for obtaining the skill lab certificate Students must attend training as per scheduled.

Coordinators:

Dr. Kariyappa B S, Prof., ECE Dept., RVCE E-mail: kariyappabs@rvce.edu.in, M: 9449223582 Dr. Chayapathy V, Asso. Prof., EEE Dept., RVCE E-mail: chayapathiv@rvce.edu.in, M: 7899638568 Dr. Ramesh K B, Asso. Prof., EIE Dept., RVCE E-mail: rameshkb@rvce.edu.in, M: 9342522399 Dr. Premananda B S, Asso. Prof., ETE Dept., RVCE E-mail: premanandabs@rvce.edu.in, M: 9844531730

Student Details

USN:	
Branch:	
Phone:	
e-mail:	

Signature of Student

Acceptance

and Lissaious Figures.

In order to accept and start the training of the program, students are required to sign in the provided space. Please remember that after signatures, the proposal will be set into action by RVCE/ For any queries, it is advised to discuss with the appointed representatives before the signing and making it officially

After the completion of Skill Lab training, the candidate may:

Job Opportunity > Enter into Electrical, Electronics and Solar energy power generation industries.

time

- Start their own service centres for servicing and installation of Home appliances.
- Become IT technicians and networking support staff.

DATA VISUALIZATION TOOLS

SKILL LAB

For First Year Students

Organized by Department of Artificial Intelligence and Machine Learning

hod.ai@rvce.edu.in

9844488329

8th Mile, Mysuru Road Bengaluru

SUMMARY

Improving the skills of engineering students is critical for the nation's economic development. Engineering students' adequate skills can help businesses to transform themselves structurally in the ways that are necessary to adapt to the emerging technologies. The future of skilled jobs requires attention to the labour market and to the employer needs for developing newer technologies. Training policies as per NEP 2020 for the skill development are addressed in this program.

Business Intelligence

() the

()

Introduction to Business Intelligence, Understanding dataset, Introduction to Data Visualization

Excel

Overview of Excel features, Excel Plots, Introduction to VBA, Anatomy of Macros, Creating Personal macro-Workbook, Introduction to Visual Basic Editor

Power BI

Overview of Power BI, setting up the Power BI Environment, Data Sources and Visual Types, Constructing Bar, Column, and Pie, Charts, Building Line and Scatter Charts, Creating the Map-based Visualization, Creating the dashboard

Tableau

Overview of Tableau, Setting up the Tableau Environment Live Data Connection, Filtering and sorting the data Creating Basic Visualization, Creating dashboard

Terms and Condition

Only students who have paid a special lab fee to the institution. The students must maintain 90 % attendance for obtaining the skill lab certificate. Students must attend training as per scheduled time

Coordinators

Dr. Vijayalakshmi M N Dept of AIML Phone: 9986551776 e-mail: vijayalakshmi@rvce.edu.in

Prof. Narasimha Swamy S Dept of AIML Phone: 9986232400 e-mail: narasimhaswamys@rvce.edu.in Acceptance

In order to accept and start the training of the program, students are required to sign in the provided space. Please remember that after signatures, the proposal will be set into action by RVCE. For any queries, it is advised to discuss with the appointed representatives before the signing and making it official

NAME: USN: BRANCH: PHONE: EMAIL:

SIGNATURE

Job Opportunity

After training, the student Careers in Data Visualization may include Data Visualization Analyst, BI Designer, Data Visualization Engineer, Business Intelligence Developer. There are about 14,000+ Data Visualization Jobs in India.

WATER TESTING AND SKILL **BASED LAB**

Organized by **Departments of** BIOTECHNOLOGY

RV College of Engineering

Improving the skills of engineering students is critical for nation's economic development. Engineering

students' adequate skills can help businesses to transform themselves structurally in the ways that are necessary to adapt to the emerging technologies. The future of skilled jobs requires attention to the labour market and to the employer needs for developing newer technologies. Training policies as per NEP 2020 for the skill

For First Year Students

SUMMARY

the

8th Mail, Mysure Road Bengaluru

vidya.n@rvce.edu.in

Biological Characterisation and assay: Escherichia coli, Coliform Bacteria, Coliform Bacteria, Staphylococcus aureus, Sulphite Reducing Anaerobes, Pseudomonas aeruginosa, Aerobic Microbial Count, Yeast & Mould, Salmonella and Shigella, Vibrio cholera

Details about water filter and its components: Types of water filters, advancements in water filters, conventional and advanced water filters, candles, cartridges, columns, types of membranes, membrane materials, structural and other allied components, radiationsources

development are addressed in this program.

Tools for accessing various parameters for water testing: conductivity, odor, sediment, and turbidity, PH Meter, Conductivity Meter, Turbidity Meter, Dissolved Oxygen Meter, Flame Photo Meter, Spectrophotometer and Vis). Colorimeter, portable digital meters, colorimeters, and photometers

Maintenance of filters: Types of filters, Mechanical Filters, Absorption Filters, Sequestration Filters, Ion Exchange Filters, Reverse Osmosis Filters. Durability, common problems and trouble shoots, nature of filters, columns and cartridges, filtration, softening, desalination, coagulation, flocculation, and clarification, durability of filters

Analysis of Physical, Organoleptic properties and toxic substances: Taste, Colour, Odour, Turbidity, Total dissolved solids. Temperature testing, pH testing, Chloride test, Salinity testing, Dissolved Oxygen Test, Turbidity test, Nitrate and Phosphate, Pesticides, Heavy metals; Arsenic, Fluorine, Cadmium, mercury, lead. Iron, Barium, and other heavy and toxic metals

Terms and Condition

Only students who have paid a special lab fee to the institution The students must maintain 90 % attendance for obtaining the skill lab certificate Students must attend training as per scheduled

Coordinator:

Dr, Nagashree N Rao, Associate Professor, Department of Biotechnology nagashreenrao@rvce.edu.in 6360962828

Student Details

Name {_____ USN:_____ Branch: Phone: e-mail: ____ **Signature of Student**

Acceptance

In order to accept and start the training of the program, students are required to sign in the provided space. Please remember that after signatures, the proposal will be set into action by RVCE/ For any queries, it is advised to discuss with the appointed representatives before the signing and making it

Job Prospects

Water and its manifestations in any form for the survival of the living being is the demand of the day. Water to be supplied in its purest form that to be consumed needs a master plan, After the completion of the course, students finds the avenues in Water treatment plant operator, Microbiologist for any of the industries, Water quality specialist or analyst, Start-ups and Social Enterprises, Food and allied dustries, Water packaging and sampling Industries, Pharmaceutical and cosmetics industry,

9886127398

BASIC SKILLS OF ENGINEERING

SKILL LAB

For First Year Students

8th Mail, Mysure Road Bengaluru Organized by Departments of Civil & Chemical Engineering

radhakrishna@rvce.edu.in

SUMMARY

Improving the skills of engineering students is critical for the nation's economic development. Engineering students' adequate skills can help businesses to transform themselves structurally in the ways that are necessary to adapt to the emerging technologies. The future of skilled jobs requires attention to the labor market and to the employer needs for developing newer technologies. Training policies as per NEP 2020 for the skill development are addressed in this program.

Paint & Accessories Handling

Painter tapes, Rollers, Brush, Putty Knife and Taping Knife, Color Mixing Combinations Applying

Surface preparation, wall putty, primer coat, Paint mixing and applying

Tools Handling

Plumb Bob, Sprit Level, Bubble Tube, Hand Saw (Wood, PVC, CPVC and Steel), Spanners, Allen key & Wrench (Flat, Ring, Adjustable) Area and Measurements

Plinth Area, Carpet area, Floor area, Floor Space Index, Built up area, Deductions in area calculations

Fire Safety

Fire Safety and Fire Extinguishers, General Safety and Personal Protective Equipments (PPE) Safety Wares & First Aid, Material Safety data sheets Chemicals/Acid spills and handling

Terms and Condition

- Only students who have paid a special lab fee to the Institution
- The students must maintain 90 % attendance for obtaining the skill lab certificate
- Students must attend training as per scheduled time

Acceptance

In order to accept and start the training of the program, students are required to sign in the provided space. Please remember that after signatures, the proposal will be set into action by RVCE/ For any queries, it is advised to discuss with the appointed representatives before the signing and making it officially

Coordinators:

Anand Kumar B.G of Civil Engg, Phone:9844755956, e-mail: <u>anandkumarbg@rvce.edu.in</u>

Dr. Vidya C, Dept of Chemical Engg, Phone:9620166222, e-mail:vidyac@rvce.edu.in

Student Details

Name {	
USN:	
Branch:	
Phone:	
e-mail:	
Signature of Student	

Job Opportunity

After training, the student can find employment in the area of building services, area calculations and property tax calculations. Supervision based employment in building repair/services civil and chemical laboratories.

Innovative teams of RVCE

- 1. Ashwa Racing : Ashwa Mobility Foundation (AMF) is a student R&D platform that designs and fabricates Formula-themed race cars and future mobility solutions to tackle urban transportation problems.
- 2. Astra Robotics Team : Involved in the design, fabrication, and building of application-specific robots.
- Coding Club : To facilitate students in acquiring the skills, confidence, and opportunities to change their world using coding. The club aims to help students become successful in GSoC, ACM-ICPC, and other recognized coding competitions.
- 4. Entrepreneurship Development Cell : E-Cell is a student-run body that aims to promote entrepreneurship by conducting workshops, speaker sessions, and discussions on business and its aspects. The organization possesses a mentor board to help startups grow.
- 5. Frequency Club Team : This team contributes to both software and hardware domains, mainly focusing on Artificial Intelligence, Machine Learning, and its advances.
- 6. Team Garuda : Design and development of a supermileage urban concept electric car. Indigenous development of E-mobility products.
- 7. Team Jatayu : Aims to build a low-cost Unmanned Aerial Vehicle capable of autonomous navigation, obstacle avoidance, object detection, localization, classification, and air drop of a package of optimum weight.
- 8. Solar Car : Aims to build a roadworthy solar electric vehicle to contribute to a green and sustainable environment.
- 9. Team Antariksh : A Space Technology Student Club whose goal is to understand, disseminate, and apply engineering skills for innovation in the field of Space technology, including the development of operational rockets of various altitude platforms.
- 10. Team Chimera : Building a Formula Electric Car through research and development in E-Mobility. Electrifying Formula Racing.
- 11. Helios Racing Team : Involved in the design, manufacturing, and testing of All-Terrain Vehicles and other supportive tasks for the functioning of the team. Participating in BAJA competitions organized by SAE in India and the USA.
- 12. Team Hydra : Developing autonomous underwater vehicles for various real-world applications such as water purification, solid waste detection and disposal, etc.
- Team Krushi : Aims to develop low-cost equipment to help farmers in cultivating and harvesting. Uses new technology applications to reduce labor time and cost for farmers. Aims at developing implements for tractors.
- 14. Team Vyoma : Design, fabrication, and testing of radio-controlled aircraft and research on various types of unmanned aerial vehicles.
- 15. Team Dhruva : Organizing activities like quizzes based on astronomy, stargazing, and telescope handling sessions. Construction of a standard observatory and working on small projects with organizations like ICTS, IIA, ARIES, etc.
- 16. Ham Club : To popularize Amateur Radio as a hobby among students, alongside exploring technical innovations in the communications domain. Intended to provide human capital for service to the nation during times of natural calamities.

Cultural Activity teams

- 1. AALAP (Music club)
- 2. DEBSOC (Debating society)
- 3. CARV (Dramatics club)
- 4. FOOTPRINTS (Dance club)
- 5. QUIZCORP (Quizzing society)
- 6. ROTARACT (Social welfare club)
- 7. RAAG (Youth club)
- 8. EVOKE (Fashion team)
- 9. f/6.3 (Photography club)
- 10. CARV ACCESS (Film-making

NSS of RVCE

NCC of RVCE

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

MISSION

- To deliver outcome based Quality education, emphasizing on experientiallearning with the state of the art infrastructure.
- To create a conducive environment for interdisciplinary research and innovation.
- To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

QUALITY POLICY

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

CORE VALUES

Professionalism, Commitment, Integrity, Team Work, Innovation

Go, change the world[®]