

R.V.COLLEGE OF ENGINEERING

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus for V & VI Semesters

2016 SCHEME

ELECTRONICS & INSTRUMENTATION ENGINEERING

Department Vision

Achieving academic excellence in Instrumentation Technology by adopting interdisciplinary research with a focus on sustainable and inclusive technologies.

Department Mission

- To create an environment for students to excel in domain areas and get motivated to involve in interdisciplinary research by utilizing state of the art infrastructure.
- To impart technical knowledge, encourage experiential learning and develop future professional leaders.
- To establish industry-academia networking and develop industry-ready students and future entrepreneurs, to meet societal & industrial challenges.
- To motivate lifelong learning and research in sustainable technologies to find improved solutions for the betterment of society.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **PEO1:** Apply Instrumentation, Electronics, Controls and Automation concepts to develop technical solutions for industrial problems.
- **PEO2:** Exhibit competency in adapting to various industrial challenges and work in interdisciplinary projects with team spirit and professional ethics for achieving organizational goals.
- **PEO3:** Pursue higher education in technology or management and achieve professional excellence by imbibing leadership qualities and communication skills.
- **PEO4:** Become entrepreneurs with a focus on sustainable technologies and develop innovative solutions to meet industrial and societal needs.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO	Description
PSO1	Design, analyze and practice the instrumentation, controls and automation
	concepts and techniques required for industrial and/or research pursuits
	resulting in product development, publications or patents.
PSO2	Demonstrate the knowledge of basic science, mathematics, electronic system
	design and programming for real-time applications, towards developing
	industrial solutions and become technology leaders of future.

Lead Society: International Society of Automation (ISA)

R.V.COLLEGE OF ENGINEERING

(Autonomous Institution Affiliated to VTU, Belagavi)

R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus for V & VI Semesters

2016 SCHEME

ELECTRONICS & INSTRUMENTATION ENGINEERING

SL. NO.	ABBREVIATION	MEANING
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	CS	Computer Science and Engineering
5.	CV	Civil Engineering
6.	CHY	Chemistry
7.	EC	Electronics and Communication Engineering
8.	EE	Electrical and Electronics Engineering
9.	ES	Engineering Science
10.	HSS	Humanities and Social Sciences
11.	ME	Mechanical Engineering
12.	PHY	Engineering Physics
13.	SEE	Semester End Examination
14.	MAT	Engineering Mathematics
15.	PCE	Professional Core Elective
16.	GE	Global Elective

ABBREVIATIONS

INDEX

V Semester					
SI. No.	Course Code		Course Title	Page No.	
1.	16HEM51	Foundations of	f Management and Economics	1	
2.	16EI52	VLSI Technol	ogy	3	
3.	16EI53	Digital Signal	Processing & Applications	6	
4.	16EI54	Non-Linear C	ontrol Systems	9	
5.	16EI55	OOPS with C	++ & Data Structure	11	
		GROUP A: PF	ROFESSIONAL CORE ELECTIVES	1	
1.	16EI5A1	Computer Org	ganization & Architecture	13	
2.	16EI5A2	Biomedical In	strumentation	15	
3.	16EI5A3	Micro Electro	-Mechanical Systems and Applications	17	
4.	16EI5A4	Image Process	sing	19	
	1	GROL	JP B: GLOBAL ELECTIVES	ļ	
Sl. No.	Course	Host Dept	Course Title	Page No.	
	Code	r			
1.	16G5B01	BT	Bioinformatics	21	
2.	16G5B02	СН	Fuel Cell Technology	23	
3.	16G5B03	CV	Geoinformatics	25	
4.	16G5B04	CSE	Graph Theory	27	
5.	16G5B05	ECE	Artificial Neural Networks & Deep Learning	29	
6.	16G5B06	EEE	Hybrid Electric Vehicles	31	
7.	16G5B07	IEM	Optimization Techniques	33	
8	16G5B08	E&I	Sensors & Applications	35	
9.	16G5B09	ISE	Introduction To Management Information	37	
10	1005010	ME	Systems	20	
10.	16G5B10	ME	Industrial Automation	39	
11.	16G5B11		Telecommunication Systems	41	
12.	16G5B12 16G5B13	AE	Basics of Aerospace Engineering	45	
			VI Comester		
Cl No	Course Code		VI Seniester	Daga No	
<u>JI. INU.</u>		IDD 9- Entroy		Page NO.	
1. ว	1003101	Virtual Instru	preneurship	4/ F0	
2.	10E102	Automatic D	intentation & Data acquisition	50	
<u> </u>	10E105		ion Systems	55	
4.	10E104	GROUP C: PF	OFESSIONAL CORE ELECTIVES	50	
1.	16EI6C1	Computer Co	ommunication Networks	58	
2.	16EI6C2	Advanced Si	gnal Processing	60	
<u>-</u> . 3	16EI6C3	Lasers Instru	mentation and Application	62	
4	16EI6C4	Java Program	ming	64	
т.	1011004		ROFESSIONAL CORE ELECTIVES		
1	16EI6D1	Analytical In	strumentation	66	
2	16EI6D2	Automotive	Electronics	68	
3	16EI6D3	Application	Specific Integrated Circuits (ASIC)	70	
4	16EI6D4	Aircraft Instr	umentation	72	
••	1021024	GROI	IP E: GLOBAL ELECTIVES	,	
1	16G6F01	Bioinspired	Engineering	74	
2	16G6F02	Green Techn	ology	76	
3	1666503	Solid Waste	Management	78	
4	16G6E04	Introduction	to Web Programming	80	
5	16G6F05	Automotive	Flectronics	82	
5.	1000000	114101101170		1 02	

6.	16G6E06	Industrial Electronics	84
7.	16G6E07	Project Management	86
8.	16G6E08	Virtual Instrumentation	88
9.	16G6E09	Introduction to Mobile Application Development	90
10.	16G6E10	Automotive Engineering	92
11.	16G6E11	Mobile Network System and Standards	94
12.	16G6E12	Partial Differential Equations	96
13.	16G6E13	Aircraft Systems	98
14.	16HS68	HSS	100

R V COLLEGE OF ENGINEERNG, BENGALURU-560 059 (Autonomous Institution Affiliated to VTU, Belagavi) DEPARTMENT OF ELECTRONICS & INSTRUMENTATION ENGINEERING

FIFTH SEMESTER CREDIT SCHEME								
SI.	Course	Course Title	BOS	Credit Allocation				Total
No.	Code	Course The	BU3	L	Т	Р	S	Credits
1.	16HEM51	Foundations of Management and Economics	HSS	2	0	0	0	2
2.	16EI52	VLSI Technology	EI	3	0	1	1	5
3.	16EI53	Digital Signal Processing & Applications	EI	3	0	1	1	5
4.	16EI54	Non-Linear Control Systems	EI	3	0	0	0	3
5.	16EI55	OOPS with C++ & Data Structure	EI	3	1	0	0	4
6.	16EI5AX	Elective A (PE)	EI	3	0	0	1	4
7.16G5BXXElective B (OE)Respective BoS			Respective BoS	4	0	0	0	4
	Total number of Credits							27
	Total	Number of Hours / Week		21	2	4	12**	27

	SIXTH SEMESTER CREDIT SCHEME							
SI.	Course	Course Title	Credit Allocation				Total	
No.	Code	Course mile	DOU	L	Т	Р	S	Credits
1.	16HSI61	IPR & Entrepreneurship	HSS	3	0	0	0	3
2.	16EI62	Virtual Instrumentation & Data acquisition	EI	3	0	1	1	5
3.	16EI63	Automatic Process Control and Modelling Techniques	EI	3	0	1	1	5
4.	16EI64	Communication Systems	EI	3	1	0	0	4
5.	16EI6CX	Elective C (PE)	EI	3	0	0	1	4
6.	16EI6DX	Elective D(PE)	EI	4	0	0	0	4
7.	16G6EXX	Elective E(OE)	Respective BoS	3	0	0	0	3
8. 16HS68 Professional Practice-III (Employability Skills and Professional Development of Engineers)		HSS	1	0	0	0	1	
	T	otal number of Credits						29
	Tota	Number of Hours / Week		23	2	4	12**	29

** Non-contact hours

	V Sem				
	(GROUP A: PROFESSIONAL CORE ELECTIVES			
Sl. No.	Sl. No. Course Course Title				
	Code				
1.	16EI5A1	Computer Organization & Architecture			
2.	16EI5A2	Biomedical Instrumentation			
3.	16EI5A3	Micro Electro-Mechanical Systems and Applications			
4.	16EI5A4	Image Processing			

GROUP B: GLOBAL ELECTIVES						
Sl. No.	Host Dept	Course Code	Course Title	Credits		
1.	BT	16G5B01	Bioinformatics	4		
2.	CH	16G5B02	Fuel Cell Technology	4		
3.	CV	16G5B03	Geoinformatics	4		
4.	CSE	16G5B04	Graph Theory	4		
5.	ECE	16G5B05	Artificial Neural Networks & Deep Learning	4		
6.	EEE	16G5B06	Hybrid Electric Vehicles	4		
7.	IEM	16G5B07	Optimization Techniques	4		
8.	E&I	16G5B08	Sensors & Applications	4		
9.	ISE	16G5B09	Introduction To Management Information Systems	4		
10.	ME	16G5B10	Industrial Automation	4		
11.	TCE	16G5B11	Telecommunication Systems	4		
12.	MAT	16G5B12	Computational Advanced Numerical Methods	4		
13.	AE	16G5B13	Basics of Aerospace Engineering	4		

	VI Sem				
	(GROUP C: PROFESSIONAL CORE ELECTIVES			
Sl. No.	Course	Course Title			
	Code				
1.	16EI6C1	Computer Communication Networks			
2.	16EI6C2	Advanced Signal Processing			
3.	16EI6C3	Lasers Instrumentation and Application			
4.	16EI6C4	Java Programming			
	(GROUP D: PROFESSIONAL CORE ELECTIVES			
1.	16EI6D1	Analytical Instrumentation			
2.	16EI6D2	Automotive Electronics			
3.	16EI6D3	Application Specific Integrated Circuits (ASIC)			
4.	16EI6D4	Aircraft Instrumentation			

GROUP E: GLOBAL ELECTIVES						
Sl. No.	Host Dept	Course Code	Course Title	Credits		
1.	BT	16G6E01	Bioinspired Engineering	3		
2.	CH	16G6E02	Green Technology	3		
3.	CV	16G6E03	Solid Waste Management	3		
4.	CSE	16G6E04	Introduction to Web Programming	3		
5.	ECE	16G6E05	Automotive Electronics	3		
6.	EEE	16G6E06	Industrial Electronics	3		
7.	IEM	16G6E07	Project Management	3		
8.	E&I	16G6E08	Virtual Instrumentation	3		
9.	ISE	16G6E09	Introduction to Mobile Application Development	3		
10.	ME	16G6E10	Automotive Engineering	3		
11.	TCE	16G6E11	Mobile Network System and Standards	3		
12.	MAT	16G6E12	Partial Differential Equations	3		
13.	AE	16G6E13	Aircraft Systems	3		

	V Semester FOUNDATIONS OF MANAGEMENT AND ECONOMICS					
	(Theory)					
Cou	rse Code:16HEM51		CIE Marks: 50			
Cre	Credits: L:T:P:S: 2:0:0:0 SEE Marks: 50					
Hou	irs: 23L		SEE Duration: 02Hrs			
Cou	rse Learning Objectives: The stude	ents will be able to				
1	Understand the evolution of manage	ement thought.				
2	Acquire knowledge of the functions	of Management.				
3	3 Gain basic knowledge of essentials of Micro economics and Macroeconomics.					
1	Understand the concepts of macroed	conomics relevant to	different organizational			
-	contexts.					

Γ

UNIT-I				
Introduction to Management: Management Functions, Roles & Skills, Management	04 Hrs			
History – Classical Approach: Scientific Management & Administrative Theory,				
Quantitative Approach: Operations Research, Behavioural Approach: Hawthorne Studies,				
Contemporary Approach: Systems & Contingency Theory.				
UNIT-II				
Foundations of Planning: Types of Goals & Plans, Approaches to Setting Goals & Plans,	02 Hrs			
Strategic Management Process, Corporate & Competitive Strategies.				
Organizational Structure & Design: Overview of Designing Organizational Structure:	03 Hrs			
Work Specialization, Departmentalization, Chain of Command, Span of Control,				
Centralization & Decentralization, Formalization, Mechanistic & Organic Structures.				
UNIT-III				
Motivating Employees: Early Theories of Motivation: Maslow's Hierarchy of Needs	03 Hrs			
Theory, McGregor's Theory X & Theory Y, Herzberg's Two Factor Theory, Contemporary				
Theories of Motivation: Adam's Equity & Vroom's Expectancy Theory.				
Managers as Leaders: Behavioural Theories: Ohio State & University of Michigan	03 Hrs			
Studies, Blake & Mouton's Managerial Grid, Contingency Theories of Leadership: Hersey				
& Blanchard's Situational Leadership, Contemporary Views of Leadership: Transactional				
& Transformational Leadership.				
UNIT-IV				
Introduction to Economics: Concept of Economy and its working, basic problems of an	04 Hrs			
Economy, Market mechanism to solve economic problems, Government and the economy,				
Essentials of Micro Economics: Concept and scope, tools of Microeconomics, themes of				
microeconomics, Decisions: some central themes, Markets: Some central themes, Uses of				
Microeconomics.				
UNIT-V				
Essentials of Macroeconomics: Prices and inflation, Exchange rate, Gross domestic	04 Hrs			
product(GDP), components of GDP, the Labour Market, Money and banks, Interest rate,				
Macroeconomic models- an overview, Growth theory, The classical model, Keynesian				
cross model, IS-LM-model, The AS-AD-model, The complete Keynesian model, The neo-				
classical synthesis, Exchange rate determination and the Mundell-Fleming model.				

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Explain the principles of management theory & recognize the characteristics of an					
	organization.					
CO2:	Demonstrate the importance of key performance areas in strategic management and design					
	appropriate organizational structures and possess an ability to conceive various					
	organizational dynamics.					
CO3:	Select & Implement the right leadership practices in organizations that would enable systems					
	orientation.					
CO4:	Understand the basic concepts and principles of Micro economics and Macroeconomics					

Ref	erence Books
1.	Management, Stephen Robbins, Mary Coulter & NeharikaVohra, 10 th Edition, 2001, Pearson
	Education Publications, ISBN: 978-81-317-2720-1.
2.	Management, James Stoner, Edward Freeman & Daniel Gilbert Jr, 6 th Edition, 1999, PHI, ISBN:
	81-203-0981-2.
3.	Microeconomics, Douglas Bernheim B & Michael D Whinston, 5 th Edition, 2009,
	TMHPub.Co.Ltd, ISBN: 13:978-0-07-008056-0.
4.	Macroeconomics: Theory and Policy, Dwivedi. D.N, 3rd Edition, 2010, McGraw Hill Education;
	ISBN-13: 978-0070091450.
5.	Essentials of Macroeconomics, (<u>www.bookboon.com</u>), Peter Jochumzen, 1 st Edition. 2010, e-
	book, ISBN:978-87-7681-558-5.

Continuous Internal Evaluation (CIE); Theory (50 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 05 marks adding up to 15 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 25 marks each and the sum of the marks scored from three tests is reduced to 30. The marks component for Assignment is 05. The total marks of CIE are 50.

Semester End Evaluation (SEE); Theory (50 Marks)

SEE for 50 marks are executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 10 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 08 marks adding up to 40 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1											
CO2	1		2	2			1			2	2	
CO3	1							2	2	2	1	
CO4	1	2				2						2

	V Semester					
	N	LSI TECHNOLO	GY			
	(Theory and Practice)					
Co	irse Code:16EI52		CIE Marks: 100+50			
Cre	dits/Week: L:T:P:S:3:0:1:1		SEE Marks: 100+50			
Ho	urs:35L		SEE Duration: 03Hrs+03Hrs			
Co	irse Learning Objectives: The stu	dents will be able (0			
1	To understand the evolution of VL	SI technology & fa	brication process of MOS Device.			
2	To study the structure of MOSFET	under different bia	s and its characteristics.			
3	Mathematically understand the co	ncept of CMOS Inv	erter, estimation of CMOS delay.			
4	To describe the working of digital	CMOS circuits (bo	th combinational and sequential).			
5	To understand the concept of CMC	OS analog design an	d small signal equivalent circuits.			
6	Get exposure to Low power design	n techniques.				
		UNIT-I				
Ir	troduction: Overview of VLSI D	esign methodologi	es, Moore's law, VLSI design	07 Hrs		
fl	ow, Design hierarchy, Concept of	regularity modula	rity and locality, VLSI design			
st	yles.					
F	abrication of MOSFETs: Fabric	ation flow basic	steps, Fabrication of NMOS			
tr	ansistor, CMOS nwell, pwell and tw	in tub process.				
		UNIT_II				
N	MOS Transistor: MOS structure MOS under external bias structure and operation of 07 Hrs					
M	MOSEFT LV characteristics channel length modulation MOSEFT trans conductance					
ar	and output conductance NMOS inverter and it's working					
C	MOS Inverter: Introduction, CMO	S inverter DC chara	cteristics. Design parameters of	07 Hrs		
	MOS inverter. Symmetric CMOS in	verter. Switching cl	naracteristics of CMOS inverter.			
	Estimation of CMOS inverter delay.					
	MOS design Process: Stick diagram and layouts for NMOS inverter, CMOS inverter, 2					
	Input NAND gate and NOK gate.					
	igital CMOS Design:	agia Circuita Ca	mplay Logic circuits CMOS	07 Hrs		
	unsmission Cates Statis CMOS des	logic Circuits, Co	niplex Logic circuits, CMOS			
	Industrial Circuites, Static UNIOS design, randoned logic, pass transistor logic.					
fl	flon circuits. D triggered and edge triggered					
Δ	Analog CMOS Design: Basic Concepts Common source stage with resistive load 07 Hrs.					
	amon gate source follower by	sic differential pai	r (qualitative and quantitative)	0/1115		
	alvsis only) and Gilbert cell	sie unterentiar par				
Ir	troduction to Low Power VI SI	Need for low nowe	r VLSI chips. Sources of power			
di	ssipation on Digital Integrated circu	its. Emerging Low	nower approaches			
Lu	מושיקונטו טו בוצוומו וווכצומוכע כורכעונש. בוווכוצווצ בטיא אטאכו מאאוטמכווכש.					

Lab Experiments:

Analog Design

- 1. To design a CMOS Inverter with given specification and simulate for DC analysis and transient analysis.
- 2. Design and simulation of static characteristics of two input NOR and OR Gates.
- 3. To design a common source amplifier and simulate for DC analysis, AC analysis and transient analysis.
- 4. To design a common drain amplifier and simulate for DC analysis, AC analysis and transient analysis.
- 5. To design a single stage Differential Amplifier with given specifications and verifying the following for Schematic: i) DC Analysis ii) AC Analysis iii) Transient Analysis.

Digital Design

- 1. To Compile and simulate the Verilog Code for a CMOS inverter circuit and observe the waveform.
- 2. To write Verilog Code for the Buffer circuit and Test Bench for Verification, observe the waveform.
- 3. To write Verilog Code for the Transmission gate circuit and Test Bench for Verification, observe the waveform.
- 4. To write Verilog Code for various Flip flop circuits and Test Bench for Verification, observe the waveform.

Open End Experiment

- 1. Layout for CMOS inverter, Layout of NAND and NOR gate.
- 2. Parallel adders, serial adders, R-2R DAC, SAR ADC.

Course Outcomes: After completing the course, the students will be able to				
CO1:	Understand the fundamentals of VLSI design.			
CO2:	Apply the fundamentals concepts of VLSI to analog and digital circuits.			
CO3:	Analyze and evaluate the performance characteristics of MOSFETs.			
CO4:	Design of CMOS Analog and Digital circuits.			

Reference Books

Iterere	
1	CMOS Digital Integrated Circuits Analysis and Design, Sung-Mo Kang & Yusuf
	Leblebici, 3 rd Edition, 2004, Tata McGraw Hill, ISBN: 978-1-4020-7234-5.
2	Basic VLSI Design, Douglas A. Pucknell, Kamran Esharghain, 3rd Edition, 2005, PHI,
	ISBN: 978-81-203-0986-9.
3	Design of CMOS Analog IC, Behzad Razavi, 2 nd Edition, 2016, McGraw Hill Education
	ISBN-13: 978-0072524932.
4	CMOS VLSI Design: A circuits and systems perspective, Neil H Weste and David Harris,
	4 th Edition, 2015, Pearson, ISBN-10: 0321547748, ISBN-13: 978-0321547743.

Continuous Internal Evaluation (CIE): Total marks: 100+50=150

Theory – 100 Marks

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The to-tal CIE for theory is 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150

Theory – 100 Marks

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks cov-

ering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO MAPPING											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	-	3	-	-	-	2	2	-	3
CO2	1	1	1	-	1	-	-	-	1	1	-	2
CO3	2	1	1	-	2	-	-	-	2	2	-	2
CO4	2	1	1	-	2	-	-	-	2	1	-	2

V Semester				
DIGITAL SIGNAL PROCESSING AND APPLICATIONS				
(Theory and Practice)				
Course Code:16EI53	CIE Marks: 100+50			

Credits/Week: L:T:P:S: 3:0:1:1			SEE Marks: 100+50	
Hours: 35L			SEE Duration: 03Hrs+03Hrs	
Cou	rse Learning Objectives: The stud	dents will be able t	0	
1	Analyze the time domain and frequency domain representations of discrete-time signals using			
	DFT and their properties.			
2	Apply efficient method for calcul	ating the DFT & ID	FT.	
3	Design and implement IIR and FI	R digital filters.		
4	Realize the various structures for	discrete time system	ns.	

UNIT-I	
Introduction:	07 Hrs
Signals, Systems and Signal processing: Basic Elements of Digital Signal Processing	
System, Advantages of Digital over Analog Signal Processing.	
Classification of Signals, Concept of Frequency in Continuous-Time and Discrete–Time	
Signals, Analog to Digital and Digital to Analog Conversion.	
Discrete Fourier Transforms (DFT): Frequency domain sampling of spectrum and	
reconstruction of discrete time signals, DFT as a linear transformation, relationship of	
DFT with other transforms, Properties of DFT and their significance.	
UNIT-II	
Linear Filtering methods based on DFT: Use of DFT in linear filtering, Filtering of	07 Hrs
Long Data sequences: Overlap-add and Overlap-save method.	
Efficient computation of the DFT (FFT algorithms): Direct computation of DFT,	
Radix-2 FFT algorithms for the computation of DFT and IDFT using decimation-in-time	
and decimation-in-frequency algorithms. Applications of FFT Algorithms: Efficient	
Computation of DFT of two real sequences, Use of FFT algorithm in linear filtering and	
Correlation.	
UNIT-III	
Implementation of discrete-time systems: Structures for IIR and FIR systems-direct	07 Hrs
form -I and direct form- II systems, cascade, parallel, lattice, Lattice and Ladder and	
Linear phase realization.	
Design of analog filters: Butterworth and Chebyshev filters, Frequency transformation in	
the analog domain. Frequency transformation in the digital domain.	
UNIT-IV	
Design of IIR filters from analog filters (Butterworth and Chebyshey): Forward	07 Hrs
difference, backward difference. Impulse invariance method bilinear transformation	07 1110
method and Matched z transform method. Verification for stability and linearity during	
manning	
IINIT-V	
FIR filter design: Introduction to FIR filters. Design of FIR filters using Rectangular	07 Hrs
Hamming Hanning Kaiser and Bartlet windows FIR filter design using frequency	07 1113
sampling technique	
Annlications of Digital Signal Processing. Dual-Tone Multi frequency Signal Detection	
Musical Sound Processing	
Musical Sound Frocessing.	

Lab Experiments

- 1. Sampling Theorem Verification
- 2. Verification of Linear Convolution Using MatLab and Code Composer Studio

- 3. Verification of Circular Convolution Using MatLab and Code Composer Studio
- 4. Spectrum Using FFT
- 5. Dual Tone Multi Frequency (DTMF)
- 6. Design of FIR Filter (Hamming and Kaiser window)
- 7. Design & test Butterworth I & II order low/High pass filter
- 8. Design & test Chebyshev I & II order Low/High pass filter
- 9. Design Of FIR Filter (LP/HP) Using Windowing Technique on DSK6713
- 10. IIR Filter (LP/HP) Implementation on DSK6713

All the experiments must be executed in MATLAB and C language using DSP Processor.

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Understand the basic concepts of Digital Signal processing.					
CO2:	Apply the various DSP techniques to perform signal processing.					
CO3:	Analyze signals using the Discrete Fourier Transform and Inverse Discrete Fourier					
	Transform.					
CO4:	Design & implementation of the filters for the required specifications and evaluate the					
	digital signal processing algorithms using simulation tool and DSP processors.					

Referen	ce Books
1	Digital Signal Processing, Sanjith Kumar Mithra, 4 th Edition, 2011, McGraw Hill, ISBN: 978-0-07-338049-0.
2	Digital signal processing, Principles Algorithms & Applications, John G. Proakis & Dimitris K Manolakis, 4 th Edition, 2013, Pearson New International Edition, ISBN: 1292038160, 9781292038162.
3	Discrete Time Signal Processing, Oppenheim & Schaffer, 3 rd Edition, 2013, Pearson New International Edition, ISBN: 1292038152, 9781292038155.
4	Digital Signal Processing, Lee Tan, 2007, Elsevier publications, ISBN: 978-0124158935.

Continuous Internal Evaluation (CIE): Total marks: 100+50=150

Theory – 100 Marks

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The to-tal CIE for theory is 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150

Theory – 100 Marks

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

					CO-P	O MAI	PPING					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	3	2	1	1	2	-	-	-	2	2	1	1
CO2	1	1	2	3	1	1	-	1	2	3	1	1
CO3	2	1	2	3	1	-	1	-	2	3	1	1
CO4	1	1	1	1	1	-	-	1	1	2	1	1

V Semester
NON-LINEAR CONTROL SYSTEMS
(Theory)

Course Code:16EI54		CIE Marks: 100	
Credits/Week: L:T:P:S:3:0:0:0		SEE Marks: 100	
Hours:36L		SEE Duration: 03Hrs	
Course Learning Objectives: The students will be able to			
1	To understand basics of linear and nonlinear control systems, state space analysis and pole		
	placement.		
2	To understand different analysis techniques.		
3	To create and analyze state space models.		
4	To develop state space models.		

UNIT-I	
Advanced controllers: Introduction, Advantages of modern control systems.	06 Hrs
Controllers: Properties of controllers-Proportional, Integral & Derivative.	1
Classification of controllers: Proportional, Integral, Derivative, Comparison of different	
controllers.	l
Composite controller: Proportional Integral, Proportional Derivative, & Proportional	l
Integral and Derivative Controllers, limitations of linear control systems.	1
UNIT-II	
Nonlinear systems: Introduction, properties of nonlinear systems.	08 Hrs
Classification of nonlinear systems: Incidental nonlinearity, Intentional nonlinearity.	l
Describing Function: Introduction, basics of describing function analysis, Types of relays,	l
Derivation of describing function for relays, Stability criteria in terms of describing	l
function.	
UNIT-III	
State space analysis: Introduction, Concept of state, state space model from transfer	08 Hrs
function, Determination of transfer function from state equation.	
Decomposition of transfer function : Series decomposition, parallel decomposition-	
simple poles, repeated poles.	
UNIT-IV	
Solution of state equation: Introduction, classical power series method, State Transition	07 Hrs
Matrix, Properties of state transition matrix, Caley Hamilton theorem, Sylvester	l
interpolation formula.	l
Solution of non-homogeneous state equation with input: classical solution of	l
differential equation, Concept of controllability and observability.	
UNIT-V	
Pole placement technique: Introduction, Necessary and sufficient conditions for arbitrary	07 Hrs
pole placement, Determination matrix k, concept of state observer, full order state observer,	l
dual problem, necessary and sufficient condition for state observation, and determination	1
of state observer gain matrix.	1
Advanced Applications of Control Systems- A Modular and Scalable wheeled mobile	1
ROBOT, The MARS Sorjouner ROVER, Deep Space1, Experimental unmanned Vehicle	1
(XUV).	L

Course Outcomes: After completing the course, the students will be able to					
CO1:	Have a good understanding of linear, nonlinear, continuous & discrete control systems,				
	dynamic system modelling and analysis.				
CO2:	Apply the concepts of dynamic modelling, stability, pole-placement of control systems.				
CO3:	Analyze and evaluate dynamic control systems.				

CO4: Develop/Create solutions for control systems problems.

Refe	rence Books
1	Advanced Control Systems, B.N.Sarkar, 1 st Edition, 2013, PHI, ISBN: 8120347102- 9788120347106.
2	Advanced Control Systems, Dr.K.M.Soni, P.M. Tiwari, Ayushi Sharma, 4 th Edition 2013, S.K.Kataria & Sons, ISBN: 978-81-907386-0-6.
3	Advanced control Theory, Nagoor Kani, 2 nd Edition, 2014, RBA Publications, ISBN: 4567146603, 1234567146601.
4	Design and Analysis of Control Systems, Arthur G.O. Mutambara, 2 nd Edition, 2017, CRC Press Book, ISBN: 9781315140940.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The to-tal marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-PC	MAP	PING					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	-	2	1	-	-	1	-	-	2
CO2	3	1	2	-	2	2	-	-	2	-	-	2
CO3	2	2	2	_	2	1	_	-	_	_	_	2
CO4	1	1	1	-	2	2	-	-	-	-	-	2

V Semester				
OOPS WITH C++ & DATA STRUCTURE				
(Theory)				
Course Code: 16EI55		CIE Marks: 100		
Credits/Week: L:T:P:S:3:1:0:0		SEE Marks: 100		
Hours:36L+24T		SEE Duration: 03Hrs		

Course	Course Learning Objectives: The students will be able to				
1	Explain C++ functions and concepts related to good modular design.				
2	Illustrate the concepts of inheritance and polymorphism.				
3	Demonstrate the ability to overload operators in C++.				
4	Demonstrate the use of text file input/output develop object oriented program to any				
	complex problem				
5	Explain different types of data structure algorithm.				

UNIT-I			
Concepts of OOP: Introduction OOP, Procedural Vs. Object Oriented Programming, 08			
Principles of OOP, Benefits and applications of OOP.C++ Basics: Overview, Program			
structure, namespace, identifiers, variables, constants, enum, operators, typecasting,			
control structures.			
C++ Functions & Structure: Simple functions, Call and Return by reference, Inline			
functions, Macro Vs. Inline functions, Overloading of functions, default arguments.			
Structure with structure, Pre-processor directories.			
UNIT-II			
Objects and Classes: Basics of object and class in C++, Private and public members,	07 Hrs		
static data and function members, constructors and their types, destructors.			
Operator overloading: Unary operator, Binary Operator, Overloading assignment			
operator, type conversion.			
UNIT-III			
Inheritance: Concept of Inheritance, types of inheritance: single, multiple, multilevel,			
hierarchical, hybrid, protected members, overriding, virtual base class.			
Polymorphism : Pointers in C++, Pointers and Objects, this pointer, virtual and pure			
virtual functions, Implementing polymorphism.			
UNIT-IV			
I/O Management & File management: Concept of streams, C _{in} and C _{out} objects, C++	07 Hrs		
stream classes, Unformatted and formatted I/O, manipulators, File stream, C++ File			
stream classes, File management functions, File modes, Binary and random Files.			
Templates and exceptions: Function Template, Class Template, Exception.			
UNIT-V			
Data structure : Introduction to data structure. Linear Data Structure: Stacks, Queue,			
Links Lists, Sorting, Searching, Binary Trees Algorithm, Heap and Programming.			

Course	Course Outcomes: After completing the course, the students will be able to				
CO1:	Understand various concept object oriented programming language using C++.				
CO2:	Apply knowledge of functions, class, operator overloading concept to the analysis and				
	design of simple C++ program.				
CO3:	Analyse real world problems and solve them implementing features of data structures.				
CO4:	Design, implement, test, debug, and document programs in C and C++.				

Referer	ice Books
1.	Object Oriented Programming in C++, Robert Lafore, 7 th Edition, 2017, McGraw Hill
	Education, ISBN: 978-9352607990.
2.	Object Oriented Programming with C++, E. Balaguruswamy, 6 th Edition, 2013, McGraw Hill
	Education, ISBN: 978-1259029936.
3.	Data Structures in C++, Yeswanth P Kanetkar, 5 th Edition, 2003, BPB Publications ISBN:
	978-8176567077.

4.	Thinking In C++, Bruce Eckel, 2 nd Edition, Volume 1 & 2, 2000, Pearson Education India,
	ISBN: 978-8131706619.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO - PO MAPPING												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	-	-	-	-	-	1	1	1	2
CO2	1	2	2	1	3	-	-	-	1	1	-	2
CO3	2	2	2	1	3	-	-	-	1	1	-	2
CO4	2	2	2	2	3	-	-	-	1	1	-	2

Low-1 Medium-2 High-3

	V Semester									
	COMPUTER ORGANIZATION AND ARCHITECTURE									
	(Group A:Professional Core Elective)									
Course	e Code:16EI5A1		CIE Marks: 100							
Credit	s/Week: L:T:P:S:3:0:0:1		SEE Marks: 100							
Hours	:36L		SEE Duration:03Hrs							
Course	e Learning Objectives: The stu	dents will be able to	D							
1	Illustrate how Computer Sys	tems work & its	basic principles and analyse the system							
	performance.									
2	Analyse the concepts behind a	advanced pipelining	techniques and the current state of art in							
	memory system design.									
3	Understanding the concept of p	programs as sequenc	es of machine instructions and relationship							
	between assembly language and machine language.									
4	Develop skill in assembly lan	iguage programming	g, understanding the relationship between							
	high-level compiled languages	and assembly langu	age.							

UNIT-I					
Basic Structure of Computers: Computer Types, Functional Units, Basic Operational	07 Hrs				
Concepts, Bus Structures, Software, Performance, Multiprocessors and Multi computers,					
RISC v/s CISC, Von-Neumann architecture and Harvard architecture.					
Basic processing unit: Some Fundamental Concepts, Register Transfers, Performing an					
Arithmetic or Logic Operation, Fetching a Word from Memory, Storing a Word in					
Memory.					
UNIT-II					
Computer arithmetic: Addition and subtraction, multiplication algorithms, hardware	08 Hrs				
implementations for signed-magnitude data, hardware algorithm, booth multiplier,					
division algorithm, floating point arithmetic operation.					
UNIT-III					
Memory : Concepts of semiconductor memory, CPU- memory interaction, organization of	08 Hrs				
memory modules, Cache memory and associate memory, direct mapping, set associate					
mapping, writing into cache, Virtual memory.					
Secondary storage and type of storage devices, Introduction to buses and connecting I/O					
devices to CPU and memory, Introduction to RISC and CISC paradigm, Design issues of a					
RISC processor and example of an existing RISC processor.					
UNIT-IV					
Input/output processing: Introduction to input/output processing, working with video	07 Hrs				
display unit and keyboard and routine to control them, Programmed controlled I/O					
transfer, Interrupt controlled I/O transfer, DMA controller, I/O processor.					
UNIT-V					
Pipelining: Introduction to pipelining and pipeline hazards, design issues of pipeline	06 Hrs				
architecture Instruction level parallelism and advanced issues, superscalar operations,					
performance consideration.					

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Understand the basic concepts of computer organization & architecture.								
CO2:	Apply computer architecture theory to solve the basic functional problem of computer.								
CO3:	Analyze performance issues in processor algorithms, memory, pipeline, I/O Operation of a								
	Digital computer.								
CO4:	Design a hardware component for an embedded system of a digital computer.								

Referei	ice Books
1	Computer Organization, V. C. Hamacher, Z. G. Vranesic and S. G. Zaky,5 th Edition, 2002,
	McGraw Hill, ISBN: 9780071007429.
2	Computer System Architecture, M.Morris Mano, 3 rd Edition, 2017, Pearson Education India,
	ISBN: 978-9332585607
3	Computer Organization and Architecture: Designing for Performance, William Stallings, 8 th
	Edition, 2010, Pearson Education India, ISBN: 9789332518704.
4	Structured Computer Organization, A. S. Tanenbaum, 6 th Edition, 2013, Prentice Hall of
	India, ISBN: 978-8120347205.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO MAPPING												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	2	-	-	-	-	-	-	-	-
CO2	2	3	2	1	-	-	-	-	-	-	-	-
CO3	1	2	3	1	-	-	-	-	2	2	-	-
CO4	1	2	1	3	1	-	-	2	3	3	-	-

V Semester										
	BIOMEDICAL INSTRUMENTATION									
	(Group A:Professional Core Elective)									
Cours	se Code: 16EI5A2		CIE Marks: 100							
Credi	ts/Week: L:T:P:S : 3:0:0:1		SEE Marks: 100							
Hours	s: 36L		SEE Duration(Theory): 3 Hrs							
Cours	se Learning Objectives: The stu	dents will be able to								
1	Study the basic biomedical signation	als and the instrumen	tation to measure them.							
2	Provide an insight into the work	king principle of instr	ruments to measure the vital physiological							
	parameters.									
3	3 Understand the need of critical care diagnostics during emergencies like pacemakers and									
	defibrillators.									
4	Describe the working of pulmor	ary function analyse	r and hemodialysis machines.							

UNIT-I						
Fundamentals: Sources of Biomedical signals, Basic medical instrumentation system, General constraints in design of medical instrumentation systems. Bioelectric Signals and Electrodes: Origin of bioelectric signals, Types of bioelectric signals, Recording electrodes, Electrode-tissue interface, Polarization, Skin contact impedance, Silver-silver chloride electrodes, Electrodes for ECG, EEG, EMG,	07 Hrs					
Microelectrodes.						
UNII-II						
Electrocardiograph: Electrical activity of heart, Genesis and characteristics of Electrocardiograph (ECG), Block diagram description of an Electrocardiograph, ECG lead systems, Multi-channel ECG machine. Electroencephalograph: Genesis of EEG, Block diagram description of an EEG, 10-20 Electrode system, Computerized analysis of EEG.	08 Hrs					
UNIT-III						
Patient Monitoring System: Bedside monitors, Central Monitors, Measurement of Heart Rate, Average Heart Rate meter, Instantaneous heart rate meter, Measurement of pulse rate, Blood Pressure measurement, Direct and indirect method, Automatic blood pressure measuring apparatus using Korotkoff's method. Oximeters: Oximetry, ear oximeter, pulse oximeter, skin reflectance oximeter and intravascular oximeter.						
UNIT-IV						
Blood Flow Meters: Electromagnetic blood flow meter, Types of electromagnetic blood flow meters, Ultrasonic blood flow meters, NMR blood flow meters, Laser Doppler blood flow meters. Cardiac Pacemakers and Defibrillators: Need for Cardiac pacemaker, External	07 Hrs					
Pacemaker, Implantable Pacemaker, Types of Implantable Pacemaker, Ventricular Synchronous Demand Pacemaker and Programmable Pacemaker. Need for a defibrillator, DC defibrillator, Defibrillator electrodes, DC defibrillator with synchronizer.						
UNII-V	06 Um					
 Pneumotachometer, Measurement of volume by Nitrogen washout technique. Haemodialysis machines: Function of kidneys, Artificial kidney, Dialyzers, Haemodialysis machine, Portable kidney machines. 	001115					

Course Outcomes: After completing the course, the students will be able to

CO1:	Understand the sources of biomedical signals and basic biomedical instruments.											
CO2:	Apply concepts for the design of biomedical devices											
CO3:	Analyze the methods of acquisition and signal conditioning to be applied to the											
	physiological parameters.											
CO4:	Develop instrumentation for measuring and monitoring biomedical parameters.											

Referen	ice Books
1	Handbook of Biomedical Instrumentation, R. S. Khandpur,3 rd Edition, Reprint 2016, Tata McGraw-Hill, ISBN: 9780070473553.
2	Biomedical Instrumentation and Measurements, Leslie Cromwell & others, 2 nd Edition, Reprint 2015, ISBN: 9780130771315.
3	Medical instrumentation: Application and Design, J. G. Webster, 3 rd Edition, Reprint 2015, Wiley Publications, ISBN: 9788126511068.
4	Principles of Biomedical Instrumentation and Measurement, Richard Aston, 4 th Edition, 2005, Prentice Hall of India, ISBN: 9780675209434.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO MAPPING												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	1	1	-	-	1	-	2	2	-	1
CO2	1	-	1	1	-	1	1	-	2	2	-	1
CO3	1	1	1	1	-	-	1	-	2	-	-	2
CO4	1	1	1	1	-	1	1	-	2	2	-	2

V Semester							
	MICRO ELECTRO-MECHANICAL SYSTEMS AND APPLICATIONS						
	(Group	A:Professional Cor	e Elective)				
Course C	C ode: 16EI5A3		CIE Marks: 100				
Credits/V	Credits/Week: L:T:P:S: 3:0:0:1 SEE Marks: 100						
Hours:35	5L		SEE Duration: 3 Hrs				
Course L	Learning Objectives: The stu	dents will be able to)				
1	Understand the rudiments of	Micro fabrication te	chniques.				
2	Identify and associate the various sensors and actuators to applications.						
3	Analyze different materials used for MEMS.						
4	Design applications of MEM	IS to disciplines.					

UNIT-I	
Overview of MEMS & Microsystems and working principles of Microsystems: MEMS	07 Hrs
and Microsystems, Typical MEMS and microsystem products, Evolution of	
microfabrication, Microsystems and microelectronics, Multidisciplinary nature of	
Microsystems, Design and manufacture, Applications of Microsystems in automotive,	
healthcare, aerospace and other industries. Working Principle of Biomedical and biosensors	
Microsystems.	
UNIT-II	
Working principle of Microsystems: Micro sensors: Acoustic, Chemical, Optical and	07 Hrs
Thermal.	
Micro actuation: Using thermal forces, shapememory alloys Piezoelectric crystals and	
electrostatic forces, MEMS with micro actuators: Micro grippers, micro motors, micro	
valves and micro pumps, micro accelerometers, microfluidics.	
Introduction to Scaling: Scaling in Geometry, Scaling in Rigid body dynamics, Scaling in	
Electrostatic forces, Scaling in electromagnetic forces and scaling in fluid mechanics.	
UNIT-III	
Materials for MEMS and Microsystems: Substrates and wafers, Active substrate	07 Hrs
materials, Silicon as substrate material, Silicon Compounds, Si-Piezoresistors, GaAs,	
Quartz, Piezoelectric Crystals, Polymers and packaging materials. Three level of	
Microsystem packaging, Die level packaging, Device level packaging, System level	
packaging. Interfaces in microsystem packaging. Essential packaging technologies: die	
preparation, Surface bonding, Wire bonding, Sealing.3D packaging.	
UNIT-IV	
Microsystem Fabrication Process: Introduction to microsystems, Photolithography, Ion	07 Hrs
Implantation, Diffusion, Oxidation, CVD, PVD-Sputtering, Deposition of Epiaxy, Etching,	
LIGA process: General description, Materials for substrates and photoresists,	
Electroplating and SLIGA process.	
UNIT-V	
Tactile and Flow sensors – Piezoelectric sensors and actuators – piezoelectric effects –	07 Hrs
piezoelectric materials – Applications to Inertia, Acoustic, Tactile and Flow sensors.	
Overview, Application, Fabrication Process In Applications: Silicon Capacitive	
Accelerometer, Piezoresistive Pressure sensor, Electrostatic Comb drive, Portable blood	
analyser, Piezo electric Inkjet Print head, Micro-mirror array for Video projection	

Course (Course Outcomes: After completing the course, the students will be able to						
CO1:	Understand the operation of micro devices, micro systems and their applications.						
CO2:	Apply the principle of material science to sensor design.						
CO3:	Analyze the materials used for sensor designs.						
CO4:	Conceptualize and design micro devices, micro systems.						
Reference	ce Books						

1	MEMS & Micro systems Design and Manufacture, Tai Ran Tsu, 2 nd Edition, 2012, Tata
	McGraw Hill New Delhi, ISBN-13:978-0-07-048709-3.
2	Foundations of MEMS, Chang Liu, 2012, Pearson Education Inc. ISBN-13:978-0-13-
	249736-7.
3	Smart Material Systems and MEMS, Vijay K Varadan, K.J. Vinoy, S.Gopalakrishnan, 2006,
	Wiley-India, ISBN-978-81-265-3170-7.
4	Micro and Smart Systems, G.K Ananthasuresh, K.J. Vinoy, K.N.Bhat, V.K.Aatre, 2015,
	Wiley Publications, ISBN-:978-81-265-2715-1.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO MAPPING												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	-	-	-	-	-	-	-	-	-
CO2	2	3	-	-	2	2	-	-	-	-	-	-
CO3	1	2	2	-	1	1	-	-	-	-	-	2
CO4	-	-	-	-	1	1	-	-	-	3	-	1

	V Semester						
	IMAGE PROCESSING						
	(Group A:Professional Core Elective)						
Cours	e Code:16EI5A4 CIE Marks: 100						
Credit	s/Week: L:T:P:S:3:0:0:1 SEE Marks: 100						
Hours	:36L SEE Duration: 3 Hrs						
Cours	e Learning Objectives: The students will be able to						
1	Understand the principles of image enhancement, segmentation, compression and						
	morphological processing.						
2	Discuss various techniques of image enhancement in Spatial and Frequency domain.						
3	3 Develop and analyse various algorithms of different techniques used in biomedical image						
	processing.						
4	Apply different concepts and techniques of image processing for various medical						
	applications.						

UNIT-I	
Digital Image Fundamentals: Introduction to Digital Image Processing, Examples of fields that use Digital image processing, Fundamental Steps in Digital Image Processing, Components of an Image Processing System, Elements of Visual Perception, Image Sensing and Acquisition, Image Sampling and Quantization, Some Basic Relationships between Pixels, Linear and Nonlinear Operations.	05 Hrs
UNIT-II	
 Image Enhancement in Spatial domain: Some Basic Gray Level Transformations, Histogram Processing: Histogram equalization, Histogram specification, Enhancement Using Arithmetic/Logic Operations, Basics of Spatial Filtering, Smoothing Spatial Filters, Sharpening Spatial Filters. Image Enhancement in the Frequency Domain: Smoothing Frequency-Domain Filters, Sharpening Frequency Domain Filters and Homomorphic Filtering. 	10 Hrs
UNIT-III	
Image Segmentation : Point, line and edge detection, Edge linking and boundary detection. Thresholding: Basic Global thresholding, Multiple thresholding, Variable thresholding. Region Based Segmentation: Region growing, Region splitting and merging.	10 Hrs
UNIT-IV	
Image Compression : Fundamentals, Coding redundancy, spatial and temporal redundancy, irrelevant information, measuring image information, fidelity criteria, image compression models, some basic compression methods: Huffman coding, Arithmetic coding, LZW coding, Run-length coding, bit-plane coding.	06 Hrs
UNIT-V	
Morphological image processing Preliminaries, Dilation and Erosion, Opening and Closing, Some Basic Morphological Algorithms: Boundary extraction, hole filling.	05 Hrs

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Understand the fundamentals of Digital image processing steps.						
CO2:	Evaluate algorithms for image analysis based on segmentation, shape & texture, and						
	morphology.						
CO3:	Analyze the different image processing algorithms of enhancement, segmentation,						
	compression and morphological image processing for a particular application.						
CO4:	Develop the necessary skill base to explore and implement Digital Image Processing						
	algorithms.						

Referen	ice Books
1	Digital Image Processing, Rafael C. Gonzalez, Richard E. Woods, Education, 3 rd Edition,
	2011, Pearson, ISBN: 9/8-81-31/-2695-2.
2	Fundamentals of Digital Image Processing, Anil K. Jain, 2010 Edition, Prentice Hall of
	India, ISBN 13: 9788120309296.
3	Image Processing, Analysis and Machine Vision, Milan Sonka, Vaclav Hlavac & Roger
	Boyle, 4 th Edition, 2015, ISBN-13: 9781133593607.
4	The Image Processing Handbook, John C Russ, 6 th Edition, 2011, CRC Press, ISBN: 978-1-
	4398-4045-0.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO MAPPING												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	1	-	-	-	-	1	-	-	-	-	1
CO2	-	2	-	1	-	-	-	-	-	-	-	2
CO3	1	1	1	-	-	-	-	-	-	-	-	2
CO4	2	1	-	-	1	-	-	-	-	-	-	2

	V Semester								
	BIOINFORMATICS								
		(Group B: Global Elective)							
Cou	r se Code: 16G5B01		CIE Marks: 100						
Crec	lits:L:T:P:S: 4:0:0:0		SEE Marks: 100						
Hou	rs:04		SEE Duration: 03Hrs						
Cou	rse Learning Objectives:								
1	Understand the underlying tee	chnologies of Bioinformatics and	d Programming						
2	Explore the various algorithm	ns behind the computational gene	omics and proteomic structural						
	bioinformatics, modeling and	simulation of molecular system	S.						
3	3 Apply the tools and techniques that are exclusively designed as data analytics to investigate the								
	significant meaning hidden behind the high throughput biological data.								
4	Analyze and evaluate the outcome of tools and techniques employed in the processes of								
	biological data preprocessing	and data mining.							

Unit-I

Biomolecules: Introduction to Biomolecules. Structure, Types and Functions of	09 Hrs
Carbohydrates, Lipids, Nucleic Acids and Proteins. Genetic code, Codon degeneracy,	
Genes and Genomes. Bioinformatics & Biological Databases: Introduction to	
Bioinformatics, Goals, Scope, Applications in biological science and medicine. Biological	
databases – Sequence, structure, Special Databases and applications - Genome, Microarray,	
Metabolic pathway, motif, and domain databases. Mapping databases – genome wide	
maps. Chromosome specific human maps.	
Unit – II	
Sequence Alignment: Introduction, Types of sequence alignments - Pairwise and Multiple	09 Hrs
sequence alignment, Alignment algorithms (Needleman & Wunch, Smith & Waterman and	
Progressive global alignment). Database Similarity Searching- Scoring matrices –	
BLOSSUM and PAM, Basic Local Alignment Search Tool (BLAST), and FASTA. Next	
Generation Sequencing – Alignment and Assembly. Molecular Phylogenetics:	
Introduction, Terminology, Forms of Tree Representation. Phylogenetic Tree Construction	
Methods - Distance-Based & Character-Based Methods and Phylogenetic Tree evaluation.	
Unit -III	1
Predictive methods: Predicting secondary structure of RNA, Protein and Genes –	09 Hrs
algorithms to predict secondary structure of RNA, Protein and Gene. Prediction of Tertiary	
structure of Protein, Protein identity and Physical properties of protein. Molecular	
Modeling and Drug Designing: Introduction to Molecular Modeling. Methods of	
Molecular Modeling and Force Fields used in Molecular Modeling. Drug designing process	
- deriving Pharmacophore, Receptor Mapping, Estimating Receptor-Ligand interactions	
and Molecular Docking.	
Unit –IV	
Perl: Introduction to Perl, writing and executing a Perl program. Operators, Variables and	09 Hrs
Special variables. Data Types – Scalar, Array and Associative array. Regular Expressions	
(REGEX), Components of REGEX - Operators, Metacharacters and Modifiers.	
Subroutines – types of functions, defining and calling functions in Perl, calling function -	
call by value and call by reference. Object Oriented Programming in Perl–Class and object,	
Polymorphism, inheritance and encapsulation. Perl Package – writing and calling package.	
Perl Module – writing and calling module.	
Unit –V	
BioPerl: Introduction to BioPerl, BioPerl Modules, Applications of BioPerl – Sequence	09 Hrs
retrieval from Database and submission of sequence to online Database, Indexing and	
accessing local databases, Transforming formats of database record, Sequence alignments	
BioPerl and Sequence Analysis - Pair wise and Multiple sequence alignment, Restriction	
mapping. Identifying restriction enzyme sites, acid cleavage sites, searching for genes and	
other structures on genomic DNA, Parsing BLAST and FASTA results. BioPerl and	

Γ

٦

phylogenetic analysis, BioPerl and Phylogenetic tree manipulation, creating graphics for Sequence display and Annotation.

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand the Architecture and Schema of online databases including structure of records in							
	these databases.							
CO2:	Explore the Mind crunching Algorithms, which are used to make predictions in Biology,							
	Chemical Engineering, and Medicine.							
CO3:	Apply the principles of Bioinformatics and Programming to the problems related to process							
	simulation and process engineering in Biological system.							
CO4 :	Use Bioinformatics tools and Next Generation Technologies to model and simulate biological							
	phenomenon.							

Refere	Reference Books						
1	T. Christiansen, B. D. Foy, L. Wall, J. Orwant, Programming Perl: Unmatched power for text processing and scripting, O'Reilly Media, Inc., 4 th Edition, 2012, ISBN-13: 978-0596004927						
2	B. Haubold, T. Weihe, Introduction to Computational Biology: An Evolutionary Approach, new age publishers, Paperback Edition, 2009, ISBN-13: 978-8184890624						
3	C. Bessant, I. Shadforth, D. Oakley, Building Bioinformatics Solutions: with Perl, R and MySQL, Oxford University Press, 1st edition, 2009, ISBN						
4	D. C. Young. Computational Drug Design: A Guide for Computational and Medicinal Chemists, Wiley-Interscience, 1st edition, 2009, ISBN-13: 978-0470126851.						

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO MAPPING												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	3	2	3	3	-	-	1	2	-
CO2	3	3	3	2	3	3	2	-	2	-	-	-
CO3	3	2	2	2	2	1	1	-	-	-	1	-
CO4	1	2	3	3	3	2	1	-	-	2	-	-

High-3 : Medium-2 : Low-1

	V Semester							
	FUEL CE	LL TECHNOLOGY						
	(Group I	B: Global Elective)						
Cou	rse Code: 16G5B02		CIE Marks: 100					
Crea	Credits: L:T:P:S:: 4:0:0:0 SEE Marks: 100							
Hou	Hours: 45L SEE Duration: 3Hrs							
Cour	se Learning Objectives: The students wi	ll be able to						
1	Recall the concept of fuel cells							
2	2 Distinguish various types of fuel cells and their functionalities							
3	3 Know the applications of fuel cells in various domains							
4	Understand the characterization of fuel	cells						

UNIT-I	

Introduction: Fuel cell definition, historical developments, working principle of fuel cell, components of fuel cell, EMF of the cell, Fuel Cell Reactions, fuels for cells and their properties.	09Hrs			
UNIT-II				
Fuel Cell Types: Classification of fuel cells, alkaline fuel cell, polymer electrolyte fuel cell, phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel cell, advantages and disadvantages of each .	09Hrs			
UNIT-III				
Fuel Cell Reaction Kinetics: activation kinetics, open circuit voltage, intrinsic maximum efficiency, voltage efficiency, Faradaic efficiency, overall efficiency, over-voltages and Tafel equation.				
UNIT-IV				
Fuel Cell Characterization: current – voltage curve, in-situ characterization, current – voltage measurement, current interrupt measurement, cyclic voltammetry, electrochemical impedance spectroscopy and ex-situ characterization techniques.	09Hrs			
UNIT-V				
Applications of Fuel Cells: applications of fuel cells in various sectors, hydrogen production, storage, handling and safety issues.	09 Hrs			

Cou	Course Outcomes: After completing the course, the students will be able to							
1	Understand the fundamentals and characteristics of fuel cells							
2	Apply chemical engineering principles to distinguish fuel cells from conventional energy systems							
3	Analyze the performance of fuel cells using different characterization techniques							
4	Evaluate the possibility of integrating fuel cell systems with conventional energy systems							

Ref	Reference Books							
1.	Fuel Cells – Principles and Applications, Viswanathan and M Aulice Scibioh, 1 st Edition, 2009,							
	Universities Press, ISBN – 13: 978 1420 060287							
2.	Fuel Cell Systems Explained, James Larminie and Andrew Dicks, 2 nd Edition, 2003, John Wiley							
	& Sons, ISBN – 978 0470 848579							

Γ

3.	Fuel Cell Fundamentals, O 'Hayre, R. P., S. Cha, W. Colella, F. B. Prinz, 1 st Edition, 2006, Wiley, New York, ISBN – 978 0470 258439
4.	Recent Trends in Fuel Cell Science and Technology, Basu. S, 1 st Edition, 2007, Springer, ISBN –
	978 0387 688152

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO MAPPING												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	-	1	-	1	-	-	-
CO2	2	-	2	-	-	-	-	-	-	-	-	-
CO3	-	3	-	-	-	-	3	-	2	-	-	-
CO4	-	2	2	-	-	-	2	-	3	-	-	2

High-3 : Medium-2 : Low-1

	V Semester							
	GEOINFORMATICS							
	(Group)	B: Global Elective)						
Cou	rse Code:16G5B03	CIE Marks : 100						
Hrs/	Week: L:T:P:S: 4:0:0:0	SEE Marks : 100						
Crea	Credits: 48L SEE Duration: 3Hrs							
Cour	rse Learning Objectives: The students wil	l be able to						
1	To understand concept of using photogr	aphic data to determine relative positions of points						
2	To study the use of electromagnetic energy for acquiring qualitative and quantitative la							
	² information							
3	To analyze the data gathered from various sensors and interpret for various applications							
4	To understand the various applications of	of RS, GIS and GPS						

UNIT-I							
Remote Sensing- Definition, types of remote sensing, components of remote sensing,	10 Hrs						
Electromagnetic Spectrum, Black body, Atmospheric windows, energy interaction with							
earth surface features. spectral reflectance curve- physical basis for spectra reflectance							
curve, false color composite. Platforms and sensors. Sensor resolutions. Types of							
satellites- Indian and other remote sensing satellites (IRS, IKONS and Landsat). Concept							
of image interpretation and analysis - Principle of visual interpretation, recognition							
elements. Fundamentals of image rectification. Digital Image classification - supervised							
and unsupervised							
UNIT-II							
Photogrammetry: Introduction types of Photogrammetry, Advantages of	10 Hrs						
Photogrammetry, Introduction to digital Photogrammetry. Locating points from two							
phases determination of focal length.							
Aerial Photogrammetry: Advantages over ground survey methods - geometry of vertical							
phographs, scales of vertical photograph. Ground coordination- relief displacement, scale							
ground coordinates – flight planning							
	40.11						
Geographic Information System- Introduction, Functions and advantages, sources of	10 Hrs						
data for GIS. Database – Types, advantages and disadvantages. Data Management –							
Iransformation, Projection and Coordinate systems. Data input methods, Data Analysis							
overlay operations, network analysis, spatial analysis. Outputs and map generation.							
Applications of GIS, Remote Sensing and GPS: Case studies on water Resources	09 Hrs						
its mapping). Case studies on applications of CIS and DS in highway alignment							
Its inapping), Case studies on applications of GIS and KS in ingitway anglinent,							
applications of CIS and DS in Director Management (Case studies on post director							
management Earthquake and trunami and pro disaster management. Landslides and							
floode) Urban Dlanning & Management, manning of zones layouts and infrastructures							
INIT-V							
Applications of GIS Remote Sensing and GPS: Land use land cover (LUILC) mapping	09 Hrs						
Case studies on infrastructure planning and management. Case studies on urban sprawl	00 1113						
Change detection studies – case studies on forests and urban area. Case studies on							
agriculture Applications of gen-informatics in natural resources management. Case							
Technical case Studies , site suitability analysis for various applications.							
Course Outcomes: After completing the course, the students will be able to							
1 Understand the principle of Remote Sensing (RS) and Geographical Information Svs	ems (GIS)						
data acquisition and its applications.							
2 Apply RS and GIS technologies in various fields of engineering and social needs.							
3 Analyze and evaluate the information obtained by applying RS and GIS technologies							
4	Create a feasible solution in the different fields of application of RS and GIS.						
---	--						
---	--						

Refe	erence Books
1.	Geographic Information System-An Introduction, Tor Bernharadsen, 3 rd Edition, Wiley India Pvt.
	Ltd. New Delhi , 2009.
2.	Principles of Remote sensing and Image Interpretation, Lillesand and Kiefer, 5 th Edition, John
	Wiley Publishers, New Delhi, 2007.
3.	Remote Sensing and GIS, Bhatta B, Oxford University Press, New Delhi, 2008
4.	Remote Sensing, Robert A. Schowengerdt, 3 rd Edition, Elsevier India Pvt Ltd, New Delhi, 2009

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The to-tal marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	1	-	-	-	-	-	-
CO2	2	1	-	-	1	1	-	-	-	-	-	-
CO3	2	2	1	-	2	1	1	-	-	-	-	1
CO4	2	2	1	-	3	2	2	-	-	-	1	1

V Semester							
GRAPH THEORY							
(Group E	(Group B : Global Elective)						
Course Code:16G5B04	CIE Marks: 100						
Credits: L:T:P:S: 4:0:0:0	SEE Marks: 100						
Hours: 45L	SEE Duration: 3 Hrs						

Cou	Course Learning Objectives: The students will be able to					
1	Understand the basics of graph theory and their various properties.					
2	Model problems using graphs and to solve these problems algorithmically.					
3	Apply graph theory concepts to solve real world applications like routing, TSP/traffic control, etc.					
4	Optimize the solutions to real problems like transport problems etc.,					

UNIT-I

	00.11				
Introduction to graph theory	09 Hrs				
Introduction, Mathematical preliminaries, definitions and examples of graphs, degrees					
and regular graphs, sub graphs, directed graphs, in degrees and out degrees in digraphs.					
Basic concepts in graph theory					
Paths and cycles, connectivity, homomorphism and isomorphism of graphs, connectivity					
in digraphs.					
UNIT-II					
Graph representations, Trees, Forests	09 Hrs				
Adjacency matrix of a graph, Incidence matrix of a graph, Adjacency lists, Trees and					
properties of trees, Characterization of trees, Centers of trees, Rooted trees, Binary threes,					
Spanning trees and forests. Spanning trees of complete graphs. An application to electrical					
networks. Minimum cost spanning trees.					
UNIT-III					
Fundamental properties of graphs and digraphs	09 Hrs				
Binartite graphs Eulerian graphs Hamiltonian graphs Hamiltonian cycles in weighted					
graphs, Fulerian digraphs					
Dianar graphs. Connectivity and Flows					
Embedding in curfaces, Euler's formula, Characterization of planar graphs, Kurateriski's					
Enibedding in surfaces, Euler's formula, Characterization of planar graphs, Kuratowski's					
theorem, Dual of a planar graphs.	L				
UNIT-IV					
Matchings and Factors	09 Hrs				
Min-Max theorem, Independent sets and covers, Dominating sets, maximum bipartite					
matching.					
Coloring of graphs					
The chromatic number of a graph, Results for general graphs, The chromatic polynomial					
of a graph. Basic properties of chromatic polynomial, chordal graphs, powers of graphs,					
Edge coloring of graphs					
UNIT-V					
Granh algorithms	09Hrs				
Graph connectivity algorithms Breadth first search and Depth first search Shortest path	UUIIIU				
algorithms Dijiketra's shortest nath algorithm Minimum cost snapping troe algorithms					
Algorithm of Knickal's and Drim's					
Algorithmi of Kluskal S and Prim S.					

Cours	Course Outcomes: After completing the course, the students will be able to					
CO1.	Understand and explore the basics of graph theory.					
CO2.	Analyse the significance of graph theory in different engineering disciplines					
CO3.	Demonstrate algorithms used in interdisciplinary engineering domains.					
CO4.	Evaluate or synthesize any real world applications using graph theory.					

Reference Books

1.	Introduction to graph theory, Douglas B. West, 2 nd Edition, 2001, PHI, ISBN- 9780130144003,
	ISBN-0130144002.
2.	Graph Theory, modeling, Applications and Algorithms, Geir Agnarsson, Raymond Greenlaw,
	Pearson Education, 1 st Edition,2008, ISBN- 978-81-317-1728-8.
3.	Introduction to Algorithms ,Cormen T.H., Leiserson C. E, Rivest R.L., Stein C. , 3 rd Edition,
	2010,PHI, ISBN:9780262033848

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	-	-	-	-	_	-	1	1	-	-
CO2	2	3	2	1	-	-	-	-	2	2	-	1
CO3	2	2	3	2	-	-	-	-	2	2	-	1
CO4	2	2	3	2	-	1	-	-	2	2	-	1

	V Semester							
	ARTIFICIAL NEURAL NETWORKS & DEEP LEARNING							
		(Group B: Global Elective)						
Cou	rse Code: 16G5B05		CIE Marks: 100					
Crea	lits: L:T:P:S: 4:0:0:0		SEE Marks: 100					
Hou	rs: 46L		SEE Duration: 3Hrs					
Cou	rse Learning Objectives:	The students will be able to						
1	Define what is Neural N	etwork and model a Neuron and E	xpress both Artificial Intelligence					
1	and Neural Network							
2	Analyze ANN learning, Error correction learning, Memory-based learning, Hebbian learning,							
	Competitive learning and	Boltzmann learning						
	Implement Simple perception, Perception learning algorithm, Modified Perception learning							
3	algorithm, and Adaptive linear combiner, Continuous perception, learning in continuous							
	perception.							
	Analyze the limitation o	f Single layer Perceptron and Dev	velop MLP with 2 hidden layers,					
4	Develop Delta learning rule of the output layer and Multilayer feed forward neural network							
	with continuous perceptions,							
	UNIT-I							

Introduction to Neural Networks: Neural Network, Human Brain, Models of Neuron,
Neural networks viewed as directed graphs, Biological Neural Network, Artificial neuron,
Artificial Neural Network architecture, ANN learning, analysis and applications, Historical
notes.08 Hrs

UNIT-II

Learning Processes: Introduction, Error correction learning, Memory-based learning,	10 Hrs					
Hebbian learning, Competitive learning, Boltzmann learning, credit assignment problem,						
learning with and without teacher, learning tasks, Memory and Adaptation.						
UNIT-III						

Single layer Perception: Introduction, Pattern Recognition, Linear classifier, Simple	10 Hrs
perception, Perception learning algorithm, Modified Perception learning algorithm,	
Adaptive linear combiner, Continuous perception, Learning in continuous perception.	
Limitation of Perception.	

UNIT-	IV
-------	----

Multi-Layer Perceptron Networks:Introduction, MLP with 2 hidden layers, Simple layer10 Hrsof a MLP, Delta learning rule of the output layer, Multilayer feed forward neural networkwith continuous perceptions, Generalized delta learning rule, Back propagation algorithm10 Hrs

UNIT-V

Introduction to Deep learning: Neuro architectures as necessary building blocks for the
DL techniques, Deep Learning & Neocognitron, Deep Convolutional Neural Networks,
Recurrent Neural Networks (RNN), feature extraction, Deep Belief Networks, Restricted
Boltzman Machines, Autoencoders, Training of Deep neural Networks, Applications and
examples (Google, image/speech recognition)08 Hrs

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Model Neuron and Neural Network, and to analyze ANN learning, and its applications.
CO2:	Perform Pattern Recognition, Linear classification.
CO3:	Develop different single layer/multiple layer Perception learning algorithms
CO4:	Design of another class of layered networks using deep learning principles.

1.	Neural Network- A Comprehensive Foundation, Simon Haykins, 2 nd Edition, 1999, Pearson
	Prentice Hall, ISBN-13: 978-0-13-147139-9
2.	Introduction to Artificial Neural Systems, Zurada and Jacek M, 1992, West Publishing Company,
	ISBN: 9780534954604
3.	Learning & Soft Computing, Vojislav Kecman, 1st Edition, 2004, Pearson Education, ISBN:0-
	262-11255-8
4.	Neural Networks Design, M T Hagan, H B Demoth, M Beale, 2002, Thomson Learning, ISBN-
	10: 0-9717321-1-6/ ISBN-13: 978-0-9717321-1-7

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO 2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	2	-	-	-	-	1	-	1
CO4	3	3	3	3	2	-	-	-	-	1	-	1

		V Semester						
	HYBRID ELECTRIC VEHICLES (Group B: Global Elective)							
Cou	rse Code :16G5B06	CIE Marks : 100						
Cre	dits : L:T:P:S 4:0:0:0	SEE Marks : 100						
Hou	rs : 45L	SEE Duration : 3Hrs						
Cou	rse Learning Objectives: The studen	ts will be able to,						
1	Explain the basics of electric and hy fundamentals.	/brid electric vehicles, their architecture, techno	ologies and					
2	Explain plug – in hybrid electric ve power electronics devices used in hyb	ehicle architecture, design and component sizi orid electric vehicles.	ng and the					
3	Analyze various electric drives suitat technologies used for hybrid electric	ole for hybrid electric vehicles and Different ene vehicles and their control.	rgy storage					
4	Demonstrate different configurations configuration by different techniques management.	s of electric vehicles and its components, hyb , sizing of components and design optimization	rid vehicle and energy					
		UNIT-I						
Intr and HEV Hyb Basi	oduction: Sustainable Transportation, Failed, Architectures of HEVs, Interdi <i>Is</i> , Challenges and Key Technology of oridization of the Automobile: Vehicl cs of Plug-In Hybrid Electric Vehicle (A Brief History of HEVs, Why EVs Emerged sciplinary Nature of HEVs, State of the Art of HEVs. e Basics, Basics of the EV, Basics of the HEV, PHEV), Basics of Fuel Cell Vehicles (FCVs).	07 Hrs					
		UNIT-II						
HEN Com Plug Equi Man PHE	Fundamentals: Introduction, Vehicl ponent Sizing, Series Hybrid Vehicle, g-in Hybrid Electric Vehicles: Int ivalent Electric Range of Blended agement of PHEVs, Component Sizi CVs, Vehicle-to-Grid Technology.	e Model, Vehicle Performance, EV Powertrain Parallel Hybrid Vehicle, Wheel Slip Dynamics. rroduction to PHEVs, PHEV Architectures, PHEVs, Fuel Economy of PHEVs, Power ng of EREVs, Component Sizing of Blended	10 Hrs					
		UNIT-III						
Pow conv pow Batt for I for I Ener Cell	Yer Electronics in HEVs: Power electronic devices and circuit er, Thermal Management of HEV Power teries, Ultracapacitors, Fuel Cells, a EV, Battery Characterization, Comparie HEVs, Battery Charging Control, Chargy Storage System, Hydraulic Energy Energy Storage System and Battery M	ctronics including switching, AC-DC, DC-AC s used for control and distribution of electric er Electronics. and Controls: Introduction, Different batteries ison of Different Energy Storage Technologies rge Management of Storage Devices, Flywheel y Storage System, Fuel Cells and Hybrid Fuel anagement System.	10 Hrs					
		UNIT-IV	4077					
Elec Driv Pern and	Electric Machines and Drives in HEVs: Introduction, BLDC motors, Induction Motor10HrsDrives, Permanent Magnet Motor Drives, Switched Reluctance Motors, Doubly SalientPermanent Magnet Machines, Design and Sizing of Traction Motors, Thermal AnalysisImplement Magnet Machines, Design and Sizing of Traction Motors, Thermal Analysisand Modelling of Traction Motors. (only functional treatment to be given)Implement Magnet Motor							
Inte	gration of Subsystems: Matching the	e electric machine and the internal combustion	08Hrs					
engi ener Ener hybr com strat	ne (ICE), Sizing the propulsion motor gy storage technology, Communication rgy Management Strategies: Introdu rid and electric vehicle, classification parison of different energy management egies.	or, sizing the power electronics, selecting the is, supporting subsystems. ction to energy management strategies used in n of different energy management strategies, ent strategies, implementation issues of energy						

Course Outcomes: After completing the course, the students will be able to

1	Explain the basics of electric and hybrid electric vehicles, their architecture, technologies and
	fundamentals.
2	Evaluate the performance of electrical machines and power electronics converters in HEVs.
3	Analyse the different energy storage devices used for hybrid electric vehicles, their technologies
	and control and select appropriate technology
4	Design and evaluate the sizing of subsystem components and Energy Management strategies in
	HEVs.
Ref	erence Books:
1.	Hybrid Electric Vehicle: Principles and Applications with Practical Perspectives, Mi Chris,
	Masrur A.and Gao D.W. Wiley Publisher, 1 st Edition, 2011, <i>ISBN</i> :0-824-77653-5
2.	Ali, Modern Electric, Hybrid electric and Fuel Cell Vehicles, Ehsani Mehrdad, Gao Yimin, E.
	Gay Sebastien, Emadi CRC Press, 1st Edition, 2005, ISBN: 0-8493-3154-4.
3.	Modern Electric Vehicle Technology, Chan, C.C., Chau, K.T. Oxford University Press,
	2001, ISBN 0 19 850416 0.
4.	Hybrid Electric Vehicles: Energy Management Strategies, Simona Onori, Lorenzo Serrao,
	Giorgio Rizzoni, ISBN: 978-1-4471-6779-2.

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks):

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	2	1	1	3	1	-	1	-	2
CO2	3	3	2	2	3	-	3	-	2	1	2	1
CO3	2	3	2	2	2	2	3	1	1	1	-	1
CO4	3	3	3	3	3	1	3	3	3	3	1	3

High-3 : Medium-2 : Low-1

Course Outcomes: After going through this course the student will be able to

CO1 Understand the various optimization models and their areas of application.

CO2 Explain the process of formulating and solving problems using optimization methods.

CO3 Develop models for real life problems using optimization techniques.

CO4 Analyze solutions obtained through optimization techniques.

CO5 Create designs for engineering systems using optimization approaches.

Reference Books:

- 1. Operation Research An Introduction, Taha H A, 8th Edition, 2009, PHI, ISBN: 0130488089.
- Principles of Operations Research Theory and Practice, Philips, Ravindran and Solberg, 2nd Edition, 2000, John Wiley & Sons (Asia) Pte Ltd, ISBN 13: 978-81-265-1256-0
- 3. Introduction to Operation Research, Hiller, Liberman, Nag, Basu, 9th Edition, 2012, Tata McGraw Hill, ISBN 13: 978-0-07-133346-7
- 4. Operations Research Theory and Application, J K Sharma, 4th Edition, 2009, Pearson Education Pvt Ltd, ISBN 13: 978-0-23-063885-3.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2											
CO2	2	2		1	1							
CO3							1	1				
CO4	2		3		1							
CO5			2			1						1

	V Semester							
	SENSORS & APPLICATIONS							
	(G	roup B: Global Ele	ctive)					
Cou	r se Code: 16G5B08		CIE Marks: 100					
Cred	lits/Week: L:T:P:S:4:0:0:0		SEE Marks: 100					
Hou	Hours:44L SEE Duration: 3Hrs							
Cou	Course Learning Objectives: The students will be able to							
1	Impart the principles and workin	ng modes of various	types of Resistive, Inductive, Capacitive,					
	Piezoelectric and Special transdu	cers.						
2	2 Give an idea about the applications of various transducers and selection criteria of a transducer							
	for a particular application.							
3	3 Give an insight into the static and dynamic characteristics of different orders of instruments.							
4	Describe different data conversio	n techniques and the	ir applications.					

UNIT-I					
Introduction: Definition of a transducer, Block Diagram, Active and Passive Transducers,	09 Hrs				
Advantages of Electrical transducers.					
Resistive Transducers: Potentiometers: Characteristics, Loading effect, and problems.					
Strain gauge: Theory, Types, applications and problems.					
Thermistor, RTD: Theory, Applications and Problems.					
UNIT-II					
Thermocouple: Measurement of thermocouple output, compensating circuits, lead compensation, advantages and disadvantages of thermocouple. LVDT: Characteristics, Practical applications and problems.	10 Hrs				
between plates and change of dielectric constants, Applications of Capacitive Transducers and problems.					
UNIT-III					
Piezo-electric Transducers: Principles of operation, expression for output voltage, Piezo- electric materials, equivalent circuit, loading effect, and Problems. Special Transducers: Hall effect transducers, Thin film sensors, and smart transducers: Principles and applications, Introduction to MEMS Sensors and Nano Sensors, Schematic of the design of sensor, applications.	10 Hrs				
UNIT-IV					
 Chemical sensors: pH value sensor, dissolved oxygen sensor, oxidation-reduction potential sensor. Light sensors: Photo resistor, Photodiode, Phototransistor, Photo-FET, Charge coupled device. Tactile sensors: Construction and operation, types. 	08 Hrs				
UNIT-V					
Data Converters : Introduction to Data Acquisition System, types of DAC, Binary Weighted DAC, R-2R ladder DAC, DAC-0800, Types of ADC, Single Slope ADC and Dual-slope integrated type ADC, Flash ADC, 8-bit ADC-0808, Programmable Gain Amplifier.	07 Hrs				

Course Outcomes: After completing the course, the students will be able to										
CO1:	Remember and understand the basic principles of transducers and smart sensors.									
CO2:	Apply the knowledge of transducers and sensors to comprehend digital instrumentation systems.									

CO3:	Analyze and evaluate the performance of different sensors for various applications.
CO4:	Design and create a system using appropriate sensors for a particular application
Referen	ice Books
1	Electrical and Electronic Measurements and Instrumentation, A.K. Sawhney, 18 th Edition,
	2008, Dhanpat Rai and Sons, ISBN: 81-7700-016-0.
2	Sensor systems: Fundamentals and applications, Clarence W.de Silva, 2016 Edition, CRC
	Press, ISBN: 9781498716246.
3	Transducers and Instrumentation, D.V.S. Murthy, 2 nd Edition 2008, PHI Publication, ISBN:
	978-81-203-3569-1.
4	Introduction to Measurement and Instrumentation, Arun K. Ghosh, 3 rd Edition, 2009, PHI,
	ISBN: 978-81-203-3858-6.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The to-tal marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO MAPPING												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	-	-	-	-	-	-	-	-	-
CO2	2	3	-	-	2	2	-	-	-	-	-	-
CO3	1	2	2	-	1	1	-	-	-	-	-	2
CO4	-	-	-	-	1	1	-	-	-	3	-	1

	V Semester								
	INTRODUCTION TO MANAGEMENT INFORMATION SYSTEMS (Group B: Global Elective)								
Co	Course Code: 16G5B09 CIE Marks: 100								
Cre	edits: L:T:P:S: 4:0:0:0	SEE Marks: 100							
Ho	urs :45L	SEE Duration: 3Hrs							
Co	urse Learning Objectives: The st	udents will be able to							
1	To understand the basic principle	s and working of information technology.							
2	Describe the role of information t	echnology and information systems in business.							
3	To contrast and compare how processes.	internet and other information technologies suppor	t business						
4	To give an overall perspective business administration.	of the importance of application of internet techn	ologies in						
		UNIT I							
Information Systems in Global Business Today: The role of information systems in business today, Perspectives on information systems, Contemporary approaches to information systems, Hands-on MIS projects. Global E-Business and Collaboration : Business process and information systems, Types of business information systems, Systems for collaboration and team work, The information systems function in business. A Case study on E business.									
		UNIT II							
systems, How information systems impact organizations and business firms, Using information systems to gain competitive advantage, management issues, Ethical and Social issues in Information Systems : Understanding ethical and Social issues related to Information Systems, Ethics in an information society, The moral dimensions of information society. A Case study on business planning.									
		UNIT III							
IT Infrastructure and Emerging Technologies :IT infrastructure, Infrastructure components, Contemporary hardware platform trends, Contemporary software platform trends, Management issues. Securing Information Systems: System vulnerability and abuse, Business value of security and control, Establishing framework for security and control, Technology and tools for protecting information resources. A case study on cybercrime.									
		UNIT IV							
Achieving Operational Excellence and Customer Intimacy: Enterprise systems, Supply Chain Management (SCM) systems, Customer relationship management (CRM) systems, Enterprise application. E-commerce: Digital Markets Digital Goods: E- commerce and the internet, E-commerce-business and technology, The mobile digital platform and mobile E-commerce, Building and E-commerce web site. A Case study on ERP.									
		UNIT V							
Ma kno Enl inte Sys	naging Knowledge: The kno wledge management system, k hancing Decision Making: Dec lligence in the enterprise. Busines tems: Systems as planned organiz	wledge management landscape, Enterprise-wide Knowledge work systems, Intelligent techniques. ision making and information systems, Business s intelligence constituencies. Building Information ational change, Overview of systems development.	09 Hrs						

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Understand and apply the fundamental concepts of information systems.								
CO2:	Develop the knowledge about management of information systems.								
CO3:	Interpret and recommend the use information technology to solve business problems.								
CO4:	Apply a framework and process for aligning organization's IT objectives with business								
	strategy.								
Referer	Reference Books								
1	Management Information System, Managing the Digital Firm, Kenneth C. Laudon and Jane								
	P. Laudon, 14 th Global Edition, 2016, Pearson Education, ISBN:9781292094007								
2	Management Information Systems, James A. O' Brien, George M. Marakas, 10 th Edition,								
	2011, Global McGraw Hill, ISBN: 978-0072823110								
3	Information Systems The Foundation of E-Business, Steven Alter, 4 th Edition, 2002, Pearson								
	Education, ISBN:978-0130617736								
4	W.S. Jawadekar, Management Information Systems, Tata McGraw Hill, 2006, ISBN:								
	9780070616349								

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The to-tal marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	3	-	1	-	-	-	1	-	-	1	-	
CO2	1	2	-	1	-	-	-	1	-	-	1	-	
CO3	-	-	3	2	2	-	-	1	-	1	1	-	
CO4	-	-	2	1	-	-	-	1	-	1	1	-	

	V Semester									
	INDUSTRIAL AUTOMATION									
	(Theory)									
Cou	CIE Marks: 100									
Cree	dits: L:T:P:S : 4:0:0:0	SEE Marks: 100								
Hou	rs: 44L	SEE Duration: 3Hrs								
Cou	Course Learning Objectives: The students should be able to:									
1	Identify types of actuators, sensors and switching device	s for industrial automation								
2	Explain operation and controls of Hydraulic and Pneum	atic systems								
3	Understand fundamentals of CNC, PLC and Industrial re	obots								
4	Define switching elements and sensors which are interfa	ced in an automation system								
5	Describe functions of Industrial switching elements and	Inspection technologies for automation								
6	Select sensors to automatically detect motion of actuators									
7	Develop manual part programs for CNC and Ladder log	ic for PLC								
8	Develop suitable industrial automation systems using all	the above concepts								

UNIT-I							
Automation in Production Systems:	08 Hrs						
Manufacturing support systems, Automation principles and strategies, Levels of							
Automation, Production Concepts and Mathematical models, Numericals							
Automated Production Lines:							
Fundamentals, Applications, Analysis with no storage, Analysis with storage buffer,							
Numericals							
UNIT-II							
Switching theory and Industrial switching elements	08						
Binary elements, binary variables, Basic logic gates, Theorems of switching algebra,	Hrs						
Algebraic simplification of binary function, Karnough maps, Logic circuit design,							
problems. Electromechanical relays, Moving part logic elements, Fluidic elements, Timers,							
Comparisons between switching elements, Numericals							
Industrial Detection Sensors and Actuators:							
Introduction, Limit switches, Reed switches, Photoelectric sensors- methods of detection,							
Hall effect sensors, Inductive proximity sensors, Capacitive proximity sensors, Pneumatic							
back pressure sensors, Absolute encoder, Incremental encoder, Pressure switches and							
temperature switches; their working principles and applications, Brushless DC motors,							
Stepper motors and Servo motors							
UNIT-III							
Hydraulic Control circuits	10 Hrs						
Components, Symbolic representations, Control of Single and Double Acting Cylinder,							
Regenerative Circuit application, Pump unloading circuit, Double Pump Hydraulic System,							
speed control circuits, accumulator circuits							
Preumatic Control circuits							
Components, Symbolic representations as per ISO 5599, indirect control of double acting							
cylinders, memory control circuit, cascading design, automatic return motion, quick							
delay valve circuit, and cyclic operation of a cylinder, pressure sequence valve and time							
Introduction to CNC	08 Hrs						
Numerical control components of CNC classification coordinate systems motion control	001115						
strategies interpolation programming concepts							
Industrial Robotics							
Components of Robots base types classification of robots end of arm tooling robot							
precision of movement, programming, justifying the use of a robot, simple numerical							

UNIT-V						
Programmable logic control systems	10 Hrs					
Difference between relay and PLC circuits, PLC construction, principles of operation,						
latching, ladder diagrams, programming instructions, types of timers, forms of counters,						
writing simple ladder diagrams from narrative description and Boolean logic.						
Programming exercises on PLC with Allen Bradley controller						
Programming exercises on motor control in two directions, traffic control, annunciator						
flasher, cyclic movement of cylinder, can counting, conveyor belt control, alarm system,						
sequential process, and continuous filling operation on a conveyor.						

Coi	Course Outcomes: After completing the course, the students will be able to										
1	Illustrate applications of sensors actuators, switching elements and inspection technologies in										
	industrial automation										
2	Build circuit diagrams for fluid power automation. Ladder diagrams for PLC and identify its										

- 2 Build circuit diagrams for fluid power automation, Ladder diagrams for PLC and identify its application areas
- 3 Evaluate CNC programs for 2D complex profiles performed on machining and turning centres interfaced with Robots
- 4 Develop suitable industrial automated system integrating all of the above advanced automation concepts

Ref	erence Books
1.	Industrial automation - Circuit design and components, David W. Pessen, 1 st Edition, 2011,
	Wiley India, ISBN –13–978–8126529889
2.	Pneumatic Controls, Joji P, 1 st Edition, Wiley India, ISBN – 978–81–265–1542–4
3.	Fluid Power with Applications, Anthony Esposito, 7 th Edition, 2013,
	ISBN – 13; 978– 9332518544
4.	Automation, Production systems and Computer Integrated Manufacturing, Mikell P. Groover, 3 rd
	Edition, 2014, ISBN – 978–81–203–3418–2

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3				2	1	2	1			1	2
CO2	1		2	3	2	2	2			2		
CO3		1		2	1					2		
CO4			3	2	2	1		2	2	3	2	2

Low-1	Medium-	-2	High-3
-------	---------	----	--------

	V Semester						
	TELECOMMUNICATION SYSTEMS						
	(Group B: Global Elective)						
Cou	Course Code:16G5B11 CIE Marks: 100						
Crea	Credits: L:T:P:S: 4:0:0:0 SEE Marks: 100						
Hou	Hours: 46L SEE Duration: 03Hrs						
Cou	rse Learning Objectives: The students	s will be able to					
1	Represent schematic of communication system and identify its components.						
2	Classify satellite orbits and sub-systems for communication.						
3	Analyze different telecommunication services, systems and principles.						
4	Explain the role of optical communication system and its components.						
5	Describe the features of wireless techn	ologies and standards.					

UNIT-I				
Introduction to Electronic Communication: The Significance of Human	09 Hrs			
Communication, Communication Systems, Types of Electronic Communication,				
Modulation and Multiplexing, Electromagnetic Spectrum, Bandwidth, A Survey of				
Communication Applications.				
The Fundamentals of Electronics: Gain, Attenuation, and Decibels.				
UNIT-II				
Modulation Schemes: Analog Modulation: AM, FM and PM- brief review.	10 Hrs			
Digital Modulation: PCM, Line Codes, ASK, FSK, PSK, and QAM.				
Wideband Modulation: Spread spectrum, FHSS, DSSS.				
Multiplexing and Multiple Access Techniques: Frequency division multiplexing, Time				
division multiplexing				
Multiple Access: FDMA, TDMA, CDMA, Duplexing.				
UNIT-III				
Satellite Communication:				
Satellite Orbits, Satellite Communication Systems, Satellite Subsystems, Ground Stations,				
Satellite Applications, Global Positioning Systems, Satellite Applications, Global Positioning System				
UNIT-IV				
Optical Communication : Optical Principles, Optical Communication Systems, Fiber-	09 Hrs			
Optic Cables, Optical Transmitters and Receivers, Wavelength-Division				
Multiplexing. Passive Optical Networks.				
UNIT-V				
Cell Phone Technologies: Cellular concepts, Frequency allocation, Frequency reuse.				
Advanced Mobile Phone System (AMPS)				
Digital Cell Phone Systems: 2G, 2.5G, 3G and 4G cell phone systems, Advanced Cell				
Phones.				
Wireless Technologies: Wireless LAN, PANs and Bluetooth, ZigBee and Mesh Wireless				
Networks, WiMAX and Wireless Metropolitan-Area Networks.				
, friday and the second s				

Course	Course Outcomes: After completing the course, the students will be able to						
CO1	Describe the basics of communication systems.						
CO2	Analyze the importance of modulation and multiple access schemes for communication						
	systems.						
CO3	Compare different telecommunication generations, wired and wireless communication.						
CO4	Justify the use of different components and sub-system in advanced communication systems.						

Ref	erence Books
1.	Principles of Electronic Communication Systems, Louis E. Frenzel, 3 rd Edition, 2008, Tata McGraw Hill, ISBN: 978-0-07-310704-2.
2.	Electronic Communication Systems, Roy Blake, 2 nd Edition, 2002, Thomson/Delamar, ISBN: 978-81-315-0307-2.
3.	Electronic Communication Systems, George Kennedy, 3 rd Edition, 2008, Tata McGraw Hill ISBN: 0-02-800592-9.

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1		1	1				1			
CO2	2	1		1	1				1			
CO3	2	1		1	1				2			
CO4	1	1		1	1	1			1			

	V Semester							
	COMPUTATIONAL ADVANCED NUMERICAL METHODS							
	(Group B: Global Elective)							
Cou	rse Code:16G5B12		CIE Marks: 100					
Crec	lits: L:T:P:S: 4:0:0:0		SEE Marks: 100					
Hou	Hours: 44L SEE Duration: 3Hrs							
Cou	Course Learning Objectives:							
1	Adequate exposure to learn	n alternative methods and an	alyze mathematical problems to					
	determine the suitable numer	ical techniques.						
2	Use the concepts of interpola	ation, eigen value problem tech	niques for mathematical problems					
	arising in various fields.							
3	3 Solve initial value and boundary value problems which have great significance in engineering							
	practice using ordinary differential equations.							
4	Demonstrate elementary prog	gramming language, implement	ation of algorithms and computer					
	programs to solve mathematic	cal problems.						

Unit-I	
Algebraic and Transcendental equations:	08 Hrs
Roots of equations in engineering practice, Polynomials and roots of equations, Fixed point	
iterative method, Aitken's process, Muller's method, Chebychev method.	
Unit – II	
Interpolation:	08 Hrs
Introduction to finite differences, Finite differences of a polynomial, Divided differences	
and Newton's divided difference interpolation formula, Hermite interpolation, Spline	
interpolation–linear, quadratic and cubic spline interpolation.	
Unit -III	
Ordinary Differential Equations:	09 Hrs
Solution of second order initial value problems–Runge-Kutta method, Milne's method,	
Boundary value problems (BVP's)–Shooting method, Finite difference method for linear	
and nonlinear problems, Rayleigh-Ritz method.	
Unit –IV	
Eigen value problems:	09 Hrs
Eigen values and Eigen vectors, Power method, Inverse Power method, Bounds on Eigen	
values, Greschgorin circle theorem, Jacobi method for symmetric matrices, Givens method.	
Unit –V	1
Computational Techniques:	10 Hrs
Algorithms and Matlab programs for Fixed point iterative method, Aitken's-process,	
Muller's method, Chebychev method, Newton's divided difference method, Hermite	
interpolation, Spline interpolation, Power method, Inverse Power method, Runge-Kutta	
method, Milne's method, Shooting method, Rayleigh-Ritz method, Jacobi method and	
Givens method.	

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Identify and interpret the fundamental concepts of polynomial equations, Interpolation, Eigen								
	value problems, Differential equations and corresponding computational techniques.								
CO2:	Apply the knowledge and skills of computational techniques to solve algebraic and								
	transcendental equations, Ordinary differential equations and eigen value problems.								
CO3:	Analyze the physical problem and use appropriate method to solve roots of equations,								
	Interpolating the polynomial, Initial and boundary value problems, Eigen value problems								
	numerically using computational techniques.								
CO4:	Distinguish the overall mathematical knowledge gained to demonstrate and analyze the								
	problems of finding the roots of equations, Interpolation, Differential equations, Eigen value								

	problems arising in engineering practice.
Refere	ence Books
	Numerical methods for scientific and engineering computation, M. K. Jain, S. R. K. Iyengar
1	and R. K. Jain, New Age International Publishers, 6 th Edition, 2012, ISBN-13: 978-81-224-
	2001-2.
2	Numerical Analysis, Richard L. Burden and J. Douglas Faires, Cengage Learning, 9 th Edition,
2	2012, ISBN-13: 978-81-315-1654-6.
2	Introductory Methods of Numerical Analysis, S. S. Sastry, PHI Learning Private Ltd., 4th
5	Edition, 2011, ISBN: 978-81-203-2761-0.
	Numerical Methods for Engineers, Steven C Chapra, Raymond P Canale, Tata Mcgraw Hill,
4	5 th Edition, 2011, ISBN-10: 0-07-063416-5.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

High-3: Medium-2: Low-1

	V Semester						
	BASICS	5 OF AEROSPACE ENGINEE	RING				
		(Group B: Global Elective)					
Cou	Course Code:16GE5B13 CIE Marks: 100						
Crea	Credits: L:T:P:S: 4:0:0:0 SEE Marks: 100						
Hou	Hours: 44L SEE Duration: 3Hours						
Cou	rse Learning Objectives: To e	nable the students to:					
1	1 Understand the history and basic principles of aviation						
2	2 Demonstrate and explain foundation of flight, aircraft structures, material, aircraft propulsion						
3	3 Comprehend the importance of all the systems and subsystems incorporated on a air vehicle						
4	Appraise the significance of a	ll the subsystems in achieving a	successful flight				

Unit-I							
Introduction to Aircraft : History of aviation, International Standard atmosphere, Atmosphere and its properties, Temperature, pressure and altitude relationships,	08 Hrs						
Classification of aircrafts, Anatomy of an aircraft & Helicopters, Basic components and							
their functions, Introduction to Unconventional and Autonomous Air vehicles.							
Unit – II							
Basics of Aerodynamics : Bernoulli's theorem, Aerodynamic forces and moments on an Airfoil, Lift and drag, Types of drag, Centre of pressure and its significance, Aerodynamic centre, Aerodynamic Coefficients, Wing Planform Geometry, Airfoil nomenclature, Basic characteristics of airfoils, NACA nomenclature, Simple problems on lift and drag.							
Unit -III							
Aircraft Propulsion :Introduction, Classification of powerplants, Piston Engine: Types of							
reciprocating engines, Principle of operation of turbojet, turboprop and turbofan engines,							
Introduction to ramjets and scramjets, Comparative merits and demerits of different types							
Engines.							
Unit -IV							
Introduction to Space Flight :History of space flight, Evolution of Indian Space Technology, The upper atmosphere, Introduction to basic orbital mechanics, some basic concepts, Kepler's Laws of planetary motion, Orbit equation, Space vehicle trajectories. Rocket Propulsion :Principles of operation of rocket engines, Classification of Rockets,							
Unit -V							
Aerospace Structures and Materials :Introduction, General types of construction,							
Monocoque, Semi-Monocoque and Geodesic structures, Typical wing and fuselage							
structure; Metallic and non-metallic materials for aircraft application. Use of aluminum							
alloy, titanium, stainless steel and composite materials, Low temperature and high							
temperature materials.							

Cou	Course Outcomes: At the end of this course the student will be able to :					
1	Appreciate and apply the basic principles of aviation					
2	Apply the concepts of fundaments of flight, basics of aircraft structures, aircraft propulsion and					
2	aircraft materials during the development of an aircraft					
3	Comprehend the complexities involved during development of flight vehicles.					
4	Evaluate and criticize the design strategy involved in the development of airplanes					

Reference Books

1John D. Anderson, Introduction to Flight, 7th Edition, 2011, McGraw-Hill Education, ISBN
9780071086059.

C	Sutton G.P., Rocket Propulsion Elements, 8 th Edition, 2011, John Wiley, New York,
2	ISBN:1118174208, 9781118174203.
3	<u>Yahya, S.M.</u> Fundamentals of Compressible Flow, 5 th Edition, 2016, New Age International, ISBN: 8122440223
4	T.H.G Megson, Aircraft structural Analysis, 2010, Butterworth-Heinemann Publications, ISBN: 978-1-85617-932-4

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	3	2	2				1
CO2	2	2	2	3	2	1	1	1				1
CO3	1		3	3								1
CO4	2	2	3	3		2	2	2				1

High-3 : Medium-2 : Low-1

	VI	SEMESTER			
	INTELLECTUAL PROPERT	Y RIGHTS AND ENT	FREPRENEURSHIP		
		(Theory)			
	(Common to BT, CHE, CV,E&I, IEM, ME)				
Cou	rse Code:16HSI61		CIE Marks: 100		
Cred	lits: L:T:P:S: 3:0:0:0		SEE Marks: 100		
Hou	r s: 36L		SEE Duration: 03Hrs		
Cou	rse Learning Objectives: The students	will be able to			
1	To build awareness on the various for	ms of IPR and to buil	d the perspectives on the	concepts	
	and to develop the linkages in technolo	gy innovation and IPR		-	
	To equip students on the need to pro-	otect their own intell	ectual works and develo	p ethical	
2	standards governing ethical works.			•	
2	To motivate towards entrepreneurial	careers and build stu	rong foundations skills t	o enable	
3	starting, building and growing a viable	as well as sustainable	venture.		
	Develop an entrepreneurial outlook ar	nd mind set along wit	th critical skills and know	wledge to	
4	manage risks associated with entrepren	eurs.		0	
		UNIT-I			
Intro	duction: Types of Intellectual Property,	WIPO, WTO, TRIPS.		07 Hrs	
Pate	nts: Introduction, Scope and salient feat	tures of patent; patent	able and non-patentable		
inver	ntions, Patent Procedure - Overview, Tra	nsfer of Patent Rights;	; Biotechnology patents,		
prote	ction of traditional knowledge, Infringer	nent of patents and ren	nedy, Case studies		
Trad	e Secrets: Definition, Significance, Tool	ls to protect Trade secr	ets in India.		
	<u>v</u>	UNIT-II			
Trad	e Marks: Concept, function and di	ifferent kinds and fo	orms of Trade marks,	04 Hrs	
Regi	strable and non- registrable marks. Reg	istration of trade mar	k; Deceptive similarity;		
Assignment and transmission; ECO Label, Passing off; Offences and penalties.					
Infringement of trade mark with Case studies					
		UNIT-III			
Indu	strial Design: Introduction, Protecti	on of Industrial De	esigns, Protection and	09 Hrs	
Requirements for Industrial Design. Procedure for obtaining Design Protection,					
Revo	Revocation, Infringement and Remedies, Case studies				
Copy Right: Introduction, Nature and scope, Rights conferred by copy right, Copy right					
protection, transfer of copy rights, right of broad casting organizations and performer's					
rights, Case Studies.					
Intellectual property and cyberspace: Emergence of cyber-crime; Grant in software					
patent and Copyright in software; Software piracy; Data protection in cyberspace					
		UNIT-IV			
Intro	duction to Entrepreneurship – Learn	how entrepreneurship	has changed the world.	08 Hrs	
Ident	ify six entrepreneurial myths and uncove	er the true facts. Explo	re E-cells on Campus		
Liste	n to Some Success Stories: - Globa	al legends Understand	d how ordinary people		
beco	me successful global entrepreneurs, thei	r journeys, their chall	enges, and their success		
storie	es. Understand how ordinary people from	n their own countries	have become successful		
entre	preneurs.				
Chai	racteristics of a Successful Entreprene	ur Understand the entr	repreneurial journey and		
learn	the concept of different entrepreneuria	al styles. Identify you	r own entrepreneurship		
style	based on your personality traits, stren	ngths, and weaknesse	s. Learn about the 5M		
Mod	el, each of the five entrepreneurial styles	s in the model, and ho	w they differ from each		
other	. Communicate Effectively: Learn h	low incorrect assump	tions and limiting our		
opini	ons about people can negatively impa	act our communicatio	n. Identify the barriers		
whic	h cause communication breakdown, su	ch as miscommunicat	tion and poor listening,		
and l	earn how to overcome them.				
Com	munication Best Practices. Understand	the importance of list	ening in communication		
and	<u>learn to listen actively. Learn a few b</u>	ody language cues su	uch as eye contact and		

handshakes to strengthen communication. (Practical Application)	
UNIT-V	
Design Thinking for Customer Delight: - Understand Design Thinking as a problem-	08 Hrs
solving process. Describe the principles of Design Thinking. Describe the Design Thinking	
process.	
Sales Skills to Become an Effective Entrepreneur: - Understand what is customer focus	
and how all selling effort should be customer-centric. Use the skills/techniques of personal	
selling, Show and Tell, and Elevator Pitch to sell effectively.	
Managing Risks and Learning from Failures: - Identify risk-taking and resilience traits.	
Understand that risk-taking is a positive trait. Learn to cultivate risk-taking traits. (Practical	
Application) Appreciate the role of failure on the road to success, and understand when to	
give up. Learn about some entrepreneurs/risk-takers. (Practical Application).	
Are You Ready to be an Entrepreneur: - Let's ask "WHY" Give participants a real	
picture of the benefits and challenges of being an entrepreneur. Identify the reasons why	
people want to become entrepreneurs. Help participants identify why they would want to	
become entrepreneurs.	

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Comprehend the applicable source, scope and limitations of Intellectual Property within the
	purview of engineering domain.
CO2:	Knowledge and competence related exposure to the various Legal issues pertaining to
	Intellectual Property Rights with the utility in engineering perspectives.
CO3:	Enable the students to have a direct experience of venture creation through a facilitated
	learning environment.
CO4:	It allows students to learn and apply the latest methodology, frameworks and tools that
	entrepreneurs use to succeed in real life.

Reference Books

1.	Law Relating to Intellectual Property, Wadehra B L,5 th Edition, 2012, Universal Law Pub Co.
	LtdDelhi, ISBN: 9789350350300
2.	Intellectual Property Rights: Unleashing Knowledge Economy, Prabuddha Ganguly, 1 st Edition,
	2001, Tata McGraw Hill Publishing Company Ltd., New Delhi, ISBN: 0074638602.
3.	Intellectual Property and the Internet, Rodney Ryder, 2002, Lexis Nexis U.K., ISBN:
	8180380025, 9788180380020.
4.	Entrepreneurship, Rajeev Roy, 1 st Edition, 2012, Oxford University Press, New Delhi, ISBN:
	9780198072638

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-]	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	3	3	-	3	1	2	-	3
CO2	1				3	3	3	3	1	2	-	3
CO3	-	3	2	-	-	2	2	3	3	3	3	3
CO4	-	3	2	-	-	3	3	3	3	3	3	3

Low-1 Medium-2 High-3

	VI Semester					
	VIRTUAL INSTRUMENTATION & DATA ACQUISITION					
	(Theory and Practice)					
Cou	rse Code:16EI62		CIE Marks: 100+50			
Cree	dits/Week: L:T:P:S: 3:0:1:1		SEE Marks: 100+50			
Hou	Hours: 36L SEE Duration: 03Hrs+03Hrs					
Cou	Course Learning Objectives: The students will be able to					
1	Understand the difference between conventional and graphical programming, basic data					
	acquisition concepts					
2	Differentiate the real time and vi	irtual instrument				
3	Develop ability for programmi	ing in LabVIEW	using various data structures and program			
	structures					
4	4 Analyze the basics of data acquisition and learning the concepts of data acquisition with					
	LabVIEW.					

UNIT-I			
Graphical Programming Environment: Basic of Virtual Instrumentation, Conventional	05 Hrs		
and Graphical Programming. Introduction to LabVIEW, Components of LabVIEW and			
Labels.			
Fundamentals: Data Types, Tool Pallets, Arranging Objects, Color Coding, Code			
Debugging, Context Help, Creating Sub-VIs Boolean, Mechanical action- switch, and latch			
actions, String data types, enum, ring, Dynamics.	1		
UNIT-II			
Fundamentals of Virtual Instrumentation Programming:	09 Hrs		
For Loop, While Loop, shift registers, stack shift register, feedback node, and tunnel.			
Timing function: Timing VI, elapsed time, wait function			
Case structures, formula node, Sequence structures, Arrays and clusters, visual display			
types- graphs, charts, XY graph. Local and Global variables.			
UNIT-III			
Error Handling- error and warning, default error node, error node cluster, automatic and	08 Hrs		
manual error handling.			
String Handling: Introduction, String Functions, LabVIEW String Formats.			
File Input/ Output: Introduction, File Formats, File I/O Functions and file Path functions.			
Design patterns: Producer/consumer, event handler, derived design pattern, Queued			
message handler, Producer/consumer (events), Producer/consumer (state machine).			
UNIT-IV			
Data Acquisition: Introduction to data acquisition, Analog Interfacing Connecting signal	07 Hrs		
to board, Analog Input/output techniques digital I/O, counters, NI-DAQmx tasks.			
DAQ Hardware configuration: Introduction, Measurement and Automation Explorer,			
DAQ Assistants, Analysis Assistants, Instrument Assistants			
Interfacing Instruments: GPIB and RS232 : Introduction, RS232 Vs. GPIB,			
Handshaking, GPIB Interfacing, RS232C/RS485 Interfacing, VISA			
Case Studies: Real time application using myRIO and myDAQ.			
UNIT-V			
Advanced Topics In LabVIEW: Use of analysis tools and application of VI: Fourier	07 Hrs		
transforms Power spectrum, Correlation methods, windowing & filtering. Inter-Process			
Communication, Notifier, Semaphore, Data Sockets, VI server			
Advanced data transfer mechanism: Synchronous dynamic VI, re-entrant VI Simulation			
of systems using VI: Development of Control system, Image acquisition and processing.			

Lab Experiments:

- 1. Realization of logic function.
- 2. To match the number and generate a sine wave.
- 3. Interface using General Purpose Interfacing Board.
- 4. To perform serial communication.
- 5. Data acquisition from different sensors, Processing collected data and analyzing parameters and storing the results.
- 6. To perform the control system design.
- 7. Acquisition and processing of a biomedical signal and processing.
- 8. Programming using Image Processing concept.
- 9. Application using myRIO.
- 10. Application using myDAQ.

Course	Course Outcomes: After completing the course, the students will be able to					
1	Remember and Understand the fundamentals of Virtual Instrumentation and data					
	Acquisition.					
2	Apply the theoretical concepts to realize practical systems.					
3	Analyze and evaluate the performance of Virtual Instrumentation Systems.					
4	Create a VI system to solve real time problems using data acquisition.					

Reference Books

1	Virtual instrumentation Using LabVIEW, Jovitha Jerome, 4th Edition, 2010, PHI Learning
	Pvt. Ltd., ISBN: 978-812034035.
2	Virtual Instrumentation Using LabVIEW, Sanjay Gupta & Joseph John, 2 nd Edition, New
	Delhi, 2010,Tata McGraw Hill Publisher Ltd., ISBN : 978-0070700284
3	LabVIEW for Everyone: Graphical Programming made easy and fun, Jeffrey Travis, Jim
	Kring, 3 rd Edition, 2006, Prentice Hall, ISBN: 978-0131856721
4	Data Acquisition using LabVIEW, Behzad Ehsani, 1 st Edition, 2017, Packt Publishing,
	ISBN:978-1782172161

Continuous Internal Evaluation (CIE): Total marks: 100+50=150

Theory – 100 Marks

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The to-tal CIE for theory is 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50. **Semester End Evaluation (SEE): Total marks: 100+50=150**

Theory – 100 Marks

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO-PO MAPPING												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	1	2	-	-	-	2	2	-	1
CO2	1	1	1	1	2	-	-	-	2	2	-	1
CO3	1	-	1	1	2	-	-	-	2	2	-	1
CO4	2	1	1	2	3	-	-	-	2	2	-	2

	VI Semester								
	AUTOMATIC PROCESS CONTROL AND MODELLING TECHNIQUES								
	(Theory and Practice)								
Cour	r se Code: 16EI63		CIE Marks: 100+50						
Cred	lits/Week: L:T:P:S: 3:0:1:1		SEE Marks:100+50						
Hours: 35L SEE Duration: 03Hrs+03Hrs									
Cour	Course Learning Objectives: The students will be able to:								
1	Understand the concepts and ap	plications of basic	& advanced Automatic Process Control						
	Systems.								
2	Design and predict the performance of various Analog and Digital Electronic PID controllers.								
3	3 Analyze Control loop Tuning and Learn the language of ISA symbols and create P&ID flow								
	Diagrams.								
4	Develop the various Process Mo	odels and apply the	e Mathematical representations for Analysis.						

4 Develop the various Process Models and apply the Mathematical representations for Analysis.

UNIT-I						
Introduction to Process control: Introduction, Process control systems, Process-Control	05 Hrs					
Block Diagram, control system evaluation, Stability, Steady State Regulation, Transient						
Regulation, Evaluation Criteria, Damped Response, Cyclic Response, Quarter Amplitude						
Criterion.						
Analog & Digital Processing: Data representation, On/Off Control, Analog Control,						
Digital Control, Supervisory Control, Direct Digital control, Smart Sensor, Networked						
Control Systems, PLC for On/Off Control application, Analog Data Representation,						
Definitions, Process Control Drawings, Problems.						
UNIT-II						
Controller principles: Introduction, Process Characteristics, Process Equation, Process	10 Hrs					
Load, Process Lag, Process Regulation, Control System Parameters, Error, Variable						
Range, Control Parameter Range, Control Lag, Dead Time, Cycling.						
Controller Modes: Continuous Controller Modes, Mathematical Analysis of Two-						
Position Controller Mode, P, I, & D Controller Modes, Direct & Reverse Action,						
Mathematical Analysis of Two-Mode & Three-Mode Composite Controllers, Applications						
& Problems on Predicting Controller Outputs.						
UNIT-III						
Analog controllers: Introduction, General features of an Actual Controller, Electronic	10 Hrs					
controllers, Error Detector, Design of an On/Off Controller, Design of Single-Mode, Two-						
Position and Three-Position Controller Modes.						
Digital controllers: Introduction, Digital Electronic Methods, Computers in Process						
Controls, Data Logging, DAS, Supervisory Control, Controller Software, Controller						
Modes, P, I, D, and PID Digital Controller Modes, Computer Controller Examples.						
UNIT-IV						
Control loop characteristics: Introduction, Control system configurations, Single	05 Hrs					
Variable, Independent Single Variable, Interactive Single Variable, Compound Variable,						
Cascade Control, Multi-Variable Control systems, Analog Control, Supervisory & Direct						
Digital Control.						
Process loop tuning methods: Open-Loop Transient Response Method and Ziegler-						
Nichols Closed-Loop Method for P, PI, & PID control Modes, Frequency Response						
Methods for P, I, & D Modes, P&ID Symbols, Introduction, Connecting Lines, General						
Instruments or Functions, Actuators & Process Elements, P&ID for a Chemical Process,						
ISA Flow Diagrams.						
UNIT-V						
Process Control Modelling: Process model, Physical model and control models, Process	05 Hrs					
Modelling, Uses of Process Models, Types of Process Models, Frequency-domain						
Modelling, Time-domain Modelling, Examples, Mathematical Modelling of a room						
heating system.						

Modelling Procedure: General steps of Modelling procedure, Goals Definition, Information preparation, Model formulation, Solution determination, Results Analysis, Model Validation.

Lab Experiments:

PID Automatic Controller Experiments:

- 1. Tuning and Testing the Performance of Flow control loop.
- 2. Tuning and Testing the Performance of Temperature control loop.
- 3. Tuning and Testing the Performance of Level control loop.
- 4. Tuning and Testing the Performance of Pressure control loop.
- 5. Tuning and Testing the Performance of Multi-Process control loops.

Virtual Instrumentation Based Process Control Experiments:

- 6. Simulation experiment on V.I. for temperature indication and annunciation .
- 7. Simulate level measurement and indication of emergency shutdown feature using LabVIEW.
- 8. LabVIEW based Data Acquisition System design and realization for Multiple Parameter (temperatures) measurements using NI-DAQ.

μC - based Experiments:

- 9. μC-based Thermocouple Temperature Indicator Programming, & Calibration using Look-Up Table technique.
- 10. μC-based RTD Temperature Indicator Programming, & Calibration using Look up Table technique.
- 11. μC-based Thermistor Temperature Indicator Programming, & Calibration using Look up Table Technique.
- 12. μC-based Strain Indicator Programming, & Calibration using Look up Table Technique.

Advanced Process Control Demo Experiments using Universal Process Control Trainer:

- 13. Design and demonstrate the ratio controller to control the ratio of two liquids to be mixed with the given ratio using UPCT.
- 14. Configure and realize a cascade multi-variable control loop with level & flow control loops using UPCT.

Course	Course Outcomes: After completing the course, the students will be able to:							
CO1:	Understand the basic concepts and develop schematics & block diagrams for various							
	industrial process control systems.							
CO2:	Apply the techniques of control loop tuning & learn the art of reading P&ID Symbols and							
	create ISA Flow Diagrams							
CO3:	Analyze & Design electronic analog P, I, D, PI, PD, PID controllers and write the algorithms							
	for their digital implementation							
CO4:	Develop solutions for real time problems.							
CO4:	Develop solutions for real time problems.							

Reference Books

1	Process Control Instrumentation Technology, Curtis D. Johnson, 7th Edition, 2012, ISBN 81-
	7758-410-3.
2	Process Control – Concepts, Dynamics and Applications, S. K. Singh, 2009, Prentice hall of
	India, ISBN-978-81-203-3678-0.
3	Instrument Engineers Handbook, Process Measurement: Volume-1, Process Control, Volume-2,
	Bela G. Liptak, 3 rd Edition, 2010, Chilton Book Company/ Rad-nor, ISBN-81-7956-540-8.
4	Instrumentation, Kirk & Rimboi, 2 nd Edition, 2010, PHI, ISBN 81-7758-410-5.

Continuous Internal Evaluation (CIE): Total marks: 100+50=150

Theory – 100 Marks

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The to-tal CIE for theory is 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150

Theory – 100 Marks

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO-PO MAPPING												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	3	3	1	1	-	2	3	1	3
CO2	3	3	3	3	3	2	2	-	2	3	2	3
CO3	3	3	3	2	3	1	-	-	2	3	1	2
CO4	2	3	3	3	2	1	-	-	1	2	-	3

	COMMUNICATION SYSTEMS									
(Theory)										
Course C	C ode: 16EI64		CIE Marks: 100							
Credits/V	Week: L:T:P:S:3:1:0:0		SEE Marks: 100							
Hours: 35L+24T SEE Duration: 3Hrs										
Course L	Learning Objectives: The	students will be able to								
1	Understand the fundament	ntals concepts of communication s	system concepts.							
2	Study generation and det	Study generation and detection of AM, DSB modulation and de modulation techniques.								
3	Study generation and detection of VSB and SSB modulation and de modulation techniques.									
4	Understand fundamentals of digital modulation techniques.									
5	Study the generation of A	ASK, FSK generation techniques.								

UNIT-I						
Introduction to Communication systems: Communication Process, Primary	07 Hrs					
communication resources, Sources of Information system, Communication Networks,						
Communication Channels, Modulation Process, Analog and Digital types of						
Communication, Shannon's Information capacity theorem. Block diagram of						
communication system, Need for modulation, Types of modulation.						
UNIT-II						
Analog Communication						
Amplitude Modulation: Time domain and frequency domain description of AM, single						
tone modulation, power relations in AM waves, Generation of AM waves: square law						
Modulator, Switching modulator. Demodulation of AM waves: Square law detector,						
Envelope detector.						
DSB Modulation: Double side band suppressed carrier modulation, time domain and						
frequency domain description. Time domain and Frequency domain description of SSB						
modulated waves, Generation of SSB waves, Demodulation of SSB waves.						
UNIT-III						
Modulation Techniques						
VSB Modulation: Time domain and frequency domain description of VSB modulated						
waves, Generation of VSB Modulated wave.						
Angle Modulation: Basic concepts of Phase and Frequency Modulation, Single tone						
frequency modulation, Narrow band FM, Wide band FM, Generation of FM waves:						
Indirect FM, Direct FM, Frequency translation and FDM.						
Digital Communication: Channel Capacity Theorem, model of digital communication						
systems, sampling theorem, Reconstruction of message process from its samples, TDM,						
Pulse code modulation, differential Pulse code modulation, delta modulation, applications.						
UNIT-V						
Digital modulation techniques: Binary modulation techniques, ASK, FSK generation and	07 Hrs					
detection of modulated warrac						

Course Outcomes: After completing the course, the students will be able to									
CO1: Unders	Understand fundamentals of analog and digital communication systems.								
CO2: Apply	the fundamental concepts of communication for modulation and demodulation								
techniq	ues.								
CO3: Evaluat	e the performance of different modulation techniques.								
CO4: Create	a modulation system using the pros and cons of different modulation techniques.								

Reference Books

1	Electronic Communication Systems, Roy Blake, 2 nd Edition, 2006, Delmar Cengage Learning, ISBN: 978-8131503072.
2	Electronic Communication Systems, George Kennedy, 5 th Edition, 2011, TATA McGraw-Hill, ISBN: 978-0071077828.
3	Communication systems, Simon Haykin, 3 rd Edition, 2007, Willey Publishers, ISBN: 978-8126513666.
4	Digital and analog communication, Leon W. Couch, 8 th Edition, 2013, Pearson publishers, ISBN: 9789332518582, 9332518580.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The to-tal marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO MAPPING												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	-	1	-	-	-	1	1	-	2
CO2	2	1	1	-	1	-	-	-	2	1	-	2
CO3	2	1	2	-	-	-	-	-	2	1	-	1
CO4	1	1	1	-	-	-	-	-	1	1	-	1

	VI Semester								
	COMPUTER COMMUNICATION NETWORKS								
	(Group C:Professional Core Elective)								
Course	e Code:16EI6C1		CIE Marks: 100						
Credit	s/Week: L:T:P:S: 3:0:0:1		SEE Marks: 100						
Hours	:35L		SEE Duration: 3 Hrs						
Course	Course Learning Objectives: The students will be able to								
1	Understand the various layers	of OSI and TCP/IP c	ommunication models.						
2	Apply the appropriate conce	epts of data rate o	f channels; decide on cables based on						
bandwidth requirements.									
3	Analyze the different networking algorithms.								
4	Evaluate the hardware and software components of networking.								

UNIT-I

Introduction: Data Communications, Networks, Topologies, Protocols and Standards,				
Layered tasks, OSI model, Layers in the OSI model, TCP/IP protocol suite, Addressing,				
Telephone Networks, Dial up Modem, DSL, Cable TV for Data transmission.				
UNII-II				
The Physical Layer: Guided media, Transmission impairments, Data rate limits,	09 Hrs			
Performance, Multiplexing, FDM, WDM and TDM, Circuit switching, Packet switching.				
Data Link Layer Error Detection and Correction: Introduction, Block coding, Cyclic				
codes, Cyclic Redundancy Check, Checksum, Framing, Protocol: Noiseless channel,				
Noisy channel				
UNIT-III				
Multiple Access: Random Access-ALOHA, CSMA, Controlled Access.				
Wired LANs : Ethernet-Standard Ethernet Fast Ethernet and Gigabit Ethernet				
Wireless I.AN: IFFF 802 11 frame format Bluetooth architecture Connecting Devices				
Passive Hubs Repeaters Active Hubs Bridges Routers Gateways Back hope Networks				
Virtual I ANs. Communication between Switches				
UNIT-IV				
Routing Algorithms : Optimality principle, Shortest path routing, Flooding, Distance vec-	06 Hrs			
tor routing, Link state routing, and Hierarchical routing.				
Network Layer: IPv4 addresses, address space, notation, Classful addressing. Structure				
of IPv6. address space.				
UNIT-V				
Natural Security Introduction to Comparature substitution Ciphere transposition				
Ciphere Symmetric Very algorithm, DES AES Cipher modes other sinhere	05 1115			
Cipiters, Symmetric Key algorithm: DES, AES, Cipiter modes, other cipiters				
cryptanalysis, Public key algorithm: KSA algorithm, Firewall.				

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Understand the fundamentals of computer communication networks and their								
	securities.								
CO2:	Apply the various networking protocols for different networking scenarios.								
CO3:	Analyze the different networking algorithms and their usage.								
CO4:	Develop simulation models for networking topologies.								

Reference Books

ſ

٦

1	Data Communications and Networking, Behrouz A Forouzan, 5 th Edition, 2012, McGraw-Hill, ISBN: 9781259064753.
2	Computer Networks, Andrews S. Tanenbaum, 5 th Edition, 2014, Pearson Publication, ISBN: 978-93-325-1874-2.
3	Data and Computer Communications, W.Stallings, 10 th Edition, 2014, Pearson Education, ISBN: 978-0024542526.
4	Introduction to Data Communications and Networking, Wayne Tomasi, 1 st Edition, 2011, Pearson Education, ISBN: 978-81- 31709306.

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO MAPPING											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	1	-		-	-	-	-		-	-
CO2	-	2	-	-	-	-	-	-	-	-	-	-
CO3	1	1	2	-	1	-	-	-	1	1	-	
CO4	1	-	1	-	2	-	-	-	2	2	-	2

VI Semester								
	ADVANCED SIGNAL PROCESSING							
(Group C:Professional Core Elective)								
Course C	Code:16EI6C2		CIE Marks: 100					
Credits/V	Week: L:T:P:S: 3:0:0:1		SEE Marks: 100					
Hours: 35L			SEE Duration: 3Hrs					
Course L	earning Objectives: The stude	ents will be able to						
1	1 Study the parametric methods for power spectrum estimation.							
2	2 Study adaptive filtering techniques using LMS algorithm and to study the applications							
adaptive filtering.								
3	3 Study multirate signal processing fundamentals.							
4	Study the analysis of speech si	ignals & also to intro	oduce the student to wavelet transforms.					

UNIT-I

Parametric methods for power spectrum estimation: Relationship between the auto	07 Hrs		
correlation and the model parameters – The Yule – Walker method for the AR Model			
Parameters – The Burg Method for the AR Model parameters – unconstrained least-			
squares method for the AR Model parameters – sequential estimation methods for the AR			
Model parameters – selection of AR Model order.			
UNIT-II			
Speech signal processing : Digital models for speech signal: Mechanism of speech production – model for vocal tract, radiation and excitation – complete model – time domain processing of speech signal: - Pitch period estimation – using autocorrelation function – Linear predictive Coding: Basic Principles – autocorrelation method – Durbin recursive solution.	07 Hrs		
UNIT-III			
Wavelet transforms: Fourier Transform: Its power and Limitations – Short Time Fourier	07 Hrs		
Transform – The Gabor Transform - Discrete Time Fourier Transform and filter banks –			
Continuous Wavelet Transform – Wavelet Transform Ideal Case – Perfect Reconstruction			
Filter Banks and wavelets – Recursive multi-resolution decomposition – Haar Wavelet –			
Daubechies Wavelet.			
UNIT-IV			
Multirate signal processing : Decimation by a factor D – Interpolation by a factor I –	07 Hrs		
Filter Design and implementation for sampling rate conversion: Direct form FIR filter			
structures – Polyphase filter structure.			
UNIT-V			
Adaptive Signal Processing: FIR adaptive filters – steepest descent adaptive filter – LMS	07 Hrs		
algorithm – convergence of LMS algorithms – Application: noise cancellation – channel			
equalization – adaptive recursive filters – recursive least squares.			

Course Outcomes: After completing the course, the students will be able to					
CO1:	Understand different algorithms for different signal processing applications.				
CO2:	Apply different algorithms for practical applications.				
CO3:	Analyze the algorithms and concepts of signal processing.				
CO4:	Develop algorithms for real time signal processing applications.				

Referen	e Books	
1	Digital Signal Processing, Principles, Algorithms and Applications, John G.Proakis, Dimit	ris

	G.Manobakis, 4 th Edition, 2007, PHI, ISBN-13:978-8131710005.							
2	Statistical Digital Signal Processing and Modelling, Monson H. Hayes, 2002, Wiley, ISBN-							
	13: 978-047159314.							
3	Digital Processing of Speech Signals, L.R.Rabiner and R.W.Schafer, 2005, Pearson							
	Education, ISBN-13: 978-0132136037.							
4	Modern Digital Signal Processing, Roberto Crist, 1 st edition, 2004. Cengage Learning, ISBN-							
	13: 978-0534400958.							

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO MAPPING												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	1	-	-	-	-	-	1	-	1
CO2	2	1	-	1	1	1	-	-	-	1	-	1
CO3	1	3	2	1	1	1	-	-	-	1	-	1
CO4	-	2	1	1	2	2	-	-	1	2	-	1

	VI Semester								
	LASERS INSTRUMENTATION AND APPLICATION								
	(Group C:Professional Core Elective)								
Course	Course Code:16EI6C3 CIE Marks: 100								
Credit	s/Week: L:T:P:S:3:0:0:1		SEE Marks: 100						
Hours	Hours: 35L SEE Duration: 3 Hrs								
Course	Course Learning Objectives: The students will be able to								
1	Understand the fundamentals of LASERs and fiber optics.								
2	Apply and interpret the industrial importance of LASERs and fiber optical instruments.								
3	Analyze the working of various optical sensors.								
4	Design and evaluate application	ns involving fiber op	tics and optical sensors.						

4	Design and evaluate applications involving riber optics and optical sensors.

UNIT-I		
Laser Fundamentals :	06 Hrs	
Principles of LASERs, Fundamental characteristics of Lasers- laser modes - resonator		
configuration – Q-switching and mode locking. Safety with LASERs.		
UNIT-II		
Laser types: Three level and four level lasers- liquid lasers, semiconductor lasers.	09 Hrs	
Principle, Construction and working of Ruby, Nd-YAG, He-Ne, Carbon dioxide, Argon lasers.		
Lasers applications: Measurement of distance: Reversible Counting, refractive Index		
Correction, Surface topography and optical Component testing, beam modulation		
telemetry, pulse echo techniques, Laser Doppler Velocimetry, Laser Spectroscopy:		
Molecular Beam Spectroscopy, Saturation Spectroscopy.		
UNIT-III		
Optical Fibers and Optical Sensors	09 Hrs	
Principles of light propagation through a fiber – different types of fibers and their		
properties transmission characteristics of optical fiber – absorption losses – scattering		
losses – dispersion – optical fiber measurement – optical sources – optical detectors.		
Noncommunication applications of Fibers: Fiber optic sensors– Multimode passive		
Optical fiber sensors, Multimode active Optical fiber sensors, Single mode fiber sensors.		
Light Guiding fibers: Coherent bundles.		
UNIT-IV		
Biomedical Application of Lasers	06 Hrs	
Cardiovascular Applications of lasers: Angioplasty, Vascular Anastomoses-Laser		
welding in Cardiovascular system, Transmyocardial Laser revascularization (TMLR).		
Lasers in Photodynamic Therapy: PHOTOFRIN PDT in the treatment of Ocular cancer,		
Cutaneous and subcutaneous Tumors, Plastic surgery, gynaecology and oncology.		
UNIT-V		
Industrial Application of Lasers	05 Hrs	
Materials processing Applications: Surface Hardening, Semiconductor processing. Laser		
welding: Micro welding, Deep Penetrating welding, Laser assisted machining, Laser		
cutting, Micro Machining, Drilling Scribing and Marking.		

Course Outcomes: After completing the course, the students will be able to		
CO1:	Understand the basic fundamentals of LASER and Fiber optics	
CO2:	Apply LASER as source in designing various Optoelectronic applications	
CO3:	Analyze various optic sensor applications with LASER light.	
CO4:	Develop a design solution in applications using LASERs and fiber optics.	
Refer	rence Books	
-------	--	
1	Lasers Principles and Applications, J Wilson, JFB Hawkes, 1991, Prentice Hall International	
	Series in Optoelectronics, ISBN-13: 978-0135236970, ISBN-10: 0135236975.	
2	Masers and Lasers, Mario Bertolotti, 2 nd Edition, 2016. CRC press, ISBN: 9781482217773.	
3	An Introduction to LASERS-Theory and applications, M.N Avadhanulu, 2001, S. Chand	
	Company Ltd. ISBN :9788121920711	
4	Industrial applications of lasers, John F Read, 2 nd Edition, 1997, Academic Press, ISBN:	
	9780125839617	

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

				(CO-PO	MAP	PING					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	1	-	-	-	-	-	-	-	-
CO2	1	3	2	-	-	-	-	-	-	-	-	-
CO3	1	1	1	-	-	-	-	-	-	-	-	-
CO4	-	1	2	1	1	1	-	-	2	2	-	-

	VI Semester				
	JAVA PROGRAMMING				
	(Group	C:Professional Core Elective)			
Cou	rse Code:16EI6C4	CIE Marks: 100			
Cred	Credits/Week: L:T:P:S:3:0:0:1 SEE Marks: 100				
Hours:35L		SEE Duration: 3Hrs			
Cou	Course Learning Objectives: The students will be able to				
1	1 Demonstrate knowledge of basic features of the Java programming language.				
2	Exercise ability to use the Java programming language to create a simple application.				
3	3 Create class definitions and declare variables of class type in the Java programming language.				
4	4 Describe exceptions that can be recognized and handled by the Java programming language.				
5	Design and create GUIs using the	e Java programming language.			

UNIT-I

Introduction to Java: Describe Internet role, advantages and, environment setup of Java. Basics of Java, Background/History of Java, Java and the Internet, Advantages of Java, Java Virtual Machine & Byte Code, Java Environment Setup, Java Program Structure, Differentiate between POP and OOP. Basics of OOP: Abstraction, Inheritance, Encapsulation, Classes, subclasses and super classes, Polymorphism and Overloading, message communication. Data types, Literals: Types of Literals, Operators, Control Statements: If, switch, do-while, while, for, enhanced for loop, Nested Loop, break, continue, return statements, Conversion and Casting, Scope of variables & default values of variables declared Wrapper classes Comment, Syntax Garbage Collection.			
UNII-II			
Object Oriented Programming Concepts: Defining classes, fields and methods, creating objects, accessing rules, this keyword, static keyword, method overloading, and final keyword, Constructors: Default constructors, Parameterized constructors, copy constructors, passing object as a parameter, constructor overloading. Inheritance: Basics of Inheritance, Types of inheritance: single, multiple, multilevel, hierarchical and hybrid inheritance, concepts of method overriding, extending class, super class, subclass, dynamic method dispatch & Object class.	07 Hrs		
UNIT-III			
Packages & Interfaces: Creating package, importing package, access rules for packages, class hiding rules in a package. Defining interface, inheritance on interfaces, implementing interface, multiple inheritance using interface, Abstract class and final class. Exception Handling: Types of errors, exceptions, try, catch statement, multiple catch blocks, throw and throws keywords, finally clause, uses of exceptions, user defined exceptions.	07 Hrs		
UNIT-IV			
Multithreading: Fundamentals: Thread Life Cycle, Ways of creating threads, creating multiple threads, is Alive (), join (), Thread Synchronization, Thread priorities, Interthread communication, Methods for suspending, resuming and stopping threads.			
UNIT-V			
 File Handling: Stream classes, class hierarchy, useful I/O classes, creation of text file, reading and writing text files. String Handling: String and String Buffer class, String constructors, Data conversion using value Of (), to String () methods, Methods for String Comparison, Searching string and modifying string. 	07 Hrs		

Course	Course Outcomes: After completing the course, the students will be able to				
CO1:	Understand various concept of Java using object oriented programming language.				
CO2:	Apply multithreading concept to solve real world industrial applications.				
CO3:	Analyze the basic structure of Database and recognize the different views of the database.				
CO4:	Design functional and aesthetic displays on the computer screen using Java classes and				
	interact with users, and to understand the event-based GUI handling principles.				

Refer	ence Books
1	Java The Complete Reference, Herbert Schildt, 9 th Edition, 2017, Tata McGraw Hill, ISBN:
	978-9339212094.
2	J2EE The Complete Reference, Jim Keogh, 1 st Edition, 2017, Tata McGraw Hill, ISBN: 978-
	0070529120.
3	The J2EE Tutorial, Stephanie Bodoff, 2 nd Edition, 2002, Addison Wesley, ISBN: 978-
	0201791686
4	Introduction to JAVA Programming, Daniel Liang, 6 th Edition, 2011, Pearson Education, ISBN:
	978-8131725825.

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-P	O MAI	PPING					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	-	3	-	-	-	1	1	1	2
CO2	1	2	2	1	3	-	-	-	1	1	-	2
CO3	2	2	2	1	3	-	-	-	1	1	-	2
CO4	2	2	2	2	3	_	-	_	1	1	_	2

Low-1	Medium-2	High-3
-------	----------	--------

	VI Semester				
	ANALYTI	CAL INSTRUME	NTATION		
	(Group D	Professional Core	Elective)		
Course	e Code:16EI6D1		CIE Marks:100		
Credit	s/Week: L:T:P:S:4:0:0:0		SEE Marks:100		
Hours:46L			SEE Duration: 3 Hrs		
Course	Course Learning Objectives: The students will be able to				
1	1 Describe the principle and operation of different types of spectroscopy.				
2	Explain the principle, working and instrumentation of Chromatography, Mass spectrometry				
	and automated chemical analysis systems.				
3	3 Analyze the performance of different analytical instruments for a particular analysis.				
4	Carry out further study should they be interested to work in the field.				

UNIT-I		
Introduction: Types of analytical methods, Instruments for analysis, Electromagnetic	10 Hrs	
radiation, its properties and interaction with matter. Elements of an analytical instrument,		
Intelligent analytical instrumentation systems, PC based analytical instruments.		
Colorimeters and Spectrophotometers (Visible-Ultraviolet): Visible spectroscopy:		
Theory of spectrophotometry and colorimetry, Deviations from Beers law.		
Colorimeters/Photometers: Single beam, Double beam, Multichannel Photometers.		
Spectrophotometers: Single beam null type, Double beam ratio recording, Microprocessor		
based and High Performance Spectrophotometers.		
UNIT-II		
Infrared spectrophotometers: Introduction, range of infrared radiation, Instrumentation,	10 Hrs	
Single beam and Double beam spectrophotometers, Fourier transform Infrared		
Spectroscopy.		
Atomic absorption spectroscopy: Principle, Differences between Atomic Absorption		
spectroscopy and Flame emission spectroscopy, Advantages of Atomic Absorption		
spectroscopy over Flame emission spectroscopy, Instrumentation, Interferences, Qualitative		
and Quantitative analysis of Atomic Absorption spectroscopy.		
Emission Spectroscopy: Theory, Instrumentation, Spectrographs, Applications of		
Emission Spectroscopy, Advantages and Disadvantages of Emission spectroscopy.		
UNIT-III		
X-ray spectroscopy: Introduction to X-ray absorption, General theory, Instrumentation,	10 Hrs	
Non-dispersive instruments, X-ray diffraction and its applications.		
Nuclear Magnetic Resonance spectroscopy: Introduction, Principle, Instrumentation,		
Types, Applications and Limitations of NMR.		
Radiochemical Instruments: Fundamentals, Radiation detectors, Liquid scintillation		
counters, Pulse-Height analyzer, Gamma Spectrometry.		
UNIT-IV		
Gas chromatography:	08 Hrs	
Introduction, Gas chromatography, Instrumentation, Types of columns and detectors,		
Applications of Gas chromatography.		
Raman Spectrometer: The Raman effect, Raman Spectrometer, PC based Raman		
Spectrometer.		
UNIT-V		
Mass spectrometry: Theory of mass spectrometry, Instrumentation: Ion sources, Inlet	08 Hrs	
systems, mass analyzers: single beam, double beam, quadrapole and time of flight,		
applications.		
Automated chemical analysis systems: Benefits of automation, types of automatic		
analysis systems, automated biochemical analysis system, Lab-on-chip technology for		

automated analysis.

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Understand the basic principles of different types of spectroscopies.					
CO2:	Apply the basic concepts to realize the theoretical design for analytical instruments.					
CO3:	Analyse and evaluate the performance of different analytical instruments for a particular					
	application.					
CO4:	Create an analytical instrument using appropriate sources and detectors for a particular					
	problem.					

Refer	ence Books
1	Instrumental Methods of Chemical Analysis, Gurdeep R. Chatwal, Sham K. Anand, 6 th Edition, 2015, Himalaya Publishing house, ISBN-13:9789351420880.
2	Handbook of Analytical Instruments, Dr. R S Khandpur, Second Edition, 2007, Tata McGraw- Hill Education, ISBN: 9780071331494.
3	Principles of Instrumentation Analysis, Douglas A Skoog, F. James Holler, Stanley R. Crouch, 6 th revised Edition, 2013, Thomson Brooks, ISBN-13: 978-0495125709.
4	Instrumental Methods of Chemical Analysis, Galen W Ewing, 5 th revised Edition, 2013, Mc-Graw Hill, ISBN-13: 978-0070198579.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO MAPPING												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	1	1	-	-	1	-	2	2	-	1
CO2	1	-	1	1	-	1	1	-	2	2	-	1
CO3	1	1	1	1	-	-	1	-	2	-	-	2
CO4	1	1	1	1	-	1	1	-	2	2	-	2

Low-1 Medium-2 High-3

	VI Semester									
	AUTOMOTIVE ELECTRONICS									
	(Group D:Professional Core Elective)									
Course Code:16EI6D2 CIE Marks: 100										
Credit	s/Week: L:T:P:S:4:0:0:0		SEE Marks: 100							
Hours: 45L SEE Duration: 3 Hrs										
Course	e Learning Objectives: The stu	dents will be able to	D							
1	Understand the fundamentals o	f Automotive electro	onics and its evolution and trends.							
2	Understand sensors and sensor monitoring mechanisms aligned to automotive systems.									
3	3 Get an overview about electronic engine and vehicle motion control.									
4	Understand, design and model various automotive control systems using Model based devel-									
	opment technique.									

UNIT-I					
Automotive Fundamentals Overview: Four Stroke Cycle, Engine Control, Ignition Sys-	09 Hrs				
tem, Spark plug, Spark pulse generation, Ignition Timing, Drive Train, Transmission,					
Brakes, Steering System, Battery, Starting System.					
Air/Fuel Systems: Fuel Handling, Air Intake System, Air/ Fuel Management.					
UNIT-II					
Sensors I: Oxygen (O2/EGO) Sensors, Throttle Position Sensor (TPS), Engine Crankshaft	09 Hrs				
Angular Position (CKP) Sensor, Magnetic Reluctance Position Sensor, Engine Speed Sen-					
sor, Ignition Timing Sensor, Hall effect Position Sensor, Shielded Field Sensor.					
UNIT-III					
Sensors II: Optical Crankshaft Position Sensor, Manifold Absolute Pressure (MAP) Sen-	09 Hrs				
sor - Strain gauge and Capacitor capsule, Engine Coolant Temperature (ECT) Sensor, In-					
take Air Temperature (IAT) Sensor, Knock Sensor, Airflow rate sensor, Throttle angle sen-					
sor. Actuators – Fuel Metering Actuator, Fuel Injector, Ignition Actuator.					
UNIT-IV					
Electronic Engine Control: Engine parameters, variables, Engine Performance terms,	09 Hrs				
Electronic Fuel Control System, Electronic Ignition control, Idle sped control, EGR Con-					
trol.					
Vehicle Motion Control: Antilock Brake System (ABS), Electronic Steering Control,					
Power Steering, Traction Control, Electronically controlled suspension.					
UNIT-V					
Automotive Control Systems and Model Based Development: Automotive Control	09 Hrs				
System & Model Based Development: Control system approach in Automotive Electron-					
ics, Analog and digital control methods, modelling of linear systems, System responses,					
Modelling of Automotive Systems with simple examples.					
Model based Development: Introduction to Simulink tool boxes, Model-Based Design					
for a small system, Motor Model, Generator Model, Controller Model.					

Course Outcomes: After completing the course, the students will be able toCO1:Understand fundamentals of automotive system.

CO2:	Analyse different sensors and other engine parameters necessary in making a complete										
	automotive system.										
CO3:	Evaluate electronic engineering methodologies and techniques related to automotive systems.										
CO4 :	Develop/simulate automotive subsystem using modern numerical analysis and simulation.										

Refere	Reference Books								
1	Understanding Automotive Electronics, William B. Ribbens, 8th Edition, 2017, SAMS/Else-								
	vier Publishing, ISBN: 9780128104354								
2	Automotive Electronics Systems and Components, Robert Bosch Gambh, 5 th Edition, 2007,								
	John Wiley & Sons Ltd., ISBN 978-3-658-01784-2.								
3	Automobile Electrical and Electronics System, Tom Denton, 3 rd Edition, 2004, Elsevier Publi-								
	cations, ISBN: 0 7506 62190.								
4	Automotive Electronics Handbook, Ronald K Jurge, 1995,2 nd Edition, 1999, McGraw-Hill,								
	ISBN-978-0070344532								

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO MAPPING												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	-	-	-	-	1	2	2	-	1
CO2	1	1	1	-	-	-	-	1	1	1	-	1
CO3	2	1	1	-	-	-	-	-	2	2	-	1
CO4	2	1	1	-	-	-	-	1	2	1	-	1

Low-1	Medium-2	High-3
	THE GIGHT =	

VI Semester APPLICATION SPECIFIC INTEGRATED CIRCUITS (ASIC) (Group D:Professional Core Elective)

Cours	se Code: 16EI6D3	CIE Marks: 100							
Credi	its/Week: L:T:P:S: 4:0:0:0	SEE Marks: 100							
Hours	s:45L	SEE Duration:3 Hrs							
Cours	Course Learning Objectives: The students will be able to								
1	Understanding the ASIC custom and semicustom design flow.								
2	Describe about ASIC library design.								
3	Impart ideas about floor planning and placement.								
4	Analyze basic design concepts of Rout	ting.							

UNIT-I						
Introduction: Full Custom with ASIC, Semicustom ASICS, Standard Cell based ASIC,	09 Hrs					
Gate array based ASIC, Channelled gate array, Channelless gate array, structured get						
array, Programmable logic device, FPGA design flow, ASIC cell libraries.						
UNIT-II						
ASIC Library Design: Logical effort: practicing delay, logical area and logical	09 Hrs					
efficiency logical paths, multi stage cells, optimum delay, optimum number of stages,						
library cell design.						
UNIT-III						
Low-level Design Entry: Schematic Entry: Hierarchical design. The cell library, Names,						
Schematic Icons & Symbols, Nets, schematic entry for ASIC'S, vectored instances and						
buses, edit in place attributes, Net list, screener, Back annotation connections.						
UNIT-IV						
	00.11					
ASIC Construction Floor Planning and placement: Physical Design, CAD Tools,	09 Hrs					
System Partitioning, Estimating ASIC size, partitioning methods. Floor planning tools,						
I/O and power planning, clock planning, placement algorithms, iterative placement						
improvement, Time has driven placement methods.	1					
UNIT-V						
Physical Design: Global Routing, Local Routing, Detail Routing, Special Routing,	09 Hrs					
Circuit Extraction and DRC.						

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Understand the full custom and semicustom design flow.									
CO2:	Apply the concept to design standard cell library.									
CO3:	Analyse and evaluate the different design techniques and physical design algorithms to									
	achieve effective power, area and timing.									
CO4:	Design a complex system using different design flow.									

	Refer	ence Books
ſ	1	Application Specific Integrated Circuits, Michael John Sebastin Smith, 2008, Pearson
		Education, ISBN: 0201500221
	2	Analog VLSI Design-NMOS and CMOS, Malcolm R. Haskard, Lan. C. May, 1998, Prentice
		Hall,ISBN-10: 0130326402
	3	VLSI Circuits and Systems in Silicon, Andrew Brown, 2001, McGraw Hill, ISBN-10:
		0077072219.
	4	Application Specific Integrated Circuit (ASIC) Technology, Norman G. Einspruch and
		Norman Einspruch, 2012, Academic Press, ISBN-13; 978-0124315211

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO MAPPING												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	1	-	-	-	-	-	-	-	-	1
CO2	1	1	1	-	-	-	-	-	-	-	-	1
CO3	1	1	1	1	-	-	-	-	-	-	-	1
CO4	1	1	1	1	-	-	-	-	1	1	-	1

	VI Semester								
	AIRCRAFT INSTRUMENTATION								
	(Group D:Professional Core Elective)								
Cours	se Code:16EI6D4	CIE Marks: 100							
Credits/Week: L:T:P:S:4:0:0:0 SEE Marks: 100									
Hours: 45L SEE Duration: 3Hrs									
Cours	Course Learning Objectives: The students will be able to								
1	Understand qualitative and quantitative displays of an aircraft.								
2	Gain knowledge on air data instruments and how they are incorporated in an aircraft.								
3	Develop the knowledge of safety aspects of an aircraft such as warning systems.								
4	Learn more about gyroscope a	and its related flight instruments. Give better view of engine							
	instruments and ways to improv	ze its efficiency.							

UNIT-I							
Introduction: Instrument Displays-Qualitative and quantitative displays, Director	09 Hrs						
displays, instruments grouping- T grouping.							
Integrated Display Systems: head-up displays							
Air Data Instruments: Standard Atmosphere (ISA), basic air data system, pitot-static							
probe, heating circuit element, Mach/air speed indicator							
UNIT-II							
Vertical Air Speed Indicators: Instantaneous Vertical Airspeed indicator, Mach warning	09 Hrs						
system, altitude alert system							
Direct Reading Compasses: Terrestrial magnetism, Compass construction, aircraft							
magnetism, components of magnetism.							
UNIT-III							
Gyroscopic Flight Instruments: The gyroscope and its properties, determining direction							
of precession, limitations of gyroscope, gyro horizon, direction indicator, Turn and Bank							
indicator.							
UNIT-IV							
Engine Instruments: Pressure measurements indicating systems, pressure switches,	09 Hrs						
temperature measurements, indicating systems: variable resistance systems, sensor units,							
Wheatstone bridge systems.							
Fuel Quantity and Indicating system: Capacitance type systems, basic indicating							
systems, effects of fuel temperature changes, measurement of fuel quantity by weight.							
UNIT-V							
Engine Power and Control instruments: RPM measurement, generator and indicating	09 Hrs						
system, exhaust gas temperature, engine pressure ratio measurement, fuel flow measure-							
ment, integrated flow meter systems.							

Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand the scope and extent of avionics and identify the different types of instrument						
	grouping categories and the indicators in each category.						
CO2:	Appreciate the need for measurement in Aircraft Instrumentation.						
CO3:	Analyze different instrumentation and its applications.						
CO4:	Interpret the Case Studies with the theory learnt and hence develop a system concept						

operational in latest aircraft instrumentation.

Refer	ence Books
1	Aircraft instruments and Integrated systems, E H J Pallet, 2 nd Edition, 1992, Pitman and Sons
	Longman Publishers, ISBN: 582086272.
2	Aircraft Instruments, C.A. Williams, 2 nd Edition, 2007, Galgotia Publications New Delhi,
	ISBN: 817598080X, 9788175980808.
3	Aircraft Propulsion, Bhaskar Roy, 1 st Edition 2011, Elsevier publications, New Delhi,
	ISBN: 9788131214213.
4	Aircraft Instrumentation and Systems, S. Nagabhushana & L.K. Sudha, 2010, I.K Publishing
	House, New Delhi, Pvt. Ltd, Hardback ISBN: 9789380578354.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO MAPPING												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	1	-	1	-	-	-	-	-	-	-	-
CO2	1	1	2	1	-	-	-	-	-	-	-	-
CO3	2	1	2	1	-	-	-	-	-	-	-	-
CO4	2	1	2	1	-	-	-	-	-	-	-	-

VI Semester BIOINSPIRED ENGINEERING (Group E: Global Elective)

Course Code:16G6E01			CIE Marks: 100					
Credits: L:T:P:S: 3:0:0:0			SEE Marks: 100					
Hours: 36L			SEE Duration: 3Hrs					
Cou	rse Learning Objectives:							
1	To familiarize engineering students with basic biological concepts							
2	Utilize the similarities noted in nature for a particular problem to bring inspiration to the							
	designer.							
3	Explain applications such as smart structures, self-healing materials, and robotics relative to							
	their bio logical analogs							
4	To gain an understanding that the design principles from nature can be translated into novel							
	devices and structures and an appreciation for how biological systems can be engineered by							
	human design							

Introduction to Biology: Biomolecules-Proteins, carbohydrates, lipids and Nucleic acids.06 HrsCell types- Microbial, plant, animal.Organ system- Circulatory, digestive, respiratory, excretory and nervous system. Sense organs. Plant process- Photosynthesis.06 Hrs

UNIT – II

Introduction to Biomimetics: Wealth of invention in nature as inspiration for human	08 Hrs				
innovation: Mimicking and inspiration of nature- synthetic life. Nature as a model for					
structure and tools: Biological clock, honey comb as strong light weight structure.					
Materials and processes in biology- Spider web, honey bee as a multi-material producer,					
fluorescent materials in fire flies. Bird and insect as source of inspiring flight. Robotics as					
beneficiary for biomimetic technologies.					

UNIT -III

Biological materials in Engineering mechanisms: Introduction, Comparison of	08 Hrs						
biological and synthetic materials: Silk processing and assembly by insects and spiders-							
High performance fibers from nature, Seashells- High performance organic and inorganic							
composites from nature. Shark skin- Biological approaches to efficient swimming via							
control of fluid dynamics, Muscles- Efficient biological conversion from chemical to							
mechanical engineering.							
UNIT –IV							
Biological inspired process and products: Artificial neural networks, genetic algorithms,	08 Hrs						
medical devices. Biosensors. Plant as Bioinspirations: Energy efficiency, Biomimetic super							
hydrophobic surfaces- lotus leaf effect. Bionic leaf and Photovoltaic cells.	l						
UNIT –V							

Implants in Practice: Artificial Support and replacement of human organs-Introduction,
Artificial kidney, liver, blood, lung, heart, skin and pancreas. Total joint replacements-
Visual prosthesis -artificial eye. Sense and sensors: Artificial tongue and nose, Biomimetic
echolation. Limitations of organ replacement systems.07 Hrs

Course Outcomes: After completing the course, the students will be able toCO1:Remember and explain the fundamentals of Biology

R.V. College of Engineering, Bengaluru – 59

CO2:	Describe the basic principles of design in biological systems.
CO3:	Differentiate biological phenomena to support inspiration for visual and conceptual design
	problems
CO4:	Create engineered solutions to customer needs utilizing a variety of bio-inspiration
	techniques.

Refere	ence Books
1	Jenkins, C.H. Bioinspired Engineering, NY: Momentum press, 2012 ISBN: 97816066502259
2	C.C.Chatterjee, Human Physiology Volume 1 (11th Edition), 2016, ISBN 10: <u>8123928726</u> /
	ISBN 13: <u>9788123928722</u>
3	Yoseph Bar-Cohen, Biomimetics: Biologically Inspired technologies, 2005, CRC press,
	ISBN: 9780849331633
4	Donald Voet, Charlotte W. Pratt. Principles of Biochemistry: International Student Version.
	Wiley John and Sons, 2012. ISBN:1118092449.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	1	1	1	1	1	1	1	2
CO2	2	1	2	1	1	1	1	1	1	1	1	2
CO3	3	3	3	2	1	1	1	1	1	1	1	3
CO4	3	3	3	1	1	1	1	1	1	1	1	2

High-3 : Medium-2 : Low-1

	VI Semester				
		GREEN TECHNOLOGY			
		(Group E: Global Elective)			
Cou	Course Code: 16G6E02 CIE Marks: 100				
Credits: L:T:P:S: 3:0:0:0 SEE Marks: 100		SEE Marks: 100			
Hou	Hours: 36L SEE Duration: 3Hrs				
Course Learning Objectives:					
1	1 Learn the tools of green technology				
2	Know various forms of renewable energy				
3	3 Study the environmental consequences of energy conversation				
4	4 Understand energy audits and residential energy audit				
-					

5 Understand the application of green technology in various industries

Unit-I			
Current Practices and Future Sustainability: Need for green technology, fundamentals	07 Hrs		
of energy and its impact on society and the environment, the mechanics, advantages and			
disadvantages of renewable energy sources, energy conservation and audits, zero waste			
technology, life cycle assessment, extended product responsibility, concept of atom econ-			
omy, tools of Green technology			
Cleaner Production: Promoting cleaner production, benefits and obstacles of cleaner pro-			
duction, cleaner production technologies.			
Unit – II			
Solar Radiation and Its Measurement: Solar constant, solar radiation at the earth's sur-	08 Hrs		
face, solar radiation geometry, solar radiation measurements			
Applications of Solar Energy: Introduction, solar water heating, space-heating (or solar			
heating of buildings), space cooling (or solar cooling of building), solar thermal electric			
conversion, agriculture and industrial process heat, solar distillation, solar pumping, solar			
cooking			
Geothermal Energy: Resource identification and development, geothermal power genera-			
tion systems, geothermal power plants case studies and environmental impact assessment.			
Unit -III			
Energy From Biomass (Bio-Energy): Introduction, biomass conversion technologies, wet	07 Hrs		
Processes, dry Processes, biogas generation, factors affecting biodigestion, types of biogas			
plants (KVIC model & Janata model), selection of site for biogas plant			
Bio Energy (Thermal Conversion): Methods for obtaining energy from biomass, thermal			
gasification of biomass, classification of biomass gasifiers, chemistry of the gasification			
process, applications of the gasifiers.			
Unit –IV			
Wind Energy: Introduction, basic components of WECS (Wind Energy Conversion sys-	07 Hrs		
tem), classification of WEC systems, types of wind machines (Wind Energy Collectors),			
horizontal-axial machines and vertical axis machines.			
Ocean Thermal Energy : OTEC-Introduction, ocean thermal electric conversion (OTEC),			
methods of ocean thermal electric power generation, open cycle OTEC system, the closed			
or Anderson, OTEC cycle, Hybrid cycle			
Energy from Tides : Basic principles of tidal power, components of tidal power plants, op-			
eration methods of utilization of tidal energy, advantages and limitations of tidal power			
generation			

Unit –V		
Hydrogen, Hydrogen Energy: Introduction, methods of hydrogen production (principles		
only), storage transportation, utilization of hydrogen gas, hydrogen as alternative fuel for		
motor vehicle, safety and management, hydrogen technology development in India		
Application of Green Technology: Electronic waste management, bioprocesses, green		
composite materials, green construction technology		
Sustainability of industrial waste management: Case studies on cement industry, iron		
and steel industry, petroleum sectors, marble and granite industry, sugar industry		

Course	Course Outcomes: After completing the course, the students will be able to				
CO1:	Recall the fundamentals of various forms of energy				
CO2:	Explain the principles of various forms of renewable energy				
CO3:	Apply the concept of zero waste, atom economy for waste management				
CO4:	Create a waste management plan incorporating tools of green technology in various industries				

Reference Books

1	Non-Conventional Energy Sources, G.D.Rai, 5 th Edition, 2016, Khanna Publications, ISBN: 8174090738
2	Renewable Energy-Power for a Sustainable Future, Edited by Godfrey Boyle, 3 rd Edition, 2012, Oxford University Press, ISBN: 9780199545339
3	Energy Systems and Sustainability: Power for a Sustainable Future, Godfrey Boyle, Bob Everett, and Janet Ramage, 2 nd Edition, 2012, Oxford University Press, ISBN: 0199593744
4	Renewable Energy resources , John Twidell and Tony Weir, 3 rd Edition, 2015, Routledge publishers, ISBN:0415584388

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The to-tal marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	VI Semester				
	SOLID V	VASTE MANAGEN	MENT		
		(Theory)			
Cou	rse Code:16G6E03		CIE Marks: 100		
Cre	dits: L:T:P:S: 3:0:0:0		SEE Marks: 100		
Hou	Hours: 36L SEE Duration: 3Hrs				
Cou	Course Learning Objectives: The students will be able to				
1	Impart the knowledge of present methods of solid waste management system and to analyze the				
1	drawbacks.				
2	2 Understand various waste management statutory rules.				
Analyze different elements of solid waste management, design and develop recycling op					
for biodegradable waste by composting.					
4	Identify hazardous waste, e-waste, plastic waste and bio medical waste and their management				
4	systems.				

UNIT-I		
Introduction: Land Pollution. Scope and importance of solid waste management. Present	08 Hrs	
solid waste disposal methods. Merits and demerits of open dumping, feeding to hogs,		
incineration, pyrolysis, composting, sanitary landfill. Definition and functional elements of		
solid waste management.		
Sources: Sources of Solid waste, types of solid waste, composition of municipal solid		
waste, generation rate, Numerical Problems.		
Collection and transportation of municipal solid waste: Collection of solid waste-		
services and systems, Municipal Solid waste (Management and Handling) 2000 rules with		
2016 amendments. Site visit to collection system.		
UNIT-II		
Composting Aerobic and anaerobic composting - process description, process	08 Hrs	
microbiology, Vermicomposting, Site visit to compost plant, Numerical problems.		
Sanitary land filling: Definition, advantages and disadvantages, site selection, methods,		
reaction occurring in landfill- Gas and Leachate movement, Control of gas and leachate		
movement, Site visit to landfill site.		
UNIT-III		
Hazardous waste management: Definitions, Identification of hazardous waste,	06 Hrs	
Classification of hazardous waste, onsite storage, collection, transfer and transport,		
processing, disposal, hazardous waste (Management and handling) rules 2008 with		
amendments. Site visit to hazardous landfill site		
UNIT-IV		
Bio medical waste management: Classification of bio medical waste, collection,	06 Hrs	
transportation, disposal of bio medical waste, Bio medical waste (Management and		
Handling) rules 1998 with amendments. Site visit to hospital to see the collection and		
transportation system and visit to biomedical waste incineration plant.		
UNIT-V		
E-waste management: Definition, Components, Materials used in manufacturing	06 Hrs	
electronic goods, Recycling and recovery integrated approach. E- waste (management and		
handling) rules 2011.Site visit to e- waste processing facility. Plastic waste		
management: Manufacturing of plastic with norms. Plastic waste management. Plastic		
manufacture, sale & usage rules 2009 with amendments.		

	Cour	se Outcomes: After completing the course, the students will be able to				
1		Understand the existing solid waste management system and to identify their drawbacks.				
2	2.	Analyze drawbacks in the present system and provide recycling and disposal options for each				
		type of waste.				
3	3.	Distinguish Hazardous waste, Biomedical waste, E waste and to provide scientific management				
		system.				
	4.	Evaluate and monitor the Biomedical waste, Hazardous waste, E waste, Plastic and Municipal				
		waste management as per the rules laid by Ministry of Environment & Forest.				

Reference Books

-						
1.	Integrated Solid Waste Management : Engineering principles and management issues George					
	Tchobanoglous, Hilary Theisen, Samuel A Vigil, published by M/c Graw hill Education.					
	Indian edition 2014. ISBN – 13: 978- 9339205249, ISBN-10 : 9339205243					
2.	Environmental Engineering, Howard S Peavy, Donald R Rowe and George Tchobanoglous,					
	Tata Mcgraw Hill Publishing Co ltd., 2013, ISBN-13 9789351340263.					
3.	Electronic waste management, R.E. Hester, Roy M Harrison,, Cambridge, UK, RSC					
	Publication, 2009, ISBN 9780854041121					
4.	Municipal Solid waste (Management & Handling Rules) 2000. Ministry of Environment &					
	Forest Notification, New Delhi, 25th Sept 2000 and 2016 amendments.					
5.	. Hazardous waste (management, handling) rules 2008.Ministry of Environment and Forest					
	Notification, New Delhi, 25th February 2009.					

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-]	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	1	-	-	-	-	-	-
CO2	2	1	-	-	1	1	-	-	-	-	-	-
CO3	2	2	1	-	2	1	1	-	-	-	-	1
CO4	2	2	1	-	3	2	2	_	-	-	1	1

VI Semester				
INTRODUCTION TO WEB PROGRAMMING				
(Group E : Global Elective)				
Course Code:16G6E04	CIE Marks: 100			
Credits: L:T:P:S: 3:0:0:0	SEE Marks: 100			
Hours: 36L	SEE Duration: 3 Hrs			

Course Learning Objectives: The students will be able to				
1	Understand the basic concepts used in web programming.			
2	Learn the definitions and syntax of different web technologies.			
3	Utilize the concepts of JavaScripts, XML and PHP.			
4	Design and develop web pages which are quick, easy and well-presented using different			
4	techniques such as CSS,XML and JavaScripts.			

UNIT-I						
Introduction to Web Concepts	07 Hrs					
Fundamentals of Web, HTML 5 - Core HTML attributes, headings, paragraphs and						
breaks, divisions and centering, quotations, preformatted text, lists, horizontal rules,						
block-level elements, text-level elements.XHTML – 1: Internet, WWW, Web Browsers						
and Web Servers, URLs, MIME, HTTP, Security, the Web Programmers Toolbox.						
XHTML: Basic syntax, Standard structure, Basic text markup, Images, Hypertext						
Links.XHTML (continued): Lists, Tables, Forms, Frames.						
UNIT-II						
Cascading Style Sheets (CSS):	09 Hrs					
Introduction, Levels of style sheets, Style specification formats, Selector forms, Property						
value forms, Font properties, List properties, Color, Alignment of text, The box model,						
Background images, The and <div> tags, Conflict resolution.</div>						
The Basics of JavaScript:						
Overview of JavaScript; Object orientation and JavaScript; General syntactic						
characteristics; Primitives, operations, and expressions; Screen output and keyboard						
input; Control statements						
UNIT-III						
JavaScript (continued):	09 Hrs					
Object creation and modification; Arrays; Functions; Constructor; Pattern matching using						
regular expressions; Errors in scripts.						
JavaScript and HTML Documents:						
The JavaScript execution environment; The Document Object Model; Element access in						
JavaScript; Events and event handling; Handling events from the Body elements, Button						
elements, Text box and Password elements; The DOM 2 event model; The navigator						
object; DOM tree traversal and modification.						
UNIT-IV						
Dynamic Documents with JavaScript:	06 Hrs					
Introduction to dynamic documents; Positioning elements; Moving elements; Element						
visibility; Changing colors and fonts; Dynamic content; Stacking elements; Locating the						
mouse cursor; Reacting to a mouse click; Slow movement of elements; Dragging						

and dropping elements.	
Introduction to PHP:	
Origins and uses of PHP; overview of PHP; General syntactic characteristics; Primitives,	
Operations and Expressions; Output; Control statements; Arrays; Functions; Pattern	
Matching; Form Handling; Files; Cookies; Session Tracking.	
	, J

UNIT-V						
XML:	05 Hrs					
Introduction; Syntax; Document structure; Document Type definitions; Namespaces;	I					
XML schemas; Displaying raw XML documents; Displaying XML documents with CSS;	1					
XSLT Style sheets; XML processors; Web services.	I					
	1					

Cours	Course Outcomes: After completing the course, the students will be able to						
CO1.	Understand and explore internet related concepts that are vital for web development.						
CO2.	Apply HTML tags for designing static web pages and forms using Cascading Style Sheet.						
CO3.	Utilize the concepts of XML, JavaScripts along with XHTML for developing web pages.						
CO4.	Design and develop web based applications using JavaScripts, CSS, XHTML, PHP and XML.						

Ref	erence Books
1.	Programming the World Wide Web – Robert W. Sebesta, 7 th Edition, 2013,Pearson Education,
	ISBN-13:978-0132665810
2.	Web Programming Building Internet Applications , Chris Bates, 3 rd Edition, , 2006, Wiley India,
	ISBN : 978-81-265-1290-4
3.	Internet & World Wide Web How to H program, M. Deitel, P.J. Deitel, A. B. Goldberg,
	3 rd Edition,2004, Pearson Education / PHI, ISBN-10: 0-130-89550-4
4.	Thomas A Powell, The Complete Reference to HTML and XHTML, 4 th Edition, 2003, Tata
	McGraw Hill publisher. ISBN: 978-0- 07-222942- 4.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	2	-	1	1	1	-	-	-	-	1
CO2	-	-	2	-	1	1	-	-	-	-	-	-
CO3	-	-	-	-	2	-	-	-	2	-	-	2
CO4	-	-	3	-	2	-	-	-	2	-	-	2

	VI Semester							
	AUTOMOTIVE ELECTRONICS							
	(Group I	E: Global Elective)						
Cou	r se Code: 16G6E05		CIE Marks: 100					
Crec	lits: L:T:P:S: 3:0:0:0		SEE Marks: 100					
Hou	rs:36L		SEE Duration: 3Hrs					
Cou	rse Learning Objectives: The students	will be able to						
1	1 Understand the application of principles of sensing technology in automotive field							
2	Apply control systems in the automotive domain							
3	Understand automotive specific communication protocols / techniques							
4	Analyze fault tolerant real time embedd	led systems						

UNIT-I	
Power Train Engineering and Fundamentals of Automotive: Fundamentals of Petrol, diesel and gas engines, electric motors and control systems. Basic Automotive System, System Components, Evolution of Electronics in Automotive. Alternators and charging, battery technology, Ignition systems. Working principles of various electronic components and accessories used in Automotive. Developments in existing engine forms and alternatives. Hybrid designs (solar power, electric/gasoline, LPG, CNG, fuel cells). Basic Transmission systems.	08 Hrs
UNIT-II	
Sensor Technologies in Automotive: In-vehicle sensors: Working principles, Characteristics, limitations and use within the automotive context of the following: Temperature sensing e.g. coolant, air intake. Position sensing e.g. crankshaft, throttle plate. Pressure sensing e.g. manifold, exhaust differential, tyre. Distance sensing e.g. anti-Collision, Velocity sensing e.g. speedometer, anti-skid. Torque sensing e.g. automatic transmission. Vibration sensing e.g. Airbags. flow sensing and measurement e.g. fuel injection. Interfacing principles: Operation, topologies and limitations of all sensors covered in the above to in-vehicle processing or communications nodes. Use of Actuators: Types, working principle, Characteristics, limitations and use within the automotive context of each type.	07 Hrs
UNIT-III	<u></u>
Automotive Control Systems: Control system approach in Automotive: Analog and Digital control methods, stability augmentation, control augmentation. Transmission control, System components and functions. Cruise control, traction control, actuator limiting, wind-up, gain scheduling, adaptive control. Special Control Schemes: Vehicle braking fundamentals, Antilock systems. Variable assist steering and steering control. Controls for Lighting. Wipers, Air conditioning /heating. Remote keyless Entry and Anti-theft System, Emission Course-system control. Control techniques used in hybrid system. Electronic Engine control: Motion equations, modeling of linear and non-linear systems, numerical methods, system responses Objective of Electronic Engine control. Spark Ignition and Compression Ignition Engines and their electronic controls. Engine management testing: Engine management system strategies and implementation. Simulation and implementation methods. Methods of improving engine performance and efficiency. Model Based Development (MBD) Technology. AUTOSAR: Objectives and Architecture.	07 Hrs
UNIT-IV	0.5.13
Automotive Communication Systems: Communication interface with ECU's: Interfacing techniques and interfacing with infotainment gadgets. Relevance of internet protocols, such as TCP/IP for automotive applications. Wireless LANs standards, such as Bluetooth, IEEE802.11x. Communication protocols for automotive applications. Automotive Buses: Use of various buses such as CAN, LIN, Flex Ray. Recent trends in automotive buses (Such as OBDI1. MOST, IE, IELI.I, D2B and DSI). Application of Telematics in Automotive: Global Positioning Systems (GPS) and General Packet Radio Service (GPRS), for use in an	07 Hrs

automotive environment. Vehicle to Vehicle Communication Higher End Technology: Comparative Study and applications of ARM Cortex-Ascries/M-scries. ARM 9 and ARM11.

UNIT-V

Diagnostics and Safety in Automotive: Fundamentals of Diagnostics: Basic wiring system07 Hrsand Multiplex wiring system. Preliminary checks and adjustments, Self-Diagnostic system.Fault finding and corrective measures. Electronic transmission checks and Diagnosis,Diagnostic procedures and sequence. On board and off board diagnostics in Automotive.Safety in Automotive: Safety norms and standards. Passenger comfort and security systems.Future trends in Automotive Electronics.

Course Outcomes: After completing the course, the students will be able to

- **CO1:** Acquire the knowledge of automotive domain fundamentals and need of electronics in Automotive systems
- **CO2:** Apply various sensors and actuators for Automotive applications
- **CO3:** Analyze different control systems and communication interfaces used in automotive systems.
- **CO4:** Evaluate the performance of telematics Diagnostics and safety norms in Automotive Systems.

Reference Books

1.	Understanding Automotive Electronics, Williams. B. Ribbens, 6th Edition, 2003, Elsevier
	science, Newness publication, ISBN-9780080481494.
2.	Automotive Electronics Handbook, Robert Bosch, 2004, John Wiley and Sons,

- **3.** Automotive Embedded Systems Handbook, Nicolas Navet, F Simonot-Lion, Industrial Information Technology Series, CRC press.
- **4.** Automotive Control Systems Engine, Driveline and vehicle, Uwekiencke and lars Nielsen, Springer, 2nd Edition, 2005, ISBN 0-387-95368X

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	1	-	-	1	-	-	-	-	1
CO2	3	2	2	1	-	1	-	-	-	1	-	1
CO3	3	2	2	1	-	1	-	-	2	-	1	1
CO4	3	1	2	1	2	1	-	-	1	-	-	-

	VI Semester							
	INDUSTRIAL ELECTRONICS							
		(Group E: Global Elective)						
Cour	se Code:16G6E06		CIE Marks: 100					
Credi	its: L:T:P:S: 3:0:0:0		SEE Marks: 100					
Hour	's: 36L		SEE Duration: 3Hrs					
Cour	se Learning Objectives: '	The students will be able to						
1	Explain the working of	the devices used in power electron	ic circuits in industrial					
	applications							
	Analysing and designing	g power electronic circuits which ha	ndle the electrical energy					
2	efficiently and economically and Identify the typical practical problems with industrial							
	exposure acquired							
3	1 Use basic concepts of design and working of electronic circuits for conversion and control							
	electrical energy.							
	Apply the knowledge to	o work as part of teams on multid	isciplinary projects and to discuss					
4	industrial problems with	regard to application of Power Elec	ctronics.					

Unit-I					
Power semi-conductor Devices and static characteristics:	08 Hrs				
Construction, working & characteristics of MOSFET, SCR, IGBT. Comparison of Power					
BJT, MOSFET, SCR, IGBT. Turn on methods of Power BJT, MOSFET and IGBT. Design					
of R, R-C, and UJT (pulse train) Gate triggering methods of SCR.					
Unit-II					
Thyristor Dynamic characteristics, Specifications and Protection:	07 Hrs				
Gate characteristics of SCR, Dynamic characteristics of SCR. Design of Snubber circuit					
for SCR, Line Commutation and Forced Commutation circuits with design, Gate					
protection & overvoltage protection of SCR.					
Unit-III					
Converters:	06 Hrs				
Single Phase Controlled Convertor- Full wave Half and Fully controlled line commutated					
bridge converters, Derivation of average load voltage and current. Three phase					
converters –Six pulse converters- with R load- Active inputs to the convertors with					
and without Freewheeling diode, Derivation of average load voltage and current.					
Converter applications:					
Industrial Applications of Half and Fully controlled converters to DC drives (Control of					
DC drives)					
Unit-IV					
Choppers – Step down, Step up Chopper, Step up/Down Chopper, Time ratio control and	07 Hrs				
Current limit control strategies – Derivation of load voltage and currents with R, RL					
of Step down, Step up Chopper, Step up/Down Chopper – load voltage expression.					
Application of choppers to subway cars, Industrial drives , <u>battery</u> operated vehicles.					
Unit-V					
Classification of Choppers and Applications:	08 Hrs				
Type A, Type B, Type C, Type D, Type E choppers and their industrial Applications, AC					
Chopper –phase control type.					
Inverters – Single phase inverter – Basic series inverter – Basic parallel Capacitor inverter,					
bridge inverter(single phase) – Voltage control techniques for inverters Pulse width					

modulation techniques. - UPS-online, offline (Principle of operation only

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Understand the comprehensive working of different devices and their applications.								
CO2:	Analyze the application of skills in controlling and conversion of electrical energy.								
CO3:	Evaluate and distinguish the performance of converters and inverters.								
CO4:	Ability to implement their knowledge and skills in design of applications.								

Ref	erence Books
1.	Power Electronics, M. D. Singh & K. B. Kanchandhani, Tata Mc Graw – Hill Publishing
	company, ISBN : 978-0-07-058389-4, 2008
2.	Power Electronics : Circuits, Devices and Applications, M. H. Rashid, Prentice Hall of India, 2 nd
	Edition, ISBN : 0131228153, 9780131228153, 2004
3.	Power Electronics, P.C. Sen, Tata McGraw-Hill Publishing, ISBN: 978-0-07-462400-5, 2008.
4	Power ElectronicsP S Bimbra P.S Bimbra ,Khanna Publication ,ISBN:978-7409-279-3,5 th
	Edition.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	1	2	2	1	1	2	0	1
CO2	3	2	2	3	3	0	1	0	0	0	2	1
CO3	3	2	2	3	2	2	0	1	0	0	1	2
CO4	3	3	3	3	2	3	2	0	1	0	0	1

High-3: Medium-2: Low-1

	VI Semester							
PROJECT MANAGEMENT								
Group E: Giobal Elective)								
Credits : L: T: P: S:3:0:0:0	SEE Marks : 100							
Hours : 33L	SEE Duration : 03 Hrs							
Course Learning Objectives: The st	udents will be able to							
1. To understand the principles and co	omponents of project management.							
2. To appreciate the integrated approa	ich to managing projects.							
3. To explain the processes of managing	ng project cost and project procurements.							
	Unit – I							
Introduction: What is project, what is project management, relationships among portfolio management, program management, project management, and organizational project management, relationship between project management, operations management and organizational strategy, business value, role of the project manager, project management body of knowledge								
	UNIT – II							
Organizational influences & Project life cycle: Organizational influences on project management, project state holders & governance, project team, project life cycle. Project Integration Management: Develop project charter, develop project management plan, direct & manage project work, monitor & control project work, perform integrated change control, close project or phase.								
	UNIT – III							
 Project Scope Management: Project scope management, collect requirements define scope, create WBS, validate scope, control scope. Project Time Management: Plan schedule management, define activities, sequence activities, estimate activity resources, estimate activity durations, develop schedule, control schedule. 								
UNIT – IV								
Project Cost management: Project control costs.Project Quality management: Pla control quality.	Cost management, estimate cost, determine budget, n quality management, perform quality assurance,	06 Hrs						
	UNIT – V							
Project Risk Management: Plan rist analysis, perform quantitative risk ana Project Procurement Manageme procurements, control procurements, o	k management, identify risks, perform qualitative risk lysis, plan risk resources, control risk. ent: Project Procurement Management, conduct close procurement.	06 Hrs						

Course	Outcomes:	After going	through this	s course the stud	ent will be able to
Course	outcomes.	A HICE SUME	, un vusn un	s course the stat	che win be ubie to

CO1 Understand the concepts, tools and techniques for managing large projects.

CO2 Explain various sub processes in the project management frameworks.

CO3 Analyze and evaluate risks in large and complex project environments.

CO4 Develop project plans for various types of organizations.

Reference Books:

- 1. A Guide to the Project Management Body of Knowledge(PMBOK Guide), Project Management Institute, 5th Edition, 2013, ISBN: 978-1-935589-67-9
- 2. Project Planning Analysis Selection Financing Implementation & Review, Prasanna Chandra, 7th Edition, 2010, Tata McGraw Hill Publication, ISBN 0-07-007793-2.
- 3. Project Management A System approach to Planning Scheduling & Controlling, Harold Kerzner, 10th Edition, 2009, CBS Publishers and Distributors, ISBN 047027806.
- 4. Strategic Project Management Made Simple: Practical Tools for Leaders and Teams, Terry Schmidt, 1st Edition, 2009, John Wiley & Sons, ISBN: 978-0470411582

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2											
CO2	2	2		1	1							
CO3							1	1				
CO4	2		3		1							

	VI Semester									
	VIRTUAL INSTRUMENTATION									
	(Group E: Global Elective)									
Cours	se Code:16G6E08		CIE Marks: 100							
Credi	ts/Week: L:T:P:S: 3:0:0:0		SEE Marks: 100							
Hours	s:35L		SEE Duration: 3Hrs							
Cours	Course Learning Objectives: The students will be able to									
1	Understand the difference be	tween conventional	and graphical programming, basic data							
	acquisition concepts.									
2	Differentiate the real time and v	rirtual instrument.								
3	Develop ability for programm	ing in LabVIEW us	ing various data structures and program							
	structures.									
4	Analyze the basics of data acc	quisition and learnir	ng the concepts of data acquisition with							
	LabVIEW.									

UNII-I					
Graphical Programming Environment:	06 Hrs				
Basic of Virtual Instrumentation, Conventional and Graphical Programming. Introduction					
to LabVIEW, Components of LabVIEW and Labels.					
Fundamentals: Data Types, Tool Pallets, Arranging Objects, Color Coding, Code					
Debugging, Context Help, Creating Sub-VIs Boolean, Mechanical action- switch, and latch					
actions, String data types, enum, ring, Dynamics.					
UNIT-II					
Fundamentals of Virtual Instrumentation Programming:	09 Hrs				
For Loop, While Loop, shift registers, stack shift register, feedback node, and tunnel.					
Timing function : Timing VI, elapsed time, wait function.					
Case structures, formula node, Sequence structures, Arrays and clusters, visual display					
types- graphs, charts, XY graph. Local and Global variables.					
UNIT-III					
Error Handling - error and warning, default error node, error node cluster, automatic and					
manual error handling.					
String Handling: Introduction, String Functions, LabVIEW String Formats.					
File Input / Output: Introduction. File Formats, File I/O Functions and file Path functions.					
Design patterns: Producer/consumer, event handler, derived design pattern. Queued					
message handler, Producer/consumer (events), Producer/consumer (state machine).					
UNIT-IV					
Data Acquisition: Introduction to data acquisition, Analog Interfacing Connecting signal					
to board, Analog Input/output techniques digital I/O, counters, NI-DAQmx tasks.					
DAO Hardware configuration: Introduction, Measurement and Automation Explorer,					
DAO Assistants. Analysis Assistants.					
Interfacing Instruments: GPIB and RS232: Introduction, RS232 Vs. GPIB,					
Handshaking, GPIB Interfacing, RS232C/RS485 Interfacing, and VISA.					

UNIT-V								
Advanced Topics In LabVIEW: Use of analysis tools and application of VI: Fourier	06 Hrs							
transforms Power spectrum, Correlation methods, windowing & filtering. Inter-Process								
Communication, Notifier, Semaphore, Data Sockets.								
Simulation of systems using VI: Development of Control system, Image acquisition and								
processing.								

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Remember and Understand the fundamentals of Virtual Instrumentation and data Acquisition.								
CO2:	Apply the theoretical concepts to realize practical systems.								
CO3:	Analyze and evaluate the performance of Virtual Instrumentation Systems.								
CO4:	Create a VI system to solve real time problems using data acquisition.								

Reference Books

1	Virtual instrumentation Using LabVIEW, Jovitha Jerome, 4 th Edition, 2010, PHI Learning Pvt.
	Ltd., ISBN: 978-812034035.
2	Virtual Instrumentation Using LabVIEW, Sanjay Gupta & Joseph John, 2 nd Edition, New
	Delhi, 2010, Tata McGraw Hill Publisher Ltd., ISBN: 978-0070700284
3	LabVIEW for Everyone: Graphical Programming made easy and fun, Jeffrey Travis, Jim
	Kring, 3 rd Edition, 2006, Prentice Hall,ISBN: 978-0131856721.
4	Data Acquisition using LabVIEW,Behzad Ehsani, 1 st Edition,2017, Packt Publishing, ISBN:
	978-1782172161.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The to-tal marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO MAPPING												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	1	2	-	-	-	2	2	-	1
CO2	1	1	1	1	2	-	-	-	2	2	-	1
CO3	1	-	1	1	2	-	-	-	2	2	-	1
CO4	2	1	1	2	3	-	-	-	2	2	-	2

VI Semester					
INTRODUCTION TO MOBILE APPLICATION DEVELOPMENT					
Course Code: 10C0E00	(Group E: Global Elec	tive)			
Course Code: 10G0E09		SEE Marks: 100			
Hours • 361		SEE Marks. 100 SEE Duration: 3Hrs			
Course Learning Objectives: T	he students will be able to	SEL Duration. SITIS			
1 Learn Android application de	velopment platform for mo	bile devices and use it.			
2 Understand mobile application	on architecture and its comp	onents.			
3 Define Android specific pro	gramming concepts such a	s activities, intents, fragments	, services,		
broadcast receivers and conte	ent providers.	C C			
4 Describe sensors like moti	on sensors, environmental	sensors, and positional sens	ors; most		
commonly embedded in And	roid devices along with thei	r application programming inte	erface.		
	UNIT I				
Overview of Software platform	s and Development: Mobi	ile OS: Android development	07 Hrs		
platform and tools, Program	ning language, Emulatoi	r, SDK and Development			
Creating Applications and A	ctivities. Introducing the	Application Manifest File:			
Creating Applications and Activi	ties Architecture Patterns	(MVC): Android Application			
Lifecvcle.	des, mentecture rutterns	(ivi v C), r marora r ipplication			
	UNIT II				
User Interface Design: Fundamental Android UI Design; Introducing Layouts; 07 Hrs					
Introducing Fragments.					
Intents and Broadcasts: Intro	ducing Intents; Creating I	ntent Filters and Broadcast			
Receivers.					
			05.11		
Database and Content Provide	rs: Introducing Android Da	atabases; Introducing SQLite;	07 Hrs		
Content values and Cursors; Providers: Using Content Provide	working with SQLite D	roid Content Providers			
Floviders, Using Content Flovide	IINIT IV	Tota Content Floviders.			
UNIT IV					
the Emulator with Location-Ba	the Emulator with Location-Based Services: Selecting a Location Provider: Using				
Proximity Alerts: Using the Geocoder: Example: Map-based activity: Hardware Support					
for Telephony; Using Telephony; Introducing SMS and MMS.					
Hardware Support and Devices (AUDIO, VIDEO, AND USING THE CAMERA): 07 H					
Using Sensors and the Senso	r Manager; Monitoring	a Device's Movement and			
Orientation; Introducing the En	vironmental Sensors; Playi	ng Audio and Video; Using			
Audio Effects; Using the Camera	; Recording Video				

Course Outcomes: After completing the course, the students will be able toCO1:Assess the basic framework and usage of SDK to build GUI and apply advanced

R.V. College of Engineering, Bengaluru – 59

	technologies in developing Android mobile applications.
CO2:	Differentiate techniques for persisting user data, such as shared preferences, traditional file
	systems (internal and external storage), and SQLite database
CO3:	Articulate the communication programming features and capabilities of Android platforms.
CO4:	Design and create innovative, sophisticated mobile applications using Android platform.

Ref	erence Books
1.	Professional Android 4 Application Development, Reto Meier, WROX Press, 2012, Wiley
	Publishing, ISBN: 9781118102275
2.	Android Application Development: Programming with the Google SDK, John Lombardo, Blake
	Meike, Rick Rogers and Zigurd Mednieks, 2009, O'Reilly Media, Inc. ISBN: 9788184047332
3.	Hello Android, Introducing Google's Mobile Development Platform, Ed Burnette, 3 rd Edition,
	Pragmatic Programmers, LLC.ISBN: 9781934356562
4.	Android Studio Development Essentials - Android 6, Neil Smyth, 2015, Createspace
	Independent Publishing Platform, ISBN: 9781519722089

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	-	3	-	-	-	-	-	-	2
CO2	3	3	3	-	3	1	-	-	-	2	-	2
CO3	-	3	3	-	3	2	-	-	-	2	1	3
CO4	3	3	3	2	3	2	2	2	2	2	1	3

	VI Semester						
		AUTOMOTIVE ENGINEERIN	G				
		(Group E: Global Elective)					
Cou	rse Code:	16G6E10	CIE Marks: 100				
Crec	lits: L:T:P:S	3:0:0:0	SEE Marks: 100				
Hours: 36L SEE Duration: 3Hrs							
Cou	rse Learning Ol	jectives: The students will be able to					
1	Identify the dif	ferent sub-systems in automobiles.					
2	Describe the functions of each of the sub-systems and its effect.						
2	Discuss fuel injection, transmission, braking, steering, suspension, air intake and exhaust						
3	systems.						
1	Explain the im	portance of selection of suitable sub-system for	or a given performance				
4 requirement.							

UNIT-I

Automobile Engines	06 Hrs			
Classifications of Internal Combustion Engines based on no. of cylinders, Arrangement				
of cylinders, Type of fuel and no. of strokes. Engine construction and nomenclature.				
Thermodynamic principles of Otto and Diesel cycle. Operation in a 4 stroke engine.				
Direct and indirect injection. Combustion stages in engines. Fuels: Gasoline, Diesel,				
LPG and Natural Gas For automotive applications. Fuel properties- Octane number and				
Cetane number. Pollutants and Emission norms- Regulated pollutants and its effects,				
Regulations as per emission norms.				
UNIT-II				
Engine Auxiliary Systems:	08 Hrs			
AirIntake and Exhaust System- Working principle of Air filters, Intake manifold,				
Turbocharger, Intercooler, Exhaust manifold, Catalytic convertor, Exhaust Gas				
Recirculation system, Muffler.				
Cooling system- Components, working principle, Coolant.				
Lubrication system- Components, Properties of lubricating oil, Viscosity numbers.				
Fuel system- Working principle of Fuel Injection Pump, Injector, Nozzle, Fuel filter.				
Working of ignition system, Battery, Immobilizer.				
UNIT-III				
Transmission:	08 Hrs			
Clutch- Classification and working, Gear box- Classification, Working of sliding mesh				
and Synchromesh transmission, Automatic transmission. Propeller shaft, Differential				
assembly and rear axle- Working. Wheels and Tyres- Wheel alignment and balancing				
classification of tyres, Radial, Tubeless.				
UNIT-IV				
Vehicular Auxiliary Systems:	06 Hrs			
Suspension- Front and rear suspension working, Types of springs.				
Brake- Classification and Components - Disc and drum brakes, Hydraulic, parking brake,				
Front and rear wheel brakes. Antilock Braking Systems.				
Steering- components and operation of power steering.				

Vehicle frame and body classification- Hatchback, Sedan, SUV.				
Safety systems- Passive safety systems, Active safety systems- Principle of Electronic				
Stability Program, Air bags, Crash testing methods.				
UNIT-V				
Demonstrations of Automobile Systems: Engine performance measurement in terms of	06 Hrs			
Brake power, Emission measurement and principle, Drawing Valve Timing Diagram for				
multi-cylinder engine, Production and properties of biodiesel.				

Cou	Course Outcomes: After completing the course, the students will be able to					
1	Describe the different types of automotive systems. (L1- L2)					
2	Construct the Valve Timing Diagram for multi-cylinder engines. (L3)					
3	Detect the automotive exhaust pollutants using gas analyzer. (L4)					
4	Evaluate the performance of engines by determining Brake Power. (L6)					

Reference Books

1.	Automotive Engineering Fundamentals, Richard Stone and Jeffrey K. Ball, 2004 ,
	SAE International, ISBN: 0768009871
2.	Bosch Automotive Handbook, Robert Bosch, 9 th Edition, 2004, ISBN: 9780768081527.
3.	Automotive Engineering e-Mega Reference, David Crolla, Butterworth-Heinemann,
	1 st Edition, 2009, ISBN: 9781856175784.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1		1			2		2			1
CO2		2										
CO3		2	1			2		1			2	1
CO4	2	2	1	1	1	1	2	1	1	2	2	

	VI Semester						
	MOBILE NETWORK SYSTEMS AND STANDARDS						
	(GROUP E	: GLOBAL ELECTI	VE)				
Cou	rse Code: 16G6E11		CIE Marks: 100				
Crea	Credits: L:T:P:S: 3:0:0:0 SEE Marks: 100						
Hou	Hours: 34L SEE Duration: 03Hrs						
Cou	rse Learning Objectives: The students	s will be able to					
1	1 Understand land mobile concepts, radio link design and cellular network.						
2	Compare the standards of WPAN, WLAN and WMAN.						
3	3 Analyze WPAN, WLAN and WMAN standards and their architecture.						
4	Design and demonstrate wireless netw	orks for various appli	cations.				

UNIT-I				
Cellular Wireless Networks: Principles of cellular Networks, cellular system				
components and Operations, channel assignment, Attributes of CDMA in cellular	06 Hrs			
system.				
UNIT-II				
Second generation Cellular Networks: GSM architecture, IS-95, GPRS, EDGE.	08 Hrs			
UNIT-III				
Third generation cellular systems: WCDMA, IMT 2000 and LTE, Convergence in the				
network.				
UNIT-IV				
Wireless Personal Area Networks: Network architecture, components, Applications,	08 Hrs			
Zigbee, Bluetooth.				
Wireless Local Area networks: Network Architecture, Standards, Applications.				
UNIT-V				
Wireless Metropolitan Area Networks: IEEE 802.16 standards, advantages, WMAN	06 Hrs			
Network architecture, Protocols, Applications.				

Course Outcomes: After completing the course, the students will be able to									
CO1	Describe the architectures and characteristics of different mobile networks. (L1- L2)								
CO2	Apply the Network standards to a suitable application (L3)								
CO3	Analyze the operation of various network technologies and standards (L4)								
CO4	Evaluate the performance of various network technologies (L5)								

Refere	ence Books									
1	Wireless Communication, UpenaDalal, 1 st Edition , 2009, Oxford higher Education,									
	ISBN-13:978-0-19-806066-6.									
2	Wireless and Mobile Networks Concepts and Protocols, Dr.sunil Kumar s Manvi, 2010,									
	Willey India Pvt. Ltd., ISBN: 978-81-265-2069-5.									
3	Wireless Communications Principles and practice, Theodore S Rappaport, 2 nd Edition,									

Pearson, ISBN 97881-317-3186-4.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2		2			2		2		1
CO2	3	3	2		2			2		2		1
CO3	3	3	3		2			2		2		2
CO4	3	3	3		3			2		2		2

	VI Semester								
	PARTIAL DIFFERENTIAL EQUATIONS								
	(Group E: Global Elective)								
Cou	r se Code: 16G6E12		CIE Marks: 100						
Crec	lits: L:T:P:S: 3:0:0:0		SEE Marks: 100						
Hou	rs: 35L		SEE Duration: 3Hrs						
Cou	rse Learning Objectives:								
1	Adequate exposure to learn	basics of partial differential equ	uations and analyze mathematical						
	problems to determine the suitable analytical technique.								
2	Use analytical techniques and finite element technique for the solution of elliptic, parabolic and								
	hyperbolic differential equations.								
3	3 Solve initial value and boundary value problems which have great significance in engineering								
	practice using partial differential equations.								
4	Identify and explain the basic	cs of partial differential equation	as and use the same to analyze the						
	behavior of the system.								

Uni	it-I
-----	------

Partial Differential Equations of first order:	07 Hrs				
Introduction to formation of partial differential equations, Cauchy problem, Orthogonal					
surfaces, First order non-linear partial differential equations-Charpit's method,					
Classification and canonical forms of partial differential equations.					
Unit – II					
Elliptic Differential Equations:	07 Hrs				
Derivation of Laplace and Poisson equation, Separation of variable method, Direchlet					
problem, Neumann problem, Solution of Laplace equation in cylindrical and spherical					
coordinates.					
Unit -III					
Parabolic Differential Equations:	07 Hrs				
Formation and solution of Diffusion equation, Dirac-Delta function, Separation of variable					
method, Solution of Diffusion equation in cylindrical and spherical coordinates.					
Unit –IV					
Hyperbolic Differential Equations:	07 Hrs				
Formation and solution of one dimensional wave equation, D'Alembert's solution,					
vibrating string, Forced vibration, Periodic solution of one dimensional wave equation in					
cylindrical and spherical coordinates, Vibration of Circular membrane.					
Unit –V					
Numerical solutions of Partial Differential Equations:	07 Hrs				
Finite difference method for Elliptic, Parabolic and Hyperbolic partial differential					
equations, Introduction to the finite element method-simple problems.					

Course Outcomes: After completing the course, the students will be able to												
CO1:	Identify and interpret the fundamental concepts of formation and solution of parabolic,											
	hyperbolic and elliptic differential equations using analytical and numerical methods.											

R.V. College of Engineering, Bengaluru – 59

CO2:	Apply the knowledge and skills of analytical and numerical methods to solve the parabolic,
	hyperbolic and elliptic differential equations arising in the field of science and engineering.
CO3:	Analyze the physical problem to establish mathematical model and use appropriate method to
	solve and optimize the solution using the appropriate governing equations.
CO4:	Distinguish the overall mathematical knowledge to demonstrate and analyze the solution of
	parabolic, hyperbolic and elliptic differential equations arising in practical situations.

Refere	ence Books
1	Partial Differential Equations, K. Sankara Rao, Prentice-hall of India, 3 rd Edition, 2012,
	ISBN: 978-81-203-3217-1.
2	Advanced Engineering Mathematics, Erwin Kreyszig, Wiley, 10 th Edition, 2016, ISBN: 978-
2	81-265-5423-2.
2	Numerical methods for scientific and engineering computation, M K Jain, S. R. K. Iyengar, R.
5	K. Jain, New Age International Publishers, 6 th Edition, 2012, ISBN-13: 978-81-224-2001-2.
4	An Introduction to the finite element method, J. N. Reddy, McGraw Hill, 3 rd Edition, 2005,
4	ISBN 13: 9780072466850.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

High-3: Medium-2: Low-1
VI Semester						
AIRCRAFT SYSTEMS						
	(Group E: Global Elective)					
Course Code:16GE6B13		CIE Marks: 100				
Credits: L:T:P:S: 3:0:0:0		SEE Marks: 100				
Hours: 36L		SEE Duration: 3Hrs				

Course	Learning	Objectives:
--------	----------	--------------------

To enable the students to: 1 List the various systems involved in the design of an aircraft 2

- Demonstrate the technical attributes of all the subsystems of an aircraft
- 3 Explain the significance of each systems and its subsystems for developing an airplane
- 4 Demonstrate the integration of the systems with the airplane

Unit-I		
Flight Control Systems : Primary and secondary flight controls, Flight control linkage	07 Hrs	
system, Conventional Systems, Power assisted and fully powered flight controls.		
Unit – II		
Aircraft Hydraulic & Pneumatic Systems : Components of a typicalHydraulic system,	08 Hrs	
Working or hydraulic system, Power packs, Hydraulic actuators. Pneumatic system and		
components, Use of bleed air, Landing gear and braking, Shock absorbers-Retraction		
mechanism.		
Unit -III		
Aircraft Fuel Systems : Characteristics of aircraft fuel system, Fuel system and its	07 Hrs	
components, Gravity feed and pressure feed fuel systems, Fuel pumps-classification, Fuel		
control unit.		

Unit -IV		
Environmental Control Systems : Air-conditioning system, vapour cycle system, de- icing and anti-icing system, Fire detection- warning and suppression. Crew escape aids.	07 Hrs	
Engine Systems : Engine starting sequence, Starting and Ignition systems, Engine oils and a typical lubricating system.		
Unit -V		
Aircraft Instruments : Instruments displays, panels & layouts, Instrumentation group- ing, Navigation instruments, Radio instruments, Hydraulic and Engine instruments. Air Data Instruments : Basic air data system and probes, Mach meter, Air speed indicator, Vertical speed indicator, Barometric pressure sensing, Altimeter, Air data alerting system- angle of attack sensing, stall warning, Mach warning, altitude alerting system.	07 Hrs	

At the end of this course the student will be able to :

Categorise the various systems required for designing a complete airplane 1

2 Comprehend the complexities involved during development of flight vehicles.

3	Explain the role and importance of each systems for designing a safe and efficient flight vehicle
4	Demonstrate the different integration techniques involved in the design of an air vehicle

Ref	erence Books
1	John D. Anderson, Introduction to Flight, 7 th Edition, 2011, McGraw-Hill Education, ISBN 9780071086059.
2	Moir, I. and Seabridge, A.,Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration, 3 rd Edition, 2008, Wiley Publications, ISBN- 978-0470059968

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	3	2	2				1
CO2	2	3	3	3	1	1	1	1				1
CO3	2	2	3	3	1							2
CO4	3	3	3	3	1	2	1	2				1

High-3 : Medium-2 : Low-1

VI Semester PROFESSIONAL PRACTICE – III EMPLOYABILITY SKILLS AND PROFESSIONAL DEVELOPMENT OF ENGINEERS **Course Code:16HS68** CIE Marks: 50 Credits: L:T:P:S: 0:0:1:0 SEE Marks: NA Hours: 18 Hrs **CIE Duration:** 02Hrs Course Learning Objectives: The students will be able to 1 Improve qualitative and quantitative problem solving skills. 2 Apply critical and logical thinking process to specific problems. Ability to verbally compare and contrast words and arrive at relationships between concepts, based 3 on verbal reasoning.

4 Applying good mind maps that help in communicating ideas as well as in technical documentation

V Semester		
UNIT-I		
Aptitude Test Preparation- Importance of Aptitude tests, Key Components, Quantitative	06 Hrs	
Aptitude – Problem Solving, Data Sufficiency, Data Analysis - Number Systems, Math		
Vocabulary, fraction decimals, digit places etc.		
Reasoning and Logical Aptitude - Introduction to puzzle and games organizing		
information, parts of an argument, common flaws, arguments and assumptions. Analytical		
Reasoning, Critical Reasoning.		
UNIT-II		
Verbal Analogies - What are Analogies, How to Solve Verbal Analogies & developing	06 Hrs	
Higher Vocabulary, Grammar, Comprehension and Application, Written Ability. Non-		
Verbal Reasoning, Brain Teasers. Creativity Aptitude.		
Group Discussion- Theory & Evaluation : Understanding why and how is the group		
discussion conducted, The techniques of group discussion, Discuss the FAQs of group		
discussion, body language during GD.		
UNIT-III.A		
Resume Writing- Writing Resume, how to write effective resume, Understanding the basic	06 Hrs	
essentials for a resume, Resume writing tips Guidelines for better presentation of facts.		
VI Semester		
UNIT-III.B		
Technical Documentation - Introduction to technical writing- Emphasis on language	06 Hrs	
difference between general and technical writing, Contents in a technical document, Report		
design overview & format Headings, list & special notes, Writing processes, Translating		
technical information, Power revision techniques, Patterns & elements of sentences,		
Common grammar, usage & punctuation problems.		
UNIT-IV		
Interview Skills -a) Personal Interviews , b) Group Interviews , c) Mock Interviews -	06 Hrs	
Questions asked & how to handle them, Body language in interview, Etiquette, Dress code		
in interview, Behavioral and technical interviews, Mock interviews - Mock interviews with		
different Panels. Practice on stress interviews, technical interviews, General HR interviews		

etc.	
UNIT-V	
Interpersonal Relations - Optimal Co-existence, Cultural Sensitivity, Gender sensitivity	
Adapting to the Corporate Culture- Capability & Maturity Model, Decision Making	
Analysis, Brain Storm. Adapting to the Corporate Culture.	

Course Outcomes: After completing the course, the students will be able to						
CO	Inculcate employability skill to suit the industry requirement.					
CO	2: Analyze problems using quantitative and reasoning skills					
CO	3: Exhibit verbal aptitude skills with appropriate comprehension and application.					
CO	4: Focus on Personal Strengths and Competent to face interviews and answer					
	· · ·					
Reference Books						
1.	The 7 Habits of Highly Effective People, Stephen R Covey Free Press, 2004 Edition, ISBN:					
	0743272455					
2.	How to win friends and influence people, Dale Carnegie General Press, 1 st Edition, 2016, ISBN:					
	9789380914787					
3.	Crucial Conversation: Tools for Talking When Stakes are High, Kerry Patterson, Joseph Grenny,					
	Ron Mcmillan 2012 Edition, McGraw-Hill Publication ISBN: 9780071772204					
4.	Aptimithra: Best Aptitude Book ,Ethnus,2014 Edition, Tata McGraw Hill ISBN:					
	9781259058738					

Scheme of Continuous Internal Examination (CIE) Evaluation of CIE will be carried out in TWO Phases.

Phase	Activity	Weightage					
Ι	Test 1 is conducted in V Sem for 50 marks (15 Marks Quiz and 35 Marks	50%					
	Descriptive answers) after completion of Unit-1, Unit-2 and Unit -3.A						
	for 18 hours of training sessions.						
II	Test 2 is conducted in VI Sem for 50 marks ((15 Marks Quiz and 35	50%					
	Marks Descriptive answers) after completion of Unit -3B, Unit - 4 and						
	Unit-5 for 18 hours of training sessions.						
	At the end of the VI sem Marks of Test 1 and Test 2 is consolidated for	or 50 marks					
	(Average of Test1 and Test 2 (T1+T2/2). The grading is provided by the Coe. The						
	final CIE marks is scrutinized by the committee comprising of HSS- Chairman,						
	Training Co-ordinator, respective department Staff Placement co-ordinator before						
	submitting to CoE.						

SEE: NA

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1					1		1	1	1	2	1
CO2	1	2	2					1	2	1	2	1
CO3			3			1		2	1	2	1	
CO4						1	3	1	1	1	1	

Low-1 Medium-2 High-3

R.V. College of Engineering, Bengaluru – 59

Curriculum Design Process

Academic Planning and Implementation

PROCESS FOR COURSE OUTCOME ATTAINMENT

Final CO Attainment Process

Program Outcome Attainment Process

Guidelines for Fixing Targets

The target may be fixed based on last 3 years' average attainment

PROGRAM OUTCOMES (POs)

1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.

2. **Problem analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet t h e specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.

4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.

6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. **Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with t h e society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. **Life-long learning:** Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.