

R.V. College of Engineering, Bengaluru – 59 (An Autonomous Institution affiliated to Visvesvaraya Technological University, Belagavi) Department of Chemical Engineering

Vision:

Imparting quality education that promotes leadership in Research, Innovation and Sustainable Technologies through teamwork and Entrepreneurship in Chemical Processes, Energy, Unit Operations and Computational Chemical Engineering to meet societal requirements.

Mission:

- Impart quality education in basic and applied areas of Chemical Engineering.
- Enable students and faculty to achieve proficiency in the areas of Chemical Processes, Energy, Unit Operations and Computational Chemical Engineering using state-of-the-art laboratories and modern infrastructure.
- Encourage faculty and students to make career in research and contribute towards innovative processes and products.
- Develop inclusive technologies with a focus on new materials and sustainability.
- Collaborate with industries and research institutes for academics and research.
- Inculcate leadership qualities, entrepreneurial skills, societal and ethical values in students and faculty.

CHEMICAL ENGINEERING PROGRAM

Program Specific Criteria (PSC)

Lead Society: American Institute of Chemical Engineers

1. Curriculum

The curriculum provides a thorough grounding in the basic sciences including chemistry, physics, and/or biology, with some content at an advanced level, as appropriate to the objectives of the program. The curriculum also includes the engineering applications of these basic sciences to the design, analysis, and control of chemical, physical, and/or biological processes, including the hazards associated with these processes.

2. Faculty

The master's level engineering program must demonstrate that the faculty members are of sufficient number and that they have the competencies to cover all of the curricular areas of the program. The program must have sufficient faculty to accommodate adequate levels of student-faculty interaction, student advising and counseling, activities, professional development, and interactions with industrial and professional practitioners, as well as employers of students.

Program Educational Objectives (PEO)

M. Tech. in Chemical Engineering graduates will be able to:

PEO1 Use tools of Chemical Engineering in process and allied industries or in higher studies

- **PEO2** Design and develop sustainable Chemical Engineering systems in Energy, Environment, Materials and Biotechnology sectors
- PEO3 Achieve professional success ethically both as individuals and in a team
- **PEO4** Pursue life-long learning to be a competent Chemical Engineer

Program Outcomes (PO)

M.Tech. in Chemical Engineering graduates will be able to:

PO1.Scholarship of Knowledge: Acquire in-depth knowledge in Chemical Engineering, including wider and global perspective, with an ability to discriminate, evaluate, analyse and synthesise existing and new knowledge, and integration of the same for enhancement of knowledge.

PO2.Critical Thinking: Analyse complex chemical engineering problems critically, apply independent judgement for synthesising information to make intellectual and/or creative advances for conducting research in a wider theoretical, practical and policy context.

PO3.Problem Solving: Think laterally and originally, conceptualise and solve chemical engineering problems, evaluate a wide range of potential solutions for those problems and arrive at feasible, optimal solutions after considering public health and safety, cultural, societal and environmental factors in the core areas of expertise.

PO4.Research Skill: Extract information pertinent to unfamiliar problems through literature survey and experiments, apply appropriate research methodologies, techniques and tools, design, conduct experiments, analyse and interpret data, demonstrate higher order skill and view things in a broader perspective, contribute individually/in group(s) to the development of scientific/technological knowledge in one or more domains of engineering

PO5.Usage of modern tools: Create, select, learn and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling, to complex engineering activities with an understanding of the limitations.

PO6.Collaborative and Multidisciplinary work: Possess knowledge and understanding of group dynamics, recognise opportunities and contribute positively to collaborative-multidisciplinary scientific research, demonstrate a capacity for self-management and teamwork, decision-making based on open-mindedness, objectivity and rational analysis in order to achieve common goals and further the learning of themselves as well as others.

PO7.Project Management and Finance: Demonstrate knowledge and understanding of engineering and management principles and apply the same to one's own work, as a member and leader in a team, manage projects efficiently in respective disciplines and multidisciplinary environments after considerisation of economical and financial factors.

PO8.Communication : Communicate with the engineering community, and with society at large, regarding complex engineering activities confidently and effectively, such as, being able to comprehend and write effective reports and design documentation by adhering to appropriate standards, make effective presentations, and give and receive clear instructions.

PO9.Life-long Learning: Recognise the need for, and have the preparation and ability to engage in life-long learning independently, with a high level of enthusiasm and commitment to improve knowledge and competence continuously.

PO10.Ethical Practices: and Social Responsibility Acquire professional and intellectual integrity, professional code of conduct, ethics of research and scholarship, consideration of the impact of research outcomes on professional practices and an understanding of responsibility to contribute to the community for sustainable development of society.

PO11.Independent and Reflective Learning: Observe and examine critically the outcomes of one's actions and make corrective measures subsequently, and learn from mistakes without depending on external feedback.

Program Specific Outcomes (PSO)

M. Tech. in Chemical Engineering graduates will be able to:

- **PSO1.** Gain comprehensive knowledge in Chemical Engineering and demonstrate research capabilities
- **PSO2.** Analyse and solve engineering problems in materials, biotechnology, environment and energy domains
- PSO3. Contribute to multidisciplinary research using relevant Chemical Engineering tools

Department of Chemical Engineering

M. Tech. in Chemical Engineering

		FII	RST SEN	IESTER				
Sl.	Course Code	Course Title	BoS		CREDIT A	LLOCATIO	N	Total
No				Lecture	Tutorial	Practical	Self Study	Credits
				L	Т	Р	S	
1	16 MEM11P	Project Management	IM	3	1	0	0	4
2	16 MCH 12	Applied Mathematics in Chemical Engineering	СН	4	0	0	0	4
3	16 MCH 13	Modeling and Simulation of Processes(Theory & Practice)	СН	4	0	1	0	5
4	16 MCH 14	Process Equipment Design	CH	4	0	0	1	5
5	16 MCH 15X	Elective-1	СН	4	0	0	0	4
6	16 HSS16	Professional Skill Development	HSS	0	0	2	0	2
		Total		19	1	3	1	24

Elective Group 1								
16MCH151	Solid Waste Management	16MCH152	Fuel Cell Technology					

Department of Chemical Engineering

M. Tech. in Chemical Engineering

SECOND SEMESTER										
Sl.	Course Code	Course Title	BoS		CREDIT	ALLOCATIO	N	Total		
No				Lecture	Tutorial	Practical	Self Study	Credits		
				L	Т	Р	S			
1	16 MEM21R	Research Methodology	IM	3	1	0	0	4		
2	16 MCH 22	Heterogeneous Reaction	СН	1	0	1	0	5		
		Systems(Theory & Practice)	CII	4	0	1	0	5		
3	16 MCH23X	Elective-2	CH	4	0	0	0	4		
4	16 MCH 24X	Elective -3	СН	4	0	0	0	4		
5	16 MCH 25X	Elective -4	СН	4	0	0	0	4		
6	16 MCH 26	Minor Project	CH	0	0	5	0	5		
		Total		19	1	6	0	26		

Elective Group 2								
16MCH231	Renewable Energy Resources and Systems	16MCH232	Industrial Wastewater Treatment					
Elective Group 3								
16MCH241	Bioinstrumentation and Biosensors	16MCH242	Food Process Engineering and Technology					
Elective Group 4								
16MCH251	Biomass Conversion Systems	Novel Separation Technology						

Department of Chemical Engineering

M. Tech. in Chemical Engineering

		TH	IIRD SEM	IESTER					
Sl.	Course Code	Course Title	BoS		CREDIT	ALLOCATIO	DN	Total	
No				Lecture	Tutorial	Practical	Self Study	<i>y</i> Credits	
				L	Т	Р	S		
1	16 MCH 31	Plant wide Control of Chemical							
		Process	CH	4	0	1	0	5	
		(Theory & Practice)							
2	16 MCH 32X	Elective -5	CH	4	0	0	0	4	
3	16 MCH 33X	Elective -6	СН	4	0	0	0	4	
4	16 MCH 34X	Elective-7	CH	4	0	0	0	4	
5	16 MCH 35	Internship/Industrial Training	СН	0	0	3	0	3	
6	16MCH36	Technical Seminar	СН	0	0	2	0	2	
		Total		16	0	6	0	22	

Elective Group 5											
16MCH321	Advanced Polymer Composites	16MCH322	Nano Fabrication								
	Elective Group 6										
16MCH331	Computational Fluid Dynamics	16MCH332	Oil and Gas Processing								
	Elective Group 7										
16MCH341	Solar Photovoltaic Systems and Technology	16MCH342	Chemical Process Integration								

Department of Chemical Engineering M. Tech. in Chemical Engineering

FOURTH SEMESTER									
Sl.	Course Code	Course Title	BoS		CREDIT	ALLOCATI	[ON	Total Credits	
No				Lecture	Tutorial				
				L	Т	Р	S		
1	16 MCH 41	Major Project	CH	0	0	26	0	26	
2	16 MCH 42	Seminar	CH	0	0	2	0	2	
		Total		0	0	28	0	28	

FIRST SEMESTER

		PROJE	CT MANAGEMEN	T				
Course Code	:	16MEM11P		CIE Marks	:	100		
Hrs/Week	:	L: T: P: S	3:2:0:0	SEE Marks	:	100		
Credits	:	4		SEE Duration	:	3 hrs		
Course Learning Objectives:								
Graduates shall	be	able to						
1. Underst	anc	I the basic principles and	components of proje	ect management				
2. Appreci	ate	the integrated approach	to managing projects	6				
3. Applyth	e a	ppropriate project manag	pement tools and tech	nniques				
4 Prenare	nra	piect schedules with repo	nts	1				
n riepuie	P	jeet selledules while tepo						
		Ur	nit – I			10 Hrs		
Introduction:Pro	jec	t, Project management	, relationships amor	ng portfolio man	age	ment, program		
management, p	roj	ect management, and o	organizational project	management, re	elatio	onship between		
project manage	me	nt, operations managem	ent and organization	al strategy, busir	iess	value, role of		
the project man	age	r, project management b	ody of knowledge.			,		
	0	Un	it – II			10Hrs		
Generation and	I S	creening of Project Id	leas: Generation of	ideas, monitoring	g th	e environment,		
corporate appra	isa	l, scouting for project is	leas, preliminary scr	eening, project ra	ting	index, sources		
of positive net	ores	sent value. Project costin	g,		0			
Project Scope	M٤	anagement:Project scope	management, collec	t requirements de	efine	e scope, create		
WBS, validate	sco	pe, control scope.	-	-		-		
Organizational	infl	uences & Project life	cycle: Organizational	influences on pr	ojec	et management,		
project state ho	ldeı	s & governance, project	team, project life cy	cle.	U	C I		
Unit – III 10 Hrs								
Project Integrat	ion	Management: Develop	project charter, deve	elop project mana	gem	ent plan, direct		
& manage pro	ject	work, monitor & contra	ol project work, perfe	orm integrated ch	ang	e control, close		
project or phase	e.							
Project Quality	ma	nagement: Plan quality	management, perforn	n quality assuranc	e, c	ontrol quality.		
		Uni	it – IV			8Hrs		
Project Risk M	Ian	agement:Plan risk mana	gement, identify risk	ks, perform qualit	ativ	e risk analysis,		
perform quantit	ativ	e risk analysis, plan risk	resources, control ri	isk.				
Project Schedu	ıling	g: Project implementati	on scheduling, Effe	ctive time mana	ıgen	nent, Different		
scheduling tech	niq	ues, Resources allocation	n method, PLM conc	epts. Project life	cycl	e costing.		
		U	nit-V			10 Hrs		
Tools & Tech	niq	ues of Project Manag	ement: Bar (GANT	T) chart, bar c	hart	for combined		
activities, logic	d	iagrams and networks	, Project evaluation	and review Te	echr	niques (PERT)		
Planning, Comp	oute	erized project manageme	ent.					
Syllabus inclue	les	tutorials for two hour	per week:					
• Case d	isc	ussions on project m	nanagement					
Numeria	cal	problems on PERT & C	PM					
Comput	eriz	ed project management	exercises using M S	Project Software				

Course Outcomes:
After going through this course the student will be able to:
CO1: Understand the concepts, tools and techniques for managing large projects
CO2: Analyze various sub processes in the project management frameworks
CO3: Develop project plans for various types of organizations
CO4: Evaluate risks and economic feasibility of projects
Reference Books:
1. Project Management Institute, A Guide to the Project Management Body of Knowledge
(PMBOK Guide), 5th Edition, 2013, ISBN: 978-1-935589-67-9
2. Harold Kerzner, Project Management A System approach to Planning Scheduling &
Controlling, John Wiley & Sons Inc., 11th Edition, 2013, ISBN 978-1-118-02227-6.
3. Prasanna Chandra, Project Planning Analysis Selection Financing Implementation &
Review, Tata McGraw Hill Publication, 7th Edition, 2010, ISBN 0-07-007793-2.
4. Rory Burke, Project Management - Planning and Controlling Techniques, John Wiley
& Sons, 4th Edition, 2004, ISBN: 9812-53-121-1

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	L	-	L	-	L	Μ	Н	-	-	L	-
CO2	L	L	L	L	-	М	М	-	L	L	-
CO3	М	Μ	М	М	L	Μ	Н	L	L	М	-
CO4	Н	Н	Н	М	М	Μ	Н	L	М	М	-

	PSO1	PSO2	PSO3
CO1	L	L	L
CO2	М	М	L
CO3	Н	М	L
CO4	L	L	М

	A	PPI	LIED MATHEMATIC	CS IN CHE	MICAL ENGINEERI	NG		
Course	e Code	:	16MCH12		CIE Marks	:	100	
Hrs/W	eek	:	L:T:P:S	4:0:0:0	SEE Marks	:	100	
Credit	s	:	04		SEE Duration	:	3 Hrs	
Course	e Learning	g O	bjectives (CLO):					
Gradua	tes shall b	e al	ble to					
1.	Understan	id ti	he importance of using	mathematica	I tools to solve chemica.	eng	ineering	
2	A pply_diff	oro	ntial equation technique	to model d	ifferent fluid flows			
2.	Analyze n	roc	ess performance for des	velopment of	f objective function			
<i>4</i> .	Evaluate a	alter	rnative solutions and on	otimize	i objective runction			
			Unit -	- I			1	1Hrs
Linear	ordinary	dif	ferential equations: O	verview of	total differential equa	ations	for lu	mped
parame	ter chemi	cal	engineering systems.	Solution me	ethods: characteristic e	quati	on for	linear
equation	ns. Homog	gen	eous and particular solu	tions, metho	od of undetermined coef	ficier	its	
			Unit ·	·II			1	0
							Н	[rs
Linear	O.D.E.s w	ith	singular coefficients Fr	obenius metl	hod for nonlinear second	l ord	er	
0. D. E	E. and appli	icat	ions in Chemical Engin	eering.				
			Unit-J					0 [
Partial	Differentia	1 F	Quations. Types of seco	ond order P I	DEs-elliptic parabolic	- 115	ed to mo	urs del
steady	and unstea	dv	transport. First order hv	merbolic P.I.	D.E. for inviscid flow.	- us		uci
Solution	n by separ	atic	on of variables, method	of moments	(parabolic P.D.E.), d'A	lemb	ert's prin	nciple
(hyperb	olic P.D.I	Ξ.).	Applications in Chemic	al Engineerii	ng.		1	1
			Unit-	IV			8	Hrs
Dimens	sional Ana	lysi	s and Scaling of Bound	ary Value P	roblems: Introduction. C	Classi	cal appro	oach
to dime	nsional an	aly	sis. Finding the IIs. Sca	ling boundar	ry value problems.			
			Unit-	·V				U
Optimiz	vation Ob	iect	tive function for process	s. Unconstra	ined optimization by ste	enes	descent	ITS
method	. Constrair	ned	optimization and heuris	stics. Applica	ations in Chemical Engi	neeri	ng	
							-6	
Refere	nce Book	s:						
1	Richard (7	Rice Duang D Do	Applied M	lathematics and Mode	ling	for Che	mical
1.	Engineers.	J. Je	ohn Wiley. 2nd edition.	2012. ISBN:	: 978-1-118-02472-0	mig		/IIIC al
2	Ian N. Si	ned	don. Elements of Par	rtial Differen	ntial Equations. Dover.	Intl.	edition.	2006.
	ISBN: 978	-0-4	486-49876-8				•••••••	_000,
3 '	Thomas F	F.]	Edgar, David M. Him	melblau, Le	on S. Lasdon, Optimiz	ation	of Che	emical
]	Processes,	M	cGraw-Hill, 2nd edition,	2001, ISBN	N: 978-0-070-39359-2			
4	Norman V	V.	Loney, Applied Mather	natical Meth	nods for Chemical Engi	neers	, CRC I	Press,
	2nd edition	n, 2	006, ISBN: 978-084939	1783				
<u>├</u>	Course out	0	nec					
	After going	g tł	rough this course the st	udent will be	e ableto			
CO1	Understan	d in	puts and outputs of sys	tem/process	to be modeled			
CO2	Apply mat	her	natical abstraction to fo	rmulate mod	lel			

CO3	Analyze model equation behavior using suitable mathematical tools
CO4	Develop simple correlations by comparison with literature results

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	-	L	L	-	-	-	-	-	-	-	-
CO2	L	М	М	-	-	-	-	-	-	-	-
CO3	Н	Н	М	-	М	-	-	-	L	-	-
CO4	Н	М	М	М	М	L	-	_	L	-	-

	PSO1	PSO2	PSO3
CO1	L	L	L
CO2	М	М	L
CO3	М	Н	М
CO4	М	М	М

MODELLING AND SIMULATION OF PROCESS (THEORY & PRACTICE)									
Course Code	••	16MCH13		CIE Marks	•••	100+50			
Hrs/Week : L:T:P:S 4:0:2:0 SEE Marks : 100+50									

Credits · 05	SEE Duration	· 3 Hrs
$\begin{array}{c} \text{Creatis} \\ \text{Common Location of CLO} \end{array}$	SEE Duration	. 51115
Course Learning Objectives (CLO):		
Graduates shall be able to		
1. Understandchemical engineering s	system in term of modeling principle	
2. Distinguish simulation from design	n of equipments	
3. Apply software tools such as UNI	SIM to model chemical processes.	
4. Develop algorithm for modeling &	z solve the model	
Un	uit – I	10Hrs
Introduction: Models and model buildin	g. Lumped parameter models ((steady-state and
unsteady-state). Distribution parameter m	odels (steady-state and unsteady sta	te) Stochastic
models- discrete state/continuous state. Paral		0011
Un Modeling of Chemical Engineering Su	II - II	U9Hrs
equation of motion transport equations F	Scope and Coverage, sco	bemical kinetics
Equation of motion, transport equations, I	t = III	
Models for Chemical Engineering System	u – III ms:CSTR_ Isothermal constant and	d variable holdun
two heated tanks, pressurized CSTR, Bate	ch Reactor. Reactor with Mass trans	fer
Ini	t - IV	10Hrs
Multivariable Processes: Matrix Propertie	s and state properties. Transpose, in	version. Eigen
Values, Canonical Transformation, Singul	ar Values	
Un	it – V	10Hrs
Numerical analysis for simulation: In	troduction to simulation, Role of	f computers and
numerical methods in simulation, Iter	ative convergence methods, expl	licit convergence,
Wegstein and Muller methods, explicit	numerical integration algorithms,	implicit methods.
Numerical examples.		
Unit – V	I (Lab Component)	
Unit – V 1. Cooling Tower	I (Lab Component)	
Unit – V 1. Cooling Tower 2. Distillation Column	I (Lab Component)	
Unit – V 1. Cooling Tower 2. Distillation Column 3. Ethanol Plant	I (Lab Component)	
Unit – V 1. Cooling Tower 2. Distillation Column 3. Ethanol Plant 4. Atmospheric crude distillation	I (Lab Component)	
Unit – V 1. Cooling Tower 2. Distillation Column 3. Ethanol Plant 4. Atmospheric crude distillation 5. Multistage Crosscurrent Adsorption	I (Lab Component)	
Unit – V 1. Cooling Tower 2. Distillation Column 3. Ethanol Plant 4. Atmospheric crude distillation 5. Multistage Crosscurrent Adsorption 6. Reactors in series	I (Lab Component) n System	
Unit – V 1. Cooling Tower 2. Distillation Column 3. Ethanol Plant 4. Atmospheric crude distillation 5. Multistage Crosscurrent Adsorptio 6. Reactors in series 7. Pagators in parallal	<u>I (Lab Component)</u> n System	
Unit – V 1. Cooling Tower 2. Distillation Column 3. Ethanol Plant 4. Atmospheric crude distillation 5. Multistage Crosscurrent Adsorptio 6. Reactors in series 7. Reactors in parallel 8. Combination of monters	I (Lab Component) n System	
Unit – V 1. Cooling Tower 2. Distillation Column 3. Ethanol Plant 4. Atmospheric crude distillation 5. Multistage Crosscurrent Adsorptio 6. Reactors in series 7. Reactors in parallel 8. Combination of reactors	I (Lab Component) n System	
Unit – V 1. Cooling Tower 2. Distillation Column 3. Ethanol Plant 4. Atmospheric crude distillation 5. Multistage Crosscurrent Adsorptio 6. Reactors in series 7. Reactors in parallel 8. Combination of reactors Course Outcomes: After going through the principles of models of the principles of models of the principles of the pr	I (Lab Component) n System his course the student will be able to	D:
Unit – V 1. Cooling Tower 2. Distillation Column 3. Ethanol Plant 4. Atmospheric crude distillation 5. Multistage Crosscurrent Adsorptio 6. Reactors in series 7. Reactors in parallel 8. Combination of reactors Course Outcomes: After going through the CO1: Understand the principles of mo	I (Lab Component) n System his course the student will be able to deling and simulation	D:
Unit – V 1. Cooling Tower 2. Distillation Column 3. Ethanol Plant 4. Atmospheric crude distillation 5. Multistage Crosscurrent Adsorptio 6. Reactors in series 7. Reactors in parallel 8. Combination of reactors Course Outcomes: After going through the CO1: Understand the principles of mono- CO2: Apply mathematical tools to solve	I (Lab Component) n System his course the student will be able to deling and simulation ve model equations	D:
Unit – V 1. Cooling Tower 2. Distillation Column 3. Ethanol Plant 4. Atmospheric crude distillation 5. Multistage Crosscurrent Adsorptio 6. Reactors in series 7. Reactors in parallel 8. Combination of reactors Course Outcomes: After going through t CO1: Understand the principles of mo CO2:Apply mathematical tools to solv CO3:Analyze chemical engineering sy	I (Lab Component) n System his course the student will be able to deling and simulation we model equations ystems for model development	D:
Unit – V 1. Cooling Tower 2. Distillation Column 3. Ethanol Plant 4. Atmospheric crude distillation 5. Multistage Crosscurrent Adsorptio 6. Reactors in series 7. Reactors in parallel 8. Combination of reactors Course Outcomes: After going through the CO1: Understand the principles of monopolic constant of the principles of the princ	I (Lab Component) n System this course the student will be able to deling and simulation we model equations ystems for model development or simple chemical engineering syste	D: ems
Unit – V 1. Cooling Tower 2. Distillation Column 3. Ethanol Plant 4. Atmospheric crude distillation 5. Multistage Crosscurrent Adsorptio 6. Reactors in series 7. Reactors in parallel 8. Combination of reactors Course Outcomes: After going through the CO1: Understand the principles of mon CO2:Apply mathematical tools to solve CO3:Analyze chemical engineering sy CO4:Develop mathematical models for Reference Books:	I (Lab Component) n System this course the student will be able to deling and simulation ve model equations ystems for model development or simple chemical engineering system	o: ems
Unit – V 1. Cooling Tower 2. Distillation Column 3. Ethanol Plant 4. Atmospheric crude distillation 5. Multistage Crosscurrent Adsorptio 6. Reactors in series 7. Reactors in parallel 8. Combination of reactors Course Outcomes: After going through the CO1: Understand the principles of moto CO2: Apply mathematical tools to solve CO3: Analyze chemical engineering sectors CO4: Develop mathematical models for Reference Books: 1. William L. Luyben, Process Moto Engineers, 2 nd Edition, McGraw-Hill	I (Lab Component) n System this course the student will be able to deling and simulation we model equations ystems for model development or simple chemical engineering system deling, Simulation, and Control 1989, ISBN:0070391599	D: ems for Chemical
Unit – V 1. Cooling Tower 2. Distillation Column 3. Ethanol Plant 4. Atmospheric crude distillation 5. Multistage Crosscurrent Adsorptio 6. Reactors in series 7. Reactors in parallel 8. Combination of reactors Course Outcomes: After going through t CO1: Understand the principles of mo CO2:Apply mathematical tools to solv CO3:Analyze chemical engineering sy CO4:Develop mathematical models for Reference Books: 1. William L. Luyben, Process Mo Engineers, 2 nd Edition, McGraw-Hilli 2. Ramirez W.F., Computational Metho 1998 ISBN:9780080529691	I (Lab Component) n System this course the student will be able to deling and simulation we model equations ystems for model development or simple chemical engineering system deling, Simulation, and Control 1989, ISBN:0070391599 ds for Process Simulation,2 nd Editio	o: ems for Chemical n,Butterworth,
 Unit – V 1. Cooling Tower 2. Distillation Column 3. Ethanol Plant 4. Atmospheric crude distillation 5. Multistage Crosscurrent Adsorptio 6. Reactors in series 7. Reactors in parallel 8. Combination of reactors Course Outcomes: After going through the color of t	I (Lab Component) n System this course the student will be able to deling and simulation /e model equations ystems for model development or simple chemical engineering syste deling, Simulation, and Control 1989, ISBN:0070391599 ds for Process Simulation,2 nd Editio n in Chemical Engineering, John W	o: ems for Chemical n,Butterworth, 7iley,
 Unit – V 1. Cooling Tower 2. Distillation Column 3. Ethanol Plant 4. Atmospheric crude distillation 5. Multistage Crosscurrent Adsorptio 6. Reactors in series 7. Reactors in parallel 8. Combination of reactors Course Outcomes: After going through the color of the principles of motopoly color of the principles of motopoly color of the principles of motopoly color of the principles of the principles of the principles of the principles of the color of the principles of t	I (Lab Component) n System this course the student will be able to deling and simulation we model equations ystems for model development or simple chemical engineering system deling, Simulation, and Control 1989, ISBN:0070391599 ds for Process Simulation,2 nd Edition n in Chemical Engineering, John We	o: ems for Chemical n,Butterworth, 7iley,

Scheme of Continuous Internal Evaluation (CIE) for Theory

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Continuous Internal Evaluation (CIE) for Practical

CIE for the practical courses will be based on the performance of the student in the laboratory, every week. The laboratory records will be evaluated for 40 marks. One test will be conducted for 10 marks. The total marks for CIE (Practical) will be for 50 marks.

Scheme of Semester End Examination (SEE) for Theory

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE) for Practical

SEE for the practical courses will be based on conducting the experiments and proper results for 40 marks and 10 marks for viva-voce. The total marks for SEE (Practical) will be 50 marks.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	L	-	L	-	-	-	-	-	-	-	-
CO2	L	L	М	-	L	-	-	-	L	-	-
CO3	М	М	М	L	L	L	-	-	L	-	-
CO4	Н	Н	Н	М	М	L	-	-	Μ	-	-

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PSO1	PSO2	PSO3
CO1	L	L	L
CO2	М	М	-
CO3	М	Н	М
CO4	Н	L	М

	PROCESS EQUIPMENT DESIGN										
Course Code	:	16MCH14		CIE Marks	:	100					
Hrs/Week	:	L:T:P:S	4:0:0:4	SEE Marks	:	100					
Credits	:	5		SEE Duration	:	3 Hrs					

Course Learning Objectives (CLO):

Graduates shall be able to

- 1. Understand the chemical engineering principles applicable to Design chemical engineering equipments
- 2. Applystandard codes for design of chemical plant equipment
- 3. Analyze he specifications for process equipment
- 4. Design process equipments and its accessories

Each design to be taught for 8 hours

48Hrs

Detailed Engineering Process & Mechanical Design Aspects and sketching (The sketch shall include sectional front view, full Top/side view) of the following:

- 1. Shell and Tube Exchanger.
- 2. Horizontal and Vertical Condensers
- 3. Evaporator Single Effect
- 4. Dryers
- 5. Bubble Cap Distillation Column
- 6. Packed bed Absorption Column

In experiential learning / self study the students will prepare detailed drawing of individually allotted equipment using software's like Chem CAD/Solid edge and apply code for shell and tube heat exchangers and submit these results as part of the assignment which will be evaluated.

Course Outcomes: After going through this course the student will be able to:

1. Understanddesign procedure of process equipments

2. Apply chemical engineering principles to design process equipments

3.Estimate physical dimensions of various parts of chemical process equipments and accessories 4.Analyze various design options at all design stages

Reference Books:

1.	R.H.Perry and D.W.Green, Chemical Engineers Handbook, McGraw Hill, 7th Edition, 1998,
	ISBN 0-07-115982-7
2	J.M.Coulson and J.F.Richardson, Chemical Engineering, Pregman Press, Vol.6, 3rd Edition
	1993,ISBN:10-0750641428
3	Brownell and Young: Process Equipment Design - Vessel Design, John Willey, Published
	1951, ISBN:0471113190
4	M.V.Joshi, Process Equipment Design, 3rd Edition, Macmillan and Co. India, Delhi, Reprint
	1998, ISBN 023-063-810-4

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The experiential learning will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

There should be two questions. Each question should be for maximum of 100 Marks. Students should answer anyone

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
C01	М	L	Ĺ	-	-	-	-	-	-	М	-
CO2	Н	Н	М	М	L	L	-	-	L	-	-
CO3	L	L	М	М	М	L	M	-	-	-	-
CO4	Н	H	М	H	М	М	H	L	M	М	L

	PSO1	PSO2	PSO3
CO1	L	L	L
CO2	М	L	L
CO3	М	М	L
CO4	М	Н	М

SOLID WASTE MANAGEMENT (Elective group-1)										
Course Code	:	16MCH151		CIE Marks	:	100				
Hrs/Week	Hrs/Week : L:T:P:S 4:0:0:0 SEE Marks : 100									

Credits : 4	SEE Duration : 3 Hi	ſS					
Course Learning Objectives (CLO):							
Graduates shall be able to							
1. Understand steps involved in solid waste management							
2. Apply chemical engineering principles to treat solid waste							
3. Analyze the energy conversion, recycle and reuse of solid waste							
4. Evaluate health and environmental issu	es related to solid waste management						
T.	nit I	10 Um					
Eurotional alamanta Dhilosophy and orga	mt - 1	10 HIS					
Functional elements, Philosophy and orga	nization, Status of solid waste management, in	d wests					
management Transport collection syst	and Government agencies, Flamming some	a waste					
route optimization Onsite handling Col	lection SCS HCS and separation processes	Source					
reduction Storage and processing Transfe	r and transport	, source					
Induction, Storage and processing, Transfe	nit – II	10 Hrs					
Processing techniques and equipment	Biochemical Conversion: Composting -	Aerobic					
composting Sources of energy generation	n Industrial waste agro residues: Anaerobic I)igestion					
Biogas production: Types of biogas plants	Community biogas plants	rgestion.					
blogas production, Types of blogas plants,	Community biogas plants						
Thermal conversion techniques Pyrolysis, Gasification, waste to energy Generation Sources of							
energy generation, Gasification; Types of gasifiers; Industrial applications of gasifiers;							
Briquetting; Utilization and advantages of	briquetting; Refuse derived Fuel.						
Un	it – III	09 Hrs					
Waste disposal options - Disposal in land	dfills - Landfill Classification, types and metho	ds - site					
selection - design and operation of sanitation	ary landfills, secure landfills - leachate and lan	ndfill gas					
management - landfill closure and env	ironmental monitoring - closure of landfills	- landfill					
remediation							
Incineration: European turne & decime Madi	al / Dharma coutical wasta incinaration. Environ	montol					
impacts: Measures of mitigate environment	al effects due to incineration	memai					
Inpuets, measures of mingute environment	it – IV	11Hrs					
Hazardous waste and their management	Process management issues. Planning. Sour	ces and					
Nature of Hazardous Waste - Impact on	Environment - Hazardous Waste -Disposal of H	azardous					
Waste Underground Storage Tanks Constr	uction Installation & Closure	uzuruous					
Wuste, Chaerground Storage Tunks Const							
Biomedical (Handling and Management)	Rules 2008, sources, treatment and disposal, 1	E Waste					
Management		4077					
U	nit - V	10Hrs					
Case studies on major industrial solid w	vaste generation units- Coal fired power plant	, Textile					
industry, Brewery, Distillery, Oil refine	ry, Radioactive generation units. Oil spills.	Recent					
Developments in Solid Wastes Reuse and	Disposal: Power Generation, Blending with con	struction					
materials and Best Management Practices (BMP), Role of various organizations in Solid Waste							
Management – Governmental, Non-Govern	nmental, Citizen Forums.						
Course Outcomes: After going through the	is course the student will be able to:						
CO1: Understand the importance of waste	reduction at source.						
CO2: Apply the principles of existing and	emerging technologies to convert waste to value	ue added					
products							
CO3: Analyzeand select appropriate waste	management techniques						

CO4: Develop solid waste management scheme for an urban area

Reference Books:

1.	George	Tch	obanoglous,l	Integrated	Solid	Waste	Mai	nagement,	McC	Jraw-Hi	ll Publishers,
	2003,ISB	BN:00	70632375								
2.	B.Bilitew	vski,	G.HardHe,	K.Marek,	A.We	eissbach,	and	H.Boeddi	cker,	Waste	Management,
	Springer,	, 2004	4, ISBN:978	3364208212	22						

3. Jagbir Singh, and A.L. Ramanathan, Solid Waste Management Present and Future Challenges, I.K. International House Pvt. Ltd., New Delhi, 2010,ISBN:9789380026428

4. R.E.Landreth and P.A.Rebers, Municipal Solid Wastes – problems and Solutions, Lewis Publishers, 2002,ISBN:9781566702157

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	М	Н	L	-	-	L	-	-	L	Н	-
CO2	М	Н	М	L	М	L	М	-	М	М	-
CO3	М	М	М	М	М	М	М	-	М	Н	-
CO4	М	Η	Η	Н	М	М	М	М	М	Н	-

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PSO1	PSO2	PSO3
CO1	-	L	-
CO2	L	М	L
CO3	L	М	М
CO4	М	Н	М

FUEL CELL TECHNOLOGY								
		(El	ective group-1)		1	100		
Course Code	:	16MCH152		CIE Marks	:	100		
Hrs/Week	:	L:T:P:S	4:0:0:0	SEE Marks	:	100		
Credits	:	4		SEE Duration	:	3 Hrs		
 Course Learning Objectives (CLO): Graduates shall be able to Understand the importance and the need of fuel cells Apply thermodynamic principles of a fuel cell and compare it with other energy storage devices Analyze the construction of the fuel cell, its operation and kinetics. Evaluate the performance of the fuel cells 								
		U	nit – I			10Hrs		
Hydrogen char hydrogen produc	acte tior	eristics and importan n, hydrogen storage, ha	ce, conventional ndling and safety	and non-convention	onal	methods of		
		Uı	nit — II			09Hrs		
Introduction, fuel cell definition, historical developments, working principle of fuel cell, components of fuel cell, open circuit voltage, fuel cell reactions, fuels for cells and their properties, balance of plant and Fuel Cell reaction kinetics, activation kinetics and electrode kinetics								
Classification of	fue	UII	II – III II. direct methanol	fuel cell phosphoric		id fuel cell		
fabrication, adva	nta	ges, disadvantages and	applications	iuei cen, phosphork	ac			
	1	Un	$\frac{\text{it} - \text{IV}}{1 - \frac{1}{1 $		11	<u>11Hrs</u>		
advantages, disa	cel lva	ntages and applications	nbrane fuel cell, m	iolten carbonate fuel	cell	, fabrication,		
		Uı	nit — V			10Hrs		
Fuel Cell Chara measurement, c spectroscopy and	urro l ex	erization, current – vo ent interrupt measure x-situ characterization t	ltage curve, in-si ment, cyclic volt echniques	tu characterization, ammetry, electroche	curr emic	ent – voltage al impedance		
Course Outcon	nes	S:After going through the	is course the stude	ent will be able to:				
 CO1: Understand the concepts of fuel cells and their kinetics. CO2: Apply thermodynamics and chemical engineering principles to evaluate performance of a fuel cell CO3: Analyze the performance of various fuel cells based on efficiencies and characteristics CO4: Develop new components or alternative materials for existing fuel cells 								
Reference Boo	ks:							
1. Viswanath Press; Firs	1. Viswanathan and M AuliceScibioh; Fuel Cells – Principles and Applications, Universities Press; First Edition, reprinted in 2009,ISBN 9781420060287							
2. James La Second Ed	rmi itio	nie and Andrew Dick n, 2003,ISBN 9780768	s, Fuel Cell Syst 012590	ems Explained; Joh	n W	/iley & Sons;		
3. O 'Hayre, Edition (20	R.)06	P., S. Cha, W. Colella),ISBN 9780470258439	i, F. B. Prinz, Fue	el Cell Fundamentals	, W	iley, NY, First		
4. Basu, S. (978038768	Ed) 815	Fuel Cell Science and	I Technology, Spri	inger, N.Y. First Ed	litior	n (2007),ISBN		

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	М	-	-	-	-	-	-	-	-	-	-
CO2	М	М	L	-	-	-	-	-	L	-	-
CO3	М	Н	L	М	М	М	-	-	L	-	-
CO4	Н	Н	Н	Н	М	М	М	L	М	L	-

	PSO1	PSO2	PSO3
CO1	L	L	-
CO2	L	L	L
CO3	М	L	М
CO4	L	М	М

	PROFESSIONAL SKILL DEVELOPMENT								
Course Code	:	16HSS16		CIE Marks	:	50			
Hrs/Week	:	L:T:P:S	0:0:4:0	Credits	:	2			
Course Learni	ing	Objectives (CLO):							
Graduates shall	be	able to							
1. Understar	nd t	he importance of verbal	and written comm	unication					
2. Improve a	jua	litative and quantitative J	problem solving s	kills					
3. Apply crit	3. Apply critical and logical think process to specific problems								
4. Manage s	tres	ss by applying stress man	nagement skills						
			nit-I	1 (11)		5 Hrs			
Communicatio	n	Skills: Basics of Co	mmunication, Pe	rsonal Skills & P	rese	ntation Skills,			
Attitudinal Dev	elo	pment, Self Confidence,	SWOC analysis.						
Cuidalinas for l	ng	<i>c</i> : Understanding the b	basic essentials	for a resume, Res	sume	e writing tips			
Guidelines for t	Jen	er presentation of facts.	:+ TT			6 Um			
Quantitativa	<u>An</u>	tituda and Data Ana	lucis Number	Systems Math Vo	cab	ulary fraction			
decimals digit	nla	ces etc. Reasoning and	Logical Aptitude	- Introduction to	nuzz	zle and games			
organizing infor	ma	tion, parts of an argume	ent. common flaw	s, arguments and as	sum	ptions. Verbal			
Analogies – in	Analogies – introduction to different question types – analogies, sentence completions, sentence								
corrections, ar	tor	yms/synonyms, vocabul	ary building etc	. Reading Compre	hen	sion, Problem			
Solving				C 1					
		Uni	t-III			4 Hrs			
Interview Skil	ls:	Questions asked & how	v to handle them,	Body language in in	nterv	view, Etiquette,			
Dress code in	nte	rview, Behavioral and te	chnical interviews	s, Mock interviews ·	· M	ock interviews			
with different P	ane	els. Practice on Stress In	terviews, Technic	al Interviews, Gener	al H	IR interviews			
			itIV			5 Hrs			
Interpersonal	a	nd Managerial Skill	s:Optimal co-ex	istence, cultural	sens:	tivity, gender			
sensitivity; capa	10111	ty and maturity model, (decision making a	ability and analysis	for t	brain storming;			
Group discussion	<u>11</u> č	ind presentation skins;	:4 37			4 11			
Motivation a	h	Ull Stress Management:	Self motivation	group motivation	lead	ershin abilities			
Stress clauses	anc	l stress busters to handl	e stress and de-s	tress: professional e	thics	s values to be			
practiced stand	larc	is and codes to be ador	ted as profession	al engineers in the	socie	etv for various			
projects.		is and codes to be adop	lieu us profession	ar engineers in the		in the second			
Note: The res	per	ctive departments should	discuss case stu	dies and standards	pert	aining to their			
domain	1	1			1	6			
Course Outco	me	:							
The Graduate	wil	l be able to :							
CO1: Develop	pro	fessional skill to suit the	industry requiren	nent					
CO2: Solve qua	anti	tative and reasoning prol	blems with confid	ence					
CO3: Demonst	rate	e leadership and interpers	onal working skil	ls in various situatio	ns				
CO4: Display v	/erł	bal communication skills	with appropriate	body language					

CO4: Display verbal communication skills with appropriate body language

Evaluation will be carried out in TWO Phases.

Phase	Activity	Weightage
Ι	After 5 weeks - Unit 1, 2 & Part of Unit 3	50%
II	After 10 weeks – Unit 3, 4, 5	50%

CIE Evaluation shall be done with weightage as follows:

1.	Writing skills	10%
2.	Logical Thinking	25%
3.	Verbal Communication & Body Language	35%
4.	Leadership, Interpersonal and Stress Bursting Skills	30%

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	Μ	L	L	М	L	Μ	Н	М	Μ	М	L
CO2	Н	Н	L	Μ	М	Μ	Н	М	М	М	Н
CO3	Н	Н	Μ	Н	М	Μ	Н	L	Μ	М	L
CO4	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	М

	PSO1	PSO2	PSO3
CO1	L	L	L
CO2	Μ	М	L
CO3	Н	М	L
CO4	L	L	М

SECOND SEMESTER **RESEARCH METHODOLOGY** 16MEM21R Course Code CIE Marks 100 : L: T: P: S Hrs/Week : 3:2:0:0 SEE Marks : 100 SEE Duration Credits 4 3 hours **Course Learning Objectives:** Graduates shall be able to: 1. Understand of the underlying principles of quantitative and qualitative research 2. Perform the gap analysis and identify the overall process of designing a research study 3. Choose the most appropriate research methodology to address a particular research problem 4. Gain an overview of a range of quantitative and qualitative approaches leading to data analysis and suggesting solution. Unit – I 10 Hrs **Overview of Research** Meaning of Research, Types of Research, Research and Scientific Method, Defining the Research Problem, Defining the Research Problem, Research Design, Different Research Designs. Unit – II 09 Hrs Methods of Data Collection Collection of Primary Data, Observation Method, Interview Method, Collection of Data through Questionnaires, Collection of Data through Schedules, Collection of Secondary Data, Selection of Appropriate Method for Data Collection. Unit – III 10 Hrs Sampling Methods Sampling process, Non-probability sampling, probability sampling: simple random sampling, stratified sampling, cluster sampling systematic random sampling, Determination of sample size, simple numerical problems. Unit – IV 10 Hrs **Processing and analysis of Data** Processing Operations, Types of Analysis, Statistics in Research, Measures of: Central Tendency, Dispersion, Asymmetry and Relationship, correlation and regression, Testing of Hypotheses for single sampling: Parametric (t, z and F) Chi Square, ANOVA, and non-parametric tests, numerical problems. Unit-V **09 Hrs Essential of Report writing and Ethical issues:** Significance of Report Writing, Different Steps in Writing Report, Layout of the Research Report, Precautions for Writing Research Reports. Syllabus includes 2 hours per week of tutorials in which: • Faculty is expected to discuss research methodology for specializations under consideration • Numerical problems on statistical analysis as required for the domains in which students are studying must be discussed Statistical analysis using MINITAB/MatLab and such other softwares can be • introduce d

Course Outcomes:

After going through this course the student will be able to

CO1: Understand various principles and concepts of research methodology to address research problems

CO2: Apply appropriate methods of data collection and analyze using statistical methods

CO3: Analyze research outputs in a structured manner and prepare report as per the technical and ethical standards

CO4: Formulate research methodology for a given engineering and management problem situation

Reference Books

- 1. Kothari C.R., Research Methodology Methods and techniques by, New Age International, 2004, ISBN: 9788122415223 Unit I, II, IV & V
- 2. Krishnaswami, K.N., Sivakumar, A. I. and Mathirajan, M., Management Research Methodology, Pearson Education India, 2009, ISBN:9788177585636 Unit III
- 3. Levin, R.I. and Rubin, D.S., Statistics for Management, 7th Edition, Pearson Education: New Delhi, ISBN-13: 978-8177585841 Unit III, IV

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	-	-	L	L	-	L	L	L	-	-	-
CO2	-	-	L	Н	М	L	L	Н	L	М	-
CO3	-	-	L	Н	L	L	L	Н	L	М	-
CO4	-	-	L	Н	Μ	L	Μ	Н	Μ	Н	-

	PSO1	PSO2	PSO3
CO1	М	L	-
CO2	М	М	-
CO3	М	М	L
CO4	Н	М	М

H	IEJ	TEROGENEOUS REAG	CTION SYSTEMS	5 (Theory & Prac	tice)	
Course Code	:	16MCH22		CIE Marks	:	100+50
Hrs/Week	:	L:T:P:S	4:0:2:0	SEE Marks	:	100+50
Credits	:	5		SEE Duration	:	3 Hrs
Course Learnin	g C	Objectives (CLO):				
Graduates sha 1. Underst systems 2. Apply p 3. Analyze 4. Evaluate propertie	 Graduates shall be able to Understand fundamental principles and experimental techniques of heterogeneous reaction systems Apply principles of transferoperation in kinetics studies of heterogeneousreaction systems Analyzethe rate controlling step in heterogeneous reaction systems Evaluate the catalytic activity and selectivity influenced by the physical and surface 					
		- - -	nit – I			10Hrs
Non ideal r measurements, non-ideal react	Non ideal reactor analysis, mixing concepts, Residence Time Distribution, response measurements, segregated flow model, Dispersion model, series of stirred tanks model, analysis of non-ideal reactors and two parameter model					on, response del, analysis of
Unit – II 10Hrs						
models to deter Industrial cataly catalysts, cataly	min vsis vst s	time of conversion , classification of cataly supports	ysts, typical indust	rial catalytic proces	sses,	preparation of
		Ur	nit – III			10Hrs
Catalyst Charact chemisorption te spectroscopy	eriz chr	ation, surface area measu niques, crystallography and	rements, BET theor d surface analysis te	y, pore size distributic chniques, XRD, XPS	on,poi , NM	rosity - R, Molecular
		Uı	nit — IV			10Hrs
Catalytic Heterogeneous Reactions, catalytic reactions, rate controlling steps,Langmuir - Hinshelwood model, Eiley - Riedel mechanism Catalyst deactivation, poisons, sintering of catalysts, kinetics of deactivation, catalyst regeneration Unit – V 10Hrs						
External diffust evaluation of et Design of react	on fec ors	effects in Heterogeneo tiveness factor for heterogeneous catal	ous Reactions, surf ytic & non-catalyt	ace kinetics and po ic reactions	ore di	iffusioneffects,

		— • • • • • • • • • • • • • • • • • • •
	1.	Packed bed catalytic reactor
	2.	Effect of temperature on rate of reaction
	3.	Fluidized bed reactor
	4.	Absorption with reaction
	5.	Reactors in series
	6.	Reactors in parallel
	7.	Combination of reactors
	8.	Adsorption with reaction
	9.	Hydrogenation studies
Cot Afte CO	er going throug 1: Understand	es: gh this course the student will be able to: the concepts of catalytic reactions
CO	2: Apply princ	iples of transfer operation in kinetics studies of heterogeneous reaction systems
CO	3: Analyze con	mplex chemical reaction mechanisms and kinetics
CO4	4:Develop rate	e equations for catalytic reaction systems
CO	5: Evaluate the	e performance of reactors for multiphase reaction systems
Ref	erence Book	s:
1.	Smith J.M, C ISBN:007124	Chemical Engineering Kinetics, 3rd Edition, McGraw-Hill, 1984, 17084
2	Bischoff and ISBN:978047	Froment, Chemical Reactor Design and Analysis, Addision Wesley, 1982, 1024477
3	Fogler H.S, H 0137146123	Elements of Chemical Reaction Engineering, Prentice Hall, 1986. ISBN: 978-
4	Octave Lever ISBN: 97804	nspiel, Chemical Reaction Engineering 3 rd Edition ,John wiley and sons, 71254249

Scheme of Continuous Internal Evaluation (CIE) for Theory

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Continuous Internal Evaluation (CIE) for Practical

CIE for the practical courses will be based on the performance of the student in the laboratory, every week. The laboratory records will be evaluated for 40 marks. One test will be conducted for 10 marks. The total marks for CIE (Practical) will be for 50 marks.

Scheme of Semester End Examination (SEE) for Theory

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE) for Practical

SEE for the practical courses will be based on conducting the experiments and proper results for 40 marks and 10 marks for viva-voce. The total marks for SEE (Practical) will be 50 marks.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	L	-	-	-	-	-	-	-	-	-	-
CO2	М	М	-	L	-	-	-	-	-	-	-
CO3	М	М	М	М	L	L	-	-	-	-	-
CO4	Н	М	М	М	М	L	-	-	-	-	-
C05	H	H	H	H	М	M	-	-	Ĺ	-	-

Mapping of Course Outcomes (CO) to Program Specific Outcomes (PSO)

	PSO1	PSO2	PSO3
CO1	L	L	
CO2	L	L	L
CO3	М	М	L
CO4	Н	Н	М
CO5	Н	Н	М

RENEWABLE ENERGY RESOURCES & SYSTEMS

Course Code	:	16MCH231		CIE Marks	:	100	
Hrs/Week	:	L:T:P:S	4:0:0:0	SEE Marks	:	100	
Credits	:	4		SEE Duration	:	3 Hr	Ś
Course Learni Graduates shall 1. Unde 2. Appl 3. Anal 4. Eval	 Course Learning Objectives (CLO): Graduates shall be able to Understand the fundamentals and characteristics of renewable energy sources Apply chemical engineering principlesto use renewable energy sources Analyze various renewable energy conversion systems for energy efficiency Evaluate the performance of energy conversion system 						10Hrs
Introduction: C	urre	ent energy requirements.	growth in future	energy requirements.	Re	view	of
conventional en Shale, Nuclear	erg ene	gy resources- Coal, gas a ergy Option	nd oil reserves an	nd resources, Tar sand	ds a	nd Oil	
		Ur	nit — II				11Hrs
Solar Energy: Solar radiation: measurements and prediction. Solar thermal collectors- flat plat collectors, concentrating collectors. Basic theory of flat plate collectors, solar heating of buildings, solar still, solar water heaters, solar driers; conversion of heat energy in to mechanic energy, solar thermal power generation systems. Solar Photovoltaic: Principle of photovoltaic conversion of solar energy, types of solar cells and fabrication. Photovoltaic applications :battery charger, domestic lighting, street lighting, water pun					plate anical aic pumping,		
Unit – III 09Hi						09Hrs	
Wind Energy: A turbulence, wind applications	Atn d s	nospheric circulations, cl peed monitoring, Betz lin	assification, facto mit, WECS: class	ors influencing wind, ification, characterist	win tics,	d shea and	ır,
		Un	it – IV				10Hrs
Ocean Energy: energy conversi conversion and	Oc on tida	ean energy resources-oc systems- ocean thermal al energy conversion.	ean energy routes power plants- Pri	- Principles of ocean inciples of ocean way	n the ve er	ermal nergy	
		Uı	nit – V				10Hrs
Other Sources: geothermal energy (MHD) energy	Hy rgy cor	dropower, Nuclear fission sites, site selection, geo nversion.	n and fusion-Geo thermal power pla	thermal energy: Orig ants; Magneto-hydro-	gin, dyn	types amic	of
Course Orters		a .					
Course Outcomes: After going through this course the student will be able to: CO1: Understand the importance of various renewable energy sources CO2: Apply the principles of existing and emerging technologies to harness renewable energy CO3: Analyze the performance of renewable energy systems CO4: Develop power generation schemes using renewable energy systems					nergy		
Reference Bo	oks	5:					

1.	D. Y. Goswami, F. Kreith and J. F. Kreider, Principles of Solar Engineering, Taylor and
	Francis, Philadelphia 2000,ISBN: 9781560327141
2.	C. S. Solanki, Solar Photovoltaics: Fundamental Applications and Technologies, Prentice
	Hall of India, 2009, ISBN:9788120343863
3.	L.L. Freris, Wind Energy Conversion Systems, Prentice Hall, 1990, ISBN:9780139605277
4.	David & Spera, Wind Turbine Technology: Fundamental concepts of Wind Turbine
	Engineering, ASME Press,1994, ISBN:9780791812051
5.	S.P. Sukhatme, Solar Energy: principles of Thermal Collection and Storage,
	Tata McGraw-Hill ,1984, ISBN: 1259081966

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	L	-	-	-	-	-	-	-	-	-	-
CO2	Μ	L	L	Μ	-	L	L	-	L	-	-
CO3	Μ	Μ	Μ	L	L	Μ	L	-	L	-	-
CO4	Н	M	Н	Н	M	Η	Μ	L	M	L	-

	PSO1	PSO2	PSO3
CO1	L		L
CO2	L	М	L
CO3	L	М	М
CO4	Н	Н	Η

		INDUSTRIAL W	ASTEWATI	ER TREATMENT			
Course Code	:	16MCH232		CIE Marks	:	100	
Hrs/Week	:	L:T:P:S	4:0:0:0	SEE Marks	:	100	
Credits	:	4		SEE Duration	:	3 Hrs	\$
Course Learn	ing	Objectives (CLO):					
Graduates shall	l be	able to:					
1. Understand	l ch	aracteristics of industrial	wastewater				
2. Apply phys	ical	and chemical principles	to treatindus	trial waste water			
3. Analyze su	itab	le treatment method for	any industrial	waste water			
4. Evaluate th	e pe	erformance of waste wa	ter treatment	methods			
		U	nit – I				10Hrs
Characteristics	of l	Industrial Wastewater:					<u>I</u>
Physical chara	cter	istics: color, odor, temp	perature, turb	idity, total solids. Chemi	cal o	charac	eteristics:
inorganic and	0	rganic characteristics	and their	determination. Biologic	al	charac	cteristics:
Classification	of	microorganisms, patho	genic organ	isms, Toxicity, Analysis	s of	i soli	ds data.
Measurement of	of or	rganic matter, Modeling	of BOD read	tion, Estimation of BOD	, CO	D.	
		T	•4 • • •				1011
		Ui	nit – 11				IOHrs
Physico - Chen	nica	l Treatment:		~ ~		~	
Introduction to	. W2	astewater treatment me	thods and st	eps. Screens, Grit cham	ıber,	Com	minutors,
Flow Equalisat	ion.	Selection of treatment	process and	basic design consideration	ons.	Sedim	entation:
theory, types a	nd	design. Principle of Coa	gulation and	Flocculation: types of co	agula	ants, c	oagulant
aids, coagulatio	n ti	heory, optimum dose of	coagulant, de	sign criteria and numeric	al e	xampl	es.
		Ur	nit – 111				09Hrs
Bio - Chemical	Tre	eatment:					
Biological proc	ess	for wastewater treatme	ent. Microbia	l growth kinetics, Suspe	nded	and	attached
growth process	ses	- Aerobic and Anaerobi	c. Activated S	Sludge Process, Extended	l Ae	ration,	Contact
Stabilization, s	ludg	ge blanket systems, Ro	otating Biolog	gical Contactors. Manag	geme	ent of	sludge:
Thickening, Di	gest	tion, Dewatering, Sludge	e drying and	Composting.			
		Ur	nit – IV				11Hrs
Advanced Trea	tme	ent:					
Disinfection:	diffe	erent methods, disinfo	ectants, fact	ors affecting disinfect	tion.	Chle	orination:
classification, d	lech	lorination. Water Soften	ning – Ions o	ausing hardness, Memb	rane	Tech	nologies;
Microfiltration,	Ult	ra filtration, Nanofiltrat	ion and Reve	erse Osmosis, Solar Eva	pora	tion P	ans, Ion
Exchange proc	ess,	Nitrogen and phosphore	ous removal				1077
		U	nit – V				10Hrs
Effluent Treatr	nent	t Plants:					
CPCB guidelin	es	and standards for efflu	ent treatmen	t and disposal, Effluent	trea	tment	plant of
typical chemica	al in	dustries: Sugar, Dairy,	Distillery, Te	xtile, and Pharmaceutical	indu	ustries	•
Operation and \tilde{c}	M	aintenance of ETPs: F	factors affect	ing operation and Mair	ntena	ince o	of ETPs,
Control and Me	onite	oring of ETPs					
Course Outco	me	S:					
After going thr	oug	h this course the student	will be able	to:			
CO1: Understan	d th	e importance of wastewat	er managemen	t a traat inductrial westawat	~ r		
CO2. Apply the $CO3$: Apply the	pily De no	erformance of various way	stewater treatn	o ii cai iliuusii lai wasiewai vent techniques	CI		
CO3: Analyze u CO4: Develop s	chei	me for treating typical indu	stewater treath	s and teeninques			
		ine for treating typical mat		,			

Ref	ference Books:
1.	Patwardhan, A.D., Industrial Waste Water Treatment, 2009, Edition, PHI learning, ISBN:
	978-81-203-3350-5
2.	Metcalf and Eddy, Wastewater Engineering: Treatment and Reuse, 2013 Edition, McGraw-
	Hill Science/Engineering/Math ISBN:978 0073401188
3.	Wesley Eckenfelder, W Industrial water pollution control, 2000 Edition, Tata McGraw-Hill
	Publishing Company Ltd., ISBN:7302051348
4.	NG Wun Jern, Industrial Wastewater Treatment, 2006 Edition, Imperial College Press,
	ISBN 1-86094-580-5

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	L	-	-	-	-	-	-	-	-	-	-
CO2	М	L	L	М	-	L	L	-	L	-	-
CO3	М	М	М	L	L	M	L	-	L	-	-
CO4	Η	M	Η	Η	M	Η	M	L	M	L	-

	PSO1	PSO2	PSO3
CO1	-	L	L
CO2	L	М	L
CO3	М	М	-
CO4	М	М	М

BIOINSTRUMENTATION AND BIOSENSORS											
Course Code	:	16MCH241				CIE Marks	:	100			
Hrs/Week	:	L:T:P:S		4:0:0:0		SEE Marks	:	100			
Credits	:	4				SEE Duration	:	3 Hr	S		
Course Learni	ng	Objectives (CLO):	1							
Graduates shall	be	able to									
1. Understand	the	e principles of vario	ous sp	pectrophotom	etry a	and choose an app	ropria	ate me	thod for		
analysis of o	org	anic /inorganic com	npoun	ds							
2. Able to sele	ct	suitable chromatog	raphic	c, centrifugal	or e	lectrophoretic tech	nique	for se	eparation		
of desired su	ıbs	tance from a mixtur	e			.1 11	• ,				
3. Evaluate the	5. Evaluate the suitability of biosensor to a given problem in the news of chemistry of biology										
			U	nit — I					12Hrs		
Chromatography: TLC, Column chromatography- Adsorption column chromatography, Gel											
filtration chromatography, Ion exchange chromatography, Affinity chromatography.											
Electrophoresis - PAGE – Native and SDS, Agaroseelectrophoresis, Two-dimensional											
electrophoresis, DNA sequencing gel, Capillary electrophoresis.											
Unit – II 10Hrs Spectroscopy: Electromagnetic Padiation properties of Dringinka Instrumentation and											
Spectroscopy: Electromagnetic Radiation- properties of, Principles, Instrumentation and applications of UV Vis IR Elucrescence CD GC HPLC NMR ESR MS											
Light and Electr	on	microscopes. – TE	EM &	SEM	,	,,,,					
Unit – III 8Hrs											
Centrifugation	Centrifugation:. Centrifugation and Rotors angle / vertical, zonal /continuous flow buoyant										
density centrifug	gat	ion. Ultra centrifuge	e - pr	inciple and a	applica	ation,					
Other techniqu	ies	:Lyophilization, Fle	ow c	ytometry.							
			Un	it – IV					10Hrs		
Biosensors: In	ntro	oduction, Types of	Bio	receptors (Enzyr	ne, antibodies, Nu	cleic	Acids	, Whole		
cells) and Ira	nsc n r	lucers (Optical, El	ectro	chemical, Pansitivity and	lezoel I stabi	ectric) Quartz cry	/sta1	Micro	balance,		
Surface T lasmon		esonance, specificit	Ur	$\frac{1}{10}$	i stati	inty of biosensors.			8 Hrs		
Applications o	f I	Biosensors: in foc	d Qu	ality (mycot	oxins)	, detection of path	ogen	s, Hea	lth care,		
Glucometers i	n	Diabetes Manag	gemei	nt, Environ	menta	al: pollution mo	nitorir	ng, In	ndustrial:		
Fermentation, N	1ilit	tary: Bioagents dete	ectior	n, Agriculture	e: Fru	ut ripening.					
Course Outcon	me	S: h this course the st	. da a t	will be able	4.0.						
CO1: Understar	nd 1	the principle instrum	nenta	will be able	10: Nicati	one of various ena	otro 1	hotor	otric		
techniques	iu i	ine principie, institut	пспа	uon and app	Jicati	ons of various spec	uu-j	noton	KUK		
CO2: Apply ch	'n	natographic electro	phore	tic and cent	rifuqa	l techniques to effe	ective	lv sen	arate		
desired target co	om	pounds from a give	n mix	ture	inugu			iy sep	arute		
CO3: Analyze a	pn	licability of bio sen	sors 1	to specific ne	eeds						
CO4: Develop r	rr M	totypes of Biosenso	rs fo	r applications	in c	hemical or biologic:	al do	mains			
Reference Boo	oks	5:	-	11	-	6.11	-				

1.	Keith Wilson and John Walker, Practical Biochemistry: Principle and Techniques, Cambridge University Press, 5 th ed. 2005
2.	Yang, V.C. and T.T Ngo, Biosensors and Their Applications, Kluwer Academic/ Plenum
	Publishers, 2000,ISBN978 0070654152
3.	Ligler, F.S. and Rowe Taitt, C.A, Optical Biosensors: Present & Future, Elsevier,
	Netherlands, 2002,ISBN 978-0444509741
4.	Ashok Mulchandani and Kim R. Rogers (Eds.), Enzyme and Microbial Biosensors:
	Techniques and Protocols, Humana Press, Totowa, NJ, 1998, ISBN 0-896031-410-0

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	Μ	-	-	-	-	-	-	-	-	-	-
CO2	Μ	L	-	L	Н	Μ	-	-	-	-	-
CO3	Μ	Μ	Μ	Μ	-	Μ	-	-	-	-	-
CO4	Η	Η	Μ	Μ	Μ	Μ	L	Μ	Μ	L	-

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

Mapping of Course Outcomes (CO) to Program Specific Outcomes (PSO)

	PSO1	PSO2	PSO3
CO1	L	-	L
CO2	М	-	М
CO3	-	М	М
CO4	М	М	М

FOOD PROCESSING ENGINEERING AND TECHNOLOGY

Course Coue	:	16MCH242		CIE Marks	••	100				
Hrs/Week	:	L:T:P:S	4:0:0:0	SEE Marks	:	100				
Credits	:	4		SEE Duration	:	3 Hr	S			
Course Learnin	g	Objectives (CLO):								
Graduates shall b	e	able to								
1.Understand the	n	eed for food processing								
2. Apply chemical	l e	engineering principles in	foodprocessing							
3.Analyze separa	tio	on technologies in food	processing							
4.Design and dev	el	op food preservation and	d packaging techn	iques						
		Uı	nit — I				10Hrs			
Introduction - g	gei	neral aspects of food	industry, world	food demand and	Inc	dian s	scenario,			
constituents of food, quality and nutritive aspects. Food additives, standards, deteriorative factors										
and their control, preliminary processing methods, conversion and preservation operation.										
Energy Engineering in Food Processing - Generation of Steam, Fuel Utilization, Electric Power										
Utilization, Process Controls in Food Processing, Systems for Heating and Cooling Food Products.										
Thermal Properties of Foods, Modes of Heat Transfer - Freezing Systems, Frozen-Food										
Properties, Freezing Time refrigeration system for food products.										
Unit – II 10Hrs										
Separation processes in food processing- Electro-dialysis Systems, Reverse Osmosis Membrane										
Systems, Membrane Performance, Ultra filtration Membrane Systems, Concentration Polarization.										
Types of Reverse-Osmosis and Ultra filtration Systems, Drying Processes, Dehydration System,										
Dehydration Syst	eı	m Design, Sedimentation	, Centrifugation							
		Un	it – III				10Hrs			
Food additives -Introduction and need for food additives. Types of additives – antioxidants,										
chelating agents,	С	coloring agents, curing a	agents, emulsions,	flavors and flavor	enh	ancer	s, flavor			
improvers, hume	ct	ants and anti-choking	agents, leavening	g agents, nutrient s	supp	lemen	ts, non-			
nutritive sweeten	e	rs, pH control agents.	Preservatives – t	types and application	ns. S	Stabili	zers and			
thickeners, other	ac	dditives. Additives and f	ood safety.							
		Un	it IV				1011			
	Unit – IV 10Hrs									
Food contamination and adulteration - Types of adulterants and contaminants. Intentional										
Food contaminat	tio a II	n and adulteration - ic contamination Incide	ntal adulterants	erants and contam Nature and effects	inan F	ts. In ood k	tentional			
adulterants. Meta	tio all	ic contamination. Incide	ental adulterants.	erants and contamic Nature and effects	inan 5. F	ts. In ood la	tentional aws and			
adulterants. Meta standards. Packaging - In	tio all	n and adulteration - ic contamination. Incide oduction. Food Protec	tion. Product C	erants and contami Nature and effects ontainment. Product	inan s. F t C	ts. In ood k ommu	tentional aws and inication.			
Food contaminat adulterants. Meta standards. Packaging - In Product Conveni	tio all itr	n and adulteration - ic contamination. Incide oduction, Food Protec nce. Mass Transfer in	tion, Product C Packaging Mate	erants and contam Nature and effects ontainment, Product rials, Innovations in	inan s. F t C Fo	ts. In ood la commu od Pa	tentional aws and inication, inication,			
Food contaminat adulterants. Meta standards. Packaging - In Product Conveni Food Packaging	tio all atre a	in and adulteration - ic contamination. Incide oduction, Food Protec nce, Mass Transfer in nd Product Shelf-life, F	tion, Product C Packaging Mate	erants and contam Nature and effects ontainment, Product rials. Innovations in nology, fundamental	inan s. F t C Fo s of	ts. In ood la commu od Pa food	tentional aws and inication, inication, canning			
Food contaminat adulterants. Meta standards. Packaging - In Product Conveni Food Packaging technology. Heat	tio all tro er a:	in and adulteration - ic contamination. Incide oduction, Food Protec nce, Mass Transfer in nd Product Shelf-life, F sterilization of canned f	tion, Product C Packaging Mate Food canning tech food, containers -	erants and contam Nature and effects ontainment, Product rials. Innovations in nology, fundamental metal, glass and f	inan s. F t C Fo s of lexil	ts. In ood la commu od Pa food ole pa	tentional aws and inication, ickaging, canning ckaging.			
Food contaminat adulterants. Meta standards. Packaging - In Product Conveni Food Packaging technology. Heat Canning procedu	tio all atr er a z re	on and adulteration - ic contamination. Incide oduction, Food Protec nce, Mass Transfer in nd Product Shelf-life, F sterilization of canned f s for fruits, vegetables, 1	tion, Product C Packaging Mate Food canning tech Food, containers - neats, poultry man	erants and contamination Nature and effects ontainment, Productions in mology, fundamental metal, glass and frine products.	inan s. F t C Fo s of lexil	ts. In ood la commu od Pa food ole pa	tentional aws and inication, ickaging, canning ckaging.			
Food contaminat adulterants. Meta standards. Packaging - In Product Conveni Food Packaging technology. Heat Canning procedu	tio all atr er a: re	in and adulteration - ic contamination. Incide oduction, Food Protec- nce, Mass Transfer in nd Product Shelf-life, F sterilization of canned f s for fruits, vegetables, 1 Ur	tion, Product C Packaging Mate Food canning tech food, containers - meats, poultry man it – V	erants and contamination Nature and effects ontainment, Product rials. Innovations in mology, fundamental metal, glass and frine products.	inan s. F t C Fo s of lexil	ts. In ood k commu od Pa food ole pa	tentional aws and inication, ickaging, canning ckaging. 10Hrs			
Food contaminat adulterants. Meta standards. Packaging - In Product Conveni Food Packaging technology. Heat Canning procedu	tio all atr er a: re	in and adulteration - ic contamination. Incide oduction, Food Protec ince, Mass Transfer in nd Product Shelf-life, F sterilization of canned f s for fruits, vegetables, 1 Ur food science - Biotechn	tion, Product C Packaging Mate Food canning tech Food, containers - neats, poultry manual ology in food. Bio	erants and contam Nature and effects ontainment, Product rials. Innovations in nology, fundamental metal, glass and f rine products.	inan s. F t C Fo s of lexil	ts. In ood k ommu od Pa food ole pa cals.	tentional aws and inication, ickaging, canning ickaging. 10Hrs Organic			
Food contaminat adulterants. Meta standards. Packaging - In Product Conveni Food Packaging technology. Heat Canning procedu Modern trends in foods. Low cost	tio all atr er a re n	in and adulteration - ic contamination. Incide oduction, Food Protec- nce, Mass Transfer in nd Product Shelf-life, F sterilization of canned f s for fruits, vegetables, 1 Ur food science - Biotechn nutrient supplements. Pa	tion, Product C Packaging Mate Food canning tech food, containers - neats, poultry man hit - V ology in food. Bio ckaging of foods	erants and contam Nature and effects ontainment, Product rials. Innovations in nology, fundamental metal, glass and f rine products.	inan s. F t C Fo s of lexil	ts. In ood k oommu od Pa food ble pa cals.	tentional aws and inication, ickaging, canning ckaging. 10Hrs Organic in food			
Food contaminat adulterants. Meta standards. Packaging - In Product Conveni Food Packaging technology. Heat Canning procedu Modern trends in foods. Low cost science and food	tio all tr er a: re n in	ic contamination. Incide oduction, Food Protec- nce, Mass Transfer in nd Product Shelf-life, F sterilization of canned f s for fruits, vegetables, 1 Ur food science - Biotechn nutrient supplements. Pa idustries.	tion, Product C Packaging Mate food canning tech food, containers - neats, poultry man it – V ology in food. Bio ckaging of foods	erants and contamination Nature and effects ontainment, Product rials. Innovations in mology, fundamental metal, glass and frine products.	inan inan S. F Fo S of lexil	ts. In ood k commu od Pa food ble pa cals. c	tentional aws and inication, ickaging, canning ckaging. 10Hrs Organic in food			
Food contaminat adulterants. Meta standards. Packaging - In Product Conveni Food Packaging technology. Heat Canning procedu Modern trends in foods. Low cost science and food	tio all atroner are n in in	in and adulteration - ic contamination. Incide oduction, Food Protec- nce, Mass Transfer in nd Product Shelf-life, F sterilization of canned f s for fruits, vegetables, f <u>Ur</u> food science - Biotechn autrient supplements. Pa idustries.	tion, Product C Packaging Mate Food canning tech Food, containers - neats, poultry man it - V ology in food. Bio ckaging of foods	erants and contam Nature and effects ontainment, Product rials. Innovations in nology, fundamental metal, glass and f rine products.	inan s. F Fo s of lexil	ts. In ood k ood Pa food ole pa cals. reers	tentional aws and inication, ickaging, canning ckaging. 10Hrs Organic in food			
Food contaminat adulterants. Meta standards. Packaging - In Product Conveni Food Packaging technology. Heat Canning procedu Modern trends in foods. Low cost science and food	tio all all er all er all re n in in	in and adulteration - ic contamination. Incide oduction, Food Protec- nce, Mass Transfer in nd Product Shelf-life, F sterilization of canned f s for fruits, vegetables, 1 Ur food science - Biotechn nutrient supplements. Pa idustries.	tion, Product C Packaging Mate Food canning tech Food, containers - neats, poultry man hit - V ology in food. Bio ckaging of foods	erants and contamination Nature and effects ontainment, Product rials. Innovations in mology, fundamental metal, glass and frine products.	inan s. F Fo s of lexil	ts. In ood la commu od Pa food ble pa cals. o treers	tentional aws and inication, ickaging, canning ckaging. 10Hrs Organic in food			
Food contaminat adulterants. Meta standards. Packaging - In Product Conveni Food Packaging technology. Heat Canning procedu Modern trends in foods. Low cost science and food Course Outcom After going throu	tio all atreation reation n in est	in and adulteration - ic contamination. Incide oduction, Food Protec- nce, Mass Transfer in nd Product Shelf-life, F sterilization of canned f s for fruits, vegetables, f <u>Ur</u> food science - Biotechn nutrient supplements. Pa idustries.	tion, Product C Packaging Mate Food canning tech Food, containers - neats, poultry man it - V ology in food. Bid ckaging of foods will be able to:	erants and contam Nature and effects ontainment, Product rials. Innovations in nology, fundamental metal, glass and f rine products.	inan s. F Fo s of lexil	ts. In ood k commu od Pa food ole pa cals. c	tentional aws and inication, ickaging, canning ckaging. 10Hrs Organic in food			
Food contaminat adulterants. Meta standards. Packaging - In Product Conveni Food Packaging technology. Heat Canning procedu Modern trends in foods. Low cost science and food Course Outcom After going throu CO1: Understand t	tio all atreation are n in in es	on and adulteration - ic contamination. Incide oduction, Food Protec- nce, Mass Transfer in nd Product Shelf-life, F sterilization of canned f s for fruits, vegetables, 1 Ur food science - Biotechn nutrient supplements. Pa idustries.	rypes of additional adulterants. tion, Product C Packaging Mate food canning tech food, containers - neats, poultry man $\mathbf{it} - \mathbf{V}$ ology in food. Bio ckaging of foods will be able to: essing	erants and contam Nature and effects ontainment, Product rials. Innovations in nology, fundamental metal, glass and f rine products.	inan s. F Fo s of lexil	ts. In ood la commu od Pa food ole pa cals. d	tentional aws and inication, ickaging, canning ckaging. 10Hrs Organic in food			
Food contaminat adulterants. Meta standards. Packaging - In Product Conveni Food Packaging technology. Heat Canning procedu Modern trends in foods. Low cost science and food Course Outcom After going throu CO1: Understand to CO2: Apply chem	tio all treer a re n in e ghe ica	ic contamination. Incide oduction, Food Protec- nce, Mass Transfer in nd Product Shelf-life, F sterilization of canned f s for fruits, vegetables, 1 Ur food science - Biotechn nutrient supplements. Pa idustries.	rypes of additional adulterants. tion, Product C Packaging Mate food canning tech food, containers - meats, poultry man it – V ology in food. Bid ckaging of foods will be able to: essing developing food p	rocessing and preserv	inan S. F Fo s of lexil	ts. In ood k commu od Pa food ole pa cals. c reers	iques			
Food contaminat adulterants. Meta standards. Packaging - In Product Conveni Food Packaging technology. Heat Canning procedu Modern trends in foods. Low cost science and food Course Outcom After going throu CO1: Understand t CO2: Apply chem CO3: Analyze food	tio all treer re n in es ghe ica d p	on and adulteration - ic contamination. Incide oduction, Food Protec- nce, Mass Transfer in nd Product Shelf-life, F sterilization of canned f s for fruits, vegetables, f <u>Ur</u> food science - Biotechn autrient supplements. Pa idustries.	rypes of additional adulterants. tion, Product C Packaging Mate food canning tech food, containers - neats, poultry manified - V ology in food. Bio ckaging of foods will be able to: essing developing food p energy efficiency	erants and contam Nature and effects ontainment, Produc- rials. Innovations in nology, fundamental metal, glass and f rine products.	inan s. F Fo s of lexil	ts. In ood k ood Pa food ole pa cals. treers	iques			

Reference Books:

- 1. B. Srilakshmi, Food Science –4thEdn-New Age International-2007 ISBN:8122414818
- 2. N. Shakuntala Manay and M. Shadaksharamurthy Foods: Facts and Principles –New Age Publishers 2005, ISBN:9788122422153
- 3. Rick Parker, Introduction to Food Science– Thomsan Detmer-2001, ISBN:0766813150
- 4. G. Subbulakshmi and Shobha A. Udupi, Food Processing and Preservation New Age International-2001,ISBN: 97881224-12833
- 5. Norman N. Potter and Joseph H. Hotchkin, Food Science Avi Publishing Co 1968, ISBN: 9781461372639

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	L	-	-	-	-	-	-	-	-	-	-
CO2	М	L	-	L	Н	М	-	-	-	-	-
CO3	М	М	М	L	L	М	L	-	L	-	-
CO4	Н	М	Н	Н	М	Н	М	L	М	L	-

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PSO1	PSO2	PSO3
CO1	L	-	L
CO2	L	L	L
CO3	М	М	L
CO4	М	Н	Η

BIOMASS CONVERSION SYSTEMS											
Course Code	:	16MCH251		CIE Marks	:	100					
Hrs/Week	:	L:T:P:S	4:0:0:0	SEE Marks	:	100					
Credits	:	4		SEE Duration	:	3 Hrs					

Course Learning Objectives (CLO):	
Graduates shall be able to	
 Understand energy balances and thermodynamics in biomass conversion Apply principles of unit operations in biofuel production 	
3. Analyze the need for biomass energy conversion	
4. Evaluate the performance of biological and chemical conversion methods	
Unit – I 09	9Hrs
Biomass and Bioenergy: Biomass resources; classification and characteristics; Generation	and
utilization, Properties of biomass, Agriculture Crop and Forestry residues used as fuels.	
Unit – II 11	1Hrs
Thermo chemical Conversion: Different processes, direct combustion, incineration, pyrolysis, gasificati and liquefaction	tion
Unit – III 10	0Hrs
Biological Conversion: Biodegradation and biodegradability of substrate; Process parameters	s of
biomethanation; chemical kinetics and mathematical modeling of biomethanation proc	cess,
Different Types of Biogas Plants; bioconversion of substrates into alcohol: ethanol production.	
Unit – IV 10	0Hrs
Chemical Conversion: Hydrolysis & hydrogenation; solvent extraction of hydrocarbons;	
solvolysis of wood; biodiesel production via chemical process; catalytic distillation;	
transesterification methods	
Unit – V 10	0Hrs
Unit – V 10 Power generation: Utilization of gasifier for electricity generation; ethanol and biogas; bion	0Hrs mass
Unit – V 10 Power generation: Utilization of gasifier for electricity generation; ethanol and biogas; bion integrated gasification. Sustainable co-firing of biomass with coal. Biomass productivity: End	0Hrs mass ergy
Unit – V 10 Power generation: Utilization of gasifier for electricity generation; ethanol and biogas; bion integrated gasification. Sustainable co-firing of biomass with coal. Biomass productivity: Energy plantation and power programme. Economical impacts; food security and environmental impacts;	0Hrs mass ergy pacts
Unit – V 10 Power generation: Utilization of gasifier for electricity generation; ethanol and biogas; bion integrated gasification. Sustainable co-firing of biomass with coal. Biomass productivity: Energy plantation and power programme. Economical impacts; food security and environmental impact of biomass conversion to energy- energy from waste.	0Hrs mass ergy bacts
Unit – V 10 Power generation: Utilization of gasifier for electricity generation; ethanol and biogas; bion integrated gasification. Sustainable co-firing of biomass with coal. Biomass productivity: Energy plantation and power programme. Economical impacts; food security and environmental impact of biomass conversion to energy- energy from waste.	0Hrs mass ergy bacts
Unit – V 10 Power generation: Utilization of gasifier for electricity generation; ethanol and biogas; bion integrated gasification. Sustainable co-firing of biomass with coal. Biomass productivity: Energy plantation and power programme. Economical impacts; food security and environmental impact of biomass conversion to energy- energy from waste. Course Outcomes: After going through this course the student will be able to:	0Hrs mass hergy bacts
Unit – V 10 Power generation: Utilization of gasifier for electricity generation; ethanol and biogas; bion integrated gasification. Sustainable co-firing of biomass with coal. Biomass productivity: Energy plantation and power programme. Economical impacts; food security and environmental impact of biomass conversion to energy- energy from waste. Course Outcomes: After going through this course the student will be able to: COL:Understand the principles of various biomass to energy conversion methods	0Hrs mass lergy bacts
Unit – V 10 Power generation: Utilization of gasifier for electricity generation; ethanol and biogas; bion integrated gasification. Sustainable co-firing of biomass with coal. Biomass productivity: Energy plantation and power programme. Economical impacts; food security and environmental impact of biomass conversion to energy- energy from waste. Course Outcomes: After going through this course the student will be able to: CO1:Understand the principles of various biomass to energy conversion methods CO2:Apply chemical and biological principles in bio-energy conversion	0Hrs mass ergy pacts
Unit – V 10 Power generation: Utilization of gasifier for electricity generation; ethanol and biogas; bion integrated gasification. Sustainable co-firing of biomass with coal. Biomass productivity: Energy plantation and power programme. Economical impacts; food security and environmental impact of biomass conversion to energy- energy from waste. Course Outcomes: After going through this course the student will be able to: CO1:Understand the principles of various biomass to energy conversion methods CO2:Apply chemical and biological principles in bio-energy conversion CO3:A nalyse, biomass conversion system and compare with conventional energy sources	0Hrs mass hergy bacts
Unit – V 10 Power generation: Utilization of gasifier for electricity generation; ethanol and biogas; biom integrated gasification. Sustainable co-firing of biomass with coal. Biomass productivity: Energy plantation and power programme. Economical impacts; food security and environmental impact of biomass conversion to energy- energy from waste. 10 Course Outcomes: After going through this course the student will be able to: CO1:Understand the principles of various biomass to energy conversion methods CO2:Apply chemical and biological principles in bio-energy conversion CO3:Analyse biomass conversion system and compare with conventional energy sources	0Hrs mass lergy bacts
Unit – V 10 Power generation: Utilization of gasifier for electricity generation; ethanol and biogas; bion integrated gasification. Sustainable co-firing of biomass with coal. Biomass productivity: Energy plantation and power programme. Economical impacts; food security and environmental impact of biomass conversion to energy- energy from waste. 10 Course Outcomes: After going through this course the student will be able to: CO1:Understand the principles of various biomass to energy conversion methods CO2:Apply chemical and biological principles in bio-energy conversion CO4:Select cost effective biomass conversion system Reference Books:	0Hrs mass lergy bacts
Unit – V 10 Power generation: Utilization of gasifier for electricity generation; ethanol and biogas; bion integrated gasification. Sustainable co-firing of biomass with coal. Biomass productivity: Ene plantation and power programme. Economical impacts; food security and environmental impact of biomass conversion to energy- energy from waste. 10 Course Outcomes: After going through this course the student will be able to: CO1:Understand the principles of various biomass to energy conversion methods CO2:Apply chemical and biological principles in bio-energy conversion CO3:Analyse biomass conversion system and compare with conventional energy sources CO4:Select cost effective biomass conversion system Reference Books: 1. James J Winebrake, Alternate Energy: Assessment & Implementation Reference Books:	0Hrs mass lergy bacts Book,
Unit – V 10 Power generation: Utilization of gasifier for electricity generation; ethanol and biogas; bion integrated gasification. Sustainable co-firing of biomass with coal. Biomass productivity: Energy lantation and power programme. Economical impacts; food security and environmental impact of biomass conversion to energy- energy from waste. IO Course Outcomes: After going through this course the student will be able to: CO1:Understand the principles of various biomass to energy conversion methods CO2:Apply chemical and biological principles in bio-energy conversion CO3:Analyse biomass conversion system and compare with conventional energy sources CO4:Select cost effective biomass conversion system Reference Books: 1. James J Winebrake, Alternate Energy: Assessment & Implementation Reference Bospringer January 2007 ISBN:0881734365 2. A Demirbas, Biofuels - Securing the Planet's Future Energy Needs, Edited by Sprin 2009,ISBN: 9783319405513	0Hrs mass lergy bacts bacts Book,
Unit – V 10 Power generation: Utilization of gasifier for electricity generation; ethanol and biogas; bion integrated gasification. Sustainable co-firing of biomass with coal. Biomass productivity: Energy plantation and power programme. Economical impacts; food security and environmental impact biomass conversion to energy- energy from waste. Integrated gasification. Sustainable co-firing of biomass with coal. Biomass productivity: Energy biomass conversion to energy- energy from waste. Course Outcomes: After going through this course the student will be able to: CO1:Understand the principles of various biomass to energy conversion methods CO2:Apply chemical and biological principles in bio-energy conversion CO3:Analyse biomass conversion system and compare with conventional energy sources CO4:Select cost effective biomass conversion system Reference Books: 1. James J Winebrake, Alternate Energy: Assessment & Implementation Reference Books: 2. A Demirbas, Biofuels - Securing the Planet's Future Energy Needs, Edited by Sprin 2009,ISBN: 9783319405513 3. Frank Rosillo-Calle, Sarah Hemstock, Peter de Groot and Jeremy Woods, Bion	0Hrs mass lergy bacts Book, inger mass
Unit – V 10 Power generation: Utilization of gasifier for electricity generation; ethanol and biogas; bion integrated gasification. Sustainable co-firing of biomass with coal. Biomass productivity: Energy plantation and power programme. Economical impacts; food security and environmental impact biomass conversion to energy- energy from waste. 10 Course Outcomes: After going through this course the student will be able to: 10 CO1:Understand the principles of various biomass to energy conversion methods 10 CO2:Apply chemical and biological principles in bio-energy conversion 10 CO3:Analyse biomass conversion system and compare with conventional energy sources 10 Reference Books: 11 James J Winebrake, Alternate Energy: Assessment & Implementation Reference Books: 1. James J Winebrake, Alternate Energy: Assessment & Implementation Reference Books: 2. A Demirbas, Biofuels - Securing the Planet's Future Energy Needs, Edited by Sprin 2009, JSBN: 9783319405513 3. Frank Rosillo-Calle, Sarah Hemstock, Peter de Groot and Jeremy Woods, Bion Assessment Handbook - Bioenergy for a sustainable environment Edited by, Earths	OHrs mass lergy bacts Book, inger mass scan

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	L	-	-	-	-	-	-	-	-	-	-
CO2	Μ	L	-	L	-	-	-	-	-	-	-
CO3	Μ	Μ	Μ	L	L	L	Μ	-	-	-	-
CO4	М	М	М	М	М	М	Н	-	L	-	-

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PSO1	PSO2	PSO3
CO1	L	-	-
CO2	L	-	-
CO3	L	М	М
CO4	М	М	М

NOVEL SEPARATION TECHNOLOGY								
Course Code	:	16MCH252		CIE Marks	:	100		
Hrs/Week	:	L:T:P:S	4:0:0:0	SEE Marks	:	100		

Cradita 1	SEE Duration · 2 Ur									
Credits . 4	SEE Duration . 5 m	8								
Graduates shall be able to										
1 Understand the need for novel separation techniques										
2 A poly various novel separation techniques in process industries										
2. Apply various novel separation techniques in process industries										
A select appropriate separation technique for specific applications										
	que foi specific applications									
Unit – I 10Hrs										
Fundamentals of Separation Processes,	Basic definitions of relevant terms. Separa	ation by								
Adsorption Techniques, their mechanism	, types and choice of adsorbents, normal ad	lsorption								
techniques, Affinity chromatography and	l immuno chromatography. Types of equipm	ent and								
commercial processes, recent advances and	l process economics.									
Ur	it – II	10Hrs								
Membrane Separations: Fundamentals and variation	ious terms. Classifications. Design aspects: various	models								
and their applicability. Classification, structure	e and characteristics of membranes .Types and choic	e of								
membranes, Plate and frame, tubular, spiral wo	bund and hollow fiber membrane and their relative m	erits,								
Commercial, pilot plant and laboratory membr	ane permeators involving dialysis, reverse osmosis,	Nano								
fultration, ultra fultration, Micro fultration and L	onnan dialysis, Economics of membrane operations	',								
Un	it _ III	10Hrs								
External Field Induced Separations: External f	ield induced membrane separation processes for coll	oidal								
particles Fundamentals of various colloid sepa	rations Derivation of profile of electric field strengt	h								
Coupling of membrane separation and electron	phoresis. Electric and magnetic field separations. Ce	ntrifugal								
separations		C								
Surfactant Based Separations: Surfactant base	ed separation processes, Liquid membranes- fundame	entals and								
modeling, Micelles enhanced separation proce	sses. Cloud point extraction. Fundamentals of surfa	ctants at								
surfaces and in solutions. Liquid membrane pe	rmeation, foam separations, micellar separations.	1011								
Un Same Oritical Fluid Frates ation Discission	$\mathbf{n} \mathbf{t} - \mathbf{I} \mathbf{V}$	IUHrs								
super Critical Fluid Extraction: Physicoc	nemical principles, thermodynamics, process s	yntnesis								
Sanaration by thermal diffusion electronic	resign aspects and applications									
	nesis and crystalization.	10Hrs								
Other separation techniques: Separations	involving I vonhilization Dervaporation and pa	rmation								
techniques for solids liquids and gases I	adustrial viability and examples. Zone melting a	ductive								
crystallization	industrial vialonity and examples, Zone menting, a	uuuetive								
Course Outcomes:										
After going through this course the student	will be able to:									
CO1: Understand the fundamentals of sepa	ration processes									
CO2: Apply chemical engineering principle	s to explain separation mechanism									
CO3: Analyze various separation technique	CO3: Analyze various separation techniques based on separation factors									
CO4: Select appropriate separation process	for a specific application									
Reference Books:										
1. Kaushik Nath, Membrane separation Pro	cesses, PHI Pvt. Ltd., 2008 ISBN 978-81-203-353	2-5								
2. King, C.J, Separation Processes, Tata Mc	Graw Hill Publishing Co., Ltd., 2013 ISBN 978-048	6491738								
3. E. J. Hoffman, Membrane Separations Te Permeation, Gulf professional publishing	echnology: Single-Stage, Multistage, and Differential April 2003 ISBN: 075 0677104									
4. Richard W. Baker, Membrane Technolog	y and applications Second Edition, 2004 ISBN: 007									
1354409										

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	L	-	-	-	-	-	-	-	-	-	-
CO2	М	L	-	L	-	-	-	-	-	-	-
CO3	М	М	М	L	L	L	М	-	-	-	-
CO4	Н	М	М	Μ	М	М	М	_	L	_	_

	PSO1	PSO2	PSO3
CO1	L	L	-
CO2	М	L	L
CO3	Н	М	L
CO4	Н	Н	Н

MINOR PROJECT								
Course Code	:	16MCH26		CIE Marks	:	100		
Hrs/Week	:	L:T:P:S	0:0:10:0	SEE Marks	:	100		

Credits	: 5			SEE Duration	: 3 Hrs					
Course Lea	rning Objectives ((CLO):								
Graduates sh	all be able to									
1) Create in	terest in innovative of	developme	nt.							
2) Apply en	gineering knowledge	e to practi	cal problems							
3) Inculcate	the skills for good p	presentatio	n and technical re	port writing skills.						
4) Apply In	inagement principles	s while ex	ecuting the projec	L						
	GUIDELINES									
1. Each proje	ect group will consis	t of maxim	num of two studer	nts.						
2. Each stud	ent / group has to se	elect a con	temporary topic th	nat will use the tech	nical knowled	dge of				
their prog	am of study after in	tensive lite	erature survey.			C				
3. Allocation	of the guides prefer	rably in ac	cordance with the	expertise of the fac	ulty.					
4. The numb	er of projects that a	faculty ca	n guide would be	limited to four.	5					
5. The minor	project would be pe	erformed i	n-house.							
6. The imple	mentation of the pro	oiect must	be preferably ca	rried out using the r	esources av	vailable				
in the dep	artment/college.	- J	r r s s s	8						
	B									
Course Out	comes. After comr	etion of th	ne course the stude	ent will be able to.						
CO1: Unde	erstand a specific pro	oblem and	outline the proble	m statement						
CO2: Sum	narize information	gathered th	rough literature s	urvev						
CO3: Appl	y appropriate (com	putational)) tools/ (characte	rization) techniques	to find fe	easible				
solutions		-		-						
CO4: Anal	yze obtained ex	perimental	/numerical/analytic	cal results and	draw eff	fective				
conclusions										
effective	v					nutions				
	<u>J</u>									
0.1	л									

Evaluation will be carried out in THREE Phases. The evaluation committee will comprise of FOUR members: guide, two senior faculty members and Head of the Department.

Phase	Activity	Weightage
Ι	Synopsis submission, Preliminary seminar for the approval of	20%
	selected topic and Objectives formulation	
II	Mid-term seminar to review the progress of the work and	40%
	documentation	
III	Oral presentation, demonstration and submission of project report	40%

******Phasewise rubrics to be prepared by the respective departments

CIE Evaluation shall be done with weightage / distribution as follows:

• Selection of the topic & formulation of objectives	10%
• Design and simulation/ algorithm development/experimental setup	25%
• Conducting experiments / implementation / testing	25%
Demonstration & Presentation	15%
• Report writing	25%

Scheme for Semester End Evaluation (SEE):

The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.

1.	Brief writeup about the project	5%	
2.	Presentation / Demonstration of the project		20%
3.	Methodology and Experimental Results & Discussion	25%	
4.	Report		20%
5.	Viva Voce		30%

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	Μ	М	L	L	-	-	-	L	-	-	-
CO2	L	L	L	Н	М	-	-	М	-	-	-
CO3	Μ	М	Н	М	Н	Μ	Μ	М	Н	L	L
CO4	Н	Н	Μ	М	М	Μ	I	М	-	-	М
CO5	Н	Η	Η	Н	Н	Н	Η	Н	Η	Н	Η

	PSO1	PSO2	PSO3
CO1	L	L	Н
CO2	М	М	Н
CO3	Н	М	М
CO4	L	L	М