

RV COLLEGE OF ENGINEERING®

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus for VII & VIII Semesters

2016 SCHEME

ELECTRONICS & INSTRUMENTATION ENGINEERING

VISION

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

MISSION

- 1. To deliver outcome based Quality education, emphasizing on experiential learning with the state of the art infrastructure.
- 2. To create a conducive environment for interdisciplinary research and innovation.
- 3. To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- 4. To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- 5. To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

QUALITY POLICY

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

CORE VALUES

Professionalism, Commitment, Integrity, Team Work, Innovation

RV COLLEGE OF ENGINEERING®

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus for VII & VIII Semesters

2016 SCHEME

DEPARTMENT OF ELECTRONICS & INSTRUMENTATION ENGINEERING

DEPARTMENT VISION

Achieving academic excellence in Instrumentation Technology by adopting interdisciplinary research with a focus on sustainable and inclusive technologies.

DEPARTMENT MISSION

- To create an environment for students to excel in domain areas and get motivated to involve in interdisciplinary research by utilizing state of the art infrastructure.
- To impart technical knowledge, encourage experiential learning and develop future professional leaders.
- To establish industry-academia networking and develop industry-ready students and future entrepreneurs, to meet societal & industrial challenges.
- To motivate lifelong learning and research in sustainable technologies to find improved solutions for the betterment of society.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **PEO1:** Apply Instrumentation, Electronics, Controls and Automation concepts to develop technical solutions for industrial problems.
- **PEO2:** Exhibit competency in adapting to various industrial challenges and work in inter-disciplinary projects with team spirit and professional ethics for achieving organizational goals.
- **PEO3:** Pursue higher education in technology or management and achieve professional excellence by imbibing leadership qualities and communication skills.
- **PEO4:** Become entrepreneurs with a focus on sustainable technologies and develop innovative solutions to meet industrial and societal needs.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO	Description
PSO1	Design, analyze and practice the instrumentation, controls and automation concepts and techniques required for industrial and/or research pursuits resulting in product development, publications or patents.
PSO2	Demonstrate the knowledge of basic science, mathematics, electronic system design and programming for real-time applications, towards developing industrial solutions and become technology leaders of future.

Lead Society: International Society of Automation (ISA)

ABBREVIATIONS

Sl. No.	Abbreviation	Meaning
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	SEE	Semester End Examination
5.	PE	Professional Core Elective
6.	GE	Global Elective
7.	HSS	Humanities and Social Sciences
8.	CV	Civil Engineering
9.	ME	Mechanical Engineering
10.	EE	Electrical & Electronics Engineering
11.	EC	Electronics & Communication Engineering
12.	IM	Industrial Engineering & Management
13.	EI	Electronics & Instrumentation Engineering
14.	СН	Chemical Engineering
15.	CS	Computer Science & Engineering
16.	TE	Telecommunication Engineering
17.	IS	Information Science & Engineering
18.	BT	Biotechnology
19.	AS	Aerospace Engineering
20.	PY	Physics
21.	CY	Chemistry
22.	MA	Mathematics

INDEX

	VII Semester								
Sl. No.	Course Code	Course Title	Page No.						
1.	16EI71	Industrial Automation Technology	1						
2.	16EI72	ARM Processor	4						
3.	16EI73P Minor Project								
		GROUP F: PROFESSIONAL ELECTIVES							
1.	16EI7F1	Optimization Techniques	9						
2.	16EI7F2	Robotics	11						
3.	16EI7F3	Product Design Technology	13						
4.	16EI7F4	Real time Operating systems (RTOS)	15						
		GROUP G: PROFESSIONAL ELECTIVES							
1.	16EI7G1	Simulation & Modelling	17						
2.	16EI7G2	System on Chip (SoC)	19						
3.	16EI7G3	Safety Instrumentation	21						
4.	16EI7G4	Wireless Instrumentation	23						

	GROUP H: GLOBAL ELECTIVES									
1.	16G7H01	Nanotechnology	25							
2.	16G7H02	Industrial Safety and Risk Management	27							
3.	16G7H03	Intelligent Transport System	29							
4.	16G7H04	Intelligent Systems	31							
5.	16G7H05	Image Processing & Machine Learning	33							
6.	16G7H06	Design Of Renewable Energy System	35							
7.	16G7H07	System Engineering	37							
8.	16G7H08	MEMS and Applications	39							
9.	16G7H09	Introduction to Internet of Things	41							
10.	16G7H10	Industry 4.0 – Smart Manufacturing For The Future	43							
11.	16G7H11	Space Technology And Applications	45							
12.	16G7H12	Advanced Linear Algebra	47							
13.	16G7H13	Thin Film Nanotechnology	49							
14.	16G7H14	Engineering Materials for Advanced Technology	51							
15.	16G7H15	Applied Psychology for Engineers	54							
16.	16G7H16	Foundational Course on Entrepreneurship	56							
17.	16G7H17	Unmanned Aerial Vehicles	58							
		VIII Semester								
Sl. No.	Course	Course Title	Page No.							
	Code									
1.	16EI81	Major Project	60							
2.	16EI82	Technical Seminar	63							
3.	16HS83	Innovation and Social Skills	64							

RV COLLEGE OF ENGINEERING®

(Autonomous Institution Affiliated to VTU, Belagavi)

ELECTRONICS AND INSTRUMENTATION ENGINEERING

	SEVENTH SEMESTER CREDIT SCHEME										
Sl.	Course	Course Title	BOS		Total						
No	Code	Course Title	воз	Lecture	Tutorial	Practical	SS	Credits			
1	16EI71	Industrial Automation	EI	4	0	1	0	5			
		Technology									
2	16EI72	ARM Processor	EI	4	0	1	0	5			
3	16EI73P	Minor Project**	EI	0	0	3	0	3			
4	16EI7FX	Elective F	EI	4	0	0	0	4			
5	16EI7GX	Elective G	EI	4	0	0	0	4			
6	16G7HXX	Elective H (GE)*	Respective BOS	3	0	0	0	3			
	To	otal No. of Credits	19	0	5	0	24				
		No. Of Hrs.		19	0	10	0	29			

^{*}Students should take other department Global Elective courses;

^{**} Minor Project-6 hours per week;

EIGTH SEMESTER CREDIT SCHEME										
Sl.	Course		7.00		Credit Al	location		Total		
No.		Course Title	BOS	Lecture	Tutorial	Practical	SS	Credits		
1.	16EI81	Major Project	EI	0	0	16	0	16		
2.	16EI82	Technical Seminar	EI	0	0	2	0	2		
3.	16HS83	Innovation and Social Skills	HSS	0	0	2	0	2		
	T	otal No. of Credits	0	0	20	0	20			
No. Of Hrs.				0	0	40	0	40		

	VII Semester								
	GROUP F: PROFESSIONAL ELECTIVES								
Sl. No.	Sl. No. Course Code Course Title								
1.	1. 16EI7F1 Optimization Techniques								
2.	16EI7F2	Robotics							
3.	16EI7F3 Product Design Technology								
4.	16EI7F4 Real time Operating systems (RTOS)								
		VII Semester							
	(GROUP G: PROFESSIONAL ELECTIVES							
Sl. No.	Course Code	Course Title							
1.	16EI7G1	Simulation & Modelling							
2.	16EI7G2	System on Chip (SoC)							
3.	16EI7G3	Safety Instrumentation							
4.	16EI7G4	Wireless Instrumentation							

		GLOI	BAL ELECTIVES
Sl. No.	Host Dept	Course Code	Course Title
1.	BT	16G7H01	Nanotechnology
2.	СН	16G7H02	Industrial Safety and Risk Management
3.	CV	16G7H03	Intelligent Transport System
4.	CS	16G7H04	Intelligent Systems
5.	EC	16G7H05	Image Processing and Machine Learning
6.	EE	16G7H06	Design of Renewable Energy Systems
7.	IM	16G7H07	Systems Engineering
8.	EI	16G7H08	MEMS and Applications
9.	IS	16G7H09	Introduction to Internet of Things
10.	ME	16G7H10	Industry 4.0 – Smart Manufacturing for The Future
11.	TE	16G7H11	Space Technology and Applications
12.	MA	16G7H12	Advanced linear Algebra
13.	PY	16G7H13	Thin Film Nanotechnology
14.	CY	16G7H14	Engineering Materials for Advanced Technology
15.	HSS	16G7H15	Applied Psychology for Engineers
16.	HSS	16G7H16	Foundational Course on Entrepreneurship
17.	AS	16G7H17	Unmanned Aerial Vehicles

	Semester: VII										
	INDUSTRIAL AUTOMATION TECHNOLOGY										
			(Th	eory and Pract	ice)						
Cor	Course Code : 16EI71 CIE : 100+50 Marks										
Cre	edits: L:T:P:S	:	4:0:1:0		SEE	••	100+50 Marks				
Tot	al Hours	:	45L+26P		SEE Duration		3.00+3.00 Hours				
Cor	ırse Learning O	bje	ctives: The studen	nts will be able to)						
1	Remember the	ba	sics of process c	control and und	erstand the basic	c	oncepts of Industrial				
	Automation.										
2	Understand the	Ad	vanced Process co	ntrol system con	cepts and Intellig	ent	control strategies.				
3	3 Analyze and evaluate the concepts of DCS, PLC & PAC to different types of Industries.										
4	Comprehend the	e fe	atures of commun	ication protocols	s used in Automat	ion	Systems.				

UNIT – I 09 Hrs

Introduction: Concept and Scope of Industrial Automation, Goals, Types, Reasons for Automation, Current trends in Computer Control of Process Plants, Centralized Vs. Distributed Computer Control System. Expert Systems.

Advanced process control strategies: Introduction, Cascade control, Adaptive control, Intelligent Control & Artificial Intelligence, Optimal control and applications.

UNIT – II 09 Hrs

Introduction to Automation: Application of Automation to Industry, PLC, Functional Block diagram, PLC I/O configuration, the input and output status files, Sixteen point I/O modules. PLC memory.

PLC Hardware: Input modules, Discrete input modules, Discrete DC Input module, Discrete AC Input Module, **Output Module:** Discrete & solid-state output module switching, relay output modules.

UNIT – III 09 Hrs

Basics of PLC Programming: PLC Programming languages, Modes of PLC operation, Bit or Relay Instruction, OSR Instruction, Output latching instructions, Internal Bit type Instruction.

Special programming Instructions: Timer and Counter Instructions: On delay and Off delay and retentive timer instructions, PLC Counter up and down instructions, Data handling instructions, Data manipulation Instructions, Programming sequence output instructions.

Case Studies: Temperature control, Valve Sequencing, Material Sorting, Elevator System Problems.

UNIT – IV 09 Hrs

Distributed Digital Control System (DCS): History of DCS, Concept of DCS, Functional Requirements, Hardware and Software, DCS Structure, Process level, Unit, Group, Operational Control Levels, DCS Sub-Systems, Local Field Station.

Displays: Normal, Continuous Process, Batch-Sequence Operation, Process Upset, Control System Mal-Function Displays.

DCS: Industrial Applications: Introduction, Configuring DCS for Cement plant, Thermal Power, Steel Plants.

UNIT – V 09 Hrs

SCADA: Introduction to Supervisory Control and Data Acquisition (SCADA), Elements of SCADA, Simple SCADA Programming, Remote Terminal Unit, SCADA Applications.

Industrial Network Data Communications: HART Communication: Protocol Layers, Field bus: Modbus, Profibus, Foundation Field bus, IEEE1394 Standard for Industrial Automation.

Lab Experiments:

- 1. PLC logic gate experiments using CODESYS software.
- 2. PLC Simulation experiments using Timer operation.
- 3. PLC Simulation experiments using counter operation.

- 4. PLC Simulation experiments using data handling operation.
- 5. PLC experiment for automatic material sorting using conveyor.
- 6. PLC experiment for automatic bottle filling,
- 7. PLC experiment for automatic Elevator control System.
- 8. SCADA Programming for industrial applications, using Wonderware software.
- 9. Simulation experiments for industrial applications, using HMI software.
- 10. Open ended experiments for Industrial applications.

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Understand & remember the basic concepts of Automation systems & advanced control strat-									
	egies.									
CO2:	Apply advanced automation strategies for optimal control of plants.									
CO3:	Analyze the performance of automated systems and communication protocols.									
CO4:	Design the advanced control system for complex process performance optimization.									

Refer	rence Books								
1	Introduction to Programmable Logic Controllers, Garry Dunning, 3 rd Edition, 2006,								
	CENGAGE Learning, ISBN: 9-781-4018-8426-0.								
2	Computer based Industrial Control, Krishna Kant, 6 th Edition, 2004, PHI, ISBN: 1-203-11237.								
3	Computer - Aided Process Control, S. K.Singh, PHI, 3 rd Reprint, 2004, ISBN: 978-81-203-								
	2282-7.								
4	PC-Based Instrumentation Concepts and Practice, N. Mathivanan, 1st Edition, 2009, PHI,								
	ISBN: 978-81-203-23073-4.								

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) + 50(T) + 10(A) = 100 Marks.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO MAPPING											
CO\PO	CO\PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											
CO1	2	1	-	0	0	•	-	-	•	-	ı	1
CO2	1	1	-	0	-	-	-	-	-	-	-	1
CO3	1	2	1	1	1	-	-	-	-	-	-	1
CO4	1	-	1	1	1		-	-	1	1	1	1

Low-1 Medium-2 High-3

	Semester: VII							
				M PROCESSOR				
			(The	eory and Practice	e)			
Course Code			16EI72		CIE	:	100+50 Marks	
Credits: L:T:P:S		:	4:0:1:0		SEE	:	100+50 Marks	
Tota	l Hours	:	45L+26P		SEE Duration	••	3.00+3.00 Hours	
Cou	rse Learning C	bje	ectives: The students	s will be able to				
1	Understand A	RM	I design philosophy	and ARM process	sor architecture an	ıd fı	undamentals.	
2	2 Learn the ARM Instruction set of ARM microcontroller and to learn the assembly							
	programming.							
3	3 Understand Thumb instructions of ARM controller.							
4	Understand Various Interrupts and exception handling in ARM controller.							

UNIT – I	09 Hrs

ARM embedded systems: The RISC design philosophy, The ARM design philosophy, embedded system hardware, embedded system software, ARM Architecture.

ARM processor fundamentals: Registers, current program status register, pipeline, core extensions, Architecture revisions, ARM processor families.

UNIT – II 09 Hrs

Introduction to ARM instruction Set: Data Processing Instructions, Branch Instructions, Load Store Instructions, Software Interrupt Instruction, Program Status Register Instructions, Loading Constants, ARMv5E Extensions, and Conditional Execution.

UNIT – III 09 Hrs

Introduction to the THUMB Instruction set: Thumb register Usage, ARM-Thumb Interworking, other branch instructions, Data Processing Instructions, Single register Load—store Instructions, Multiple register Load Store Instructions, Stack Instructions, and Software Interrupt Instruction and programming.

UNIT – IV 09 Hrs

Interrupts & Exception Handling: Exceptions, Exception Handling, Interrupts, Interrupt handling schemes, vector table.

UNIT – V 09 Hrs

LPC 2148:Design of system using GPIO's Blink a group of 8 LEDs with a delay, Stepper motor control, DC motor control LCD interface, 4 x 4 Keypad, Timers, ADC, DAC, UART.

Lab Experiments:

A WITHOUT INTERFACING PROGRAMS

- Write a program to move a block of 10 data stored in one memory to another block
- Write a Program to Exchange block of 10 data
- Write a Program to find the smallest number out of 5 data stored in memory
- Write a Program to sort 10 data stored in Memory
- Write a Program to add two 64 bit numbers
- Write a program to find factorial of given number using LOOK UP TABLE
- Write a program to convert 3 digit Hex to BCD

B WITH INTERFACING PROGRAMS

- 1 Design and develop an interfacing program for LEDs with a delay.
- 2 Design and develop an interfacing program for Stepper motor control.
- 3 Design and develop an interfacing program for DC motor control Interfacing.

- 4 Design and develop an interfacing program for LCD.
- 5 Design and develop an interfacing program for 4 x 4 Keypad.
- 6 Design and develop an interfacing program for ADC.
- 7 Design and develop an interfacing program for DAC.

C OPEN-ENDED EXPERIMENT

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	CO1: Understand the Design of a system as per needs and specifications using ARM controller.						
CO2:	Apply suitable code and interface to solve engineering problems using ARM controller.						
CO3:	Analyze and evaluate the different coding techniques to design compact code.						
CO4:	Develop a system for real time applications.						

Refere	nce Books
1	ARM system developers guide, Andrew N Sloss, Dominic Symes and Chris Wright, Elsevier,
	2008, Morgan Kaufman publishers, ISBN:1558608745.
2	LPC 2148 User Manual
3	ARM System on chip Architecture, Addison Wesley, Formatted: paperback, 2008, ISBN:
	978- 0201675191.
4	Embedded Systems: An Integrated Approach, Lyla B Das, 2013, Pearson Education,
	ISBN: 978-81-317-8766-3.

Continuous Internal Evaluation (CIE): Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) + 50(T) + 10(A) = 100 Marks.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO MAPPING											
CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	•	0	0	-	-	-	-	-	-	1
CO2	1	1	-	0	-	-	-	-	-	-	-	1
CO3	1	2	1	1	1	-	-	-	-	-	-	1
CO4	1	-	1	1	1	-	-	-	1	1	1	1

Low-1 Medium-2 High-3

Semester: VII							
MINOR PROJECT							
Course Code	:	16EI73P		CIE	:	100 Marks	
Credits: L:T:P:S	:	0:0:3:0		SEE	:	100 Marks	
Hours / Week	:	06		SEE Duration	:	3.00 Hours	

Cou	Course Learning Objectives: The students will be able to					
1	1 Create interest in innovative developments and preferably interdisciplinary field.					
2	Work independently, analyze, evaluate and solve the given problem.					
3	Inculcate the skills for good presentation and improve the technical report writing skills.					
4	Recognize the need for planning, preparation, management and financial budgeting.					
5	Acquire collaborative skills through working in a team to achieve common goals.					

Minor Project Guidelines:

- 1. Each project group will have two to four students, they can form their groups amongst their class
- 2. Each group has to select a current topic that will use the technical knowledge of their program of study after intensive literature survey.
- 3. Guides will be allotted by the department based on the topic chosen.
- 4. The project should result in system/module which can be demonstrated, using the available resources in the college.
- 5. The CIE evaluation will be done by the committee constituted by the department. The committee shall consist of respective guide & two senior faculty members as examiners. The evaluation will be done for each student separately.
- 6. The final copy of the report should be submitted after incorporation of any modifications suggested by the evaluation committee

Guidelines for Evaluation:

CIE Assessment:

Evaluation will be carried out in three phases:

Phase	Activity	Weightage
I	Synopsis submission, approval of the selected topic, formulation	20%
	of objectives	
II	Mid-term evaluation to review the progress of work and docu-	30%
	mentation	
III	Submission of report, Final presentation and demonstration	50%

The following are the weightages given for the various stages of the project:

- 1. Selection of the topic and formulation of objectives: 10%
- 2. Design and Development of Project methodology: 30%
- 3. Execution of Project: 30%
- 4. Presentation, Demonstration and Discussion: 20%
- 5. Report Writing:10%

SEE Assessment:

The following are the weightages given during SEE Examination:

- 1. Written presentation of synopsis:10%
- 2. Presentation/Demonstration of the project: 30%
- 3. Methodology and Discussion: 30%

4. Technical Report: 10%5. Viva Voce: 20%

Cou	Course Outcomes of Minor Project:						
1	1 Define Specifications, Conceptualize, Design and implement a project						
2	Communicate the work carried out as a technical report and orally						
3	Work in a team and contribute to team work						
4	4 Indulge in self-learning and be motivated for life-long learning						

					CO-P	O MAI	PPING					
CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	2	1	2	2	2	2	2
CO2	3	3	3	3	2	2	1	2	2	2	2	2
CO3	3	3	3	3	2	2	1	2	2	2	2	2
CO4	1	1	1	1	1	1	1	2	1	2	1	1

Low-1 Medium-2 High-3

	Semester: VII								
	OPTIMIZATION TECHNIQUES								
			(Group I	F:Professional Elect	ive)				
Cou	rse Code	: 16EI7F1			CIE	••	100 Marks		
Credits: L:T:P:S		:	4:0:0:0		SEE	••	100 Marks		
Total Hours			45L		SEE Duration	••	3.00 Hours		
Cou	rse Learning C	bje	ectives: The students	s will be able to					
1	Understand th	e c	oncepts of optimizat	tion techniques.					
2	Explain the m	ode	elling frameworks fo	or solving problems u	sing optimization tec	hni	ques.		
3	Develop and	pro	omote research inter	rest in applying opt	imization techniques	in	problems of		
	Engineering and Technology.								
4	Apply the ma	the	matical results and n	numerical techniques	of optimization theo	ry t	o various En-		
	gineering problems in real world situations.								

UNIT – I 09 Hrs

Optimization Techniques: Statement of an Optimization problem, design vector, design constraints, constraint surface, objective function, objective function surfaces, classification of Optimization problems, Single variable Optimization, multi variable Optimization without constraints, necessary and sufficient conditions for minimum/maximum multivariable Optimization with equality constraints. Solution by method of Lagrange multipliers, multivariable Optimization with inequality constraints, Kuhn, Tucker conditions.

Operations Research: Introduction, Scope of operation research, phases of operations research, models in operations research, advantages, characteristics of good model, classification of models, uses and limitation of operations research, operation research and decision making.

UNIT – II 09 Hrs

Linear Programming: Two-variable LP Model, Graphical LP Solution, Graphical Sensitivity Analysis, Computer Solution of LP Problems, Analysis of Selected LP Models.

Simplex Method: Simplex Method, Artificial starting solution, Special cases in simplex Method Application.

UNIT – III 09 Hrs

Transportation Problem: Finding initial basic feasible solution by north — west corner rule, least cost method and Vogel's approximation method testing for optimality of balanced transportation problems.

Assignment Problems: Formulation of the assignment problem, solution method of assignment problem- Hungarian Method, Variants in assignment problem, Travelling Salesman Problem (TSP).

UNIT – IV 09 Hrs

Queuing Theory: Queuing system and their characteristics, the M/M/I Queuing system, Steady state performance analyzing of M/M/I queuing models. Introduction to M/M/C and M/E_k/I queuing models

Game Theory: Introduction, Two person zero sum game, Pure strategies, Games without saddle point- Arithmetic method, Graphical Method, The rules of dominance.

UNIT – V 09 Hrs

Replacement Models: Introduction, Replacements of items that deteriorate with time, To find the optimal Replacement Policy, Replacements of equipments that fail suddenly.

Decision Theory: Introduction, Decision making environment, decision under uncertainty, Decision tree analysis.

Course Outcomes: After completing the course, the students will be able to						
CO1:	Understand basic theoretical principles in optimization.					
CO2:	Apply and formulate the optimization models to various applications.					
CO3:	Analyse the various optimization techniques applicable for wide range of engineering prob-					
	lems					

CO4:	Evaluate and choose the appropriate optimization techniques to real world electrical and
	electronics problems and applications.

Referen	nce Books
1	Operations Research: An Introduction, H.A. Taha, Seventh Edition, 2016, Prentice Hall PTR,
	ISBN: 0134444019.
2	Operations Research with C programs, S Kalavathy, 4th Edition, 2013, Vikas Publishing
	House Pvt.Ltd., ISBN: 978-93-259-6347-4.
3	Engineering optimization: Theory and practice, Singeresu. S. Rao, 4 th Edition, 2009, John
	Willy and Sons Publishers, ISBN: 978-0-470-18352-6.
4	Optimization Methods in Operations Research and systems Analysis, K.V. Mittal and C.
	Mohan, 2004, New Age International (P) Limited, ISBN: 81-224-0873-7.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

				(CO-PO	MAPI	PING					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	1	1	-	-	-	-	1	1	1
CO2	2	2	1	1	1	-	-	-	-	1	1	1
CO3	3	3	2	2	2	1	-	-	-	1	1	1
CO4	3	3	3	2	2	1	-	-	-	1	1	1

Low-1 Medium-2 High-3

	Semester: VII								
	ROBOTICS								
			(Group 1	F:Professional Election	ive)				
Cou	rse Code	:	16EI7F2		CIE	:	100 Marks		
Credits: L:T:P:S		:	4:0:0:0		SEE	:	100 Marks		
Tota	l Hours	:	45L		SEE Duration	:	3.00 Hours		
Cou	rse Learning O	bje	ectives: The student	s will be able to					
1	Understand th	e g	eneric technology ar	nd principles associat	ed with robotics and	aut	tomation sys-		
	tems.								
2	2 Understand the principles and operations of different sensors used for robotic applications.								
3	3 Understand the kinematics and dynamics aspects of robotic system								
4	Give an insigh	nt ir	nto the different type	es of trajectories.					

UNIT – I	08 Hrs
Introduction: Robot definition, classification of robot, history, robot components, robot	degrees of
freedom robot joints coordinates reference frames asimov's laws of robotics robot pro-	ogramming

freedom, robot joints, coordinates, reference frames, asimov's laws of robotics, robot programming modes, characteristics, applications.

UNIT – II 10 Hrs

Robot drivers, sensors and vision: Drives for robots: electrical, hydraulic and pneumatic. Sensors: proximity and range, tactile force and torque End effectors, position and velocity measurement Robot vision: introduction to techniques, image acquisition and processing.

UNIT – III 10 Hrs

Robot kinematics: Rotation matrix, homogenous transformation matrix, Denavit-Hartenberg convention, Euler angles RPY representation, Direct and inverse kinematics for industrial robots for position and orientation.

UNIT – IV 08 Hrs

Robot dynamics: Langrangian formulation, Newton Euler formulation, recursive Newton Euler algorithms.

UNIT – V 08 Hrs

Trajectory planning: Introduction, General considerations on Trajectory planning, joint-interpolated Trajectories, calculation of a 4-3-4 Joint trajectory, Cubic Spline Trajectory.

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Understand a generic technology and principles associated with robotics and automation sys-						
	tems.						
CO2:	Apply the principles and operations of different sensors used for robotic applications.						
CO3:	Analyze the kinematics and dynamics aspects of robotic system.						
CO4:	Develop the necessary skill base to explore and implement a robotic system.						

Refer	Reference Books						
1	Introduction to Robotics, S.K Saha, 2 nd Edition, 2014, Tata McGraw-Hill Education, ISBN						
	13: 9789332902800.						
2	Robotics control sensing Vision and Intelligence, K.S.Fu, R.C.Gonzalez, C.S.G. Lee,2013						
	Mcgraw-Hill College, ISBN 13: 9780070226258.						
3	Introduction to Robotics, Saeed B Niku, 2 nd Edition, 2005, Prentice Hall of India,						
	ISBN-13: 978-0130613097.						
4	Robot Technology Fundamentals, James G.Keramas, 1st Edition, 2008, Cengage learning Pub-						
	lishers, ISBN-13: 978-0827382367.9						

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

					CO-P	O MAI	PPING					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	1	1	-	-	1	-	1	2	-	1
CO2	1	-	1	1	-	1	1	-	1	2	-	1
CO3	1	1	1	1	-	-	1	-	1	-	-	2
CO4	1	1	1	1	-	1	1	-	1	2	-	2

Low-1 Medium-2 High-3

	Semester: VII								
	PRODUCT DESIGN TECHNOLOGY								
			(Grou	p F:Professional Elec	ctive)				
Cou	ırse Code	:	16EI7F3		CIE	:	100 Marks		
Cre	edits:	:	4:0:0:0		SEE	:	100 Marks		
L:T	::P:S								
Total Hours		:	45L		SEE Duration	:	3.00 Hours		
Coı	ırse Learning	Ob	jectives: The stud	ents will be able to					
1	To develop sk	ills	and concepts on e	conomic product deve	lopment and develo	pme	nt of Organiza-		
	tion.								
2	2 To understand customer needs and converting them to specifications.								
3	3 To know the PCB testing procedures and PC based automation of PCB making for large num-								
	bered PCBs.								
4	To design auto	oma	atic soldering tech	niques.					

UNIT – I	09 Hrs

Introduction:

Characteristics of successful product development, who Designs and develops products, duration and cost of product development, the challenges of product development

Development Processes and Organizations:

A generic development process, concept development: the front-end process, adapting the generic product development process.

Product Planning:

The product planning process, identify opportunities. Evaluate and prioritize projects, allocate resources and plan timing, complete pre-project planning.

UNIT – II 09 Hrs

Identifying Customer Needs:

Gather raw data from customers, interpret raw data in terms of customer needs, organize the needs into a hierarchy, establish the relative importance of the needs and reflect on the results and the process.

Product Specifications:

What are specifications, when are specifications established, establishing target specifications, setting the final specifications.

Concept Generation and Selection:

The activity of concept generation, clarifies the problem search externally, search internally, explore systematically, and reflect on the results and the process. Concept screening, concept scoring.

UNIT – III 09 Hrs

PCB Technology:

Introduction to PCB, Types of PCB, PCB layout design and artwork generation Using CAD. Properties of copper clad sheets, materials used for fabrication of copper clad sheet, PCB film, properties of film, film master preparation.

UNIT – IV 09 Hrs

Image Transfer, Etching Process, Tin coating, Drilling:

Transfer of Image on to the copper clad sheet, wet & dry film techniques, Etching, Types of etchants, etching process. Tin coating. Drilling.

Multilaver PCB Design:

Introduction, multilayer PCB design and test consideration, multilayered construction, equipment, laminating process, further processing

UNIT – V 09 Hrs

Mechanical Machining Operations Solders and Soldering Techniques:

Introduction, Grinding, milling, principal of solder connection, solder alloys, solder fluxes, deferent soldering techniques, solder mask, Reflow of soldering practice.

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Understand principles and concepts of effective product design.								
CO2:	Apply concept of adaptive and original redesign of engineering and consumer products.								
CO3:	Develop pattern transfer and Etching as per engineering specifications required by customers.								
CO4:	Implement Multilayer PCB design and Artwork by using engineering specification knowledge as per customer needs through a team work.								

Refere	ence Books
1	Product Design and Development, Karl.T.Ulrich, Steven D Eppinger, 5 th Edition, 2011, Tata
	McGraw-Hill, ISBN: 978 - 0073404776
2	Printed Circuit Boards: Design and Technology, Walter C Boshart, 29th reprint, 2009,
	McGraw-Hill, ISBN: 978 – 0074515495.
3	Product Design and Manufacturing, C Chitale and R C Gupta,5 th Edition. 2011, PHI, ISBN:
	978 - 8120342828
4	New Product Development, Timjones, Butterworth Heinmann, 1996, Oxford. UCI, ISBN:
	978 – 0750624275.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(O) + 60(T) + 10(A) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO MAPPING													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	1	2	1	1	-	-	1	-	2	1	1	1		
CO2	1	-	1	1	-	1	1	-	2	1	1	1		
CO3	1	1	1	1	-	-	1	-	2	-	1	2		
CO4	1	1	1	1	-	1	1	-	2	1	1	2		

Low-1 Medium-2 High-3

	Semester: VII												
	REAL TIME OPERATING SYSTEMS												
	(Group F:Professional Elective)												
Cou	rse Code	:	16EI7F4		CIE	••	100 Marks						
Cred	lits: L:T:P:S	:	4:0:0:0		SEE	••	100 Marks						
Total Hours			45L		SEE Duration	••	3.00 Hours						
Cou	rse Learning O	bje	ectives: The students	s will be able to									
1	Explore throu	gh	the basics of RTS ar	nd to master the esse	ntial command set th	at c	an be used to						
	work comforta	abl	y.										
2	2 Impart knowledge of real time concepts like semaphores, mutex, thread, process, priorities, etc.												
3	3 Combine commands to perform tasks that are not possible to achieve using single command.												
4													

UNIT – I	09 Hrs
----------	--------

Introduction to OS and RTOS

Architecture of OS (Monolithic, Microkernel, Layered, Exo-kernel and Hybrid kernel structures), Operating system objectives and functions, Virtual Computers, Interaction of OS & hardware architecture, Batch, multi programming. Multitasking, Multiuser, parallel, distributed & real –time OS.

UNIT – II 09 Hrs

Process Management of OS/RTOS

Uniprocessor Scheduling: Types of scheduling, scheduling algorithms: FCFS, SJF, Priority, Round Robin, UNIX Multi-level feedback queue scheduling, Thread Scheduling, Multiprocessor Scheduling concept, Real Time Scheduling concepts.

UNIT – III 09 Hrs

Process Synchronization

Concurrency: Principles of Concurrency, Mutual Exclusion H/W Support, software approaches, Semaphores and Mutex, Message Passing, Monitors, Classical Problems of Synchronization: Readers-Writers Problem, Producer Consumer Problem, Dining Philosopher problem. Deadlock: Principles of deadlock, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, An Integrated Deadlock Strategies.

UNIT – IV 09 Hrs

Memory & I/O Management

Memory Management requirements, Memory partitioning: Fixed, dynamic, partitioning, Buddy System Memory allocation Strategies (First Fit, Best Fit, Worst Fit, Next Fit), Fragmentation, Swapping, Segmentation, Paging, Virtual Memory, Demand paging.

I/O Management and Disk Scheduling: I/O Devices, Organization of I/O functions, Operating System Design issues, I/O Buffering, Disk Scheduling (FCFS, SCAN, C-SCAN, SSTF), Disk Caches.

UNIT – V 09 Hrs

RTOS Application Domains

Comparison and study of RTOS: Vxworks and μ COS – Case studies: RTOS for Image Processing – Embedded RTOS for voice over IP – RTOS for fault Tolerant Applications – RTOS for Control Systems.

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	CO1: Understand the fundamental concepts of real-time operating systems.								
CO2:	Apply the different techniques to develop an application through RTOS.								
CO3:	Analyze the use of multitasking techniques in real-time systems.								
CO4:	Design/Create the algorithms pertaining to real time operating systems on specific area.								

Refer	ence Books
1	Operating Systems –Internals and Design Principles, William Stallings, 7th Edition, Prentice
	Hall, 2012, ISBN: 978-0-13-230998-1.
2	Modern Operating Systems, Tanenbaum,4 th Edition 2007, Pearson, ISBN: 978-013-359162-0.
3	Embedded Systems-Architecture, Programming and Design, Raj Kamal, 2 nd Edition, McGraw
	Hill Publishing Company,2008, ISBN: 978-0-07-066764-8.
4	Operating Systems Concepts, Abraham Silberschatz, 9th Edition, John & Wiley Publication,
	2013, ISBN: 978-1-118-06333-0.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO MAPPING													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	2	2	2	0	0	0	0	1	1	1	0		
CO2	1	1	2	1	0	0	0	0	1	1	2	0		
CO3	1	1	2	1	0	0	0	0	1	1	2	2		
CO4	1	1	2	1	0	0	0	2	1	1	1	2		

Low-1 Medium-2 High-3

	Semester: VII											
SIMULATION & MODELLING												
(Group G:Professional Elective)												
Cou	se Code	••	16EI7G1		CIE	:	100 Marks					
Cred	lits: L:T:P:S	:	4:0:0:0		SEE	:	100 Marks					
Total Hours			45L		SEE Duration	:	3.00 Hours					
Cou	se Learning O	bje	ectives: The students	s will be able to								
1	Define the ba	sics	s of simulation mod	leling and replicating	the practical situati	ions	in organiza-					
	tions.											
2 Generate random numbers and random varieties using different techniques.												
3 Analysis of Simulation models using input analyzer, and output analyzer.												
4												

UNIT – I	09 Hrs
----------	--------

Introduction to Simulation: Simulation, Advantages, Disadvantages, Areas of application, System environment, components of a system, Model of a system, types of models, steps in a simulation study.

Simulation Examples: Waveform generator, speed control of dc motor, stepper motor control.

UNIT – II 09 Hrs

General Principles: Concepts in discrete-event simulation, event scheduling/ Time advance algorithm, simulation using event scheduling.

Random Numbers: Properties, Generations methods, Tests for Random number- Frequency test, Runs test, Autocorrelation test.

UNIT – III 09 Hrs

Random Variant Generation: Inverse Transform Technique- Exponential, Uniform, Weibull, Triangular distributions, Direct transformation for Normal and log normal Distributions, convolution methods- Erlang distribution, Acceptance Rejection Technique

Optimization Via Simulation: Meaning, difficulty, Robust Heuristics, Random Search.

UNIT – IV

09 Hrs

Analysis of Simulation Data Input Modeling: Data collection, Identification and distribution with data, parameter estimation, Goodness of fit tests, Selection of input models without data, Multivariate and time series analysis.

Verification and Validation of Model: Model Building, Verification, Calibration and Validation of Models.

UNIT – V 09 Hrs

Output Analysis: Types of Simulations with Respect to Output Analysis, Stochastic Nature of output data, Measures of Performance and their estimation, Output analysis of terminating simulation, Output analysis of steady state simulations.

Simulation Software: Selection of Simulation Software, Simulation packages, Trend in Simulation Software.

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	CO1: Understand and remember the role of important elements of discrete event simulation and							
	modeling paradigm.							
CO2:	Apply the simulation software to construct and execute goal-driven system models.							
CO3:	Analyze the real-world situations related to systems development decisions, originating from							
	source requirements and goals.							
CO4 :	Develop a simulation model for real time application.							

Refer	rence Books
1	Discrete Event system Simulation, Jerry Banks, John S Carson, II, Berry L Nelson, David M
	Nicol,5 th Edition,2013,PearsonNew International,Asia,ISBN: 1292037261, 9781292037264.
2	System Simulation, Geoffrey Gordon, 2 nd Edition, 1978, Prentice Hall publication, ISBN: 81-
	203-0140-4.
3	Simulation Modelling & Analysis, Averill M Law, W David Kelton, 4th Edition, 2014,
	McGraw Hill International Editions- Industrial Engineering series, ISBN: 0077595963,
	9780077595968.
4	Systems Simulation and Modelling, Shankar Sen Gupta, 2013, Pearsons Publishers, ISBN:
	978813774472 , ISBN: 9789332514195.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO MAPPING														
CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	2	-	-	•	-	-	-	-	•	-	-	1			
CO2	1	1	-	•	-	-	-	-	•		-	1			
CO3	1	2	-	1	-	-	-	-			-	1			
CO4	1	-	1	1	-	-	-	-	-	1	-	1			

Low-1 Medium-2 High-3

	Semester: VII											
	SYSTEM ON CHIP (SOC)											
	(Group G:Professional Elective)											
Cou	rse Code	:	16EI7G2		CIE	:	100 Marks					
Cred	lits: L:T:P:S	:	4:0:0:0		SEE	:	100 Marks					
Total Hours			45L		SEE Duration	:	3.00 Hours					
Cou	rse Learning O	bje	ectives: The students	s will be able to								
1	Understand ho	ow	Systems-on-Chip (S	SoC) are designed at	the system-level wh	ich	includes pro-					
	cessors, memo	orie	es, peripheral control	lers, and connectivity	y sub-systems.							
2	Describe how	haı	rdware and software	are to be co-designed	d, co-simulated, and	co-v	verified.					
3	Verify SoC at	t ea	nch design levels, ho	ow SoC testing is to	be performed, and l	10W	configurable					
	processors are to be used in SoC design.											
4	4 Provide an appreciation for the motivation behind SoC design, the challenges of SoC design,											
	and the overall SoC design flow.											

UNIT – I 09 Hrs

Introduction to the concept of a SOC: Microprocessor and Microcontroller based systems, Embedded systems. Differences between Embedded systems and SOCs. System design, Concept of system, importance of system architectures, introduction to IMD, SSID, MIMD and MISD architectures, concept of pipelining and parallelism.

Motivation for SoC Design: Review of Moore's law and CMOS scaling, benefits of system-on-chip integration in terms of cost, power, and performance. Comparison on System-on-Board, System-in-Package and System-on-Chip. Typical goals in SoC design – cost reduction, power reduction, design effort reduction, performance maximization.

UNIT – II 09 Hrs

System buses: Introduction to busses used in SOCs. Introduction to AMBA bus. Detailed studies of IBM's core connect bus, concept of PLB-processor local bus and OPB-on chip peripheral bus.

Processors used in SOCs: Introduction to CISC, RISC, Von Neuman and Harward Architecture. Concept of Soft processors and study of Microblaze RISC processor. Study of IBM's power PC, SOC implementation.

UNIT – III 09 Hrs

Embedded Memories: Some Basic Concepts, Semiconductor RAM Memories, Read Only Memories cache memories, flash memories, embedded DRAM. Topics related to cache memories. Cache coherence. MESI protocol and Directory-based coherence. Study of features like embedded RAM's, multipliers, Digital clock management etc. Performance Considerations, Virtual Memories.

UNIT – IV 09 Hrs

System On Chip Design Process: A canonical SoC Design, SoC Design flow, waterfall vs spiral, top down vs bottom up, Specification requirement, Types of Specification, System Design Process, System level design issues, Soft IP vs Hard IP, IP verification and Integration, Hardware-Software code sign, Hardware Accelerators in Soc. Productivity gap issues and the ways to improve the gap – IP based design and design reuse.

UNIT – V 09 Hrs

Introduction to Network on Chip:

On chip buses and interfaces. Bus architecture and its limitations. Network on Chip (NOC) topologies. Mesh-based NoC. Routing in an NoC. Packet switching and wormhole routing.

MPSoCs: What, Why, How MPSoCs, Techniques for designing MPSoCs, Performance and flexibility for MPSoCs design.

Course Outcomes: After completing the course, the students will be able to							
CO1	Understand components of digital hardware, analog hardware and embedded software.						
CO2	Apply the concept to understand the design flows for digital hardware, analog hardware and						

	embedded software.
CO3	Analysis and evaluate the architectures and trade-offs concerning performance, cost and pow-
	er consumption of single chip and embedded systems using tools and techniques in these three
	domains.
CO4	Develop a simulation model of SoC for a particular application.

Refere	ence Books
1	Computer System Design: System on Chip, Michael J. Flynn, 2012, Wiley India Pvt Ltd, ISBN 13: 9788126535682.
2	Introduction to system on package sop- Miniaturization of the Entire System,Rao R. Tummala, Madhavan Swaminathan, 2008, McGraw-Hill, ISBN: 9780071459068
3	CMOS Digital Integrated Circuits, Sung-Mo Kang, Yusuf Leblebici, 3 rd Edition, Tata McGraw-Hill, ISBN: 978007246537.
4	Reuse Methodology Manual for System on Chip designs, Michael Keating, Pierre Bricaud, 2 nd Edition, 2008, Kluwer Academic Publishers, ISBN 13: 9780306476402.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO MAPPING											
CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	1	-	•	•	1	•	1	•	ı	1
CO2	1	1	•	•	•	•	•	•	•	-	1	1
CO3	1	2	-	1	-	-	-	-		-	-	1
CO4	1	-	1	1	-	-	-	-	-	1	-	1

Low-1 Medium-2 High-3

	Semester: VII							
	SAFETY INSTRUMENTATION							
			(Group C	G:Professional Elective)				
Course Code			16EI7G3	CIE	:	100 Marks		
Credits: L:T:P:S		:	4:0:0:0	SEE	:	100 Marks		
Total Hours		:	45L	SEE Duration	:	3.00 Hours		
Cou	rse Learning O	bje	ectives: The students	s will be able to				
1	1 Understand the importance of industrial safety concepts.							
2	2 Analyze and evaluate system failures and reliability engineering fundamentals.							
3	3 Comprehend the various safety integrated levels and System Architectures.							
4	i i							

Introduction to Safety Instrumented Systems: Scope-Safety Technology in Process Automation-Factory Automation-Machine Automation-Robotics—Fire Triangle-, Fire& Gas Detection, Learning From Major Accidents-Basic Process control & Safety Instrumented Systems -Definitions — Acronyms- Overview of Standards and Regulations.

UNIT – II 09 Hrs

Introduction to Reliability engineering: Equipment failure, Failure rate, time dependent failure rate, confidence factor, mean time between failure, Mean time to restore, relationship between MTBF, MTTR and failure rate. Relationship between reliability and unreliability, Probability of failure on demand.

System Reliability engineering: Reliability block diagram, series and parallel configuration, fault tree analysis, Markov modeling, Markov solution technique.

UNIT – III 09 Hrs

The concept of Safety integrity: HAZOP (Hazard and operability study), Layer of protection (LOPA), As low as reasonably practical (ALARP), Different levels of Safety integrity level and the target requirements.

System Architectures: MooN architecture, redundancy and voting logic, Common Mode failure, importance of redundancy and diversity, Hardware design principles for functional safety (Meeting IEC 61508 Standard Part 2) fault tolerance, Safety PLCs, Safety requirements, Failure mode effect analysis, identification of safe faults, and dangerous faults.

UNIT – IV 09 Hrs

Software design principles for functional safety (Meeting IEC 61508 Standard Part 3): Software requirements for SIS, Introduction to Safe failure fraction, software verification requirements. Reduction of systematic faults using quality management.

UNIT – V 09 Hrs

Application in a gas detection industry: Typical SIF solutions for SIL1 and SIL2, Calculation of PFD Avg for SIL1 architecture, Application in oil and gas production facilities, Individual well controls, high pressure SIF, SIF PFD Avg calculation.

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	CO1: Understand the operation of safety systems and their applications.						
CO2:	Apply the principle of industrial safety during process design						
CO3:	Analyze the standards of various safety mechanisms						
CO4:	Conceptualize and design industrial system safety.						

Refe	rence Books						
1	Safety Instrumented	Systems	Verification:	Practical	Probabilistic	Calculations,	Harry
	Cheddie, W.M. Gol	ole, 2004,	ISA Public	ation,ISBN	N: 155617909	X. (Chapters	1, 2,

	3,4,5,12,13, Appendix E & F).							
2	The Safety Critical Systems Handbook, A Straightforward Guide to Functional Safety: IEC							
	61508, IEC 61511 and Related Guidance, David Smith, 4th Edition, ISBN: 9780081008973.							
	(Chapter 3.1 to 3.6, 4.1 to 4.6.)							
3	Safety Integrity Level Selection, Edward M. Marsza, 2002, ISA Publication, ISBN:							
	1556177771.							

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO MAPPING											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	1	-	•	-	-	-	-	-	1
CO2	2	1	-	1	1	1	-	-	-	-	-	1
CO3	1	3	2	1	1	1	-	-	-	1	1	2
CO4	-	2	1	1	2	1	-	-	-	1	1	2

Low-1 Medium-2 High-3

	Semester: VII							
	WIRELESS INSTRUMENTATION							
			(Group	G:Professional Elec	ctive)			
Cou	rse Code	:	16EI7G4		CIE	:	100 Marks	
Credits: L:T:P:S		:	4:0:0:0		SEE	:	100 Marks	
Tota	Total Hours		45L		SEE Duration	:	3.00 Hours	
Cou	rse Learning C	bj€	ectives: The stude	nts will be able to				
1	Emphasize the	e ba	asic design princip	les and applications of	of intelligent sensors ι	ısin	g case studies	
	and numerical examples.							
2	Discuss signa	1 p	rocessing operatio	ns such as linearizati	ion, calibration, and	con	npensation on	
	which intelligent sensors rely.							
3	3 Focuses on the hardware components, design, and inner working principles of the system itself.							
4	4 Investigate artificial intelligence as a critical component of intelligent sensors in real-world ap-							
	plications.							

UNIT – I 09 Hrs

Intelligent Sensors: Introduction, classification, smart sensors, cogent sensors, soft or virtual sensors, self adaptive sensors, self validating sensors, VLSI sensors, Temperature compensating intelligent sensors, indirect sensing.

Sensor with Artificial Intelligence: Introduction, artificial intelligence, multidimensional intelligent sensors, artificial intelligence for profrostic instrumentation, ANN based intelligent sensors.

UNIT – II 09 Hrs

Intelligent Sensor Standards & Protocols: Introduction, IEEE 1451 Standard, network topologies, LAN talk, CEBUS communication protocol for smart home, J1850 bus, MI bus, plug-in-play smart sensor protocol.

Basic principle of Radio frequency identification: Basics of RFID, passive and active RFID systems, classification of RFID, application and frequency selection.

UNIT – III 09 Hrs

Smart sensor system: Third Industrial Revolution. Definitions for Several Kinds of Sensors. Automated Production Machines. Automated Consumer Products.

Optical sensors: Introduction, Photon Absorption in Silicon. The Interface: Photon Transmission Into Silicon. Photon Detection in Silicon Photoconductors. Photon Detection in Silicon pn Junctions. Detection Limit. Photon Detectors with Gain. Application Examples. Future Trends.

Data Acquisition for Frequency- and Time-domain Sensors: Introduction.DAQ Boards: State of the Art.DAQ Board Design for Quasi-digital Sensors Universal Frequency-to-digital Converters (UFDC) Applications and Examples.

UNIT – IV 09 Hrs

Wireless Instrument and Sensor Networks: Wireless Sensor Architecture and Network Design, Wireless Instrument Architecture and Network Design, Wireless Sensor and Instrument Network Design, Wireless Integrated Network Sensors, Plug-and-Play Sensors and Networks, Industrial Wireless Networks and Automation.

UNIT – V 09 Hrs

Wireless Sensor and Instrument Applications: Application-Specific Wireless Sensors and Instruments, Application-Specific Wireless Sensors and Networks, Application Commercial Wireless Sensors and Instruments, Wireless Instruments and Sensor Networks in Research and Development, Industrial Wireless Sensor and Instrument Networks, Wireless Human Health Monitoring and Environmental Applications, Radio Frequency Identification, Consumer Products and Other Applications..

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Understand and remember the comprehensive review of both groundbreaking technology as						
	well as applications in the field of smart sensors.						
CO2:	Apply the smart sensor technology to the real-world applications.						
CO3:	Analyze the response of the smart sensors for various applications.						
CO4:	Develop a wireless system for a specific application.						

Refere	nce Books								
1	Intelligent Instrumentation, Manabendra Bhayan, Special Indian Edition, 2016, CRC Press,								
	ISBN 9781420089530.								
2	RFID Design Fundamentals and Applications, Albert Lozano, Nicto, 2011, CRC Press,								
	ISBN 9781420091250.								
3	Wireless Sensors and Instruments Networks, Design, and Applications, Halit								
	Eren,2006,CRC Taylor & Francis Group,ISBN 978-0-8493-3674-4.								
4	Smart sensor systems, Gerardc M Meijer, 2008. ISBN: 978-0-470-86691-7.								

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

					CO-PC) MAP	PING					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	-	-	-	-	-	-	1	-	1
CO2	1	1	1	-	-	-	-	-	-	1	-	1
CO3	1	2	1	1	-	-	-	-	-	1	-	1
CO4	1	-	2	1	-	1	0	0	2	1	1	1

Low-1 Medium-2 High-3

				Semester: VII				
	NANOTECHNOLOGY							
			(Grou	ıp H: Global Elective	e)			
Cou	rse Code	:	16G7H01		CIE	••	100 Marks	
Cred	lits: L:T:P	:	3:0:0		SEE	••	100 Marks	
Total Hours			36L		SEE Duration	:	3.00 Hours	
Cou	Course Learning Objectives: The students will be able to							
1	1 To have the basic knowledge of nanomaterials and the process.							
2	Describe methods of nanoscale manufacturing and characterization can be enabled.							
3	To learn about Nano sensors and their applications in mechanical, electrical, electronic, Mag-							
	netic, Chemical field.							
4	4 To understand the concept for a nanoscale product based on sensing, transducing, and actuating							
	mechanism.							
5	To have awareness about the nanoscale products used in multidisciplinary fields.							

Unit-I 06 Hrs

Introduction to Nanomaterials: History of Nanotechnology, structures and properties of carbon based: Fullerenes (Bucky Ball, Nanotubes), metal based: Nano Shells, Quantum Dots, Dendrimers, Diamond like carbon(DLC) Nanocarriers, bionanomaterials: protein & DNA based nanostructures, Hybrids: hybrid biological/inorganic, Nanosafety Issues: Toxicology health effects caused by nanoparticles.

Unit – II 08 Hrs

Characterization of Nanostructures: Spectroscopy: UV-Visible spectroscopy, Fourier Transform infrared spectroscopy (FTIR), Raman Spectroscopy, X-ray spectroscopy. Electron microscopy: Scanning electron microscopy (SEM), Transmission electron microscopy (TEM). Scanning probe microscopy: Atomic Force microscopy (AFM), Scanning tunnel microscopy (STM).

Nano Synthesis and Fabrication: Introduction & overview of Nanofabrication: Bottom up and Top down approaches using processes like Ball milling, Sol-gel Process, Chemical Vapour deposition (CVD), plsma arching and various lithography techniques (Hard & Soft lithography).

Unit –III 09 Hrs

Nanosensors: Overview of nanosensors, prospects and market. Types of Nanosensors and their applications. Electromagnetic nanosensors: Electronic nose and electronic tongue, Magnetic nanosensors. Mechanical nanosensors: Cantilever Nanosensors, Mechanics of CNTs, Biosensors: Biosensors in modern medicine.

Unit –IV 06 Hrs

Micro & Nano-Electromechanical systems and Microfluidics: MEMS/NEMS: Magnetic, Chemical and Mechanical Transducers –Sensing and Actuators. Microfludics: Laminar flow, Hagen-Peouiselle equation, basic fluid ideas, Special considerations of flow in small channels, mixing, microvalves & micropumps.

Unit –V 07 Hrs

Applications of Nanotechnology: Molecular electronics, molecular switches, mechanical cutting tools, machine components, DLC coated grinding wheels. solar cells, Batteries, fuel cells, Nanofilters. Medical nanotechnology: in Diagnostics, Therapeutics, Drug delivery and Nanosurgery.

Course	Course Outcomes: After completing the course, the students will be able to			
CO1:	Remember, understand, and apply knowledge about of nanomaterials and their uses.			
CO2:	Interpret and apply the techniques of manufacturing and characterization processes			
CO3:	Apply the knowledge of Nanosensors, related to nanosensors in electronics, mechanical, chemical, and biological systems.			
CO4:	Create and evaluate nano Design, Devices and Systems in various disciplines			

Refere	ence Books
1	B.S. Murty., P. Shankar., B.Raj, B.B. Rath, and J. Murday, Textbook of Nanosciences and Nanotechnology, Springer, Co-publication with University Press (India) Pvt. Ltd. VCH,
_	XII.1st Edition, 2013, ISBN- 978-3-642-28030-6.
2	V. K. Khanna, Nanosensors:, Physical, Chemical and Biological, CRC press, 1st
<u> </u>	edition, 2013, ISBN 9781439827123 (Unit III).
2	C. C. Kock., Nanostructured materials, Nanostructured materials, William Andrew Publish-
3	ing, 2nd edition, 2007, ISBN 0-8155-1534-0.
4	M .Wilson., K. Kannangara., G.Smith., M.Simmons., B. Raguse., Nanotechnology, , overseas
4	Press (India) Private Ltd.,1st edition, 2005,ISBN 81-88689-20-3.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	Semester: VII INDUSTRIAL SAFETY AND RISK MANAGEMENT							
		1.		ETY AND RISK M p H: Global Electiv				
Cou	rse Code	:	16G7H02		CIE	:	100 Marks	
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks	
Total Hours		:	36L		SEE Duration	:	3.00 Hours	
Course Learning Objectives: The students will be able to								
1	1 Understand the basics of risk assessment methodologies							
2	Select appropriate risk assessment techniques							
3	Analyze public and individual perception of risk							
4	Relate safety, ergonomics and human factors							
5	Carry out risk assessment in process industries							

Unit-I 08	Hrs
-----------	-----

General Risk Identification Methods – I:

Hazard identification methodologies, risk assessment methods-PHA, HAZOP, MCA, consequence analysis, hazards in workplaces-nature and type of work places, types of hazards, hazards due to improper housekeeping, hazards due to fire in multi floor industries and buildings.

Unit – II 07 Hrs

Risk Assessment Methods – II:

Risk adjusted discounted rate method, certainty equivalent coefficient method, quantitative analysis, probability distribution, coefficient of variation method, Simulation method, Shackle approach, Hiller"s model, Hertz Model.

Unit –III 07 Hrs

Risk Management – III:

Emergency relief Systems, Diers program, bench scale experiments, design of emergency relief systems, risk management plan, mandatory technology option analysis, risk management alternatives, risk management tools, risk management plans, risk index method, Dowfire and explosion method, Mond index Method.

Unit –IV 07 Hrs

Risk Assurance and Assessment – IV:

Property insurance, transport insurance, liability insurance, risk Assessment, low Probability high consequence events. Fault tree analysis, Event tree analysis.

Unit –V 07Hrs

Risk Analysis in Chemical Industries— V: Handling and storage of chemicals, process plants, personnel protection equipment's. International environmental management system.

Course	Course Outcomes: After completing the course, the students will be able to		
CO1:	Recall risk assessment techniques used in process industry		
CO2:	Interpret the various risk assessment tools		
CO3:	Use hazard identification tools for safety management		
CO4:	Analyze tools and safety procedures for protection in process industries		

Refere	ence Books
	Kirkcaldy K.J.D Chauhan, Functional Safety in the Process Industry: A Handbook of practi-
1	cal Guidance in the application of IEC61511 and ANSI/ISA-84,North corolina, Lulu publi-
	cation,2012,ISBN:1291187235
2	Goble and William M. Safety Instrumented Systems Verification Practical probabilistic cal-
	culations, Pensulvania ISA publication,2005,ISBN:155617909X
2	Laird Wilson and Doug Mc Cutcheon. Industrial safety and risk Management, The University
3	of Alberta press, Canada, 1st Edition, 2003, ISBN: 0888643942.

4	Sincero A P and Sincero G A Environmental Engineering – A Design Approach, Prentice Hall of India, New Delhi, 1996, ISBN: 0024105643
5	Pandya C G, Risks in Chemical units, Oxford and IBH publications, New Delhi,1992,ISBN: 8120406907

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	Semester: VII						
	INTELLIGENT TRANSPORT SYSTEM (Group H: Global Elective)						
Co	urse Code		16G7H03	· · · · · · · · · · · · · · · · · · ·	CIE	:	100 Marks
	Credits: L:T:P		3:0:0		SEE	:	100 Marks
Tot	Total Hours		36L		SEE Duration	:	3.00 Hours
Cou	Course Learning Objectives: The students will be able to						
1	1 Understand basic traffic flow and control for ITS						
2	2 Understand user services for application in transportation system						
3	3 Understand ITS architecture and its planning at various levels						
4							

Unit – I	8 Hrs
Omt – I	0 11

Introduction: –Historical Background, Definition, Future prospectus, ITS training and educational needs.

Fundamentals of Traffic Flow and Control- Traffic flow elements, Traffic flow models, Shock waves in Traffic streams, Traffic signalization and control principles, Ramp metering, Traffic simulation

Unit – II 6 Hrs

ITS User services-User services bundles, Travel and Traffic management, Public Transportation Operations, Electronic Payment, Commercial Vehicles Operations, Emergency Management, Advanced Vehicle Control and safety systems, Information Management, Maintenance and construction Management

Unit –III 7 Hrs

ITS Applications and their benefits-Freeway and incident management systems-objectives, functions, traffic Surveillance and incident detection, Ramp control, incident management, Advanced arterial traffic control systems- historical development, Adaptive traffic control algorithms, Advanced Public Transportation Systems-Automatic vehicle location systems, Transit Operations software and information systems, Electronic fare payment systems, Multimodal Traveler Information systems

Unit –IV 7 Hrs

ITS Architecture-Regional and Project ITS Architecture, Need of ITS architecture, concept of Operations, National ITS Architecture, Architecture development tool.

ITS Planning-Transportation planning and ITS, Planning and the National ITS Architecture, Planning for ITS, Integrating ITS into Transportation Planning, relevant case studies.

Unit –V 8 Hrs

ITS Standards-Standard development process, National ITS architecture and standards, ITS standards application areas, National Transportation Communications for ITS Protocol, Standards testing.

ITS Evaluation – Project selection at the planning level, Deployment Tracking, Impact Assessment, Benefits by ITS components, Evaluation Guidelines, Challenges and Opportunities.

Course	Course Outcomes: After completing the course, the students will be able to			
CO1:	Identify various applications of ITS			
CO2:	Apply ITS applications at different levels.			
CO3:	Examine ITS architecture for planning process.			
CO4:	Define the significance of ITS for various levels			

Refere	ence Books
1	Choudury M A and Sadek A, "Fundamentals of Intelligent Transportation Systems Plan-
1	ning" Artech House publishers (31 March 2003); ISBN-10: 1580531601
2	Bob Williams, "Intelligent transportation systems standards", Artech House, London, 2008.
4	ISBN-13: 978-1-59693-291-3.
	Asier Perallos, Unai Hernandez-Jayo, Enrique Onieva, Ignacio Julio García Zuazola "Intel-
3	ligent Transport Systems: Technologies and Applications" Wiley Publishing ©2015,
	ISBN:1118894782 9781118894781
4	ITS Hand Book 2000 Recommendations for World Road Association (PIARC) by Kan Paul
4	Chen, John Miles.
	Dominique Luzeaux ,Jean-René Ruault, Michel Chavret "Intelligent Transport Systems" 7
5	MAR 2013 Copyright © 2010 by John Wiley & Sons, Inc
	DOI: 10.1002/9781118557495.ch6

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	Semester: VII						
	INTELLIGENT SYSTEMS						
			(Grou	p H: Global Elective	e)		
Cou	rse Code	:	16G7H04		CIE	:	100 Marks
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks
Total Hours		:	36L		SEE Duration	:	3.00 Hours
Cou	Course Learning Objectives: The students will be able to						
1	1 Understand fundamental AI concepts and current issues.						
2	Understand and apply a range of AI techniques including search, logic-based reasoning, neural						
	networks and reasoning with uncertain information.						
3	3 Recognize computational problems suited to an intelligent system solution.						
4	Identify and list the basic issues of knowledge representation, blind and heuristic search.						

Unit-I 07 Hrs

Introduction: The Foundations of Artificial Intelligence, History of Artificial Intelligence, The State of the Art, **Intelligent Agent:** Introduction, How Agents Should Act, Structure of Intelligent Agents, **Problem-solving:** Solving Problems by Searching Search Strategies, Avoiding Repeated States, Avoiding Repeated States

Unit – II 07 Hrs

Informed Search Methods: Best-First Search, Heuristic Functions, Memory Bounded Search, Iterative Improvement Algorithms

Game Playing: Introduction: Games as Search Problems, Perfect Decisions in Two-Person, Games Imperfect Decisions, Alpha-Beta Pruning, Games That Include an Element of Chance

Unit –III 07 Hrs

Knowledge Inference

Knowledge representation -Production based system, Frame based system. Inference - Backward chaining, Forward chaining, Rule value approach, Fuzzy reasoning - Certainty factors, Bayes Rule, Uncertainty Principles, Bayesian Theory-Bayesian Network-Dempster - Shafer theory.

Unit –IV 07 Hrs

Learning from Observations: A General Model of Learning Agents, Inductive Learning, Learning Decision Trees, Using Information Theory, Learning General Logical Descriptions, Why Learning Works: Computational Learning Theory

Reinforcement Learning: Passive Learning in a Known Environment, Passive Learning in an Unknown Environment, Active Learning in an Unknown Environment

Unit –V 07 Hrs

Expert Systems, Components, Production rules, Statistical reasoning, certainty factors, measure of belief and disbelief, Meta level knowledge, Introspection. Expert systems - Architecture of expert systems, Roles of expert systems - Knowledge Acquisition – Meta knowledge, Heuristics. Typical expert systems - MYCIN, DART, XOON, Expert systems shells.

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Understand and explore the basic concepts and challenges of Artificial Intelligence.					
CO2:	Analyze and explain basic intelligent system algorithms to solve problems.					
CO3:	Apply Artificial Intelligence and various logic-based techniques in real world problems.					
CO4:	Assess their applicability by comparing different Intelligent System techniques					

Reference Books					
1	1	AI – A Modern Approach ,Stuart Russel, Peter Norvig, 2 nd Edition, Pearson Education, 2010, ISBN-13: 978-0137903955.			
2	2	Artificial Intelligence (SIE) ,Kevin Night, Elaine Rich, Nair B., ,McGraw Hill, 1st Edition, 2008, ISBN: 9780070087705			

3	Introduction to AI and ES ,Dan W. Patterson, Pearson Education, 1 st Edition ,2007. ISBN: 0132097680
4	Introduction to Expert Systems ,Peter Jackson, 3 rd Edition, Pearson Education, 2007, ISBN-978-0201876864

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	Semester: VII						
	IMAGE PROCESSING AND MACHINE LEARNING						
			(Grou	p H: Global Elective	e)		
Cou	rse Code	:	16G7H05		CIE	:	100 Marks
Cred	lits: L:T:P:S	:	3:0:0:0		SEE	:	100 Marks
Tota	Total Hours		40L		SEE Duration	:	03 Hours
Cou	rse Learning O	bj	ectives: The students	s will be able to			
1	1 Understand the major concepts and techniques in image processing and Machine Learning						
2	To explore, manipulate and analyze image processing techniques						
3	3 To become familiar with regression methods, classification methods, clustering methods.						
4	4 Demonstrate image processing and Machine Learning knowledge by designing and implement-						
	ing algorithms to solve practical problems						

ing algorithms to solve practical problems	
Unit-I	08 Hrs
Introduction to image processing:	
Images, Pixels, Image resolution, PPI and DPI, Bitmap images, Lossless and lossy compres	sion, Im-
age file formats, Color spaces, Bezier curve, Ellipsoid, Gamma correction, Advanced image	concepts
Unit – II	08 Hrs
Basics of Python & Scikit image:	
Basics of python, variables & data types, data structures, control flow & conditional staten	ients, up-
loading & viewing an image, Image resolution, gamma correction, determining structural sin	ilarities.
Unit –III	08 Hrs
Advanced Image processing using Open CV	
Blending Two Images, Changing Contrast and Brightness Adding Text to Images Smoothing	Images,
Median Filter ,Gaussian Filter ,Bilateral Filter ,Changing the Shape of Images ,Effection	ng Image
Thresholding ,Calculating Gradients , Performing Histogram Equalization	
Unit –IV	08 Hrs
Machine Learning Techniques in Image Processing	
Bayesian Classification, Maximum Likelihood Methods, Neural Networks; Non-parametric	models;
Manifold estimation, Support Vector Machines, Logistic Regression	
Unit –V	08 Hrs
Introduction to object Tracking, Modeling & Recognition	·
Exhaustive vs. Stochastic Search, Shapes, Contours, and Appearance Models. Mean-shift	tracking;
• 57	. 1:
Exhaustive vs. Stochastic Search, Shapes, Contours, and Appearance Models. Mean-shift	nacking,

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Gain knowledge about basic concepts of Image Processing					
CO2:	Identify machine learning techniques suitable for a given problem					
CO3:	Write programs for specific applications in image processing					
CO4:	Apply different techniques for various applications using machine learning techniques.					

Contour-based models, Adaboost approaches: Face Detection / Recognition, Tracking.

Refe	erence Books
1	Practical Machine Learning and Image Processing: For Facial Recognition, Object Detection, and Pattern Recognition Using Python", by Himanshu Singh, Apress publisher.
2	Pattern Recognition and Machine Learning, by Christopher Bishop, Springer, 2008
3	Computer Vision: A modern Approach" by David Forsyth and Jean Ponce, Prentice Hall India 2004.
4	Machine Vision: Theory Algorithms Practicalities, by E.R. Davies Elsevier 2005.
5	Digital Image Processing, Rafael C. Gonzalez and Richard E. Woods Pearson Education, Ed, 2001.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

Semester: VII									
	DESIGN OF RENEWABLE ENERGY SYSTEMS								
			(Group H: Global Elective)						
Course Code	:	16G7H06	CIE Mar	ks	:	100			
Credits: L:T:P:S	:	3:0:0	SEE Mar	ks		100			
Total Hours	:	40L	SEE Dura	a-	:	3.00 Hours			
			tion						

Course Learning Objectives:

- 1 To provide opportunity for students to work on multidisciplinary projects.
- To familiarize the students with the basic concepts of nonconventional energy sources and allied technological systems for energy conversion
- 3 To impart skill to formulate, solve and analyze basic Non conventional energy problems and prepare them for graduate studies.
- 4 To enable the student to design primarily solar and wind power systems.
- 5 To expose the students to various applications of solar, wind and tidal systems.

UNIT – I 07 Hrs

An introduction to energy sources:

Industry overview, incentives for renewable, utility perspective, Relevant problems discussion, current positions of renewable energy conditions

UNIT – II 09 Hrs

PV Technology:

photovoltaic power, PV projects, Building-integrated PV system, PV cell technologies, solar energy maps, Technology trends, **Photovoltaic Power Systems**: PV cell, Module and Array, Equivalent electrical circuit, open-circuit voltage and short-circuit current, I-V and P-V curves, Array design (different methodologies), peak-power operation, system components.

UNIT – III 09 Hrs

Wind Speed and Energy:

Speed and power relations, power extracted from the wind, Air density, Global wind patterns, wind speed distribution (parameters calculations), wind speed prediction, **Wind Power Systems:** system components, turbine rating, power vs. speed and TSR, maximum energy capture, maximum power operation, system-design trade-offs, system control requirements, environmental aspects.

UNIT – IV 07 Hrs

Geothermal and ocean energy:

Geothermal power, geo pressured sources, Geothermal well drilling, advantages and disadvantages, Comparison of flashed steam and total flow concept

Energy from ocean: OTEC power generation, OPEN and CLOSED cycle OTEC. Estimate of Energy and power in simple single basin tidal and double basin tidal system

UNIT – V 08 Hrs

Stand alone system:

PV stand-alone, Electric vehicle, wind standalone, hybrid systems (case study), system sizing, wind farm sizing.

Grid-Connected Systems: introduction, interface requirements, synchronizing with the grid, operating limit, Energy storage and load scheduling, Grid stability issues, distributed power generation.

Course outcomes:

- CO1: Demonstrate an understanding of the scientific principles of methodology of Non-conventional energy.
- CO2: Acquire working knowledge of different Renewable energy science-related topics.
- CO3: Ability to analyze the system related concepts effectively in the wind energy designing.
- CO4: Students will be able to decide the appropriate procedures to ensure that the working model has developed properly.

Reference Books

- 1. Wind and Solar Power Systems Design, Analysis and operation, Mukund R Patel, 2nd Edition, 2006, Taylor and Francis publishers, ISBN 978-0-8493-1570-1.
- 2. Non-Conventional sources of energy, G.D.Rai, 4th Edition, 2009, Khanna Publishers, ISBN 8174090738, 9788174090737,
- 3. Solar Energy, Sukhatme, 4th Edition, 2017, McGraw Hill Education, **ISBN-13:** 978-9352607112
- 4. Renewable energy sources, John Twidell, Tony Weir, 3rd Edition, 2015, Routledge Publisher, ISBN-13: 978-0415584388.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	Semester :VII								
	SYSTEMS ENGINEERING								
				(Group H: Global Elec	tive)				
Co	urse Code	:	16G7H07		CIE Marks	:	100		
Cr	edits: L:T:P:S	:	3:0:0:0		SEE Marks	:	100		
To	Total Hours		33L		SEE Duration	:	03 Hours		
Co	urse Learning	Ob	jectives:						
1	Develop an ap	pre	eciation and u	inderstanding of the role o	f systems engine	eri	ng processes and sys-		
	tems managem	nen	t in producin	g products and services.					
2	Document sys	ten	natic measure	ement approaches for gene	erally cross disci	pli	nary development ef-		
	fort.								
3	Discuss capabi	ilit	y assessment	models to evaluate and im	prove orgnizatio	nal	systems engineering		
	capabilities.								

Unit-I 07 Hrs

System Engineering and the World of Modem System: What is System Engineering?, Origins of System Engineering, Examples of Systems Requiring Systems Engineering, System Engineering viewpoint, Systems Engineering as a Profession, The power of Systems Engineering, problems.

Structure of Complex Systems: System building blocks and interfaces, Hierarchy of Complex systems, System building blocks, The system environment, Interfaces and Interactions.

The System Development Process: Systems Engineering through the system Life Cycle, Evolutionary Characteristics of the development process, The system engineering method, Testing throughout system development, problems.

Unit – II 07 Hrs

Systems Engineering Management: Managing systems development and risks, Work breakdown structure (WBS), System Engineering Management Plan (SEMP), Risk Management, Organization of Systems Engineering, Systems Engineering Capability Maturity Assessment, Systems Engineering standards, Problem.

Needs Analysis: Originating a new system, Operations analysis, Functional analysis, Feasibility analysis, Feasibility definition, Needs validation, System operational requirements, problems.

Concept Exploration: Developing the system requirements, Operational requirements analysis, Performance requirements formulation, Implementation concept exploration, Performance requirements validation, problems.

Unit – III 07 Hrs

Concept Definition: Selecting the system concept, Performance requirements analysis, Functional analysis and formulation, Concept selection, Concept validation, System Development planning, System Functional Specifications, problems

Advanced Development: Reducing program risks, Requirements analysis, Functional Analysis and Design, Prototype development, Development testing, Risk reduction, problems.

Unit – IV 06 Hrs

Engineering Design: Implementing the System Building blocks, requirements analysis, Functional analysis and design, Component design, Design validation, Configuration Management, problems. **Integration and Evaluation:** Integrating, Testing and evaluating the total system, Test planning and preparation. System integration. Developmental system testing. Operational test and evaluation, prob-

preparation, System integration, Developmental system testing, Operational test and evaluation, problems.

Unit – V 06 Hrs

Production: Systems Engineering in the factory, Engineering for production, Transition from development to production, Production operations, Acquiring a production knowledge base, problems.

Operations and support: Installing, maintenance and upgrading the system, Installation and test, Inservice support, Major system upgrades: Modernization, Operational factors in system development, problems.

Cours	Course Outcomes: After completing the course, the students will be able to						
CO1	Understand the Life Cycle of Systems.						
CO2	Explain the role of Stake holders and their needs in organizational systems.						
CO3	Develop and Document the knowledge base for effective systems engineering processes.						
CO4	Apply available tools, methods and technologies to support complex high technology systems.						
CO5	Create the frameworks for quality processes to ensure high reliability of systems.						

Ref	erence Books								
1	Systems Engineering – Principles and Practice, Alexander Kossoakoff, William N Sweet, 2012, John Wiley & Sons, Inc, ISBN: 978-81-265-2453-2								
1	John Wiley & Sons, Inc, ISBN: 978-81-265-2453-2								
2	Systems Engineering and Analysis, Blanchard, B., and Fabrycky W, 5 th Edition, 2010, Saddle								
2	River, NJ, USA: Prentice Hall.								
3	Handbook of Human Systems Integration, Booher, H. (ed.) 2003. Hoboken, NJ, USA: Wiley.								
4	Systems Engineering: A 21 st Century Methodology, Hitchins, D., 2007. Chichester, England:								
4	Wiley.								

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	Semester: VII								
	MEMS AND APPLICATIONS								
	(Group H: Global Elective)								
Cou	rse Code	:	16G7H08		CIE	:	100 Marks		
Cred	lits: L:T:P	:	3:0:0:0		SEE	:	100 Marks		
Total Hours		:	35L		SEE Duration	:	3.00 Hours		
Cou	rse Learning C	bj	ectives: The students	s will be able to					
1	1 Understand the rudiments of Micro fabrication techniques.								
2	2 Identify and associate the various sensors and actuators to applications.								
3	Analyze differ	ren	t materials used for I	MEMS.					
4	Design applic	atio	ons of MEMS to disc	ciplines.					

Unit - I 06 Hrs

Overview of MEMS & Microsystems: MEMS and Microsystems, Typical MEMS and micro system products, Evolution of micro fabrication, Microsystems and microelectronics, Multidisciplinary nature of Microsystems, Design and manufacture, Applications of Microsystems in automotive, healthcare, aerospace and other industries.

Working Principle of Microsystems: Biomedical and biosensors. Micro sensors: Acoustic, Chemical, Optical, Pressure, Thermal.

Unit – II 08 Hrs

Micro actuation: Using thermal forces, shape memory alloys, Piezoelectric crystals and electrostatic forces. MEMS with micro actuators: Microgrippers, micromotors, microvalves and micropumps, microaccelerometers, microfluidics.

Introduction to Scaling: Scaling in Geometry, Scaling in Rigid body dynamics, Scaling in Electrostatic forces, scaling in electromagnetic forces and scaling in fluid mechanics.

Unit – III 08 Hrs

Materials for MEMS and Microsystems: Substrates and wafers, Active substrate materials, Silicon as substrate material, Silicon Compounds, Si-Piezoresistors, GaAs, Quartz, Piezoelectric Crystals, Polymers and packaging materials. Three level of Microsystem packaging, Die level packaging, Device level packaging, System level packaging. Interfaces in microsystem packaging. Essential packaging technologies: die preparation, Surface bonding, Wire bonding, Sealing, 3D packaging.

Unit – IV 06 Hrs

Microsystem Fabrication Process: Introduction to microsystems, Photolithography, Ion Implantation, Diffusion, Oxidation, CVD,PVD-Sputtering, Deposition of Epiaxy, Etching, LIGA process: General description, Materials for substrates and photoresists, Electroplating and SLIGA process.

Unit – V 07 H

Tactile and Flow sensors – Piezoelectric sensors and actuators – piezoelectric effects – piezoelectric materials – Applications to Inertia, Acoustic, Tactile and Flow sensors.

Overview, Application, Fabrication Process in Applications:

Silicon Capacitive Accelerometer, Piezo resistive Pressure sensor, Electrostatic Comb drive, Portable blood analyzer, Piezo electric Inkjet Print head, Micromirror array for Video projection.

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Understand the operation of micro devices, micro systems and their applications.						
CO2:	Apply the principle of material science to sensor design.						
CO3:	Analyze the materials used for sensor designs.						
CO4 :	Conceptualize and design micro devices, micro systems.						

Refere	ence Books
1	MEMS & Microsystems Design and Manufacture, Tai-Ran Hsu, 2 nd Edition, 2002, Tata McGraw Hill Education, New Delhi, ISBN-13:978-0-07-048709-3.
2	Foundations of MEMS, Chang Liu, 2012, Pearson Education Inc., ISBN-13:978-0-13-249736-7.
3	Smart Material Systems and MEMS, Vijay K Varadan, K. J. Vinoy, S. Gopalakrishnan, 2006, Wiley-INDIA, ISBN-978-81-265-3170-7.
4	Micro and Smart Systems, G.K. Ananthasuresh, K.J. Vinoy, K.N. Bhat, V.K. Aatre, 2015, Wiley Publications, ISBN-:978-81-265-2715-1.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	Semester: VII							
	INTRODUCTION TO INTERNET OF THINGS							
			(Grou	ıp H: Global Elective	e)			
Cou	rse Code	:	16G7H09		CIE	•	100 Marks	
Cred	lits: L:T:P	:	3:0:0		SEE	•	100 Marks	
Tota	Total Hours		39L		SEE Duration	:	3.00 Hours	
Cou	rse Learning C	bje	ectives: The studen	ts will be able to				
1	1 Learn the fundamentals of IoT							
2	Understands t	he 1	hardware, networks	& protocols used in I	oT development			
3	3 Illustrate smart applications using IoT devices and building applications							
4	Know more a	dva	nced concepts like	cloud connectivity in	IoT			
5	Learn the fund	lan	nentals of IoT	-				

5 Learn the fundamentals of IoT				
Unit-I	06 Hrs			
Fundamentals Of IOT: Introduction, Physical design of IoT, Logical design of IoT, IoT				
technologies, IoT Levels and Deployment Templates,, IoTvs M2M				
Unit – II	06 Hrs			
IOT Design Methodology: Need for IoT systems management, IoT Design Methodology				
Internet of Things Strategic Research and Innovation Agenda: Internet of Things V				
Strategic Research and Innovation Directions, IoT Smart-X Applications, Internet of Thing	gs and Re-			
lated Future Internet Technologies.	_			
Unit –III	11 Hrs			
C.II.V 222	11 1118			
IOT Systems - Logical Design using Python: Provides an introduction to Python, installing				
	g Python,			
IOT Systems - Logical Design using Python: Provides an introduction to Python, installing	g Python,			
IOT Systems - Logical Design using Python: Provides an introduction to Python, installing Python data types & data structures, control flow, functions, modules, packages, file input/or	g Python,			
IOT Systems - Logical Design using Python: Provides an introduction to Python, installing Python data types & data structures, control flow, functions, modules, packages, file input/of ta/time operations and classes.	ng Python, output, da-			
IOT Systems - Logical Design using Python: Provides an introduction to Python, installing Python data types & data structures, control flow, functions, modules, packages, file input/of ta/time operations and classes. Unit –IV	ng Python, output, da-			
IOT Systems - Logical Design using Python: Provides an introduction to Python, installing Python data types & data structures, control flow, functions, modules, packages, file input/of ta/time operations and classes. Unit –IV IOT Physical Devices & Endpoints: What is an IoT device, Raspberry Pi device, About	ng Python, output, da-			
IOT Systems - Logical Design using Python: Provides an introduction to Python, installing Python data types & data structures, control flow, functions, modules, packages, file input/of ta/time operations and classes. Unit –IV IOT Physical Devices & Endpoints: What is an IoT device, Raspberry Pi device, About Linux on Raspberry Pi, Raspberry Pi interfaces, Programming Raspberry Pi with Python.	op Python, output, da- op Hrs the board, or Hrs			

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand the fundamentals of IoT.							
CO2:	Analyse the IoT devices, programming, networking requirements and protocols for building							
	IoT products.							
CO3:	Apply the concepts to design and develop IoT applications							
CO4:	Creating applications of IoT using physical devices and interfacing with cloud.							

Refere	Reference Books							
1	Internet of Things (A Hands-on-Approach), Vijay Madisetti and ArshdeepBahga, 1st Edition,							
1	VPT, 2014, ISBN-13: 978-0996025515.							
	Internet of Things – From Research and Innovation to Market Deployment, OvidiuVermesan,							
2	Peter Friess, River Publishers Series in Communication, River Publishers, 2014, ISBN:							
	ISBN: 978-87-93102-94-1 (Hard copy), 978-87-93102-95-8 (Ebook) (UnitsII 2 nd part)							
2	Rethinking the Internet of Things: A Scalable Approach to Connecting Everything, Francis							
3	daCosta, , 1st Edition, Apress Publications, 2013, ISBN-13: 978-1430257400.							
4	Meta products - Building the Internet of Things, WimerHazenberg, Menno Huisman, BIS							
4	Publishers, 2012, ISBN: 9789863692515.							

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	Semester: VII								
	INDUSTRY 4.0– SMART MANUFACTURING FOR THE FUTURE								
	(Group H: Global Elective)								
Cou	rse Code	••	16G7H10		CIE	:	100 Marks		
Cred	lits: L:T:P	••	3:0:0		SEE	:	100 Marks		
Total Hours		••	39L		SEE Duration	:	3.00 Hours		
Cou	rse Learning O	bje	ectives: The studen	ts will be able to					
1	Understand th	e ir	nportance and role	of Smart Manufacturi	ng Systems, IoT and	IIo	Γ		
2	Explain impor	tan	ce of automation te	echnologies, sensors, I	Robotics and Machine	e vi	sion.		
3	Understand ap	pli	cation of artificial	intelligence and the n	eed for data transfor	mat	ion, handling,		
	storing and security.								
4	Understand si	mu	lation, predictive ar	nd knowledge modelir	ng along with analysi	S			
5	Learn network	cins	z, sustainable techn	ology and factory nety	works.				

Unit-I	06 Hrs

Smart Manufacturing and Industry 4.0

Need for Smart Manufacturing, Advantages, Emerging technologies in Smart manufacturing, CAD Architecture surrounding 3D Models (B-rep and CSG), MEMS, Industry 4.0–Interoperability, Information transparency, Technical assistance, Decentralized decision-making, Internet of Things(IoT), Industry Internet of Things (IIoT), Future of Manufacturing industries

Unit – II 09 Hrs

Manufacturing Automation

Technology intensive manufacturing and cyber-physical systems, Automation using Robotics, Data storage, retrieval, manipulation and presentation; Mechanisms for sensing state and modifying processes, Material handling systems, controlling material movement and machine flow, Mechatronics, Transducers and sensors, Proximity sensors, Biosensors, Acceleration Machine Vision–Flaw detection, Positioning, Identification, Verification and Measurement–Application of Machine Vision in industries

Unit –III 09 Hrs

Data handling using Embedded Systems

Data transformation–Mathematical functions, Regression, Need for different functions, Data merging–Discrete and Random variables, Transformation languages, Interfacing systems–Microprocessors, Direct memory access, Data transfer schemes and systems, Communication systems–Modulation, Time domain and frequency domain, Industrial Network Data Communications, Data Security Artificial Intelligence – Intelligent systems, Fuzzy logics, Neural networks – Supervised, Unsupervised and Reinforced learning

Unit –IV 06 Hrs

Simulation, Modeling and Analysis

Simulation - system entities, input variables, performance measures, and Functional relationships, types of simulation. Predictive modeling and simulation tools, Knowledge Modeling –types and technology options, Functional analysis of control systems – Linear and Non-linear, Functional decomposition, Functional sequencing, Information / dataflow, Interface

Unit –V 09 Hrs

Performance Measures of Smart Manufacturing Systems- Smart manufacturing- Sensing and Perception, Manipulation, Mobility and Autonomy, Factory Networks, Information Modeling and Testing, Performance Measurement and Optimization, Engineering System integration, Production Network integration, Production network data quality, Sustainable Processes and Resources, Integration Infrastructure for Sustainable Manufacturing

Course	Course Outcomes: After completing the course, the students will be able to				
CO1:	Explain role and importance of Smart Manufacturing Systems, IoT and IIoT				
CO2:	Explain importance of automation technologies, sensors, robotics and machine vision				
CO3:	Illustrate the application of artificial intelligence and need for data transformation, handling				
CO4:	Explain analytical and simulation for performance study of smart technologies and networks				

Refere	Reference Books						
1	Zongwei Luo, Smart Manufacturing Innovation and Transformation: Interconnection And Intelligence, 1 st Edition, IGI Global Publications, 2014,ISBN-13: 978-1466658363 ISBN-10: 1466658363						
2	Yan Lu. KC Morris, Simon Frechette, Smart Manufacturing Standards, NIST, 1 st Edition, 2016, Project report.						

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	Semester: VII						
	SPACE TECHNOLOGY AND APPLICATIONS						
			(Grou	p H: Global Elective	e)		
Cou	rse Code	:	16G7H11		CIE	••	100 Marks
Cred	lits: L:T:P	:	3:0:0		SEE	••	100 Marks
Total Hours : 35L SEE Duration : 3.00 He		3.00 Hours					
Course Learning Objectives: The students will be able to							
1	1 Define the earth environment and its behavior, launching vehicles for satellites and its associat-						
	ed concepts.						
2	2 Analyze satellites in terms of technology, structure and communications.						
3	3 Use satellites for space applications, remote sensing and metrology.						
4	4 Apply the space technology, technology mission and advanced space systems to nation's						
	growth.						

UNIT-I 07 Hrs

Earth's environment: Atmosphere, ionosphere, Magnetosphere, Van Allen Radiation belts, Interplanetary medium, Solar wind, Solar-Earth Weather Relations.

Launch Vehicles: Rocketry, Propellants, Propulsion, Combustion, Solid, Liquid and Cryogenic engines, Control and Guidance system, Ion propulsion and Nuclear Propulsion.

UNIT-II 07 Hrs

Satellite Technology: Structural, Mechanical, Thermal, Power control, Telemetry, Telecomm and Quality and Reliability, Payloads, Space simulation.

Satellite structure: Satellite Communications, Transponders, Satellite antennas.

UNIT-III 07 Hrs

Satellite Communications: LEO, MEO and GEO orbits, Altitude and orbit controls, Multiple Access Techniques.

Space applications: Telephony, V-SAT, DBS system, Satellite Radio and TV, Tele-Education, Telemedicine, Satellite navigation, GPS.

UNIT-IV 07 Hrs

Remote Sensing: Visual bands, Agricultural, Crop vegetation, Forestry, water Resources, Land use, Land mapping, geology, Urban development resource Management, and image processing techniques. **Metrology:** Weather forecast (Long term and Short term), weather modelling, Cyclone predictions, Disaster and flood warning, rainfall predictions using satellites.

UNIT-V 07 Hrs

Satellite payloads: Technology missions, deep space planetary missions, Lunar missions, zero gravity experiments, space biology and International space Missions.

Advanced space systems: Remote sensing cameras, planetary payloads, space shuttle, space station, Inter-space communication systems.

Course	Course Outcomes: After completing the course, the students will be able to					
CO1	Explain different types of satellites, orbit and associated subsystems.					
CO2	Apply the basics of launching vehicles, satellites and sub systems for space applications.					
CO3	Analyze the applications of satellite in the area of communication, remote sensing, metrolo-					
	gy etc.,					
CO4	Study technology trends, satellite missions and advanced space systems.					

Refe	Reference Books				
1	Atmosphere, weather and climate, R G Barry, Routledge publications, 2009,				
	ISBN- 10 :0415465702.				
2	Fundamentals of Satellite Communication, K N Raja Rao, PHI, 2012, ISBN:9788120324015.				
3	Satellite Communication, Timothy pratt, John Wiley, 1986 ISBN: 978-0- 471- 37007 -9,				
	ISBN 10: 047137007X.				
4	Remote sensing and applications, B C Panda, VIVA books Pvt. Ltd., 2009,				
	ISBN: 108176496308.				

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	Semester: VII						
	ADVANCED LINEAR ALGEBRA						
			(Grou	ıp H: Global Electiv	re)		
Cou	rse Code	:	16G7H12		CIE	:	100 Marks
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours
Cou	Course Learning Objectives: The students will be able to						
1	Adequate exposure to learn the fundamental concepts to model a system of linear equations and						
	to obtain the solution of system of linear equations.						
2	Analyze and extend the structure of vector spaces, linear transformations, Symmetric matrices,						
	quadratic forms required in applications of Business, Science and Engineering.						
3	3 Apply the concept of Eigenvalues to study differential equations and dynamical systems. Apply						
	the concept of Orthogonality to examine some of the least-squares problems.						
4	Apply Linear Programming to Network problems and Game theory.						

	Unit-I	07 Hrs
 	•	•

System of linear equations

Matrices and system of linear equations, Geometry of linear equations, Linear models in Business, Science and Engineering-Input-Output model in Economics, Balancing chemical equations and Electrical networks.

Unit – II 09 Hrs

Vector spaces and linear transformations

Revision of Vector Spaces, Subspaces, Linear independence, Basis, Dimension and Change of basis. Applications to Difference equations, Markov chains. Intersection, Sum, Product of spaces and Tensor product of two vector spaces. Introduction to Linear transformations, Geometrical interpretations in 2-dimensions and 3-dimensions.

Unit –III 09 Hrs

Orthogonality, Eigen values and Eigen vectors

Orthogonality, Inner product spaces, Applications to Weighted least-squares and Fourier series, Fast Fourier transform. Eigen values and Eigen vectors, Applications to Differential equations, Discrete dynamical systems.

Unit –IV 07 Hrs

Symmetric matrices and quadratic forms

Introduction to symmetric matrices, Quadratic forms, Test for Positive definiteness, Constrained Optimization, Singular Value Decomposition. Applications to image processing.

Unit –V 07 Hrs

Linear programming and game theory

A Geometrical introduction to Linear programming, Simplex method and its geometrical meaning, Network models-Max flow-min cut theorem, Payoff matrix and Matrix games.

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Identify and interpret the fundamental concepts of linear equations, vector spaces, linear transformations, Orthogonality, Eigen values, symmetric matrices, quadratic forms, linear programming and game theory.					
CO2:	Apply the knowledge and skills of Linear algebra to solve linear equations, difference and differential equations, constrained optimization problems, linear programming problems and related problems.					
CO3:	Analyze the input-output models, Markov chains, discrete dynamical systems, singular value decomposition, network models and related problems.					
CO4 :	Using the overall mathematical knowledge of Linear Algebra to solve problems arising in practical situations.					

Refere	ence Books
1	David C Lay; Linear Algebra and Its Applications; Pearson Education; III Edition; 2003;
1	ISBN: 978-81-775-8333-5.
2	Gareth Williams; Linear Algebra with Applications; 6th edition; 2008; Narosa publications;
	ISBN: 978-81-7319-981-3.
3	Gilbert Strang; Linear Algebra and Its Applications; IV Edition; Cengage Learning India
	Edition; 2006; ISBN: 81-315-0172-8.
4	Howard Anton and Chris Rorres; Elementary Linear Algebra Applications Version; Wiley
	Global Education; 11th Edition; 2013; ISBN: 9781118879160.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 60 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

Semester: VII THIN FILM NANOTECHNOLOGY							
			(Grou]	p H: Global E	lective)		
Cou	rse Code	:	16G7H13		CIE	:	100 Marks
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks
Total Hours : 39L SEE Duration : 3.00 Hours				3.00 Hours			
Course Learning Objectives: The students will be able to							
1 Understand the importance of vacuum in thin film fabrication							
2	2 Acquire the knowledge of thin film preparation by various techniques						
3	3 Analyze the properties of thin films using different characterization methods						
4 Optimize the process parameter and property dependence							
5							

Unit-I 08 Hrs

Vacuum Technology: Basics of Vacuum - Principles of different vacuum pumps: Rotary, Roots, Diffusion, Turbo molecular and Cryogenic pumps; Measurement of vacuum - Concept of Capacitance Manometer, Pirani and Penning gauges - Vacuum Systems & Applications.

Unit – II 08 Hrs

Methods of thin film preparation

Physical Vapor Deposition (PVD) Techniques:

Evaporation: Thermal evaporation, Electron beam evaporation, Laser ablation, and Cathode arc deposition. *Sputtering*: DC sputtering, RF Sputtering, Magnetron sputtering, Reactive Sputtering, and Ion beam sputtering.

<u>Chemical Vapor Deposition (CVD) Techniques</u>: Conventional CVD, Plasma Enhance CVD (PECVD) and Atomic layer deposition (ALD).

Other Methods: Spin coating and Spray Pyrolysis.

Unit –III 07 Hrs

Surface Modification and Growth of Thin Films:

<u>Surface preparation & Engineering</u> for Thin film growth: Cleaning, Modification, Masking & Patterning, Base Coats and Top Coats.

<u>Thin Film growth</u>: Sequence of thin film growth, Defects and impurities, Effect of Deposition Parameters on film growth.

Unit –IV 08 Hrs

Properties and Characterization of Thin Films

Film thickness (Quartz crystal thickness monitor and Stylus Profiler);

Film Adhesion (Tape, Cross-hatch test, and Humidity methods);

Surface morphology and topography (SEM and AFM);

Film composition (X-ray Photoelectron Spectroscopy);

Film structure (X-ray diffraction and Raman studies);

Electrical characterization (Four Probe and Semiconductor Analyzer); and

Optical characterization (Spectrophotometer).

Unit –V 08 Hrs

Thin Film Applications:

- Electrodes: Deposition of a Metal film, Ex: Aluminum.
- Transparent conducting oxides (TCO) Preparation and Optimization of a semiconducting film, Ex: ZnO.
- Optimization of a dielectric film, Ex: Al₂O₃ or Si₃N₄.

Thin Film Devices:

- Thin Film Transistors (TFT),
- Thin Film Sensors
- Thin Film Capacitors

- Thin film Solar Cells.
- Thin film Solar Absorbers
- Diamond-like carbon (DLC) coating
- EMI Shielding coatings
- Hard coatings
- Coatings on Plastics/Polymers.

Cours	Course Outcomes: After completing the course, the students will be able to				
CO1	Understand the importance of vacuum technology for thin film growth				
CO2	Prepare various kinds of thin films using different deposition techniques				
CO3	Characterize the deposited films for various properties				
CO4	Fabricate thin film based devices.				

Ref	Reference Books								
1.	Vacuum Technology by A. Roth, Elsevier, 3 rd Edition, 1976, ISBN: 9780444880109, 9780444598745,								
2.	Thin Film Phenomenon by K.L. Chopra, McGraw-Hill, 1st Edition, 1969, ISBN: 0070107998, 978-0070107991								
3.	Materials Science of Thin Films by Milton Ohring, Elsevier, 2 rd Edition, 2001, ISBN : 9780125249751								
4.	Thin-Film Deposition: Principles and Practice by Donald Smith, McGraw-Hill, 1 st Edition, 1995, ISBN: 0070585024, 9780070585027								

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 60 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10. Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	Semester: VII							
	ENGINEERING MATERIALS FOR ADVANCED TECHNOLOGY							
			(Group	р Н: Global Е	Clective)			
Cou	rse Code:	:	16G7H14		CIE	:	100 Marks	
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks	
Total Hours			39L		SEE Duration	:	3.00 Hours	
Course Learning Objectives: The students will be able to								
1	Aapply the basic	sic concepts of Chemistry to develop futuristic materials for high-tech applica-						
1	tions in the area of Engineering.							
2	Impart sound kr	ow	ledge in the diffe	erent fields of	material chemistry	so as	to apply it to the	
problems in engineering field.								
2	Develop analytic	cal o	capabilities of stud	dents so that t	hey can characterize,	transi	form and use ma-	
3	terials in engineering and apply knowledge gained in solving related engineering problems.							

UNIT-I	08 Hrs

Coating and packaging materials

Surface Coating materials:

Synthesis and applications of Polymer coating materials: Teflon, Silicone films Polyvinyl chloride & its copolymers, Poly vinyl acetate, Poly ethylene-HDPE, LDPE, Polyurethane.

Properties required in a pigment and extenders.

Inorganic pigments-titanium dioxide, zinc oxide, carbon black, chromate pigments, chrome green, ultramarine blue, iron blue, cadmium red.

Corrosion inhibiting pigments- zinc phosphate, zinc and barium chromate pigments, ceramic pigments, metal flake pigments, extenders.

Developments in new polymers such as dendrimers, biopoplymers & biodegradable polymers.

Packaging materials:

Food products: Cellulosic and Polymeric packaging materials and their properties – including barrier properties, strength properties, optical properties. Glass, aluminium, tin, paper, plastics, composites.

Pharmaceutical products: Injectibles and tablet packaging materials.

UNIT-II 07 Hrs

Adhesives

Introduction-Classification of Adhesives-Natural adhesives, synthetic adhesives-drying adhesives, pressure sensitive adhesives, contact adhesives, hot adhesives. One part adhesives, multi part adhesives. Adhesive Action. Development of Adhesive strength- Physical factors influencing Adhesive Action-surface tension, surface smoothness, thickness of adhesive film, elasticity and tensile strength. Chemical Factors Influencing Adhesive action - presence of polar groups, degree of polymerization, complexity of the adhesive molecules, effect of pH. Adhesive action- specific adhesive action, mechanical adhesive action, fusion adhesion. Development of adhesive strength-adsorption theory and diffusion theory. Preparation, curing and bonding Processes by adhesives-with reference to Epoxy, phenolics, Silicone, Polyurethane, Acrylic adhesives, Poly vinyl alcohol, Polyvinyl acetate.

UNIT-III 08 Hrs

Optical fibre materials

Fiber Optics, Advantages of optical fiber communication over analog communication, Classification based on refractive index of the core- step index and graded index optical fibres, Classification based on core radius-single mode and multimode optical fibres, Fibre fabrication.-Methods to manufacture optical glass fibres. Double crucible method and preform methods. Manufacture of perform- Chemical Vapour Deposition (CVD), Modified vapour deposition (MCVD) Plasma activated vapour deposition (PCVD), Outside vapour deposition (OVD)-Vapour-phase axial deposition (VAD). Drawing the fibres from perform, coating and jacketing process.

Ion exchange resins and membranes

Ion exchange resins-Introduction, Types, physical properties, chemical properties-capacity, swelling, kinetics, stability, ion exchange equilibrium, regeneration. Applications of ion exchange resinssoftening of water, demineralization of water, advantages and disadvantages of ion exchange resins-

calcium sulphate fouling, iron fouling, adsorption of organic matter, bacterial contamination. Ion exchange membranes, Types, Classification, Fabrication of ion exchange cottons- anion exchange cotton and cation exchange cotton. Application of ion exchange membranes in purification of water by electro dialysis method.

UNIT-IV 08 Hrs

Spectroscopic Characterization of materials:

Electromagnetic radiation, interaction of materials with electromagnetic radiation.

UV- visible spectrophotometry:Introduction-Electronic transitions- factors influencing position and intensity of absorption bands-absorption spectra of dienes, polyene and α,β -unsaturated carbonyl compounds, Working of UV-Vis spectrophotometer, Theoretical calculation of λ_{max} by using Woodward-Fieser rules- for cyclic and α,β -unsaturated carbonyl compounds.

IR Spectroscopy: Introduction, principle, molecular vibrations, vibrational frequency, number of fundamental vibrations, factors influencing fundamental vibrations, instrumentation of IR spectrophotometer, sampling techniquesand application of IR spectroscopy in characterization of functional groups.

UNIT-V 08 Hrs

NMR spectroscopy:

H¹ NMR Spectroscopy: Basic concepts- relaxation process. NMR spectrometer-FT NMR-Solvents used in NMR, internal standards-Chemical equivalence -Integrals and Integrations- chemical shifts- factors affecting chemical shifts- shielding and deshielding effects – chemical and magnetic equivalent –magnetic anisotropy-spin-spin splitting rules- Application of NMR on various compounds such as alkanes, alkenes, alkynes, alkyl halides, alcohols, ethers, amines, aldehydes, ketones, carboxylic acids, esters, amides & mono substituted aromatic compounds. Problems on prediction of structure of compounds.

Cou	rse Outcomes: After completing the course, the students will be able to					
CO	Identify sustainable engineering materials and understand their properties.					
CO2	Apply the basic concepts of chemistry to develop futuristic materials for high-tech applications					
	in different areas of engineering.					
CO3	Analyze and evaluate the specific application of materials.					
CO4	Design the route for synthesis of material and its characterization.					
Refe	rence Books					
1.	Materials Science, G.K.Narula, K.S.Narula & V.K.Gupta. 38th Edition, 2015, Tata McGraw-Hill					
	Publishing Company Limited ISBN: 978-0-07-451796-3.					
2.	Solar Lighting, Ramachandra Pode and Boucar Diouf, Springer e-book, 2011, ISBN: 978-1-44-					
	712133-6 (Print) 978-1-44-712134-3 (Online),					
3.	Spectroscopy of organic compounds, P.S.Kalsi, 6 th Edition, 2013, New Age International(P)					
	ltd,publisher, ISBN: 978-1-22-415438-6.					
4.	Food Packaging Materials, Mahadeviah M & Gowramma RV,6 th Edition, 1996, Tata McGraw					
	Hill Publishing Company Ltd, ISBN:746-2-23-82 9780-0.					

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks cov-

ering the complete syllabus. Part -B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	Semester: VII						
APPLIED PSYCHOLOGY FOR ENGINEERS							
			(Gr	oup H: Global Electiv	ve)		
Cou	rse Code	:	16G7H15		CIE	:	100
Cree	dits: L:T:P	:	3:0:0		SEE	:	100
Tota	d Hours	:	35L		SEE Duration	:	3 Hours
Cou	rse Learning (Obje	ectives: The stude	ents will be able to			
1	To appreciate	e hu	man behavior an	d human mind in the	context of learner's i	mm	ediate society
	and environn	nent	•				
2				lifelong learning and		o su	stain personal
	and Professional development as the nature of work evolves.						
3	To provide students with knowledge and skills for building firm foundation for the suitable en-						
gineering professions.							
4	To prepare students to function as effective Engineering Psychologists in an Industrial,						
	Governmental or consulting organization.						
5	To enable stu	den	ts to use psycholo	gical knowledge, skills	s, and values in occup	oatic	onal pursuits
	in a variety o	f set	tings that meet po	ersonal goals and socie	tal needs.		

Unit – I 7 Hrs

Introduction to Psychology: Definition and goals of Psychology: Role of a Psychologist in the Society: Today's Perspectives (Branches of psychology). Psychodynamic, Behavioristic, Cognitive, Humanistic, Psychological Research and Methods to study Human Behavior: Experimental, Observation, Questionnaire and Clinical Method.

Unit - II 7 Hrs

Intelligence and Aptitude: Concept and definition of Intelligence and Aptitude, Nature of Intelligence. Theories of Intelligence – Spearman, Thurston, Guilford Vernon. Characteristics of Intelligence tests, Types of tests. Measurement of Intelligence and Aptitude, Concept of IQ, Measurement of Multiple Intelligence – Fluid and Crystallized Intelligence.

Unit – III 7 Hrs

Personality: Concept and definition of personality, Approaches of personality- psychoanalytical, Socio- Cultural, Interpersonal and developmental, Humanistic, Behaviorist, Trait and type approaches. Assessment of Personality: Self- report measures of Personality, Questionnaires, Rating Scales and Projective techniques, its Characteristics, advantages & limitations, examples. Behavioral Assessment. Psychological Stress: a. Stress- Definition, Symptoms of Stress, Extreme products of stress v s Burnout, Work Place Trauma. Causes of Stress – Job related causes of stress. Sources of Frustration, Stress and Job Performance, Stress Vulnerability-Stress threshold, perceived control.

Unit – IV 7 Hrs

Application of Psychology in Working Environment: The present scenario of information technology, the role of psychologist in the organization, Selection and Training of Psychology Professionals to work in the field of Information Technology. Distance learning, Psychological consequences of recent developments in Information Technology. Type A and Type B Psychological Counseling - Need for Counseling, Types – Directed, Non- Directed, Participative Counseling.

Unit – V 7 Hrs

Learning: Definition, Conditioning – Classical Conditioning, Basics of Classical Conditioning (Pavlov), the process of Extinction, Discrimination and Generalization. Operant Conditioning (Skinner expt). The basics of operant conditioning, Schedules of reinforcement. Cognitive – Social approaches to learning – Latent Learning, Observational Learning, Trial and Error Method, Insightful Learning.

Experimental Psychology (Practicals)- Self Study 2 Hrs /Week

- 1.Bhatia's Battery of Performance and intelligence test
- 2.Multidimensional Assessment of Personality
- 3. David's Battery of Differential Abilities (Aptitude test)
- 4.Bilateral Transfer of Training Mirror drawing apparatus with Electronic Digital Reset Error Counter (Performance)
- 5. Student Stress Scale.

Cours	e Outcomes: After completing the course, the students will be able to
CO1	Describe the basic theories, principles, and concepts of applied psychology as they relate to
	behaviors and mental processes.
CO2	Define learning and compare and contrast the factors that cognitive, behavioral, and
	Humanistic theorists believe influence the learning process.
CO3	Develop understanding of psychological attributes such as intelligence, aptitude, creativity,
	resulting in their enhancement and apply effective strategies for self-management and self-
	improvement.
CO4	Apply the theories into their own and others' lives in order to better understand their person-
	alities and experiences.
CO5	Understand the application of psychology in engineering and technology and develop a route
	to accomplish goals in their work environment.

Reference Books:

- 1. . Understanding Psychology Feldman R. S, IV edition, (1996) McGraw Hill India
- 2. Psychology Robert A. Baron, III edition (1995) Prentice Hall India.
- 3. Organizational Behaviour , Stephen P Robbins Pearson Education Publications, 13th Edition, ISBN-81-317-1132-3
- 4. Organisational Behaviour : Human Behaviour at Work ,John W.Newstrem and Keith Davis. Tata McGraw Hill India, 10th Edition, ISBN 0-07-046504-5
- 5. Psychology-themes and variations, Wayne Weiten, IV edition, Brooks / Cole Publishing Co.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10. Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	Semester: VII								
	FOUNDATIONAL COURSE ON ENTREPRENEURSHIP								
	(Group H : Global Elective)								
Co	urse Code	:	16G7H16		CIE Marks	:	100		
Cr	edits: L:T:P:S	:	3:0:0:0		SEE Marks	••	100		
To	tal Hours	:	36L		SEE Duration	••	03 Hours		
Co	urse Learning (Эb	jectives:						
1	To make partic	cipa	ants self-discov	ver their innate flow, entreprene	eurial style, and idea	nti	fy problems		
	worth solving t	hei	reby becoming	entrepreneurs					
2	To handhold p	arti	icipants on lear	n methodology to craft value pr	roposition and get re	eac	ly with lean		
	canvas								
3	To create solut	ioi	n demo by con	ducting customer interviews an	nd finding problem-s	sol	ution fit for		
	building Minin								
4	To make partic	ipa	ants understand	cost structure, pricing, revenue	types and importan	ce	of adopting		
	shared leadership to build good team								
5	To help participants build a strong brand and identify various sales channels for their products and								
	services								
6			_	ics of business regulations and o	other legal terms alor	ng-	with under-		
	standing of Inte	elle	ectual Property	Rights					

Unit-I	07 Hrs
Cint-1	0/1113

Self Discovery and Opportunity Discovery

Finding the Flow; Effectuation; Identifying the Effectuation principles used in activities; Identifying Problem Worth Solving; Design Thinking; Brainstorming; Presenting the Identified problems; Identifying the Entrepreneurial Style.

Unit – II 07 Hrs

Customer, Solution and Lean Methodology

Customers and Markets; Segmentation and Targeting; Identifying Jobs, Pains, and Gains and Early Adopters; Crafting Value Proposition Canvas (VPC); Presenting VPC; Basics of Business Model and Lean Approach; Sketching the Lean Canvas; Risks and Assumptions; Presenting Lean Canvas.

Unit – III 07 Hrs

Problem-Solution Fit and Building MVP

Blue Ocean Strategy - Plotting the Strategy Canvas; Four Action Framework: Eliminate-Reduce-Raise-Create Grid of Blue Ocean Strategy; Building Solution Demo and Conducting Solution Interviews; Problem-Solution Fit; Building MVP; Product-Market Fit; Presenting MVP.

Unit – IV 06 Hrs

Financial Planning & Team Building

Cost Structure - Estimating Costs; Revenues and Pricing: Revenue Streams, Revenue Types, Identifying Secondary Revenue Streams, Estimating Revenue and Price; Profitability Checks; Bootstrapping and Initial Financing; Practising Pitch; Shared Leadership; Hiring and Fitment, Team Role and Responsibilities.

Unit – V 09 Hrs

Marketing, Sales, Regulations and Intellectual Property

Positioning and Branding; Channels; Sales Planning; Project Management; Basics of Business Regulations; How to Get Help to Get Started; Patents, Trademark, Licensing, Contracts; Common Legal mistakes, Types of Permits, Tax Registration Documents, Compliance; Infringement and Remedies, Ownership and Transfer.

Course	Course Outcomes: After completing the course, the students will be able to						
CO1	showcase the ability to discern distinct entrepreneurial traits						
CO2	Know the parameters to assess opportunities and constraints for new business ideas						
CO3	Understand the systematic process to select and screen a business idea						
CO4	design strategies for successful implementation of ideas						
CO5	Create Business Model and develop Minimum Viable Product						

Ref	erence Books						
1	Running Lean: Iterate from Plan A to a Plan That Works. O'Reilly Media, Maurya, A., 2012.						
2	Entrepreneurship.Roy, R., 2012. Oxford University Press						
3	Intellectual Property Law in India. Gupta, T. S., 2011. Kluwer Law International						
4	Flow: The Psychology of Optimal Experience. Czikszentmihalyi, M., 2008. Harper Perennial						
Modern Classics							
_	Effectuation: Elements of Entrepreneurial Expertise. Sarasvathy, S. D., 2009. Edward Elgar Pub-						
3	lishing Ltd.						

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	Semester: VII							
	UNMANNED AERIAL VEHICLES							
			(Gro	up H: Global Elective	e)			
Cou	rse Code	:	16G7H17		CIE	:	100 Marks	
Credits: L:T:P		:	3:0:0:0		SEE	:	100 Marks	
Total Hours : 36L SEE Duration : 3.00 Hours					3.00 Hours			
Cou	rse Learning C	bje	ectives: The studen	its will be able to				
1	Get an overvi	ew	of the history of U.	AV systems				
2	Understand th	e i	mportance of aeroc	dynamics, propulsion,	structures and avior	nics	in the design	
	of UAV							
3	3 Demonstrate ability to address the various mission payloads - on-board & off-board, propulsion							
	systems, integration with manned systems							
4	Assess the performance and airworthiness of the designed UAV							

Unit-I	06 Hrs

Introduction to Flight Vehicles:

History of Flight Vehicles and UAVs, Classifications, Woking principles of flight vehicle.

Introduction to Unmanned Aircraft Systems

Types of UAVs, configurations and their advantages disadvantages, System Composition, Applications of UAVs, Characteristics of Aircraft

Unit – II 07 Hrs

Design of UAV Systems: Governing aspects:

a. Aerodynamics, b. Propulsion, C. structure, d. Controls

Aerodynamics:

Introduction basic Aerodynamics, lift, drag, Aerofoils, wing area optimization.

Propulsion:

Introduction to propulsion system in UAV, Propulsion system for fixed wing UAV and VTOL (Vertical take-off and landing) UAV, Advanced propulsion systems, fuel cells, generators based systems.

Unit -III 07Hrs

Structures of UAV:

Mechanic loading, basics of types of load calculation and structural engineering, Material used for UAV (general introduction), FRP and methods of usage in UAV, Testing of FRP specimens for UAV, selection criteria for structure, Types of structural elements used in UAV their significance and characteristics, Methods of manufacturing UAV structure.

Unit -IV 07 Hrs

Controls, Avionics, Hardware, Communication, Payloads:

Basics of control system and Systems for control system in UAV, PID control, simulation introduction to Hardware in loop system (HILS), Avionics: Autopilot (AP) – architecture of AP, sensors, actuators, power supply, integration, installation, configuration, and testing.

Hardware, Communication

Electronics Hardware in UAV, Communication methods, communication antenna and their significance.

Payloads:

Payload types and their applications

Unit -V	09 Hrs

Design of UAV Systems:

Fixed wing UAV and Rotary wing UAV (VTOL)

Task specific, activity based exercise

Course Outcomes: At the end of this course the student will be able to:

CO1 Appraise the evolution of UAVs and understand the current potential benefits of UAVs

CO2	Apply the principles of Aerospace Engineering in design and development of UAVs			
CO3	Determine and evaluate the performance of UAV designed for various Missions and applications			
CO4	Assess the performance and airworthiness of the designed UAV			

Ref	Ference Books
1	Unmanned Aircraft Systems UAV design, development and deployment, Reg Austin, 1st Edi-
	tion, 2010, Wiley, ISBN 9780470058190.
2	Flight Stability and Automatic Control, Robert C. Nelson, 2 nd Edition, October 1, 1997,
4	McGraw-Hill, Inc, ISBN 978-0070462731.
2	Advances in Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy, Kimon P.
3	Valavanis, 1 st Edition,2007, Springer ISBN 9781402061141
4	Introduction to UAV Systems, Paul G Fahlstrom, Thomas J Gleason, 4 th Edition, 2012, Wiley,
4	ISBN: 978-1-119-97866-4
_	Design of Unmanned Air Vehicle Systems, Dr. Armand J. Chaput, 3 rd Edition, 2001, Lockheed
5	Martin Aeronautics Company, ISBN: 978-1-60086-843-6

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

Semester: VIII						
	MAJOR PROJECT					
	(Common to all Programs)					
Course Code	:	16EI81		CIE	:	100 Marks
Credits: L:T:P:S	Credits: L:T:P:S : 0:0:16:0					
Hours / Week	:	32		SEE Duration	:	3.00 Hours

Cou	Course Learning Objectives: The students will be able to				
1	Acquire the ability to make links across different areas of knowledge and to generate, develop				
	and evaluate ideas and information so as to apply these skills to the project task.				
2	Acquire the skills to communicate effectively and to present ideas clearly and coherently to a				
	specific audience in both written and oral forms.				
3	Acquire collaborative skills through working in a team to achieve common goals.				
4	Self-learn, reflect on their learning and take appropriate action to improve it.				
5	Prepare schedules and budgets and keep track of the progress and expenditure.				

Major Project Guidelines:

- 1. The project topic, title and synopsis have to be finalized and submitted to their respective internal guide(s) before the beginning of the 8th semester.
- 2. The detailed Synopsis (*approved by the department Project Review Committee*) has to be submitted during the 1st week after the commencement of 8th semester.

Batch Formation:

- > Students are free to choose their project partners from within the program or any other program;
- ➤ Each student in the team must contribute towards the successful completion of the project. The project may be carried out In-house / Industry / R & D Institution;
- > The project work is to be carried out by a team of two to four students, in exceptional cases where a student is placed in a company and offered an internship through the competitive process or student is selected for internship at national or international level through competitive process, the student can work independently.
- > The students are allowed to do either a project for full 5 days in the industry or full 5 days in the college.
- > In case the project work is carried out outside Bengaluru, such students must be available during Project Evaluation process scheduled by the respective departments and they must also interact with their guide regularly through Email / Webinar / Skype etc.

Project Topic Selection:

The topics of the project work must be in the *field of respective program areas or in line with CoE's (Centre of Excellence) identified by the college* or List of project areas as given by industry/Faculty. The projects as far as possible should have societal relevance with focus on sustainability.

Project Evaluation:

- Continuous monitoring of project work will be carried out and cumulative evaluation will be done.
- > The students are required to meet their internal guides once in a week to report their progress in project work.
- ➤ Weekly Activity Report (WAR) has to be maintained in the form of a diary by the project batch and the same has to be discussed with the Internal Guide regularly.
- ➤ In case of **Industry project**, during the course of project work, the internal guides will have continuous interaction with external guides and will visit the industry at least twice during the project period.

- ➤ For CIE assessment the project groups must give a final seminar with the draft copy of the project report.
- The presentation by each group will be for 20-30 minutes and every member of the team needs to justify the contributions to the project.
- > The project team is required to submit Hard copies of the detailed Project Report in the prescribed format to the department.
- ➤ For CIE 50% weightage should be given to the project guide and 50% weightage to the project evaluation committee.
- ➤ Before the final evaluations the project group is required to produce a No dues certificate from Industry, Central Library and Department.

Cour	se Outcomes of Major Project:
1	Apply knowledge of mathematics, science and engineering to solve respective engineering
	domain problems.
2	Design, develop, present and document innovative/multidisciplinary modules for a complete
	engineering system.
3	Use modern engineering tools, software and equipment to solve problem and engage in life-
	long learning to follow technological developments.
4	Function effectively as an individual, or leader in diverse teams, with the understanding of pro-
	fessional ethics and responsibilities.

CIE Assessment:

The following are the weightings given for the various stages of the project.

1.	Selection of the topic and formulation of objectives	10%
2.	Design and Development of Project methodology	25%
3.	Execution of Project	25%
4.	Presentation, Demonstration and Results Discussion	30%
5.	Report Writing & Publication	10%

SEE Assessment:

The following are the weightages given during Viva Examination.

1.	Written presentation of synopsis	10%
2.	Presentation/Demonstration of the project	30%
3.	Methodology and Experimental Results & Discussion	30%
4.	Report	10%
5.	Viva Voce	20%

Calendar of Events for the Project Work:

Week	Event
Beginning of 7 th Semester	Formation of group and approval by the department committee.
7 th Semester	Problem selection and literature survey
Last two weeks of 7 th Semester	Finalization of project and guide allotment
II Week of 8th Semester	Synopsis submission and preliminary seminar
III Week	First visit of the internal guides to industry (In case of project being carried out in industry)
III to VI Week	Design and development of project methodology
VII to IX Week	Implementation of the project
X Week	Submission of draft copy of the project report
XI and XII Week	Second visit by guide to industry for demonstration. Final seminar by Department project Committee and guide for internal assessment. Finalization of CIE.

Evaluation Scheme for CIE and SEE

Scheme of Evaluation for CII	Scheme of Evaluation for SEE			
Particulars	Particulars	%Marks		
Project Evaluation I	10%	Project Synopsis (Initial Write up)	10%	
Project Evaluation II	25%	Project Demo / Presentation	30%	
Project Evaluation III	25%	Methodology and Results Discussion	30%	
Project Evaluation Phase-IV (Submission of Draft Project Report for Verification)	30%	Project Work Report	10%	
Project Evaluation Phase-V (Project Final Internal Evaluation)	10%	Viva-voce	20%	
Total	100	Total	100	

Semester: VIII						
	TECHNICAL SEMINAR					
	(Common to all Programs)					
Course Code	:	16EI82		CIE	:	100 Marks
Credits: L:T:P:S	:	0:0:2:0		SEE	:	100 Marks
Hours / Week	:	04		SEE Duration	:	3.00 Hours

Cou	Course Learning Objectives: The students will be able to			
1	Recognize recent developments in specific program and in multidisciplinary fields.			
2	Summarize the recent technologies and inculcate the skills for literature survey.			
3	Demonstrate good presentation skills.			
4	Plan and improve the Technical Report writing skills.			
5	Support Group discussion and Team work.			

General Guidelines for the Seminar

- 1. The seminar has to be presented by individual student.
- 2. The topic of the seminar should be from current thrust area along with consultation with the guide.
- 3. The topic can be based on standard papers (like IEEE/ACM/CSI etc.) in the thrust area for the selected topic.
- 4. Presenting/publishing this paper in conference/ Journal will be given weightage in CIE.
- 5. The student needs to submit both hard & soft copy of the seminar report.
- 6. As Outcome of Technical Seminar, each student has to prepare a technical paper out of seminar topic.

	-						
Cou	Course Outcomes of Technical Seminar:						
1	Communicate effectively on complex engineering problems and demonstrate contextual						
	knowledge to assess societal and environmental contexts.						
2	Identify, formulate, review research literature, analyze and Design solutions for complex en-						
	gineering problems using appropriate techniques with effective documentation.						
3	Analyze, interpret and synthesize the information to provide valid conclusions with innovative						
	ideas and ethical principles.						
4	Apply the knowledge of engineering specialization to suggest solutions to complex engineer-						
	ing problems and recognize the need for technological changes.						

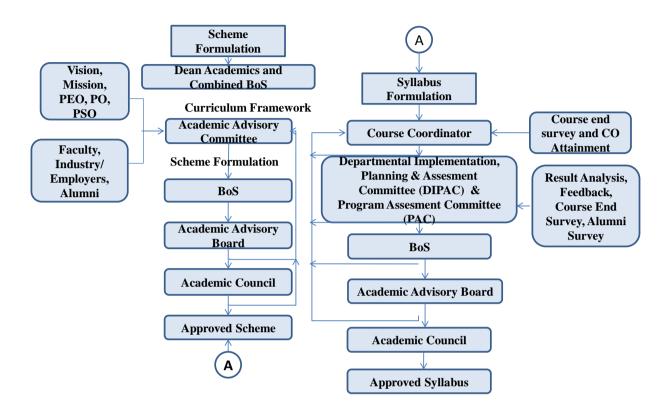
Evaluation of CIE Marks:

1.	Relevance of the topic	10%
2.	Literature Survey	10%
3.	Presentation	40%
4.	Report	20%
5.	Paper Publication	20%

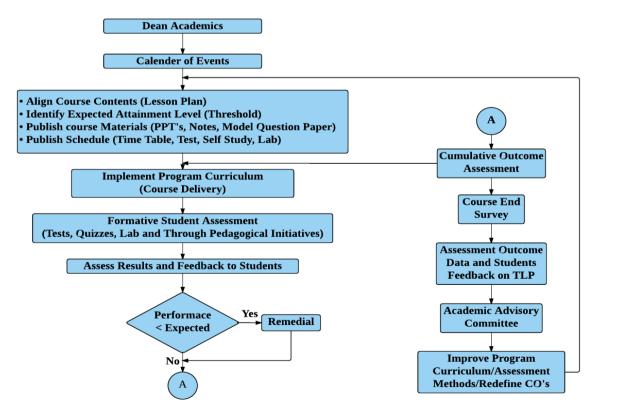
	CO-PO MAPPING											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		1	1	-	-	1	-	2	-	-	-	2
CO2	2	1	2	-	1	-	-	-	-	-	2	2
CO3	-	2	1	-	2	-	-	-	-	-	-	2
CO4	1	2	2	1	1	2	2	-	2	2	-	2

Low-1 Medium-2 High-3

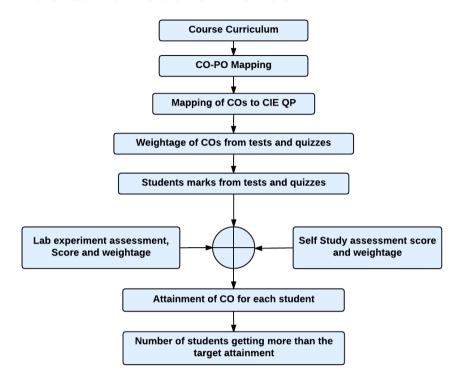
Semester: VIII						
INNOVATION & SOCIAL SKILLS						
(Common to all Programs)						
Course Code	:	16HS83	CIE		:	NA
Credits: L:T:P:S	:	0:0:1:0	SEE		:	NA
Hours / Week	:	02	SEE Durat	tion	:	NA

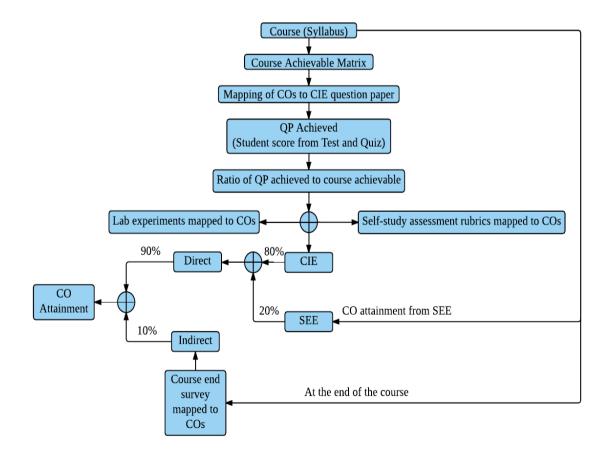

Course Learning Objectives: The students will be able to							
1	To provide a platform for the students to exhibit their organizational capabilities, team building,						
	ethical values and extra mural abilities.						
2	To encourage to carryout innovative ideas and projects.						
3	Take part in societal and community building activities.						
4	Make self-learning, ethics and lifelong learning a motto.						

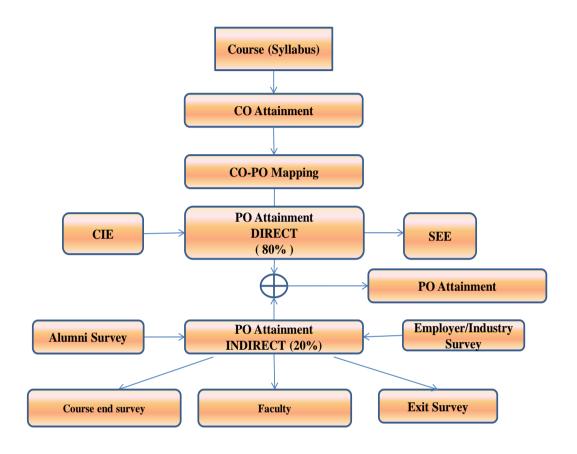
Guidelines


- 1. The HSS will be evaluated individually based on the broad parameters which include the progress made by student during 3rd& 4th year in innovative projects, Seminar, Paper Presentation, Field activity & other Co-curricular activities.
- 2. Students shall submit a report and documents as a proof his/her achievements.

Cou	Course Outcomes of Innovation & Social Skills:						
1	1 Apply the knowledge and skills for solving societal issues						
2	Plan to work in team in various areas with inclusive effort and sustainability						
3	Organize various events and use managerial and budgeting abilities						
4	Demonstrate leadership qualities and ethics						


Curriculum Design Process


Academic Planning and Implementation


PROCESS FOR COURSE OUTCOME ATTAINMENT

Final CO Attainment Process

Program Outcome Attainment Process

Guidelines for Fixing Targets

• The target may be fixed based on last 3 years' average attainment

PROGRAM OUTCOMES (POs)

- 1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.
- 2. **Problem analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.
- 6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. **Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. **Life-long learning:** Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.