

R.V.COLLEGE OF ENGINEERING

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E) Scheme and Syllabus for V & VI Semesters

2016 SCHEME

INDUSTRIAL ENGINEERING AND MANAGEMENT

VISION

Imparting innovation and value based education in Industrial Engineering and Management for steering organizations to global standards with an emphasis on sustainable and inclusive development.

MISSION

- To impart scientific knowledge, engineering and managerial skills for driving organizations to global excellence.
- To promote a culture of training, consultancy, research and entrepreneurship interventions among the students.
- To institute collaborative academic and research exchange programs with national and globally renowned academia, industries and other organizations.
- To establish and nurture centers of excellence in the niche areas of Industrial and Systems Engineering.

PROGRAM EDUCATIONAL OBJECTIVES (PEOS)

- PEO1. Conceive, design, implement and operate integrated systems, focus on appropriate measures of performance at strategic, tactical and operational levels.
- PEO2. Develop competency to adapt to changing roles for achieving organizational excellence.
- PEO3. Design and develop sustainable technologies and solutions for betterment of society.
- PEO4. Pursue entrepreneurial venture with a focus on creativity and innovation for developing newer products, processes and systems.

PROGRAM SPECIFIC OUTCOMES (PSO)

PSO	Description							
PSO1	Design, develop, implement and improve integrated systems that include people,							
	materials, information, equipment and energy.							
PSO2	Apply statistical and simulation tools, optimization and meta heuristics techniques for							
	analysis of various systems leading to better decision making.							
PSO3	Demonstrate the engineering relationships between the management tasks of planning,							
	organization, leadership, control, and the human element in various sectors of economy.							

Lead Society: Institute of Industrial Engineers (IIE)

R.V.COLLEGE OF ENGINEERING

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E) Scheme and Syllabus for V & VI Semesters

2016 SCHEME

INDUSTRIAL ENGINEERING AND MANAGEMENT

Abbreviations

SL. NO.	ABBREVIATION	MEANING				
1.	VTU	Visvesvaraya Technological University				
2.	BS	Basic Sciences				
3.	CIE	Continuous Internal Evaluation				
4.	CS	Computer Science and Engineering				
5.	CV	CV Civil Engineering				
6.	CHY	Y Chemistry				
7.	7. EC Electronics and Communication Engineering					
8.	EE	Electrical and Electronics Engineering				
9.	ES	Engineering Science				
10.	HSS	Humanities and Social Sciences				
11.	ME	Mechanical Engineering				
12.						
13.	13. SEE Semester End Examination					
14.	MAT	Engineering Mathematics				
15.	PCE	Professional Core Elective				
16.	GE	Global Elective				

INDEX

	V Semester						
Sl. No.	Course Code		Name of the Course	Page No.			
1.	16HEM51	Foundation	Foundations of Management & Economics				
2.	16IM52	Industrial H	Ergonomics	3			
3.	16IM53	Quality and	Reliability Engineering	5			
4.	16IM54	Simulation	Modelling and Analysis	7			
5.	16IM55	Operations	Management	9			
	G		ROFESSIONAL CORE ELECTIVES	,I			
6.	16IM5A1	Advanced	Manufacturing Processes	12			
7.	16IM5A2		gies for Quality Improvement	14			
8.	16IM5A3		Operations Research	16			
9.	16IM5A4		Management & Research	18			
10.	16IM5A5	_	Ingineering & Testing	20			
			UP B: GLOBAL ELECTIVES				
Sl. No.	Course Code	Host Dept	Course Title	Page No.			
1.	16G5B01	BT	Bioinformatics	22			
2.	16G5B02	СН	Fuel Cell Technology	24			
3.	16G5B03	CV	Geoinformatics	26			
4.	16G5B04	CSE	Graph Theory	28			
5.	16G5B05	ECE	Artificial Neural Networks & Deep Learning	30			
6.	16G5B06	EEE	Hybrid Electric Vehicles	32			
7.	16G5B07	IEM	IEM Optimization Techniques				
8.	16G5B08	E&I Sensors & Applications		36			
9.	16G5B09	ISE Introduction To Management Information Systems		38			
10.	16G5B10	ME Industrial Automation					
11.	16G5B11	TCE					
12.	16G5B12	MAT	Computational Advanced Numerical Methods	44			
13.	16G5B13	AE	Basics of Aerospace Engineering	46			

	VI Semester							
Sl. No.	Course		Name of the Course	Page No.				
	Code							
1.	16HSI61	Intellectual	Property Rights & Entrepreneurship	48				
2.	16IM62	Enterprise I	Enterprise Information Systems					
3.	16IM63	Facilities Pl	anning and Design	53				
4.	16IM64	Supply Cha	in & Logistics Management	55				
GROUP C: PROFESSIONAL CORE ELECTIVES								
5.	16IM6C1	Digital Mar	nufacturing	58				
6.	16IM6C2	Services Op	Services Operations Management					
7.	16IM6C3	Reliability l	Engineering	62				
8.	16IM6C4	Financial M	lanagement	64				
9.	16IM6C5	Data Minin	g Techniques	66				
10.	16IM6C6	3-D Metrolo	ogy	68				
		GROUP D:	PROFESSIONAL CORE ELECTIVES					
11.	16IM6D1	Systems En	gineering	70				
12.	16IM6D2	Cognitive E	rgonomics	72				
13.	16IM6D3	Design of E	xperiments	74				
14.	16IM6D4	Human Res	Human Resource Management & Development					
15.	16IM6D5	E-Commerc	ee	78				
16.	16IM6D6	User Interfa	ce Design	80				
		GRO	OUP E: GLOBAL ELECTIVES					
Sl. No.	Course	Host	Course Title	Page No.				
	Code	Dept		,				
1.	16G6E01	BT	Bioinspired Engineering	82				
2.	16G6E02	СН	Green Technology	84				
3.	16G6E03	CV	Solid Waste Management	86				
4.	16G6E04	CSE	Introduction to Web Programming	88				
5.	16G6E05	ECE	Automotive Electronics	90				
6.	16G6E06	_	EEE Industrial Electronics IEM Project Management					
7.	16G6E07	IEM	94					
8.	16G6E08	E&I	Virtual Instrumentation Introduction to Mobile Application Development	96				
9.	16G6E09	ISE	98					
10.	16G6E10		ME Automotive Engineering					
11.	16G6E11	TCE	Mobile Network System and Standards	102				
12.	16G6E12	MAT	Applied Partial Differential Equations	104				
13.	16G6E13	AE	Aircraft Systems	106				

R V College of Engineering, Bengaluru-560 059 (Autonomous Institution Affiliated to VTU, Belagavi) Department of Industrial Engineering and Management

	FIFTH SEMESTER CREDIT SCHEME								
Sl. Course				CREDIT ALLOCATION					
No.	Code	Course Title	BoS	L	Т	P	S	Total Credits	
1.	16HEM51	Foundations of Management & Economics	HSS	2	0	0	0	2	
2.	16IM52	Industrial Ergonomics	IEM	3	0	1	0	4	
3.	16IM53	Quality and Reliability Engineering	IEM	3	1	0	0	4	
4.	16IM54	Simulation Modelling and Analysis	IEM	3	0	0	1	4	
5.	16IM55	Operations Management	IEM	3	0	1	0	4	
6.	16IM5AX	Elective A (PCE)	IEM	3	0	0	1	4	
7.	16G5BXX	Respective BoS	4	0	0	0	4		
	"					26			
	Tota	al Number of Hours / Week	21	2	4	8**			

	SIXTH SEMESTER CREDIT SCHEME								
Sl. Course				CREDIT ALLOCATION					
No.	Code	Course Title	BoS	L	Т	P	S	Total Credits	
1.	16HSI61	Intellectual Property Rights & Entrepreneurship	HSS	3	0	0	0	3	
2.	16IM62	Enterprise Information Systems	IEM	3	0	0	1	4	
3.	16IM63	Facilities Planning and Design	IEM	3	0	1	0	4	
4.	16IM64	Supply Chain & Logistics Management	IEM	3	0	1	0	4	
5.	16IM6CX	Elective C (PCE)	IEM	3	0	0	1	4	
6.	16IM6DX	Elective D (PCE)	IEM	4	0	0	0	4	
7.	16G6EXX	Elective E (OE)	Respective BOS	3	0	0	0	3	
8.	16HS68	HSS	0	0	0	0	1		
		Total number of Credits						27	
_	Tot	tal Number of Hours / Week	22	0	4	8**			

^{**}Non contact hours

V SEMESTER FOUNDATIONS OF MANAGEMENT AND ECONOMICS (Theory)						
	(Common to BT)	, CHE, CV, E&I, IEM, ME)				
Cou	Course Code: 16HEM51 CIE Marks: 50					
Cred	Credits: L:T:P:S: 2:0:0:0 SEE Marks: 50					
Hou	Hours: 23L SEE Duration: 02Hrs					
Cou	Course Learning Objectives: The students will be able to					
1	Understand the evolution of management thought.					
2	2 Acquire knowledge of the functions of Management.					
3	3 Gain basic knowledge of essentials of Micro economics and Macroeconomics.					
4	Understand the concepts of macroeconomics relevant to different organizational contexts					

UNIT-I			
Introduction to Management: Management Functions, Roles & Skills, Management	04 Hrs		
History - Classical Approach: Scientific Management & Administrative Theory,			
Quantitative Approach: Operations Research, Behavioural Approach: Hawthorne Studies,			
Contemporary Approach: Systems & Contingency Theory.			
UNIT-II			
Foundations of Planning: Types of Goals & Plans, Approaches to Setting Goals & Plans,	02 Hrs		
Strategic Management Process, Corporate & Competitive Strategies.			
Organizational Structure & Design: Overview of Designing Organizational Structure:	03 Hrs		
Work Specialization, Departmentalization, Chain of Command, Span of Control,			
Centralization & Decentralization, Formalization, Mechanistic & Organic Structures.			
UNIT-III			
Motivating Employees: Early Theories of Motivation: Maslow's Hierarchy of Needs	03 Hrs		
Theory, McGregor's Theory X & Theory Y, Herzberg's Two Factor Theory, Contemporary			
Theories of Motivation: Adam's Equity & Vroom's Expectancy Theory.			
Managers as Leaders: Behavioural Theories: Ohio State & University of Michigan			
Studies, Blake & Mouton's Managerial Grid, Contingency Theories of Leadership: Hersey			
& Blanchard's Situational Leadership, Contemporary Views of Leadership: Transactional &			
Transformational Leadership.			
UNIT-IV			
Introduction to Economics: Concept of Economy and its working, basic problems of an	04 Hrs		
Economy, Market mechanism to solve economic problems, Government and the economy,			
Essentials of Micro Economics: Concept and scope, tools of Microeconomics, themes of			
microeconomics, Decisions: some central themes, Markets: Some central themes, Uses of			
Microeconomics.			
UNIT-V	04 Hrs		
Essentials of Macroeconomics: Prices and inflation, Exchange rate, Gross domestic			
product(GDP), components of GDP, the Labour Market, Money and banks, Interest rate,			
Macroeconomic models- an overview, Growth theory, The classical model, Keynesian cross			
model, IS-LM-model, The AS-AD-model, The complete Keynesian model, The neo-			
classical synthesis, Exchange rate determination and the Mundell-Fleming model			

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Explain the principles of management theory & recognize the characteristics of an							
	organization.							
CO2:	Demonstrate the importance of key performance areas in strategic management and design							
	appropriate organizational structures and possess an ability to conceive various organizational							
	dynamics.							
CO3:	Select & Implement the right leadership practices in organizations that would enable systems							
	orientation.							
CO4:	Understand the basic concepts and principles of Micro economics and Macroeconomics							

Refe	erence Books						
1.	Management, Stephen Robbins, Mary Coulter & Neharika Vohra, 10 th Edition, 2001, Pearson						
	Education Publications, ISBN: 978-81-317-2720-1.						
2.	Management, James Stoner, Edward Freeman & Daniel Gilbert Jr, 6 th Edition, 1999, PHI, ISBN:						
	81-203-0981-2.						
3.	Microeconomics, Douglas Bernheim B & Michael D Whinston, 5 th Edition, 2009, TMH Pub. Co.						
	Ltd, ISBN: 13:978-0-07-008056-0.						
4.	Macroeconomics: Theory and Policy, Dwivedi.D.N, 3rd Edition, 2010, McGraw Hill Education;						
	ISBN-13: 978-0070091450.						
5.	Essentials of Macroeconomics, (www.bookboon.com), Peter Jochumzen, 1st Edition. 2010, e-						
	book, ISBN:978-87-7681-558-5.						

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 05 marks adding up to 15 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 25 marks each and the sum of the marks scored from three tests is reduced to 30. The marks component for Assignment is 05. The total marks of CIE are 50.

Semester End Evaluation (SEE); Theory (50 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1											
CO2	1		2	2			1			2	2	
CO3	1							2	2	2	1	
CO4	1	2				2						2

Low-1 Medium-2 High-3

	V Semester						
	INDUSTRIAL ERGONOMICS						
	(The	ory & Practice)					
Cou	Course Code: 16IM52 CIE Marks: 100+50						
Cred	Credits: L:T:P:S: 3:0:1:0 SEE Marks: 100+50						
Hou	rs: 33L	SEE Duration: 03 + 03 Hrs					
Cou	Course Learning Objectives: The students will be able to						
1	Define the scope of ergonomics in work system design for productivity improvement.						
2	2 Express the role of cognitive ergonomics in problem solving and decision making.						
3	Compile basic anthropometric data	for designing the man-machine systems for various					
3	applications.						

UNIT-I	
Introduction: Description of human-machine systems, ergonomics and its area of	07 Hrs
application in the work system, history of ergonomics, modern ergonomics.	
Anatomy, Posture, and Mechanics: Basic body mechanics, aspects of muscle functions,	
anatomy of the spine and pelvis related to posture, musculoskeletal problems in sitting	
and standing postures, behavioral aspects of posture.	
UNIT-II	
Anthropometric Principles in Workspace and Equipment Design: Anthropometry and	07 Hrs
its use, types of anthropometric data, principles of applied anthropometry in ergonomics,	
application of anthropometry in product design, case studies.	
UNIT-III	
Workspace Design: Contribution of ergonomics to work station design, ergonomic	07 Hrs
approach to work station design, work surface design, visual display terminals, case	
studies.	
UNIT-IV	
Cognitive Ergonomics: Problem solving and decision-making, cognitive control of	06 Hrs
systems, Modelling of human operator control strategy, user models of interactive	
systems, the human operator as a decision maker, improving human decision making and	
problem solving.	
UNIT-V	
Environment: Measurement and Design. Hearing, Sound, Noise, and Vibration.	06 Hrs
Work Organization and Work System Design: Design of human-machine system, the	
systems approach, work organization, motivation and job satisfaction, sociotechnical	
systems theory, trends in work system design, legislative trends: standards, guidelines,	
intervention programs and NPC guidelines on work organization and work system design.	

Assignment:

Case study, Design and Emerging Technologies to be discussed pertaining to the course.

INDUSTRIAL ERGONOMICS LABORATORY

- Experiments on fatigue measurement using bio-medical parameter.
- Experiments on Measurement of anthropometric data.
- Experiments on evaluation workstation.
- Experiments on Measurement of local muscle activity using EMG.
- Experiments on virtual evaluation workstation.

Course Outcomes: After completing the course, the students will be able to						
CO1.	Explain and apply the ergonomic concepts in the evaluation of existing systems and design of					
	new systems.					
CO2.	Demonstrate an understanding of concepts of ergonomics and human body mechanics.					

CO3.	Analyze the relationship between work attributes and ergonomic risk factors.								
CO4.	Evaluate the effect of ergonomic risk factors on the physiological and bio-mechanical								
	mechanisms of human worker.								

D C	n 1
Refe	erence Books
1.	Introduction to Ergonomics, R S Bridger, 3 rd Edition, 2008, CRC Press, ISBN: 9780849373060.
2.	Human Factors in Engineering and Design; Mark S. Sanders and Ernest J McCormick;
	7 th Edition, McGraw-Hill and Co. Singapore 1992. ISBN 0-07-112826-3.
3.	Handbook of Human Factors and Ergonomics, Gavriel. Salvendy, 3 rd Edition, 2006, Wiley,
	Hoboken, New Jersey, USA, ISBN: 0471116904.
4.	Introduction to Human Factors Engineering, Christopher D. Wickens, John D. Lee, Yili Liu,
	Sallie Gordon-Becker, 2 nd Edition, 2003, Pearson Publication, ISBN: 978-0131837362

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1				1						
CO2	2	1				1						
CO3	1	2	1									
CO4		2		1								

Low-1 Medium-2 High-3

	V Semester								
	QUALITY AND RELIABILITY ENGINEERING								
	(Theory)								
Cou	rrse Code: 16IM53	CIE Marks: 100							
Cre	dits: L:T:P:S: 3: 1: 0: 0	SEE Marks: 100							
Hou	ırs: 33L + 24T	SEE Duration: 03 Hrs							
Cou	rse Learning Objectives: The students will be abl	e to							
1	Explain basics of quality control and quality improve	rement.							
2	Construct control charts for variables and attributes to monitor processes, and interpret the								
	charts.								
3	Perform process homogenization & process harmo	nization, & to estimate capability of various							
3	processes.								
4	Develop strategies for conducting design of experiments in process improvements								
5	Perform Reliability evaluation of Mechanical, Ele	ctrical, Electronics and Software Technology							
3	Systems.								

UNIT-I	
Introduction: Dimensions of Quality, Statistical Methods for Quality, Quality costs.	06 Hrs
Quality assurance, ISO 9000, 14000 standards.	
Statistical Process Control: Chance and assignable causes of variation. Statistical basis	
of control charts, Basic principles of control charts, choice of control limits, sample size	
and sampling frequency, rational sub groups, statistical basis of control charts. Analysis of	
patterns of control charts.	
UNIT-II	
Control Charts for Variable and Attribute Data: Controls charts for mean and Range,	06 Hrs
Control charts for mean and standard deviation. Brief discussion on – Pre control, Control	
charts for individual measurements, Moving-range charts, Sloping control charts, Group	
control charts.	
Controls chart for fraction non- conforming (p, np, 100p charts), Control chart for non-	
conformities (c and u charts).	
Process capability – methods of estimating process capability, Process capability indices-	
c_p and c_{pk} ,	
UNIT-III	
Acceptance Sampling: Concept of acceptance sampling, economics of inspection,	07 Hrs
Acceptance sampling plans - Single, Double and Multiple Sampling. Operating	
Characteristic curves – construction and use. Determination of Average Outgoing Quality	
(AOQ), Average Outgoing Quality Level, Average Total Inspection, Production Risk and	
Consumer Risk, Published Sampling Plans.	
UNIT-IV	
Experimental Design for Process Improvement: General model of a process, Examples	07 Hrs
of designed experiments in process improvement, Principles of experimentation,	
Guidelines for designing experiments, Completely randomized designs (CRD),	
Randomized block designs (RBD), Factorial experiments – 2 ² design.	
UNIT-V	
Reliability And Life Testing: Failure models of components, definition of reliability,	07 Hrs
MTBF, Failure rate, common failure rate curve, types of failure, reliability evaluation in	
simple cases of exponential failures in series, parallel and series-parallel device	
configurations.	

Assignments: Case study, Design and Emerging Technologies to be discussed pertaining to the course, along with usage of softwares for Experimental design and Statistical Quality Control.

Course	Course Outcomes: After completing the course, the students will be able to							
CO1.	Explain the DMAIC process and fundamentals of quality control and improvement.							
CO2.	Apply modern statistical methods for process quality control and improvement.							
CO3.	Examine the data and draw inference about the process.							
CO4.	Evaluate processes and select statistical tools and techniques for quality control and							
	improvement.							

Refe	erence Books
1.	"Statistical Quality Control: A Modern Introduction", D C Montgomery, 6th Edition, 2009, John
	Wiley and Sons, ISBN 978-81-265-2506-5.
2.	"Statistical Quality Control", Grant and Leavenworth, 7th Edition, 2008, McGraw Hill, ISBN –
	0-07-043555-3.
3.	An Introduction to Reliability and Maintainability Engineering, Charles E. Ebeling, 1st Edition,
	1997, McGraw-Hill International Editions, ISBN0070188521
4.	Quality Planning & Analysis, Joseph M. Juran; Gryna, Frank M., Jr., 3 rd Edition, 2009, Tata
	McGraw Hill ISBN = 9780070331839

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3				2	2	1				1	
CO2		2	1	1								
CO3												
CO4		2	2	3								

Low-1 Medium-2 High-3

V Semester							
	SIMULATION MO	ODELLING & ANALYSIS					
		(Theory)					
Cou	rse Code: 16IM54	CIE Marks: 100					
Cred	lits:L:T:P:S: 3:0:0:1	SEE Marks: 100					
Hou	Hours: 34L SEE Duration:03 + 03 Hrs						
Cou	rse Learning Objectives: The students v	vill be able to					
1	Define the basics of simulation modellin	g and replicating the practical situations in					
	organizations						
2	Generate random numbers and random v	variates using different techniques.					
3	Develop simulation model using heuristic methods.						
4	Analysis of Simulation models using input analyzer, and output analyzer						
5	Explain Verification and Validation of si	mulation model.					

UNIT-I					
Introduction to Simulation: Simulation, Advantages, Disadvantages, Areas of	07 Hrs				
application, System environment, components of a system, Model of a system, types of					
models, steps in a simulation study.					
Simulation Examples: Simulation of Queuing systems, Simulation of Inventory System,					
Other simulation examples.					
UNIT-II					
Analysis of Simulation Data	08 Hrs				
Input Modelling: Data collection, Identification and distribution with data, parameter					
estimation, Goodness of fit tests, Selection of input models without data, Multivariate and					
time series analysis.					
Random Numbers: Properties, Generations methods, Tests for Random number-					
Frequency test, Runs test, Autocorrelation test.					
UNIT-III					
Random Variate Generation: Inversion transforms technique-exponential distribution.	07 Hrs				
Uniform distribution, weibull distribution, continuous distribution, generating					
approximate normal variates – Erlang distribution.					
Empirical Discrete Distribution: Discrete uniform –distribution, poisson distribution –					
-acceptance –rejection technique for Poisson distribution, gamma distribution.					
UNIT-IV					
Optimisation Via Simulation: Meaning, difficulty, Robust Heuristics, Random Search.	06 Hrs				
Verification and Validation of Model – Model Building, Verification, Calibration and					
Validation of Models.					
UNIT-V					
Output Analysis – Types of Simulations with Respect to Output Analysis, Stochastic	06 Hrs				
Nature of output data, Measures of Performance and their estimation, Output analysis of					
terminating simulation, Output analysis of steady state simulations.					
Simulation Software: Selection of Simulation Software, Simulation packages, Trend in					
Simulation Software.					

Experiential Learning:

Case study, Design and Emerging Technologies to be discussed pertaining to the course. Students will use simulation software such as Arena, Promodel, Excel, Palisade, Matlab 1 Credit: 4 Hrs / Week

Course Outcomes: After completing the course, the students will be able to						
CO1	Describe the role of important elements of discrete event simulation and modeling paradigm					
CO2	Conceptualize real world situations related to systems development decisions, originating					

	from source requirements and goals
CO3	Develop skills to apply simulation to construct and execute goal-driven system models
CO4	Interpret the model and apply the results to resolve critical issues in a real world environment

Refe	Reference Books							
1.	Discrete Event System Simulation, Jerry Banks, John S Carson, II, Berry L Nelson, David M							
	Nicol, 4 th Edition, 2007, Pearson Education, Asia, ISBN: 81-203-2832-9.							
2.	Simulation Modelling & Analysis, Averill M Law, W David Kelton, 5th Edition, 2014, McGraw							
	Hill International Editions – Industrial Engineering series, ISBN: 978-0073401324.							
3.	Systems Simulation with Digital Computer, Narsingh Deo, 3 rd Edition, 2004, PHI Publication							
	(EEE), ISBN: 0-87692-028-8.							
4.	Discrete-Event Simulation: Modeling, Programming, and Analysis, George S. Fishman,							
	1st Edition, 2013, Springer Science & Business Media, ISBN :1475735529, 9781475735529							

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2		3	2	2				1			1
CO2		2								1		1
CO3	2			2	2			1				
CO4		2		1	2				1			

Low-1 Medium-2 High-3

	V Semester						
	OPERATIONS MANAGEMENT						
	(Theory & Practice)						
Cou	ourse Code: 16IM55						
Cred	redits: L:T:P:S: 3:0:1:0 SEE Marks: 100 + 50						
Hou	Hours: 33L SEE Duration: 03 + 03 Hrs						
Cou	Course Learning Objectives: The students will be able to						
1	Apply the various methods of forecasting.						
2	Define capacity and utilization and their relationship to financial performance measures.						
3	Define the key performance measures to consider the need for the schedule.						
4	Design of Conversion process systems in manufacturing and service organizations.						
	Illustrate the role of operations, and their interaction with the other activities of a firm: finance,						
5	marketing, organization, corporate governance, etc.						

UNIT-I					
Using operations to create value: Role of operations in an organization, a process view,					
a supply chain view, operations strategy, competitive priorities and capabilities,					
addressing the trends and challenges in operations management, decision making models					
UNIT-II					
Process strategy and analysis: process structure in services, process structure in	07 Hrs				
manufacturing, process strategy decisions, strategic fit, strategies for change,					
documenting and evaluating the process, redesigning and managing process improvements					
UNIT-III					
Planning capacity: Planning long term capacity, planning timing and sizing strategies, a systematic approach to long term capacity decisions, tools for capacity planning, waiting					
line models.					
Managing process constraints: the theory of constraints, managing bottlenecks in					
service and manufacturing processes, applying the theory of constraints to product mix					
decisions, managing constraints in line processes					
UNIT-IV Forecasting Demand: managing demand, key decisions on making forecasts, forecast 06 Hrs					
Forecasting Demand: managing demand, key decisions on making forecasts, forecast error, judgment methods, causal methods: linear regression, time series, forecasting as a process					
*					
Managing Inventories: inventory tradeoffs, types of inventory, inventory reduction tactics, ABC Analysis, economic order quantity, continuous review system, modeling					
review system, special inventory models					
UNIT-V					
Planning and Scheduling Operations: levels in operations planning and scheduling, S&OP supply options, S&OP strategies, scheduling.					
Efficient resource planning: Material requirements planning, master production					
scheduling, MRP explosion, enterprise resource planning, resource planning for service providers.					

Assignment:

Case study, Design and Emerging Technologies to be discussed pertaining to the course.

OPERATIONS MANAGEMENT LABORATORY					
Part – I					
Features of Ofbiz, Creation of sales order from E-commerce website					
Preparation of Bill of Materials					
MRP Run- Generating of Various reports for confirmed orders					
Carrying out business process cycles – Purchase					

Creating Production Run for the items

Simulation of Production/Service Operations using Simulation software

Part – II					
Features of Sixth Sense ERP Package.					
Sales Order Processing using Sales and Marketing Management Modules					
Creating Item Master for various Engineering Designs					
Preparation of Bill of Materials					
Generating Purchase Order and carrying out Purchase Flows.					
Development of an integrated ERP module for a product					

Cours	Course Outcomes: After completing the course, the students will be able to					
CO1.	Explain the concept and scope of operations management in a business context					
CO2.	Recognize the role of Operations management among various business functions and its role					
	in the organizations' strategic planning and gaining competitive advantage.					
CO3.	Analyze the appropriateness and applicability of a range of operations management					
	systems/models in decision making.					
CO4.	Assess a range of strategies for improving the efficiency and effectiveness of organizational					
	operations.					
CO5.	Evaluate a selection of frameworks used in the design and delivery of operations					

Refe	erence Books
1.	Operations Management – Processes and Supply Chain,Lee J Karjewski and Larry P Ritzman, Manoj Malhotra, 11 th Edition, 2010, Pearson Education Asia, ISBN: 0133872467, 9780133872460
2.	Production and Operations Management, R. Paneerselvam, 2 nd Edition, 2006, PHI, ISBN:81-203-2767-5
3.	Operations Management – Theory and Practice, B. Mahadevan, 2 nd Edition, 2010, PHI, ISBN: 978 8131730706
4.	Productions & Operations Management, Adam & Ebert, 5 th Edition, 2002, Prentice Hall, ISBN – 013718008-X.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE); Theory (100 Marks)

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2											
CO2		3										
CO3			3	2	2							1
CO4		1	2			1						
CO5		3	3		2							

Low-1 Medium-2 High-3

	V Semester					
	ADVANCED MANUFACTURING PROCESSES					
	(Group A : Pr	rofessional Core Elective)				
Cou	Course Code: 16IM5A1 CIE Marks: 100					
Cred	Credits: L:T:P:S: 3:0:0:1 SEE Marks: 100					
Hou	rs: 35L	SEE Duration: 3Hrs				
Cou	Course Learning Objectives: The students will be able to					
1	Explain range of current industrial processes and practices used to manufacture products in his					
1	and low volumes.					
2	Apply the factors that control the rate of production and influence the quality, cost					
	flexibility of processes.					
3	Demonstrate the working principle of various manufacturing methods					

UNIT-I		
Mechanical Machining Processes : Abrasive Jet Machining (AJM), Ultrasonic Machining	06 Hrs	
(USM), Abrasive Finishing Processes – Abrasive Flow Finishing (AFF), Magnetic	00 1115	
Abrasive Finishing (MAF), Water Jet Machining (WJM), Abrasive Water Jet Machining		
(AWJM).		
UNIT-II		
Thermoelectric Machining Processes: Electric Discharge Machining (EDM), Electric	08 Hrs	
Discharge Grinding and Electric Discharge Diamond Grinding, Wire Electric Discharge		
Machining, Laser Beam Machining (LBM), Plasma Arc Machining (PAM), Electron Beam		
Machining (EBM).		
UNIT-III		
Electrochemical and Chemical Manufacturing Processes :Electrochemical Machining	08 Hrs	
(ECM), Electromechanical Grinding (ECG), Electrochemical Drilling (ECD),		
Electrochemical Deburring (ECDe), Chemical Machining (ChM)		
UNIT-IV		
High Velocity Forming Processes: Explosive forming processes, Propellant forming,	07 Hrs	
Electro-Hydraulic forming, Electromagnetic forming, Pneumatic / Mechanical forming.		
Micro-Machining: Classification of Micromachining, Various Micromachining Processes-		
Abrasive micro machining, Ultrasonic micro machining, Micro EDM, Micro ECM, Laser		
Micromachining.		
UNIT-V		
	06 Hrs	
MEMS (Micro Electro Mechanical Systems)- Development and need of MEMS, overview	uo mrs	
of MEMS technology with relevant non conventional processes. Nano materials, Nano		
tubes and Nano wires, Nanofabrication.		

Self Study:

Case study, Design and Emerging Technologies to be discussed pertaining to the course. 1 Credit: 4 Hrs / Week

Course	e Outcomes: After completing the course, the students will be able to
CO1.	Explain the trends in development of both traditional and nontraditional manufacturing
	methods.
CO2.	Make relevant process selections in the areas of Metal forming, metal cutting and non-
	traditional manufacturing methods in a product life cycle development.
CO3.	Describe the specific process characteristics of various advanced manufacturing technologies
	and identify their possible applications.
CO4.	Analyse and evaluate the benefits of advanced manufacturing processes and discuss their
	limitations.

Refe	erence Books
1.	Advanced Machining Processes, V.K.Jain, 1st Edition, 2007, Allied Publishers Pvt. Limited,
	ISBN: 8177642944
2.	Modern Machining Process, Pandey P C and Shah H S, 1st Edition, 2007, TMH Publication,
	ISBN - 9780070965539
3.	Micromachining of Engineering Materials, Joseph McGeough, Marcel Dekker, 1st Edition,
	2001, ISBN-10: 0849327857.
4.	Fundamental of Modern Manufacturing: Materials, Processes and Systems, Mikell P.Groover,
	2 nd Edition, 2002, Willey India, ISBN-10 81-265-1266-0

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2											
CO2	2	2		1	1							
CO3							1	1				
CO4	2		3		L							

Low-1 Medium-2 High-3

	,	V Semester					
	Elective - A						
	METHODOLOGIES F	OR QUALITY IMPROVEMENT					
	(Group A : Pr	ofessional Core Elective)					
Cou	rse Code: 16IM5A2	CIE Marks: 100					
Credits: L:T:P:S: 3:0:0:1 SEE Marks: 100							
Hours: 33L SEE Duration: 3Hrs							
Cou	Course Learning Objectives: The students will be able to						
1	Develop an understanding on the necessary information and skills needed to manage, control						
	and improve quality practices in the organizations through TQM philosophy.						
2	2 Explain the four revolutions in management thought processes.						
3	Apply the reactive and proactive i	mprovement methodologies for problem solving in					
3	organizations.						
4	Demonstrate the importance of team wo	ork in problem solving processes.					
5	Evaluate the business excellence model	s implemented in various organizations.					

TO YEAR Y	
UNIT-I	<u> </u>
Quality Pioneers: Deming's approach, Juran's quality trilogy, Crosby and quality	07 Hrs
treatment, Imai's Kaizen, Ishikawa's company-wide quality control, and Feigenbaum's	
theory of TQC.	
Evolution of Quality Concepts and Methods: Quality concepts, Development of four	
fitness's, evolution of methodology, evolution of company integration.	
UNIT-II	
Four Revolutions in Management thinking, Focus on customers: Change in work	06 Hrs
concept, market-in, and customers. Continuous Improvement: Improvement as problem	
solving process: Management by process, WV model of continuous improvement.	
Reactive Improvement : Identifying the problem, standard steps, seven steps case study,	
General guidelines for managers diagnosing a QI story.	
Proactive Improvement: Introduction to proactive improvement, standard steps for	
proactive improvement, semantics, Seven Management and Planning Tools.	
UNIT-III	<u> </u>
Total Participation ; Teamwork skill, Dual function of work, teams and teamwork,	07 Hrs
principles for activating teamwork, creativity in team processes, Initiation strategies	071113
Hoshin Management: Definition, Concepts, Phases in Hoshin Management – overview.	
Societal Networking: Networking and societal diffusion, infrastructure for networking.	
TQM as learning system, a TQM model for skill development.	
UNIT-IV	<u> </u>
	07.11
Introduction to Six Sigma: Benefits, fundamentals, myths, essentials and costs of Six	07 Hrs
Sigma. Assessing readiness for Six Sigma, five key players, Planning for the Six Sigma	
initiative. Case discussions.	
Statistical Foundation: Variation & causes, normal distribution, process capability,	
rolled throughput yield, Cost of poor quality. Metrics for Six Sigma: The critical-to-	
quality concept, criteria to metrics, universal standard, baselines, benchmarking,	
guidelines for metrics.	
UNIT-V	
Project Selection: Project selection process, evaluating projects. Project selection matrix,	06 Hrs
project review. DMAIC phases.	
Design for Six Sigma: Overview of DFSS, DMADV Method.	
Beyond Six sigma: Supply chain management using Lean and Six Sigma, Knowledge	
management and Six Sigma, Growth Management System - building blocks and	
architecture.	
Salf Study Cose study Design and Emerging Technologies to be discussed portaining to the	

Self Study: Case study, Design and Emerging Technologies to be discussed pertaining to the course. 1 Credit: 4 Hrs / Week

Course	Course Outcomes: After completing the course, the students will be able to			
CO1.	Explain the TQM & Six Sigma principles and concepts for organizations			
CO2.	Compare TQM and Six Sigma methodologies.			
CO3.	Evaluate and select the appropriate framework for continuous improvement.			
CO4.	Design & implement TQM & Six Sigma projects in organizational situations.			

Ref	erence Books
1.	A New American TQM - Four Practical Revolutions in Management, Shoji Shiba, Alan
	Graham and David Walden, 2 nd Edition, 1993, Productivity Press, Portland (USA), ISBN:
	9781563270321
2.	Six Sigma, Greg Brue and Rod Howes, 1st Edition, 2006, TATA McGraw-Hill Edition, ISBN:
	0-07-063468-8
3.	Managing for Total Quality: from Deming to Taguchi and SPC, N Logothetis, 1st Edition, 1993,
	Prentice Hall of India, ISBN: 0135535123

4. Total Quality Management, Dale H. Besterfield, Carol Besterfield-Michna, Glen Besterfield, Mary Besterfield – Sacre, 3rd Edition, 2002, Pearson Education, ISBN-81-297-0260-6.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2				2		3	2	1	
CO2	2	3	2				2		2	2	1	
CO3		3	2				2		2	2	1	
CO4	2	3	2				2		2	2	1	

Low-1 Medium-2 High-3

	V Semester					
	ADVANCED OPERATIONS RESEARCH					
	(Group A : Pro	ofessional Core Elective)				
Cou	rse Code: 16IM5A3	CIE Marks: 100				
Credits: L:T:P:S: 3:0:0:1		SEE Marks: 100				
Hou	rs: 34L	SEE Duration: 3Hrs				
Cou	rse Learning Objectives: The students	will be able to				
1		advanced constructs of operations research models for				
complex decision making situations.						
Implement the advanced methodology and		nd tools of operations research to assist decision-				
making.						

UNIT-I	
Linear Programming: Two phase simplex techniques, revised simplex techniques,	07 Hrs
Sensitivity analysis, Integer Programming, Gomory's techniques, branch & Bound	
technique – two variables only, solutions of Assignment and Travelling salesman	
problems using Branch and Bound Approach.	
UNIT-II	
Goal Programming: Introduction and simple formulation.	07 Hrs
Non-Linear Programming: Kuhn – Tucker conditions, Quadratic Programming-Wolfe's	
Method, Convex Programming.	
UNIT-III	
Dynamic Programming: Characteristics and Dynamic Programming model,	07 Hrs
Computational procedure (no problem solving, only formulation).	
Network Optimization Models: The Shortest-Path Problem, The Minimum Spanning	
Tree Problem, The Maximum Flow Problem, The Minimum Cost Flow Problem.	
UNIT-IV	
Queuing Theory: Prototype, Basic Structure, Real Queuing systems, Role of	06 Hrs
Exponential distribution, Birth-Death Process, Models, Non exponential distributions,	
Priority discipline queuing model, queuing networks.	
UNIT-V	
Markov Chains: Discrete Stochastic Process, Markovian process, Stationary Markov	07 Hrs
chains, Markov diagrams, Ergodic and Absorbing Markov chains, Steady State	
probabilities, stochastic matrix, transition, matrix and their applications.	

Self Study:

Case study, Design and Emerging Technologies to be discussed pertaining to the course, along with usage of optimization softwares such as GAMS, Matlab, Excel.

1 Credit: 4 Hrs / Week

Cours	e Outcomes: After completing the course, the students will be able to				
CO1.	Incorporate a range of ideas concerning Statistics and Operational Research including				
	methods appropriate in specialized applications.				
CO2.	Analyze and interpret information in a manner that can be communicated effectively to non-				
	specialists.				
CO3.	Carry out analyses of complex data sets, design experiments & analyze practical OR problems				
	using computer programmes and/or packages				

Refe	erence Books
1.	Operation Research, Taha H A, 9 th Edition, 2014, Macmillan, ISBN – 978-93-325-1822-3.
2.	Operations Research: Principles and Practice, Ravindran, Phillips and Solberg, 2 nd Edition,
	2007, Wiley International, ISBN – 8126512563.
3.	Introduction to Operation Research, Hiller, Leiberman, 8th Edition, 2004, Mc Graw Hill
	Publication, ISBN – 0073017795.
4.	Operation Research Methods and Problems, M N Sasieni, A. Yaspan and L. Friedman,
	1 st Edition, 2013, Literary Licensing, LLC, ISBN: 978-1258819453.

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1				1						
CO2	2	1				1						
CO3	1	2	1									

Low-1 Medium-2 High-3

	V Semester					
	MARKETING MANAGEMENT & RESEARCH					
	(Group A : Professional Core Elective)					
Cou	rse Code: 16IM5A4	CIE Marks: 100				
Credits:L:T:P:S: 3: 0: 0:1 SEE Marks: 100						
Hou	Hours: 33L SEE Duration: 3Hrs					
Cou	Course Learning Objectives: The students will be able to					
1	To understand and analyze the opportunities and challenges of marketing in a global market.					
2	To develop an effective marketing strategy, and marketing plan, using holistic market					
orientation.						
3	To understand the need and importance of marketing research to maintain the competitive edge.					
4	To analyze the effectiveness of modern modes of delivering value to customers.					

UNIT-I	
Understanding Marketing Management-Challenges in Defining Marketing	06 Hrs
Management for 21st Century: The Importance of Marketing, the Scope of Marketing,	
Core Marketing Concepts, The New Marketing Realities, Company Orientation Toward	
the Market Place, Updating the Four Ps, Marketing Management Tasks, Importance of	
Digital Marketing.	
UNIT-II	
Developing Marketing Strategies and Plans: Marketing and Customer Value, The	07 Hrs
Holistic Marketing Orientation, Corporate and Division Strategic Planning, Business Unit	
Strategic Planning, Product Planning-The Nature and Contents of a Marketing Plan, The	
Role of Research in marketing, The Role of Relationships from Marketing Plan to	
Marketing.	
UNIT-III	
Assessing the Marketing Opportunities and Conducting Marketing Research:	07 Hrs
Components of Modern Marketing Information System, Marketing Intelligence,	
Analyzing the Microenvironment, The Market Research System, Marketing Research	
Process, Researching Rural Markets-Overcoming Barriers to Use of Marketing Research.	
UNIT-IV	
Measurement Techniques in Marketing Research: Concept of measurement in	07 Hrs
Marketing Research, Questionnaire Design, Direct Response Attitude Scales and Measure	
of Emotions, Derived Attitude Scales-Conjoint Analysis, Perceptual Mapping, Qualitative	
Research, Observation and Physiological Measures, Case studies.	
UNIT-V	
Managing Retailing, Wholesaling, And Market Logistics: Retailing- Types of	06 Hrs
Retailers, Private Labels-Role of Private Labels, Private-Label Success Factor,	
Wholesaling- Trends in Wholesaling, Marketing Logistics- Integrated Logistics Systems,	
Marketing-Logistics Objectives and Decisions, Organizational Lessons.	

ben beauty.	Self	Study:
-------------	------	--------

Case study, Design and Emerging Technologies to be discussed pertaining to the course.

1 Credit: 4 Hrs / Week

Course	e Outcomes: After completing the course, the students will be able to
CO1.	Differentiate the benefits drawn by updated marketing mix from traditional marketing mix for
	effective marketing management there by to stay competitive in today's global market-place.
CO2.	Develop an effective holistic marketing atmosphere to efficiently face the challenges in
	dynamically changing market.
CO3.	Formulate a potential marketing plan to effectively reach the targeted market segments, by
	delivering the value to targeted customers through practicing sound marketing research.

CO4. Create new channels to improvise marketing to achieve and maintain competitive position in globalized market-place.

Refe	erence Books
1.	Marketing Management- A South Asian Perspective, Philip Kotler, Kevin Lane Keller, Abrahan
	Koshy, Mithileshwar Jha, 14 th Edition, 2013, Pearson, ISBN –978-81-317-6716-0
2.	Marketing Research, Donald S Tull, Del I Hawkins, 6 th Edition, 1995, Prentice Hall India, ISBN: 8120309618
3.	Marketing Management, Philip Kotler, Kevin Lane Keller, 15 Edition, e-book – 2015 (Kindle
	Edition), ASIN: B07C9BDWSM.
4.	Marketing Research, Aaker, Kumar, Day, 9th Edition, 2007, Wiley India, ISBN: 978-265-1791-6

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	3	2				2	2		
CO2	2	3		3		1	1	2		2		
CO3		2	2	3	3	1		1			1	
CO4			1			1	2					

Low-1 Medium-2 High-3

	V Semester						
	SOFTWARE ENGINEERING & TESTING						
	(Group A : Professional Core Elective)						
Cou	rse Code: 16IM5A5	CIE Marks: 100					
Cred	Credits:L:T:P:S: 3:0:0:1 SEE Marks: 100						
Hou	Hours: 33L SEE Duration: 3Hrs						
Cou	Course Learning Objectives: The students will be able to						
1	Understand the software development tasks and different approaches to software development						
2	Define and analyze information-gathering techniques to document the requirements for an						
4	information system solution.						
3	Solve the software testing issues through test case designs and test bed design.						
1	Design and develop project plans, and u	understand how to organize, direct, and control a project					
4	for software development or implementation.						

UNIT-I				
Introduction: Software development, software process models, Agile software	06 Hrs			
development, Requirements engineering.				
UNIT-II				
System Modelling-Context models, Interaction models, Structural models, Architectural	08 Hrs			
design decisions, Application architectures.				
UNIT-III				
Software testing- Development test cases, Test-driven development, Release testing, User	08 Hrs			
testing, Availability and reliability				
UNIT-IV				
Advanced Software Engineering-Software reuse, The reuse landscape, Client-server	06 Hrs			
computing, Architectural patterns for distributed systems.				
UNIT-V				
Software Management- Project management, Project planning, Quality management	05 Hrs			
Configuration management				

Self Study:

Case study, Design and Emerging Technologies to be discussed pertaining to the course.

1 Credit: 4 Hrs / Week

Course	Outcomes: After completing the course, the students will be able to
CO1.	Understand the body of knowledge relating to Software Engineering and maintenance, the
	principles of large scale software systems, and the processes that are used to build them.
CO2.	Demonstrate the ability to manage a project including planning, scheduling and risk
	assessment/management
CO3.	Execute specific software tests with well-defined objectives and targets
CO4.	Apply various testing techniques, including domain, code, fault, usage and model-based.
CO5.	Create an integrated facilities plan for various applications.

Refe	erence Books
1.	Software Engineering, Ian Sommerville 9th Edition, 2009, Pearson Includes index.ISBN-13:
	978-0-13-703515-1,ISBN-10: 0-13-703515-2,QA76.758.S657
2.	Software Engineering Handbook, Jessica Keyes, 1st Edition, 2003, Auerbach Publications,
	(CRC Press), ISBN: 0-8493-1749-8
3.	Software Engineering: A Practioner's Approach, Roger S. Pressman, 6th Edition, 2005,
	International Edition). McGraw-Hill, ISBN 0-07-337597-7
4.	Hans van Vliet. Software Engineering: Principles and Practice (Second Edition). Wiley, 1999
	ISBN-10: 047003146

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2					1						
CO2			2				2			1	2	
CO3		3	2		2		1			2	2	
CO4			3	2	2			1		1	2	
CO5				2	2							

Low-1 Medium-2 High-3

		V Semester			
		BIOINFORMATICS			
		(Group B: Global Elective)			
	rrse Code: 16G5B01	CIE Marks: 100			
	dits :L:T:P:S: 4:0:0:0	SEE Marks: 100			
	ırs: 45L	SEE Duration: 3Hrs			
	rse Learning Objectives:				
1		chnologies of Bioinformatics and Programming			
2		ns behind the computational genomics and proteomic stru	ıctural		
		simulation of molecular systems.			
3	11 7	es that are exclusively designed as data analytics to inves	tigate the		
	significant meaning hidden behind the high throughput biological data.				
4	Analyze and evaluate the outcome of tools and techniques employed in the processes of				
	biological data preprocessing	and data mining.			
		*** ** *			
D.		Unit-I	00. 77		
		Biomolecules. Structure, Types and Functions of	09 Hrs		
		cids and Proteins. Genetic code, Codon degeneracy,			
		matics & Biological Databases: Introduction to			
		lications in biological science and medicine. Biological			
		, Special Databases and applications - Genome,			
		motif, and domain databases. Mapping databases –			
geno	ome wide maps. Chromosome s	Unit – II	<u>L</u>		
Sac	uanca Alignment. Introduction	V === V ==	09 Hrs		
Sequence Alignment: Introduction, Types of sequence alignments - Pairwise and Multiple sequence alignment, Alignment algorithms (Needleman & Wunch, Smith &					
		alignment). Database Similarity Searching- Scoring			
		Basic Local Alignment Search Tool (BLAST), and			
		nencing – Alignment and Assembly. Molecular			
		inology, Forms of Tree Representation. Phylogenetic			
<u> </u>	rogenetics. Introduction, Term	infology, Forms of Tree Representation. Phylogenetic	İ		

Unit -III

Predictive methods: Predicting secondary structure of RNA, Protein and Genes – algorithms to predict secondary structure of RNA, Protein and Gene. Prediction of Tertiary structure of Protein, Protein identity and Physical properties of protein. **Molecular Modeling and Drug Designing:** Introduction to Molecular Modeling. Methods of Molecular Modeling and Force Fields used in Molecular Modeling. Drug designing process - deriving Pharmacophore, Receptor Mapping, Estimating Receptor-Ligand interactions and Molecular Docking.

Tree Construction Methods - Distance-Based & Character-Based Methods and

09 Hrs

Unit -IV

Perl: Introduction to Perl, writing and executing a Perl program. Operators, Variables and Special variables. Data Types – Scalar, Array and Associative array. Regular Expressions (REGEX), Components of REGEX - Operators, Metacharacters and Modifiers. Subroutines – types of functions, defining and calling functions in Perl, calling function - call by value and call by reference. Object Oriented Programming in Perl–Class and object, Polymorphism, inheritance and encapsulation. Perl Package – writing and calling package. Perl Module – writing and calling module.

09 Hrs

Unit -V

BioPerl: Introduction to BioPerl, BioPerl Modules, Applications of BioPerl – Sequence retrieval from Database and submission of sequence to online Database, Indexing and accessing local databases, Transforming formats of database record, Sequence alignments BioPerl and Sequence Analysis - Pair wise and Multiple sequence alignment, Restriction mapping. Identifying restriction enzyme sites, acid cleavage sites, searching for genes and

09 Hrs

Phylogenetic Tree evaluation.

other structures on genomic DNA, Parsing BLAST and FASTA results. BioPerl and phylogenetic analysis, BioPerl and Phylogenetic tree manipulation, creating graphics for Sequence display and Annotation.

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Understand the Architecture and Schema of online databases including structure of records in					
	these databases.					
CO2:	Explore the Mind crunching Algorithms, which are used to make predictions in Biology,					
	Chemical Engineering, and Medicine.					
CO3:	Apply the principles of Bioinformatics and Programming to the problems related to process					
	simulation and process engineering in Biological system.					
CO4:	Use Bioinformatics tools and Next Generation Technologies to model and simulate biological					
	phenomenon.					

Ref	erence Books
1	T. Christiansen, B. D. Foy, L. Wall, J. Orwant, Programming Perl: Unmatched power for text
	processing and scripting, O'Reilly Media, Inc., 4th edition, 2012, ISBN-13: 978-0596004927
2	B. Haubold, T. Weihe, Introduction to Computational Biology: An Evolutionary Approach, new
	age publishers, Paperback Edition, 2009, ISBN-13: 978-8184890624
3	C. Bessant, I. Shadforth, D. Oakley, Building Bioinformatics Solutions: with Perl, R and
	MySQL, Oxford University Press, 1st edition, 2009, ISBN
4	D. C. Young. Computational Drug Design: A Guide for Computational and Medicinal
	Chemists, Wiley-Interscience, 1st edition, 2009, ISBN-13: 978-0470126851.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	3	2	3	3	-	-	1	2	-
CO2	3	3	3	2	3	3	2	-	2	-	-	-
CO3	3	2	2	2	2	1	1	-	-	-	1	-
CO4	1	2	3	3	3	2	1	-	-	2	-	-

High-3: Medium-2: Low-1

V Semester						
	FUEL CELL TECHNOLOGY					
	(Group 1	B: Global Elective)				
Cou	rse Code: 16G5B02		CIE Marks: 100			
Cred	lits: L:T:P:S:: 4:0:0:0		SEE Marks: 100			
Hou	rs: 45L		SEE Duration: 3Hrs			
Cou	rse Learning Objectives: The students	will be able to				
1	Recall the concept of fuel cells					
2	2 Distinguish various types of fuel cells and their functionalities					
3	3 Know the applications of fuel cells in various domains					
4	4 Understand the characterization of fuel cells					

UNIT-I	
Introduction: Fuel cell definition, historical developments, working principle of fuel cell, components of fuel cell, EMF of the cell, Fuel Cell Reactions, fuels for cells and their properties.	
UNIT-II	
Fuel Cell Types: Classification of fuel cells, alkaline fuel cell, polymer electrolyte fuel cell, phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel cell, advantages and disadvantages of each.	
UNIT-III	
Fuel Cell Reaction Kinetics: activation kinetics, open circuit voltage, intrinsic maximum efficiency, voltage efficiency, Faradaic efficiency, overall efficiency, over-voltages and Tafel equation.	
UNIT-IV	
Fuel Cell Characterization: current – voltage curve, in-situ characterization, current – voltage measurement, current interrupt measurement, cyclic voltammetry, electrochemical impedance spectroscopy and ex-situ characterization techniques.	09 Hrs
UNIT-V	
Applications of Fuel Cells: applications of fuel cells in various sectors, hydrogen production, storage, handling and safety issues.	09 Hrs

Cou	urse Outcomes: After completing the course, the students will be able to
1	Understand the fundamentals and characteristics of fuel cells
2	Apply chemical engineering principles to distinguish fuel cells from conventional energy systems
3	Analyze the performance of fuel cells using different characterization techniques
4	Evaluate the possibility of integrating fuel cell systems with conventional energy systems

Reference Books Fuel Cells – Principles and Applications, Viswanathan and M Aulice Scibioh, 1st Edition, 2009, Universities Press, ISBN – 13: 978 1420 060287 Fuel Cell Systems Explained, James Larminie and Andrew Dicks, 2nd Edition, 2003, John Wiley & Sons, ISBN – 978 0470 848579 Fuel Cell Fundamentals, O 'Hayre, R. P., S. Cha, W. Colella, F. B. Prinz, 1st Edition, 2006, Wiley, New York, ISBN – 978 0470 258439 Recent Trends in Fuel Cell Science and Technology, Basu. S, 1st Edition, 2007, Springer, ISBN

- 978 0387 688152

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO - PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	2	-	-	-	-	-	1	-	1	-	-	-
CO 2	2	-	2	-	-	-	-	-	-	-	-	-
CO 3	-	3	-	-	-	-	3	-	2	-	-	-
CO 4	-	2	2	-	-	-	2	-	3	-	-	2

High-3: Medium-2: Low-1

	VS	Semester				
	GEOINFORMATICS					
	(Group B:	Global Elective)				
Cou	rse Code:16G5B03	CIE Marks: 100				
Hrs/Week: L:T:P:S: 4:0:0:0 SEE Marks: 100						
Credits: 48L SEE Duration: 3Hrs						
Cou	rse Learning Objectives: The students wi	ill be able to				
1	1 To understand concept of using photographic data to determine relative positions of points					
2	To study the use of electromagnetic energy for acquiring qualitative and quantitative					
4	information					
3	3 To analyze the data gathered from various sensors and interpret for various applications					
4	To understand the various applications of	RS, GIS and GPS				

4 To understand the various applications of RS, GIS and GPS	
UNIT-I	
Remote Sensing- Definition, types of remote sensing, components of remote sensing, Electromagnetic Spectrum, Black body, Atmospheric windows, energy interaction with earth surface features. spectral reflectance curve- physical basis for spectra reflectance curve, false color composite. Platforms and sensors. Sensor resolutions. Types of satellites-Indian and other remote sensing satellites (IRS, IKONS and Landsat). Concept of image interpretation and analysis - Principle of visual interpretation, recognition elements. Fundamentals of image rectification. Digital Image classification - supervised and unsupervised	10 Hrs
UNIT-II	
Photogrammetry: Introduction types of Photogrammetry, Advantages of Photogrammetry, Introduction to digital Photogrammetry. Locating points from two phases determination of focal length. Aerial Photogrammetry: Advantages over ground survey methods - geometry of vertical phographs, scales of vertical photograph. Ground coordination- relief displacement, scale ground coordinates – flight planning	10 Hrs
UNIT-III	
Geographic Information System- Introduction, Functions and advantages, sources of data for GIS. Database – Types, advantages and disadvantages. Data Management – Transformation, Projection and Coordinate systems. Data input methods, Data Analysis overlay operations, network analysis, spatial analysis. Outputs and map generation Introduction to GPS- components and working principles	10 Hrs
UNIT-IV	
Applications of GIS, Remote Sensing and GPS: Case studies on Water Resources engineering and management (prioritization of river basins, water perspective zones and its mapping), Case studies on applications of GIS and RS in highway alignment, Optimization of routes, accident analysis, Environmental related studies. Case studies on applications of GIS and RS in Disaster Management (Case studies on post disaster management - Earthquake and tsunami and pre disaster management - Landslides and floods) Urban Planning & Management - mapping of zones, layouts and infrastructures.	09 Hrs
UNIT-V	
Applications of GIS, Remote Sensing and GPS: Land use land cover (LULC) mapping. Case studies on infrastructure planning and management- Case studies on urban sprawl. Change detection studies – case studies on forests and urban area. Case studies on agriculture. Applications of geo-informatics in natural resources management: Geo Technical case Studies, site suitability analysis for various applications.	09 Hrs

Cou	Course Outcomes: After completing the course, the students will be able to					
1	Understand the principle of Remote Sensing (RS) and Geographical Information Systems (GIS)					
	data acquisition and its applications.					
2	Apply RS and GIS technologies in various fields of engineering and social needs.					

Analyze and evaluate the information obtained by applying RS and GIS technologies.
 Create a feasible solution in the different fields of application of RS and GIS.

Refe	Reference Books				
1.	Geographic Information System-An Introduction, Tor Bernharadsen, 3 rd Edition, Wiley India				
	Pvt. Ltd. New Delhi, 2009.				
2.	Principles of Remote sensing and Image Interpretation, Lillesand and Kiefer, 5 th Edition, John				
	Wiley Publishers, New Delhi, 2007.				
3.	Remote Sensing and GIS, Bhatta B, Oxford University Press, New Delhi, 2008				
4.	Remote Sensing, Robert A. Schowengerdt, 3 rd Edition, Elsevier India Pvt Ltd, New Delhi, 2009				

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	1	-	-	-	-	-	-
CO2	2	1	-	-	1	1	-	-	-	-	-	-
CO3	2	2	1	-	2	1	1	-	-	-	-	1
CO4	2	2	1	-	3	2	2	-	-	-	1	1

Low-1 Medium-2 High-3

	V Semester					
	GRAPH THEORY					
	(Group B: Glob	al Elective)				
Cou	Course Code:16G5B04 CIE Marks: 100					
Cred	Credits: L:T:P:S: 4:0:0:0 SEE Marks: 100					
Hou	Hours: 45L SEE Duration: 3 Hrs					
Cou	Course Learning Objectives: The students will be able to					
1	1 Understand the basics of graph theory and their various properties.					
2	Model problems using graphs and to solve these problems algorithmically.					
3	Apply graph theory concepts to solve real world applications like routing, TSP/traffic cont					
3	etc.					
4	Optimize the solutions to real problems like transport problems etc.,					

UNIT-I	
Introduction to graph theory	09 Hrs
Introduction, Mathematical preliminaries, definitions and examples of graphs, degrees and	02 1115
regular graphs, sub graphs, directed graphs, in degrees and out degrees in digraphs.	
Basic concepts in graph theory	
Paths and cycles, connectivity, homomorphism and isomorphism of graphs, connectivity in	
digraphs.	
UNIT-II	
Graph representations, Trees, Forests	09 Hrs
Adjacency matrix of a graph, Incidence matrix of a graph, Adjacency lists, Trees and	** ====
properties of trees, Characterization of trees, Centers of trees, Rooted trees, Binary threes,	
Spanning trees and forests, Spanning trees of complete graphs, An application to electrical	
networks, Minimum cost spanning trees.	
UNIT-III	
Fundamental properties of graphs and digraphs	09 Hrs
Bipartite graphs, Eulerian graphs, Hamiltonian graphs, Hamiltonian cycles in weighted	
graphs, Eulerian digraphs.	
Planar graphs, Connectivity and Flows	
Embedding in surfaces, Euler's formula, Characterization of planar graphs, Kuratowski's	
theorem, Dual of a planar graphs.	
UNIT-IV	
Matchings and Factors	09 Hrs
Min-Max theorem, Independent sets and covers, Dominating sets, maximum bipartite	
matching.	
Coloring of graphs	
The chromatic number of a graph, Results for general graphs, The chromatic polynomial of	
a graph, Basic properties of chromatic polynomial, chordal graphs, powers of graphs, Edge	
coloring of graphs	
UNIT-V	
Graph algorithms	09 Hrs
Graph connectivity algorithms, Breadth first search and Depth first search, Shortest path	
algorithms, Dijikstra's shortest path algorithm, Minimum cost spanning tree algorithms,	
Algorithm of Kruskal's and Prim's.	

Course Outcomes: After completing the course, the students will be able to				
CO1.	Understand and explore the basics of graph theory.			
CO2.	Analyse the significance of graph theory in different engineering disciplines			
CO3.	Demonstrate algorithms used in interdisciplinary engineering domains.			
CO4.	Evaluate or synthesize any real world applications using graph theory.			

Ref	Reference Books				
1.	Introduction to graph theory, Douglas B. West, 2 nd Edition, 2001, PHI, ISBN- 9780130144003,				
	ISBN-0130144002.				
2.	Graph Theory, modeling, Applications and Algorithms, Geir Agnarsson, Raymond Greenlaw,				
	Pearson Education, 1 st Edition, 2008, ISBN- 978-81-317-1728-8.				
3.	Introduction to Algorithms ,Cormen T.H., Leiserson C. E, Rivest R.L., Stein C., 3 rd Edition,				
	2010 PHL ISBN:9780262033848				

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	-	-	-	-	-	-	1	1	-	-
CO2	2	3	2	1	-	-	-	-	2	2	-	1
CO3	2	2	3	2	-	-	-	-	2	2	-	1
CO4	2	2	3	2	-	1	-	-	2	2	-	1

Low-1 Medium-2 High-3

	V Semester							
	ARTIFICIAL NEURAL NETWORKS &DEEP LEARNING							
		(Group B: Global Elective)						
Cou	rse Code: 16G5B05		CIE Marks: 100					
Cred	dits: L:T:P:S: 4:0:0:0		SEE Marks: 100					
Hours: 46L			SEE Duration: 3Hrs					
Cou	rse Learning Objectives: '	The students will be able to						
1	Define what is Neural Network and model a Neuron and Express both Artificial Intell							
1	and Neural Network							
2	Analyze ANN learning, Error correction learning, Memory-based learning, Hebbian learning,							
	Competitive learning and Boltzmann learning							
			hm, Modified Perception learning					
3		e linear combiner, Continuous p	erception, learning in continuous					
	perception.							
			velop MLP with 2 hidden layers,					
4		Develop Delta learning rule of the output layer and Multilayer feed forward neural network						
	with continuous perceptions,							

UNIT-I		
Introduction to Neural Networks: Neural Network, Human Brain, Models of Neuron,	08 Hrs	
Neural networks viewed as directed graphs, Biological Neural Network, Artificial neuron,		
Artificial Neural Network architecture, ANN learning, analysis and applications, Historical		
notes.		
UNIT-II		
Learning Processes: Introduction, Error correction learning, Memory-based learning,	10 Hrs	
Hebbian learning, Competitive learning, Boltzmann learning, credit assignment problem,		
learning with and without teacher, learning tasks, Memory and Adaptation.		
UNIT-III		
Single layer Perception: Introduction, Pattern Recognition, Linear classifier, Simple	10 Hrs	
perception, Perception learning algorithm, Modified Perception learning algorithm,		
Adaptive linear combiner, Continuous perception, Learning in continuous perception.		
Limitation of Perception.		
UNIT-IV		
Multi-Layer Perceptron Networks: Introduction, MLP with 2 hidden layers, Simple layer	10 Hrs	
of a MLP, Delta learning rule of the output layer, Multilayer feed forward neural network		
with continuous perceptions, Generalized delta learning rule, Back propagation algorithm		
UNIT-V		
Introduction to Deep learning: Neuro architectures as necessary building blocks for the	08 Hrs	
DL techniques, Deep Learning & Neocognitron, Deep Convolutional Neural Networks,		
Recurrent Neural Networks (RNN), feature extraction, Deep Belief Networks, Restricted		
Boltzman Machines, Autoencoders, Training of Deep neural Networks, Applications and		
examples (Google, image/speech recognition)		

Cou	Course Outcomes: After completing the course, the students will be able to				
CO	: Model Neuron and Neural Network, and to analyze ANN learning, and its applications.				
CO	Perform Pattern Recognition, Linear classification.				
CO	Develop different single layer/multiple layer Perception learning algorithms				
CO	: Design of another class of layered networks using deep learning principles.				

Refe	erence Books
1.	Neural Network- A Comprehensive Foundation, Simon Haykins, 2 nd Edition, 1999, Pearson
	Prentice Hall, ISBN-13: 978-0-13-147139-9
2.	Introduction to Artificial Neural Systems, Zurada and Jacek M, 1992, West Publishing
	Company, ISBN: 9780534954604
3.	Learning & Soft Computing, Vojislav Kecman, 1st Edition, 2004, Pearson Education, ISBN:0-
	262-11255-8
4.	Neural Networks Design, M T Hagan, H B Demoth, M Beale, 2002, Thomson Learning,
	ISBN-10: 0-9717321-1-6/ ISBN-13: 978-0-9717321-1-7

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	2	-	-	-	-	1	-	1
CO4	3	3	3	3	2	-	-	-	-	1	-	1

Low-1 Medium-2 High-3

	V Semester									
	HYBRID ELECTRIC VEHICLES									
	(Group B: Global Elective)									
Cou	rse Code : 16G5B06		CIE Marks: 100							
Cre	dits : L:T:P:S 4:0:0:0		SEE Marks: 100							
Hou	rs: 45L		SEE Duration: 3Hrs							
Cou	rse Learning Objectives:	The students will be able to,								
1	Explain the basics of elec-	tric and hybrid electric vehicles, their	architecture, technologies and							
1	fundamentals.									
2	Explain plug – in hybrid	electric vehicle architecture, design a	and component sizing and the							
	power electronics devices	used in hybrid electric vehicles.								
3	Analyze various electric d	rives suitable for hybrid electric vehicle	es and Different energy storage							
3	technologies used for hybrid electric vehicles and their control.									
	Demonstrate different configurations of electric vehicles and its components, hybrid vehicle									
4		techniques, sizing of components and o								
	management.									

management.					
Unit-I					
Introduction: Sustainable Transportation, A Brief History of HEVs, Why EVs Emerged	07 Hrs				
and Failed, Architectures of HEVs, Interdisciplinary Nature of HEVs, State of the Art of					
HEVs, Challenges and Key Technology of HEVs.					
Hybridization of the Automobile: Vehicle Basics, Basics of the EV, Basics of the HEV,					
Basics of Plug-In Hybrid Electric Vehicle (PHEV), Basics of Fuel Cell Vehicles (FCVs).					
Unit-II					
HEV Fundamentals: Introduction, Vehicle Model, Vehicle Performance, EV Powertrain					
Component Sizing, Series Hybrid Vehicle, Parallel Hybrid Vehicle, Wheel Slip Dynamics.					
Plug-in Hybrid Electric Vehicles: Introduction to PHEVs, PHEV Architectures,					
Equivalent Electric Range of Blended PHEVs, Fuel Economy of PHEVs, Power					
Management of PHEVs, Component Sizing of EREVs, Component Sizing of Blended					
PHEVs, Vehicle-to-Grid Technology.					
Unit-III					
Power Electronics in HEVs: Power electronics including switching, AC-DC, DC-AC	10 Hrs				
conversion, electronic devices and circuits used for control and distribution of electric					
power, Thermal Management of HEV Power Electronics.					
Batteries, Ultracapacitors, Fuel Cells, and Controls: Introduction, Different batteries for					
EV, Battery Characterization, Comparison of Different Energy Storage Technologies for					
HEVs, Battery Charging Control, Charge Management of Storage Devices, Flywheel					
Energy Storage System, Hydraulic Energy Storage System, Fuel Cells and Hybrid Fuel					
Cell Energy Storage System and Battery Management System.					
Unit-IV					
Electric Machines and Drives in HEVs: Introduction, BLDC motors, Induction Motor	10 Hrs				
Drives, Permanent Magnet Motor Drives, Switched Reluctance Motors, Doubly Salient					
Permanent Magnet Machines, Design and Sizing of Traction Motors, Thermal Analysis					
and Modelling of Traction Motors. (only functional treatment to be given)					
Unit-V					
Integration of Subsystems: Matching the electric machine and the internal combustion	08 Hrs				
engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the					
energy storage technology, Communications, supporting subsystems.					
Energy Management Strategies: Introduction to energy management strategies used in					
hybrid and electric vehicle, classification of different energy management strategies,					
comparison of different energy management strategies, implementation issues of energy					
strategies.					
	-				

Cot	Course Outcomes: After completing the course, the students will be able to									
1	Explain the basics of electric and hybrid electric vehicles, their architecture, technologies and									
	fundamentals.									
2	Evaluate the performance of electrical machines and power electronics converters in HEVs.									
3	Analyse the different energy storage devices used for hybrid electric vehicles, their technologies									
	and control and select appropriate technology									
4	Design and evaluate the sizing of subsystem components and Energy Management strategies in									
	HEVs.									

Ref	erence Books:
1.	Hybrid Electric Vehicle: Principles and Applications with Practical Perspectives, Mi Chris,
	Masrur A.and Gao D.W. Wiley Publisher, 1 st Edition, 2011, ISBN:0-824-77653-5
2.	Ali, Modern Electric, Hybrid electric and Fuel Cell Vehicles, Ehsani Mehrdad, Gao Yimin, E.
	Gay Sebastien, Emadi CRC Press, 1st Edition, 2005, ISBN: 0-8493-3154-4.
3.	Modern Electric Vehicle Technology, Chan, C.C., Chau, K.T. Oxford University Press,
	2001, ISBN 0 19 850416 0.
4.	Hybrid Electric Vehicles: Energy Management Strategies, Simona Onori, Lorenzo Serrao,
	Giorgio Rizzoni, ISBN: 978-1-4471-6779-2.

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks):

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	2	1	1	3	1	-	1	-	2
CO2	3	3	2	2	3	-	3	-	2	1	2	1
CO3	2	3	2	2	2	2	3	1	1	1	-	1
CO4	3	3	3	3	3	1	3	3	3	3	1	3

High-3: Medium-2: Low-1

	V Semester								
OPTIMIZATION TECHNIQUES									
(Group B: Global Elective)									
Course Code: 16G5B07 CIE Marks: 100									
Credits : L: T: P: S:4:0:	SEE Marks: 100								
Hours: 44L SEE Duration: 03 Hrs									
Course Learning Object	tives: The students will b	e able to							
1. To understand the con	cepts behind optimization	techniques.							
2. To explain the modeling	ng frameworks for solving	problems using optimization techniques.							
3. To design and develop	To design and develop optimization models for real life situations.								
4. To analyze solutions of	To analyze solutions obtained using optimization methods.								
5. To compare models de	eveloped using various tec	hniques for optimization.							

UNIT – I	
Introduction: OR Methodology, Definition of OR, Application of OR to Engineering and Managerial problems, Features of OR models, Limitations of OR.	09 Hrs
Linear Programming: Definition, Mathematical Formulation, Standard Form, Solution Space, Types of solution – Feasible, Basic Feasible, Degenerate, Solution through Graphical Method. Problems on Product Mix, Blending, Marketing, Finance, Agriculture and Personnel.	
Simplex methods: Variants of Simplex Algorithm – Use of Artificial Variables.	
UNIT – II	
Duality and Sensitivity Analysis: Graphical sensitivity analysis, Algebraic sensitivity analysis - changes in RHS, Changes in objectives, Primal-Dual relationships, Economic interpretation of duality, Post optimal analysis - changes affecting feasibility and optimality, Revised simplex method	09 Hrs
UNIT – III	
Transportation Problem: Formulation of Transportation Model, Basic Feasible Solution using North-West corner, Least Cost, Vogel's Approximation Method, Optimality Methods, Unbalanced Transportation Problem, Degeneracy in Transportation Problems, Variants in Transportation Problems Assignment Problem: Formulation of the Assignment problem, solution method of assignment problem-Hungarian Method, Variants in assignment problem, Travelling Salesman Problem (TSP).	08 Hrs
UNIT – IV	
Queuing Theory: Queuing system and their characteristics, The M/M/I Queuing system, Steady state performance analyzing of M/M/1 queuing models. Introduction to M/M/C and M/Ek/1 queuing models Game Theory: Introduction, Two person Zero Sum game, Pure strategies, Games without saddle point - Arithmetic method, Graphical Method, The rules of dominance	09Hrs
UNIT – V	09 Hrs
Markov chains: Definition, Absolute and n-step transition probabilities, Classification of the states, Steady state probabilities and mean return times of ergodic chains, First passage times, Absorbing states. Applications in weather prediction and inventory management. Over view of OR software's used in practice.	

Course	Course Outcomes: After going through this course the student will be able to								
CO1	Understand the various optimization models and their areas of application.								
CO2	Explain the process of formulating and solving problems using optimization methods.								
CO3	Develop models for real life problems using optimization techniques.								
CO4	Analyze solutions obtained through optimization techniques.								
CO5	Create designs for engineering systems using optimization approaches.								

Ref	Reference Books:								
1.	Operation Research An Introduction, Taha H A, 8th Edition, 2009, PHI, ISBN: 0130488089.								
2.	Principles of Operations Research – Theory and Practice, Philips, Ravindran and Solberg, 2 nd								
	Edition, 2000, John Wiley & Sons (Asia) Pte Ltd, ISBN 13: 978-81-265-1256-0								
3.	Introduction to Operation Research, Hiller, Liberman, Nag, Basu, 9th Edition, 2012, Tata McGraw								
	Hill, ISBN 13: 978-0-07-133346-7								
4.	Operations Research Theory and Application, J K Sharma, 4th Edition, 2009, Pearson Education								
	Pvt Ltd, ISBN 13: 978-0-23-063885-3.								

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2												
CO2	2	2		1	1								
CO3							1	1					
CO4	2		3		1								
CO5			2			1						1	

Low-1 Medium-2 High-3

	V Semester							
	SENSORS & APPLICATIONS							
	(Group B:	Global Elective)						
Co	ourse Code:16G5B08	CIE Marks: 100						
Cr	Credits/Week: L:T:P:S:4:0:0:0 SEE Marks: 100							
Но	Hours:44L SEE Duration: 3Hrs							
Co	urse Learning Objectives: The students wi	ll be able to						
1	I Impart the principles and working modes of various types of Resistive, Inductive, Capacitive							
	Piezoelectric and Special transducers.							
2	Give an idea about the applications of various transducers and selection criteria of a transducer							
	for a particular application.							
3	Give an insight into the static and dynamic characteristics of different orders of instruments.							
4	Describe different data conversion technique	es and their applications.						

UNIT-I			
Introduction: Definition of a transducer, Block Diagram, Active and Passive Transducers,	09 Hrs		
Advantages of Electrical transducers.			
Resistive Transducers: Potentiometers: Characteristics, Loading effect, and problems.			
Strain gauge: Theory, Types, applications and problems.			
Thermistor, RTD: Theory, Applications and Problems.			
UNIT-II			
Thermocouple: Measurement of thermocouple output, compensating circuits, lead	10 Hrs		
compensation, advantages and disadvantages of thermocouple.			
LVDT: Characteristics, Practical applications and problems.			
Capacitive Transducers: Capacitive transducers using change in area of plates, distance			
between plates and change of dielectric constants, Applications of Capacitive Transducers			
and problems.			
UNIT-III			
Piezo-electric Transducers: Principles of operation, expression for output voltage, Piezo-	10 Hrs		
electric materials, equivalent circuit, loading effect, and Problems.			
Special Transducers: Hall effect transducers, Thin film sensors, and smart transducers:			
Principles and applications, Introduction to MEMS Sensors and Nano Sensors, Schematic			
of the design of sensor, applications.			
UNIT-IV			
Chemical sensors: pH value sensor, dissolved oxygen sensor, oxidation-reduction	08 Hrs		
potential sensor.			
Light sensors: Photo resistor, Photodiode, Phototransistor, Photo-FET, Charge coupled			
device.			
Tactile sensors: Construction and operation, types.			
UNIT-V			
Data Converters: Introduction to Data Acquisition System, types of DAC, Binary	07 Hrs		
Weighted DAC, R-2R ladder DAC, DAC-0800, Types of ADC, Single Slope ADC and			
Dual-slope integrated type ADC, Flash ADC, 8-bit ADC-0808, Programmable Gain			
Amplifier.			

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Remember and understand the basic principles of transducers and smart sensors.					
CO2:	Apply the knowledge of transducers and sensors to comprehend digital instrumentation					
	systems.					
CO3:	Analyze and evaluate the performance of different sensors for various applications.					
CO4:	Design and create a system using appropriate sensors for a particular application					

Refe	rence Books
1	Electrical and Electronic Measurements and Instrumentation, A.K. Sawhney, 18th Edition,
	2008, Dhanpat Rai and Sons, ISBN: 81-7700-016-0.
2	Sensor systems: Fundamentals and applications, Clarence W.de Silva, 2016 Edition, CRC
	Press, ISBN: 9781498716246.
3	Transducers and Instrumentation, D.V.S. Murthy, 2 nd Edition 2008, PHI Publication, ISBN:
	978-81-203-3569-1.
4	Introduction to Measurement and Instrumentation, Arun K. Ghosh, 3rd Edition, 2009, PHI,
	ISBN: 978-81-203-3858-6.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO MAPPING											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	-	-	-	-	-	-	-	•	-
CO2	2	3	-	-	2	2	-	-	•	•	•	-
CO3	1	2	2	-	1	1	-	-	•	•	•	2
CO4	-	-	-	-	1	1	-	-	-	3	-	1

Low-1 Medium-2 High-3

		V Semester					
	INTRODUCTION TO	MANAGEMENT INFORMA	TION SYSTEMS				
(Group B: Global Elective)							
Co	Course Code: 16G5B09 CIE Marks: 100						
Cr	Credits: L:T:P:S: 4:0:0:0 SEE Marks: 100						
Но	urs : 45L	SEE Du	uration: 3Hrs				
Co	urse Learning Objectives: The st						
1	To understand the basic principle						
2	Describe the role of information	<u></u>					
3	To contrast and compare how	internet and other information	technologies support	business			
_	processes.						
4	To give an overall perspective	of the importance of applicati	ion of internet technol	logies in			
	business administration.	UNIT I					
Inf	formation Systems in Global Bu		formation exetems in	09 Hrs			
	siness today, Perspectives on i			07 1118			
	ormation systems, Hands-on MIS						
	siness process and information						
	stems for collaboration and team w						
	se study on E business.						
	•	UNIT II					
Inf	ormation Systems, Organization	ns and Strategy: Organization	ons and information	09 Hrs			
	tems, How information systems						
	ormation systems to gain compe						
	cial issues in Information System						
	ormation Systems, Ethics in a		noral dimensions of				
info	ormation society. A Case study on						
IT	Infragature and Emparation	UNIT III	To fue et ma et une	09 Hrs			
IT Infrastructure and Emerging Technologies: IT infrastructure, Infrastructure components, Contemporary hardware platform trends, Contemporary software platform							
	nds, Management issues. Securit						
	ise, Business value of security an						
	control, Technology and tools for protecting information resources. A case study on cybercrime.						
	UNIT IV						
Achieving Operational Excellence and Customer Intimacy: Enterprise systems, Supply							
Achieving Operational Excellence and Customer Intimacy: Enterprise systems, Supply Chain Management (SCM) systems, Customer relationship management (CRM) systems,							
Ent	Enterprise application. E-commerce: Digital Markets Digital Goods: E-commerce and						
	the internet, E-commerce-business and technology, The mobile digital platform and mobile						
E-c	commerce, Building and E-commer	· ·	RP.				
		UNIT V		00.77			
		wledge management landsca		09 Hrs			
	knowledge management system, Knowledge work systems, Intelligent techniques.						
	Enhancing Decision Making : Decision making and information systems, Business intelligence in the enterprise. Business intelligence constituencies. Building Information						
	stems: Systems as planned organizations						
by:	otems. Systems as pianned organiz	anonai change, Overview of syst	tems development.				

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	CO1: Understand and apply the fundamental concepts of information systems.					
CO2:	Develop the knowledge about management of information systems.					
CO3:	Interpret and recommend the use information technology to solve business problems.					
CO4:	Apply a framework and process for aligning organization's IT objectives with business					
	strategy.					

Ref	erence Books								
1	Management Information System, Managing the Digital Firm, Kenneth C. Laudon and Jane P.								
	Laudon, 14 th Global Edition, 2016, Pearson Education, ISBN:9781292094007								
2	Management Information Systems, James A. O' Brien, George M. Marakas, 10 th Edition, 2011,								
	Global McGraw Hill, ISBN: 978-0072823110								
3	Information Systems The Foundation of E-Business, Steven Alter, 4 th Edition, 2002, Pearson								
	Education, ISBN:978-0130617736								
4	W.S. Jawadekar, Management Information Systems, Tata McGraw Hill, 2006, ISBN:								
	9780070616349								

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	1	-	-	-	1	-	-	1	-
CO2	1	2	-	1	-	-	-	1	-	-	1	-
CO3	-	-	3	2	2	-	-	1	-	1	1	-
CO4	-	-	2	1	-	-	-	1	-	1	1	-

Low-1 Medium-2 High-3

	V Semester						
	INDUSTRIAL AUTOMATION						
	(Group B: Global Elect	tive)					
Cou	rse Code: 16G5B10	CIE Marks: 100					
Cred	lits: L:T:P:S : 4:0:0:0	SEE Marks: 100					
Hou	Hours: 44L SEE Duration: 3 Hrs						
Cou	rse Learning Objectives: The students should be able to:						
1	1 Identify types of actuators, sensors and switching devices for industrial automation						
2	Explain operation and controls of Hydraulic and Pneumatic systems						
3	Understand fundamentals of CNC, PLC and Industrial robots						
4	Define switching elements and sensors which are interfaced in an automation system						
5	5 Describe functions of Industrial switching elements and Inspection technologies for automation						
6	6 Select sensors to automatically detect motion of actuators						
7	Develop manual part programs for CNC and Ladder logic for PLC						
8	Develop suitable industrial automation systems using all th	e above concepts					

UNIT-I	
Automation in Production Systems:	08 Hrs
Manufacturing support systems, Automation principles and strategies, Levels of Automation,	
Production Concepts and Mathematical models, Numericals	
Automated Production Lines:	
Fundamentals, Applications, Analysis with no storage, Analysis with storage buffer, Numericals	
UNIT-II	
Switching theory and Industrial switching elements	08 Hrs
Binary elements, binary variables, Basic logic gates, Theorems of switching algebra, Algebraic	
simplification of binary function, Karnough maps, Logic circuit design, problems.	
Electromechanical relays, Moving part logic elements, Fluidic elements, Timers, Comparisons	
between switching elements, Numericals	
Industrial Detection Sensors and Actuators:	
Introduction, Limit switches, Reed switches, Photoelectric sensors- methods of detection, Hall	
effect sensors, Inductive proximity sensors, Capacitive proximity sensors, Pneumatic back	
pressure sensors, Absolute encoder, Incremental encoder, Pressure switches and temperature	
switches; their working principles and applications, Brushless DC motors, Stepper motors and	
Servo motors	
UNIT-III	
Hydraulic Control circuits	10 Hrs
Components, Symbolic representations, Control of Single and Double Acting Cylinder,	
Regenerative Circuit application, Pump unloading circuit, Double Pump Hydraulic System, speed	
control circuits, accumulator circuits	
Pneumatic Control circuits	
Components, Symbolic representations as per ISO 5599, Indirect control of double acting	
cylinders, memory control circuit, cascading design, automatic return motion, quick exhaust valve	
circuit, and cyclic operation of a cylinder, pressure sequence valve and time delay valve circuits.	
UNIT-IV	
Introduction to CNC	08 Hrs
Numerical control, components of CNC, classification, coordinate systems, motion control	
strategies, interpolation, programming concepts	
Industrial Robotics	
Components of Robots, base types, classification of robots, end of arm tooling, robot precision of	
movement, programming, justifying the use of a robot, simple numericals	
UNIT-V	•
Programmable logic control systems	10 Hrs
Difference between relay and PLC circuits, PLC construction, principles of operation, latching,	
ladder diagrams, programming instructions, types of timers, forms of counters, writing simple	

ladder diagrams from narrative description and Boolean logic.

Programming exercises on PLC with Allen Bradley controller

Programming exercises on motor control in two directions, traffic control, annunciator flasher, cyclic movement of cylinder, can counting, conveyor belt control, alarm system, sequential process, and continuous filling operation on a conveyor.

Cours	se Outcomes: After completing the course, the students will be able to
CO1	Illustrate applications of sensors actuators, switching elements and inspection technologies in
	industrial automation
CO2	Build circuit diagrams for fluid power automation, Ladder diagrams for PLC and identify its
	application areas
CO3	Evaluate CNC programs for 2D complex profiles performed on machining and turning centres
	interfaced with Robots
CO4	Develop suitable industrial automated system integrating all of the above advanced automation
	concepts

Ref	erence Books
1.	Industrial automation - Circuit design and components, David W. Pessen, 1st Edition, 2011, Wiley
	India, ISBN -13-978-8126529889
2.	Pneumatic Controls, Joji P, 1 st Edition, Wiley India, ISBN – 978–81–265–1542–4
3.	Fluid Power with Applications, Anthony Esposito, 7th Edition, 2013,
	ISBN – 13; 978– 9332518544
4.	Automation, Production systems and Computer Integrated Manufacturing, Mikell P. Groover, 3rd
	Edition, 2014, ISBN – 978–81–203–3418–2

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

CO-PO Mapping												
CO/PO	CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											
CO1	3				2	1	2	1			1	2
CO2	1		2	3	2	2	2			2		
CO3		1		2	1					2		
CO4			3	2	2	1		2	2	3	2	2

Low-1 Medium-2 High-3

	V Semester								
	TELECOMMUNICATION SYSTEMS								
	(Group B: Gl	obal Elective)							
Cou	rse Code: 16G5B11	CIE Marks: 100							
Cred	Credits: L:T:P:S: 4:0:0:0 SEE Marks: 100								
Hou	rs: 46L	SEE Duration: 03Hrs							
Cou	rse Learning Objectives: The students will b	e able to							
1	Represent schematic of communication syste	m and identify its components.							
2	Classify satellite orbits and sub-systems for c	ommunication.							
3	3 Analyze different telecommunication services, systems and principles.								
4									
5	Describe the features of wireless technologies	and standards.							

UNIT-I					
Introduction to Electronic Communication: The Significance of Human	09 Hrs				
Communication, Communication Systems, Types of Electronic Communication,					
Modulation and Multiplexing, Electromagnetic Spectrum, Bandwidth, A Survey of					
Communication Applications.					
The Fundamentals of Electronics: Gain, Attenuation, and Decibels.					
UNIT-II					
Modulation Schemes: Analog Modulation: AM, FM and PM- brief review.	10 Hrs				
Digital Modulation: PCM, Line Codes, ASK, FSK, PSK, and QAM.					
Wideband Modulation: Spread spectrum, FHSS, DSSS.					
Multiplexing and Multiple Access Techniques: Frequency division multiplexing, Time					
division multiplexing					
Multiple Access: FDMA, TDMA, CDMA, Duplexing.					
ÛNIT-III					
Satellite Communication:					
Satellite Orbits, Satellite Communication Systems, Satellite Subsystems, Ground Stations,					
Satellite Applications, Global Positioning System.					
UNIT-IV					
Optical Communication: Optical Principles, Optical Communication Systems, Fiber-					
Optic Cables, Optical Transmitters and Receivers, Wavelength-Division					
Multiplexing, Passive Optical Networks.					
UNIT-V					
Cell Phone Technologies: Cellular concepts, Frequency allocation, Frequency reuse.	09 Hrs				
Advanced Mobile Phone System (AMPS)					
Digital Cell Phone Systems: 2G, 2.5G, 3G and 4G cell phone systems, Advanced Cell					
Phones.					
Wireless Technologies: Wireless LAN, PANs and Bluetooth, ZigBee and Mesh Wireless					
Networks, WiMAX and Wireless Metropolitan-Area Networks.					

Cours	Course Outcomes: After completing the course, the students will be able to									
CO1	Describe the basics of communication systems.									
CO2	Analyze the importance of modulation and multiple access schemes for communication systems.									
CO3	Compare different telecommunication generations, wired and wireless communication.									
CO4	Justify the use of different components and sub-system in advanced communication systems.									

Ref	erence Books
1.	Principles of Electronic Communication Systems, Louis E. Frenzel, 3 rd Edition, 2008, Tata McGraw Hill, ISBN: 978-0-07-310704-2.
	WCOIAW HIII, ISBN. 976-0-07-310704-2.
2.	Electronic Communication Systems, Roy Blake, 2 nd Edition, 2002, Thomson/Delamar, ISBN: 978-81-315-0307-2.
3.	Electronic Communication Systems, George Kennedy, 3 rd Edition, 2008, Tata McGraw Hill ISBN: 0-02-800592-9.

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

CO-PO Mapping													
CO/PO	CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
CO1	1	1		1	1				1				
CO2	2	1		1	1				1				
CO3	2	1		1	1				2				
CO4	1	1		1	1	1			1				

Low-1 Medium-2 High-3

	V Semester										
	COMPUTATIONAL ADVANCED NUMERICAL METHODS										
	(Group B: Global Elective)										
Cou	rse Code:16G5B12		CIE Marks: 100								
Cred	lits: L:T:P:S: 4:0:0:0		SEE Marks: 100								
Hou	rs: 44L		SEE Duration: 3Hrs								
Cou	rse Learning Objectives:										
1	Adequate exposure to lear	n alternative methods and a	nalyze mathematical problems to								
	determine the suitable numer	rical techniques.									
2	Use the concepts of interpol	lation, eigen value problem tec	hniques for mathematical problems								
	arising in various fields.										
3			ve great significance in engineering								
	practice using ordinary differential equations.										
4	Demonstrate elementary pro	gramming language, implemen	ntation of algorithms and computer								
	programs to solve mathemati	ical problems.									

Unit-I						
Algebraic and Transcendental equations:	08 Hrs					
Roots of equations in engineering practice, Polynomials and roots of equations, Fixed point						
iterative method, Aitken's process, Muller's method, Chebychev method.						
Unit – II						
Interpolation:	08 Hrs					
Introduction to finite differences, Finite differences of a polynomial, Divided differences						
and Newton's divided difference interpolation formula, Hermite interpolation, Spline						
interpolation—linear, quadratic and cubic spline interpolation.						
Unit -III						
Ordinary Differential Equations:	09 Hrs					
Solution of second order initial value problems-Runge-Kutta method, Milne's method,						
Boundary value problems (BVP's)–Shooting method, Finite difference method for linear						
and nonlinear problems, Rayleigh-Ritz method.						
Unit –IV						
Eigen value problems:	09 Hrs					
Eigen values and Eigen vectors, Power method, Inverse Power method, Bounds on Eigen						
values, Greschgorin circle theorem, Jacobi method for symmetric matrices, Givens method.						
Unit –V						
Computational Techniques:	10 Hrs					
Algorithms and Matlab programs for Fixed point iterative method, Aitken's-process,						
Muller's method, Chebychev method, Newton's divided difference method, Hermite						
interpolation, Spline interpolation, Power method, Inverse Power method, Runge-Kutta						
method, Milne's method, Shooting method, Rayleigh-Ritz method, Jacobi method and						
Givens method.						

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Identify and interpret the fundamental concepts of polynomial equations, Interpolation, Eigen								
	value problems, Differential equations and corresponding computational techniques.								
CO2:	Apply the knowledge and skills of computational techniques to solve algebraic and								
	transcendental equations, Ordinary differential equations and eigen value problems.								
CO3:	Analyze the physical problem and use appropriate method to solve roots of equations,								
	Interpolating the polynomial, Initial and boundary value problems, Eigen value problems								
	numerically using computational techniques.								
CO4:	Distinguish the overall mathematical knowledge gained to demonstrate and analyze the								
	problems of finding the roots of equations, Interpolation, Differential equations, Eigen value								
	problems arising in engineering practice.								

Refere	ence Books
1	Numerical methods for scientific and engineering computation, M. K. Jain, S. R. K. Iyengar and R. K. Jain, New Age International Publishers, 6 th Edition, 2012, ISBN-13: 978-81-224-2001-2.
2	Numerical Analysis, Richard L. Burden and J. Douglas Faires, Cengage Learning, 9 th Edition, 2012, ISBN-13: 978-81-315-1654-6.
3	Introductory Methods of Numerical Analysis, S. S. Sastry, PHI Learning Private Ltd., 4 th Edition, 2011, ISBN: 978-81-203-2761-0.
4	Numerical Methods for Engineers, Steven C Chapra, Raymond P Canale, Tata Mcgraw Hill, 5 th Edition, 2011, ISBN-10: 0-07-063416-5.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	•	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

High-3: Medium-2: Low-1

V Semester						
BASICS OF AEROSPACE ENGINEERING						
(Group B: Global Elective)						
Course Code: 16GE5B13	CIE Marks: 100					
Credits: L:T:P:S: 4:0:0:0	SEE Marks: 100					
Hours: 44L	SEE Duration: 3Hours					

	Course Learning Objectives: To enable the students to:				
1	Understand the history and basic principles of aviation				
2	Demonstrate and explain foundation of flight, aircraft structures, material, aircraft propulsion				
3	Comprehend the importance of all the systems and subsystems incorporated on a air vehicle				
4	Appraise the significance of all the subsystems in achieving a successful flight				

Unit-I	
Introduction to Aircraft: History of aviation, International Standard atmosphere,	08 Hrs
Atmosphere and its properties, Temperature, pressure and altitude relationships,	
Classification of aircrafts, Anatomy of an aircraft & Helicopters, Basic components and	
their functions, Introduction to Unconventional and Autonomous Air vehicles.	
Unit – II	
Basics of Aerodynamics : Bernoulli's theorem, Aerodynamic forces and moments on an	08 Hrs
Airfoil, Lift and drag, Types of drag, Centre of pressure and its significance,	
Aerodynamic centre, Aerodynamic Coefficients, Wing Planform Geometry, Airfoil	
nomenclature, Basic characteristics of airfoils, NACA nomenclature, Simple problems on	
lift and drag.	
Unit -III	
Aircraft Propulsion: Introduction, Classification of powerplants, Piston Engine: Types	07 Hrs
of reciprocating engines, Principle of operation of turbojet, turboprop and turbofan	
engines, Introduction to ramjets and scramjets, Comparative merits and demerits of	
different types Engines.	
Unit -IV	
Introduction to Space Flight: History of space flight, Evolution of Indian Space	08 Hrs
Technology, The upper atmosphere, Introduction to basic orbital mechanics, some basic	
concepts, Kepler's Laws of planetary motion, Orbit equation, Space vehicle trajectories.	
Rocket Propulsion : Principles of operation of rocket engines, Classification of Rockets,	
Types of rockets.	
Unit -V	
Aerospace Structures and Materials: Introduction, General types of construction,	07 Hrs
Monocoque, Semi-Monocoque and Geodesic structures, Typical wing and fuselage	
structure; Metallic and non-metallic materials for aircraft application. Use of aluminum	
alloy, titanium, stainless steel and composite materials, Low temperature and high	
temperature materials.	

Cours	Course Outcomes:				
At the	end of this course the student will be able to:				
CO1	Appreciate and apply the basic principles of aviation				
CO2	Apply the concepts of fundaments of flight, basics of aircraft structures, aircraft propulsion				
COZ	and aircraft materials during the development of an aircraft				
CO3					
CO4	Evaluate and criticize the design strategy involved in the development of airplanes				

Ref	erence Books
1	John D. Anderson, Introduction to Flight, 7 th Edition, 2011, McGraw-Hill Education, ISBN 9780071086059.
2	Sutton G.P., Rocket Propulsion Elements, 8 th Edition, 2011, John Wiley, New York, ISBN:1118174208, 9781118174203.
3	Yahya, S.M, Fundamentals of Compressible Flow, 5 th Edition, 2016, New Age International, ISBN: 8122440223
4	T.H.G Megson, Aircraft structural Analysis, 2010, Butterworth-Heinemann Publications, ISBN: 978-1-85617-932-4

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

					CO-I	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	3	2	2				1
CO2	2	2	2	3	2	1	1	1				1
CO3	1		3	3								1
CO4	2	2	3	3		2	2	2				1

High-3: Medium-2: Low-1

Patents: Introduction, Scope and salient features of patent; patentable and non-patentable inventions, Patent Procedure - Overview, Transfer of Patent Rights; Biotechnology patents, protection of traditional knowledge, Infringement of patents and remedy, Case studies Trade Secrets: Definition, Significance, Tools to protect Trade secrets in India. UNIT-II Trade Marks: Concept, function and different kinds and forms of Trade marks, Registrable and non- registrable marks. Registration of trade mark; Deceptive similarity; Assignment and transmission; ECO Label, Passing off; Offences and penalties. Infringement of trade mark with Case studies UNIT-III Industrial Design: Introduction, Protection of Industrial Designs, Protection and Requirements for Industrial Design. Procedure for obtaining Design Protection, Revocation, Infringement and Remedies, Case studies Copy Right: Introduction, Nature and scope, Rights conferred by copy right, Copy right protection, transfer of copy rights, right of broad casting organizations and performer's rights, Case Studies. Intellectual property and cyberspace: Emergence of cyber-crime; Grant in software patent and Copyright in software; Software piracy; Data protection in cyberspace UNIT-IV Introduction to Entrepreneurship — Learn how entrepreneurship has changed the world. Identify six entrepreneurial myths and uncover the true facts. Explore E-cells on Campus Listen to Some Success Stories: - Global legends Understand how ordinary people become successful global entrepreneurs, their journeys, their challenges, and their success stories. Understand how ordinary people from their own countries have become successful	
Course Code: 16HSI51/61 SEE Marks: 100	
Course Code: 16HSI51/61 CIE Marks: 100	
Course Code: 16HS151/61 CIE Marks: 100	
Course Learning Objectives: The students will be able to To build awareness on the various forms of IPR and to build the perspectives on the cora and to develop the linkages in technology innovation and IPR. To equip students on the need to protect their own intellectual works and develop e standards governing ethical works. To equip students on the need to protect their own intellectual works and develop e standards governing ethical works. To motivate towards entrepreneurial careers and build strong foundations skills to e starting, building and growing a viable as well as sustainable venture. Develop an entrepreneurial outlook and mind set along with critical skills and knowled manage risks associated with entrepreneurs. UNIT-I	
Course Learning Objectives: The students will be able to 1	
To build awareness on the various forms of IPR and to build the perspectives on the corand to develop the linkages in technology innovation and IPR. To equip students on the need to protect their own intellectual works and develop e standards governing ethical works. To motivate towards entrepreneurial careers and build strong foundations skills to e starting, building and growing a viable as well as sustainable venture. Develop an entrepreneurial outlook and mind set along with critical skills and knowled manage risks associated with entrepreneurs. UNIT-I Introduction: Types of Intellectual Property, WIPO, WTO, TRIPS. Patents: Introduction, Scope and salient features of patent; patentable and non-patentable inventions, Patent Procedure - Overview, Transfer of Patent Rights; Biotechnology patents, protection of traditional knowledge, Infringement of patents and remedy, Case studies Trade Secrets: Definition, Significance, Tools to protect Trade secrets in India. UNIT-II Trade Marks: Concept, function and different kinds and forms of Trade marks, Registrable and non- registrable marks. Registration of trade mark; Deceptive similarity; Assignment and transmission; ECO Label, Passing off; Offences and penalties. Infringement of trade mark with Case studies UNIT-III Industrial Design: Introduction, Protection of Industrial Designs, Protection and Requirements for Industrial [Design. Procedure for obtaining Design Protection, Revocation, Infringement and Remedies, Case studies Copy Right: Introduction, Nature and scope, Rights conferred by copy right, Copy right protection, transfer of copy rights, right of broad casting organizations and performer's rights, Case Studies. Intellectual property and cyberspace: Emergence of cyber-crime; Grant in software patent and Copyright in software; Software piracy; Data protection in cyberspace UNIT-IV Introduction to Entrepreneurship – Learn how entrepreneurship has changed the world. Identify six entrepreneurship myths and uncover the true facts. Explore E-cells	
To build awareness on the various forms of IPR and to build the perspectives on the corand to develop the linkages in technology innovation and IPR. To equip students on the need to protect their own intellectual works and develop e standards governing ethical works. To motivate towards entrepreneurial careers and build strong foundations skills to e starting, building and growing a viable as well as sustainable venture. Develop an entrepreneurial outlook and mind set along with critical skills and knowled manage risks associated with entrepreneurs. UNIT-I Introduction: Types of Intellectual Property, WIPO, WTO, TRIPS. Patents: Introduction, Scope and salient features of patent; patentable and non-patentable inventions, Patent Procedure - Overview, Transfer of Patent Rights; Biotechnology patents, protection of traditional knowledge, Infringement of patents and remedy, Case studies Trade Secrets: Definition, Significance, Tools to protect Trade secrets in India. UNIT-II Trade Marks: Concept, function and different kinds and forms of Trade marks, Registrable and non- registrable marks. Registration of trade mark; Deceptive similarity; Assignment and transmission; ECO Label, Passing off; Offences and penalties. Infringement of trade mark with Case studies UNIT-III Industrial Design: Introduction, Protection of Industrial Designs, Protection and Requirements for Industrial [Design. Procedure for obtaining Design Protection, Revocation, Infringement and Remedies, Case studies Copy Right: Introduction, Nature and scope, Rights conferred by copy right, Copy right protection, transfer of copy rights, right of broad casting organizations and performer's rights, Case Studies. Intellectual property and cyberspace: Emergence of cyber-crime; Grant in software patent and Copyright in software; Software piracy; Data protection in cyberspace UNIT-IV Introduction to Entrepreneurship – Learn how entrepreneurship has changed the world. Identify six entrepreneurship myths and uncover the true facts. Explore E-cells	
To equip students on the need to protect their own intellectual works and develop e standards governing ethical works. To motivate towards entrepreneurial careers and build strong foundations skills to e starting, building and growing a viable as well as sustainable venture. Develop an entrepreneurial outlook and mind set along with critical skills and knowled manage risks associated with entrepreneurs. **UNIT-I** Introduction: Types of Intellectual Property, WIPO, WTO, TRIPS. Patents: Introduction, Scope and salient features of patent; patentable and non-patentable inventions, Patent Procedure - Overview, Transfer of Patent Rights; Biotechnology patents, protection of traditional knowledge, Infringement of patents and remedy, Case studies Trade Secrets: Definition, Significance, Tools to protect Trade secrets in India. **UNIT-II** Trade Marks: Concept, function and different kinds and forms of Trade marks, Registrable and non- registrable marks. Registration of trade mark; Deceptive similarity; Assignment and transmission; ECO Label, Passing off; Offences and penalties. Infringement of trade mark with Case studies **UNIT-III** Industrial Design: Introduction, Protection of Industrial Designs, Protection and Requirements for Industrial [Design. Procedure for obtaining Design Protection, Revocation, Infringement and Remedies, Case studies Copy Right: Introduction, Nature and scope, Rights conferred by copy right, Copy right protection, transfer of copy rights, right of broad casting organizations and performer's rights, Case Studies. Intellectual property and cyberspace: Emergence of cyber-crime; Grant in software patent and Copyright in software; Software piracy; Data protection in cyberspace UNIT-IV Introduction to Entrepreneurship – Learn how entrepreneurship has changed the world. Identify six entrepreneurial myths and uncover the true facts. Explore E-cells on Campus Listen to Some Success Stories: - Global legends Understand how ordinary people become successful global entrepreneurs, their jo	cepts
To equip students on the need to protect their own intellectual works and develop e standards governing ethical works. To motivate towards entrepreneurial careers and build strong foundations skills to e starting, building and growing a viable as well as sustainable venture. Develop an entrepreneurial outlook and mind set along with critical skills and knowled manage risks associated with entrepreneurs. UNIT-I Introduction: Types of Intellectual Property, WIPO, WTO, TRIPS. Patents: Introduction, Scope and salient features of patent; patentable and non-patentable inventions, Patent Procedure - Overview, Transfer of Patent Rights; Biotechnology patents, protection of traditional knowledge, Infringement of patents and remedy, Case studies Trade Secrets: Definition, Significance, Tools to protect Trade secrets in India. UNIT-II Trade Marks: Concept, function and different kinds and forms of Trade marks, Registrable and non- registrable marks. Registration of trade mark; Deceptive similarity; Assignment and transmission; ECO Label, Passing off; Offences and penalties. Infringement of trade mark with Case studies UNIT-III Industrial Design: Introduction, Protection of Industrial Designs, Protection and Requirements for Industrial Design. Procedure for obtaining Design Protection, Revocation, Infringement and Remedies, Case studies Copy Right: Introduction, Nature and scope, Rights conferred by copy right, Copy right protection, transfer of copy rights, right of broad casting organizations and performer's rights, Case Studies. Intellectual property and cyberspace: Emergence of cyber-crime; Grant in software patent and Copyright in software; Software piracy; Data protection in cyberspace UNIT-IV Introduction to Entrepreneurship – Learn how entrepreneurship has changed the world. Identify six entrepreneurial myths and uncover the true facts. Explore E-cells on Campus Listen to Some Success Stories: - Global legends Understand how ordinary people become successful	•
To motivate towards entrepreneurial careers and build strong foundations skills to estarting, building and growing a viable as well as sustainable venture. Develop an entrepreneurial outlook and mind set along with critical skills and knowled manage risks associated with entrepreneurs. UNIT-I Introduction: Types of Intellectual Property, WIPO, WIPO, TRIPS. Patents: Introduction, Scope and salient features of patent; patentable and non-patentable inventions, Patent Procedure - Overview, Transfer of Patent Rights; Biotechnology patents, protection of traditional knowledge, Infringement of patents and remedy, Case studies Trade Secrets: Definition, Significance, Tools to protect Trade secrets in India. UNIT-II Trade Marks: Concept, function and different kinds and forms of Trade marks, Registrable and non- registrable marks. Registration of trade mark; Deceptive similarity; Assignment and transmission; ECO Label, Passing off; Offences and penalties. Infringement of trade mark with Case studies UNIT-II Industrial Design: Introduction, Protection of Industrial Designs, Protection and Requirements for Industrial [Design. Procedure for obtaining Design Protection, Revocation, Infringement and Remedies, Case studies Copy Right: Introduction, Nature and scope, Rights conferred by copy right, Copy right protection, transfer of copy rights, right of broad casting organizations and performer's rights, Case Studies Intellectual property and cyberspace: Emergence of cyber-crime; Grant in software patent and Copyright in software; Software piracy; Data protection in cyberspace UNIT-IV Introduction to Entrepreneurship — Learn how entrepreneurship has changed the world. Identify six entrepreneursh and uncover the true facts. Explore E-cells on Campus Listen to Some Success Stories: - Global legends Understand how ordinary people become successful global entrepreneurs, their journeys, their challenges, and their success stories. Understand how ordinary people from their own countries have become successful	thical
To motivate towards entrepreneurial careers and build strong foundations skills to estarting, building and growing a viable as well as sustainable venture. Develop an entrepreneurial outlook and mind set along with critical skills and knowled manage risks associated with entrepreneurs. TINTOduction: Types of Intellectual Property, WIPO, WTO, TRIPS. Patents: Introduction, Scope and salient features of patent; patentable and non-patentable inventions, Patent Procedure - Overview, Transfer of Patent Rights; Biotechnology patents, protection of traditional knowledge, Infringement of patents and remedy, Case studies Trade Secrets: Definition, Significance, Tools to protect Trade secrets in India. Trade Marks: Concept, function and different kinds and forms of Trade marks, Registrable and non- registrable marks. Registration of trade mark; Deceptive similarity; Assignment and transmission; ECO Label, Passing off; Offences and penalties. Infringement of trade mark with Case studies UNIT-II Industrial Design: Introduction, Protection of Industrial Designs, Protection, Revocation, Infringement and Remedies, Case studies Copy Right: Introduction, Nature and scope, Rights conferred by copy right, Copy right protection, transfer of copy rights, right of broad casting organizations and performer's rights, Case Studies. Intellectual property and cyberspace: Emergence of cyber-crime; Grant in software patent and Copyright in software; Software piracy; Data protection in cyberspace UNIT-IV Introduction to Entrepreneurship — Learn how entrepreneurship has changed the world. Identify six entrepreneurial myths and uncover the true facts. Explore E-cells on Campus Listen to Some Success Stories: - Global legends Understand how ordinary people become successful global entrepreneurs, their journeys, their challenges, and their success stories. Understand how ordinary people from their own countries have become successful	
starting, building and growing a viable as well as sustainable venture. Develop an entrepreneurial outlook and mind set along with critical skills and knowled manage risks associated with entrepreneurs. UNIT-I Introduction: Types of Intellectual Property, WIPO, WTO, TRIPS. Patents: Introduction, Scope and salient features of patent; patentable and non-patentable inventions, Patent Procedure - Overview, Transfer of Patent Rights; Biotechnology patents, protection of traditional knowledge, Infringement of patents and remedy, Case studies Trade Secrets: Definition, Significance, Tools to protect Trade secrets in India. UNIT-II Trade Marks: Concept, function and different kinds and forms of Trade marks, Registrable and non- registrable marks. Registration of trade mark; Deceptive similarity; Assignment and transmission; ECO Label, Passing off; Offences and penalties. Infringement of trade mark with Case studies UNIT-III Industrial Design: Introduction, Protection of Industrial Designs, Protection and Requirements for Industrial [Design. Procedure for obtaining Design Protection, Revocation, Infringement and Remedies, Case studies Copy Right: Introduction, Nature and scope, Rights conferred by copy right, Copy right protection, transfer of copy rights, right of broad casting organizations and performer's rights, Case Studies. Intellectual property and cyberspace: Emergence of cyber-crime; Grant in software patent and Copyright in software; Software piracy; Data protection in cyberspace UNIT-IV Introduction to Entrepreneurship — Learn how entrepreneurship has changed the world. Identify six entrepreneurial myths and uncover the true facts. Explore E-cells on Campus Listen to Some Success Stories: - Global legends Understand how ordinary people become successful global entrepreneurs, their journeys, their challenges, and their success stories. Understand how ordinary people from their own countries have become successful	nable
Develop an entrepreneurial outlook and mind set along with critical skills and knowled manage risks associated with entrepreneurs. UNIT-I Introduction: Types of Intellectual Property, WIPO, WTO, TRIPS. Patents: Introduction, Scope and salient features of patent; patentable and non-patentable inventions, Patent Procedure - Overview, Transfer of Patent Rights; Biotechnology patents, protection of traditional knowledge, Infringement of patents and remedy, Case studies Trade Secrets: Definition, Significance, Tools to protect Trade secrets in India. UNIT-II Trade Marks: Concept, function and different kinds and forms of Trade marks, Registrable and non-registrable marks. Registration of trade mark; Deceptive similarity; Assignment and transmission; ECO Label, Passing off; Offences and penalties. Infringement of trade mark with Case studies UNIT-II Industrial Design: Introduction, Protection of Industrial Designs, Protection and Requirements for Industrial [Design. Procedure for obtaining Design Protection, Revocation, Infringement and Remedies, Case studies Copy Right: Introduction, Nature and scope, Rights conferred by copy right, Copy right protection, transfer of copy rights, right of broad casting organizations and performer's rights, Case Studies. Intellectual property and cyberspace: Emergence of cyber-crime; Grant in software patent and Copyright in software; Software piracy; Data protection in cyberspace UNIT-IV Introduction to Entrepreneurship – Learn how entrepreneurship has changed the world. Identify six entrepreneurial myths and uncover the true facts. Explore E-cells on Campus Listen to Some Success Stories: - Global legends Understand how ordinary people become successful global entrepreneurs, their journeys, their challenges, and their success stories. Understand how ordinary people from their own countries have become successful	
Introduction: Types of Intellectual Property, WIPO, WTO, TRIPS. Patents: Introduction, Scope and salient features of patent; patentable and non-patentable inventions, Patent Procedure - Overview, Transfer of Patent Rights; Biotechnology patents, protection of traditional knowledge, Infringement of patents and remedy, Case studies Trade Secrets: Definition, Significance, Tools to protect Trade secrets in India. UNIT-II Trade Marks: Concept, function and different kinds and forms of Trade marks, Registrable and non- registrable marks. Registration of trade mark; Deceptive similarity; Assignment and transmission; ECO Label, Passing off; Offences and penalties. Infringement of trade mark with Case studies UNIT-II Industrial Design: Introduction, Protection of Industrial Designs, Protection and Requirements for Industrial Design. Procedure for obtaining Design Protection, Revocation, Infringement and Remedies, Case studies Copy Right: Introduction, Nature and scope, Rights conferred by copy right, Copy right protection, transfer of copy rights, right of broad casting organizations and performer's rights, Case Studies. Intellectual property and cyberspace: Emergence of cyber-crime; Grant in software patent and Copyright in software; Software piracy; Data protection in cyberspace UNIT-IV Introduction to Entrepreneurship — Learn how entrepreneurship has changed the world. Identify six entrepreneurial myths and uncover the true facts. Explore E-cells on Campus Listen to Some Success Stories: - Global legends Understand how ordinary people become successful global entrepreneurs, their journeys, their challenges, and their success stories. Understand how ordinary people from their own countries have become successful	ge to
Introduction: Types of Intellectual Property, WIPO, WTO, TRIPS. Patents: Introduction, Scope and salient features of patent; patentable and non-patentable inventions, Patent Procedure - Overview, Transfer of Patent Rights; Biotechnology patents, protection of traditional knowledge, Infringement of patents and remedy, Case studies Trade Secrets: Definition, Significance, Tools to protect Trade secrets in India. UNIT-II Trade Marks: Concept, function and different kinds and forms of Trade marks, Registrable and non- registrable marks. Registration of trade mark; Deceptive similarity; Assignment and transmission; ECO Label, Passing off; Offences and penalties. Infringement of trade mark with Case studies UNIT-III Industrial Design: Introduction, Protection of Industrial Designs, Protection and Requirements for Industrial Design. Procedure for obtaining Design Protection, Revocation, Infringement and Remedies, Case studies Copy Right: Introduction, Nature and scope, Rights conferred by copy right, Copy right protection, transfer of copy rights, right of broad casting organizations and performer's rights, Case Studies. Intellectual property and cyberspace: Emergence of cyber-crime; Grant in software patent and Copyright in software; Software piracy; Data protection in cyberspace UNIT-IV Introduction to Entrepreneurship — Learn how entrepreneurship has changed the world. Identify six entrepreneurial myths and uncover the true facts. Explore E-cells on Campus Listen to Some Success Stories: - Global legends Understand how ordinary people become successful global entrepreneurs, their journeys, their challenges, and their success stories. Understand how ordinary people from their own countries have become successful	6
Introduction: Types of Intellectual Property, WIPO, WTO, TRIPS. Patents: Introduction, Scope and salient features of patent; patentable and non-patentable inventions, Patent Procedure - Overview, Transfer of Patent Rights; Biotechnology patents, protection of traditional knowledge, Infringement of patents and remedy, Case studies Trade Secrets: Definition, Significance, Tools to protect Trade secrets in India. UNIT-II Trade Marks: Concept, function and different kinds and forms of Trade marks, Registrable and non- registrable marks. Registration of trade mark; Deceptive similarity; Assignment and transmission; ECO Label, Passing off; Offences and penalties. Infringement of trade mark with Case studies UNIT-III Industrial Design: Introduction, Protection of Industrial Designs, Protection and Requirements for Industrial Design. Procedure for obtaining Design Protection, Revocation, Infringement and Remedies, Case studies Copy Right: Introduction, Nature and scope, Rights conferred by copy right, Copy right protection, transfer of copy rights, right of broad casting organizations and performer's rights, Case Studies. Intellectual property and cyberspace: Emergence of cyber-crime; Grant in software patent and Copyright in software; Software piracy; Data protection in cyberspace UNIT-IV Introduction to Entrepreneurship – Learn how entrepreneurship has changed the world. Identify six entrepreneurial myths and uncover the true facts. Explore E-cells on Campus Listen to Some Success Stories: - Global legends Understand how ordinary people become successful global entrepreneurs, their journeys, their challenges, and their success stories. Understand how ordinary people from their own countries have become successful	
Patents: Introduction, Scope and salient features of patent; patentable and non-patentable inventions, Patent Procedure - Overview, Transfer of Patent Rights; Biotechnology patents, protection of traditional knowledge, Infringement of patents and remedy, Case studies Trade Secrets: Definition, Significance, Tools to protect Trade secrets in India. UNIT-II Trade Marks: Concept, function and different kinds and forms of Trade marks, Registrable and non- registrable marks. Registration of trade mark; Deceptive similarity; Assignment and transmission; ECO Label, Passing off; Offences and penalties. Infringement of trade mark with Case studies UNIT-III Industrial Design: Introduction, Protection of Industrial Designs, Protection and Requirements for Industrial Design. Procedure for obtaining Design Protection, Revocation, Infringement and Remedies, Case studies Copy Right: Introduction, Nature and scope, Rights conferred by copy right, Copy right protection, transfer of copy rights, right of broad casting organizations and performer's rights, Case Studies. Intellectual property and cyberspace: Emergence of cyber-crime; Grant in software patent and Copyright in software; Software piracy; Data protection in cyberspace UNIT-IV Introduction to Entrepreneurship — Learn how entrepreneurship has changed the world. Identify six entrepreneurial myths and uncover the true facts. Explore E-cells on Campus Listen to Some Success Stories: - Global legends Understand how ordinary people become successful global entrepreneurs, their journeys, their challenges, and their success stories. Understand how ordinary people from their own countries have become successful	Hrs
inventions, Patent Procedure - Overview, Transfer of Patent Rights; Biotechnology patents, protection of traditional knowledge, Infringement of patents and remedy, Case studies Trade Secrets: Definition, Significance, Tools to protect Trade secrets in India. UNIT-II Trade Marks: Concept, function and different kinds and forms of Trade marks, Registrable and non- registrable marks. Registration of trade mark; Deceptive similarity; Assignment and transmission; ECO Label, Passing off; Offences and penalties. Infringement of trade mark with Case studies UNIT-III Industrial Design: Introduction, Protection of Industrial Designs, Protection and Requirements for Industrial Design. Procedure for obtaining Design Protection, Revocation, Infringement and Remedies, Case studies Copy Right: Introduction, Nature and scope, Rights conferred by copy right, Copy right protection, transfer of copy rights, right of broad casting organizations and performer's rights, Case Studies. Intellectual property and cyberspace: Emergence of cyber-crime; Grant in software patent and Copyright in software; Software piracy; Data protection in cyberspace UNIT-IV Introduction to Entrepreneurship – Learn how entrepreneurship has changed the world. Identify six entrepreneurial myths and uncover the true facts. Explore E-cells on Campus Listen to Some Success Stories: - Global legends Understand how ordinary people become successful global entrepreneurs, their journeys, their challenges, and their success stories. Understand how ordinary people from their own countries have become successful	
protection of traditional knowledge, Infringement of patents and remedy, Case studies Trade Secrets: Definition, Significance, Tools to protect Trade secrets in India. UNIT-II Trade Marks: Concept, function and different kinds and forms of Trade marks, Registrable and non- registrable marks. Registration of trade mark; Deceptive similarity; Assignment and transmission; ECO Label, Passing off; Offences and penalties. Infringement of trade mark with Case studies UNIT-III Industrial Design: Introduction, Protection of Industrial Designs, Protection and Requirements for Industrial Design. Procedure for obtaining Design Protection, Revocation, Infringement and Remedies, Case studies Copy Right: Introduction, Nature and scope, Rights conferred by copy right, Copy right protection, transfer of copy rights, right of broad casting organizations and performer's rights, Case Studies. Intellectual property and cyberspace: Emergence of cyber-crime; Grant in software patent and Copyright in software; Software piracy; Data protection in cyberspace UNIT-IV Introduction to Entrepreneurship – Learn how entrepreneurship has changed the world. Identify six entrepreneurial myths and uncover the true facts. Explore E-cells on Campus Listen to Some Success Stories: - Global legends Understand how ordinary people become successful global entrepreneurs, their journeys, their challenges, and their success stories. Understand how ordinary people from their own countries have become successful	
Trade Secrets: Definition, Significance, Tools to protect Trade secrets in India. UNIT-II Trade Marks: Concept, function and different kinds and forms of Trade marks, Registrable and non- registrable marks. Registration of trade mark; Deceptive similarity; Assignment and transmission; ECO Label, Passing off; Offences and penalties. Infringement of trade mark with Case studies UNIT-III Industrial Design: Introduction, Protection of Industrial Designs, Protection and Requirements for Industrial Design. Procedure for obtaining Design Protection, Revocation, Infringement and Remedies, Case studies Copy Right: Introduction, Nature and scope, Rights conferred by copy right, Copy right protection, transfer of copy rights, right of broad casting organizations and performer's rights, Case Studies. Intellectual property and cyberspace: Emergence of cyber-crime; Grant in software patent and Copyright in software; Software piracy; Data protection in cyberspace UNIT-IV Introduction to Entrepreneurship – Learn how entrepreneurship has changed the world. Identify six entrepreneurial myths and uncover the true facts. Explore E-cells on Campus Listen to Some Success Stories: - Global legends Understand how ordinary people become successful global entrepreneurs, their journeys, their challenges, and their success stories. Understand how ordinary people from their own countries have become successful	
Trade Marks: Concept, function and different kinds and forms of Trade marks, Registrable and non- registrable marks. Registration of trade mark; Deceptive similarity; Assignment and transmission; ECO Label, Passing off; Offences and penalties. Infringement of trade mark with Case studies UNIT-III Industrial Design: Introduction, Protection of Industrial Designs, Protection and Requirements for Industrial Design. Procedure for obtaining Design Protection, Revocation, Infringement and Remedies, Case studies Copy Right: Introduction, Nature and scope, Rights conferred by copy right, Copy right protection, transfer of copy rights, right of broad casting organizations and performer's rights, Case Studies. Intellectual property and cyberspace: Emergence of cyber-crime; Grant in software patent and Copyright in software; Software piracy; Data protection in cyberspace UNIT-IV Introduction to Entrepreneurship – Learn how entrepreneurship has changed the world. Identify six entrepreneurial myths and uncover the true facts. Explore E-cells on Campus Listen to Some Success Stories: - Global legends Understand how ordinary people become successful global entrepreneurs, their journeys, their challenges, and their success stories. Understand how ordinary people from their own countries have become successful	
Trade Marks: Concept, function and different kinds and forms of Trade marks, Registrable and non- registrable marks. Registration of trade mark; Deceptive similarity; Assignment and transmission; ECO Label, Passing off; Offences and penalties. Infringement of trade mark with Case studies UNIT-III Industrial Design: Introduction, Protection of Industrial Designs, Protection and Requirements for Industrial Design. Procedure for obtaining Design Protection, Revocation, Infringement and Remedies, Case studies Copy Right: Introduction, Nature and scope, Rights conferred by copy right, Copy right protection, transfer of copy rights, right of broad casting organizations and performer's rights, Case Studies. Intellectual property and cyberspace: Emergence of cyber-crime; Grant in software patent and Copyright in software; Software piracy; Data protection in cyberspace UNIT-IV Introduction to Entrepreneurship – Learn how entrepreneurship has changed the world. Identify six entrepreneurial myths and uncover the true facts. Explore E-cells on Campus Listen to Some Success Stories: - Global legends Understand how ordinary people become successful global entrepreneurs, their journeys, their challenges, and their success stories. Understand how ordinary people from their own countries have become successful	
Registrable and non- registrable marks. Registration of trade mark; Deceptive similarity; Assignment and transmission; ECO Label, Passing off; Offences and penalties. Infringement of trade mark with Case studies UNIT-III Industrial Design: Introduction, Protection of Industrial Designs, Protection and Requirements for Industrial Design. Procedure for obtaining Design Protection, Revocation, Infringement and Remedies, Case studies Copy Right: Introduction, Nature and scope, Rights conferred by copy right, Copy right protection, transfer of copy rights, right of broad casting organizations and performer's rights, Case Studies. Intellectual property and cyberspace: Emergence of cyber-crime; Grant in software patent and Copyright in software; Software piracy; Data protection in cyberspace UNIT-IV Introduction to Entrepreneurship — Learn how entrepreneurship has changed the world. Identify six entrepreneurial myths and uncover the true facts. Explore E-cells on Campus Listen to Some Success Stories: - Global legends Understand how ordinary people become successful global entrepreneurs, their journeys, their challenges, and their success stories. Understand how ordinary people from their own countries have become successful	Hrs
Assignment and transmission; ECO Label, Passing off; Offences and penalties. Infringement of trade mark with Case studies UNIT-III Industrial Design: Introduction, Protection of Industrial Designs, Protection and Requirements for Industrial Design. Procedure for obtaining Design Protection, Revocation, Infringement and Remedies, Case studies Copy Right: Introduction, Nature and scope, Rights conferred by copy right, Copy right protection, transfer of copy rights, right of broad casting organizations and performer's rights, Case Studies. Intellectual property and cyberspace: Emergence of cyber-crime; Grant in software patent and Copyright in software; Software piracy; Data protection in cyberspace UNIT-IV Introduction to Entrepreneurship — Learn how entrepreneurship has changed the world. Identify six entrepreneurial myths and uncover the true facts. Explore E-cells on Campus Listen to Some Success Stories: - Global legends Understand how ordinary people become successful global entrepreneurs, their journeys, their challenges, and their success stories. Understand how ordinary people from their own countries have become successful	
UNIT-III Industrial Design: Introduction, Protection of Industrial Designs, Protection and Requirements for Industrial Design. Procedure for obtaining Design Protection, Revocation, Infringement and Remedies, Case studies Copy Right: Introduction, Nature and scope, Rights conferred by copy right, Copy right protection, transfer of copy rights, right of broad casting organizations and performer's rights, Case Studies. Intellectual property and cyberspace: Emergence of cyber-crime; Grant in software patent and Copyright in software; Software piracy; Data protection in cyberspace UNIT-IV Introduction to Entrepreneurship – Learn how entrepreneurship has changed the world. Identify six entrepreneurial myths and uncover the true facts. Explore E-cells on Campus Listen to Some Success Stories: - Global legends Understand how ordinary people become successful global entrepreneurs, their journeys, their challenges, and their success stories. Understand how ordinary people from their own countries have become successful	
Industrial Design: Introduction, Protection of Industrial Designs, Protection and Requirements for Industrial Design. Procedure for obtaining Design Protection, Revocation, Infringement and Remedies, Case studies Copy Right: Introduction, Nature and scope, Rights conferred by copy right, Copy right protection, transfer of copy rights, right of broad casting organizations and performer's rights, Case Studies. Intellectual property and cyberspace: Emergence of cyber-crime; Grant in software patent and Copyright in software; Software piracy; Data protection in cyberspace UNIT-IV Introduction to Entrepreneurship – Learn how entrepreneurship has changed the world. Identify six entrepreneurial myths and uncover the true facts. Explore E-cells on Campus Listen to Some Success Stories: - Global legends Understand how ordinary people become successful global entrepreneurs, their journeys, their challenges, and their success stories. Understand how ordinary people from their own countries have become successful	
Industrial Design: Introduction, Protection of Industrial Designs, Protection and Requirements for Industrial Design. Procedure for obtaining Design Protection, Revocation, Infringement and Remedies, Case studies Copy Right: Introduction, Nature and scope, Rights conferred by copy right, Copy right protection, transfer of copy rights, right of broad casting organizations and performer's rights, Case Studies. Intellectual property and cyberspace: Emergence of cyber-crime; Grant in software patent and Copyright in software; Software piracy; Data protection in cyberspace UNIT-IV Introduction to Entrepreneurship – Learn how entrepreneurship has changed the world. Identify six entrepreneurial myths and uncover the true facts. Explore E-cells on Campus Listen to Some Success Stories: - Global legends Understand how ordinary people become successful global entrepreneurs, their journeys, their challenges, and their success stories. Understand how ordinary people from their own countries have become successful	
Requirements for Industrial Design. Procedure for obtaining Design Protection, Revocation, Infringement and Remedies, Case studies Copy Right: Introduction, Nature and scope, Rights conferred by copy right, Copy right protection, transfer of copy rights, right of broad casting organizations and performer's rights, Case Studies. Intellectual property and cyberspace: Emergence of cyber-crime; Grant in software patent and Copyright in software; Software piracy; Data protection in cyberspace UNIT-IV Introduction to Entrepreneurship – Learn how entrepreneurship has changed the world. Identify six entrepreneurial myths and uncover the true facts. Explore E-cells on Campus Listen to Some Success Stories: - Global legends Understand how ordinary people become successful global entrepreneurs, their journeys, their challenges, and their success stories. Understand how ordinary people from their own countries have become successful	Hrs
Revocation, Infringement and Remedies, Case studies Copy Right: Introduction, Nature and scope, Rights conferred by copy right, Copy right protection, transfer of copy rights, right of broad casting organizations and performer's rights, Case Studies. Intellectual property and cyberspace: Emergence of cyber-crime; Grant in software patent and Copyright in software; Software piracy; Data protection in cyberspace UNIT-IV Introduction to Entrepreneurship – Learn how entrepreneurship has changed the world. Identify six entrepreneurial myths and uncover the true facts. Explore E-cells on Campus Listen to Some Success Stories: - Global legends Understand how ordinary people become successful global entrepreneurs, their journeys, their challenges, and their success stories. Understand how ordinary people from their own countries have become successful	1115
Copy Right: Introduction, Nature and scope, Rights conferred by copy right, Copy right protection, transfer of copy rights, right of broad casting organizations and performer's rights, Case Studies. Intellectual property and cyberspace: Emergence of cyber-crime; Grant in software patent and Copyright in software; Software piracy; Data protection in cyberspace UNIT-IV Introduction to Entrepreneurship – Learn how entrepreneurship has changed the world. Identify six entrepreneurial myths and uncover the true facts. Explore E-cells on Campus Listen to Some Success Stories: - Global legends Understand how ordinary people become successful global entrepreneurs, their journeys, their challenges, and their success stories. Understand how ordinary people from their own countries have become successful	
protection, transfer of copy rights, right of broad casting organizations and performer's rights, Case Studies. Intellectual property and cyberspace: Emergence of cyber-crime; Grant in software patent and Copyright in software; Software piracy; Data protection in cyberspace UNIT-IV Introduction to Entrepreneurship – Learn how entrepreneurship has changed the world. Identify six entrepreneurial myths and uncover the true facts. Explore E-cells on Campus Listen to Some Success Stories: - Global legends Understand how ordinary people become successful global entrepreneurs, their journeys, their challenges, and their success stories. Understand how ordinary people from their own countries have become successful	
rights, Case Studies. Intellectual property and cyberspace: Emergence of cyber-crime; Grant in software patent and Copyright in software; Software piracy; Data protection in cyberspace UNIT-IV Introduction to Entrepreneurship – Learn how entrepreneurship has changed the world. Identify six entrepreneurial myths and uncover the true facts. Explore E-cells on Campus Listen to Some Success Stories: - Global legends Understand how ordinary people become successful global entrepreneurs, their journeys, their challenges, and their success stories. Understand how ordinary people from their own countries have become successful	
Intellectual property and cyberspace: Emergence of cyber-crime; Grant in software patent and Copyright in software; Software piracy; Data protection in cyberspace UNIT-IV Introduction to Entrepreneurship – Learn how entrepreneurship has changed the world. Identify six entrepreneurial myths and uncover the true facts. Explore E-cells on Campus Listen to Some Success Stories: - Global legends Understand how ordinary people become successful global entrepreneurs, their journeys, their challenges, and their success stories. Understand how ordinary people from their own countries have become successful	
patent and Copyright in software; Software piracy; Data protection in cyberspace UNIT-IV Introduction to Entrepreneurship – Learn how entrepreneurship has changed the world. Identify six entrepreneurial myths and uncover the true facts. Explore E-cells on Campus Listen to Some Success Stories: - Global legends Understand how ordinary people become successful global entrepreneurs, their journeys, their challenges, and their success stories. Understand how ordinary people from their own countries have become successful	
Introduction to Entrepreneurship – Learn how entrepreneurship has changed the world. Identify six entrepreneurial myths and uncover the true facts. Explore E-cells on Campus Listen to Some Success Stories: - Global legends Understand how ordinary people become successful global entrepreneurs, their journeys, their challenges, and their success stories. Understand how ordinary people from their own countries have become successful	
Introduction to Entrepreneurship – Learn how entrepreneurship has changed the world. Identify six entrepreneurial myths and uncover the true facts. Explore E-cells on Campus Listen to Some Success Stories: - Global legends Understand how ordinary people become successful global entrepreneurs, their journeys, their challenges, and their success stories. Understand how ordinary people from their own countries have become successful	
Identify six entrepreneurial myths and uncover the true facts. Explore E-cells on Campus Listen to Some Success Stories: - Global legends Understand how ordinary people become successful global entrepreneurs, their journeys, their challenges, and their success stories. Understand how ordinary people from their own countries have become successful	Hrs
Listen to Some Success Stories: - Global legends Understand how ordinary people become successful global entrepreneurs, their journeys, their challenges, and their success stories. Understand how ordinary people from their own countries have become successful	, 1115
successful global entrepreneurs, their journeys, their challenges, and their success stories. Understand how ordinary people from their own countries have become successful	
Understand how ordinary people from their own countries have become successful	
entrepreneurs.	
Characteristics of a Successful Entrepreneur Understand the entrepreneurial journey and	
learn the concept of different entrepreneurial styles. Identify your own entrepreneurship	
style based on your personality traits, strengths, and weaknesses. Learn about the 5M	
Model, each of the five entrepreneurial styles in the model, and how they differ from each	
other. Communicate Effectively: Learn how incorrect assumptions and limiting our	
opinions about people can negatively impact our communication. Identify the barriers	
which cause communication breakdown, such as miscommunication and poor listening, and	
learn how to overcome them.	
Communication Best Practices. Understand the importance of listening in communication	
and learn to listen actively. Learn a few body language cues such as eye contact and	

UNIT-V

Design Thinking for Customer Delight: - Understand Design Thinking as a problem-solving process. Describe the principles of Design Thinking. Describe the Design Thinking process.

08 Hrs

Sales Skills to Become an Effective Entrepreneur: - Understand what is customer focus and how all selling effort should be customer-centric. Use the skills/techniques of personal selling, Show and Tell, and Elevator Pitch to sell effectively.

Managing Risks and Learning from Failures: - Identify risk-taking and resilience traits. Understand that risk-taking is a positive trait. Learn to cultivate risk-taking traits. (Practical Application) Appreciate the role of failure on the road to success, and understand when to give up. Learn about some entrepreneurs/risk-takers. (Practical Application).

Are You Ready to be an Entrepreneur: - Let's ask "WHY" Give participants a real picture of the benefits and challenges of being an entrepreneur. Identify the reasons why people want to become entrepreneurs. Help participants identify why they would want to become entrepreneurs.

Course Outcomes: After completing the course, the students will be able to
 CO1: Comprehend the applicable source, scope and limitations of Intellectual Property within the purview of engineering domain.
 CO2: Knowledge and competence related exposure to the various Legal issues pertaining to Intellectual Property Rights with the utility in engineering perspectives.
 CO3: Enable the students to have a direct experience of venture creation through a facilitated learning environment.
 CO4: It allows students to learn and apply the latest methodology, frameworks and tools that entrepreneurs use to succeed in real life.

Ref	erence Books
1.	Law Relating to Intellectual Property, Wadehra B L,5 th Edition, 2012, Universal Law Pub Co.
	LtdDelhi, ISBN: 9789350350300
2.	Intellectual Property Rights: Unleashing Knowledge Economy, Prabuddha Ganguly, 1st Edition,
	2001, Tata McGraw Hill Publishing Company Ltd., New Delhi, ISBN: 0074638602.
3.	Intellectual Property and the Internet, Rodney Ryder, 2002, Lexis Nexis U.K., ISBN:
	8180380025, 9788180380020.
4.	Entrepreneurship, Rajeev Roy, 1 st Edition, 2012, Oxford University Press, New Delhi, ISBN:
	9780198072638.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	3	3	-	3	1	2	-	3
CO2	1				3	3	3	3	1	2	-	3
CO3	-	3	2	-	-	2	2	3	3	3	3	3
CO4	-	3	2	-	-	3	3	3	3	3	3	3

Low-1 Medium-2 High-3

	VI Semester							
	ENTERPRISE INFORMATION SYSTEMS							
	(Theo	ry)						
Cou	rse Code: 16IM62	CIE Marks: 100						
Cre	Credits:L:T:P:S: 3:0:0:1 SEE Marks: 100							
Hou	Hours: 33L SEE Duration: 03 Hrs							
Course Learning Objectives: The students will be able to								
1	Understand the importance of information systems for business and management;.							
2	Define various workflow, information architecture and information systems. To enterprise							
<u> </u>	business.							
Analyze the techniques and approaches of enterprise information system planning,								
3	implementation and management.							
4	Design and develop Business information systematical	ems for various Industrial Applications						

UNIT-I	
Enterprise Information System: Historical background, The manufacturing Roots of	06 Hrs
ERP, comparative coverage between MRP, ERP, EIS. Concepts of EIS, EIS	
Characteristics, EIS As per Garter View.	
UNIT-II	
Business Process Reengineering and Best Practices- Business process, Typical	08 Hrs
Business process. Reengineering, Business Process Reengineering, Business Process	
management, BPR with respect to EIS.	
UNIT-III	
Enterprise Information Systems Development – Data storage systems, Data	08 Hrs
warehousing, Data marts, Online analytical processing, Data mining, Customer	
relationship Management, Business intelligent system.	
UNIT-IV	
Enterprise Information Systems and Supply chain: Magnitude of EIS in SCM, Web	06 Hrs
enable EIS/ERP and its impact on SCM, Eis Vs SCM, product Life cycle management.	
UNIT-V	
Trends in Enterprise Systems-MRPIII (Money Resource Planning), Next Generation Of	05 Hrs
Enterprise software, Expenditure trends, Reduction In implementation time.	

Self Study:

Case study, Design and Emerging Technologies to be discussed pertaining to the course. 1 Credit: 4 Hrs / Week

Course	e Outcomes: After completing the course, the students will be able to
CO1	Understand the role of enterprise information system analytics in decision making.
CO2	Understand the technologies for data warehousing data mining and data visualization. And its
	use in organizations.
CO3	Apply information-gathering techniques to document the requirements for an information
	system solution
CO4	Develop an understanding of investigative methods for building and designing computer
	based information systems.
CO5	Realize the trends in enterprise system and the supportive technologies.

Reference Books

- **1.** Enterprise Information Systems: Contemporary Trends and Issues, David L. Olson and Subodh Kesharwani, 2009 Retrieved 20 August 20, New York: World Scientific, ISBN 9814273163.
- 2. Enterprise Information Systems: Concepts, Methodologies, Tools and Applications, Information Resources Management Association (USA), 1st Edition, 2011, Idea Group Inc. ISBN 978-1-61692852-0.

- 3. Enterprise Information Systems: A Pattern Based Approach, Cheryl L. Dunn, 3rd Edition, 2005, McGraw-Hill, ISBN: 9780071111201
- **4.** Software Project Management, Hughes, B. and Mike Cotterell, M. 5th Edition, 2009, McGraw-Hill, ISBN:1070-1389

CIE is executed by way of quizzes (Q), tests (T) and Self-study (S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1		1									
CO2	1	1	2	1								
CO3			2	1	2				2	1		
CO4			1	2	2				2	1	2	
CO5				2		1	2	2	2		2	

Low-1 Medium-2 High-3

	VI Semester FACILITIES PLANNING AND DESIGN						
	(Theory & Practice)						
Cou	rrse Code: 16IM63		CIE Marks: 100 + 50				
Credits:L:T:P:S: 3: 0: 1: 0							
Hou	Hours: 35L SEE Duration: 03 + 03 H						
Cou	Course Learning Objectives: The students will be able to						
1	1 Understand the importance of Facilities Planning Process & Material handling Systems.						
2	2 Define various types of layouts and their linkages to design of product, process and layout.						
3	Solve various facility design problems through	computer aid	ded layout design and flow				
3	processes.						

UNIT-I		
Introduction: Facilities planning defined, significance of facilities planning, objectives of	08 Hrs	
facilities planning, facilities planning process, strategic planning process, developing	00 1115	
facilities planning strategies, examples of inadequate planning.		
Plant Location And Layout: Factors influencing plant location, Theories of plant location.		
Objectives of plant layout, Principles of plant layout, types of plant layout, their merits and		
demerits, numerical on plant location.		
UNIT-II	1	
Materials Handling: Introduction, scope and definition of material handling, material	06 Hrs	
handling principle, designing material handling systems, unit load design, material handling		
equipment, estimating material handling costs, safety considerations.		
UNIT-III		
Computer Aided Layout: Introduction, CRAFT, COFAD, PLANET, CORELAP, ALDEP.		
Numerical on CRAFT / ALDEP.		
Warehouse Operations: Introduction, Mission of a warehouse, functions in the warehouse,		
receiving & shipping operations, dock locations, storage operations, order picking		
operations.		
UNIT-IV		
Designing of Material flow: Factors for consideration in planning material flow. Designing	06 Hrs	
of Layout corresponding to typical types of Flow: Straight Line Flow / U Flow / S flow,		
Numerical on material flow. Examples on hospitals, super & hyper markets, airports, petrol		
stations, hotels, IT & Ites sector.		
UNIT-V		
Facilities Design for Manufacturing Systems: Introduction, fixed automation systems,		
flexible manufacturing systems, single-stage multi-machine systems, reduction of work-in-	07 Hrs	
process, Just-In-Time Manufacturing, facilities planning trends.		
process, Just-m-1 mic intanuracturing, facilities planning trends.	1	

Assignment:

Case study, Design and Emerging Technologies to be discussed pertaining to the course.

	FACILITIES PLANNING AND DESIGN LAB				
1.	Redesigning of Material Flow using Charts, Diagrams and Models.				
2.	Designing of Product Layout using Line Balancing techniques.				
3.	Development of Layout plans using Systematic Layout Planning technique.				
4.	Evaluating alternative layout proposals using simulation.				
5.	Designing Cellular Layouts using Rank Order Clustering algorithm.				
6.	Designing of Layout corresponding to typical types of Flow – Straight Line Flow / U Flow / S				
	flow.				
7.	Assessing Layout performance using efficiency indices.				
8.	Preparation and Presentation of Actual Layout for an organization.				

Cours	Course Outcomes: After completing the course, the students will be able to					
CO1	Understand the factors influencing decisions related to plant locations, layout and material					
	handling.					
CO2	Recognize the influence of planning process and strategies and their effect on facility location					
	planning.					
CO3	Develop different layout plans and their operations on warehouse.					
CO4	Evaluate different flow systems of a facility.					

Ref	erence Books
1.	1 1
	4 th Edition, 2010, John Wiley & Sons INC, ISBN- 978-0-470-44404-7.
2.	Plant Layout and Material Handling, James M Apple, 3 rd Edition, January 1991, Krieger Pub
	Co., ISBN-13: 978-0894645457.
3.	Facility layout and Location, Francies, R.L. and White, J.A, 2 nd Edition, 1998, Prentice Hall of
	India, ISBN: 8120314603.
4.	Facilities Design, Sunderesh Heragu, 4th edition, 2016, CRC Press, ISBN: 978-1-4987-3290-1

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2											
CO2		3					1					
CO3			2		1							
CO4				2						1		

Low-1 Medium-2 High-3

	VI Semester						
	SUPPLY CHAIN AND LOGISTICS MANAGEMENT						
	(Theory & Practice)						
Cou	rse Code: 16IM64	CIE Marks: 100 + 50					
Credits:L:T:P:S: 3: 0: 1: 0							
Hou	Hours: 33L SEE Duration: 03 + 03Hrs						
Cou	Course Learning Objectives: The students will be able to						
1	1 To Understand the Building Blocks, Major Functions, Business Processes, and their relevance						
	to Decisions in a Supply Chain Management.						
2	2 To design and analyze the linkages between Supply Chain Structures and Logistical						
	Capabilities of a firm or supply chain.						
3	3 To develop Quantitative models to ensure effective Decision Making by analyzing the supply						
	chain issues.						

UNIT-I	
Building a Strategic Frame Work to Analyse Supply Chains:	06 Hrs
Definition and Objective of Supply Chain, The importance of Supply Chain Decisions,	
Decision Phases in a Supply Chain, Process View of Supply Chains. Competitive and	
Supply Chain Strategies, Achieving Strategic fit, Expanding Strategic Scope. Drivers of	
Supply Chain Performance, Frame work for Structuring Drivers, Facilities, Inventory,	
Transportation, Information, Sourcing, Pricing, Obstacles to Achieving Fit.	
UNIT-II	
Designing The Supply Chain Network: The Role of Distribution in the Supply Chains,	07 Hrs
Factors influencing Distribution Network design, Design Options for a Distribution	
Network, e-Business and the Distribution network, Distribution Networks in practice.	
Factors influencing network design decisions, Framework for Network design decisions,	
Models for Facility location and Capacity allocation, The role of IT in Network design.	
The impact of uncertainty on network design, Discounted cash flow analysis,	
Representations of Uncertainty, Evaluating Network Design Decisions Using Decisions	
Trees, Risk Management and Network Design, Mumbai Dabbawalla Case Study,	
Problems.	
UNIT-III	
Planning and Managing Inventories in a Supply Chain: The Role of Cycle inventory in	07 Hrs
a Supply Chain, Economies of Scale to Exploit Fixed costs, Economies of Scale to Exploit	
Quantity Discounts, Short-Term Discounting, Trade Promotions, Managing Multi-echelon	
Cycle Inventory. The Role of Safety Inventory in a Supply Chain, Determining appropriate	
level of Safety inventory, Impact of supply Uncertainty on Safety inventory, Impact of	
aggregation on safety inventory, impact of replenishment policies on safety inventory,	
Managing Safety Inventory in a Multi-echelon Supply Chain, The Role of IT in inventory	
management. The importance of the level of product Availability, Factors affecting	
optimal level of Product Availability, Managerial levers to improve supply chain	
Profitability, Problems .	
UNIT-IV	
Designing And Planning Transportation Networks: The role of transportation in a	07 Hrs
Supply chain, Modes of transportation and their performance characteristics,	07 111.
Transportation infrastructure and policies, Design options for a transportation network,	
Trade-offs in transportation design, Tailored transportation, The role of IT in	
transportation, Problems.	
Managing Cross-Functional Drivers In A Supply Chain: The role of sourcing in a	
supply chain, in-house or outsource, Third-and Fourth-party logistics providers, Supplier	
scoring and assessment, Supplier selection-Auctions and Negotiations, Contracts and	
supply chain performance, Design Collaboration, The procurement process, sourcing	
planning and analysis, the role of IT in sourcing.	
praining and analysis, the fole of 11 in sourcing.	

Managing Cross-Functional Drivers In A Supply Chain: The role of IT in a supply chain, The supply chain in IT framework, The supply chain macro processes, Lack of Supply Chain co-ordination and the Bullwhip effect, managerial levers to achieve coordination, continuous replenishment and vendor-managed inventories, collaborative planning, forecasting and replenishment (CPFR), **Problems**

06 Hrs

Assignment:

Case study, Design and Emerging Technologies to be discussed pertaining to the course.

	SUPPLY CHAIN AND LOGISTICS MANAGEMENT LABORATORY Part – I					
1.	Exercises on designing supply chain networks: Facility location models, Network optimization models.					
2.	Planning supply chain inventory and sensitivity analysis: Cycle inventory, Safety inventory and					
	Product availability, Inventory aggregation.					
	Part – II					
3.	Exercises on transportation design: Transportation cost and inventory cost trade off, Customer					
	response and transportation cost trade off, Routing and scheduling.					
4.	Exercises on Designing Marketing Campaign, Customer Service and Customer Order					
	Processing.					
5.	Demonstration Exercises on the beer game, illustrating bullwhip effect; Risk Pool Game;					
	Auctions					
6.	Demonstration Exercises using SCM Simulator.					

Course	Course Outcomes: After completing the course, the students will be able to					
CO1	Understand supply chain concepts, systemic and strategic role of SCM in global competitive					
	environment.					
CO2	Evaluate alternative supply and distribution network structures using optimization models.					
CO3	Develop optimal sourcing and inventory policies in the supply chain context.					
CO4	Select appropriate information technology frameworks for managing supply chain processes.					

Reference Books

- 1. Supply Chain Management Strategy, Planning & Operation, Sunil Chopra, Peter Meindl & D V Kalra, 6th Edition, 2016, Pearson Education Asia; ISBN: 978-0-13-274395-2.
- 2. Supply Chain Management Creating Linkages for Faster Business Turnaround, Sarika Kulkarni & Ashok Sharma, 1st Edition, 2004, TATA Mc Graw Hill, ISBN: 0-07-058135-5
- 3. Designing & Managing the Supply Chain Concepts Strategies and Case Studies, David Simchi Levi, Philip Kaminsky, Edith Simchi Levi & Ravi Shankar, 3rd Edition, 2008, Mc Graw Hill, ISBN: 978- 0-07-066698-6
- **4.** Modelling the Supply Chain, Jeremy F Shapiro, 2nd Edition, 2009, Cengage Learning, ISBN 0-495-12609-8.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3											1	
CO2		3	2	2	2		3						
CO3		3	2		2							1	
CO4			2		2					1			

Low-1 Medium-2 High-3

	VI Semester								
	DIGITAL 1	MANUFACTURING							
	(Group C : Pr	ofessional Core Elective)							
Cou	rse Code: 16IM6C1	CIE Marks: 100							
Cred	lits:L:T:P:S: 3:0:0:1	SEE Marks: 100							
Hou	ours: 34L SEE Duration: 3Hrs								
Cou	rse Learning Objectives: The students	will be able to							
1	Understand the concepts of digital man	ufacturing systems							
2	Explain the manufacturing informatics,	intelligent manufacturing, managing key technology of							
	digital manufacturing.								
3	Recognize digital technology with integ	ration in product.							

UNIT-I						
Introduction: Concept and research and development status of Digital Manufacturing	07 Hrs					
(DM).	i					
Theory system of DM, modelling theory and method of Digital manufacturing science,	i					
basic architecture model of DM system.	l					
UNIT-II						
Computing manufacturing; manufacturing computational model, theoretical units in manufacturing computing,	07 Hrs					
Manufacturing Informatics; Principal properties of manufacturing information-	İ					
characteristics, activities, principles; Measurement, synthesis and materialization;	İ					
Integration, Sharing and security of manufacturing information.	I					
UNIT-III						
Intelligent manufacturing; Intelligent multi information sensing, knowledge engineering	08 Hrs					
in the 'Whole Life Cycle', Anatomy, Self-Learning, Adapting of manufacturing system;	İ					
Intelligent manufacturing system,	İ					
Management of Technology in DM; R&D system framework and management mode,	İ					
technological strategies management & technological venture, Human-machine engineering on DM processes and production patterns, MOT mode based on cultural differences.						
UNIT-IV						
Key technology of DM; Digital technologies in product lifecycle, Resource and Environment technology, Management technology, Control technology, Digital recognition and Integration technology in product.	06 Hrs					
UNIT-V						
Future development; Precision of digital manufacturing- Micro Nano Electro Mechanical	06 Hrs					
System, Micro Nano Equipment, Externalization and Environment protection of digital manufacturing.						

Self	Study	:	

Case study, Design and Emerging Technologies to be discussed pertaining to the course. 1 Credit: 4 Hrs / Week

Course	Course Outcomes: After completing the course, the students will be able to									
CO1	Understand the System of modelling theory and method of digital manufacturing science.									
CO2	Explain the basic principles and methodology of digital manufacturing system									
CO3	Apply concepts of manufacturing informatics in measuring, synthesizing and integration of									
	manufacturing information system.									

Reference Books

1. Fundamentals of Digital Manufacturing Science, Zude Zhou, Shane Shengquan Xie, Dejun Chen, 2012, Springer publishers, ISBN: 978-0-85729-563-7, e-ISBN 978-0-85729-564-4.

- 2. Cloud Manufacturing –Distributed Computing Technologies for Global and Sustainable Manufacturing, Weidong Li, Jörn Mehnen, 1st Edition, 2013, Springer series in Advanced Manufacturing, ISBN 978-1-4471-4934-7
- 3. Collaborative Design and Planning for Digital Manufacturing, Lihui Wang, Andrew Yeh Ching Nee, 2009, Springer publications, ISBN: 978-1-84882-286-3
- **4.** Digital Manufacturing: Prospects and Challenges, Christoph Haag, Torsten Niechoj, 1st Edition, 2016, Metropolis Verlag, ISBN: 3731611562, 9783731611561

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2											
CO2		2								1		
CO3		2	1		1						2	

Low-1 Medium-2 High-3

	VI Sen	nester							
	SERVICE OPERATIONS MANAGEMENT								
	(Group C : Profession	onal Core Elective)							
Cou	rse Code: 16IM6C2	CIE Marks: 100							
Cred	lits:L:T:P:S: 3:0:0:1	SEE Marks: 100							
Hou	rs: 36L	SEE Duration: 3Hrs							
Cou	rse Learning Objectives: The students will be	e able to							
1		Operations Management (SOM) function through the							
1	introduction of the topics traditionally associated with the study of Service Operations Management.								
2	To develop an understanding of the terminology	and responsibilities that relate to Service Operations							
	Management.								
3	To formulate and describe the function of the S	Service Operations Management discipline in various							
3	sectors of the economy through case study.								
4	To obtain a set of basic tools and skills used in so	olving problems traditionally associated with operating							
4	the service operations system.								

UNIT-I					
Introduction to service operations management: Introduction, what is service operations	07 Hrs				
management?, The challenges facing service operations managers, different types of					
services, different types of service processes, judging the success of a service operation					
UNIT-II					
The service concept: the service concept, the service concept defined, the service concept	07 Hrs				
as a strategic tool, focused and unfocussed service operations					
Customers and relationships: customers and customer segmentation, customer retention,					
managing customer relationships, managing customer relationships.					
UNIT-III					
Customer expectations and satisfaction: customer satisfaction, service quality and	08 Hrs				
confidence, customer expectations, defining expectations-service quality factors, finding					
expectations and assessing satisfaction, managing perceptions					
Managing supply relationships: types of supply relationships, managing service supply					
chains, managing through intermediaries, supply partnerships, service level agreements					
UNIT-IV					
Service processes: service processes and their importance, understanding the nature of	07 Hrs				
service processes, engineering service processes, controlling service processes,					
repositioning service processes					
Service people: understanding the pressures on service providers, managing and					
motivating service providers, managing customers					
UNIT-V					
Resource utilization: capacity management, operations planning and control, managing	07 Hrs				
bottlenecks and queues, managing the coping zone, improving resource utilization					
Performance measurement: the purpose of Performance measurement, a balance of					
measures, Interlinking, targets and rewards, benchmarking					

Self Study: Case study, Design and Emerging Technologies to be discussed pertaining to the course.

1 Credit: 4 Hrs / Week

Cour	Course Outcomes: After completing the course, the students will be able to									
CO1	Develop an understanding of the terminology and responsibilities that relate to Service									
	Operations Management.									
CO2	Formulate and describe the function of the Service Operations Management discipline in									
	various sectors of the economy through case study.									
CO3	Obtain a set of basic tools and skills used in solving problems traditionally associated with									
	operating the service operations system.									

C	O4	Explore the interface of Service Operations Management with the other management
		functions, such as marketing, procurement & sourcing, outsourced good & services and
		customers.
C	O5	Deploy technology in the improvement of service, customer relationships and globalization.

Refe	erence Books
1.	Service Operations Management, Improving Service Delivery, Robert Johnston, Graham Clark,
	2 nd Edition, 2008, Pearson, ISBN:8131715205
2.	Service Operations Management, Richard Metters, King-Metters, Steve Walton, 13th Edition,
	2002, South-Western, ISBN: 978-0324135565
3.	Service Operations Management: The Total Experience, David W. Parker, 13 th Edition, 2012,
	Edward Elgar Pub, ISBN-978-1781007860
4.	

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2					1							
CO2		2								2			
CO3			2	2	2				1	1			
CO4				2			2				2		
CO5					2		2	1				2	

Low-1 Medium-2 High-3

	VI Semester								
	RELIABILITY ENGINEERING								
	(Group C : Professional Core Elective)								
Cou	rse Code: 16IM6C3	CIE Marks: 100							
Cred	Credits:L:T:P:S: 3:0:0:1 SEE Marks: 100								
Hou	Hours: 33L SEE Duration: 03Hrs								
Cou	rse Learning Objectives: The students	will be able to							
1	Provide an insight into various tools and	d techniques of Reliability Engineering.							
2	Review the various mathematical, physical and logical modeling tools for estimation an								
	evaluation of component and system level reliability.								
Appraise failure phenomena and there by provide valuable inputs for product design									
higher levels of reliability standards.									
4	Assessment and evaluation of reliability	goals and their improvements.							

UNIT-I	
Introduction: Introduction to reliability engineering, Scope of reliability engineering,	07 Hrs
Reasons for engineering items to fail, Probabilistic reliability, Repairable and non	Í
repairable items, Reliability Program activities, Reliability Economics and Management,	Í
The development of reliability engineering, Organizations involved in reliability work, The	Í
study of reliability and maintainability, Concepts, terms and definitions, Applications.	Í
UNIT-II	
Basic Reliability Models	07 Hrs
Failure distribution: The reliability function, Mean time to failure, Hazard rate function,	ĺ
Hazard rate function, Bathtub curve, Conditional reliability	i
Time dependent failure models: The Weibull distribution, Normal distribution, The Log	1
Normal distribution	i
UNIT-III	
Basic Reliability Models	06 Hrs
Constant failure rate model: The exponential reliability function, Failure modes,	i
Applications, The Two Parameter Exponential distribution, Poisson process, Redundancy	i
and CFR model exercises	i
UNIT-IV	
Reliability of Systems: Serial Configuration, Parallel Configuration, Combined Series-	07 Hrs
Parallel system, System structure function, Minimal cuts and Minimal paths. Common	i
mode failure, Three state devices, State space analysis (Markov analysis), Load sharing	i
systems, Standby systems, Graded systems. Fault Tree Analysis, Failure Modes and Effects	1
Analysis.	i
UNIT-V	,
Failure Data Analysis: Data Collection, Empirical Methods, Static Life Estimation,	06 Hrs
Product Testing, Reliability Life Testing, Test Time Calculations, Burn-In Testing,	İ
Acceptance Testing, Accelerated Life Testing, Experimental Design, Competing Failure	İ
Modes	i

Self Study:

Case study, Design and Emerging Technologies to be discussed pertaining to the course.

1 Credit: 4 Hrs / Week

Course	Course Outcomes: After completing the course, the students will be able to						
CO1	Explain basic terminologies as applied to reliability engineering.						
CO2	Develop the capability to design systems and process for reliability improvement.						
CO3	Analyze failure phenomenon of components and systems so as to develop strategies for						
	eliminating/ minimizing product failures.						
CO4	Generate estimates for reliability through different modelling approaches for component and						
	system level reliability in real life contexts.						

Ref	erence Books
1.	An Introduction to Reliability and Maintainability Engineering, Charles E. Ebling, 1st Edition,
	2000, Tata McGraw Hill, ISBN: 0-07-042138-2.
2.	Practical Reliability Engineering, Patrick D.T. Oconnor, et al, 4 th Edition, 2002, John Wiley and
	Sons, ISBN: 9812-53-045-2.
3.	Reliability Engineering, Dr. E. Balaguruswamy, 1st Edition, 2003, McGraw Hill, ISBN: 978-
	0070483392
4.	Reliability Engineering, L.S. Srinath, 3 rd Edition, 1991, Affiliated East West Press Pvt Ltd,
	ISBN: 81 85336393

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2											
CO2			2		1							
CO3		2		2			1					
CO4		2		2		1						1

Low-1 Medium-2 High-3

	VI Semester								
	FINANCIAL MANAGEMENT								
	(Group C : Professional Core Elective)								
Cou	Course Code: 16IM6C4 CIE Marks: 100								
Credits:L:T:P:S: 3:0:0:1 SEE Marks: 100									
Hou	Hours: 33L SEE: 3 Hrs								
Cou	rse Learning Objectives: T	he students will be able to							
1	Explain the nature of finance	ce and its interaction with other ma	nagement functions.						
2	2 Highlight the use of present value technique in financial decisions.								
3	3 Discuss the pros and cons of various source of long term finance.								
4	Recognize the diagnostic ro	ole of financial ratios and elaborate	the concept of working capital.						

UNIT-I	_
Introduction : scope of finance, finance function, financial manager's role, financial goal: profit maximization v/s wealth maximization.	07 Hrs
•	
Value and return: time preference for money, future value, future value of a single cash	
flow, future value of annuity, present value, present value of a single cash flow, present value of annuity	
UNIT-II	
Valuation of bonds and share: concept of value, features of bond, present value of bond,	07 Hrs
bond value and interest rate, valuation of preference shares, valuation of ordinary shares,	
Risk and return: return on a single assets, risk of rate of return: variance and standard	
deviation, problems only on single assets.	
Capital budget decisions: nature of investment decision, types of investment decision,	
investment evaluation criteria, net present value, internal rate of return(simple problems on	
NPV and IRR)	
UNIT-III	
Financial statement analysis: users of financial analysis, nature of ratio analysis, liquidity	07 Hrs
ratios, leverage ratios, activity ratios, profitability ratios, trend analysis, inter-firm analysis,	
utility and limitations of ratio analysis	
UNIT-IV	
Long term finance: ordinary shares, rights issue of equity shares, preference share,	06 Hrs
debentures, lease financing, hire purchase financing.	
Venture capital financing: notion of venture capital, the process of venture capital	
financing, methods of venture capital financing, disinvestment mechanisms, development of	
venture capital in India.	
UNIT-V	
Working capital management: concept of working capital, operating and cash conversion	06 Hrs
cycle, permanent and variable working capital, determinants of working capital, issues in	
working capital management, estimating working capital needs, policies for financing	
current assets.	

Self Study:

Case study, Design and Emerging Technologies to be discussed pertaining to the course.

1 Credit: 4 Hrs / Week

Course Outcomes: After completing the course, the students will be able to						
CO1	Explain the basic concepts in financial management.					
CO2	Discuss the financial requirement of individual corporations.					
CO3	Demonstrate the understanding of the nature of finance management.					
CO4	Apply the concepts of financial management to contemporary financial events.					

Refe	erence Books
1.	Financial Management, I M Pandey, 11 th Edition, 2015, Vikas Publishing House, ISBN: 9789325982291
2.	Basic Financial Management, Khan & Jain, 2 nd Edition, 2005, Tata McGraw-Hill Education,
	ISBN, 0070599432
3.	Financial Management: Theory and Practice, Prasanna Chandra, 9th Edition, 2015, Mcgraw
	Higher Education, ISBN: 9789339222574, 9339222571
4.	Fundamentals of Financial Management, James C. Van Horne, 13th Edition, 2008, Prentice Hall,
	ISBN: 978-0273713630

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1										1	2	
CO2										2	2	
CO3											2	
CO4				1				1			2	

Low-1 Medium-2 High-3

	VI Semester								
	DATA MINING TECHNIQUES								
	(Group C : Professional Core Elective)								
Cour	rse Code: 16IM6C5		CIE Marks: 100						
Cred	Credits:L:T:P:S: 3: 0: 0:1 SEE Marks: 100								
Hou	Hours: 35L SEE Duration: 3Hrs								
Cour	rse Learning Objectives: The students	will be able to							
1	Recognize the importance of data, their	managerial issues, and	l their life cycle.						
2	Describe the sources of data, their collection, and quality issues.								
3	Apply data mining solutions to real time data using common data mining techniques.								
4	Identify research opportunities in the ar	ea of data mining and	related applications						

UNIT-I					
Introduction: Data mining, Type of data used for mining, Type of pattern used for	07 Hrs				
mining, Related technologies, Major issues in data mining, Applications of data mining.					
Getting to know your data: Data objects and attribute types, Basic statistical description					
of data, Data visualization, Measuring data similarity and dissimilarity.					
UNIT-II					
Data Preprocessing: Data Preprocessing, Data cleaning, Data Integration, Data	07 Hrs				
reduction, Data Transformation and data discretization.					
Mining Frequent Patterns, Associations, and Correlation: Basic concepts and Methods.					
UNIT-III					
Classification: Basic concepts, Decision tree induction, Bayes classification methods,					
Rule based classification					
UNIT-IV					
Classification (Advanced methods): Bayesian belief Networks, Classification by back					
propagation, Classification using frequent patterns, Lazy learners, Other classification					
methods.					
UNIT-V					
Cluster analysis: Cluster analysis, Partitioning methods, Hierarchical methods, Density					
based methods.					
Data Mining Trends and Research Frontiers: Mining complex data types, Data mining					
application, Data mining and society.					

Self Study:

Case study, Design and Emerging Technologies to be discussed pertaining to the course. 1 Credit: 4 Hrs / Week

Course Outcomes: After completing the course, the students will be able to	
CO1	Examine the types of the data to be mined and present a general classification of tasks and
	primitives to integrate a data mining system.
CO2	Apply preprocessing statistical methods for any given raw data.
CO3	Discover interestingness patterns from large amounts of data to analyze and extract patterns
	to solve problems, make prediction of outcomes.
CO4	Select and apply proper data mining algorithms to build analytical applications.

Reference Books		
1.	Data Mining – Concepts and Techniques, Jiawei Han and Micheline Kamber, 3 rd Edition, 2011,	
	Morgan Kaufmann Publishers Inc, ISBN - 9789380931913.	
2.	Introduction to Data Mining, Pang-Ning Tan, Vipin Kumar, Michael Steinbach, 2 nd Edition,	
	2013, Pearson Education Inc., ISBN: 9780133128901	
3.	Data Mining and Analysis, Mohammed J Zaki, Wagner Meira JR, 1st edition, 2014, Cambridge	
	University Press, ISBN 978-0-521-76633-3.	

4. Data Mining, Sushmita Mitra, Tinku Acharya, 1st Edition, 2003, John Wiley and Sons, ISBN 0-471-46054-0.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2		1		1							
CO2		3		2								
CO3		3		3								
CO4		3						1				

Low-1 Medium-2 High-3

	VI Semester							
	3-D METROLOGY							
	(Group C : Professional Core Elective)							
Cou	Course Code: 16IM6C6 CIE Marks: 100							
Cred	Credits:L:T:P:S: 3:0:0:1 SEE Marks: 100							
Hou	Hours: 34L SEE Duration: 3Hrs							
Cou	rse Learning Objectives: The students	will be able to						
1	1 Explain the concepts of GD&T.							
2	2 Define the relevance of metrology concepts in Advanced measuring machines.							
3	Apply the principles of metrology and r	neasurements in manufacturing industries.						

UNIT-I					
Geometrical Dimensioning and Tolerancing: Dimensioning and tolerancing rules and practices: MMC & LMC. Feature control frame. Geometric characteristic symbols, 1982	07 Hrs				
ANSI Symbols Versus 1994 ASME including 2009 upgrades. Datums, datum reference	İ				
frame, datum targets, establishing setups for datums. Form and Profile tolerances:	Í				
straightness, flatness, circularity and cylindricity. Profile of a line and profile of a surface.	Í				
Orientation. Parallelism, perpendicularity, run out. Location tolerances: position,	ı				
concentricity.	ı				
UNIT-II					
Advanced Metrology: Advanced measuring machines, CNC systems, Laser vision, In-	07 Hrs				
process gauging, 3D metrology, metrology softwares, Nano technology instrumentation,	ı				
stage position metrology, testing and certification services, optical system design, lens	ı				
design, coating design, precision lens assembly techniques, complex opto mechanical	ı				
assemblies, contact bonding and other joining technologies.	ı				
UNIT-III					
Co-ordinate Measuring Machines: Introduction: Structure of CMM:, a) Cantilever, b)	07 Hrs				
Bridge, c) Column, d)Horizontal arm, and e) Gantry types. Advantages and Limitations,	ı				
Probes (Contact/Non-contact)-Touch trigger & Scanning (Active & Passive), Styli,	ĺ				
Calibration, Geometry & its interpretation, Construction of features, Interpretation of	ı				
results.	ı				
UNIT-IV					
Automated Inspection: Automated inspection and sensors, Probes and probing systems,	07 Hrs				
Construction and operating principles of typical probes for dimensional and geometrical me	ı				
asurements, Softwares. Processing data from probing.	ı				
Nano-Measurements: Introduction to nanometric measurement systems, requirements and	ı				
equipment, Clean rooms. Applications of nanometric technology in mechanical engineering.	Ī				
UNIT-V					
CAD Interfaces: Working with CAD models for coordinate measuring, Programming with	06 Hrs				
CAD, Simulation, measurement and interpretation of results like detailed printout, custom	Ī				
printout and form & position plots. Applications of CMMs.	1				

Self Study:

Case study, Design and Emerging Technologies to be discussed pertaining to the course. 1 Credit: 4 Hrs / Week. *Plant visits will be a part of this course.

Course	Course Outcomes: After completing the course, the students will be able to						
CO1	Select the appropriate CMM and accessories for a given application.						
CO2	Use a standard CMM and software interface to simulate inspection of gears, splines, 2D and						
	3D surfaces.						
CO3	Compare the production process, the product function and the product design, and to select						
	appropriate Techniques and tools for these purposes.						

Refe	erence Books
1.	Engineering Metrology and Measurements N.V. Raghavendra and L. Krishnamurthy, 1st
	Edition, 2013 Oxford University Press, ISBN 13: 9780198085492
2.	Optical Imaging and Metrology: Advanced Technologies Wolfgang Osten, Nadya Reingand, 1st
	Edition, 2012, John Wiley and Sons, ISBN: 978-3-527-41064-4
3.	Applied Metrology for Manufacturing, Ammar Grous, 1st Edition, 2013, Print ISBN:
	9781848211889
4.	Engineering Metrology, IC Gupta, 7th Edition, 2012, Dhanpat Rai Publications, ISBN-
	108189928457

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12									PO12		
CO1	3	2	3	1	2		1					
CO2	2	3	2	2	3		1					
CO3	3	2	2	3	2		1					

Low-1 Medium-2 High-3

VI Semester							
SYSTEMS	SYSTEMS ENGINEERING						
(Group D : Prof	fessional Core Elective)						
Course Code: 16IM6D1	CIE Marks: 100						
Credits : L: T: P: S: 4:0:0:0	SEE Marks: 100						
Hours: 44L	SEE Duration: 03 Hrs						

Course Learning Objectives:

- 1. Develop an appreciation and understanding of the role of systems engineering processes and systems management in producing products and services.
- 2. Document systematic measurement approaches for generally cross disciplinary development effort.
- 3. Discuss capability assessment models to evaluate and improve organizational systems engineering capabilities.

UNIT – I

System Engineering and the World of Modem System: What is System Engineering?, Origins of System Engineering, Examples of Systems Requiring Systems Engineering, System Engineering viewpoint, Systems Engineering as a Profession, The power of Systems Engineering, problems.

09 Hrs

Structure of Complex Systems: System building blocks and interfaces, Hierarchy of Complex systems, System building blocks, The system environment, Interfaces and Interactions.

The System Development Process: Systems Engineering through the system Life Cycle, Evolutionary Characteristics of the development process, The system engineering method, Testing throughout system development, problems.

UNIT – II

Systems Engineering Management: Managing systems development and risks, Work breakdown structure (WBS), System Engineering Management Plan (SEMP), Risk Management, Organization of Systems Engineering, Systems Engineering Capability Maturity Assessment, Systems Engineering standards, Problem.

09 Hrs

Needs Analysis: Originating a new system, Operations analysis, Functional analysis, Feasibility analysis, Feasibility definition, Needs validation, System operational requirements, problems. **Concept Exploration:** Developing the system requirements, Operational requirements analysis, Performance requirements formulation, Implementation concept exploration, Performance requirements validation, problems.

UNIT – III

Concept Definition: Selecting the system concept, Performance requirements analysis, Functional analysis and formulation, Concept selection, Concept validation, System Development planning, System Functional Specifications, problems

09 Hrs

Advanced Development: Reducing program risks, Requirements analysis, Functional Analysis and Design, Prototype development, Development testing, Risk reduction, problems.

Unit – IV

Engineering Design: Implementing the System Building blocks, requirements analysis, Functional analysis and design, Component design, Design validation, Configuration Management, problems.

09 Hrs

Integration and Evaluation: Integrating, Testing and evaluating the total system, Test planning and preparation, System integration, Developmental system testing, Operational test and evaluation, problems.

UNIT – V

Production: Systems Engineering in the factory, Engineering for production, Transition from development to production, Production operations, Acquiring a production knowledge base, problems.

08 Hrs

Operations and support: Installing, maintenance and upgrading the system, Installation and test, In-service support, Major system upgrades: Modernization, Operational factors in system development, problems.

Assignment:

Case study, Design and Emerging Technologies to be discussed pertaining to the course.

Cours	Course Outcomes: After completion of course student will be able to					
CO1	Understand the Life Cycle of Systems.					
CO2	Explain the role of Stake holders and their needs in organizational systems.					
CO3	Develop and Document the knowledge base for effective systems engineering processes.					
CO4	Apply available tools, methods and technologies to support complex high technology systems.					
CO5	Create the frameworks for quality processes to ensure high reliability of systems.					

R	Ref	erence Books
-	1	Systems Engineering – Principles and Practice, Alexander Kossiakoff, William N Sweet, 2 nd Edition, 2011, John Wiley & Sons, Inc, ISBN: 978-0470405482
1	2	Handbook of Systems Engineering And Management, Andrew P. Sage, William B. Rouse, 2 nd Edition, 2014, John Wiley & Sons, Inc., ISBN 978-0-470-08353-6
	3	General System Theory: Foundations, Development, Applications, Ludwig Von Bertalanffy, Revised edition 2015, George Braziller Inc. ISBN-13: 9780807600153
4	4	Systems Engineering and Analysis, Blanchard, B and Fabrycky, W. 5 th Edition, 2010, Saddle River, NJ, USA: Prentice Hall.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2					1						
CO2			2									
CO3					2							
CO4			2									
CO5	2					2				2		

Low-1 Medium-2 High-3

	VI Semester						
	COGNITIVE ERGONOMICS						
	(Group D : Professional Core Elective)						
Cou	ourse Code: 16IM6D2 CIE Marks: 100						
Cred	Credits:L:T:P:S: 4:0:0:0 SEE Marks: 100						
Hou	Hours: 44L SEE Duration: 3Hrs						
Cou	Course Learning Objectives: The students will be able to						
1	Define the scope of cognitive ergonomics in work system design for productivity improvement.						
2	Express the role of cognitive ergonomics in	n problem solving and decision making.					

UNIT-I				
Cognition: information processing models, perception, working memory, long-term	09 Hrs			
memory, situation awareness, problem solving and troubleshooting, met cognition and				
effort.				
UNIT-II				
Decision making: definition, decision making models, heuristics and biases, dependency	09 Hrs			
of decision making on the decision context, factors affecting decision making, improving				
human decision making.				
UNIT-III				
Stress and work load: environmental stressors, psychological stressors, life stress,	09 Hrs			
workload overload, fatigue and sleep disruption.				
UNIT-IV				
Human- computer interaction: the troubles with computer and software design, software design cycle, understand system and user characteristics, design using theories and models, design to support mental models with conceptual models, design using principles and guidelines, design of user support, evaluate with usability test and metrics, information technology.	09 Hrs			
UNIT-V				
Selection and training: personnel selection, performance support and job aids, supporting people with disabilities, training program design.	08 Hrs			

Assignment:

Case study, Design and Emerging Technologies to be discussed pertaining to the course.

Course Outcomes: After completing the course, the students will be able to					
CO1	Recognize the role of cognitive ergonomics and its areas of application in the work system.				
CO2	Explain and apply the cognitive ergonomic concepts in the evaluation of existing systems and				
	design of new systems.				
CO3	Demonstrate an understanding of concepts of cognitive ergonomics.				

Ref	erence Books
1.	An Introduction To Human Factors Engineering, Christopher. D. Wickens, John D Lee, Yili Liu,
	Sallie E Gordon Becker, 2 nd Edition, 2011, Pearson, ISBN 978-81-203-4371-9
2.	Introduction to Ergonomics, R S Bridger, 2 nd Edition, 2003, Taylor & Francis, ISBN:
	0415273781.
3.	Human Factors in Engineering and Design, Mark S. Sanders and Ernest J McCormick,
	7th Edition, 1992, McGraw-Hill and Co., Singapore, ISBN 0-07-112826-3.
4.	Handbook of Human Factors and Ergonomics, Gavriel, Salvendy, 3 rd Edition, 2006, Wiley,
	Hoboken, New Jersey, USA, ISBN: 0471116904.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1				1						
CO2	2	1				1						
CO3	1	2	1									

Low-1 Medium-2 High-3

	VI Semester							
	DESIGN OF EXPERIMENTS							
	(Group D : Professional Core Elective)							
Cou	rse Code: 16IM6D3	CIE Marks: 100						
Cred	Credits:L:T:P:S: 4: 0: 0:0 SEE Marks: 100							
Hou	Hours: 44L SEE Duration: 3Hrs							
Cou	Course Learning Objectives: The students will be able to							
1	Explain the terminology and basic principles of design of experiments.							
2	Use ANOVA and effect plots to compute significance of factors and reach conclusions ab							
<u></u>	effect of factors involved.							
3	3 Develop factorial and fractional factorial designs for product and process optimization							
4	4 Use signal to noise ratios to illustrate robust design concepts in process optimization.							
5	Select suitable experimental design for engineering applications using orthogonal arrays.							

UNIT-I				
Introduction: Strategy of experimentation, applications, Basic principles, Terminology,	08 Hrs			
Guidelines, History of statistical design.				
Principles of quality engineering – Tools used in robust design, Applications and				
benefits, Quality loss function, Quadratic loss function, Noise factors, P diagram,				
Optimization of product & process design, Role of various quality control activities.				
UNIT-II				
Factorial Experimentation- The 2 ² design, The 2 ³ design, The general 2 ^k design, A single	09 Hrs			
replicate of the 2 ^k design, The 3 ² design. Problems.				
UNIT-III				
Blocking and Confounding in the 2^k Factorial Design: Blocking a replicated 2 ^k factorial	09 Hrs			
design, Confounding in the 2 ^k factorial design, Confounding the 2 ^k factorial design in 2 & 4				
blocks. Problems.				
Fractional Factorial Designs: The one – half fraction & one – quarter fraction of the 2 ^k				
design, Resolution III, IV & V designs. Problems.				
UNIT-IV				
Constructing Orthogonal Arrays: Counting degrees or freedom, selecting a standard	09 Hrs			
orthogonal array, dummy level technique, and compound factor method. Linear graphs and				
interaction assignment, modification of linear graphs, column merging method, branching				
design. Strategy for constructing an orthogonal array. Problems.				
UNIT-V				
Steps In Robust Design Case study discussion illustrating steps in Robust Design.	09 Hrs			
Signal-To-Noise Ratio: Evaluation of sensitivity to noise. S/N ratios for static problems,				
S/N ratios for dynamic problems. Analysis of ordered categorical data. Minimizing				
variability and optimizing averages.				
Advanced Techniques: Taguchi Inner and Outer Arrays. Grey Taguchi Methods, Shainin				
Techniques, Software packages for design of Experiments.				

Assignment:

Case study, Design and Emerging Technologies to be discussed pertaining to the course.

Cours	Course Outcomes: After completing the course, the students will be able to					
CO1	Explain principles and concepts of design of experiments and quality engineering.					
CO2	Illustrate quality engineering and robust design concepts.					
CO3	Develop factorial, fractional factorial and orthogonal array designs for product and process					
	optimization					
CO4	Conduct experiments and analyse data for product and process improvements.					

Refe	erence Books
1.	Design and Analysis of Experiments, D.C. Montgomery, 5 th Edition, 2006, Wiley India, ISBN –
	812651048-X.
2.	Quality Engineering Using Robust Design, Madhav S. Phadke, 1989, Prentice Hall PTR,
	Englewood Cliffs, New Jersey 07632, ISBN: 0137451679.
3.	Designing for Quality – an Introduction Best of Taghuchi and Western Methods or Statistical
	Experimental Design, Robert H. Lochner, Joseph E. Matar, 1st Edition, 1990, Chapman and
	Hall, ISBN – 0412400200
4.	Taguchi Techniques for Quality Engineering: Loss Function, Orthogonal Experiments,
	Parameter and Tolerance Design, Philip J. Ross, 2 nd Edition, 1996, McGraw-Hill, ISBN:
	0070539588

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2		2	2		1					
CO2	3	2	3	2								
CO3	2	3	2	2								
CO4		2	2	3								

Low-1 Medium-2 High-3

	VI Semester						
	HUMAN RESOURCE MANAGEMENT & DEVELOPMENT						
	(Group D : Pro	ofessional Core Elec	ctive)				
Cou	rse Code: 16IM6D4		CIE Marks: 100				
Cred	Credits:L:T:P:S: 4:0:0:0 SEE Marks: 100						
Hou	rs: 44L		SEE Duration: 3Hrs				
Cou	Course Learning Objectives: The students will be able to						
1	Understand the importance of human re	source management i	in present day organiza	tions.			
Demonstrate the various techniques		of recruiting, sele	ecting, developing &	appraising			
	employees.						
3	Analyze the emerging trends in managir	ng human resources i	n various organization	al contexts.			

UNIT-I	
Introduction to Human Resource Management: Objectives of HRM, Importance of	09 Hrs
HRM, Line & Staff aspects of HRM, Duties & Responsibilities of HRM and Competencies	
of HRM.	
Human Resource Management Strategy: Strategic Planning & Management Process,	
Overview of Corporate, Competitive & Functional Strategy and Introduction to Strategic	
HRM.	
UNIT-II	
Job Analysis & Talent Management: Talent Management Process, Basics of Job	09 Hrs
Analysis, Methods for collecting Job Analysis Information and Writing Job Descriptions &	
Specifications.	
Personnel Planning & Recruiting: Workforce Planning & Forecasting, Recruitment	
Process and Internal & External Sources of Candidates.	
UNIT-III	
Employee Testing, Selection & Interviewing: Basics of Testing & Selecting Employees,	09 Hrs
Types of Tests, Work Samples & Simulations, Background Investigation & Other	
Selection Methods, Basic Types of Interviews and Design & Conduction of An Effective	
Interview.	
UNIT-IV	
Training & Development: Orienting & Onboarding New Employees, Training Process,	09 Hrs
Implementing Training Program, Implementing Management Development Programs and	
Evaluating Training Process.	
UNIT-V	
Performance Management & Appraisal: Basics of Performance Management &	08 Hrs
Appraisal, Techniques for Appraising Performance, Managing Appraisal Interview, Talent	
Management & Employee Appraisal and Overview of Managing Employee Turnover,	
Retention & Engagement.	1

Assignment:

Topics such as Employee Relations & Welfare, Labor Relations & Unions, Employee Safety & Health, HR Audit & Accounting, International HRM, Emerging Trends & Challenges in Human Resource Management & Development and other such related areas.

Course	Course Outcomes: After completing the course, the students will be able to					
CO1	Recognize the basic functions, strategy & practices of human resource management.					
CO2	Understand the processes of planning & recruitment of employees in organizations.					
CO3	Demonstrate the employee selection & interviewing techniques in organizations.					
CO4	Analyze the techniques of training & developing human resources in organizations.					
CO5	Evaluate the performance appraisal measures prevailing in present day organizations					

Ref	erence Books
1.	Human Resource Management, Gary Dessler & Biju Varkkey, 14th Edition, 2015, Pearson,
	ISBN: 978-93-325-4219-8.
2.	Human Resources Management, Dr. K Ashwathappa, 5th Edition, 2007, Tata McGraw Hill,
	ISBN: 0070660204.
3.	Fundamentals of Human Resources Management, David A. Decenzo & Stephen P. Robbins,
	8 th Edition, 2004, John Wiley India Pvt. Ltd, ISBN: 0471656801.
4.	A Handbook of Human Resource Management Practice, Michael Armstrong, 10th Edition, 2006,
	Kogan Page, ISBN: 0-7494-4851-2.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1					3	2	1	1			2
CO2		1	1		3	3						
CO3		1	1		3				1	3	2	1
CO4	1	2	2		2							
CO5		2	2		2			1	1	1	2	

Low-1 Medium-2 High-3

	VI Semester					
	E-COMMERCE					
(Group D : Professional Core Elective)						
Cou	ourse Code: 16IM6D5 CIE Marks: 100					
Cred	Credits:L:T:P:S: 4: 0: 0:0 SEE Marks: 100					
Hou	SEE Duration: 3Hrs					
Cou	Course Learning Objectives: The students will be able to					
1	Discuss electronic commerce and the stakeholders and their capabilities and limitations in the					
1	strategic convergence of technology and business.					
2	Appreciate the global nature and issues of electronic commerce as well as understand the rapid					
4	technological changes taking place.					
3	Identify advantages and disadvantages of technology choices such as merchant server software					
3	and electronic payment options					
4	Demonstrate awareness of ethical, social	l and legal aspects of e-commerce				

UNIT-I				
Introduction to Electronic Commerce: learning objectives, dot-com era, Amazon.com :	08 Hrs			
Synonymous with E-commerce, Dell: An evolutionary E-commerce, The changing times in				
E-commerce, Present scenario, Future of E-commerce, Constituents of E-commerce, E-				
commerce web design, E-business and E-commerce web portals, Case studies.				
UNIT-II				
Technologies for E-commerce: learning objectives, Basic architecture of Internet,	08 Hrs			
TCP/IP, Ipv4 versus Ipv6, Evolution of Internet, Uniform resource locator, Hypertext				
Transfer Protocol, Cookies, Client side or web programming, HTML programming				
techniques, Links, Images, Tables, Frames, Form, Style sheets, Javascript, Case studies.				
UNIT-III				
Concepts in E-commerce: learning objectives, concepts and definitions, Different types of	09 Hrs			
E-commerce, Understanding M-commerce, Factors affecting E-commerce, E-commerce				
components, E-commerce and consumers, Business transaction through E-commerce, E-				
commerce applications, E-commerce in developing countries, Role of Govt in development				
of E-commerce, Regulatory monitoring for E-commerce, Policies for SME's for E-				
commerce adoption, Case studies.				
UNIT-IV				
Understanding E-commerce product design strategy: learning objectives, Benefits of	10 Hrs			
web enabled channels, E-commerce considerations, Case study of dell computers, strategic				
initiatives by Indian railways, Brand equity through E-commerce.				
Channels in E-commerce : learning objectives, Importance of E-commerce in				
multichannel marketing, Automation in E-commerce portals, Using E-commerce for order				
fulfilling in supply chain management, case studies.				
UNIT-V Future trends: Social commerce: learning objectives, social power and civilization, 09				
Future trends: Social commerce: learning objectives, social power and civilization,				
understanding social commerce, advantages of social commerce, pitfalls, future of social				
commerce, social commerce challenges in India, case studies.				
Drivers of on line-selling diffusion : Drivers of on line selling B2C, Internet community,				
technology and legal frame work, business strategy, design of a secure value proposition,				
empirical study, Interpolation study and trend analysis.				

Assignment:

Case study, Design and Emerging Technologies to be discussed pertaining to the course.

Course	ourse Outcomes: After completing the course, the students will be able to							
CO1	Appreciate the basic terminologies, methods and procedures used in electronic market and market place.							
CO2	Explain Internet trading relationships including Business to Consumer, Business-to-Business,							
	Intra-organizational.							
CO3	Analyze features of existing e-commerce businesses, and propose future directions or							
	innovations for specific businesses							
CO4	Recognize and discuss global E-commerce issues							

Refe	erence Books
1.	E-commerce Startegy, Sanjay Mahapatra, 1st Edition, 2013, Springer, ISBN: 978-1-4614-4142.
2.	The E-commerce book, Steffano Korper, 2 nd Edition, 2000, Academic press,
	ISBN: 0-12-421161-5,
3.	E-commerce, Kenneth C Laudon, 12 th Edition, 2016, Pearson Education, ISBN: 9780133938951
4.	The Economic and Social Impacts of e-commerce, Sam Lubbe, 1st Edition, 2003, Idea Group
	Publishing, ISBN: 1591400775

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

					CO-I	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1				3					1		
CO2					3							
CO3		3										
CO4										1		

Low-1 Medium-2 High-3

	VI Semester							
	USER INTERFACE DESIGN							
	(Group D : Professional Core Elective)							
Cou	ourse Code: 16IM6D6 CIE Marks: 100							
Cred	redits:L:T:P:S: 4:0:0:0 SEE Marks: 100							
Hou	ours: 44L SEE Duration: 3Hrs							
Cou	Course Learning Objectives: The students will be able to							
1	Develop an appreciation for concepts and sensibilities of user interface design							
2	Develop skills in the use and application of specific methods in user interface design.							
3	Improve individual and collaborative sk	Improve individual and collaborative skills in design problem solving.						

¥ • • • • • • • • • • • • • • • • • • •	Hrs				
Good Design, a Brief History of the Human-Computer Interface, Introduction of the Graphical User Interface, A Brief History of Screen Design. Case study: The Blossoming of the World Wide Web. UNIT-II The User Interface Design Process: Obstacles and Pitfalls in the Development Path, Designing for People: The Five Commandments, Usability, Usability Assessment in the Design Process, Common Usability Problems, Some Practical Measures of Usability, Some Objective Measures of Usability, The Design Team. UNIT-II Human Considerations in Design: The User's Knowledge and Experience, the User's Pasks and Needs, The User's Psychological Characteristics, The User's Physical Characteristics. Case studies. Human Interaction Speeds: Performance versus Preference, Methods for Gaining an Understanding of Users. Case studies. UNIT-IV The Psychopathology of Everyday Things: The Complexity of Modern Devices, Human-Centered Design, Fundamental Principles of Interaction, the System Image, the Paradox of					
Graphical User Interface, A Brief History of Screen Design. Case study: The Blossoming of the World Wide Web. UNIT-II The User Interface Design Process: Obstacles and Pitfalls in the Development Path, Designing for People: The Five Commandments, Usability, Usability Assessment in the Design Process, Common Usability Problems, Some Practical Measures of Usability, Some Objective Measures of Usability, The Design Team. UNIT-II Human Considerations in Design: The User's Knowledge and Experience, the User's Tasks and Needs, The User's Psychological Characteristics, The User's Physical Characteristics. Case studies. Human Interaction Speeds: Performance versus Preference, Methods for Gaining an Understanding of Users. Case studies. UNIT-IV The Psychopathology of Everyday Things: The Complexity of Modern Devices, Human-Centered Design, Fundamental Principles of Interaction, the System Image, the Paradox of					
UNIT-II The User Interface Design Process: Obstacles and Pitfalls in the Development Path, Designing for People: The Five Commandments, Usability, Usability Assessment in the Design Process, Common Usability Problems, Some Practical Measures of Usability, Some Objective Measures of Usability, The Design Team. UNIT-II Human Considerations in Design: The User's Knowledge and Experience, the User's Tasks and Needs, The User's Psychological Characteristics, The User's Physical Characteristics. Case studies. Human Interaction Speeds: Performance versus Preference, Methods for Gaining an Understanding of Users. Case studies. UNIT-IV The Psychopathology of Everyday Things: The Complexity of Modern Devices, Human-Centered Design, Fundamental Principles of Interaction, the System Image, the Paradox of					
UNIT-II The User Interface Design Process: Obstacles and Pitfalls in the Development Path, Designing for People: The Five Commandments, Usability, Usability Assessment in the Design Process, Common Usability Problems, Some Practical Measures of Usability, Some Objective Measures of Usability, The Design Team. UNIT-II Human Considerations in Design: The User's Knowledge and Experience, the User's Physical Characteristics. Case studies. Human Interaction Speeds: Performance versus Preference, Methods for Gaining an Understanding of Users. Case studies. UNIT-IV The Psychopathology of Everyday Things: The Complexity of Modern Devices, Human-Centered Design, Fundamental Principles of Interaction, the System Image, the Paradox of					
The User Interface Design Process: Obstacles and Pitfalls in the Development Path, Designing for People: The Five Commandments, Usability, Usability Assessment in the Design Process, Common Usability Problems, Some Practical Measures of Usability, Some Objective Measures of Usability, The Design Team. UNIT-II Human Considerations in Design: The User's Knowledge and Experience, the User's Tasks and Needs, The User's Psychological Characteristics, The User's Physical Characteristics. Case studies. Human Interaction Speeds: Performance versus Preference, Methods for Gaining an Understanding of Users. Case studies. UNIT-IV The Psychopathology of Everyday Things: The Complexity of Modern Devices, Human-Centered Design, Fundamental Principles of Interaction, the System Image, the Paradox of					
Designing for People: The Five Commandments, Usability, Usability Assessment in the Design Process, Common Usability Problems, Some Practical Measures of Usability, Some Objective Measures of Usability, The Design Team. UNIT-II Human Considerations in Design: The User's Knowledge and Experience, the User's Pasks and Needs, The User's Psychological Characteristics, The User's Physical Characteristics. Case studies. Human Interaction Speeds: Performance versus Preference, Methods for Gaining an Understanding of Users. Case studies. UNIT-IV The Psychopathology of Everyday Things: The Complexity of Modern Devices, Human-Centered Design, Fundamental Principles of Interaction, the System Image, the Paradox of					
Design Process, Common Usability Problems, Some Practical Measures of Usability, Some Objective Measures of Usability, The Design Team. UNIT-II Human Considerations in Design: The User's Knowledge and Experience, the User's Tasks and Needs, The User's Psychological Characteristics, The User's Physical Characteristics. Case studies. Human Interaction Speeds: Performance versus Preference, Methods for Gaining an Understanding of Users. Case studies. UNIT-IV The Psychopathology of Everyday Things: The Complexity of Modern Devices, Human-Centered Design, Fundamental Principles of Interaction, the System Image, the Paradox of	Hrs				
Objective Measures of Usability, The Design Team. UNIT-II Human Considerations in Design: The User's Knowledge and Experience, the User's Tasks and Needs, The User's Psychological Characteristics, The User's Physical Characteristics. Case studies. Human Interaction Speeds: Performance versus Preference, Methods for Gaining an Understanding of Users. Case studies. UNIT-IV The Psychopathology of Everyday Things: The Complexity of Modern Devices, Human-Centered Design, Fundamental Principles of Interaction, the System Image, the Paradox of	Hrs				
UNIT-II Human Considerations in Design: The User's Knowledge and Experience, the User's O8 Example 10 Tasks and Needs, The User's Psychological Characteristics, The User's Physical Characteristics. Case studies. Human Interaction Speeds: Performance versus Preference, Methods for Gaining an Understanding of Users. Case studies. UNIT-IV The Psychopathology of Everyday Things: The Complexity of Modern Devices, Human-Centered Design, Fundamental Principles of Interaction, the System Image, the Paradox of	Hrs				
Human Considerations in Design: The User's Knowledge and Experience, the User's Tasks and Needs, The User's Psychological Characteristics, The User's Physical Characteristics. Case studies. Human Interaction Speeds: Performance versus Preference, Methods for Gaining an Understanding of Users. Case studies. UNIT-IV The Psychopathology of Everyday Things: The Complexity of Modern Devices, Human-Centered Design, Fundamental Principles of Interaction, the System Image, the Paradox of	Hrs				
Tasks and Needs, The User's Psychological Characteristics, The User's Physical Characteristics. Case studies. Human Interaction Speeds: Performance versus Preference, Methods for Gaining an Understanding of Users. Case studies. UNIT-IV The Psychopathology of Everyday Things: The Complexity of Modern Devices, Human-Centered Design, Fundamental Principles of Interaction, the System Image, the Paradox of	Hrs				
Characteristics. Case studies. Human Interaction Speeds: Performance versus Preference, Methods for Gaining an Understanding of Users. Case studies. UNIT-IV The Psychopathology of Everyday Things: The Complexity of Modern Devices, Human-Centered Design, Fundamental Principles of Interaction, the System Image, the Paradox of					
Human Interaction Speeds: Performance versus Preference, Methods for Gaining an Understanding of Users. Case studies. UNIT-IV The Psychopathology of Everyday Things: The Complexity of Modern Devices, Human-Centered Design, Fundamental Principles of Interaction, the System Image, the Paradox of					
Understanding of Users. Case studies. UNIT-IV The Psychopathology of Everyday Things: The Complexity of Modern Devices, Human-Centered Design, Fundamental Principles of Interaction, the System Image, the Paradox of					
UNIT-IV The Psychopathology of Everyday Things: The Complexity of Modern Devices, Human-Centered Design, Fundamental Principles of Interaction, the System Image, the Paradox of					
The Psychopathology of Everyday Things: The Complexity of Modern Devices, Human-Centered Design, Fundamental Principles of Interaction, the System Image, the Paradox of					
Centered Design, Fundamental Principles of Interaction, the System Image, the Paradox of					
¥ • • • • • • • • • • • • • • • • • • •	Hrs				
Centered Design, Fundamental Principles of Interaction, the System Image, the Paradox of					
Technology, The Design Challenge.					
The Psychology of Everyday Actions: How People Do Things: The Gulfs of Execution					
and Evaluation, The Seven Stages of Action, Human Thought: Mostly Subconscious,					
Human Cognition and Emotion, The Seven Stages of Action and the Three Levels of					
Processing, People as Storytellers, Blaming the Wrong Things, Falsely Blaming Yourself,					
The Seven Stages of Action: Seven Fundamental Design Principles					
UNIT-V					
Knowing What to Do: Constraints, Discoverability, and Feedback: Four Kinds of 10 H	Hrs				
Constraints: Physical, Cultural, Semantic, and Logical, Applying Affordances, Signifiers,					
and Constraints to Everyday Objects, Constraints That Force the Desired Behavior,					
Conventions, Constraints, and Affordances, The Faucet: A Case History of Design, Using					
Sound as Signifiers.					
Human Error? No, Bad Design: Understanding Why There Is Error, Deliberate					
Violations, Two Types of Errors: Slips and Mistakes, The Classification of Slips, The					
Classification of Mistakes, Social and Institutional Pressures, Reporting Error, Detecting					
Error, Designing for Error, When Good Design Isn't Enough, Resilience Engineering, The					
Paradox of Automation, Design Principles for Dealing with Error.					

Assignment:

Case study, Design and Emerging Technologies to be discussed pertaining to the course.

Course	Course Outcomes: After completing the course, the students will be able to						
CO1	Appreciate the importance and benefits of a good design.						
CO2	Identify the shortcomings in any design development process and suggest measures to						
	control.						
CO3	Understand the differences between usability and user experience						
CO4	Explain the need for human factors in design.						
CO5	Analyze an interaction design problem and propose a user-centered process, justifying the						
	process and identifying the trade-offs.						

Refe	erence Books
1.	The Essential Guide to User Interface Design, Wilbert O. Galitz, 3 rd Edition, 2007, John Wiley
	& Sons, Inc., ISBN: 0470146222. (first three units)
2.	The design of Everyday Things, Don Norman, 2013, Basic Books Publication, ISBN 978-0-465-
	00394-5.
3.	Sketching User Experiences: Getting the Design Right and the Right Design, Buxton, B., 1st
	Edition, 2007, Morgan Kaufmann, eBook ISBN: 9780080552903, Paperback ISBN:
	9780123740373
4.	Sketching User Experiences: The Workbook, Greenberg, S., Carpendale, S., Marquart, N., and
	Buxton B, 1st Edition, 2012, Morgan Kaufmann, ISBN: 978-0-12-381959-8

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1						2	1		1			1
CO2		3	1	2	2			1	1	1		2
CO3						2			1	1		1
CO4			3			2	1					
CO5		2	1	2		2	2	1			2	

Low-1 Medium-2 High-3

	VI Semester						
BIOINSPIRED ENGINEERING							
(Group E: Global Elective)							
Course Code: 16G6E01 CIE Marks: 100							
Credits: L:T:P:S: 3:0:0:0 SEE Marks: 100							
Hou	Hours: 36L SEE Duration: 3Hrs						
Course Learning Objectives:							
1	To familiarize engineering students with basic biological concepts						
2	Utilize the similarities noted in nature for a particular problem to bring inspiration to the						
	designer.						
3	Explain applications such as smart structures, self-healing materials, and robotics relative to						
	their bio logical analogs						
4	To gain an understanding that the design principles from nature can be translated into novel						
	devices and structures and an appreciation	for how biological systems can be engineered by					
	human design						

Unit-I			
Introduction to Biology : Biomolecules-Proteins, carbohydrates, lipids and Nucleic acids.	06 Hrs		
Cell types- Microbial, plant, animal.Organ system- Circulatory, digestive, respiratory,			
excretory and nervous system. Sense organs. Plant process- Photosynthesis.			
Unit – II			
Introduction to Biomimetics: Wealth of invention in nature as inspiration for human	08 Hrs		
innovation: Mimicking and inspiration of nature- synthetic life. Nature as a model for			
structure and tools: Biological clock, honey comb as strong light weight structure.			
Materials and processes in biology- Spider web, honey bee as a multi-material producer,			
fluorescent materials in fire flies. Bird and insect as source of inspiring flight. Robotics as			
beneficiary for biomimetic technologies.			
Unit -III			
Biological materials in Engineering mechanisms: Introduction, Comparison of	08 Hrs		
biological and synthetic materials: Silk processing and assembly by insects and spiders-			
High performance fibers from nature, Seashells- High performance organic and inorganic			
composites from nature. Shark skin- Biological approaches to efficient swimming via			
control of fluid dynamics, Muscles- Efficient biological conversion from chemical to			
mechanical engineering. Unit –IV			
Biological inspired process and products: Artificial neural networks, genetic algorithms,	08 Hrs		
	UO IIIS		
medical devices. Biosensors. Plant as Bioinspirations: Energy efficiency, Biomimetic super			
hydrophobic surfaces- lotus leaf effect. Bionic leaf and Photovoltaic cells.			
Unit –V	07.11		
Implants in Practice: Artificial Support and replacement of human organs-Introduction,	07 Hrs		
Artificial kidney, liver, blood, lung, heart, skin and pancreas. Total joint replacements-			
Visual prosthesis -artificial eye. Sense and sensors: Artificial tongue and nose, Biomimetic			
echolation. Limitations of organ replacement systems.			

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Remember and explain the fundamentals of Biology							
CO2:	Describe the basic principles of design in biological systems.							
CO3:	Differentiate biological phenomena to support inspiration for visual and conceptual design							
	problems							
CO4 :	Create engineered solutions to customer needs utilizing a variety of bio-inspiration							
	techniques.							

Refer	Reference Books					
1	Jenkins, C.H. Bioinspired Engineering, NY: Momentum press, 2012 ISBN: 97816066502259					
2	C.C.Chatterjee, Human Physiology Volume 1 (11th Edition), 2016, ISBN 10: 8123928726/ ISBN 13: 9788123928722					
3	Yoseph Bar-Cohen, Biomimetics: Biologically Inspired technologies, 2005, CRC press, ISBN: 9780849331633					
4	Donald Voet, Charlotte W. Pratt. Principles of Biochemistry: International Student Version. Wiley John and Sons, 2012. ISBN: 1118092449.					

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	1	1	1	1	1	1	1	2
CO2	2	1	2	1	1	1	1	1	1	1	1	2
CO3	3	3	3	2	1	1	1	1	1	1	1	3
CO4	3	3	3	1	1	1	1	1	1	1	1	2

High-3: Medium-2: Low-1

	VI Semester					
	GREEN TECHNOLOGY					
	(Group E: Global Elective)					
Cou	rse Code: 16G6E02	CIE Marks: 100				
Cred	lits: L:T:P:S: 3:0:0:0	SEE Marks: 100				
Hou	Hours: 36L SEE Duration: 3Hrs					
Cou	Course Learning Objectives:					
1	Learn the tools of green technology					
2	Know various forms of renewable energy					
3	Study the environmental consequences of energy conversation					
4	Understand energy audits and residential energy audit					
5	Understand the application of green technology	in various industries				

5 Understand the application of green technology in various industries	
Unit-I	
Current Practices and Future Sustainability: Need for green technology, fundamentals of energy and its impact on society and the environment, the mechanics, advantages and disadvantages of renewable energy sources, energy conservation and audits, zero waste technology, life cycle assessment, extended product responsibility, concept of atom economy, tools of Green technology Cleaner Production: Promoting cleaner production, benefits and obstacles of cleaner	07 Hrs
production, cleaner production technologies.	
Unit – II	
Solar Radiation and Its Measurement: Solar constant, solar radiation at the earth's surface, solar radiation geometry, solar radiation measurements Applications of Solar Energy: Introduction, solar water heating, space-heating (or solar heating of buildings), space cooling (or solar cooling of building), solar thermal electric conversion, agriculture and industrial process heat, solar distillation, solar pumping, solar cooking Geothermal Energy: Resource identification and development, geothermal power generation systems, geothermal power plants case studies and environmental impact assessment. Unit -III	08 Hrs
	07.11
Energy From Biomass (Bio-Energy): Introduction, biomass conversion technologies, wet Processes, dry Processes, biogas generation, factors affecting biodigestion, types of biogas plants (KVIC model & Janata model), selection of site for biogas plant Bio Energy (Thermal Conversion): Methods for obtaining energy from biomass, thermal gasification of biomass, classification of biomass gasifiers, chemistry of the gasification process, applications of the gasifiers.	07 Hrs
Unit –IV	
Wind Energy: Introduction, basic components of WECS (Wind Energy Conversion system), classification of WEC systems, types of wind machines (Wind Energy Collectors), horizontal-axial machines and vertical axis machines. Ocean Thermal Energy: OTEC-Introduction, ocean thermal electric conversion (OTEC), methods of ocean thermal electric power generation, open cycle OTEC system, the closed or Anderson, OTEC cycle, Hybrid cycle Energy from Tides: Basic principles of tidal power, components of tidal power plants, operation methods of utilization of tidal energy, advantages and limitations of tidal power generation	07 Hrs

Unit –V	
Hydrogen, Hydrogen Energy: Introduction, methods of hydrogen production (principles	07 Hrs
only), storage transportation, utilization of hydrogen gas, hydrogen as alternative fuel for	
motor vehicle, safety and management, hydrogen technology development in India	
Application of Green Technology: Electronic waste management, bioprocesses, green	
composite materials, green construction technology	
Sustainability of industrial waste management: Case studies on cement industry, iron	
and steel industry, petroleum sectors, marble and granite industry, sugar industry	

Course	Course Outcomes: After completing the course, the students will be able to				
CO1:	Recall the fundamentals of various forms of energy				
CO2:	Explain the principles of various forms of renewable energy				
CO3:	Apply the concept of zero waste, atom economy for waste management				
CO4:	Create a waste management plan incorporating tools of green technology in various industries				

Refere	ence Books
1	Non-Conventional Energy Sources, G.D.Rai, 5 th Edition, 2016, Khanna Publications, ISBN: 8174090738
2	Renewable Energy-Power for a Sustainable Future, Edited by Godfrey Boyle, 3 rd Edition, 2012, Oxford University Press, ISBN: 9780199545339
3	Energy Systems and Sustainability: Power for a Sustainable Future, Godfrey Boyle, Bob Everett, and Janet Ramage, 2 nd Edition, 2012, Oxford University Press, ISBN: 0199593744
4	Renewable Energy resources, John Twidell and Tony Weir, 3 rd Edition, 2015, Routledge publishers, ISBN:0415584388

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

	VI Semester					
	SOLID WASTE MANAGEMENT					
	(Group 1	E: Global Elective)				
Co	ourse Code:16GE6E03	CIE Marks: 100				
Cr	redits: L:T:P:S: 3:0:0:0	SEE Marks: 100				
Но	Hours: 36L SEE Duration: 3Hrs					
Co	Course Learning Objectives: The students will be able to					
1	Impart the knowledge of present methods of solid waste management system and to analyze the					
1	drawbacks.					
2	Understand various waste management statutory rules.					
3	Analyze different elements of solid waste management, design and develop recycling options for					
3	biodegradable waste by composting.					
4	Identify hazardous waste, e-waste, plastic waste and bio medical waste and their management					
4	systems.					

UNIT-I	
Introduction : Land Pollution. Scope and importance of solid waste management.	08 Hrs
Present solid waste disposal methods. Merits and demerits of open dumping, feeding to	
hogs, incineration, pyrolysis, composting, sanitary landfill. Definition and functional	
elements of solid waste management.	
Sources: Sources of Solid waste, types of solid waste, composition of municipal solid	
waste, generation rate, Numerical Problems.	
Collection and transportation of municipal solid waste: Collection of solid waste-	
services and systems, Municipal Solid waste (Management and Handling) 2000 rules with	
2016 amendments. Site visit to collection system.	
UNIT-II	
Composting Aerobic and anaerobic composting - process description, process	08 Hrs
microbiology, Vermicomposting, Site visit to compost plant, Numerical problems.	
Sanitary land filling: Definition, advantages and disadvantages, site selection, methods,	
reaction occurring in landfill- Gas and Leachate movement, Control of gas and leachate	
movement, Site visit to landfill site.	
UNIT-III	
Hazardous waste management: Definitions, Identification of hazardous waste,	06 Hrs
Classification of hazardous waste, onsite storage, collection, transfer and transport,	
processing, disposal, hazardous waste (Management and handling) rules 2008 with	
amendments. Site visit to hazardous landfill site	
UNIT-IV	
Bio medical waste management: Classification of bio medical waste, collection,	06 Hrs
transportation, disposal of bio medical waste, Bio medical waste (Management and	
Handling) rules 1998 with amendments. Site visit to hospital to see the collection and	
transportation system and visit to biomedical waste incineration plant.	
UNIT-V	
E-waste management: Definition, Components, Materials used in manufacturing	06 Hrs
electronic goods, Recycling and recovery integrated approach. E- waste (management and	
handling) rules 2011. Site visit to e- waste processing facility.	
Plastic waste management: Manufacturing of plastic with norms. Plastic waste	
management. Plastic manufacture, sale & usage rules 2009 with amendments.	

Cou	Course Outcomes: After completing the course, the students will be able to					
1	Understand the existing solid waste management system and to identify their drawbacks.					
2	Analyze drawbacks in the present system and provide recycling and disposal options for each					
	type of waste.					
3	Distinguish Hazardous waste, Biomedical waste, E waste and to provide scientific management					
	system.					

4 Evaluate and monitor the Biomedical waste, Hazardous waste, E waste, Plastic and Municipal waste management as per the rules laid by Ministry of Environment & Forest.

Tex	Text Books					
1.	Integrated Solid Waste Management: Engineering principles and management issues George					
	Tchobanoglous, Hilary Theisen, Samuel A Vigil, published by M/c Graw hill Education.					
	Indian edition 2014. ISBN – 13: 978- 9339205249, ISBN-10: 9339205243					
2.	Environmental Engineering, Howard S Peavy, Donald R Rowe and George Tchobanoglous,					
	Tata Mcgraw Hill Publishing Co ltd., 2013, ISBN-13 9789351340263.					
3.	Electronic waste management, R.E. Hester, Roy M Harrison,, Cambridge, UK, RSC					
	Publication, 2009, ISBN 9780854041121					

Ref	erence Books
1.	Municipal Solid waste (Management & Handling Rules) 2000. Ministry of Environment &
	Forest Notification, New Delhi, 25th Sept 2000 and 2016 amendments.
2.	Hazardous waste (management, handling) rules 2008. Ministry of Environment and Forest
	Notification, New Delhi, 25th February 2009.
3.	Biomedical waste (Management & Handling) rules, 1998. Ministry of Environment and Forest
	Notification, New Delhi, 20thJuly 1998, and amendment.
4.	E- waste (management and handling) rules 2011. Ministry of Environment and Forest
	Notification, New Delhi, 12th May 2011.
5.	The Plastic Manufacture, Sale and usage Rules2009. Ministry of Environment and Forest
	Notification, New Delhi, amendment on February 4, 2011

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping

CO-I O N	Tapping	,										
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	-	3	1	2	2	2	-	-	-	2
CO2	2	3	1	2	1	2	2	2	1	-	-	2
CO3	2	1	-	2	1	1	2	2	-	-	-	-
CO4	3	-	1	1	-	2	2	2	-	-	-	1

Low-1 Medium-2 High-3

VI Semester					
INTRODUCTION TO WEB PROGRAMMING					
(Group E: Global Elective)					
Course Code:16G6E04	CIE Marks: 100				
Credits: L:T:P:S: 3:0:0:0	SEE Marks: 100				
Hours: 36L	SEE Duration: 3 Hrs				

Cou	Course Learning Objectives: The students will be able to					
1	Understand the basic concepts used in web programming.					
2	Learn the definitions and syntax of different web technologies.					
3	Utilize the concepts of JavaScripts, XML and PHP.					
1	Design and develop web pages which are quick, easy and well-presented using different					
4	techniques such as CSS,XML and JavaScripts.					

techniques such as CSS,XML and JavaScripts.	
UNIT-I	
Introduction to Web Concepts	07 Hrs
Fundamentals of Web, HTML 5 - Core HTML attributes, headings, paragraphs and breaks,	
divisions and centering, quotations, preformatted text, lists, horizontal rules, block-level	
elements, text-level elements.XHTML - 1: Internet, WWW, Web Browsers and Web	
Servers, URLs, MIME, HTTP, Security, the Web Programmers Toolbox. XHTML: Basic	
syntax, Standard structure, Basic text markup, Images, Hypertext Links.XHTML	
(continued): Lists, Tables, Forms, Frames.	
UNIT-II	
Cascading Style Sheets (CSS):	09 Hrs
Introduction, Levels of style sheets, Style specification formats, Selector forms, Property	
value forms, Font properties, List properties, Color, Alignment of text, The box model,	
Background images, The and <div> tags, Conflict resolution.</div>	
The Basics of JavaScript:	
Overview of JavaScript; Object orientation and JavaScript; General syntactic characteristics;	
Primitives, operations, and expressions; Screen output and keyboard input; Control	
statements	
UNIT-III	
JavaScript (continued):	09 Hrs
Object creation and modification; Arrays; Functions; Constructor; Pattern matching using	
regular expressions; Errors in scripts.	
JavaScript and HTML Documents:	
The JavaScript execution environment; The Document Object Model; Element access in	
JavaScript; Events and event handling; Handling events from the Body elements, Button	
elements, Text box and Password elements; The DOM 2 event model; The navigator object;	
DOM tree traversal and modification.	
TIMITE IX7	
UNIT-IV	06.11
Dynamic Documents with JavaScript:	06 Hrs
Introduction to dynamic documents; Positioning elements; Moving elements; Element	
visibility; Changing colors and fonts; Dynamic content; Stacking elements; Locating the	
mouse cursor; Reacting to a mouse click; Slow movement of elements; Dragging	
and dropping elements.	
Introduction to PHP:	
Origins and uses of PHP; overview of PHP; General syntactic characteristics; Primitives,	1

Operations and Expressions; Output; Control statements; Arrays; Functions; Pattern

Matching; Form Handling; Files; Cookies; Session Tracking.

UNIT-V	
XML:	05 Hrs
Introduction; Syntax; Document structure; Document Type definitions; Namespaces; XML	
schemas; Displaying raw XML documents; Displaying XML documents with CSS; XSLT	
Style sheets; XML processors; Web services.	

Course Outcomes: After completing the course, the students will be able to					
CO1.	Understand and explore internet related concepts that are vital for web development.				
CO2.	Apply HTML tags for designing static web pages and forms using Cascading Style Sheet.				
CO3.	Utilize the concepts of XML, JavaScripts along with XHTML for developing web pages.				
CO4.	Design and develop web based applications using JavaScripts, CSS, XHTML, PHP and XML.				

Ref	erence Books
1.	Programming the World Wide Web – Robert W. Sebesta, 7th Edition, 2013, Pearson Education,
	ISBN-13:978-0132665810
2.	Web Programming Building Internet Applications, Chris Bates, 3 rd Edition, , 2006, Wiley India,
	ISBN: 978-81-265-1290-4
3.	Internet & World Wide Web How to H program, M. Deitel, P.J. Deitel, A. B. Goldberg,
	3 rd Edition,2004, Pearson Education / PHI, ISBN-10: 0-130-89550-4
4.	Thomas A Powell, The Complete Reference to HTML and XHTML, 4th Edition, 2003, Tata
	McGraw Hill publisher. ISBN: 978-0- 07-222942- 4.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	2	•	1	1	1	-	-	-	•	1
CO2	-	-	2	-	1	1	-	-	-	-	-	-
CO3	-	-	-	-	2	-	-	-	2	-	-	2
CO4	-	-	3	-	2	-	-	-	2	-	-	2

Low-1 Medium-2 High-3

	VI Semester						
	AUTOMOTIVE ELECTRONICS						
	(Group 1	E: Global Elective)					
Cour	rse Code: 16G6E05		CIE Marks: 100				
Cred	its: L:T:P:S: 3:0:0:0		SEE Marks: 100				
Hou	rs:36L		SEE Duration: 3Hrs				
Cour	rse Learning Objectives: The students	will be able to					
1	Understand the application of principles of sensing technology in automotive field						
2	Apply control systems in the automotive domain						
3	Understand automotive specific communication protocols / techniques						
4	Analyze fault tolerant real time embedded systems						

UNIT-I

Power Train Engineering and Fundamentals of Automotive: Fundamentals of Petrol, diesel and gas engines, electric motors and control systems. Basic Automotive System, System Components, Evolution of Electronics in Automotive. Alternators and charging, battery technology, Ignition systems. Working principles of various electronic components and accessories used in Automotive. Developments in existing engine forms and alternatives. Hybrid designs (solar power, electric/gasoline, LPG, CNG, fuel cells). Basic Transmission systems.

UNIT-II

Sensor Technologies in Automotive: In-vehicle sensors: Working principles, Characteristics, limitations and use within the automotive context of the following: Temperature sensing e.g. coolant, air intake. Position sensing e.g. crankshaft, throttle plate. Pressure sensing e.g. manifold, exhaust differential, tyre. Distance sensing e.g. anti-Collision, Velocity sensing e.g. speedometer, anti-skid. Torque sensing e.g. automatic transmission. Vibration sensing e.g. Airbags. flow sensing and measurement e.g. fuel injection. Interfacing principles: Operation, topologies and limitations of all sensors covered in the above to in-vehicle processing or communications nodes. Use of Actuators: Types, working principle, Characteristics, limitations and use within the automotive context of each type.

UNIT-III

Automotive Control Systems: Control system approach in Automotive: Analog and Digital control methods, stability augmentation, control augmentation. Transmission control, System components and functions. Cruise control, traction control, actuator limiting, wind-up, gain scheduling, adaptive control. Special Control Schemes: Vehicle braking fundamentals, Antilock systems. Variable assist steering and steering control. Controls for Lighting. Wipers, Air conditioning /heating. Remote keyless Entry and Antitheft System, Emission Course-system control. Control techniques used in hybrid system. Electronic Engine control: Motion equations, modeling of linear and non-linear systems, numerical methods, system responses Objective of Electronic Engine control. Spark Ignition and Compression Ignition Engines and their electronic controls. Engine management testing: Engine management system strategies and implementation. Simulation and implementation methods. Methods of improving engine performance and efficiency. Model Based Development (MBD) Technology. AUTOSAR: Objectives and Architecture.

UNIT-IV

Automotive Communication Systems: Communication interface with ECU's: Interfacing techniques and interfacing with infotainment gadgets. Relevance of internet protocols, such as TCP/IP for automotive applications. Wireless LANs standards, such as Bluetooth, IEEE802.11x. Communication protocols for automotive applications. Automotive Buses: Use of various buses such as CAN, LIN, Flex Ray. Recent trends in automotive buses (Such as OBDI1. MOST, IE, IELI.I, D2B and DSI). Application of Telematics in

07 Hrs

08 Hrs

07 Hrs

07 Hrs

Automotive: Global Positioning Systems (GPS) and General Packet Radio Service (GPRS), for use in an automotive environment. Vehicle to Vehicle Communication Higher End Technology: Comparative Study and applications of ARM Cortex-Ascries/M-scries. ARM 9 and ARM11.

UNIT-V

Diagnostics and Safety in Automotive: Fundamentals of Diagnostics: Basic wiring system and Multiplex wiring system. Preliminary checks and adjustments, Self-Diagnostic system. Fault finding and corrective measures. Electronic transmission checks and Diagnosis, Diagnostic procedures and sequence. On board and off board diagnostics in Automotive. Safety in Automotive: Safety norms and standards. Passenger comfort and security systems. Future trends in Automotive Electronics.

07 Hrs

Cours	Course Outcomes: After completing the course, the students will be able to					
CO1:	Acquire the knowledge of automotive domain fundamentals and need of electronics in					
	Automotive systems					
CO2:	Apply various sensors and actuators for Automotive applications					
CO3:	Analyze different control systems and communication interfaces used in automotive systems.					
CO4:	Evaluate the performance of telematics Diagnostics and safety norms in Automotive Systems.					

Refe	erence Books
1.	Understanding Automotive Electronics, Williams. B. Ribbens, 6 th Edition, 2003, Elsevier
	science, Newness publication, ISBN-9780080481494.
2.	Automotive Electronics Handbook, Robert Bosch, 2004, John Wiley and Sons,
3.	Automotive Embedded Systems Handbook, Nicolas Navet, F Simonot-Lion, Industrial
	Information Technology Series, CRC press.
4.	Automotive Control Systems Engine, Driveline and vehicle, Uwekiencke and lars Nielsen,
	Springer, 2 nd Edition, 2005, ISBN 0-387-95368X

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

					CO-l	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	1	-	-	1	-	-	-	-	1
CO2	3	2	2	1	-	1	-	-	-	1	-	1
CO3	3	2	2	1	-	1	-	-	2	-	1	1
CO4	3	1	2	1	2	1	-	-	1	-	-	-

Low-1 Medium-2 High-3

		VI Semester					
		INDUSTRIAL ELECTRONICS	S				
		(Group E: Global Elective)					
Cour	se Code: 16G6E06		CIE Marks: 100				
Credi	its: L:T:P:S: 3:0:0:0		SEE Marks: 100				
Hour	s: 36L		SEE Duration: 3Hrs				
Cour	se Learning Objectives: T	The students will be able to					
1	Explain the working of	the devices used in power electron	ic circuits in industrial applications				
2	Analysing and designing power electronic circuits which handle the electrical energy efficiently and economically and Identify the typical practical problems with industrial exposure acquired						
3	Use basic concepts of de electrical energy.	sign and working of electronic circu	its for conversion and control of				
4		o work as part of teams on multid regard to application of Power Elect	lisciplinary projects and to discuss tronics.				

Unit-I	
Power semi-conductor Devices and static characteristics: Construction, working &	08 Hrs
characteristics of MOSFET, SCR, IGBT. Comparison of Power BJT, MOSFET,	
SCR, IGBT. Turn on methods of Power BJT, MOSFET and IGBT. Design of R, R-	
C, and UJT (pulse train) Gate triggering methods of SCR.	
Unit-II	
Thyristor Dynamic characteristics, Specifications and Protection:	07 Hrs
Gate characteristics of SCR, Dynamic characteristics of SCR. Design of Snubber circuit	
for SCR, Line Commutation and Forced Commutation circuits with design, Gate	
protection & overvoltage protection of SCR.	
Unit-III	
Converters:	06 Hrs
Single Phase Controlled Convertor- Full wave Half and Fully controlled line commutated	
bridge converters, Derivation of average load voltage and current. Three phase converters –	
Six pulse converters- with R load- Active inputs to the convertors with and without	
Freewheeling diode, Derivation of average load voltage and current.	
Converter applications:	
Industrial Applications of Half and Fully controlled converters to DC drives (Control of	
DC drives)	
Unit-IV	07.11
Choppers – Step down, Step up Chopper, Step up/Down Chopper, Time ratio control and	07 Hrs
Current limit control strategies – Derivation of load voltage and currents with R, RL of Step	
down, Step up Chopper, Step up/Down Chopper – load voltage expression.	
Application of choppers to subway cars, Industrial drives , battery operated vehicles. Unit-V	
	08 Hrs
Classification of Choppers and Applications:	U8 Hrs
Type A, Type B, Type C, Type D, Type E choppers and their industrial Applications, AC Chopper –phase control type.	
Inverters – Single phase inverter – Basic series inverter – Basic parallel Capacitor inverter,	
bridge inverter(single phase) – Voltage control techniques for inverters Pulse width	
modulation techniques. – UPS-online, offline (Principle of operation only	
Course Outcomes: After completing the course, the students will be able to	

CO1: Understand the comprehensive working of different devices and their applications.CO2: Analyze the application of skills in controlling and conversion of electrical energy.
CO2: Analyze the application of skills in controlling and conversion of electrical energy.
CO3: Evaluate and distinguish the performance of converters and inverters.

CO4 :	Ability to implement their knowledge and skills in design of applications.
--------------	--

Ref	erence Books
1.	"Power Electronics", M. D. Singh & K. B. Kanchandhani, Tata Mc Graw – Hill Publishing
	company, ISBN: 978-0-07-058389-4, 2008
2.	"Power Electronics: Circuits, Devices and Applications", M. H. Rashid, Prentice Hall of India,
	2 nd Edition, ISBN: 0131228153, 9780131228153, 2004
3.	"Power Electronics", P.C. Sen, Tata McGraw-Hill Publishing, ISBN: 978-0-07-462400-5, 2008.
4	"Power Electronics" P S Bimbra P.S Bimbra ,Khanna Publication ,ISBN:978-7409-279-3,5th
	Edition.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO 12
CO1	3	2	2	2	1	2	2	1	1	2		1
CO2	3	2	2	3	3		1				2	1
CO3	3	2	2	3	2	2		1			1	2
CO4	3	3	3	3	2	3	2		1			1

High-3: Medium-2: Low-1

VI Semester									
PROJECT MANAGEMENT									
(Group E: Global Elective)									
Course Code: 16G6E07 CIE Marks: 100									
Credits : L: T: P: S:3:0:0:0	SEE Marks: 100								
Hours: 33L SEE Duration: 03 Hrs									
Course Learning Objectives: The students will be able to									
1. To understand the principles and components of project management.									
2. To appreciate the integrated appro	2. To appreciate the integrated approach to managing projects.								
3. To explain the processes of manage	ring project cost and project procurements.								

Unit – I	
Introduction: What is project, what is project management, relationships among portfolio	06 Hrs
management, program management, project management, and organizational project	
management, relationship between project management, operations management and	
organizational strategy, business value, role of the project manager, project management	
body of knowledge.	
UNIT – II	
Organizational influences & Project life cycle: Organizational influences on project	08 Hrs
management, project state holders & governance, project team, project life cycle.	UO IIIS
Project Integration Management: Develop project charter, develop project management	
plan, direct & manage project work, monitor & control project work, perform integrated	
change control, close project or phase.	
UNIT – III	
	0= 77
Project Scope Management: Project scope management, collect requirements define	07 Hrs
scope, create WBS, validate scope, control scope.	
Project Time Management: Plan schedule management, define activities, sequence	
activities, estimate activity resources, estimate activity durations, develop schedule, control	
schedule.	
UNIT – IV	
	0 < 77
Project Cost management: Project Cost management, estimate cost, determine budget,	06 Hrs
control costs.	
Project Quality management: Plan quality management, perform quality assurance,	
control quality.	
UNIT – V	
Project Risk Management: Plan risk management, identify risks, perform qualitative risk	06 Hrs
analysis, perform quantitative risk analysis, plan risk resources, control risk.	
Project Procurement Management: Project Procurement Management, conduct	
procurements, control procurements, close procurement.	
procurements, contact procurements, cross procurement.	

Cours	se Outcomes: After going through this course the student will be able to
CO1	Understand the concepts, tools and techniques for managing large projects.
CO2	Explain various sub processes in the project management frameworks.
CO3	Analyze and evaluate risks in large and complex project environments.
CO4	Develop project plans for various types of organizations.

Reference Books:

- 1. A Guide to the Project Management Body of Knowledge(PMBOK Guide), Project Management Institute, 5th Edition, 2013, ISBN: 978-1-935589-67-9
- 2. Project Planning Analysis Selection Financing Implementation & Review, Prasanna Chandra, 7th Edition, 2010, Tata McGraw Hill Publication, ISBN 0-07-007793-2.

- 3. Project Management A System approach to Planning Scheduling & Controlling, Harold Kerzner, 10th Edition, 2009, CBS Publishers and Distributors, ISBN 047027806.
- 4. Strategic Project Management Made Simple: Practical Tools for Leaders and Teams, Terry Schmidt, 1st Edition, 2009, John Wiley & Sons, ISBN: 978-0470411582

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2											
CO2	2	2		1	1							
CO3							1	1				
CO4	2		3		1							

Low-1 Medium-2 High-3

	NI C								
	VI Semester								
	VIRTUAL INSTRUMENTATION								
	(0	Group E: Global Elec	ctive)						
Cour	se Code:16G6E08		CIE Marks: 100						
Credi	its/Week: L:T:P:S: 3:0:0:0		SEE Marks: 100						
Hour	Iours:35L SEE Duration: 3Hrs								
Cour	se Learning Objectives: The stu	udents will be able to							
1	Understand the difference be	tween conventional	and graphical programming, basic data						
	acquisition concepts.								
2	Differentiate the real time and v	virtual instrument.							
3	B Develop ability for programming in LabVIEW using various data structures and program								
	structures.								
4	Analyze the basics of data acc	quisition and learning	ng the concepts of data acquisition with						
	LabVIEW.		_						

UNIT-I	
Graphical Programming Environment:	06 Hrs
Basic of Virtual Instrumentation, Conventional and Graphical Programming. Introduction	
to LabVIEW, Components of LabVIEW and Labels.	
Fundamentals: Data Types, Tool Pallets, Arranging Objects, Color Coding, Code	
Debugging, Context Help, Creating Sub-VIs Boolean, Mechanical action- switch, and latch	
actions, String data types, enum, ring, Dynamics.	
UNIT-II	
Fundamentals of Virtual Instrumentation Programming:	09 Hrs
For Loop, While Loop, shift registers, stack shift register, feedback node, and tunnel.	
Timing function : Timing VI, elapsed time, wait function.	
Case structures, formula node, Sequence structures, Arrays and clusters, visual display	
types- graphs, charts, XY graph. Local and Global variables.	
UNIT-III	
Error Handling- error and warning, default error node, error node cluster, automatic and	08 Hrs
manual error handling.	
String Handling: Introduction, String Functions, LabVIEW String Formats.	
File Input/ Output: Introduction, File Formats, File I/O Functions and file Path functions.	
Design patterns: Producer/consumer, event handler, derived design pattern, Queued	
message handler, Producer/consumer (events), Producer/consumer (state machine).	
UNIT-IV	
Data Acquisition: Introduction to data acquisition, Analog Interfacing Connecting signal	06 Hrs
to board, Analog Input/output techniques digital I/O, counters, NI-DAQmx tasks.	00 1113
DAQ Hardware configuration: Introduction, Measurement and Automation Explorer,	
DAQ Assistants, Analysis Assistants.	
Interfacing Instruments: GPIB and RS232: Introduction, RS232 Vs. GPIB,	
Handshaking, GPIB Interfacing, RS232C/RS485 Interfacing, and VISA.	
UNIT-V	
Advanced Topics In LabVIEW: Use of analysis tools and application of VI: Fourier	06 Hrs
transforms Power spectrum, Correlation methods, windowing & filtering. Inter-Process	00 1118
Communication, Notifier, Semaphore, Data Sockets.	
Simulation of systems using VI: Development of Control system, Image acquisition and	
processing.	

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Remember and Understand the fundamentals of Virtual Instrumentation and data Acquisition.						
CO2:	Apply the theoretical concepts to realize practical systems.						
CO3:	Analyze and evaluate the performance of Virtual Instrumentation Systems.						
CO4:	Create a VI system to solve real time problems using data acquisition.						

Refer	rence Books
1	Virtual instrumentation Using LabVIEW, Jovitha Jerome, 4 th Edition, 2010, PHI Learning Pvt.
	Ltd., ISBN: 978-812034035.
2	Virtual Instrumentation Using LabVIEW, Sanjay Gupta & Joseph John, 2 nd Edition, New
	Delhi, 2010, Tata McGraw Hill Publisher Ltd., ISBN: 978-0070700284
3	LabVIEW for Everyone: Graphical Programming made easy and fun, Jeffrey Travis, Jim
	Kring, 3 rd Edition, 2006, Prentice Hall,ISBN: 978-0131856721.
4	Data Acquisition using LabVIEW, Behzad Ehsani, 1st Edition, 2017, Packt Publishing, ISBN:
	978-1782172161.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

CO-PO MAPPING												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	1	2	-	ı	-	2	2	-	1
CO2	1	1	1	1	2	-	-	-	2	2	-	1
CO3	1	ı	1	1	2	-	1	-	2	2	-	1
CO4	2	1	1	2	3	-	-	-	2	2	-	2

Low-1 Medium-2 High-3

	VI Semester						
	INTRODUCTION TO MOBILE APPLICATION DEVELOPMENT						
	(Group E: C	Global Elective)					
Co	urse Code: 16G6E09	CIE Marks: 100					
Cr	Credits: L:T:P:S: 3:0:0:0 SEE Marks: 100						
Ho	Hours: 36L SEE Duration: 3Hrs						
Co	urse Learning Objectives: The students will	be able to					
1	Learn Android application development platf	form for mobile devices and use it.					
2	Understand mobile application architecture a	Understand mobile application architecture and its components.					
3	Define Android specific programming concepts such as activities, intents, fragments, services,						
	broadcast receivers and content providers.						
4	Describe sensors like motion sensors, env	rironmental sensors, and positional sensors; most					
	commonly embedded in Android devices alo	ng with their application programming interface.					

UNIT I	
Overview of Software platforms and Development: Mobile OS: Android development	07 Hrs
platform and tools, Programming language, Emulator, SDK and Development	
Environments	
Creating Applications and Activities: Introducing the Application Manifest File;	
Creating Applications and Activities; Architecture Patterns (MVC); Android Application	
Lifecycle.	
UNIT II	
User Interface Design: Fundamental Android UI Design; Introducing Layouts;	07 Hrs
Introducing Fragments.	
Intents and Broadcasts: Introducing Intents; Creating Intent Filters and Broadcast	
Receivers.	
UNIT III	
Database and Content Providers: Introducing Android Databases; Introducing SQLite;	07 Hrs
Content Values and Cursors; Working with SQLite Databases; Creating Content	
Providers; Using Content Providers; Case Study: Native Android Content Providers.	
UNIT IV	
Location Based Services, Telephony and SMS: Using Location-Based Services; Using	08 Hrs
the Emulator with Location-Based Services; Selecting a Location Provider; Using	
Proximity Alerts; Using the Geocoder; Example: Map-based activity; Hardware Support	
for Telephony; Using Telephony; Introducing SMS and MMS.	
UNIT V	
Hardware Support and Devices (AUDIO, VIDEO, AND USING THE CAMERA):	07 Hrs
Using Sensors and the Sensor Manager; Monitoring a Device's Movement and	
Orientation; Introducing the Environmental Sensors; Playing Audio and Video; Using	
Audio Effects; Using the Camera; Recording Video	

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Assess the basic framework and usage of SDK to build GUI and apply advanced							
	technologies in developing Android mobile applications.							
CO2:	Differentiate techniques for persisting user data, such as shared preferences, traditional file							
	systems (internal and external storage), and SQLite database							
CO3:	Articulate the communication programming features and capabilities of Android platforms.							
CO4:	Design and create innovative, sophisticated mobile applications using Android platform.							

Refe	erence Books
1.	Professional Android 4 Application Development, Reto Meier, WROX Press, 2012, Wiley
	Publishing, ISBN: 9781118102275
2.	Android Application Development: Programming with the Google SDK, John Lombardo, Blake
	Meike, Rick Rogers and Zigurd Mednieks, 2009, O'Reilly Media, Inc. ISBN: 9788184047332
3.	Hello Android, Introducing Google's Mobile Development Platform, Ed Burnette, 3 rd Edition,
	Pragmatic Programmers, LLC.ISBN: 9781934356562
4.	Android Studio Development Essentials - Android 6, Neil Smyth, 2015, Createspace
	Independent Publishing Platform, ISBN: 9781519722089

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	-	3	-	-	-	-	-	-	2
CO2	3	3	3	-	3	1	-	-	-	2	-	2
CO3	-	3	3	-	3	2	-	-	-	2	1	3
CO4	3	3	3	2	3	2	2	2	2	2	1	3

Low-1 Medium-2 High-3

	VI Semester							
	AUTOMOTIVE EN	GINEERING						
	(Group E: Globa	Elective)						
Cou	rse Code: 16G6E10	CIE Marks: 100						
Cred	lits: L:T:P:S 3:0:0:0	SEE Marks: 100						
Hou	Hours: 36L SEE Duration: 3Hrs							
Cou	rse Learning Objectives: The students will be a	ble to						
1	Identify the different sub-systems in automobiles							
2	Describe the functions of each of the sub-system	s and its effect.						
3	Discuss fuel injection, transmission, braking, steering, suspension, air intake and exhaust							
3	systems.							
4	Explain the importance of selection of suitable su	ıb-system for a given performance						
4	requirement.							

UNIT-I					
Automobile Engines	06 Hrs				
Classifications of Internal Combustion Engines based on no. of cylinders, Arrangement of	00 1115				
cylinders, Type of fuel and no. of strokes. Engine construction and nomenclature.					
Thermodynamic principles of Otto and Diesel cycle. Operation in a 4 stroke engine. Direct					
and indirect injection. Combustion stages in engines. Fuels: Gasoline, Diesel, LPG and					
Natural Gas For automotive applications. Fuel properties- Octane number and Cetane					
number. Pollutants and Emission norms- Regulated pollutants and its effects, Regulations					
as per emission norms.					
UNIT-II					
Engine Auxiliary Systems:	08 Hrs				
AirIntake and Exhaust System- Working principle of Air filters, Intake manifold,					
Turbocharger, Intercooler, Exhaust manifold, Catalytic convertor, Exhaust Gas					
Recirculation system, Muffler.					
Cooling system- Components, working principle, Coolant.					
Lubrication system- Components, Properties of lubricating oil, Viscosity numbers.					
Fuel system- Working principle of Fuel Injection Pump, Injector, Nozzle, Fuel filter.					
Working of ignition system, Battery, Immobilizer.					
UNIT-III					
Transmission:	08 Hrs				
Clutch- Classification and working, Gear box- Classification, Working of sliding mesh and					
Synchromesh transmission, Automatic transmission. Propeller shaft, Differential assembly					
and rear axle- Working. Wheels and Tyres- Wheel alignment and balancing classification					
of tyres, Radial, Tubeless.					
UNIT-IV					
Vehicular Auxiliary Systems:	06 Hrs				
Suspension- Front and rear suspension working, Types of springs.					
Brake- Classification and Components - Disc and drum brakes, Hydraulic, parking brake,					
Front and rear wheel brakes. Antilock Braking Systems.					
Steering- components and operation of power steering.					
Vehicle frame and body classification- Hatchback, Sedan, SUV.					
Safety systems- Passive safety systems, Active safety systems- Principle of Electronic					
Stability Program, Air bags, Crash testing methods.					
UNIT-V					
Demonstrations of Automobile Systems: Engine performance measurement in terms of	06 Hrs				
Brake power, Emission measurement and principle, Drawing Valve Timing Diagram for					
multi-cylinder engine, Production and properties of biodiesel.					

Cours	Course Outcomes: After completing the course, the students will be able to					
CO1	Describe the different types of automotive systems. (L1- L2)					
CO2	Construct the Valve Timing Diagram for multi-cylinder engines. (L3)					
CO3	Detect the automotive exhaust pollutants using gas analyzer. (L4)					
CO4	Evaluate the performance of engines by determining Brake Power. (L6)					

Refe	Reference Books					
1.	Automotive Engineering Fundamentals, Richard Stone and Jeffrey K. Ball, 2004,					
	SAE International, ISBN: 0768009871					
2.	Bosch Automotive Handbook, Robert Bosch, 9th Edition, 2004, ISBN: 9780768081527.					
3.	Automotive Engineering e-Mega Reference, David Crolla, Butterworth-Heinemann,					
	1st Edition, 2009, ISBN: 9781856175784.					

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1		1			2		2			1
CO2		2										
CO3		2	1			2		1			2	1
CO4	2	2	1	1	1	1	2	1	1	2	2	

Low-1 Medium-2 High-3

	VI Semester							
	MOBILE NETWORK SYSTEMS AND STANDARDS							
	(Group	E: Global Elective)						
Cou	Course Code: 16G6E11 CIE Marks: 100							
Cred	Credits: L:T:P:S: 3:0:0:0 SEE Marks: 100							
Hou	Hours: 34L SEE Duration: 03Hrs							
Cou	rse Learning Objectives: The student	s will be able to						
1	Understand land mobile concepts, radio link design and cellular network.							
2	Compare the standards of WPAN, WLAN and WMAN.							
3	3 Analyze WPAN, WLAN and WMAN standards and their architecture.							
4	Design and demonstrate wireless networks for various applications.							

UNIT-I		
Cellular Wireless Networks: Principles of cellular Networks, cellular system components	06 Hrs	
and Operations, channel assignment, Attributes of CDMA in cellular system.		
UNIT-II		
Second generation Cellular Networks: GSM architecture, IS-95, GPRS, EDGE.	08 Hrs	
UNIT-III		
Third generation cellular systems: WCDMA, IMT 2000 and LTE, Convergence in the	06 Hrs	
network.		
UNIT-IV		
Wireless Personal Area Networks: Network architecture, components, Applications,	08 Hrs	
Zigbee, Bluetooth.		
Wireless Local Area networks: Network Architecture, Standards, Applications.		
UNIT-V		
Wireless Metropolitan Area Networks: IEEE 802.16 standards, advantages, WMAN		
Network architecture, Protocols, Applications.		

	Course Outcomes: After completing the course, the students will be able to					
CO1	Describe the architectures and characteristics of different mobile networks. (L1-L2)					
CO2	Apply the Network standards to a suitable application (L3)					
CO3	Analyze the operation of various network technologies and standards (L4)					
CO4	Evaluate the performance of various network technologies (L5)					

Refere	Reference Books						
1	Wireless Communication, Upena Dalal, 1st Edition, 2009, Oxford higher Education,						
	ISBN-13:978-0-19-806066-6.						
2	Wireless and Mobile Networks Concepts and Protocols, Dr. sunil Kumar s Manvi, 2010,						
	Willey India Pvt. Ltd., ISBN: 978-81-265-2069-5.						
3	Wireless Communications Principles and practice, Theodore S Rappaport, 2nd Edition,						
	Pearson, ISBN 97881-317-3186-4.						

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2		2			2		2		1
CO2	3	3	2		2			2		2		1
CO3	3	3	3		2			2		2		2
CO4	3	3	3		3			2		2		2

Low-1 Medium-2 High-3

	VI Semester						
	APPLIED PARTIAL DIFFERENTIAL EQUATIONS						
		Group E: Global Elective)					
Cou	rse Code:16G6E12		CIE Marks: 100				
Cred	lits: L:T:P:S: 3:0:0:0		SEE Marks: 100				
Hou	Hours: 35L SEE Duration: 3Hrs						
Cou	rse Learning Objectives:						
1	Adequate exposure to learn basics of partial differential equations and analyze mathematical						
	problems to determine the suitable analytical technique.						
2	Use analytical techniques and finite element technique for the solution of elliptic, parabolic and						
	hyperbolic differential equations.						
3	3 Solve initial value and boundary value problems which have great significance in engineering						
	practice using partial differential equations.						
4	Identify and explain the basics of partial differential equations and use the same to analyze the						
	behavior of the system.						

Unit-I	
Partial Differential Equations of first order:	07 Hrs
Introduction to formation of partial differential equations, Cauchy problem, Orthogonal	0. 222
surfaces, First order non-linear partial differential equations-Charpit's method,	
Classification and canonical forms of partial differential equations.	
Unit – II	<u>I</u>
Elliptic Differential Equations:	07 Hrs
Derivation of Laplace and Poisson equation, Separation of variable method, Dirichlet	
problem, Neumann problem, Solution of Laplace equation in cylindrical and spherical	
coordinates.	
Unit -III	
Parabolic Differential Equations:	07 Hrs
Formation and solution of Diffusion equation, Dirac-Delta function, Separation of variable	
method, Solution of Diffusion equation in cylindrical and spherical coordinates.	
Unit –IV	
Hyperbolic Differential Equations:	07 Hrs
Formation and solution of one dimensional wave equation, D'Alembert's solution,	
vibrating string, Forced vibration, Periodic solution of one dimensional wave equation in	
cylindrical and spherical coordinates, Vibration of Circular membrane.	
Unit –V	
Numerical solutions of Partial Differential Equations:	07 Hrs
Finite difference method for Elliptic, Parabolic and Hyperbolic partial differential	
equations, Introduction to the finite element method-simple problems.	

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Identify and interpret the fundamental concepts of formation and solution of parabolic,					
	hyperbolic and elliptic differential equations using analytical and numerical methods.					
CO2:	Apply the knowledge and skills of analytical and numerical methods to solve the parabolic,					
	hyperbolic and elliptic differential equations arising in the field of science and engineering.					
CO3:	Analyze the physical problem to establish mathematical model and use appropriate method to					
	solve and optimize the solution using the appropriate governing equations.					
CO4:	Distinguish the overall mathematical knowledge to demonstrate and analyze the solution of					
	parabolic, hyperbolic and elliptic differential equations arising in practical situations.					

Refere	ence Books
1	Partial Differential Equations, K. Sankara Rao, Prentice-hall of India, 3 rd Edition, 2012,
	ISBN: 978-81-203-3217-1.
2	Advanced Engineering Mathematics, Erwin Kreyszig, Wiley, 10 th Edition, 2016, ISBN: 978-
	81-265-5423-2.
	Numerical methods for scientific and engineering computation, M K Jain, S. R. K. Iyengar,
3	R. K. Jain, New Age International Publishers, 6 th Edition, 2012, ISBN-13: 978-81-224-2001-
	2.
4	An Introduction to the finite element method, J. N. Reddy, McGraw Hill, 3 rd Edition, 2005,
	ISBN 13: 9780072466850.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

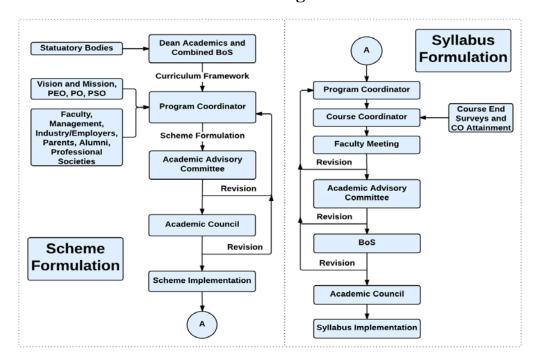
High-3: Medium-2: Low-1

	VI Semester									
	AIRCRAFT SYSTEMS									
(Group E: Global Elective)										
Cour	CIE Marks: 100									
Cred	lits: L:T:P:S: 3:0:0:0	SEE Marks: 100								
Hou	rs: 36L	SEE Duration: 3Hrs								
Cour	Course Learning Objectives: To enable the students to									
1	List the various systems involved in the design of an aircraft									
2	Demonstrate the technical attributes of all the subsystems of an aircraft									
3	Explain the significance of each systems and its subsystems for developing an airplane									
4	Demonstrate the integration of the systems with the airplane									

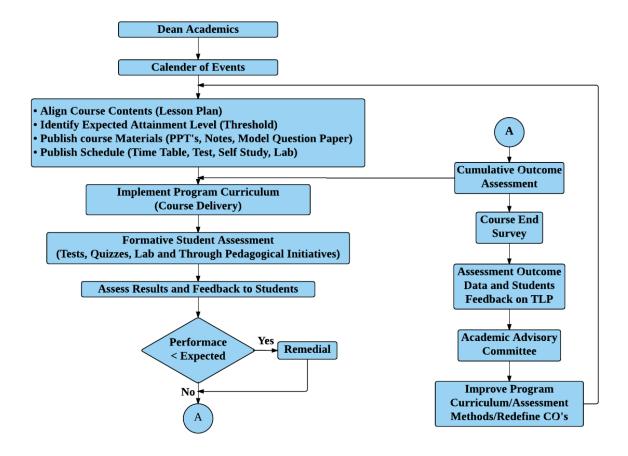
Unit-I							
Flight Control Systems : Primary and secondary flight controls, Flight control linkage system, Conventional Systems, Power assisted and fully powered flight controls.							
Unit – II							
Aircraft Hydraulic & Pneumatic Systems: Components of a typical Hydraulic system,							
Working or hydraulic system, Power packs, Hydraulic actuators. Pneumatic system and	08 Hrs						
components, Use of bleed air, Landing gear and braking, Shock absorbers-Retraction							
mechanism.	i						
Unit -III							
Aircraft Fuel Systems: Characteristics of aircraft fuel system, Fuel system and its	i						
components, Gravity feed and pressure feed fuel systems, Fuel pumps-classification, Fuel	07 Hrs						
control unit.	i .						
Unit -IV							
Environmental Control Systems: Air-conditioning system, vapour cycle system, de-	i						
icing and anti-icing system, Fire detection- warning and suppression. Crew escape aids.	07 Hrs						
Engine Systems: Engine starting sequence, Starting and Ignition systems, Engine oils							
and a typical lubricating system.	1						
Unit -V							
Aircraft Instruments: Instruments displays, panels & layouts, Instrumentation	i						
grouping, Navigation instruments, Radio instruments, Hydraulic and Engine instruments.	i						
Air Data Instruments: Basic air data system and probes, Mach meter, Air speed	07 Hrs						
indicator, Vertical speed indicator, Barometric pressure sensing, Altimeter, Air data	0/ 1113						
alerting system- angle of attack sensing, stall warning, Mach warning, altitude alerting	İ						
system.	i.						

Cours	Course Outcomes:							
At the	At the end of this course the student will be able to:							
CO1	Categorise the various systems required for designing a complete airplane							
CO2	Comprehend the complexities involved during development of flight vehicles.							
CO3	Explain the role and importance of each systems for designing a safe and efficient flight							
COS	vehicle							
CO4	Demonstrate the different integration techniques involved in the design of an air vehicle							

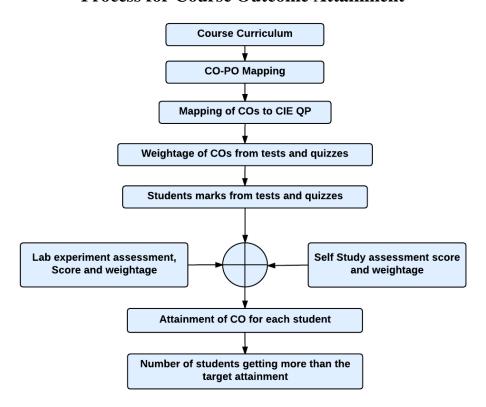
Ref	Reference Books										
1	John D. Anderson, Introduction to Flight, 7 th Edition, 2011, McGraw-Hill Education, ISBN 9780071086059.										
2	Moir, I. and Seabridge, A., Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration, 3 rd Edition, 2008, Wiley Publications, ISBN- 978-0470059968										

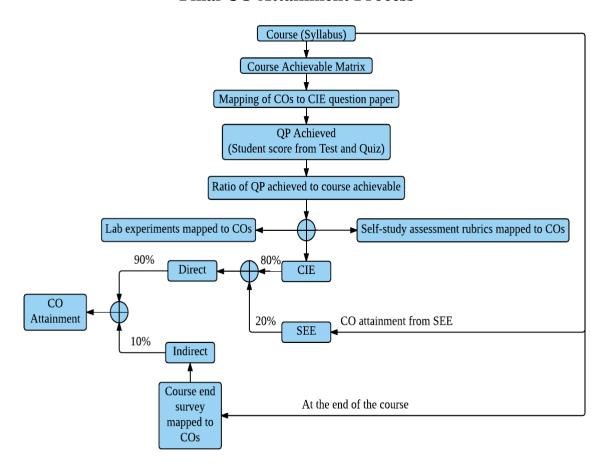

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)


CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	3	2	2				1
CO2	2	3	3	3	1	1	1	1				1
CO3	2	2	3	3	1							2
CO4	3	3	3	3	1	2	1	2				1

High-3: Medium-2: Low-1


Curriculum Design Process


Academic Planning and Implementation


Process for Course Outcome Attainment

Final CO Attainment Process

Program Outcome Attainment Process

Guidelines for Fixing Targets

• The target may be fixed based on last 3 years' average attainment

PROGRAM OUTCOMES (PO)

- **PO1:** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO2: Problem analysis**: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3: Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4:** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5:** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO6:** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO7:** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8:** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9:** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10:** Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11:** Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12:** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.