

RV COLLEGE OF ENGINEERING®

(Autonomous Institution Affiliated to VTU, Belagavi) RV Vidyaniketan Post, Mysuru Road, Bengaluru – 560059

Scheme and Syllabus of I to IV Semester (Autonomous System of 2018 Scheme)

Master of Technology (M.Tech) in COMMUNICATION SYSTEMS

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

VISION

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology.

MISSION

- 1. To deliver outcome based Quality education, emphasizing on experiential learning with the state of the art infrastructure.
- 2. To create a conducive environment for interdisciplinary research and innovation.
- 3. To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- 4. To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- 5. To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

QUALITY POLICY

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

CORE VALUES

Professionalism, Commitment, Integrity, Team Work and Innovation

RV COLLEGE OF ENGINEERING®

(Autonomous Institution Affiliated to VTU, Belagavi) RV Vidyaniketan Post, Mysuru Road Bengaluru – 560059

Scheme and Syllabus of I to IV Semester (Autonomous System of 2018 Scheme)

Master of Technology (M.Tech) in COMMUNICATION SYSTEMS

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

VISION

Imparting quality technical education through interdisciplinary research, innovation and teamwork for developing inclusive & sustainable technology in the area of Electronics and Communication Engineering

MISSION

- 1. To impart quality technical education to produce industry-ready engineers with a research outlook.
- 2. To train the Electronics & Communication Engineering graduates to meet future global challenges by inculcating a quest for modern technologies in the emerging areas.
- 3. To create centers of excellence in the field of Electronics & Communication Engineering with industrial and university collaborations.
- 4. To develop entrepreneurial skills among the graduates to create new employment opportunities

PROGRAM OUTCOMES (PO)

M. Tech. Communication Systems graduates will be able to:

- **PO1:** Independently carry out research /investigation and development work to solve practical problems related to Communication Systems.
- **PO2:** Write and present a substantial technical report/document in the field of Communication Systems
- **PO3:** Demonstrate a degree of mastery over the area of Communication Systems. The mastery should be at a level higher than the requirements in the bachelor's in Electronics & Communication Engineering program
- **PO4:** Design and develop communication system modules with good economics and business practices in order to meet the global challenges.
- **PO5:** Abstract the requirements of an application to interface with communication modules.
- **PO6:** Acquire professional and intellectual integrity, ethics of research and execute projects efficiently.

ABBREVIATIONS

Sl. No.	Abbreviation	Acronym
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	SEE	Semester End Examination
5.	CE	Professional Elective
6.	GE	Global Elective
7.	HSS	Humanities and Social Sciences
8.	CV	Civil Engineering
9.	ME	Mechanical Engineering
10.	EE	Electrical & Electronics Engineering
11.	EC	Electronics & Communication Engineering
12.	IM	Industrial Engineering & Management
13.	EI	Electronics & Instrumentation Engineering
14.	СН	Chemical Engineering
15.	CS	Computer Science & Engineering
16.	TE	Telecommunication Engineering
17.	IS	Information Science & Engineering
18.	BT	Biotechnology
19.	AS	Aerospace Engineering
20.	PY	Physics
21.	CY	Chemistry
22.	MA	Mathematics
23.	MCA	Master of Computer Applications
24.	MST	Structural Engineering
25.	MHT	Highway Technology
26.	MPD	Product Design & Manufacturing
27.	MCM	Computer Integrated & Manufacturing
28.	MMD	Machine Design
29.	MPE	Power Electronics
30.	MVE	VLSI Design & Embedded Systems
31.	MCS	Communication Systems
32.	MBS	Bio Medical Signal Processing & Instrumentation
33.	МСН	Chemical Engineering
34.	MCE	Computer Science & Engineering
35.	MCN	Computer Network Engineering
36.	MDC	Digital Communication
37.	MRM	Radio Frequency and Microwave Engineering
38.	MSE	Software Engineering
39.	MIT	Information Technology
40.	MBT	Biotechnology
41.	MBI	Bioinformatics

CONTENTS

	SEMESTER : I					
Sl. No.	Course Code	Course Title	Page No.			
1.	18 MAT11B	Probability Theory & Linear Algebra	1			
2.	18MCS12	Advanced Communications Systems -1	3			
3.	18MCS13	Advanced Communication Networks & Protocols	5			
4.	18HSS14	7				
5.	18MCS1AX	Elective – A	9			
6.	18MCS1BX	Elective – B	15			
		GROUP A: PROFESSIONAL ELECTIVES				
1.	18MCS1A1	Advanced Embedded Systems	9			
2.	18MCS1A2	Advanced Digital Signal Processing	11			
3.	18MCS1A3	RF and Microwave Circuits	13			
		GROUP B: PROFESSIONAL ELECTIVES				
1.	18MVE1B1	MEMS and Smart Systems	15			
2.	18MCS1B2	Digital Image Processing	17			
3.	18MCS1B3	Cryptography and Network Security	19			

		SEMESTER:II	
Sl. No.	Course Code	Course Title	Page No.
1.	18MCS21	Advanced Communications Systems -2	21
2.	18MCS22	Error Control and Coding	23
3.	18IM23	Research Methodology	25
4.	18MCS24	Minor Project	27
5.	18MCS2CX	Elective – C	28
6.	18MCS2DX	Elective – D	34
7.	18XX2GX	Global Elective	40
		GROUP C: PROFESSIONAL ELECTIVES	
1.	18MCS2C1	Antenna Theory	28
2.	18MCS2C2	Machine Learning	30
3.	18MCS2C3	Optical Communication Networks	32
		GROUP D: PROFESSIONAL ELECTIVES	
1.	18MCS2D1	Wireless Sensor Networks and IOT	34
2.	18MCE2D2	Deep Learning	36
3.	18MVE2D3	VLSI Digital Signal Processing Systems	38
		GROUP G: GLOBAL ELECTIVES	
1.	18CS2G01	Business Analytics	40
2.	18CV2G02	Industrial & Occupational Health and Safety	42
3.	18IM2G03	Modeling using Linear Programming	44
4.	18IM2G04	Project Management	45
5.	18CH2G05	Energy Management	47
6.	18ME2G06	Industry 4.0	49
7.	18ME2G07	Advanced Materials	51
8.	18CHY2G08	Composite Materials Science and Engineering	53
9.	18PHY2G09	Physics of Materials	55
10.	18MAT2G10	Advanced Statistical Methods	57

CONTENTS

	SEMESTER : III					
Sl. No.	Course Code	Course Title	Page No.			
7.	18MCS31	Smart Antenna Signal Processing	59			
8.18MCS32Internship61						
9.	63					
10.	18MCS3EX	Professional Elective E	64			
		GROUP E: CORE ELECTIVES				
1.	18MCS3E1	Wireless Cellular and LTE 4G Broadband	64			
2.	18MCS3E2	Wireline Broadband Communications	66			
3.	18MCS3E3	Wireless Local Area Networks	68			

	SEMESTER : IV						
Sl. No. Course Code Course Title Page No.							
1.	18MCS41	Major Project : Phase II	70				
2.	18MCS42	Technical Seminar	71				

RV COLLEGE OF ENGINEERING[®], BENGALURU-560059 (Autonomous Institution Affiliated to VTU, Belagavi) DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING M.Tech in COMMUNICATION SYSTEMS

	FIRST SEMESTER CREDIT SCHEME								
SI.				Credit Allocation					
No.	Course Code	Course Title	BoS	L	Т	Р	Total Credits		
1	18 MAT11B	Probability Theory & Linear Algebra MAT			0	0	4		
2	18MCS12	Advanced Communications Systems -1 EC		3	1	1	5		
3	18MCS13	Advanced Communication Networks & EC Protocols		3	1	1	5		
4	18HSS14	Professional Skill Development	HSS	0	0	0	0		
5	18MCS1AX	Elective – A	EC	4	0	0	4		
6	18MCS1BX	BX Elective – B EC		4	0	0	4		
	Total number of Credit					2	22		
		Total Number of Hour	s / Week	18	4	4	26		

	SECOND SEMESTER CREDIT SCHEME								
Sl.	Course				Cred	cation			
No.	Code	Course Title	BoS	L	Т	Р	Total Credits		
1	18MCS21	Advanced Communications Systems-2	EC	3	1	1	5		
2	18MCS22	Error Control and Coding	EC	3	1	0	4		
3	18IM23	Research Methodology (Common to all programs)	IM	3	0	0	3		
4	18MCS24	Minor Project	EC	0	0	2	2		
5	18MCS2CX	Elective – C	EC	4	0	0	4		
6	18MCS2DX	Elective – D	EC	4	0	0	4		
7	18XX2GX	Global Elective	Respective boards	3	0	0	3		
	Total number of Credit					3	25		
		Total Number of H	Iours / Week	20	4	6	30		

	SEMESTER: I				
		GROUP A: PROFESSIONAL ELECTIVES			
Sl. No.	Course Code	Course Title			
1.	18MCS1A1	Advanced Embedded Systems			
2.	18MCS1A2	Advanced Digital Signal Processing			
3.	18MCS1A3	RF and Microwave Circuits			
		GROUP B: PROFESSIONAL ELECTIVES			
1.	1. 18MVE1B1 MEMS and Smart Systems (Common to VLSI and CS)				
2.	18MCS1B2	Digital Image Processing			
3.	18MCS1B3	Cryptography and Network Security			
		II Semester			
		GROUP C: PROFESSIONAL ELECTIVES			
1.	18MCS2C1	Antenna Theory			
2.	18MCS2C2	Machine Learning			
		(Common to VLSI & ES, CS, CNE, DCE, BMI, SE)			
3.	18MCS2C3	Optical Communication Networks			
		GROUP D: PROFESSIONAL ELECTIVES			
1.	18MCS2D1	Wireless Sensor Networks and IOT			
2.	18MCE2D2	Deep Learning			
		(Common to CSE and CS)			
3.	18MVE2D3	VLSI Digital Signal Processing Systems			
		(Common to VLSI & ES and CS)			

		GROUP	G: GLOBAL ELECTIVES	
Sl. No.	Host Dept	Course Code	Course Title	Credits
1.	CS	18CS2G01	Business Analytics	3
2.	CV	18CV2G02	Industrial & Occupational Health and Safety	3
3.	IM	18IM2G03	Modelling using Linear Programming	3
4.	IM	18IM2G04	Project Management	3
5.	СН	18CH2G05	Energy Management	3
6.	ME	18ME2G06	Industry 4.0	3
7.	ME	18ME2G07	Advanced Materials	3
8.	CY	18CHY2G08	Composite Materials Science and Engineering	3
			(Common to AS, BT, CH, CV, IM, ME)	
9.	PY	18PHY2G09	Physics of Materials	3
10.	MA	18MAT2G10	Advanced Statistical Methods	3

RV COLLEGE OF ENGINEERING[®], BENGALURU-560059 (Autonomous Institution Affiliated to VTU, Belagavi) DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING M.Tech Program in COMMUNICATION SYSTEMS

	THIRD SEMESTER CREDIT SCHEME								
Sl.	Course		DeC	0	Credit Al	locatio	n		
No.	Code	Course Title	BoS	L	Т	P	Credit		
1.	18MCS31	Smart Antenna Array Signal Processing	EC	4	1	0	5		
2.	18MCS32	Internship	EC	0	0	5	5		
3.	18MCS33	Major Project: Phase I	EC	0	0	5	5		
4.	18MCS3EX	Professional Elective-E	EC	4	0	0	4		
	Total number of Credit				1	10	19		
	Total Number of Hours / Week			8	2	20	30		

	III Semester					
	GROUP E: CORE ELECTIVES					
Sl. No.	Sl. No. Course Code Course Title					
4.	18MCS3E1	Wireless Cellular and LTE 4G Broadband				
5.	18MCS3E2	Wireline Broadband Communication				
6.	18MCS3E3	Wireless Local area Networks				

	FOURTH SEMESTER CREDIT SCHEME							
Sl. No.	Course Code	Course Title	BoS	Credit Allocation				
				L	Т	Р	Credit	
1	18MCS41	Major Project: Phase II	EC	0	0	20	20	
2	18MCS42	Technical Seminar	EC	0	0	2	2	
	Total number of Credit			0	0	22	22	
	Total Number of Hours / Week			0	0	44	44	

			SEMESTER:	I		
		PROBABIL	ITY THEORY & L	INEAR ALGEBRA		
	((Common to M		CE, MRM, MIT, MSE)		
Course Code	:	18MAT11B	(Theory)	CIE Marks	:	100
Credits	:			SEE Marks	:	100
Hours	:			SEE Duration	:	3 Hrs
iiouis	•				•	
			Unit – I			10 Hr
Matrices and		-				
dimension, fo				nd subspaces, linear indepe ullity theorem (without		
transformations		fundamentar s	uospaces, Raik-IN	unity theorem (without	proor), inica
uniterent	•		Unit – II			10 Hr
•		Projections of v				1.0
				east squares, orthogonal l		
		lue Decompositi		es and Eigen vectors, diago	onanzati	ion of the
maurx, Singula	v a	lue Decompositio	Unit – III			10 Hr
Random Varia	hles	•				10 111
		•	ntinuous and discrete	e random variables, Cumu	lative d	istributio
				properties, Expectation, N		
moments, Chara		• •	7 1			,
			Unit – IV			11 Hr
Discrete and C	onti	nuous Distribut	ions:			•
Binomial, Poiss	on, I	Exponential, Gau	ssian distributions.			
Multiple Rand						
				Statistical Independence,		
Covariance fund	ction	s, Transformatic	on of random variable	es, Central limit theorem (st	atement	only).
			Unit – V			11 Hr
Dandam Duasa			emt v			11 111
Random Proce			m Processos Station	ary and Indonandanaa Au	to corre	lation
				hary and Independence, Aunce functions. Markov proc		
-	-	probability in Ma		ice functions. Markov proc	13313, C	aiculating
Course Outcor		noodonity in M				
		the course, the s	tudents should have	acquired the ability to:		
				of matrix theory, probabil	ity theor	ry and
randor			C		2	
CO2 Analyz	ze ar	nd solve problem	s on matrix analysis	, probability distributions a	nd mult	iple
Rando	m va	ariables.		-		_
CO3 Apply	the	properties of aut	to correlation functio	n, rank, diagonalization of	matrix,	verify
Rank I	Nulli	ty theorem and 1	noments.			
		••••		ulative distribution function		
			cognize problems wh	ich involve these concepts	in Engiı	neering
applica		18.				
Reference Boo	kS					
				Veerarajan, 3 rd Edition, T	ata Mc	Graw Hil
			8, ISBN:978-0-07-00			
2. Probability	/ and		sses With Application	ns to Signal Processing and		
~		a	1 1	hilders, 2 nd Edition, Elsevi		

	Press, 2012, ISBN 9780121726515.
3.	Linear Algebra and its Applications, Gilbert Strang, 4th Edition, Cengage Learning, 2006,
	ISBN 97809802327.
4.	Schaum's Outline of Linear Algebra, Seymour Lipschutz and Marc Lipson, 5th Edition,
	McGraw Hill Education, 2012, ISBN-9780071794565.

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks**

Scheme of Semester End Examination (SEE) for 100 marks

				SEMESTER: I				
				OMMUNICATIONS SYS	STEMS -1			
Course	Code	:	18MCS12	incory and inderect)	CIE Marks	:	100+50	
Credits		:	3:1:1		SEE Marks	:	100+50	
Hours		:	39L+26T +26P		SEE Duration	:	3 +3 Hrs	
				Unit – I			08 Hrs	
bandpass Modula QPSK, M	s random t ion: Me APSK, M	n pro odu 1Q2	ocess. Multiplexing lation Schemes w AM, and Power Lir	and De-multiplexing of Si and De-multiplexing of Si ithout memory (Band Li nited Schemes – FSK, MF t PSD for Modulation Sche	gnals. mited Schemes SK, DPSK, DQPS	- PA	M, BPSK,	
				Unit – II			08 Hrs	
Coheren	t Detecti with me	on emc	for power limited ory, Optimal Non –	tor Channel +AWGN, Pe and Bandlimited schemes, Coherent detection for sc	, Optimal Cohere	ent d	etection for	
(I'SK, D		21.5	<u>K).</u>	Unit – III			08 Hrs	
linear fil receiver Linear	ter chan for chan Equalize	nels nel e rs :	s, Sinc, RC, Duobin with ISI and AWG Zero forcing Equ	channel characterization, nary and Modified Duobin N. alizer, MSE and MMSE, SE discussion only. Unit – IV	ary signaling sch	eme	s, Optimum	
Adaptiv	e equali	zat		dback equalization, Predic r equalizer, adaptive decis kage Algorithm).			e of DFE. r, Adaptive	
				Unit – V			07 Hrs	
commun	ication s signals,	ysto CI	em, Direct sequence	ommunication : Model of s e spread spectrum signals, l g SS, Synchronization of S	Frequency hopped			
			h this course the st	udent will be able to:				
CO1 CO2	the proc	ess	of Detection and E	as and Bandpass signals rep stimation at the receiver in e for various types of single	the presence of A	AWG	N only.	
CO3	through ideal and AWGN Non-band limited and band limited channels.CO3Design single carrier equalizers for various symbol modulation schemes and detection methods for defined channel models, and compute parameters to meet desired rate and							
CO4	code Design and Evaluate Non band limited and Non power limited spread spectrum systems for communications in a Jamming environment, multiuser situation and low power intercept environment.							
				AB EXPERIMENTS	2 H	Irs/V	Veek	
 Pulse ASK I Binary 	Amplitu Modulati 7 Phase S	de I Ion Shif	udy the properties of Modulation and Den and Demodulation t Keying Modulation eying Generation an	nodulation. on and Demodulation				

6. Ç	PSK Modulation and Demodulation						
7. Ç	7. QAM Modulation and Demodulation						
8. N	Ainimum Shift Keying Modulation						
9.0	Generation of PN Sequence and Gold sequence						
10.	Design of Linear Equalizers						
11.	Demo Experiment using Ham Radio						
Ref	erence Books						
1.	Digital Communications, John G. Proakis, Masoud Salehi, 5 th Edition, Pearson Education,						
	2014, ISBN:978-9332535893						
2.	Digital Communications: Fundamentals and Applications: Fundamentals & Applications,						
	Bernard Sklar,2 nd Edition, Pearson Education, 2009, ISBN:978-8131720929						
3.	Digital Communications Systems, Simon Haykin ,1st Edition ,Wiley, 2014, ISBN:978-						
	8126542314						
4.	Signal Detection and Estimation, Mourad Barkat, 2 nd Edition, Artech house, 2005, ISBN:						
	1580530702						

Scheme of Continuous Internal Evaluation (CIE): Total marks: 100+50=150

Scheme of Continuous Internal Evaluation (CIE): Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (O+T+A) is 20+50+30=100 Marks**

Continuous Internal Evaluation (CIE): Practical (50 Marks)

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Scheme of Semester End Examination (SEE) for 100 marks

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Scheme of Semester End Examination (SEE): Practical (50 Marks)

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Total marks: 100+50=150

Theory (100 Marks) + Practical (50 Marks) = Total Marks (150)

ADVANCED COMMUNICATION NETWORKS & PROTOCOLS (Theory and Practice)	
Course Code:18MCS13CIE Marks:100+	-50
Credits : 3:1:1 SEE Marks : 100+	-50
Hours: 39L+26T+26PSEE Duration: 3+3	
Unit – I 08	8 Hrs
Foundation: Building a Network, Requirements, Perspectives, Scalable Connectivity, - Effective Resource sharing, Support for Common Services, Manageability, Protocol laye Performance, Bandwidth and Latency, Delay X Bandwidth Product, Perspectives on Connec Classes of Links, Reliable Transmission, Stop-and-Wait, Sliding Window, Concurrent Lo Channels.	ering, cting,
	8 Hrs
Internetworking I: Switching and Bridging, Datagram's, Virtual Circuit Switching, Source Routing, Bridges and LAN Switches, Basic Internetworking (IP), What is an Internetwork?, Se Model, Global Addresses, Datagram Forwarding in IP, Subnetting and classless addressing, Address Translation (ARP) Host Configuration(DHCP), Error Reporting(ICMP).	
	8 Hrs
Internetworking- II: Network as a Graph, Distance Vector(RIP), Link State(OSPF), Metrics Global Internet, Routing Areas, Routing among Autonomous systems(BGP), IP Version 6(I Mobility and Mobile IP	
Unit – IV 08	8 Hrs
End-to-End Protocols: Simple Demultiplexer (UDP), Reliable Byte Stream(TCP), End-to- Issues, Segment Format, Connecting Establishment and Termination,TCP Congestion Co Additive Increase/ Multiplicative Decrease, Slow Start, Fast Retransmit and Fast Recovery	ntrol,
Unit – V 0	7 Hrs
Congestion Control and Resource Allocation: Congestion-Avoidance Mechanisms, DEC bit Random Early Detection (RED), Source-Based Congestion Avoidance. The Domain Name System(DNS),),World Wide Web(HTTP).	,
Course Outcomes After going through this course the student will be able to:	
CO1 Explain the performance of various multiple access protocols.	
CO2 Design the network protocol for given specifications of applications.	
CO3 Design & develop the scheduling algorithms for various performance metrics.	
CO4 Develop various network traffic management and control techniques for given specification	
LAB EXPERIMENTS	
 Part –I: Experiments Using C/C++ programming. 1. Bit stuffing & character stuffing. 2. Cyclic Redundancy check. 3. Implement leaky bucket congestion control algorithm 	
 4. Minimum spanning tree. Part-II: The following experiments are to be conducted using CISCO Packet Tracer 5. Cable a network according to the given network topology and test and verify configurations using packet tracer by using ping commands. 	
 6. Configuring Wireless LAN Access and test and verify configurations using packet tracer. 7 Configuring Traditional Inter-VLAN Routing and test and verify configurations using packet tracer. 	et

8. Stu	8. Study the performance of CSMA/CA protocols.						
9.Stu	9.Study the performance of network with CSMA/CA protocol and compare CSMA/CD protocols.						
Refer	Reference Books						
1.	Computer Networks: A System Approach, Larry Peterson and Bruce S Davis, 5 th Edition, Morgan Kaufmann, 2011, ISBN-10: 9780123850591.						
2.	Internetworking with TCP/IP, Principles, Protocols and Architecture, Douglas E Comer, 6th Edition, PHI, 2014, ISBN-10: 9332550107.						
3.	Computer Networks, Protocols , Standards and Interfaces, Uyless Black, 2 nd Edition, PHI,1993, ISBN: 0-13-090861-4						
4.	TCP /IP Protocol Suite, Behrouz A Forouzan, 4 th Edition, Tata McGraw-Hill,2009, ISBN- 10: 0073376043						

Scheme of Continuous Internal Evaluation (CIE): Total marks: 100+50=150

Scheme of Continuous Internal Evaluation (CIE): Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks**

Continuous Internal Evaluation (CIE): Practical (50 Marks)

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

RV College of Engineering®

Scheme of Semester End Examination (SEE) for 100 marks

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Scheme of Semester End Examination (SEE): Practical (50 Marks)

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Total marks: 100+50=150

Theory (100 Marks) + Practical (50 Marks) = Total Marks (150)

				SEMESTI	ER: I				
			PROFES	SSIONAL SKILI		PMENT			
Course	e Code	:	18HSS14		(CIE Marks	:	50	
Credit	s: L: T:P	:	0:0:3		5	SEE Marks	:	Audit Course	
Hours		:	18L		(CIE Duration	:	02 Hrs	
				Unit-1				03 Hrs	
Comm	unication	Skil	ls: Basics of	of Communication	on, Persona	l Skills & Pr	esei	ntation Skills -	
Introdu	ction, Appl	icati	on, Simulatio	on, Attitudinal De	velopment,	Self Confidence	e, S	WOC analysis.	
Resume Writing: Understanding the basic essentials for a resume, Resume writing tips Guidelines									
for bet	ter presentat	ion	of facts. The	ory and Application	ons.				
				Unit-2				08 Hrs	
digit p Inequa Reasor b. Non Analyt Logica inducti commo Verbal sentence Compr Intervi Etiquet Groom	laces etc. S lities. ning – a. Ver - Verbal rea ical Reasoni 1 Aptitude, ve reasoning on flaws, arg Analogies/ ce completio ehension, Pr iew Skills: te – Conve ing, Behavi	imp rbal soni ing - Sy g. In guma Apti ons, roble Qu ersat oral	e equations - Blood Rela ng - Visual S Single & M Allogism, Ver troduction to ents and assu tude – introd sentence cor em Solving.	Analysis: Number – Linear equatio tion, Sense of Dir sequence, Visual a ultiple comparison nn-diagram metho puzzle and game mptions. uction to different rections, antonym Unit-3 d & how to har professional, Dress il interviews, Mor- s, Technical Inter	ns, Eliminative rection, Arithanalogy and ns, Linear S od, Three stars od, Thr	tion Method, S nmetic & Alpha classification. equencing. tatement syllog g information, p ypes – analogie s, vocabulary b Body language interview, Pro 's - Mock inter	ibet. ibet. ism parts es, C uild e in fess viev	titution Method , Deductive and of an argument Grammar review, ing etc. Reading 03 Hrs interview, and ional attire and vs with different	
1 alleis.	Tractice on	i Su		Unit-4	views, and v			02 Hrs	
sensitiv	vity; capabil	lity a	and maturity	ills: Optimal co-e model, decision n nd presentation sk Unit-4	naking abilit			ender	
Motiva	ation: Self	-mo	tivation, gro	oup motivation,	Behavioral	Management.	Ir	spirational and	
				n. (Examples to b		U A		1	
Leade	rship Skills	: Etł	nics and Integ	grity, Goal Setting	g, leadership	ability.			
Note:	The respect	tive	departments	should discuss of	case studies	and standards	pe	rtaining to their	
domair									
				ng the course, th					
<u>CO1</u>				o suit the industry	· · · ·				
<u>CO2</u>				antitative and rea		8			
<u>CO3</u>				erpersonal workin					
CO4		ate v	erbal commu	inication skills wi	ith appropria	ite body langua	ge.		
	nce Books	f	Iliable Effe	ative Decels St	mhan D.C.	Ence Drees	. 15	E Lition 2004	
IS	SBN: 07432	724	55	ective People, Ste	•	-			
IS	SBN: 97893	809	14787	uence people, Da					
C	renny, Ron	Mc	millan 1 st Ed	for Talking Wh ition, McGraw-H	ill Publicati	on, 2012, ISBN	J: 9'	780071772204	
	thnus, Apti 7812590587		nra: Best Ap	ptitude Book ,1 st	Edition,	Tata McGraw	Hi	ll, 2014, ISBN	

Scheme of Continuous Internal Examination (CIE) Evaluation of CIE will be carried out in TWO Phases.

Phase	Activity	Weightage
Ι	Test 1 is conducted after completion 9 of hours training program (3 Class) for 50 marks Part A- Quiz for 15 Marks and Part B for 50 Marks (Descriptive answers). The marks are consolidated to 50 Marks.	50%
II	Test 2 is conducted after completion 18 hours of training program (6 Class) for 50 marks Part A- Quiz for 15 Marks and Part B for 50 Marks (Descriptive answers). The marks are consolidated to 50 Marks.	50%
ш	Average of TWO tests and the score must be greater than 50% .Tw mandatory, 75% attendance mandatory to qualify, if not he / she will not be a M.Tech degree.	

CIE Evaluation shall be done with weightage as follows:

Writing skills	10%
Logical Thinking	25%
Verbal Communication & Body Language	35%
Leadership, Interpersonal and Stress Bursting Skills	30%

SEE: Not Applicable

			SEMESTER: I			
		ADVANC	ED EMBEDDED SYST (Professional Elective-A			
Course Code	:	18MCS1A1		CIE Marks	:	100
Credits: L: T:P	:	4:0:0		SEE Marks	:	100
Hours	:	52L		SEE Duration	:	3 Hrs
			Unit – I			11 Hrs
Challenges in E Software Partitic Embedded Syst Instruction Set Harvard, caches, Interrupt Driven	arao mbo nin e m Aro Vi I/	cteristics of Emb edded System E g, Architecture I Architecture chitectures with rtual Memory, O, Co-Processor	Design bedding Computing Appl Design, Design Process: I Design, Designing of Com h examples, Memory Memory Management, & Hardware Accelerator Multi Core CPUs, CPU	Requirements, Speci pponents, System Int system Architecture I/O sub system: Bu rs, Processor perform	fica egra e: isy nanc	tions, Hardware ation Von Neumann, wait I/O,DMA, ce Enhancement:
Standards: MIPS				I		6
			Unit – II			10 Hrs
EEPROM, Flash	Me	emory, DRAM;	nisation, Memory Device I/O Devices: Timers and and D/A Converters, Disp	Counters, Watchdo	g T	imers, Interrupt, d devices
Designing Embe			Unit – III			10 Hrs
Programmed IO, Designing with P Designing Embe Application Softw Integrated Devel Debugger, Board	Me roce dde vare opm Suj	emory Mapped essors: System A ed System Softw e, System Softw nent Environmen oport Library, C	erfacing with case study; IO, Interfacing Protocols architecture, FPGA based Unit – IV vare –I are, Use of High Level L nt tools: Editor, Compile hip Support Library, Ana rogram Validation & Ve	: SPI, I2C, CAN, U Design, Processor S anguages: C,C++,Ja er, Linker, Automati lysis and Optimizatio	va, c C	, Reset Circuits, tion Criteria 10 Hrs Programming & code Generators, Execution Time,
			tandards in Automobiles,			
Sundards, MISK		2012/CLR1, 50	Unit – V	a cospace a biomed	iva	11 Hrs
Synchronization, Performance: F	gn, C lesp tud l R	Real Time ase Study: R oonse time C y: Embedded Co	vare –II Kernel, Process& Thr TX-ARM, Evaluating Calculation, Interrupt ontrol Applications-Softw	and Optimising Latency, Time	Op Loa	Communications, erating System ding, Memory
		this course the	student will be able to.			
CO1 Describe	e ha	ardware & soft	e student will be able to: ware of an embedded s		e a	pplications with
			re, memory and commun & hardware to meet giv		the	help of modern
engineer			a nuraware to meet giv	en constraints with		help of modelli
CO3 Demons	trat	e compliance of	prescribed safety norms ning to automobiles, aero	0 1		
	imp	element and den	nonstrate open ended pro	<u>^</u>	~ ~	

Ref	ference Books
1.	Embedded Systems – A contemporary Design Tool, James K Peckol, 2 nd edition, John Weily, 2008, ISBN: 0-444-51616-6
2.	Introduction to Embedded Systems, Shibu K V, 1 st edition, Tata McGraw Hill Education Private Limited, 2009, ISBN: 10: 0070678790
3.	Embedded Software Primer, David E.Simon, Addison Wesley, 2 nd edition, John Weily, 2002,ISBN-13: 978-0201615692
4.	The Intel Micro-processors, Architecture, Programming and Interfacing, Barry B.Brey, 6 th Edition, Pearson Education, 2008, ISBN-10: 8131726223

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks**

Scheme of Semester End Examination (SEE) for 100 marks

				SEMESTER	: I			
				DIGITAL SIGN Professional Elect		ESSING		
Cours	e Code	:	18MCS1A2		(ive 11 2)	CIE Marks	:	100
Credit	s: L: T:P	:	4:0:0			SEE Marks	:	100
Hours		:	52L			SEE Duration	:	3 Hrs
				Unit – I				10 Hrs
	0			on, Filter Design sed on two Allpass	1	ns, FIR Filter Des	ign,	IIR Filter
				Unit – II				11 Hrs
factor	I, Sampling R	late	e Conversion b	y a Rational Fact res, Interchange of	or I/D. Imp	y a factor D, Inte lementation of S down samplers/U	amp	oling Rate mplers.
				Unit – III		ate Conversion v		11 Hrs
Structu Conve Filter I	res for Ration rsion, Samplin Banks.	nal ng 1	Sampling Rat Rate Conversion	e Conversion. Mo on, Sampling Rate Unit – IV	ultistage In e Conversion	and Interpolation plementation of S n by an Arbitrary	Sam Fact	pling Rate or, Digital 10 Hrs
Two (Channel Qua	dra	ature Mirror	Filter Bank Elir	nination of	Aliasing, Conditi	on f	for perfect
	•	-		-	-	nk, Perfect Recons	struc	ction Two-
Chann	el FIR QMF E	Ban	ks in Sub band	Coding, M-chann	nel QMF Ba	nk		1
				Unit – V				10 Hrs
						ks Introduction, 7		
	ormal wavelet		wavelet traiisi	orm, Discrete-1m	ne orthonor	mal wavelets, Cor	itinu	ous- Time
	e Outcomes							
After g	going througl	ı tl	nis course the	student will be al	ole to:			
CO1						construction and se	elect	a suitable
000				al processing prob		· · · · · · · · · · · · · · · · · · ·	1 .1	1 .1
CO2			elopment of the rete-time wave		ximally dec	cimated filter ban	K th	rough the
CO3	·			filters for a given	specificatio	on.		
			-	<u> </u>	•			
CO4	Implement applications ence Books		uturate QMF,	PK orthogonal fi	liter banks	and wavelet filte	rs f	or various
1.	0131873741.	•	U.			h, Prentice Hall, 19		
2.	2003, ISBN:9	978	-0534400958	C		ion, Cengage Publ		
3.	2006, ISBN:	81	-7758-942-3S.			dition, Pearson Pu		
4.	Digital signal 2007, ISBN 9	-	•	mputer-based app	roach, K. M	litra, 3rd edition, T	ſΜΗ	l, India,

RV College of Engineering®

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks**

Scheme of Semester End Examination (SEE) for 100 marks

				SEMESTER: I			
				MICROWAVE CIRCU	JITS		
Cours	e Code		(P) 18MCS1A3	rofessional Elective-A3)	CIE Marks		100
	s: L: T:P	:	4:0:0		SEE Marks	:	100
		_				-	
Hours		:	52L	Unit – I	SEE Duration	:	3 Hrs 10 Hrs
Introd	untion Day		of for using DE/	Microwaves, Applications	DE and Microwaya		
Design RF El	l lectronics C	onc	C	tion to Components bas			
			*	Unit – II			11 Hrs
Freque S-para Passiv Design	ency parameters, Signaters, Signa	ers, al F ign g n	Formulation of low Graphs : Introduction, S	RF/MW Networks - Lov S-parameters, Properties, T Unit – III mith chart and Application tion of Impedance Matchir	Transmission Matrix,	Gene	ralized 10 Hrs
Basic		on		Unit – IV orks: Stability Consider onsiderations in Active Net		etwork	10 Hrs ts, Gain
				Unit – V			11 Hrs
Signal Oscilla Transis	Amplifiers, 1 ators: Introc stor Oscillato	Des	ign of different	Linear Design: Introduc ypes of Amplifiers vs Amplifier Design, C			s, Small
Cours	e Outcomes		ion, Osemutor			18, De	esign of
	e Outcomes going throug	ors		tudent will be able to:		18, De	esign of
After cO1	going throug Describe R amplifier	ors gh t RF (his course the s Circuits, impeda	nce matching & working o	of small & large sigr	nal mi	crowave
After a	going throug Describe R amplifier Calculate th transformat	ors ght RF (ne I ion	his course the s Circuits, impeda RF circuits para and also impeda	nce matching & working of meters like S-Parameter,	of small & large sigr SNR and VSWR a	nal mi	crowave
After cO1 CO2	going throug Describe R amplifier Calculate th transformat Analyze the	ors gh t RF (ne I ion e pe	his course the s Circuits, impeda RF circuits para and also impeda rformance of RI	nce matching & working of meters like S-Parameter, nce matching	of small & large sigr SNR and VSWR a , Stability and Noise	nal mi nd im	crowave pedance
After CO1 CO2 CO3 CO4	going throug Describe R amplifier Calculate th transformat Analyze the	ors gh t RF (ne I ion e pe	his course the s Circuits, impeda RF circuits para and also impeda rformance of RI	nce matching & working of meters like S-Parameter, nce matching 7 Circuits in terms of Gain	of small & large sigr SNR and VSWR a , Stability and Noise	nal mi nd im	crowave pedance
After : CO1 CO2 CO3 CO4 Reference 1. R E	going throug Describe R amplifier Calculate th transformat Analyze the Design varie ence Books F and Micro ducation, 200	ors gh t CF (ne I ion e pe ous owa 04,	his course the s Circuits, impeda RF circuits para and also impeda rformance of RI active and passi ave Electronics ISBN-10: 81775	nce matching & working of meters like S-Parameter, nce matching F Circuits in terms of Gain ve networks with linear an Illustrated, Matthew M. 84014.	of small & large sigr SNR and VSWR a , Stability and Noise nd non-linear design c Radmanesh, 1 st ed	nal mi nd im consid ition,	crowave pedance erations Pearson
After CO1 CO2 CO3 CO4 Reference 1. R 2. R P	going throug Describe R amplifier Calculate the transformati Analyze the Design varies Ence Books F and Micro ducation, 200 F circuit des earson Educa	ors gh t RF (ne I ion pe ous owa 04, sign atio	his course the s Circuits, impeda RF circuits para and also impeda rformance of RI active and passi ave Electronics ISBN-10: 81775 theory and app n edition, 2004,	nce matching & working of meters like S-Parameter, nce matching F Circuits in terms of Gain ve networks with linear an Illustrated, Matthew M. 84014. lications, Reinhold Ludwi ISBN-10: 9788131762189	of small & large sign SNR and VSWR a , Stability and Noise ad non-linear design c Radmanesh, 1 st ed g, and Pavel Bretchl	nal mi nd im consid ition, xo, 1 st	crowave pedance erations Pearson edition,
After CO1 CO2 CO3 CO4 CO4 Reference 1. R 2. R 9 N 3. N 1. In	going throug Describe R amplifier Calculate th transformat Analyze the Design varie Design varie Ence Books F and Micro ducation, 200 F circuit des earson Educa ficrowave So ndia edition,	ors gh t RF (ne I ion 2 pe ous ous ous 04, sign atio olid 201	his course the s Circuits, impeda RF circuits para and also impeda rformance of RI active and passi ave Electronics ISBN-10: 81775 theory and app n edition, 2004, State Circuit I 1, ISBN-10: 978	nce matching & working of meters like S-Parameter, nce matching F Circuits in terms of Gain ve networks with linear an Illustrated, Matthew M. 84014. lications, Reinhold Ludwi ISBN-10: 9788131762189 Design, Inder Bahl and Pa	of small & large sign SNR and VSWR a , Stability and Noise nd non-linear design c Radmanesh, 1 st ed g, and Pavel Bretchl rakash Bhartia, 2 nd o	nal mi nd im consid ition, co, 1 st	crowave pedance erations Pearson edition, n, Wiley

RV College of Engineering®

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks**

Scheme of Semester End Examination (SEE) for 100 marks

RV College of Engineering[®]

			SEMESTER: I			
		(P	S AND SMART SYSTEMS Professional Elective-B1) ommon to VLSI and CS)			
Course Code	:	18MVE1B1		CIE Marks	:	100
Credits: L: T:P	:	4:0:0		SEE Marks	:	100
Hours	:	52L		SEE Duration	:	3 Hrs
			Unit – I			11 Hrs
system. Comme manufacturing. Definitions and Microsystems. Se analyzer, conduct	rcial esigr salie ensor ome	products. M Aspects. Appli- ent features of rs: silicon capa- tric gas sensor,	finition of MEMS in a broader icrosystems and Miniaturiza cation and future scope of MEM sensors, actuators and syst citive accelerometer, piezo-re- Actuators: silicon micro-mirr ive and micromotor, magnetic r	ation. Evolution MS devices, Market tems. Working pusitive pressure se sistive pressure se for arrays, piezo-el	of t tren rinci	micro- nds. ples of r, blood
J			Unit – II	5		10 Hrs
compounds, Si Pi Processing Silicon wafer pro and metallization, film processing: S Mechanical mod Simplest deforma Mechanical vibra and damping coe electro-phoresis a Scaling laws in M Importance of sca electrostatic force	ezor Sili <u>mart</u> elling ble tion: fficio nd D finia iling es, s	esistors, Galliun ing, lithography, con micromachi <u>t material proces</u> g and Scaling la element: a bar, general formul ents. Basics of vielectrophoresis aturization in MEMS- Sca scaling in elect	Active substrate materials, S n Arsenide, Quartz, Piezoelectr , thin-film deposition, etching ning: surface and bulk, bondir sing, Emerging trends. Unit – III ws in Microsystems Modellin Transversely deformable elen ation, Resonant Vibration, De fluid mechanics in macro and unit – III ing in geometry, Scaling in ri romagnetic forces, scaling in domain, scaling in biochemic	ic Crystals and Pol (wet and dry), wa ng based process fl ng nent: a beam, Bim esign theory of acc l mesoscales, Capi agid body dynamic n electricity, scali	yme fer-t ows orph celer llary s, sc	rs. oonding, . Thick- 11 Hrs n effect, rometers y effect, caling in
aynamies. seamig	ciic	ets in the optical	Unit – IV	ai phenomena.		10 Hrs
Beams, Spring C Curvature due to Electrostatic Actu MEMS Beams, S Capacitive Switch Case study of de CAD tool for simu Packaging : Inte Systems Packagin	Cons Stre lation elf-A les. vices ulation egrat ng, C	tant of Cantilev ss Gradients. El n, DC Hold-Do actuation of ME s: Pressure senso on of devices. ion of Microsys Dbjectives, Issue	analysis of RF MEMS device er Beams, Spring Constant of lectrostatic Actuation, Shape wn Voltage of MEMS Beam MS Capacitive Switches, RF I Unit – V rs, accelerometers, micro pump stems and microelectronics, F in packaging, Special issues aging Technologies.	Circular Diaphrag of the Deformed H s and Cantilevers, Hold-Down Voltag p, micro heater. Int Packaging Introduc	gms, Bean Fo ge of rodu	Beam n Under press on MEMS 10 Hrs netion to , Micro

Cou	Course Outcomes							
Afte	After going through this course the student will be able to:							
CO1 Explain the technology to fabricate advanced micro- and smart systems								
CO2	Analyse different methods to fabricate MEMS devices.							
CO3	Apply the basics of implementation of MEMS into products.							
CO4	Evaluate the principles and processes involved in the implementation of MEMS devices							
Refe	rence Books							
1.	Micro and Smart Systems, Dr. A.K.Aatre, Ananth Suresh, K.J.Vinoy, S. Gopala krishna,							
	K.N.Bhat, 1 st edition, John Wiley Publications, 2002, ISBN: 1118213904, 9781118213902							
2.	MEMS & Microsystems: Design and Manufacture, Tai-Ran Tsu, 1 st edition, 8th reprint, Tata							
	Mc-Graw-Hill, 2002. ISBN-13:978-0-07-048709-3							
3.	RF MEMS Theory, Design and Technology, Gabriel M. Rebeiz, 1 st edition, John Wiley							
	Publications 2003, ISBN: 978-0-471-20169-4							
4.	Microsystems Design, S. D. Senturia,1 st edition, Kluwer Academic Publishers, Boston, USA,							
	2001, ISBN 0-7923-7246-8							
	2001, ISDIN 0-7923-7240-8							

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks**

Scheme of Semester End Examination (SEE) for 100 marks

RV College of Engineering[®]

				SEMESTER : I				
	DIGITAL IMAGE PROCESSING (Professional Elective-B2)							
Cou	rse Code	:	18MCS1B2		CIE Marks	:	100	
Cred	lits: L: T:P	:	4:0:0		SEE Marks	:	100	
Hou	rs	:	52 L		SEE Duration	:	3 Hrs	
				Unit – I			11 Hrs	
Step: Acqu	uisition, Ima amentals, RC	Ima 1ge	ge Processing, Sampling and	Components, Elements of V I Quantization, Relationsh wo-dimensional mathematica	ips between pixels,	Co	olour image	
				Unit – II			10 Hrs	
Spat Smo Freq	othing and Sl [uency Dom a	: C narp ain:	Gray level transpondent for the second se Second second second Second second second Second second second Second second second Second second se	formations, Histogram pro ltering Fourier Transform, Smooth an filters, Homomorphic filte	ing and Sharpening fr	eque	ency domain	
				Unit – III			10 Hrs	
Adap Filter Imag Edge grow	tive filters, I ring, Wiener ge Segmenta e detection, E ring, Region	Ban filto tion Edge spl	d reject Filters, 2 ering h & Morpholog e linking via Ho itting and mergi	odel, Properties, Noise mo Band pass Filters, Notch Filte Unit – IV ical Processing: ough transform, Tresholding, ng, Morphological processing	ers, Optimum Notch F Region based segme ng, erosion and dilatio	ilter ntati	ing, Inverse 10 Hrs ion, Region egmentation	
by m	orphological	wa	tersheds, Basic	concepts, Dam construction,	Watershed segmentation	on a		
Need Class Codi	sification of	omj Ima ic c	pression, Redun age Compressio	Unit – V dancy in Images and Class n Schemes, Run Length Co y based Compression, JPEG	ding, Shanon-Fano C			
Afte	r going throu	ugh	this course the	student will be able to:				
CO1				basics and fundamentals of tization, and 2D-transforms.	of digital image proc	essi	ng, such as	
CO2	Operate	on	images using the	e techniques of smoothing, sh	arpening and enhanced	men	t.	
CO3	Understa	and	the restoration c	concepts and filtering techniq	ues.			
CO4	Learn th	e ba	asics of segment	ation, features extraction, cor	npression for images.			
Refe	rence Books							
1.				el C. Gonzalez & Richard E. 78-9332570320	Woods, 3 rd edition, Pe	earso	on Education	
2.	Fundamenta 978-933255		0 0	Processing, A.K. Jain,1 st ed	ition, PHI publication	ns, ź	2015. ISBN:	
3.	Digital Imag	e P	rocessing, Jähne	, Bernd, 1 st edition, Springer,	, 2005, ISBN: 9783540)275	633	
4.	Fundamenta	ls o	f Digital Image	Processing: A Practical App ition, Wiley, 2011, ISBN: 97	roach with Examples			

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks**

Scheme of Semester End Examination (SEE) for 100 marks

				SEMESTER: I			
				APHY & NETWORK S			
<u> </u>				rofessional Elective-B3)			100
Course Code		:	18MCS1B3		CIE Marks	:	100
Credits: L:	Г:Р	:	4:0:0		SEE Marks	:	100
Hours		:	52L		SEE Duration	:	3 Hrs
				Unit – I			11 Hrs
	nd tra	nsp	ortation ciphers,	y, Basic Cryptographic t DES, Triple DES, Block transformation function	cipher design principl	es.	
1100.				Unit – II			10 Hrs
Finite Fields	: Gro	oups	, Rings and Fiel	ds, Modulo Arithmetic, I	Euclidean Algorithm, F	inite	Fields
of The Form	GF(p)), Po	olynomial Arithr	netic, Finite Fields of The	e Form GF(2n).		
				Unit – III			11 Hr
Cloud Secu	rity:	Clou		eration. Unit – IV Concepts, Moving to th nt, Securing IaaS.	e Cloud, Cloud secur	rity to	10 Hr ools and
				Unit V			10 Hr
prevention sy Privacy: Priv	stems acy c	s, Ne on th	etwork managen	letwork Security, Firewal nent. ecurity, Privacy impacts of			
Course Outo			his course the s	tudent will be able to:			
CO1 Imp	lemer	nt th		cies like authentication,	integrity and confider	ntialit	y in the
CO2 Imp	lemer	nt cr	yptographic prir	ciples to various threats.			
CO3 Lea	rn abo	out s	ecurity issues w	hen moving to cloud.			
CO4 Ana	lyze v	web	and network sec	curity threats.			
Reference B	ooks						
1. Cryptogra Pearson educ	phy a ation,	201	4, ISBN-10: 97				
•			0	Pfleeger, Shari Lawrence 9789352866533	P.Pfleeger, Jonathan	Marg	ulies, 5 ^t
3. Cryptogray 10: 97812590			Network Security	y, Atul Kahate, 3rd Editio	on, Tata McGraw Hill,	, 2013	3, ISBN

RV College of Engineering®

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks**

Scheme of Semester End Examination (SEE) for 100 marks

			SEMESTER: II			
		ADVANC	ED COMMUNICATIONS (Theory and Practice)	S SYSTEMS -2		
Course Code	:	18MCS21	(Theory and Tractice)	CIE Marks	:	100+50
Credits L: T:P	:	3:1:1		SEE Marks	:	100+50
Hours	:	39L+26T+26P		SEE Duration	:	3 Hrs
			Unit – I			08 Hrs
Synchronization	_	Signal Parameter	er estimation, Carrier Ph	ase Estimation,	Symb	ol Timing
•	cla	ssification of mu	tatistical characterization o ltipath channels, scattering g channel.	•		•
			Unit – II			08 Hrs
Slow fading cha	nne	els – power com	for performance improveme bining and Maximal ratio	o combining; Free	quenc	y selective
channels – Rake r	ece	ivers, Performanc	e, Tap weight Synchronizat	ion, Application to	CDI	MA.
			Unit – III			08 Hrs
Capacity of wire	eles	s channel: A Rev	view of Differential Entropy	. Shannon's Theo	rem,	Capacity of
a Linear time inva	ria	nt Gaussian chann	el, Capacity of Colored Noi	ise channels.		
	-			Multicarrier Conc	•	• •
Multicarrier in A	W	GN channel, OFI	OM Implementation, Spect	ral Characteristics	, Pov	wer and bit
allocation, Capac	ity	of Multicarrier C	hannel, Peak to Average P	Power Ratio, Chan	nel E	Equalization
and Coding Consi	der	ations for OFDM.				
			Unit – IV			08 Hrs
			hannel modeling: Multip MIMO channels, Modeling			
· · · · · · · · · · · · · · · · · · ·			Unit – V			07 Hrs
MIMO capacity	an	d multiplexing a	rchitectures: The V-BLAS	T architecture, Fa	st fac	ting MIMO
			, Performance gains, Full C			
channel, Receive	r a	rchitectures - (L	inear decorrelator, Succes	ssive cancellation,	Lin	ear MMSE
			ality, Connections with C		etecti	ion and ISI
equalization, Slov	v fa	ding MIMO chan	nel, D-BLAST concepts an	d Considerations.		
			Lab Experiments			
			aping and Matched Filtering			
•			covery in Narrowband char	nnels		
 Channel Estima Frame Detectio 		•	t Correction			
			main Equalization			
			using Schmidl and Cox Alg	orithm		
7. Channel Coding		-		,01101111		
		•	ne 16-point QAM signal cor	nstellation.		
9. Performance of	A	WGN and Rayleig	h fading channels for different	ent Binary		
modulation schem						
Performance in	_	-	Signal diversity on a Frequ RAKE demodulator on a Fr	-	e char	nnel.
			IO system in a Rayleigh fad	ling AWGN chann	el usi	ing
a) Maximum-Like						
b) Minimum Mea		-				
c) Minimum Inve	se	Channel Delector				

	Course Outcomes After going through this course the student will be able to:						
CO	CO1 Explain the concepts of multi-channel signaling scheme and synchronization for carrier and symbol timing recovery at receiver.						
CO	CO2 Evaluate the degradation in performance of various symbol signaling schemes in multipath fading environment.						
CO.	CO3 Develop & analyze schemes to improve performance in a multipath fading environ including diversity, maximal ratio combining and RAKE receivers.						
CO4	CO4 Develop and evaluate the performance of a MIMO scheme to meet specified rate in a g multipath environment.						
Refe	eren	ace Books					
1.		gital Communications, John G. Proakis, Masoud Salehi, 5 th Edition, Pearson Education, 2014,					
	ISI	BN:978-9332535893					
2.	Fu	ndamentals of Wireless Communication, David Tse, Pramod Viswanath, 1st Edition,					
	Ca	mbridge University Press, 2005, ISBN:0521845270					
3.	Digital Communications: Fundamentals and Applications, Bernard Sklar,2 nd Edition, Pearson						
	Ed	ucation, 2009, ISBN:978-8131720929					
4.	Di	gital Communications Systems, Simon Haykin, Wiley, 2014, ISBN:978-0-471-64735-5					

Scheme of Continuous Internal Evaluation (CIE): Total marks: 100+50=150

Scheme of Continuous Internal Evaluation (CIE): Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks

Continuous Internal Evaluation (CIE): Practical (50 Marks)

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Scheme of Semester End Examination (SEE) for 100 marks

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Scheme of Semester End Examination (SEE): Practical (50 Marks)

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Total marks: 100+50=150

Theory (100 Marks) + Practical (50 Marks) = Total Marks (150)

			SEMESTER: II			
		ERRC	R CONTROL AND CODING	Ĵ		
			(Theory)			
Course Code	:	18MCS22		CIE Marks	:	100
Credits: L: T:P	:	3:1:0		SEE Marks	:	100
Hours	:	39L+26T		SEE Duration	:	3 Hrs
			Unit – I			08 Hrs
symmetric channe Introduction to a (2 ^m) and its proper Linear block cod	el. algeb rties, les: (ora: Groups, F Computation Generator and	ng for a discrete memoryless of ields, binary field arithmetic, C using Galois filed GF (2 ^m) arith- parity check matrices, Encodir	Construction of Gal- metic, Vectors and ng circuits, Syndroi	ois H Mat me a	Field GF rices. and error
			derations, Error detecting and	Ŷ	-	abilities,
Standard array and	d syn	drome decodir	ng, Single Parity Check Codes(S	SPC),Repetition coo	des.	00 11
			Unit – II			08 Hrs
Hamming code, R Cyclic codes: Int	leed- trodu	Muller codes, a oction, Generat	ntd: Hamming codes, Single en and interleaved codes. For and parity check polynomi tion, Decoding of cyclic codes,	als, Encoding of c	cycli	c codes,
			Unit – III			08 Hrs
Solomon codes, de Majority Logic d logic decodable co Convolution code Structural properti hard decision base	ecod lecod odes, es: E ies, I ies, I	ing of non-bina lable codes: O One-step majo ncoding of con Distance proper J Stack Sequen	r block codes, Primitive BCH co ary BCH and RS codes: The Bes Unit – IV ne -step majority logic decoding ority logic decoding of Maximal volutional codes, Transfer Func- ties, Viterbi search decoding al tial decoding algorithm, Probab ases. Punctured and Tail biting	g, Class of One-step l length code. ction of convolution gorithm – soft decis pility of error in cor	Algo o ma n coc sion nvolu	rithm. 08 Hrs jority les, and
			Unit – V			07 Hrs
(Formulation only Turbo Codes : Int Analysis Formula Low Density par Codes, Decoding Course Outcome	y), So rodu tion a ity-C of LI s	oft decision Mu ction, Distance and one examp Check Codes: 1 DPC Codes – M	rel Concatenated Codes, Mu ltistage Decoding (Formulation Properties for an example PCE le only. Introduction, Tanner Graphs, Go Majority Logic, Bit Flipping. tudent will be able to:	only). 3C and one PCCC,	Perf	ormance
			ory in the construction of Block Communication systems.	c Codes and Convo	lutic	on Codes
			e for Block and Convolution co			
CO3 Construct Transmiss	and ion s	Decode Conc	Convolution Codes schemes for atenated codes to perform close	•	nit i	n a data
Reference Books						
1. Error control	l cod	ing, Shu Lin ar	nd Daniel J. Costello. Jr, Pearson	n, 2 nd edition, 2011	, ISI	BN 978-

	81-317-3440-7
2.	Introduction to Error control coding, Salvatore Gravano, Oxford university press, 2007, ISBN 0-19-856231-4
3.	Theory and practice of error control codes, Blahut. R. E, Addison Wesley, 1984, ISBN 0201101025
4.	Coding theory A first course, Cambridge university press, SAN ling, chaoping xing, 2004, 052152923-9,9780521529235

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks

Scheme of Semester End Examination (SEE) for 100 marks

			SEMESTER: II				
		R	ESEARCH METHODO	LOGY			
	1	1	(Common to all progra				
Course Code	:	18IM23		CIE Marks	:	100	
Credits: L:T:P	:	3:0:0		SEE Marks	:	100	
Hours	:	39L		SEE Duration	:	3 hours	S
			Unit – I	1 1 0' ' 1	1	1 0.0	
			and its types, identifying a				8 Hrs
			ch designs. Essential const				
Square, Factorial		permental de	sign, completely randomized	zed, randomized bloc	:к, L	Laum	
Square, Factoria	•		Unit – II				
Data and data c	ollect	tion: Overvie	w of probability and data	vnes		08	8 Hrs
			nethods of primary data co		on of		, 1115
•		•	naires and schedules.	, 			
			mpling and Non-probabili	ty sampling			
U		-	Unit – III				
Processing and a	naly	sis of Data: S	Statistical measures of loca	ation, spread and sha	pe,	80	8 Hrs
			esis Testing and ANOVA.	Interpretation of out	put		
from statistical so	oftwa	re tools					
			Unit – IV				
		•	on parametric tests, Introdu				8 Hrs
			ncipal component analysis	s. Usage and interpre	tatio	n of	
output from statis	stical	analysis soft					
Ferentials of P	onor	t writing on	Unit-V d Ethical issues: Signif	Figure of Perort V	Vriti	ng 07	' Hrs
			Layout of the Research R				1115
to Research, Publ				teport, Eunear issue	5 101	atea	
			e studies specific to the do	main area of speciali	zatio	on	
			ough this course the stude				
			oncepts of research types,		sis p	rocedures	5.
CO2 Apply app	propr	iate method f	or data collection and anal	yze the data using sta	atisti	cal princi	iples.
CO3 Present re	searc	ch output in a	structured report as per the	e technical and ethica	al sta	andards.	
		-	given engineering and ma				
Reference Book	S	0	<u> </u>	C			
		ology Method	s and techniques, Kothari	C.R, 4th edition, Ne	w A	ge Intern	ationa
Publishers, 2	012,	ISBN: 978-9	3-86649-22-5			0	
2 Management	Rese	earch Method	ology, Krishnaswami, K.I	N., Sivakumar, A. I.	and	Mathiraj	an, M
1 st edition, Pe	arsoi	n Education, 2	2006. ISBN: 978-81-7758	85-63-6		-	
			dge Base, William M. K.	Trochim, James P. D	onne	elly, $3^{rd} \overline{E}$	dition,
			ISBN: 978-1592602919	_4b			
			vin, R.I. and Rubin, D.S	, 7 th Edition, Pearso	n E	ducation,	2017,
ISBN-10: 933							
			valuation (CIE); Theory (O), Tests (T) and Assig			C ,	

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks

Scheme of Semester End Examination (SEE) for 100 marks

		SEMESTE MINOR PRO			
Course Code	:	18MCS24	CIE Marks	:	100
Credits L: T: P	:	0:0:4	SEE Marks	:	100
Hours	:	02	SEE Duration	:	3 hrs

1. Each project group will consist of maximum of two students.

- 2. Each student / group has to select a contemporary topic that will use the technical knowledge of their program of study after intensive literature survey.
- 3. Allocation of the guides preferably in accordance with the expertise of the faculty.
- 4. The number of projects that a faculty can guide would be limited to four.
- 5. The minor project would be performed in-house.
- 6. The implementation of the project must be preferably carried out using the resources available in the department/college.

Course	Course Outcomes: After completing the course, the students will be able to					
CO1	CO1 Conceptualize, design and implement solutions for specific problems.					
CO2	Communicate the solutions through presentations and technical reports.					
CO3	Apply resource managements skills for projects.					
CO4	Synthesize self-learning, team work and ethics.					

Scheme of Continuous Internal Examination

Evaluation will be carried out in 3 phases. The evaluation committee will comprise of 4 members: Guide, Two Senior Faculty Members and Head of the Department.

Phase	Activity	Weightage
Ι	Synopsys submission, Preliminary seminar for the approval of selected topic	20%
	and objectives formulation	
II	Mid term seminar to review the progress of the work and documentation	40%
III	Oral presentation, demonstration and submission of project report	40%

** Phase wise rubrics to be prepared by the respective departments

CIE Evaluation shall be done with weightage / distribution as follows:

• Selection of the topic & formulation of objectives	10%
• Design and simulation/ algorithm development/ experimental setup	25%
Conducting experiments/ implementation / testing	25%
Demonstration & Presentation	15%
Report writing	25%

Scheme of Semester End Examination (SEE):

The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.

٠	Brief write up about the project	05%
•	Presentation / Demonstration of the Project	20%
•	Methodology and Experimental results & Discussion	25%
•	Report	20%
•	Viva Voce	30%

				SEMESTER: II			
				ANTENNA THEORY			
(Professional Elective-C1)							
Course	Code	:	18MCS2C1		CIE Marks	:	100
Credits	s: L:T:P	:	4:0:0		SEE Marks	:	100
Hours		:	52L		SEE Duration	:	3 Hrs
				Unit – I			10 Hrs
Antenna Fundamentals and ArraysRadiation Mechanisms, Overview, EM Fundamentals, Solution of Maxwell's Equations forRadiation Problems, Ideal Dipole, Radiation patterns, Directivity and Gain, Antenna impedance,Radiation efficiency, Antenna polarization.Array factor for linear arrays, Uniformly excited equally spaced linear arrays, Pattern multiplication,Directivity of linear arrays, Non-uniformly excited equally spaced linear arrays, Mutual coupling.Unit – II10 HrsResonant Antennas: Wires and Patches, Dipole antenna, Yagi-Uda antennas, Micro-strip antenna.							
				ave antennas Helical antennas, cy independent antennas, Spira			
antenna		liner	pies of frequent	ly independent antennas, Spira	i antennas, and Log - j	peric	Juic
unternit				Unit – III			10 Hrs
Antonr	na Synthe	aic					
method Radiat Solutio scatteri	ion and S ns to the ng equation	Che cat inh	byshev linear a tering omogeneous ve in rectangular o	sis methods, low side lobe nam rray, Taylor line source method Unit – IV ector potential wave equation, coordinates (Far field). e radiation (Electrical line source)	d. Far field radiation, Ra	adiat	
			g from a strip, j r (TE or TM po	plane wave scattering from a fla plarization).	at rectangular plate an	d sca	attering
•	•		· · · · · ·	Unit – V			11 Hrs
Integral equation and Moment Method: Electrostatic charge distribution (finite wire and bent wire), Pocklington integral equation and Hallen's integral equation. Geometrical optics: Amplitude relation, phase and polarization relation, reflection from a curved surface, reflection from a conducting sphere and reflection from a line source above a finite width strip.							
curved	edge, diff	rac		: Amplitude, phase and polariz with a straight edge, diffractic flector.			•
	ed Cours oing throu			student will be able to:			
CO1	Demons antenna		-	kills in applying electromag	netics concepts to d	lesig	n basic
CO2	Design	ant	ennas like Yagi	-Uda, Helical antennas and oth	er broad band antenna	.s	
CO3 CO4	Describe different antenna synthesis methods. Evaluate and design scattering in guided and radiative structures like strip, plate, cylinder and sphere using numerical EM solver that employ the concepts studied						
Refere	nce Book	s					

1	Advanced engineering electromagnetics, Constantine A Balanis, 1 st edition, John Wiley & Sons, 1989, ISBN: 0-471-62194-3.
2	Time harmonic electromagnetic fields, Roger F Harrington,1 st edition, John Wiley & Sons, IEEE press classic reissue, 2001, ISBN: 0-471-20806-X.
3	Antenna Theory Analysis and Design, C. A. Balanis, 3 rd Edition, John Wiley, 2009, ISBN-10: 9788126524228
4	Antennas, John D.Krauss, 3 rd Edition, McGraw-Hill International Edition, 2006.ISBN-13: 978-0071232012

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks**

Scheme of Semester End Examination (SEE) for 100 marks

[SEMESTER: II			
			MACHINE LEARNING			
	(Professional Elective-C2)					
Course Code	Τ.	(Common to 18MCS2C2	VLSI & ES, CS, CNE, DCE, B	MI, SE) CIE Marks		100
Credits: L:T:P	:	4:0:0		SEE Marks	:	100
Hours	:	52L		SEE Duration	•	3 Hrs
nours	·	52L	Unit – I	SEE Duration	•	10 Hrs
Introduction: ()	vert	view of Probabil	ity Theory, Model Selection, Intro	duction to Machir	ne le	
Linear Regressi	on chas	– Basis Funct stic gradient D	ion models, Bias Variance Descent, Discriminant Functions,	Decomposition, Ba	ayes	sian linear
			Unit – II			11 Hrs
Gaussian Process	Du , Ti achi	ual representation ree Based metho ines: Maximum	margin classifiers (SVM), RVM.	adial Basis Funct	ion	Networks,
^**	,		Unit – III			11 Hrs
	/IA etai	lgorithm in Gen	ng, Mixtures of Gaussians, Maxin eral, Principal Component Analys Unit – IV			
Introduction, De Importance, Pro	finit xim	ity Plots, Rar	Forests, Details of Random, dom Forests and Over-fitting,	Analysis of Rai		
Variance and the	De	-Correlation Effe	ct, Bias, Adaptive Nearest Neigh Unit – V	bors.		09 Hrs
Ensemble Learn	ina	•	Cint – V			07 111 5
Introduction, Bo	osti ariza	ing and Regula ation Paths, Ov	rization Paths, Penalized Regr er-fitting and Margins, Learning	· ·		1 2
Course Outcom						
After going thro	ugł	n this course the	student will be able to:			
CO1 Explore t	ha k	acias of Drobab	lity data distributions and noural	notworks Algorith	m 0	
-			lity, data distributions and neural nality reduction techniques and	· · ·		
Applicati		arious unitensic	hanty reduction techniques and	learning models	101	the given
		different types of	f supervised and unsupervised lea	rning models.		
CO4 Evaluate	the	classification an	nd regression algorithms for given	data set.		
Reference Book	5					
 Pattern Recognition and Machine Learning, Christopher M Bishop, 2nd Edition, , Springer, 2006, ISBN-13: 978-0387-31073-2. 						
Edition, Spi	ing	er, 2008, ISBN 9	rning, Trevor Hastie, Robert Tibs 978-0-387-84858-7			
3 rd Edition,	Els	evier, 2006, ISE	chniques, Jiawei Han and Michel N 1-55860-901-6			
4. Practical da 978161729			l, N., & Mount, J, 1 st edition, Ma	anning Publication	s, 2	014, ISBN

RV College of Engineering®

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks**

Scheme of Semester End Examination (SEE) for 100 marks

			SEMESTER: I	II			
		OPTICA	L COMMUNICATIO				
Course Code	:	18MCS2C3	(1 Tolessional Licen	CIE Marks	s : 100		
Credits: L:T:I	':	4:0:0		SEE Marks	:	100	
	_						
Hours	:	52L	TT •4 T	SEE Duration	:	3 Hrs	
			Unit – I			11 Hrs	
Model, Optical Signal degrada Loss and Ban	fiber tion lwid	r modes, single a a in optical fibe a th windows, Ir	and multi-mode fibers, rs	les of light propagation, Ray single and multi-core fibers. Chromatic Dispersion, Prac			
Implementation	of f	iber Link.	TT •4 TT	•		10.11	
Optical Comp			Unit – II			10 Hrs	
Non-Linear S	e cts i chro			spersion, Stimulated Brillo ross-Phase Modulation, Four		-	
Somolis.			Unit – III			11 Hrs	
Modulation ar							
Duo-binary M Receivers, Nois Transmission	odula e co Syste	ation, Capacity nsiderations, Bir e m Engineering	Limits of Optical Fil t error rates, coherent d	Multiplexing, Spectral effice ber, An Ideal receiver, Prace etection. erent optical amplifiers - SOA	ctica	al detection	
System Woder,	100	er penanty, 11an	$\frac{1}{10000000000000000000000000000000000$	erent optical amplifiers - 507	<u>, г</u>	10 Hrs	
Introduction, shutter/schliner	Gen en m		Sensors Intensity modulation optic sensors, Reflectiv ensors, Fiber optic refr	through through light ve fiber optic sensor, Evaness actometers, Intensity modula	ent	nterruption, -wave fiber	
			Unit – V			10 Hrs	
Dense WDM, V Client layers of ATM functions	ele VDN opti Ad	I network desig cal layer, SONE	line terminal, Optical n,	line amplifiers, Optical cro es, Multiplexing layers, Fran , ESCON, HIPPI		connectors,	
Course Outco							
			e student will be able				
comm	unic	ation	-	ncorporate the standards fo		-	
Grade	d-ino	dex Fiber Struct	ure	· · ·		ode Fibers,	
-			Concepts and Component of the component	ents and Apply different Oppression	otic	al Network	
		Optical Link Po					

Ref	Reference Books					
1.	Optical Fiber Communications, John M. Senior, 2 nd edition, Pearson, 2000, ISBN-10: 9332535787					
2.	Optical Networks- A Practical Perspective, Rajiv Ramswami, N Sivaranjan,1 st edition, M. Kauffman publishers, 2000, ISBN-10: 9380501374					
3.	Optical Fiber Communication, Gerd Keiser, 1 st edition, MGH, 1991, ISBN-10: 1259006875					
4.	Fiber Optics communication, G. P. Agarwal, 2 nd edition, John Wiley, 1997, ISBN-10: 8121923174					

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks**

Scheme of Semester End Examination (SEE) for 100 marks

		SEN	IESTER: II			
			OR NETWORKS AND onal Elective-D1)	ΙΟΤ		
Course Code	:	18MCS2D1		CIE Marks	:	100
Credits L:T:P	:	4:0:0		SEE Marks	:	100
Hours	:	52		SEE Duration	:	3 Hrs
		Unit	- I			10 Hrs
Sensing and Sen	sors ruct	etwork of Wireless Sensor, Wireless Sensor Networ ural Health Monitoring, e.	ks, Challenges and Con		Mo	nitoring,
Unit – II						11 Hrs
Interfaces, Proto Medium Access Medium Access IEEE 802.11, II	type s (W EEE	hitecture: The Sensing S s. Control :Overview - Co reless MAC Protocols - (802.15.4 and ZigBee , ad Hybrid MAC Protocols	ntention-Free Medium CSMA, MACA and MA Characteristics of MAG	Access, Conte ACAW, MACA B	entio Sy In	n-Based vitation,
Unit – III						10 Hrs
Introduction, Ic	o toc T Prot	o ls and standards for int Data Link Protocols, N pcols, 6LoWPAN and	etwork Layer Routing			
Unit – V						11 Hrs
Architecture, Governance, Sui	Dat tabl	aches for IoT, Business a and Analytics Archi e Case Studies / Assignme	tecture, Technology			olication ity and
Course Outcom			- 4			
	he o	ourse, students will be abl concepts of sensors and co		matted signal for		
a transmi	ssic	capacity and degradation on environment.	•		•	
CO3 Analyze schemes to transport sensor data to a server in a power efficient and time efficient manner through IoT gateway.						ficient
CO4 Understa Reference Book		he IoT architecture throug	n suitable case studies.			
		f Wireless Sensor Networ bauer, 1 st edition, John W				
2 Internet of	Thi	ngs and Data Analytics H ISBN 978-1-119-17364-9	andbook, Hwaaiyu Ge			
3 Wireless Se	nso	Networks, Ian F. Akyild ISBN 978-0-470-03601-	z and Mehmet Can Vur	an, 1 st edition, Job	n W	ïley &

Ca	se Study References							
1	Design of a WSN Platform for Long-Term Environmental Monitoring for IoT Applications,							
	M. T. Lazarescu, IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol.							
	3, no. 1, pp. 45-54, March 2013.doi: 10.1109/JETCAS.2013.2243032							
2	IoT application of WSN on 5G infrastructure, I. S. H. Martínez, I. P. O. J. Salcedo and I. B. S.							
	R. Daza, 2017 International Symposium on Networks, Computers and Communications							
	(ISNCC), Marrakech, 2017, pp. 1-6. doi: 10.1109/ISNCC.2017.8071989.							
3	An IoT Approach for Wireless Sensor Networks Applied to e-Health Environmental							
	Monitoring, J. Cabra, D. Castro, J. Colorado, D. Mendez and L. Trujillo, 2017 IEEE							
	International Conference on Internet of Things (iThings) and IEEE Green Computing and							
	Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom)							
	and IEEE Smart Data (SmartData), Exeter, 2017, pp. 578-583.doi: 10.1109/iThings-							
	GreenCom-CPSCom-SmartData.2017.91							
4	N. Khalil, M. R. Abid, D. Benhaddou and M. Gerndt, Wireless sensors networks for Internet of							
	Things, 2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks							
	and Information Processing (ISSNIP), Singapore, 2014, pp. 1-6. doi:							
	10.1109/ISSNIP.2014.6827681							

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks

Scheme of Semester End Examination (SEE) for 100 marks

				SEMESTER : II				
				DEEP LEARNING				
			(I	Professional Elective-				
			•	Common to CSE and				
Cours	e Code	:	18MCE2D2		CIE Marks	:	100	
Credi	ts L: T: P	:	4:0:0		SEE Marks	:	100	
Hours		:	52L		SEE Duration	:	3 H	rs
		1		Unit – I				
Deep 1	Feedforwar	d Ne	etworks: Multila	yer Perceptron, Exam	ple: Learning XOR, C	rad	ient-	10 Hrs
Based	Learning, H	Iidde	en Units, Archited	cture Design, Back-Pr	opagation Algorithm			
				Unit – II				
					on, Pooling, Convolu			11 Hrs
					nvolution function, St			
					lom or Unsupervised f	eati	ires,	
The N	curoscientin	ic Da	sis for convolution	Unit – III				
Seque	nce Modeli	ng:	Recurrent and I		olding Computational	Gra	phs.	11 Hrs
					ecoder Sequence-to-S			
					ural Networks, Ech			
Netwo	orks, The Lo	ng S	hort-Term Memo	ory and Other Gated R	NNs			
				Unit – IV			- 1	
	ncoders:		ndercomplete		egularized Autoe			09 Hrs
					tic Encoders and D tions of Autoencoders	eco	iers,	
Denois	sing Autoen	coue	ars, Contractive A		tions of Autoencoders			
<u></u>				Unit –V	1 1 11 0			
					he challenge of unst			11 Hrs
					rected, Undirected, l ng from graphical			
					ependencies, Inferer			
	•		•	e e	red probabilistic mode		unu	
	e Outcome		1	0 11	1			
After				tudent will be able to				
CO1					ations and various lear			els
					and Auto-encoder me			
CO3	-				sks, Convolutional net			
CO4		and	compare the so	lutions by various N	leural Network appro	bach	les fo	r a given
Df	problem							
	ence Books	nal	Adaptiva Commu	ation and Machine La	arning Sorias) Ian C	hod	Faller	v Voshus
					earning Series), Ian Ge 17, ISBN-13: 978-026			w, 10shua
					on Haykin, 2 nd edition			05. ISBN-
	10: 0139083			Site i Gundution, Shir	an mujani, 2 cutton	,	, 20	···
			rtificial Neural N	Networks, Gunjan Gos	swami, S.K. Kataria &	k So	ons, 1 ^s	st Edition,
			978-9350142967	. 5	· · · · · ·			,
					eration Machine Intel		nce A	lgorithms,
	Nikhil Budu							

RV College of Engineering®

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks**

Scheme of Semester End Examination (SEE) for 100 marks

				SEMESTER:	Π		
				CAL SIGNAL PROC (Professional Election Common to VLSI & E	ve-D3)		
Course	Code	:	18MVE2D3		CIE Marks	:	100
Credits	: L:T:P	:	4:0:0		SEE Marks	:	100
Hours		:	52L		SEE Duration	:	3 Hrs
				Unit – I			10 Hrs
Introdu	ction, Typ	oica	tal Signal Proc l DSP algorithi SP algorithms.		demands and scaled C	MOS	technologies,
				Unit – II			10 Hrs
-	ction, Pipe		llel processing ing of FIR Dig	ital filters, parallel pr	ocessing, pipelining and	para	llel processing
				Unit – III			10 Hrs
Introdu		llel		filters and transform crete Cosine transforn	s n and inverse DCT, Paral	lel ar	chitectures for
				Unit – IV nd Adaptive Filters			11 Hrs
process	ing for IIF	t fil		IIR digital Filter Desi	R filters, combined pipeli gn using Pipelining and p		el processing,
ripenn							
Progra Introduc process	ction, evo ors, DSP	oluti Pro		nmable Digital Sign	al processors, Importan communication, Process		
Progra Introduc process signal P	ction, evo ors, DSP Processing	oluti Pro	ion of program	e ssor nmable Digital Sign			ature of DSP
Progra Introduc process signal F Course	ction, even ors, DSP Processing Outcome	oluti Pro	ion of program occessors for M	e ssor nmable Digital Sign obile and wirelesses	communication, Process		ature of DSP
Progra Introduc process signal F Course After g	ction, evo ors, DSP Processing Outcome oing throu	oluti Pro 	this course the	essor nmable Digital Sign obile and wirelesses e student will be able	communication, Process	sor f	ature of DSP for multimedia
Progra Introduc process signal F Course	ction, evo ors, DSP Processing Outcome oing throu Develop Understa	oluti Pro s ugh a s	this course the trong grounding	essor nmable Digital Sign obile and wirelesses estudent will be able in the fundamentals of ures and CMOS tech	communication, Process	sor f	ature of DSP for multimedia
Progra Introduc process signal F Course After g CO1	ction, evo ors, DSP <u>Processing</u> Outcome oing throu Develop Understa problem	oluti Pro s ugh a s and s in	this course the trong grounding DSP architectu VLSI digital sig	essor nmable Digital Sign obile and wirelesses estudent will be able g in the fundamentals of ures and CMOS tech gnal processing.	to: of VLSI digital signal pro	sor f	ature of DSP for multimedia ng , vze, and solve
Progra Introduc process signal F Course After g CO1 CO2	ction, evo ors, DSP <u>rocessing</u> Outcome oing throu Develop Understa problem Evaluate	$rac{1}{2}$	this course the trong grounding DSP architectu VLSI digital sig d test the moder	essor nmable Digital Sign obile and wirelesses estudent will be able g in the fundamentals of ures and CMOS tech gnal processing. n VLSI digital signal	to: of VLSI digital signal pro mologies to describe,	sor f cessi analy ; simu	ature of DSP for multimedia ng , vze, and solve
Progra Introduc process signal F Course After g CO1 CO2 CO3 CO3	ction, evo ors, DSP rocessing Outcome oing throu Develop Understa problem Evaluate Design purpose	es ugh a s and s in e an suit dig	this course the trong grounding DSP architectu VLSI digital sig d test the moder	essor nmable Digital Sign obile and wirelesses estudent will be able g in the fundamentals of ures and CMOS tech gnal processing. n VLSI digital signal for specific applicati	to: of VLSI digital signal pro nologies to describe, processing systems using	sor f cessi analy ; simu	ature of DSP for multimedia ng , vze, and solve
Progra Introduc process signal F Course After g CO1 CO2 CO3 CO3 CO4 Referen	ction, eve ors, DSP Outcome oing thro Develop Understa problem Evaluate Design purpose nce Books	bluti Pro- es ugh a s and s in e and suit dig	this course the trong grounding DSP architectu VLSI digital sig d test the moder able algorithm ital signal proce	essor nmable Digital Sign obile and wirelesses estudent will be able g in the fundamentals of ures and CMOS tech gnal processing. n VLSI digital signal for specific applicati ssors	to: of VLSI digital signal pro mologies to describe, processing systems using ons & Develop applicat	sor f cessi analy simu tions	ature of DSP for multimedia ng , //ze, and solve llation tool. using general
Progra Introduc process signal F Course After g CO1 CO2 CO3 CO3 CO4 Referen 1 VI ed	ction, evo ors, DSP <u>rocessing</u> Outcome oing throu Develop Understa problem Evaluate Design purpose nce Books SI Digita ition, Wile	and suit dig suit dig suit dig suit dig suit dig suit dig suit	this course the trong grounding DSP architectu VLSI digital sig d test the moder able algorithm ital signal processing 1999,ISBN: 81-	essor nmable Digital Sign obile and wirelesses estudent will be able g in the fundamentals of ures and CMOS tech gnal processing. n VLSI digital signal for specific applicati ssors systems: Design and 2 265-1098-6.	to: of VLSI digital signal pro- nologies to describe, processing systems using ons & Develop applicat	sor f cessi analy simu tions K. Pa	ature of DSP for multimedia ng , vze, and solve ilation tool. using general
Progra Introduc process signal F Course After g CO1 CO2 CO3 CO4 Referen 1 VI ed 2 Di ed	ction, even ors, DSP Outcome oing thro Develop Understa problem Evaluate Design purpose Ince Books LSI Digita ition, Wild gital Sign ition, Wild	bluti Pro s ugh a s and s in suit dig s ull Si ey, al P,	this course the trong grounding DSP architectu VLSI digital sig d test the moder able algorithm ital signal processing 1999,ISBN: 81- rocessing and a 2005, ISBN-10:	essor nmable Digital Sign obile and wirelesses estudent will be able g in the fundamentals of ures and CMOS tech gnal processing. n VLSI digital signal for specific applicati ssors systems: Design and 265-1098-6. pplications, Rulph cha 9788126528745.	to: of VLSI digital signal pro mologies to describe, processing systems using ons & Develop applicat	sor f cessi analy simu tions K. Pa C641	ature of DSP for multimedia ng , //ze, and solve lation tool. using general arthi , 1 st 6 DSK, 1 st

RV College of Engineering®

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks**

Scheme of Semester End Examination (SEE) for 100 marks

				Semester: II			
				BUSINESS ANALYTICS			
<u> </u>	~ 1	1	10000001	(Global Elective-G01)		1 1	400
	e Code	:	18CS2G01		CIE Marks		100
	s L: T: P	:	3:0:0		SEE Marks	:	<u>100</u>
Hours		:	39L		SEE Duration	:	3 Hrs
Ducino	a analytica	• •	vorvious of Pug	Unit – I iness analytics, Scope of Busi	nace analytics Due	inoa	s 08 Hrs
Analyt compe Statisti	ics Proces titive advan ical Tools:	s, tage St	Relationship of Business	of Business Analytics Proc Analytics. tion, Descriptive Statistical lelling.	cess and organiza	tion	l,
	1.D		• • • •	Unit – II		1	0.0 11
Linear for Bu	Regression	. In lyti	nportant Resou cs, problem s	: Modelling Relationships and rces, Business Analytics Pers olving, Visualizing and Exp	onnel, Data and mo	odel	s
				Unit – III			
Issues, contrib	Designing oution of Bu	g Ir isin	ess analytics, l	ness analytics, Team man licy, Outsourcing, Ensuring I Managing Changes. Descripti Predictive analytics analysis.	Data Quality, Measu	uring	g
	,,		6,	Unit – IV			
for T	sting Mode	ls, I s v	vith a Linear	ative and Judgmental odels for Stationary Time Serie Trend, Forecasting Time S Variables, Selecting Appropria Unit –V	Series with Season	odel ality	s ,
	ne, Probabi		•	tision Problems, Decision Stra rees, The Value of Information	0		
	e Outcome	5					
			this course the	e student will be able to:			
CO1		<u> </u>		nd models for Business Analy	tics.		
CO2	Analyze v	ario	ous techniques	for modelling and prediction.			
CO3	Design the	e cl	ear and actiona	ble insights by translating data	a.		
CO4	Ű,			s to solve business application			
	ence Books		prooroni				
1	Business a Schniederja	ns,		s, Concepts, and Application ederjans, Christopher M. Star 403.			
J	John Wiley	& S	Sons, 2014, ISE	tics: Identifying the Path to 88N:9781118983881.	•		
4 1	Predictive E	Busi	ness Analytics	ans, 2 nd edition, Pearsons Educ Forward Looking Capabilitie on, Wiley, 2013, ISBN-10: 11	s to Improve Busin		

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks**

Scheme of Semester End Examination (SEE) for 100 marks

			SEMESTER: II			
IND	US	TRIAL AND	OCCUPATIONAL HEALTH A	ND SAFETY		
Course Code		18CV2G02	(Global Elective-G02)	CIE Marks		100
	:				:	100
Credits : L: T: P	:	3:0:0		SEE Marks	:	100
Hours	:	39L		SEE Duration	:	3Hrs
			UNIT – I			08 Hrs
types, causes and p and safety, wash ro	rev on	entive steps/prons, drinking wa	types, results and control, mecha ocedure, describe salient points of ter layouts, light, cleanliness, fire on and fire fighting, equipment and	factories act 194 e, guarding, press	8 fo	or health
			UNIT – II			08 Hrs
as a factor in hea National governme Occupational healt Biological hazards, hazards: Exposure limits. Controlling Occupational dise	lth nts, h p Ph m haz ase	promotion. He Management, rofessionals. P ysical hazards, easurement tec cards: Engineer	ards, workplace, economy and sus- ealth protection and promotion A Workers, Workers' representative otential health hazards: Air conta Ergonomic hazards, Psychosocial chniques, Interpretation of findin ing controls, Work practice contr Characteristics of occupationa	Activities in the es and unions, Co aminants, Chemio factors, Evaluati- ngs recommende ols, Administrati	wo omr cal on o ed e	orkplace: nunities, hazards, of health exposure controls.
occupational diseas	es.					00 11
			UNIT – III ics and effects on health: Intro			08 Hrs
Oxidizers, Genera Mutagens, Reprodu Limits. Physical Mutagenicity and	1 N acti Age Fera	Manufacturing ve Hazards, Se ents, Noise an atogenicity. Er	I Metallic Compounds, Particulat Materials, Chemical Substitute ensitizers and Teratogens, Recom nd Vibration, Temperature and gonomic Stresses: Stress-Related Video Display Terminals.	es, Allergens, C mended Chemica Pressure, Carc	Carc al E ino ₂	inogens, Exposure genicity, yestrain,
			UNIT – IV			08 Hrs
lubricants-types and Screw down grease Wick feed lubricat	d aj e cu tion	pplications, Lul 1p, ii. Pressure 1 vi. Side feed	vention: Wear- types, causes, effe brication methods, general sketch, grease gun, iii. Splash lubricatio lubrication, vii. Ring lubricatio of corrosion, corrosion preventior	working and app n, iv. Gravity lul n, Definition, pr	plic: bric	ations, i. ation, v.
			UNIT – V			07 Hrs
and repairing scher common troubles a steps and advanta maintenance of: I. Program and sche	mes nd ges Ma edu	s, overhauling remedies of el- of preventive chine tools, ii. le of preventi	ce: Periodic inspection-concept ar of mechanical components, over ectric motor, repair complexities maintenance. Steps/procedure f Pumps, iii. Air compressors, iv. ive maintenance of mechanical e. Repair cycle concept and import	hauling of elect and its use, defin for periodic and Diesel generating and electrical	rica nitic pr g (E	l motor, on, need, eventive OG) sets,
Course Outcomes						
After successful co	mp	etion of this co	ourse the student will be able to:			
			burse the student will be able to:	simportance		
CO1 Explain the	Inc	lustrial and Occ	cupational health and safety and its	-) W	hich the
CO1Explain theCO2Demonstrat	Inc e tl	lustrial and Occ	cupational health and safety and its f different materials, occupationa	-) w	hich the
CO1Explain theCO2Demonstratemployee caCO3Characteriza	Inc e th an e	lustrial and Occ he exposure of expose in the in he different type	cupational health and safety and its f different materials, occupationa	1 environment to and health hazard	s of	it.

Ref	ference Books
1.	Maintenance Engineering Handbook, Higgins & Morrow, 1 st Edition, McGraw-Hill ducation, 1994, ISBN 10: 0070432015
2.	Maintenance Engineering Principles, Practices & Management, H. P. Garg,1 st Edition, S. Chand and Company, 2009, ISBN:9788121926447
3.	Fundamental Principles of Occupational Health and Safety, Benjamin O. Alli, 2 nd edition, International Labour Office – Geneva: ILO, 2008, ISBN 978-92-2-120454-1
4.	Foundation Engineering Handbook, Winterkorn, Hans, 1 st edition, Chapman & Hall London,
	2008, ISBN:8788111925428.

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks**

Scheme of Semester End Examination (SEE) for 100 marks

				SEMESTER: II			
			MODELI	IG USING LINEAR PROGRAMMING (Global Elective-G03)			
Co	urse Code	:	18IM2G03	CIE M	arks	:	100
	edits L: T: P	:	3:0:0	SEE M		:	100
Ho	ours	:	39 L	SEE D	uration	:	3 hrs
			1	Unit – I		1	L
				n to Linear Programming problem plex Algorithm – Use of Artificial Variables			08 Hrs
				Unit – II			
me	thod			:Two Phase simplex techniques, Revise Economic interpretation of duality	ed simple	x	08 Hrs
				Unit – III			
cha		, (Changes in ob	ensitivity analysis, Algebraic sensitivity ectives, Post optimal analysis - changes			08 Hrs
				Unit – IV			
	· ·		ed Transportati tation Problem	on Problem, Degeneracy in Transportation s. Unit –V	Problem	s,	
ass		len	n-Hungarian N	n of the Assignment problem, solution rethod, Variants in assignment problem,			07 Hrs
	urse Outcome	~	-~-).				
Af	ter going thro	ugl	h this course t	e student will be able to:			
CC)1 Explain th	ne v	arious Linear	rogramming models and their areas of appli	cation.		
CC	D2 Formulate	e ar	nd solve proble	ns using Linear Programming methods.			
CC	D3 Develop 1	noc	tels for real life	problems using Linear Programming techni	ques.		
CC	04 Analyze s	olu	tions obtained	hrough Linear Programming techniques.			
Re	eference Book	S					
1	Operation Re	sea	rch An Introdu	tion, Taha H A, 8 th Edition, PHI, 2009, ISBN	N: 013048	880	89.
2	Principles of	Op	erations Resea	cch – Theory and Practice, Philips, Ravind ^d Edition, 2000, ISBN 13: 978-81-265-1256	ran and S		
3	Introduction 1 2012, ISBN 1	to (3: !	Operation Rese 978-0-07-1333	arch, Hiller, Liberman, Nag, Basu, Tata Mc 16-7.	Graw Hi		
4	2009, ISBN 1	3:	978-0-23-0638		on Pvt Lt	d, 4	th Edition,
				(Q), Tests (T) and Assignments (A). A min	nimum of	f tw	o quizzes

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks**

Scheme of Semester End Examination (SEE) for 100 marks

			SEMESTER: II				
]	ROJECT MANAGEN				
Course Code	•	18IM2G04	(Global Elective-G0	CIE Mar	ks	:	100
Credits L: T: P	:	3:0:0		SEE Mar		:	100
Hours	:	39L		SEE Dur		:	3 Hrs
	-		Unit – I			-	
	ŤΪ	eam Work, P		<u> </u>			08 Hrs
Conital Pudgatin	a · 1	Conital Invast	Unit – II	Difficulties phases	of conit	-01	08 Hrs
	of	decision mak	nents: Importance and ng, facets of project <i>a</i> ital budgeting				US HIS
			Unit – III				
Requirement and	its 1	Financing, Pro	eans of Finance, Cost o itability Projections, Pr Projections, Financial	ojected Cash Flow	Statemer	nt,	08 Hrs
.			Unit – IV				
			ns and networks, Pro thod (CPM), Computer Unit-V			W	
Project Manager	nen	t and Certifi	cation: An introduction	n to SEI. CMMI a	nd proje	ct	07 Hrs
			tance of the same for				
PMBOK 6 - Intro Agile.	duc	tion to Agile 1	Iethodology, Themes /	Epics / Stories, Imp	olementii	ng	
-	Cas	se Studies on	Project Management:	Case studies coveri	ng proje	ct	
			techniques, performance		01 5		
Course Outcomes	<u> </u>		A * *				
After going throu	gh	this course th	e student will be able to	0:			
CO1 Explain pro	ojec	t planning acti	vities that accurately for	ecast project costs, t	imelines	, ar	nd quality.
CO2 Evaluate th	le b	udget and cost	analysis of project feasi	bility.			
CO3 Analyze th	e co	oncepts, tools a	nd techniques for manag	ging projects.			
	ple	sectors of the	t practices to meet the economy (i.e. consulti				
Reference Books							
-	-		tion Financing Implemi lication, 2010, ISBN 0-		Prasanna	ı Cl	handra, 8 th
2 A Guide to t	ne F	Project Manage	ment Body of Knowled N: 978-1-935589-67-9		Project	Ma	nagement
			approach to Planning S s Inc, 2013, ISBN 978-		lling, Ha	rolo	d Kerzner,
		ment – Planni 004, ISBN: 98	ng and Controlling Te 12-53-121-1	chniques, Rory Bur	·ke, 4 th 1	Edi	tion, John

RV College of Engineering®

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks**

Scheme of Semester End Examination (SEE) for 100 marks

				SEMESTER: II		
			E	NERGY MANAGEMENT		
			P	(Global Elective-G05)		
Cou	rse Code	:	18CH2G05	CIE Marks	:	100
Crec	dits: L:T:P	:	3:0:0	SEE Marks	••	100
Hou	rs	:	39L	SEE Duration	:	3 Hrs
				Unit-I		08 Hrs
	rgy conservat					
				Energy audit and types of energy audit, Energy co		ervation
appr	oaches, Cogen	erat	tion and types	of cogeneration, Heat Exchangers and classification.		
				Unit-II		08 Hrs
	Biomass Gas					
				tock for biogas generation, Biomass conversion tec		•
				thesis, Biogas generation, Factors affecting bio		
	dvantages.	nog	as plants, Floa	ating drum plant and fixed dome plant their adva	ша	ges and
uisac	availlages.			Unit -III		08 Hrs
Drv	Biomass Gas	ifier	rc •			00 1115
•				Thermal gasification of biomass, Classification o	fø	asifiers.
				operation of up draught and down draught gasifiers.		usinens,
	<u></u>			Unit -IV		08 Hrs
Sola	r Photovoltai	c:				
Princ	ciple of photov	olta	aic conversion	of solar energy, Types of solar cells and fabrication.		
Win	d Energy:					
Class	sification, Fac	tors	influencing w	ind, WECS & classification.		
				Unit -V		07 Hrs
	rnative liquid					
				w materials, Pre-treatment, Conversion processes w		
			on of wood: D	etailed process, Gas purification and shift conversion	on,	Biofuel
	n water hyacint		2			
	rse outcomes		· ·	last should have acquired the shiller to		
$\frac{\text{On c}}{\text{CO1}}$				lent should have acquired the ability to		
CO1			heme for energ			
	_	a sc.		zy audit		
(NO)	Evaluate			-		
CO3		the	factors affectir	g biomass energy conversion		
CO4	Design a	the	factors affectir	-		
CO4 Refe	Design a Erence Books	the biog	factors affecting gas plant for w	ng biomass energy conversion et and dry feed		1
CO4	Design a erence Books Nonconvention	the biog	factors affectir gas plant for w energy, Ashc	ng biomass energy conversion et and dry feed k V Desai, 5 th Edition, New Age International (F	P)]	Limited,
CO4 Refe	Design a erence Books Nonconventio 2011, ISBN 1	the biogonal 3: 9	factors affectir gas plant for w energy, Asho 978812240207	ng biomass energy conversion et and dry feed k V Desai, 5 th Edition, New Age International (F 0.		
CO4 Refe	Design a erence Books Nonconventio 2011, ISBN 1 Biogas Techr	the biogonal 3: 9	factors affectir gas plant for w energy, Asho 9788122402070 gy - A Practica	ng biomass energy conversion et and dry feed ok V Desai, 5 th Edition, New Age International (F 0. al Hand Book, Khandelwal K C and Mahdi S S, Vol		
CO4 Refe	Design a erence Books Nonconvention 2011, ISBN 1 Biogas Techri edition, McG	the biog onal 3: 9 iolo raw	factors affectir gas plant for w energy, Asho 9788122402070 gy - A Practica -Hill Education	ng biomass energy conversion et and dry feed ok V Desai, 5 th Edition, New Age International (F 0. al Hand Book, Khandelwal K C and Mahdi S S, Vol n, 1986,, ISBN-13: 978-0074517239.	. I	& II, 1 st
CO4 Refe	Design a erence Books Nonconvention 2011, ISBN 1 Biogas Techri edition, McG	the biog onal 3: 9 iolo raw	factors affectir gas plant for w energy, Asho 9788122402070 gy - A Practica -Hill Education	ng biomass energy conversion et and dry feed ok V Desai, 5 th Edition, New Age International (F 0. al Hand Book, Khandelwal K C and Mahdi S S, Vol	. I	& II, 1 st
CO4 Refe 1 2	Design a erence Books Nonconvention 2011, ISBN 1 Biogas Techri edition, McG Biomass Cor	the biog onal 3: 9 iolo raw	factors affectir gas plant for w energy, Asho 9788122402070 gy - A Practica -Hill Education sion and Tech	ng biomass energy conversion et and dry feed ok V Desai, 5 th Edition, New Age International (F 0. al Hand Book, Khandelwal K C and Mahdi S S, Vol n, 1986,, ISBN-13: 978-0074517239.	. I	& II, 1 st
CO4 Refe 1 2	Design a prence Books Nonconvention 2011, ISBN 1 Biogas Techri edition, McG Biomass Corri Edition, John	the biog onal 3: 9 olo raw iver Wi	factors affectir gas plant for w energy, Asho 9788122402070 gy - A Practica -Hill Education sion and Tech ley & Sons, 19	ng biomass energy conversion et and dry feed ok V Desai, 5 th Edition, New Age International (F 0. al Hand Book, Khandelwal K C and Mahdi S S, Vol n, 1986,, ISBN-13: 978-0074517239. mology, Charles Y Wereko-Brobby and Essel B	. I Ha	& II, 1 st gan, 1 st

RV College of Engineering®

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks**

Scheme of Semester End Examination (SEE) for 100 marks

		SEMESTER: II		
		INDUSTRY 4.0		
		(Global Elective-G06)		-1
Course Code Credits L: T: P	: 18ME2G06 : 3:0:0	CIE Marks SEE Marks	:	100 100
Hours	: 39L	SEE Duratio	n :	3 Hrs
		Unit – I		
Artificial Intellig		Case studies, Cloud and Fog, M2M Learning ial Internet Architecture Framework (IIAF),		08 Hrs
Management.		Unit – II		
The Concept of	the HoT: Modern (Communication Protocols, Wireless Communica	tion	08 Hrs
		ommunication Protocols, TCP/IP, API: A Tech		00 1115
•	lleware Architecture			
· · ·		Unit – III		
Data Analytics in	n Manufacturing:	Introduction, Power Consumption in manufacture	ring,	08 Hrs
		ing, Smart Remote Machinery Maintenance Syst	ems	
-	•	Steel Manufacturing.		
•		oposition, Introduction, Internet of Things Examp	ples,	
		rds, Security and Privacy Concerns.		
		of Industry 4.0, Introduction, Recent Technology ensor Technologies, Artificial Intelligence, Internet		
Robotic Things, C		hisor reenhologies, Artificial interligence, interne	21 01	
Robotie Things, C	foud Robolies.	Unit – IV		
Additive Manu	facturing Technol	logies and Applications: Introduction, Add	itive	08 Hrs
		Stereo lithography, 3DP, Fused Deposition Mode		
Selective Laser S		ated Object Manufacturing, Laser Engineered	•	
Shaping, Advan	tages of Additiv	ve Manufacturing, Disadvantages of Add	itive	
Manufacturing.				
		ch and Applications, The State of Art, The Vin	tual	
Factory Software	, Limitations of the	Commercial Software		
Assessmented Dec	Etru The Dele of	Unit –V	4.0	07 11
		Augmented Reality in the Age of Industry ftware Technology, Industrial Applications of		07 Hrs
		ive Operations, Training.	AK,	
	-	t factories in action, Importance, Real world s	mart	
factories, The way		i neconos in action, importance, itear worte s	indi t	
•		on, Transforming Operational Processes, Busi	ness	
		ncy, Develop New Business Models.		
Course Outcome				
		student will be able to:		
		s, challenges brought about by Industry 4.0	for b	enefits of
-	ons and individuals		~	
÷		Smart Factories, Smart cities, Smart products and		
·		epts in a manufacturing plant to improve product	ivity a	and profits
		Cloud Computing in a networked economy		
Reference Books	5			
•	the industrial In 7, ISBN-13: 978-1-	ternet of Things , Alasdair Gilchrist, 1 st -4842-2046-7	editio	n, Apress
Springer, 201	8, ISBN 978-3-319-			
		t of things connecting the physical, digital and		
3 Ovidiu Verme	1 D	,1st edition, Rivers Publishers, 2016, ISBN 978-8	7 0 2 2	70 01 7

4 The concept Industry 4.0- An Empirical Analysis of Technologies and Applications in Production Logistics, Christoph Jan Bartodziej, 1st edition, Springer Gabler, 2017, ISBN 978-3-6581-6502-4.

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks**

Scheme of Semester End Examination (SEE) for 100 marks

				SEMESTER: II		
			1	ADVANCED MATERIALS		
				(Global Elective-G07)		
	e Code	:	18ME2G07	CIE Marks	:	100
	ts L: T: P	:	3:0:0	SEE Marks	:	<u>100</u>
Hours	5	:	39L	SEE Duration	:	3 Hrs
require		erir		Unit – I Materials: Classification of materials. Properties riteria of selection of materials. Requirements / needs		08 Hrs
				Unit – II		
proces and p	sing and ap roperties. C ations. Opt	plic Cera	cations. Plastic mics : Prope	tion of n on metallic materials, Rubber : Properties, s : Thermosetting and Thermoplastics, Applications rties and applications. Adhesives: Properties and rties and applications. Composites : Properties and	s 1	08 Hrs
<u></u>				Unit – III		
high st		icati	ions, Properties	s of strengthening of alloys, Materials available for required for high strength materials, Applications of		08 Hrs
	U			Unit – IV		
temper Materi	rature applic	catio e f	ons, Requireme or high tempe	erature applications, Materials available for low ents of materials for high temperature applications, rature applications, Applications of low and high	,	
				Unit –V		
			• •	of nanomaterials including carbon nanotubes and nical properties, Applications of nanomaterials	1	07 Hrs
nanoco		hys	ical and mecha	filed properties, reprications of hanomaterials		
Cours		: gh	this course the	student will be able to:		
Cours After	going throu	: gh	this course the			
Cours After CO1	going throu Describe r	gh neta	this course the allic and non m	student will be able to:		
Cours After CO1 CO2	going throu Describe r Explain pro	gh neta	this course the allic and non m ration of high s	e student will be able to: etallic materials		
Cours After CO1 CO2 CO3	going throu Describe r Explain pro Integrate k	gh neta epai	this course the allic and non m ration of high st vledge of differ	e student will be able to: etallic materials trength Materials		
Cours After CO1 CO2 CO3 CO4	going throu Describe r Explain pro Integrate k	gh neta epai	this course the allic and non m ration of high st vledge of differ	e student will be able to: etallic materials trength Materials ent types of advanced engineering Materials		
Cours After CO1 CO2 CO3 CO4 Refer 1 Th	going throu Describe r Explain pro Integrate k Analyse pr rence Books te Science &	s: gh neta epai now oblo	this course the allic and non m ration of high so vledge of differ em and find app gineering of M	e student will be able to: etallic materials trength Materials ent types of advanced engineering Materials propriate solution for use of materials.	5th	n Edition
Cours After CO1 CO2 CO3 CO4 Refer 1 Th Th	going throu Describe r Explain pro Integrate k Analyse pr rence Books te Science & tomson, 200	ii gh meta epan now oblo	this course the allic and non m ration of high st vledge of differ em and find app gineering of M SBN-13-978-05	estudent will be able to: etallic materials trength Materials ent types of advanced engineering Materials propriate solution for use of materials. faterials, Donald R. Askeland, and Pradeep P. Fulay, 534553968		
Cours After CO1 CO2 CO3 CO4 Refer 1 Th Th 2 Na Ma	going throu Describe r Explain pro Integrate k Analyse pr rence Books te Science & tomson, 2000 anotechnolog aterial Scien	gh meta epai now oblo G, IS gy, cc	this course the allic and non m ration of high st vledge of differ em and find app gineering of M SBN-13-978-05 Gregory L. Tin and Metallurgy	e student will be able to: etallic materials trength Materials ent types of advanced engineering Materials propriate solution for use of materials.	334	9

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks

Scheme of Semester End Examination (SEE) for 100 marks The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

			SEMESTER: II		
CO	M	POSITE MATI	ERIALS SCIENCE AND ENGINEERING		
T			(Global Elective-G08)		
Course Code	:	18CHY2G08	CIE Marks	:	100
Credits: L: T:P	:	3:0:0	SEE Marks	:	100
Hours	:	39L	SEE Duration	:	3Hrs
			Unit-I		
Introduction to con				3 0	B Hrs
			for composites - Enhancement of properties -		
			ymer matrix composites (PMC), Metal matrix		
			composites (CMC) – Constituents of composites,		
	_		ion of constituents, Types of Reinforcements,		
		-	einforced composites. Fiber production techniques		
for glass, carbon and	d c	eramic fibers Ap	oplications of various types of composites.		
			Unit – II		
Polymer matrix co	mĮ	posites (PMC)		3 0	B Hrs
			resins, Thermoplastic resins & Elastomers,		
			, Woven fabrics. PMC processes - Hand Layup		
			pression Moulding – Injection Moulding – Resin		
			ament winding – Injection moulding. Glass fibre		
			sites (GFRP & CFRP). Laminates- Balanced		
•			Angle Ply Laminates, Cross Ply Laminates.		
			ile Strength, Flexural Strength, ILSS, Impact		
	AS	TM Standard.	Applications of PMC in aerospace, automotive		
industries.					
~			Unit -III		
Ceramic matrix co				0	8 Hrs
			perties – advantages – limitations – monolithic		
			nic matrix – various types of ceramic matrix		
			de ceramics – Aluminium oxide – silicon nitride –		
			iskers. Sintering – Hot pressing – Cold Isostatic		
			sing (HIPing). Applications of CMC in aerospace, on composites – advantages of carbon matrix –		
			ibre – chemical vapour deposition of carbon matrix –		
			e- Processing of Ceramic Matrix composites.		
carbon nore perion.	11	soi-gei teeninqu	Unit –IV		
Metal matrix com	າກຄ	ites		0	8 Hrs
-			es of metal matrix composites alloy vs. MMC,	U	0 111 5
			MC, Reinforcements – particles – fibres. Effect of		
			ule of mixtures. Processing of MMC – powder		
			g - stir casting - squeeze casting, a spray process,		
<i>0,</i> r			Interface-measurement of interface properties-		
	Ir				
Liquid infiltration		in aerospace, aut	comotive industries.		
		in aerospace, aut	Unit –V		
Liquid infiltration applications of MM	Ci	•		07	' Hrs
Liquid infiltration applications of MM Polymer nano com	C i	sites		07	' Hrs
Liquid infiltration applications of MM Polymer nano com Introduction and Sig	C i po gni	sites ficance of polyn	Unit –V	07	' Hrs
Liquid infiltration applications of MM Polymer nano com Introduction and Si Nanocomposites.	C i po gni Cla	sites ficance of polyn ssification of N	Unit – V ner Nano composites. Intercalated And Exfoliated	07	' Hrs
Liquid infiltration applications of MM Polymer nano com Introduction and Sig Nanocomposites. O Preparation of Poly	C i po gni Cla	sites ficance of polyn ssification of N er Nano compos	Unit –V ner Nano composites. Intercalated And Exfoliated ano fillers- nanolayers, nanotubes, nanoparticles.	07	' Hrs
Liquid infiltration applications of MM Polymer nano com Introduction and Sig Nanocomposites. O Preparation of Poly mixing techniques.	C i po gni Cla me Ch	sites ficance of polyn ssification of N er Nano compos aracterization O	Unit –V ner Nano composites. Intercalated And Exfoliated ano fillers- nanolayers, nanotubes, nanoparticles. ites by Solution, In-situ Polymerization and melt f polymer nanocomposites- XRD, TEM, SEM and	07	' Hrs
Liquid infiltration applications of MM Polymer nano com Introduction and Sig Nanocomposites. O Preparation of Poly mixing techniques. AFM. Mechanical	C i po gni Cla me Ch an	sites ficance of polyn ssification of N er Nano compos aracterization O d Rheological	Unit –V ner Nano composites. Intercalated And Exfoliated ano fillers- nanolayers, nanotubes, nanoparticles. ites by Solution, In-situ Polymerization and melt	07	' Hrs
Liquid infiltration applications of MM Polymer nano com Introduction and Sig Nanocomposites. O Preparation of Poly mixing techniques. AFM. Mechanical barrier, Chemical-I	C i po gni Cla me Ch an Res	sites ficance of polyn ssification of N er Nano compos aracterization O d Rheological sistance, Therm	Unit –V ner Nano composites. Intercalated And Exfoliated ano fillers- nanolayers, nanotubes, nanoparticles. ites by Solution, In-situ Polymerization and melt f polymer nanocomposites- XRD, TEM, SEM and properties of Polymer Nano composites. Gas	07	' Hrs
Liquid infiltration applications of MM Polymer nano com Introduction and Sig Nanocomposites. O Preparation of Poly mixing techniques. AFM. Mechanical barrier, Chemical-I nanocomposites. O	C i po gni Cla me Ch an Res Opt	sites ficance of polyn ssification of N er Nano compos aracterization O d Rheological sistance, Therm tical properties	Unit –V ner Nano composites. Intercalated And Exfoliated ano fillers- nanolayers, nanotubes, nanoparticles. ites by Solution, In-situ Polymerization and melt f polymer nanocomposites- XRD, TEM, SEM and properties of Polymer Nano composites. Gas al and Flame retardant properties of polymer	07	' Hrs

After o	completing the course, the students will be able to
CO1	Understand the purpose and the ways to develop new materials upon proper combination
	of known materials.
CO2	Identify the basic constituents of a composite materials and list the choice of materials
	available
CO3	Will be capable of comparing/evaluating the relative merits of using alternatives for
	important engineering and other applications.
CO4	Get insight to the possibility of replacing the existing macro materials with nano-materials.
Refere	nce Books
1	Composite Materials Science and Engineering, Krishan K Chawla, 3 rd Edition Springer-
L	verlag Gmbh,2012, ISBN: 9780387743646
2	The Science and Engineering of Materials, K Balani, Donald R Askeland,6 th Edition-
2	Cengage, Publishers, 2017, ISBN: 9788131516416
3	Polymer Science and Technology, Joel R Fried, 2 nd Edition, Prentice Hall, 2017, ISBN:
3	9780137039555
4	Nanomaterials and nanocomposites, Rajendra Kumar Goyal, 2 nd Edition, CRC Press-
4	Taylor & Francis,2013, ISBN: 9781498761666

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks**

Scheme of Semester End Examination (SEE) for 100 marks

		Р	HYSICS OF MATERIALS			
Course Code:		18PHY2G09	(Global Elective-G09)	Marks		100
Credits: L:T:P	:	3:0:0		Marks	:	100
	:				•	
Hours	:	39L		Duration	:	3Hrs
Crystal Structur			Unit-I		08	Hrs
Discussion of lat Interplanar distan law, Powder met	tice nce, hoc	Packing fraction l, Bragg's spect	ameters, seven crystals systems, crystal pon, Structure of different crystals-NaCl a rometer, Qualitative Analysis of Crystal point, Line, Planar and Volume defects.	and Diamo	nd,	Bragg's
Recipioeur lattice	, CI	ystar dereets r (Unit-II		08	Hrs
Dielectric Mater	rials	1				
discussion of Int Dielectric Breako materials in cap Piezoelectricity, Piezolelectricity i	erna low baci Dire n Q	al Field and Cla n, Breakdown r tors and Liqui ect and Inverse Quartz, Various	arization (polarizability as a function of f aussius Mossotti, Dielectric loss spectrum nechanisms in solid dielectrics, Application d insulating materials in Transformers Piezoelectric effect, Coupling factor, spor piezoelectric materials- PZT, PVDF, Fe	m, Dielectrons of Solies, Dielectrons ons of Solies, Dielectrons ontaneous p	tic s d In ic 1 oola	strength, sulating Heating, rization,
titanate, Poling in	n Ce	eramics.				
			L nit III		1 0 8	Hrs
effect, Magnetos examples and ap	Par trict plic	a and Ferromagion, Anti-ferror cations in Trans	Unit -III gnetic materials, Weiss theory of Ferror nagnetism, Ferrimagnetsim, Soft and Ha former cores and Magnetic storage devi actors, BCS theory, High Temperati	rd magneti ices, Super	, Hy c m	ysteresis aterials, ductors,
Review of Dia, effect, Magnetos examples and ap	Par trict plic es	a and Ferromagion, Anti-ferror ations in Trans of Supercondu	gnetic materials, Weiss theory of Ferror nagnetism, Ferrimagnetsim, Soft and Ha former cores and Magnetic storage devi- actors, BCS theory, High Temperat D.	rd magneti ices, Super	, Hy c m con	ysteresis aterials, ductors, ductors,
Review of Dia, effect, Magnetos examples and ap properties, Typ Applications in C	Par trict plic es Cryo	a and Ferromagion, Anti-ferror ations in Trans of Supercondu tron and SQUII	gnetic materials, Weiss theory of Ferror nagnetism, Ferrimagnetsim, Soft and Ha former cores and Magnetic storage devi actors, BCS theory, High Temperat	rd magneti ices, Super	, Hy c m con	ysteresis aterials, ductors,
Review of Dia, effect, Magnetos examples and ap properties, Typ Applications in C Semiconductors confinement- qua process by Millin	Par trict plic es Tryo Ma Dire antu	a and Ferromag ion, Anti-ferror cations in Trans of Supercondu tron and SQUII Aterials ect and Indir m wires and do and Lithography	gnetic materials, Weiss theory of Ferror nagnetism, Ferrimagnetsim, Soft and Ha former cores and Magnetic storage devi- actors, BCS theory, High Temperat D.	rd magneti ices, Super ure Super prtance of approach, cess by va	Hycon con con 07 Fat	ysteresis aterials, ductors, ductors, ' Hrs Quantum prication ur phase
Review of Dia, effect, Magnetos examples and ap properties, Typ Applications in C Semiconducting Semiconductors- confinement- qua process by Millin expansion and y	Par trict plic es Tryo Ma Dire antu	a and Ferromag ion, Anti-ferror cations in Trans of Supercondu tron and SQUII Aterials ect and Indir m wires and do and Lithography	gnetic materials, Weiss theory of Ferror nagnetism, Ferrimagnetsim, Soft and Ha former cores and Magnetic storage devi- actors, BCS theory, High Temperation Unit -IV ect band gap semiconductors, Impo- ots, size dependent properties, Top down y, Bottom up approach, fabrication pro-	rd magneti ices, Super ure Super prtance of approach, cess by va	, Hy c m con con 07 Fat apou e p	ysteresis aterials, ductors, ductors, ' Hrs Quantum prication ur phase
Review of Dia, effect, Magnetos examples and ap properties, Typ Applications in C Semiconducting Semiconductors- confinement- qua process by Millin expansion and v Applications.	Par trict plic s Cryo Ma Dire antu ng a vapo	a and Ferromagion, Anti-ferror cations in Trans of Superconduction and SQUII Aterials ect and Indir m wires and do and Lithography or phase conder	gnetic materials, Weiss theory of Ferror nagnetism, Ferrimagnetsim, Soft and Ha aformer cores and Magnetic storage devi- actors, BCS theory, High Temperate D. Unit -IV ect band gap semiconductors, Impo- ots, size dependent properties, Top down y, Bottom up approach, fabrication pro- nsation, Polymer semi-conductors-Photo Unit -V	ortance of approach, conductive	, Hy c m con con con 7 con 2 con 2 con 2 con 2 con 2 con 2 con 2 con 2 con 2 con con con con con con con con con con	ysteresis aterials, ductors, ductors, ' Hrs Quantum prication ur phase olymers, Hrs
Review of Dia, effect, Magnetos examples and ap properties, Type Applications in C Semiconducting Semiconductors- confinement- qua process by Millin expansion and w Applications. Novel Materials Smart materials- mechanical loa Superelasticity, C spin coating, Nit	Par trict plices Cryo Direction Dire	a and Ferromagion, Anti-ferror cations in Trans of Supercondu- tron and SQUII aterials ect and Indir- m wires and do and Lithography or phase conder be memory allo on phase tra cacterization tecl l, CuAlNi alloy	gnetic materials, Weiss theory of Ferror nagnetism, Ferrimagnetsim, Soft and Ha former cores and Magnetic storage devi- actors, BCS theory, High Temperation Unit -IV ect band gap semiconductors, Impo- ots, size dependent properties, Top down y, Bottom up approach, fabrication pro- nsation, Polymer semi-conductors-Photo Unit -V ys, Austenite and Martensite phase, Effe	ect of temp formation Preparation Preparation Preparation	, Hy c m com com com 07 (Faltapou e po 08 08 08 08 08 08 08 08	ysteresis aterials, ductors, ductors, 'Hrs Quantum prication ur phase olymers, Hrs ture and steresis, chnique- polymer
Review of Dia, effect, Magnetos examples and ap properties, Type Applications in C Semiconducting Semiconductors- confinement- qua process by Millin expansion and v Applications. Novel Materials Smart materials- mechanical loa Superelasticity, C spin coating, Nit biomaterials, Ti Applications. Course Outcomes	Par trict pplic es Cryo Ma Direc antung a vapo d Char inol tani	a and Ferromagion, Anti-ferror cations in Trans of Superconduction and SQUII aterials ect and Indire m wires and do and Lithography or phase conder pe memory allo on phase tra cacterization tech l, CuAlNi alloy um and Titan	gnetic materials, Weiss theory of Ferror nagnetism, Ferrimagnetsim, Soft and Ha former cores and Magnetic storage devi- actors, BCS theory, High Temperatro Unit -IV ect band gap semiconductors, Impo- ots, size dependent properties, Top down y, Bottom up approach, fabrication pro nsation, Polymer semi-conductors-Photo Unit -V ys, Austenite and Martensite phase, Effe nsformation, Pseudoeleasticity, Trans hnique-Differntial Scanning calorimetry, and applications. Biomaterials-Metallic, ium alloys, Carbon nanotubes, Grapl	ect of temp formation Preparation Preparation Preparation	, Hy c m com com com 07 (Faltapou e po 08 08 08 08 08 08 08 08	ysteresis aterials, ductors, ductors, Hrs Quantum prication ur phase olymers, Hrs ture and steresis, chnique- polymer
Review of Dia, effect, Magnetos examples and ap properties, Type Applications in C Semiconducting Semiconductors- confinement- qua process by Millin expansion and v Applications. Novel Materials Smart materials- mechanical loa Superelasticity, C spin coating, Nit biomaterials, Ti Applications. Course Outcomes After completing	Par trict plic Sryo Ma Direcantung apo antung shap d Char inol tani itani	a and Ferromagion, Anti-ferror cations in Trans of Superconduction and SQUII aterials ect and Indir- m wires and do and Lithography or phase conder be memory allo on phase tra cacterization tech l, CuAlNi alloy um and Titan	gnetic materials, Weiss theory of Ferror nagnetism, Ferrimagnetsim, Soft and Ha former cores and Magnetic storage devi- actors, BCS theory, High Temperatro Unit -IV ect band gap semiconductors, Impo- ots, size dependent properties, Top down y, Bottom up approach, fabrication pro hsation, Polymer semi-conductors-Photo Unit -V ys, Austenite and Martensite phase, Effe nsformation, Pseudoeleasticity, Trans hnique-Differntial Scanning calorimetry, and applications. Biomaterials-Metallic, ium alloys, Carbon nanotubes, Grapl dents will be able to	ect of temp formation Preparation Preparation Preparation	, Hy c m com com com 07 (Faltapou e po 08 08 08 08 08 08 08 08	ysteresis aterials, ductors, ductors, Hrs Quantum prication ur phase olymers, Hrs ture and steresis, chnique- polymer
Review of Dia, effect, Magnetos examples and ap properties, Type Applications in C Semiconducting Semiconductors- confinement- qua process by Millin expansion and w Applications. Novel Materials Smart materials- mechanical loa Superelasticity, C spin coating, Nit biomaterials, Ti Applications. Course Outcomes After completing CO1 Apply the	Par trict plices Cryo Ma Direantung a zapo d Shap d Char inol tani tani	a and Ferromagion, Anti-ferror cations in Trans of Supercondu- tron and SQUII aterials ect and Indir- m wires and do and Lithography or phase conder be memory allo on phase tra acterization tech l, CuAINi alloy um and Titan <u>course, the stu</u> nciples of Physic	gnetic materials, Weiss theory of Ferror nagnetism, Ferrimagnetsim, Soft and Ha aformer cores and Magnetic storage devi- actors, BCS theory, High Temperation Unit -IV ect band gap semiconductors, Impo- ots, size dependent properties, Top down y, Bottom up approach, fabrication pro- nsation, Polymer semi-conductors-Photo Unit -V ys, Austenite and Martensite phase, Effer nsformation, Pseudoeleasticity, Trans hnique-Differntial Scanning calorimetry, and applications. Biomaterials-Metallic, ium alloys, Carbon nanotubes, Grapl dents will be able to cs in Engineering.	ect of temp formation Preparation Preparation Preparation	, Hy c m com com com 07 (Faltapou e po 08 08 08 08 08 08 08 08	ysteresis aterials, ductors, ductors, Hrs Quantum prication ur phase olymers, Hrs ture and steresis, chnique- polymer
Review of Dia, effect, Magnetos examples and ap properties, Type Applications in C Semiconducting Semiconductors- confinement- qua process by Millin expansion and v Applications. Novel Materials Smart materials- mechanical loa Superelasticity, C spin coating, Nitt biomaterials, Ti Applications. Course Outcomes After completing CO1 Apply the CO2 Apply the	Par trict plices Cryo Ma Direct antung a vapo d Char inol tani the prin kno	a and Ferromagion, Anti-ferror cations in Trans of Superconduction and SQUII aterials ect and Indire m wires and do and Lithography or phase conder phase conder phase transformed and course, the stunciples of Physic powledge of Physic	gnetic materials, Weiss theory of Ferror nagnetism, Ferrimagnetsim, Soft and Ha former cores and Magnetic storage devi- actors, BCS theory, High Temperation Unit -IV ect band gap semiconductors, Impo- ots, size dependent properties, Top down y, Bottom up approach, fabrication pro- nsation, Polymer semi-conductors-Photo Unit -V ys, Austenite and Martensite phase, Effe nsformation, Pseudoeleasticity, Trans- hnique-Differntial Scanning calorimetry, and applications. Biomaterials-Metallic, ium alloys, Carbon nanotubes, Graph dents will be able to cs in Engineering. ics for material analysis.	rd magneti ices, Super ure Super ortance of approach, cess by va conductive ect of temp formation Preparatior , ceramic a hene- Prop	, Hy c m com com com 07 (Faltapou e po 08 08 08 08 08 08 08 08	ysteresis aterials, ductors, ductors, 'Hrs Quantum prication ur phase olymers, Hrs ture and steresis, chnique- polymer
Review of Dia, effect, Magnetos examples and ap properties, Type Applications in C Semiconducting Semiconductors- confinement- qua process by Millin expansion and v Applications. Novel Materials Smart materials- mechanical loa Superelasticity, C spin coating, Nit biomaterials, Ti Applications. Course Outcomes After completing CO1 Apply the CO2 Apply the CO3 Identify an	Par trict pplic es Cryo Ma Direc antung a vapo d Char inol tani itani <u>the</u> prin kno	a and Ferromagion, Anti-ferror cations in Trans of Superconduction and SQUII aterials ect and Indire m wires and do and Lithography or phase conder be memory allo on phase tra caterization tech l, CuAlNi alloy um and Titan <u>course, the stu</u> nciples of Physic owledge of Physic	gnetic materials, Weiss theory of Ferror nagnetism, Ferrimagnetsim, Soft and Ha former cores and Magnetic storage devi- actors, BCS theory, High Temperation Unit -IV ect band gap semiconductors, Impo- ots, size dependent properties, Top down y, Bottom up approach, fabrication pro- nsation, Polymer semi-conductors-Photo Unit -V ys, Austenite and Martensite phase, Effe- nsformation, Pseudoeleasticity, Trans- hnique-Differntial Scanning calorimetry, and applications. Biomaterials-Metallic, ium alloys, Carbon nanotubes, Grapl dents will be able to cs in Engineering. ics for material analysis. ering Problems to achieve practical solution	rd magneti ices, Super ure Super ortance of approach, cess by va conductive ect of temp formation Preparatior , ceramic a hene- Prop	, Hy c m com com com 07 (Faltapou e po 08 08 08 08 08 08 08 08	ysteresis aterials, ductors ductors 'Hrs Quantum prication ur phase olymers Hrs ture and steresis chnique- polymer
Review of Dia, effect, Magnetos examples and ap properties, Type Applications in C Semiconducting Semiconductors- confinement- qua process by Millin expansion and v Applications. Novel Materials Smart materials- mechanical loa Superelasticity, C spin coating, Nit biomaterials, Ti Applications. Course Outcomes After completing CO1 Apply the CO2 Apply the CO3 Identify an	Par trict pplic es Cryo Ma Direc antung a vapo d Char inol tani itani <u>the</u> prin kno	a and Ferromagion, Anti-ferror cations in Trans of Superconduction and SQUII aterials ect and Indire m wires and do and Lithography or phase conder be memory allo on phase tra caterization tech l, CuAlNi alloy um and Titan <u>course, the stu</u> nciples of Physic owledge of Physic	gnetic materials, Weiss theory of Ferror nagnetism, Ferrimagnetsim, Soft and Ha former cores and Magnetic storage devi- actors, BCS theory, High Temperation Unit -IV ect band gap semiconductors, Impo- ots, size dependent properties, Top down y, Bottom up approach, fabrication pro- nsation, Polymer semi-conductors-Photo Unit -V ys, Austenite and Martensite phase, Effe nsformation, Pseudoeleasticity, Trans- hnique-Differntial Scanning calorimetry, and applications. Biomaterials-Metallic, ium alloys, Carbon nanotubes, Graph dents will be able to cs in Engineering. ics for material analysis.	rd magneti ices, Super ure Super ortance of approach, cess by va conductive ect of temp formation Preparatior , ceramic a hene- Prop	, Hy c m com com com 07 (Faltapou e po 08 08 08 08 08 08 08 08	ysteresis aterials ductors ductors <u>'Hrs</u> Quantum prication ur phase olymers Hrs ture and steresis chnique polymer

2.	Introduction to Solid State Physics, C. Kittel, 7th Edition, John Wiley & Sons, 2003, ISBN
	9971-51-180.
3.	Engineering Physics, Dr.M N Avadhanulu, Dr. P G Kshirsagar, 1st Edition, S Chand
	Publishing, Reprint 2015, ISBN 10-0071328971.
4.	The Science and Engineering of Materials, Askeland, Fulay, Wright, Balanai, 6th Edition,
	Cengage Learning,2012, ISBN-13:978-0-495-66802-2.

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks**

Scheme of Semester End Examination (SEE) for 100 marks

			SEMESTER: II			
		ADVANC	ED STATISTICAL METHO	DS		
			(Global Elective-G10)			
Course Code	:	18MAT2G10	, , , , , , , , , , , , , , , , , , ,	CIE Marks	:	100
Credits: L:T:P	:	3:0:0		SEE Marks	:	100
Hours	:	39L		SEE	:	3Hrs
				Duration		
			Unit-I		0'	7 Hrs
Sampling Techniques:						
-			nite and infinite populations, Si		-	
replacement an	d wi	thout replacement	t), Sampling distribution of p	proportions, Expect	atio	n and
standard error o	f san	nple mean and pro	portion, Sampling distributions	of differences and	sum	s.
			Unit-II		0	8 Hrs
Estimation:						
Point estimati	on,	Estimator and	estimate, Criteria for g	ood estimates un	bias	edness,
consistency, eff	icien	cy and sufficienc	y, Method of moment's estimation	tion and maximum	like	elihood
estimation, Con	fider	ce intervals-popu	lation mean (large sample).		-	
			Unit -III		0	8 Hrs
Tests of Hypot	hesis	:				
Tests of Hypo	thesi	s: Principles of	Statistical Inference, Formula	tion of the probl	ems	with
examples. Simp	le ar	nd composite hyp	otheses. Null and alternative hy	ypotheses. Tests - 1	type	I and
type II error, T	esting	g of mean and var	riance of normal population (or	ne sample and two	sam	nples),
Exact and asyn	nptot	ic tests of propor	tions. Chi squared test for go	odness of fit (Rele	vant	t case
studies).						
			Unit -IV		0'	7 Hrs
Linear Statistic	al N	Iodels:				
Definition of li	near	model and type	s, One way ANOVA and two	o way ANOVA m	ode	ls-one
observation per	cell,	multiple but equa	al number of observation per ce	ell (Relevant case s	tudie	es).
			Unit -V		0	9 Hrs
Linear Regress	ion:					
Simple linear	regre	ession, Estimatio	n of parameters, Properties	of least square e	stim	ators,
Estimation of e	rror	variance, Multiva	riate data, Multiple linear regr	essions, Multiple a	nd p	partial
correlation, Au	toco	rrelation-introduc	tion and plausibility of seri	al dependence, se	ourc	es of
autocorrelation,	Dur	bin-Watson test fo	r auto correlated variables.	-		
Course outcom	es (C	CO's):				
		,	nt should have acquired the abi	lity to		
			ndamental concepts of sampling			
• •		hesis, linear statis	stical models and linear regres	sion arising in var	rious	s fields
engineer	-		1.11 C 1 1 1	1		11 '
		•	skills of simple random sam			
		-	one-way ANOVA, linear and m	· •		
· · ·			em to establish statistical/m		l ar	nd use
			to solve and optimize the soluti			
Ų			matical knowledge gained to	•		
-	-	-	n, tests of hypothesis, regressio	n and statistical mo	odel	arising
	-	tical situations.				
Reference Boo		f Statistics (Vol	Land Vol. II) A. M. Goon M.	V Cunto and D D	a corr	nto 2 rd
			I and Vol. II), A. M. Goon, M.		asgu	pia, 3
Edition, W	orid	Press Private Lim	ited, 1968, ISBN-13: 978-818	/30/800.		

2	Applied Statistics and Probability for Engineers, Douglas C. Montgomery and George C.
	Runger, 3 rd Edition, John Wiley & Sons, Inc, 2003, ISBN 0-471-20454-4.
3	Fundamentals of Mathematical Statistic A Modern Approach, S.C. Gupta, V.K. Kapoor, D. C.
	Montgomery and G. Runger, 10th Edition, S Chand Publications, 2000, ISBN 81-7014-791-3.
4	Regression Analysis: Concepts and Applications , F. A. Graybill and H. K. Iyer, Belmont,
	Calif, 1 st edition, Duxbury Press, 1994, ISBN-13: 978-0534198695.

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks**

Scheme of Semester End Examination (SEE) for 100 marks

SYLLABUS FOR SEMESTER III & IV

			SEMES	TER : III			
		S	MART ANTENNA ARR		CESSING		
Cours	e Code	•	(Th 18MCS31	eory)	CIE Marks		100
		:				:	
	t L:T:P	:	4:1:0		SEE Marks	:	100
Hours		:	52L + 26T		SEE Duration	:	3 Hrs
0 4			<u>Unit – I</u> erministic Signals				11 Hrs
Princip Spectr Effect Estima Period Metho	oles of Estimati al Analysis of I of Spectrum ation of the Pow ogram, Power d of Power Sp	on Det Sa /er Spe	Theory -Properties of Esti erministic Signals, Effect mpling, Estimation of the Spectrum of Stationary Rate extrum Estimation by Smoother trum Estimation by Aven	of Signal Sampling e Autocorrelation ndom Signals, Pow othing a Single Po	g, Windowing, Period of Stationary Ran ver Spectrum Estimat eriodogram, The Bla	lic E dom tion ckm	xtension, Signals, Using the an-Tukey
Metho	d.		Unit – II				10 Hrs
Joint S	Signal Analysis						10 1113
Spectr Model	um Estimation,	Est etri	ver Spectrum, Estimation of timation of Auto Power Sp c Spectral Estimation - The ation	ectrum, Estimation	n of Cross Power Spe	ctru	m. Signal
		-	Unit – I	Ι			11 Hrs
Narro Signal	wband Process Model, Steerin	ing 1g	phical Solution, N-Elemen Vector Representation Eig Directional Interference R	genvalue Decompo	sition Conventional	Bear	m former
			Unit – I	V			10 Hrs
Conve Beamf Tapere Consic Adapti Impler Descer	Forming – Eig ed Optimum Bea derations for Op ive Beamformin mentation of the nt methods.	en amf tim g - e S	Beamforming - Spatial analysis of the Optimum forming, The Generalized S um Beamformer (In brief H Sample Matrix Inversion, 1 MI Beamformer, Sample- pcessing Methods - Linearl	Beamformer, Inten idelobe Canceler, I Effect of Signal Mis Diagonal Loading v by- Sample Adapt	rference Cancelation Performance smatch, Effect of Ban with the SMI Beamfor tive Methods – RLS	Perf dwid rmer and	formance, (th) Steepest
			Unit – V	7			10 Hrs
Spectr Linear Metho	al Estimation M Prediction Me ds, MUSIC Alg e Outcomes	fetl tho orit	timation Methods nods, Bartlett Method, Mi d, Maximum Entropy Me thm, Minimum Norm Meth	thod, Maximum L od, ESPRIT Metho	ikelihood Method, E	igen	
After	going through	this	s course the student will b	e able to:			
CO1	process for a		ept of spatial spectrum of statistical signal being re			he e	stimation
CO2			ate complex weighting tech	•		sirat	ole spatial

	and beam pattern.
CO3	Analyze the spatially sampled spectrum by an array and verify the performance of known spatial
	estimation
	algorithms like Bartlett, MUSIC and MVDR.
CO4	Evaluate and develop an array with spatial estimation algorithms that meet a specified spatial
	performance
	requirements including resolution and SNR.
Refere	ence Books
1	Statistical and Adaptive Signal Processing, Dimitris G. Manolakis, Vinay K. Ingle, Stephen M. Kogon, 2005, Artech House, ISBN: 1-58053-610-7
2	Smart Antennas, Lal Chand Godara, 2004, CRC Press, ISBN: 978-0-84-931206-9
3	Array Signal Processing: Concepts and Techniques, Don H. Johnson, Dan E. Dugeon, 1993,
	Prentice Hall Signal Processing Series. ISBN: 0-130485136
4	Antenna Theory: Analysis and Design, Constantine A. Balanis, 3 rd Edition. 2009, John Wiley &
	Sons, ISBN: 978-0-47-166782-7

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks**

Scheme of Semester End Examination (SEE) for 100 marks

		SEM	IESTER : III		
		INT	FERNSHIP		
Course Code	:	18MCS32	CIE Marks	:	100
Credit L:T:P	:	0:0:5	SEE Marks	:	100
Hours/week	:	10	SEE Duration	:	3 Hrs
		GU	IDELINES		

- 1) The duration of the internship shall be for a period of 8 weeks on full time basis after II semester final exams and before the commencement of III semester.
- 2) The student must submit letters from the industry clearly specifying his / her name and the duration of the internship on the company letter head with authorized signature.
- 3) Internship must be related to the field of specialization of the respective PG programme in which the student has enrolled.
- 4) Students undergoing internship training are advised to report their progress and submit periodic progress reports to their respective guides.
- 5) Students have to present the internship activities carried out to the departmental committee and only upon approval by the committee, the student can proceed to prepare and submit the hard copy of the final internship report. However, interim or periodic reports as required by the industry / organization can be submitted as per the format acceptable to the respective industry /organizations.
- 6) The reports shall be printed on A4 size with 1.5 spacing and Times New Roman with font size 12, outer cover of the report (wrapper) has to be Ivory color for PG circuit Programs and Light Blue for Non-Circuit Programs.
- 7) The broad format of the internship final report shall be as follows
 - Cover Page
 - Certificate from College
 - Certificate from Industry / Organization
 - Acknowledgement
 - Synopsis
 - Table of Contents
 - Chapter 1 Profile of the Organization: Organizational structure, Products, Services, Business Partners, Financials, Manpower, Societal Concerns, Professional Practices,
 - Chapter 2 Activities of the Department
 - Chapter 3 Tasks Performed: summaries the tasks performed during 8-week period
 - Chapter 4 Reflections: Highlight specific technical and soft skills that you acquired during internship
 - References & Annexure

Course Outcomes:

After going through the internship the student will be able to:

- CO1: Apply engineering and management principles
- CO2: Analyze real-time problems and suggest alternate solutions
- CO3: Communicate effectively and work in teams
- CO4: Imbibe the practice of professional ethics and need for lifelong learning.

Scheme of Continuous Internal Evaluation (CIE):

The evaluation committee shall consist of Guide, Professor/Associate Professor and Assistant Professor. The committee shall assess the presentation and the progress reports in two reviews.

The evaluation	n criteria shall be as per the rubrics given below:	
Reviews	Activity	Weightage
Review-I	Explanation of the application of engineering knowledge in industries, ability to comprehend the functioning of the organization/ departments,	45%
Review-II	Importance of resource management, environment and sustainability	
	presentation skills and report writing	55%

Scheme for Semester End Evaluation (SEE):

The SEE examination shall be conducted by an external examiner (domain expert) and an internal examiner. Evaluation shall be done in batches, not exceeding 6 students per batch.

				SEMESTER: III			
			MAJ	OR PROJECT: PH	ASE-I		
Course	Code	:	18MCS33		CIE Marks	:	100
Credit L	J:T:P	:	0:0:5		SEE Marks	:	100
Hours/w	veek	:	10		SEE Duration	:	3 Hrs
				GUIDELINES			
 The total duration of the Major project Phase-I shall be for 16 weeks. Major project shall be carried out on individual student basis in his/her respective PG programme specialization. Interdisciplinary projects are also considered. The allocation of the guides shall be preferably in accordance with the expertise of the faculty. The project may be carried out on-campus/industry/organization with prior approval from Internal Guide, Associate Dean and Head of the Department. Students have to complete Major Project Phase-I before starting Major Project Phase-II. The reports shall be printed on A4 size with 1.5 spacing and Times New Roman with font size 12, outer cover of the report (wrapper) has to be Ivory color for PG circuit Programs and Light Blue for Non-Circuit Programs. 							
Course (After go			h this course the stude	ents will be able to:			
			ize, design and implem				
			ate the solutions throug				
			ect and resource manag self-learning, sustainab				.118

Scheme of Continuous Internal Examination (CIE)

Evaluation shall be carried out in two reviews. The evaluation committee shall consist of Guide, Professor/Associate Professor and Assistant Professor.

The evaluation criteria shall be as per the rubrics given below:

Reviews	Activity	Weightage
Review-I	Selection of the topic, Literature Survey, Problem Formulation and Objectives	45%
Review-II	Methodology and Report writing	55%

Scheme for Semester End Evaluation (SEE):

Phase-I evaluation shall be done by an external examiner (domain expert) and respective guide as per the schedule. Maximum of four candidates per batch shall be allowed to take examination. The batches are to be formed based on specific domain of work.

		SI	EMESTER : III			
		WIRELESS CELLUI (Profe	LAR AND LTE 40 ssional Elective-E			
Course Code	:	18MCS3E1		CIE Marks	:	100
Credit L:T:P	:	0:0:5		SEE Marks	:	100
Hours	:	52L		SEE Duration	:	3 Hrs
		U	nit – I			10 Hrs
Specifications a System Archite Basic System A E-UTRAN and	nd 3 ctur rchi Leg	re Based on 3GPP SAE tecture Configuration with gacy 3GPP Access Netwo rchitecture Configuration	only E-UTRAN A orks, System Arch	ccess Network ,Sys itecture with E-UT	tem A	rchitecture with
OFDMA		U	III – II			11 1115
SC-FDMA Bas Channels, Mod Physical Layer Transmission P	ics N ulati Sig hysic	AO in LTE, LTE Multiple A AIMO Basics, Physical Lay on Uplink User Data T gnalling Transmission PF cal Layer Procedures, UE of sical Layer Parameter Conf	yer- Transport Char ransmission Down ACH Structure, Capability Classes iguration	nnels and their Map llink User Data Tra Downlink Physical	ansmis Laye	ssion, Uplink er Signalling hysical Layer
		Un	it – III			10 Hrs
ASN.1 Protocol Mobility	Def	ent in Idle State, Intra-LTE	in LTE it – IV			10 Hrs
UTKAN aliu U	IKA	J	nit — V			11 Hrs
and Link Adap Power Settings, Performance- I Spectral Efficie Examples from	RM . tatio Dis .ayei .ayei ncy <u>HSP</u>	anagement Algorithms, Admission Co n, Uplink Dynamic Sched continuous Transmission a r 1 Peak Bit Rates, Tern Latency, LTE Reframing	ontrol and QoS Para uling and Link Ac nd Reception (DT ninal Categories I	laptation, Interferen X/DRX), RRC Conr Link Level Perform	ce Ma lectior ance,	nic Scheduling nagement and Maintenance, Link Budgets
Course Outcon		h this course the student v	will be able to.			
CO1: Unders CO2: Analyz reconf CO3: Demon manag	stance the strates of the strates of	the system architecture and e role of LTE radio interfa e and release data and voice te the UTRAN and EPS h nt for a variety of data call	id the functional statice protocols and E e from users. andling processes scenarios.	PS Data convergence	ce prot se inc	cocols to set up, luding mobility
		Evaluate the Performance lgorithms.	of resource mana	gement and packet	data	processing and

Ref	erence Books
1.	Fundamentals of LTE, Arunabha Ghosh, Jan Zhang, Jefferey Andrews, Riaz Mohammed, 2010, Prentice Hall, Communications Engg and Emerging Technologies, ISBN: 978-9-35-306239-2.
2.	LTE for UMTS Evolution to LTE-Advanced, HarriHolma and Antti Toskala, 2 nd Edition, 2011, John Wiley & Sons, Ltd, ISBN: 978-0-47-066000-3.
3.	Evolved Packet System (EPS); The LTE and SAE Evolution of 3G UMTS, Pierre L and Thierry Lucidarme, 2008, John Wiley & Sons, Ltd. ISBN:978-0-470-05976-0.
4.	LTE – The UMTS Long Term Evolution ; From Theory to Practice, Stefania Sesia, IssamToufik, and Matthew Baker, 2009, John Wiley & Sons Ltd, ISBN: 978-0-470-69716-0.

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks**

Scheme of Semester End Examination (SEE) for 100 marks

		SF	EMESTER :	III			
			ADBAND CO ssional Elect	OMMUNICATIONS			
Course Code	:	18MCS3E2	ssional Elect	CIE Marks	:	100	
Credit L:T:P	:	4:0:0		SEE Marks	: 100		
Hours	:	52L		SEE Duration	:	03 Hr	
Plain Old Talar	ho	ne System (POTS)	nit — I				10 Hrs
The Network Str speed Voice Bar Copper Channe	ruct Id N el	ure, Network Demarcation Iodems, ADSL and VDSL:	Definition a	nd Reference Model.		cuits, H	igh
Physical and Ele	ctri	cal Characteristics of Shield		pair, Models of DSL cable	s.		
		Un odelling on Twisted Pair (nit — II				11 Hrs
Crosstalk NEXT Twisted pair ch Transmission R Computations for Overview of DS Performance Re	' and ann ate r P. L quin	nels capacity and Channel Capacity in Pr AM, QAM, and DMT Syste rements for ADSL , VDSL,	resence of Adems. Ideal D	lditive Gaussian Noise, Th MT Data Rate Calculation	eoreti s	cal Rate	
Multi-frame stru	ctu		it – III				11 Hrs
Receiver and Tr channel Identifie Target Noise ma Steady State Ad response Update	ansi catio rgii apta c, Fl	DMT, Initialization, Timing mitter – Activation, Channe on (equalization, filter train and Target Rate, Secondar ation of Tx and Rx – Rece EQ adaptation. Dynamic Management state machine.	el discovery (ning), Chann ry channel Ic iver Equaliz	Gain Initialization, Clock el analysis (Gain Estimatio entification, Parameter exc er Update, Noise monitori	Synch on), B change ng, Cl	nronizati it alloca e. hannel g	ion, first ation for gain and
•			it – IV				10 Hrs
Interleaving Met	d o hoc	f ECC, Reed Solomon Code ls (Tong's Method, Forney Coded Modulation, Trellis	Inter-leaver)	, Erasures, Concatenated C			
	1		$\mathbf{n}\mathbf{t} = \mathbf{v}$				10 1115
equalizers, Trair DSL Synchroniz Recovery, Pilot	nd, ing atic	alization Optimization Criteria, Equa , Examples and Practical Don: Overview, DMT synchro ed Timing Recovery, Decision	esign Issues. onization, Ti	ming Recovery Methods –	Open	loop Ti	
Course Outcom		ha aannaa tha aturdanta"	l ha ahla 4a -				
CO1: Underst CO2: Apply a to impr	and va ove	he course the students will the technology issues and riety of signal processing al specific performance parame ulidate performance paramet	DSL Standar lgorithms to 1 neters.	DSL modem in a wireline of	chann		
and cha CO4: Demon	nne stra	e parameters for specified of	on, different	functional blocks of DSL M		-	-

Refere	nce Books
1	Fundamentals of DSL Technology, Philip Golden Hervé, Dedieu Krista Jacobsen, 2006, Auerbach Publications - Taylor & Francis Group. ISBN: 978-0-84-931913-6.
2	Understanding Digital Subscriber Line Technology, T. Starr, J.M. Cioffi, and P.J. Silverman, 1999, Prentice-Hall, Upper Saddle River, ISBN: 978-0-13-780545-7.
3	Implementation and Application of DSL, Philip Golden Hervé, Dedieu Krista Jacobsen, 2008, Auerbach Publications -Taylor & Francis Group, ISBN: 978-0-84-933423-8.
4	ADSL/VDSL Principles: A Practical and Precise Study of Asymmetric Digital Subscriber Lines and Very High Speed Digital Subscriber Lines, D. Rauschmayer, 1998, McMillan Technical Publishing, ISBN: 978-1-57-870015-8.

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks**

Scheme of Semester End Examination (SEE) for 100 marks

		S	SEMESTER-III				
	WIRELESS LOCAL AREA NETWORKS (Professional Elective-E3)						
Course Co	ode :			CIE Marks	:	100	
Credit L:	T:P :	4:0:0		SEE Marks	:	100	
Hours	:	52L		SEE Duration	:	03 Hrs	
		U	nit – I			11 Hrs	
Physical I Maximum	L ayer – Likeliho bility wi	of IEEE 802.11, IEEE OFDM, MIMO, SDM ba od estimation. th 11a/g legacy OFDM of structure,	sics; 802.11n prop	-		-	
		U	nit — II			10 Hrs	
enhanceme	ents: Spa e rforma r	oughput - 40 MHz channe tial streams and code rate, 0 nce - Receive diversity, Spa	Greenfield (GF) pre	amble, Short guard i	nterva	1.	
	-	Ur	nit — III			10 Hrs	
frame excl	nange, Hi oughput		ced distributed chan is for change, Agg	nnel access, Block ac	know	ledgement. edgement, HT-	
		Ur l access techniques – PCF,	nit – IV	· · · · · · · · · · · · · · · · · · ·		11 Hrs	
20/40 MH (PCO), Pro Transmit Channel s MAC cons	z operation otection. Beam H tate info sideration	-	controlling 40 MHz alysis, Unequal M ed performance wi plicit and explicit, F nit – V	c operation, Phased of CS, Receiver design ith transmit beamfo Fast link adaptation.	coexis n, Cha rming	tence operation annel sounding, , Degradations, 10 Hrs	
		.11ac and ad key features,	•	,	, ,	<i>, , ,</i>	
		ier Phy, Low Power SC Phy BeamfForm Training. D-Ba					
Course O							
		the course, the students with the use of OFDM, MIMO a		802 11n ac & ad m	edia a	CCESS	
	•	-					
CO2: Analyze Physical and MAC access layers for performance and throughput for typical Transmitters and Receivers using specified 802.11n channel models.							
CO3: Evaluate the performance and throughput using advanced channel access techniques as specified by 802.11ac and 802.11ad standards.							
CO4:	technic	pp Evaluate schemes to ensu ques with earlier 802.11a/b/	· ·	of 802.11 ac and ad	with a	dvanced access	
Reference	Books						
		ion Wireless LANs Throug acey, 2008, Cambridge Uni		•		, Eldad Perahia	
		sed Wireless LAN Funda: SBN: 978-1-58705-825-7.	mentals, Jeff Smith	n, Jake Woodhams,	Robe	rt Marg, 2011,	

3	802.11® Wireless Networks: The Definitive Guide, Matthew Gast, 2002, O'Reilly Publishers, ISBN: 0-596-00183-5.
4	Inside Bluetooth Low Energy (Mobile Communications), Naresh Gupta, Artech House; 2 nd edition,
	2016, ISBN: 978-1-63-081089-4

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks**

Scheme of Semester End Examination (SEE) for 100 marks

SEMESTER : IV						
MAJOR PROJECT: PHASE II						
Course Code	:	18MCS41	CIE Marks	:	100	
Credit L:T:P	:	0:0:20	SEE Marks	:	100	
Hours/Week	:	40	SEE Duration	:	3 Hrs	
GUIDELINES						

1. Major Project Phase-II is continuation of Phase-I.

- 2. The duration of the Phase-II shall be of 16 weeks.
- 3. The student needs to complete the project work in terms of methodology, algorithm development, experimentation, testing and analysis of results.
- 4. It is mandatory for the student to present/publish the work in National/International conferences or Journals
- 5. The reports shall be printed on A4 size with 1.5 spacing and Times New Roman with font size 12, outer cover of the report (wrapper) has to be Ivory color for PG circuit Programs and Light Blue for Non-Circuit Programs.

Course Outcomes:

After going through this course the students will be able to:

- **CO1:** Conceptualize, design and implement solutions for specific problems.
- **CO2:** Communicate the solutions through presentations and technical reports.
- CO3: Apply project and resource managements skills, professional ethics, societal concerns
- **CO4:** Synthesize self-learning, sustainable solutions and demonstrate life-long learning

Scheme of Continuous Internal Examination (CIE)

Evaluation shall be carried out in three reviews. The evaluation committee shall consist of Guide, Professor/Associate Professor and Assistant Professor.

The evaluation criteria shall be as per the rubrics given below:

Reviews	Activity	Weightage
Review-I	Review and refinement of Objectives, Methodology and Implementation	20%
Review-II	Design, Implementation and Testing	40%
Review-III	Experimental Result & Analysis, Conclusions and Future Scope of Work, Report Writing and Paper Publication	40%

Scheme for Semester End Evaluation (SEE):

Major Project Phase-II SEE shall be conducted in two stages. This is initiated after fulfilment of submission of project report and CIE marks.

Stage-1 Report Evaluation

Evaluation of Project Report shall be done by guide and an external examiner.

Stage-2 Project Viva-voce

Major Project Viva-voce examination is conducted after receipt of evaluation reports from guide and external examiner.

Both Stage-1 and Stage-2 evaluations shall be completed as per the evaluation formats.

SEE procedure is as follows:

	Internal Guide	External E	xaminer	TOTAL			
SEE Report Evaluation	100 marks	100 ma	arks		200 marks		
				(A)	(200/2) = 100 marks		
Viva-Voce	Jointly evaluated External Evaluator	by Internal	Guide &	(B)	100 marks		
			Total M	larks	[(A)+(B)]/2 = 100		

			ESTER : IV CAL SEMINAR			
Course Code : 18MCS42 CIE Marks :						
Credit L:T:P	:	0:0:2	2 SEE Marks		50	
Hours/Week	:	4	SEE Duration	:	30 Mins	
		GUI	DELINES			
1) The prese	entatio	n shall be done by individu	al students.			
2) The semi	nar top	ic shall be in the thrust are	as of respective PG programme.			
,	-		y to the major project work			
,	ent sł	· ·	logical developments with sustain	ability	and societal	
5) Each stud	lent m	ust submit both hard and so	ft copies of the presentation along w	ith the	e report.	
· •	er of th	ne report (wrapper) has to b	th 1.5 spacing and Times New Rom be Ivory color for PG circuit Program			
Course Outcome	es					
After going thro	ugh th	is course the student will	be able to:			
v 1		t are relevant to the presen				
CO2: Perform su	rvey ai	nd review relevant information	tion to the field of study.			
•		ion skills and report writin				
CO4: Develop alt	ernativ	ve solutions which are susta	ainable			

Scheme of Continuous Internal Evaluation (CIE): Evaluation shall be carried out in two reviews. The evaluation committee shall consist of Guide, Professor/Associate Professor and Assistant Professor.

The evaluation criteria shall be as per the rubrics given below:

Reviews	Activity		
Review-I	Selection of Topic, Review of literature, Technical Relevance,	45%	
	Sustainability and Societal Concerns, Presentation Skills	43%	
Review-II	Technological Developments, Key Competitors, Report writing	55%	

Scheme for Semester End Evaluation (SEE):

The SEE examination shall be conducted by an external examiner and an internal examiner. Evaluation shall be done in batches, not exceeding 6 students per batch.