

RV COLLEGE OF ENGINEERING[®]

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus for VII & VIII Semesters

2016 SCHEME

ELECTRONICS & INSTRUMENTATION ENGINEERING

VISION

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

MISSION

- 1. To deliver outcome based Quality education, emphasizing on experiential learning with the state of the art infrastructure.
- 2. To create a conducive environment for interdisciplinary research and innovation.
- 3. To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- 4. To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- 5. To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

QUALITY POLICY

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

CORE VALUES

Professionalism, Commitment, Integrity, Team Work, Innovation

RV COLLEGE OF ENGINEERING[®]

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus for VII & VIII Semesters

2016 SCHEME

DEPARTMENT OF ELECTRONICS & INSTRUMENTATION ENGINEERING

DEPARTMENT VISION

Achieving academic excellence in Instrumentation Technology by adopting interdisciplinary research with a focus on sustainable and inclusive technologies.

DEPARTMENT MISSION

- To create an environment for students to excel in domain areas and get motivated to involve in interdisciplinary research by utilizing state of the art infrastructure.
- To impart technical knowledge, encourage experiential learning and develop future professional leaders.
- To establish industry-academia networking and develop industry-ready students and future entrepreneurs, to meet societal & industrial challenges.
- To motivate lifelong learning and research in sustainable technologies to find improved solutions for the betterment of society.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **PEO1:** Apply Instrumentation, Electronics, Controls and Automation concepts to develop technical solutions for industrial problems.
- **PEO2:** Exhibit competency in adapting to various industrial challenges and work in inter-disciplinary projects with team spirit and professional ethics for achieving organizational goals.
- **PEO3:** Pursue higher education in technology or management and achieve professional excellence by imbibing leadership qualities and communication skills.
- **PEO4:** Become entrepreneurs with a focus on sustainable technologies and develop innovative solutions to meet industrial and societal needs.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO	Description						
PSO1	Design, analyze and practice the instrumentation, controls and automation con-						
	cepts and techniques required for industrial and/or research pursuits resulting in						
	product development, publications or patents.						
PSO2	Demonstrate the knowledge of basic science, mathematics, electronic system						
	design and programming for real-time applications, towards developing indus-						
	trial solutions and become technology leaders of future.						

Lead Society: International Society of Automation (ISA)

ABBREVIATIONS

Sl. No.	Abbreviation	Meaning
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	SEE	Semester End Examination
5.	PE	Professional Core Elective
6.	GE	Global Elective
7.	HSS	Humanities and Social Sciences
8.	CV	Civil Engineering
9.	ME	Mechanical Engineering
10.	EE	Electrical & Electronics Engineering
11.	EC	Electronics & Communication Engineering
12.	IM	Industrial Engineering & Management
13.	EI	Electronics & Instrumentation Engineering
14.	СН	Chemical Engineering
15.	CS	Computer Science & Engineering
16.	TE	Telecommunication Engineering
17.	IS	Information Science & Engineering
18.	BT	Biotechnology
19.	AS	Aerospace Engineering
20.	PY	Physics
21.	CY	Chemistry
22.	MA	Mathematics

INDEX

	VII Semester					
Sl. No.	Course	Course Title	Page No.			
	Code		_			
1.	16EI71	Industrial Automation Technology	1			
2.	16EI72	ARM Processor	4			
3.	16EI73P	Minor Project	7			
		GROUP F: PROFESSIONAL ELECTIVES				
1.	16EI7F1	Optimization Techniques	9			
2.	16EI7F2	Robotics	11			
3.	16EI7F3	Product Design Technology	13			
4.	16EI7F4	Real time Operating systems (RTOS)	15			
		GROUP G: PROFESSIONAL ELECTIVES				
1.	16EI7G1	Simulation & Modelling	17			
2.	16EI7G2	System on Chip (SoC)	19			
3.	16EI7G3	Safety Instrumentation	21			
4.	16EI7G4	Wireless Instrumentation	23			

		GROUP H: GLOBAL ELECTIVES	
1.	16G7H01	Nanotechnology	25
2.	16G7H02	Industrial Safety and Risk Management	27
3.	16G7H03	Intelligent Transport System	29
4.	16G7H04	Intelligent Systems	31
5.	16G7H05	Image Processing & Machine Learning	33
6.	16G7H06	Design Of Renewable Energy System	35
7.	16G7H07	System Engineering	37
8.	16G7H08	MEMS and Applications	39
9.	16G7H09	Introduction to Internet of Things	41
10.	16G7H10	Industry 4.0 – Smart Manufacturing For The Future	43
11.	16G7H11	Space Technology And Applications	45
12.	16G7H12	Advanced Linear Algebra	47
13.	16G7H13	Thin Film Nanotechnology	49
14.	16G7H14	Engineering Materials for Advanced Technology	51
15.	16G7H15	Applied Psychology for Engineers	54
16.	16G7H16	Foundational Course on Entrepreneurship	56
17.	16G7H17	Unmanned Aerial Vehicles	58
		VIII Semester	
Sl. No.	Course	Course Title	Page No.
	Code		
1.	16EI81	Major Project	60
2.	16EI82	Technical Seminar	63
3.	16HS83	Innovation and Social Skills	64

RV COLLEGE OF ENGINEERING[®] (Autonomous Institution Affiliated to VTU, Belagavi) **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

	SEVENTH SEMESTER CREDIT SCHEME									
Sl.	Course	Course Title	BOS	Credit Allocation				Total		
No	Code	Course Thie	DUS	Lecture	Tutorial	Practical	SS	Credits		
1	16EI71	Industrial Automation Technology	EI	4	0	1	0	5		
2	16EI72	ARM Processor	EI	4	0	1	0	5		
3	16EI73P	Minor Project**	EI	0	0	3	0	3		
4	16EI7FX	Elective F	EI	4	0	0	0	4		
5	16EI7GX	Elective G	EI	4	0	0	0	4		
		Respective BOS	3	0	0	0	3			
	Т	otal No. of Credits	19	0	5	0	24			
		No. Of Hrs.	19	0	10	0	29			

*Students should take other department Global Elective courses; ** Minor Project-6 hours per week;

EIGTH SEMESTER CREDIT SCHEME								
SI.	Course					Total		
No.	Code	Course Title	BOS	Lecture	Tutorial	Practical	SS	Credits
1.	16EI81	Major Project	EI	0	0	16	0	16
2.	16EI82	Technical Seminar	EI	0	0	2	0	2
3.	16HS83	Innovation and Social Skills	HSS	0	0	2	0	2
	Та	otal No. of Credits	0	0	20	0	20	
		No. Of Hrs.	0	0	40	0	40	

VII Semester							
	GROUP F: PROFESSIONAL ELECTIVES						
Sl. No.	Course Code	Course Title					
1.	16EI7F1	Optimization Techniques					
2.	16EI7F2	Robotics					
3.	3. 16EI7F3 Product Design Technology						
4.	16EI7F4	Real time Operating systems (RTOS)					
		VII Semester					
	(GROUP G: PROFESSIONAL ELECTIVES					
Sl. No.	Course Code	Course Title					
1.	16EI7G1	Simulation & Modelling					
2.	2. 16EI7G2 System on Chip (SoC)						
3.	3. 16EI7G3 Safety Instrumentation						
4.	16EI7G4	Wireless Instrumentation					

GLOBAL ELECTIVES								
Sl. No.	Host Dept	Course Code	Course Title					
1.	BT	16G7H01	Nanotechnology					
2.	СН	16G7H02	Industrial Safety and Risk Management					
3.	CV	16G7H03	Intelligent Transport System					
4.	CS	16G7H04	Intelligent Systems					
5.	EC	16G7H05	Image Processing and Machine Learning					
6.	EE	16G7H06	Design of Renewable Energy Systems					
7.	IM	16G7H07	Systems Engineering					
8.	EI	16G7H08	MEMS and Applications					
9.	IS	16G7H09	Introduction to Internet of Things					
10.	ME	16G7H10	Industry 4.0 – Smart Manufacturing for The Future					
11.	TE	16G7H11	Space Technology and Applications					
12.	MA	16G7H12	Advanced linear Algebra					
13.	PY	16G7H13	Thin Film Nanotechnology					
14.	CY	16G7H14	Engineering Materials for Advanced Technology					
15.	HSS	16G7H15	Applied Psychology for Engineers					
16.	HSS	16G7H16	Foundational Course on Entrepreneurship					
17.	AS	16G7H17	Unmanned Aerial Vehicles					

	Semester: VII								
	INDUSTRIAL AUTOMATION TECHNOLOGY								
			(Th	eory and Pract	ice)				
Co	urse Code	:	16EI71		CIE	:	100+50 Marks		
Cre	edits: L:T:P:S	:	4:0:1:0		SEE	:	100+50 Marks		
Tot	al Hours	:	45L+26P		SEE Duration	:	3.00+3.00 Hours		
Co	urse Learning O	bje	ctives: The studen	ts will be able to)				
1	Remember the	ba	sics of process c	control and und	erstand the basic	c c	oncepts of Industrial		
	Automation.								
2	Understand the	Aď	vanced Process co	ntrol system cor	cepts and Intellig	ent	control strategies.		
3	Analyze and ev	alua	ate the concepts of	DCS, PLC & P	AC to different ty	pes	of Industries.		
4	Comprehend the	e fe	atures of commun	ication protocols	s used in Automat	tion	Systems.		
			UN	IT – I			09 Hrs		
Int	roduction: Conc	ept	and Scope of Ind	ustrial Automat	ion, Goals, Types	s, R	easons for Automa-		
tion, Current trends in Computer Control of Process Plants, Centralized Vs. Distributed Computer									
Control System. Expert Systems.									
Ad	vanced process o	con	t rol strategies: In	troduction, Case	ade control, Adap	otiv	e control, Intelligent		
Cor	ntrol & Artificial	Inte	elligence, Optimal	control and app	lications.				

UNIT – II	09 Hrs
Introduction to Automation: Application of Automation to Industry, PLC, Functional	Block dia-
gram, PLC I/O configuration, the input and output status files, Sixteen point I/O mod	lules. PLC
memory.	

PLC Hardware: Input modules, Discrete input modules, Discrete DC Input module, Discrete AC Input Module, **Output Module:** Discrete & solid-state output module switching, relay output modules.

UNIT – III	09 Hrs
Basics of PLC Programming: PLC Programming languages, Modes of PLC operation,	, Bit or Re-
lay Instruction, OSR Instruction, Output latching instructions, Internal Bit type Instruction	on.

Special programming Instructions: Timer and Counter Instructions: On delay and Off delay and retentive timer instructions, PLC Counter up and down instructions, Data handling instructions, Data manipulation Instructions, Programming sequence output instructions.

Case Studies: Temperature control, Valve Sequencing, Material Sorting, Elevator System Problems.

UNIT – IV	09 Hrs
Distributed Digital Control System (DCS): History of DCS, Concept of DCS, Fund	ctional Re-
quirements, Hardware and Software, DCS Structure, Process level, Unit, Group, Operat	tional Con-
trol Levels, DCS Sub-Systems, Local Field Station.	

Displays: Normal, Continuous Process, Batch-Sequence Operation, Process Upset, Control System Mal-Function Displays.

DCS: Industrial Applications: Introduction, Configuring DCS for Cement plant, Thermal Power, Steel Plants.

UNIT – V	09 Hrs
ADA: Introduction to Supervisory Control and Data Acquisition (SCADA)	Elements of

SCADA: Introduction to Supervisory Control and Data Acquisition (SCADA), Elements of SCADA, Simple SCADA Programming, Remote Terminal Unit, SCADA Applications. **Industrial Network Data Communications:** HART Communication: Protocol Layers, Field bus: Modbus, Profibus, Foundation Field bus, IEEE1394 Standard for Industrial Automation.

Lab Experiments:

- 1. PLC logic gate experiments using CODESYS software.
- 2. PLC Simulation experiments using Timer operation.
- 3. PLC Simulation experiments using counter operation.

- 4. PLC Simulation experiments using data handling operation.
- 5. PLC experiment for automatic material sorting using conveyor.
- 6. PLC experiment for automatic bottle filling,
- 7. PLC experiment for automatic Elevator control System.
- 8. SCADA Programming for industrial applications, using Wonderware software.
- 9. Simulation experiments for industrial applications, using HMI software.
- 10. Open ended experiments for Industrial applications.

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Understand & remember the basic concepts of Automation systems & advanced control strat-									
	egies.									
CO2:	Apply advanced automation strategies for optimal control of plants.									
CO3:	Analyze the performance of automated systems and communication protocols.									
CO4:	Design the advanced control system for complex process performance optimization.									

Refer	ence Books
1	Introduction to Programmable Logic Controllers, Garry Dunning, 3rd Edition, 2006,
	CENGAGE Learning, ISBN: 9-781-4018-8426-0.
2	Computer based Industrial Control, Krishna Kant, 6th Edition, 2004, PHI, ISBN: 1-203-11237.
3	Computer - Aided Process Control, S. K.Singh, PHI, 3rd Reprint, 2004, ISBN: 978-81-203-
	2282-7.
4	PC-Based Instrumentation Concepts and Practice, N. Mathivanan, 1st Edition, 2009, PHI,
	ISBN: 978–81–203–23073–4.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) +50(T) +10(A) =100 Marks.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO MAPPING												
CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO 7	PO8	PO9	PO10	PO11	PO12	
CO1	2	1	-	0	0	-	-	-	-	-	-	1	
CO2	1	1	-	0	-	-	-	-	-	-	-	1	
CO3	1	2	1	1	1	-	-	-	-	-	-	1	
CO4	1	-	1	1	1	-	-	-	1	1	1	1	

Low-1 Medium-2 High-3

	Semester: VII										
ARM PROCESSOR											
(Theory and Practice)											
Course Code : 16EI72 CIE : 100+50 Marks											
Cree	Credits: L:T:P:S : 4:0:1:0 SEE : 100+50 Marks										
Total Hours: 45L+26PSEE Duration: 3.00+3.00 Hours											
Cou	rse Learning C	bjo	ectives: The student	s will be able to							
1	Understand A	RN	I design philosophy	and ARM process	sor architecture an	nd f	undamentals.				
2	Learn the A	RN	I Instruction set	of ARM microc	controller and to	o le	earn the assembly				
	programming										
3	Understand T	hun	nb instructions of Al	RM controller.							
4	Understand V	ario	ous Interrupts and ex	ception handling	in ARM controlle	er.					
			•	- -							
			UN	IT – I			09 Hrs				

UNIT – I	09 Hrs
ARM embedded systems: The RISC design philosophy, The ARM design philosophy, en	mbedded sys-
tem hardware, embedded system software, ARM Architecture.	

ARM processor fundamentals: Registers, current program status register, pipeline, core extensions, Architecture revisions, ARM processor families.

UNIT – II

	02 1115
Introduction to ARM instruction Set: Data Processing Instructions, Branch Instruct	ions, Load
Store Instructions, Software Interrupt Instruction, Program Status Register Instruction	s, Loading
Constants, ARMv5E Extensions, and Conditional Execution.	

UNIT – III						
Introduction to the THUMB Instruction set: Thumb register Usage, ARM-Thumb In	terworking,					
other branch instructions, Data Processing Instructions, Single register Load-store Instructions	tions, Mul-					
tiple register Load Store Instructions, Stack Instructions, and Software Interrupt Instruction	on and pro-					
gramming.						

UNIT – IV						
Interrupts & Exception Handling: Exceptions, Exception Handling, Interrupts, Interrupt handling						
schemes, vector table.						
UNIT – V 09 Hrs						
UNIT – V	09 Hrs					
UNIT – V LPC 2148:Design of system using GPIO's Blink a group of 8 LEDs with a delay, Stepper						

Lab Experiments:

A WITHOUT INTERFACING PROGRAMS

- 1 Write a program to move a block of 10 data stored in one memory to another block
- 2 Write a Program to Exchange block of 10 data
- 3 Write a Program to find the smallest number out of 5 data stored in memory
- 4 Write a Program to sort 10 data stored in Memory
- 5 Write a Program to add two 64 bit numbers
- 6 Write a program to find factorial of given number using LOOK UP TABLE
- 7 Write a program to convert 3 digit Hex to BCD

B WITH INTERFACING PROGRAMS

- 1 Design and develop an interfacing program for LEDs with a delay.
- 2 Design and develop an interfacing program for Stepper motor control.
- 3 Design and develop an interfacing program for DC motor control Interfacing.

Electronics and Instrumentation Engineering

09 Hrs

- 4 Design and develop an interfacing program for LCD.
- 5 Design and develop an interfacing program for 4 x 4 Keypad.
- 6 Design and develop an interfacing program for ADC.
- 7 Design and develop an interfacing program for DAC.

C OPEN-ENDED EXPERIMENT

Course	Course Outcomes: After completing the course, the students will be able to								
CO1: Understand the Design of a system as per needs and specifications using ARM controller.									
CO2:	Apply suitable code and interface to solve engineering problems using ARM controller.								
CO3:	Analyze and evaluate the different coding techniques to design compact code.								
CO4:	Develop a system for real time applications.								

Refere	nce Books
1	ARM system developers guide, Andrew N Sloss, Dominic Symes and Chris Wright, Elsevier,
	2008, Morgan Kaufman publishers, ISBN:1558608745.
2	LPC 2148 User Manual
3	ARM System on chip Architecture, Addison Wesley, Formatted: paperback, 2008, ISBN:
	978-0201675191.
4	Embedded Systems: An Integrated Approach, Lyla B Das, 2013, Pearson Education,
	ISBN: 978-81-317-8766-3.

Continuous Internal Evaluation (CIE): Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) +50(T) +10(A) =100 Marks.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO MAPPING												
CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO 7	PO8	PO9	PO10	PO11	PO12	
CO1	2	1	-	0	0	-	-	-	-	-	-	1	
CO2	1	1	-	0	-	-	-	-	-	-	-	1	
CO3	1	2	1	1	1	-	-	-	-	-	-	1	
CO4	1	-	1	1	1	-	-	-	1	1	1	1	

Low-1 Medium-2 High-3

Semester: VII										
	MINOR PROJECT									
Course Code	:	16EI73P		CIE	:	100 Marks				
Credits: L:T:P:S	:	0:0:3:0		SEE	:	100 Marks				
Hours / Week	:	06		SEE Duration	:	3.00 Hours				

Cou	Course Learning Objectives: The students will be able to					
1	Create interest in innovative developments and preferably interdisciplinary field.					
2	Work independently, analyze, evaluate and solve the given problem.					
3	Inculcate the skills for good presentation and improve the technical report writing skills.					
4	Recognize the need for planning, preparation, management and financial budgeting.					
5	Acquire collaborative skills through working in a team to achieve common goals.					

Minor Project Guidelines:

- 1. Each project group will have two to four students, they can form their groups amongst their class.
- 2. Each group has to select a current topic that will use the technical knowledge of their program of study after intensive literature survey.
- 3. Guides will be allotted by the department based on the topic chosen.
- 4. The project should result in system/module which can be demonstrated, using the available resources in the college.
- 5. The CIE evaluation will be done by the committee constituted by the department. The committee shall consist of respective guide & two senior faculty members as examiners. The evaluation will be done for each student separately.
- 6. The final copy of the report should be submitted after incorporation of any modifications suggested by the evaluation committee

Guidelines for Evaluation:

CIE Assessment:

Evaluation will be carried out in three phases:

Phase	Activity	Weightage
Ι	Synopsis submission, approval of the selected topic, formulation	20%
	of objectives	
II	Mid-term evaluation to review the progress of work and docu-	30%
	mentation	
III	Submission of report, Final presentation and demonstration	50%

The following are the weightages given for the various stages of the project:

- 1. Selection of the topic and formulation of objectives: 10%
- 2. Design and Development of Project methodology: 30%
- 3. Execution of Project: 30%
- 4. Presentation, Demonstration and Discussion: 20%
- 5. Report Writing:10%

SEE Assessment:

The following are the weightages given during SEE Examination:

- 1. Written presentation of synopsis:10%
- 2. Presentation/Demonstration of the project: 30%
- 3. Methodology and Discussion: 30%

- Technical Report: 10%
 Viva Voce: 20%

Cour	Course Outcomes of Minor Project:							
1	1 Define Specifications, Conceptualize, Design and implement a project							
2	Communicate the work carried out as a technical report and orally							
3	Work in a team and contribute to team work							
4	Indulge in self-learning and be motivated for life-long learning							

	CO-PO MAPPING											
CO\PO	PO1	PO2	PO3	PO4	PO5	PO11	PO12					
CO1	3	3	3	3	3	2	1	2	2	2	2	2
CO2	3	3	3	3	2	2	1	2	2	2	2	2
CO3	3	3	3	3	2	2	1	2	2	2	2	2
CO4	1	1	1	1	1	1	1	2	1	2	1	1

Low-1 Medium-2 High-3

				Semester: VII							
	OPTIMIZATION TECHNIQUES										
	(Group F:Professional Elective)										
	rse Code	:	16EI7F1		CIE	:	100 Marks				
Cred	lits: L:T:P:S	:	4:0:0:0		SEE	:	100 Marks				
	l Hours	:	45L		SEE Duration	:	3.00 Hours				
Cour			ectives: The studer								
1	1 Understand the concepts of optimization techniques.										
2				for solving problems usi							
3	Develop and promote research interest in applying optimization techniques in problems of										
	Engineering a										
4	Apply the mat	the	matical results and	numerical techniques o	f optimization theor	y to	o various En-				
	gineering prob	oler	ns in real world sit	uations.							
			U	NIT – I			09 Hrs				
Opti	mization Tech	niq	ues: Statement of	an Optimization proble	m, design vector, de	esig	n constraints,				
				ective function surfaces.							
lems.	, Single variabl	le (Optimization, mult	i variable Optimization	without constraint	s, r	necessary and				
				num multivariable Opt							
				ers, multivariable Optin							
	n, Tucker condit			, ,	•		-				
Oper	rations Resear	ch:	Introduction, Sco	pe of operation researd	ch, phases of opera	tio	ns research,				
				s, characteristics of goo							
				operation research and			,				
				II – II			09 Hrs				
Line	ar Programm	ina	• Two-variable I	P Model, Graphical L	P Solution Graphi	cal	Sensitivity				
	0			ems, Analysis of Selecte		cui	Sensitivity				
				ficial starting solution,		mn	lev Method				
-	ication.	5111	ipiex method, Att	netal starting solution,	Special cases in si	mp	lex wiethou				
rippi			UN	IT – III			09 Hrs				
Tran	sportation Pr	hl	em• Finding initia	basic feasible solution	by north — west	or	ner rule least				
				method testing for op							
probl		ogu	approximation	method testing for of	Junianty of Julianov	Ju	uansportation				
1		ne	Formulation of t	he assignment problem	solution method	of	assignment				
				assignment problem, Tra							
proor	ienn mungarian	111		IT – IV	avening Sulesinan I	100	09 Hrs				
Ouo	uing Theorem ()		eir characteristics, the	M/M/I Quaning gue	tam					
				models. Introduction t							
els.		ng	or wi/wi/r queuing	models. Introduction t	U wi/wi/C and wi/E _k	/1 (queuing mou-				
	a Theory Inte	hor	uction Two nerror	n zero sum game, Pur	e strategies Como		vithout saddla				
						5 W	mout saudic				
point	point- Arithmetic method, Graphical Method, The rules of dominance. UNIT – V 09 Hrs										
Donl	acamant Mada	Jer		$\mathbf{v} = \mathbf{v}$ accements of items that \mathbf{v}	lateriorate with time	Т					
				of equipments that fail s		, I	o mu me op-				
	·			making environment,	•	ort	pinty Deci				
	tree analysis.	nur		making environment,	uccision under und	CIL	anny, Deel-				
SIOII	uce analysis.										
				course, the students v	vill be able to						
CO1	CO1: Understand basic theoretical principles in optimization.										

CO1:	Understand basic theoretical principles in optimization.
CO2:	Apply and formulate the optimization models to various applications.
CO3:	Analyse the various optimization techniques applicable for wide range of engineering prob- lems

CO4:	Evaluate and choose the appropriate optimization techniques to real world electrical and
	electronics problems and applications.

Refere	Reference Books						
1	Operations Research: An Introduction,H.A.Taha, Seventh Edition, 2016, Prentice Hall PTR, ISBN: 0134444019.						
2	Operations Research with C programs, S Kalavathy, 4 th Edition, 2013, Vikas Publishing House Pvt.Ltd., ISBN: 978-93-259-6347-4.						
3	Engineering optimization: Theory and practice, Singeresu. S. Rao, 4 th Edition, 2009, John Willy and Sons Publishers, ISBN: 978-0-470-18352-6.						
4	Optimization Methods in Operations Research and systems Analysis, K.V. Mittal and C. Mohan, 2004, New Age International (P) Limited, ISBN: 81-224-0873-7.						

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO MAPPING											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	1	1	-	-	-	-	1	1	1
CO2	2	2	1	1	1	-	-	-	-	1	1	1
CO3	3	3	2	2	2	1	-	-	-	1	1	1
CO4	3	3	3	2	2	1	-	-	-	1	1	1

Low-1 Medium-2 High-3

	Semester: VII								
	ROBOTICS								
			(Group)	F:Professional Elect	ive)				
Course Code:16EI7F2CIE:					100 Marks				
Credits: L:T:P:S		:	4:0:0:0		SEE	:	100 Marks		
Total Hours		:	45L		SEE Duration	:	3.00 Hours		
Cou	rse Learning O	bj	ectives: The student	s will be able to					
1	Understand th	e g	eneric technology a	nd principles associat	ed with robotics and	aut	tomation sys-		
	tems.						-		
2	Understand th	e p	rinciples and operat	ions of different sense	ors used for robotic a	ppl	ications.		
3									
4	Give an insigh	nt in	nto the different type	es of trajectories.					

UNIT – I	08 Hrs				
Introduction: Robot definition, classification of robot, history, robot components, robot freedom, robot joints, coordinates, reference frames, asimov's laws of robotics, robot pr modes, characteristics, applications.	0				
UNIT – II	10 Hrs				
Robot drivers, sensors and vision: Drives for robots: electrical, hydraulic and pneumatic. Sensors: proximity and range, tactile force and torque End effectors, position and velocity measurement Robot vision: introduction to techniques, image acquisition and processing.					
UNIT – III	10 Hrs				
Robot kinematics: Rotation matrix, homogenous transformation matrix, Denavit-Hartevention, Euler angles RPY representation, Direct and inverse kinematics for industrial rosition and orientation.	0				
UNIT – IV	08 Hrs				
Robot dynamics: Langrangian formulation, Newton Euler formulation, recursive Newton Euler algorithms.					
UNIT – V	08 Hrs				
Trajectory planning : Introduction, General considerations on Trajectory planning, joint- interpolated Trajectories, calculation of a 4-3-4 Joint trajectory, Cubic Spline Trajectory.					

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand a generic technology and principles associated with robotics and automation sys-							
	tems.							
CO2:	Apply the principles and operations of different sensors used for robotic applications.							
CO3:	Analyze the kinematics and dynamics aspects of robotic system.							
CO4:	Develop the necessary skill base to explore and implement a robotic system.							

Refer	ence Books
1	Introduction to Robotics, S.K Saha, 2 nd Edition, 2014, Tata McGraw-Hill Education, ISBN
	13: 9789332902800.
2	Robotics control sensing Vision and Intelligence, K.S.Fu, R.C.Gonzalez, C.S.G. Lee, 2013
	Mcgraw-Hill College, ISBN 13: 9780070226258.
3	Introduction to Robotics, Saeed B Niku, 2 nd Edition, 2005, Prentice Hall of India,
	ISBN-13: 978-0130613097.
4	Robot Technology Fundamentals, James G.Keramas, 1st Edition, 2008, Cengage learning Pub-
	lishers, ISBN-13: 978-0827382367.9

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO MAPPING											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	1	1	-	-	1	-	1	2	-	1
CO2	1	-	1	1	-	1	1	-	1	2	-	1
CO3	1	1	1	1	-	-	1	-	1	-	-	2
CO4	1	1	1	1	-	1	1	-	1	2	_	2

Low-1 Medium-2 High-3

	Semester: VII								
	PRODUCT DESIGN TECHNOLOGY								
	(Group F:Professional Elective)								
Cou	ırse Code	:	16EI7F3		CIE	:	100 Marks		
Cre	edits:	:	4:0:0:0		SEE	:	100 Marks		
L:T	::P:S								
Tot	Total Hours		45L		SEE Duration	:	3.00 Hours		
Cou	urse Learning	Obj	jectives: The stude	nts will be able to					
1	To develop sk	ills	and concepts on ed	conomic product dev	elopment and develo	pme	nt of Organiza-		
	tion.								
2	2 To understand customer needs and converting them to specifications.								
3	3 To know the PCB testing procedures and PC based automation of PCB making for large num-								
	bered PCBs.					-	-		
4	To design aut	oma	atic soldering techn	iques.					

UNIT – I	09 Hrs
Introduction:	
Characteristics of successful product development, who Designs and develops products,	duration and
cost of product development, the challenges of product development	
Development Processes and Organizations:	
A generic development process, concept development: the front-end process, adapting	the generic
product development process.	
Product Planning:	
The product planning process, identify opportunities. Evaluate and prioritize projects, a	allocate re-
sources and plan timing, complete pre-project planning.	
UNIT – II	09 Hrs
Identifying Customer Needs:	
Gather raw data from customers, interpret raw data in terms of customer needs, organize the	he needs into
a hierarchy, establish the relative importance of the needs and reflect on the results and	the process.
Product Specifications:	
What are specifications, when are specifications established, establishing target specifica	tions, setting
the final specifications.	
Concept Generation and Selection:	
The activity of concept generation, clarifies the problem search externally, search internal	
systematically, and reflect on the results and the process. Concept screening, concept scoring	
UNIT – III	09 Hrs
PCB Technology:	
Introduction to PCB, Types of PCB, PCB layout design and artwork generation Using CA	D. Proper-
ties of copper clad sheets, materials used for fabrication of copper clad sheet, PCB film, pr	operties of
film, film master preparation.	
UNIT – IV	09 Hrs
Image Transfer, Etching Process, Tin coating, Drilling:	
Transfer of Image on to the copper clad sheet, wet & dry film techniques, Etching, Types	s of etchants,
etching process. Tin coating. Drilling.	
Multilayer PCB Design:	
Introduction, multilayer PCB design and test consideration, multilayered construction,	equipment,
laminating process, further processing	
UNIT – V	09 Hrs
Mechanical Machining Operations Solders and Soldering Techniques:	
Introduction, Grinding, milling, principal of solder connection, solder alloys, solder fluxe	es, deferent
soldering techniques, solder mask, Reflow of soldering practice.	

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand principles and concepts of effective product design.							
CO2:	Apply concept of adaptive and original redesign of engineering and consumer products.							
CO3:	Develop pattern transfer and Etching as per engineering specifications required by customers.							
CO4:	Implement Multilayer PCB design and Artwork by using engineering specification knowledge as per customer needs through a team work.							

Refere	ence Books
1	Product Design and Development, Karl.T.Ulrich, Steven D Eppinger, 5th Edition, 2011, Tata
	McGraw-Hill, ISBN : 978 - 0073404776
2	Printed Circuit Boards: Design and Technology, Walter C Boshart, 29th reprint, 2009,
	McGraw-Hill, ISBN: 978 – 0074515495.
3	Product Design and Manufacturing, C Chitale and R C Gupta,5 th Edition. 2011, PHI, ISBN :
	978 - 8120342828
4	New Product Development, Timjones, Butterworth Heinmann, 1996, Oxford. UCI, ISBN:
	978 – 0750624275.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO MAPPING											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	1	1	-	-	1	-	2	1	1	1
CO2	1	-	1	1	-	1	1	-	2	1	1	1
CO3	1	1	1	1	-	-	1	-	2	-	1	2
CO4	1	1	1	1	-	1	1	-	2	1	1	2

Low-1	Medium-2	High-3
-------	----------	--------

	Semester: VII							
	REAL TIME OPERATING SYSTEMS							
	(Group F:Professional Elective)							
Cour	Course Code : 16EI7F4 CIE : 100 Mar				100 Marks			
Cred	lits: L:T:P:S	:	4:0:0:0		SEE	:	100 Marks	
Tota	l Hours	:	45L		SEE Duration	:	3.00 Hours	
Cour	Course Learning Objectives: The students will be able to							
1	Explore throu	gh	the basics of RTS an	nd to master the esse	ential command set th	nat (can be used to	
	work comforta	ably	у.					
2	Impart knowle	edg	e of real time concep	ots like semaphores,	mutex, thread, proce	ss, p	priorities, etc.	
3	Combine com	ma	nds to perform tasks	that are not possible	e to achieve using sin	gle	command.	
4								
			UN	IT – I			09 Hrs	
Intr	oduction to OS	S ai	nd RTOS					

Architecture of OS (Monolithic, Microkernel, Layered, Exo-kernel and Hybrid kernel structures), Operating system objectives and functions, Virtual Computers, Interaction of OS & hardware architecture, Batch, multi programming. Multitasking, Multiuser, parallel, distributed & real –time OS.

UNIT – II					
Process Management of OS/RTOS					
Uniprocessor Scheduling: Types of scheduling, scheduling algorithms: FCFS, SJF, Prio					
Robin, UNIX Multi-level feedback queue scheduling, Thread Scheduling, Multiprocessor Sch					
ing concept, Real Time Scheduling concepts.					
UNIT – III					

Process Synchronization

Concurrency: Principles of Concurrency, Mutual Exclusion H/W Support, software approaches, Semaphores and Mutex, Message Passing, Monitors, Classical Problems of Synchronization: Readers-Writers Problem, Producer Consumer Problem, Dining Philosopher problem. Deadlock: Principles of deadlock, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, An Integrated Deadlock Strategies.

UNIT – IV

Memory & I/O Management

Memory Management requirements, Memory partitioning: Fixed, dynamic, partitioning, Buddy System Memory allocation Strategies (First Fit, Best Fit, Worst Fit, Next Fit), Fragmentation, Swapping, Segmentation, Paging, Virtual Memory, Demand paging.

I/O Management and Disk Scheduling: I/O Devices, Organization of I/O functions, Operating System Design issues, I/O Buffering, Disk Scheduling (FCFS, SCAN, C-SCAN, SSTF), Disk Caches.

UNIT - V09 HrsRTOS Application DomainsComparison and study of RTOS: Vxworks and µCOS – Case studies: RTOS for Image Processing –
Embedded RTOS for voice over IP – RTOS for fault Tolerant Applications – RTOS for Control Sys-

Embedded RTOS for voice over IP – RTOS for fault Tolerant Applications – RTOS for Control Systems.

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	: Understand the fundamental concepts of real-time operating systems.							
CO2:	Apply the different techniques to develop an application through RTOS.							
CO3:	Analyze the use of multitasking techniques in real-time systems.							
CO4:	Design/Create the algorithms pertaining to real time operating systems on specific area.							

09 Hrs

Refer	ence Books
1	Operating Systems –Internals and Design Principles, William Stallings, 7th Edition, Prentice
	Hall, 2012, ISBN: 978-0-13-230998-1.
2	Modern Operating Systems, Tanenbaum,4th Edition 2007, Pearson, ISBN: 978-013-359162-0.
3	Embedded Systems-Architecture, Programming and Design, Raj Kamal, 2 nd Edition, McGraw
	Hill Publishing Company,2008, ISBN: 978-0-07-066764-8.
4	Operating Systems Concepts, Abraham Silberschatz, 9th Edition, John & Wiley Publication,
	2013, ISBN: 978-1-118-06333-0.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO MAPPING												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	2	2	2	0	0	0	0	1	1	1	0	
CO2	1	1	2	1	0	0	0	0	1	1	2	0	
CO3	1	1	2	1	0	0	0	0	1	1	2	2	
CO4	1	1	2	1	0	0	0	2	1	1	1	2	

Low-1 Medium-2 High-3

	Semester: VII											
	SIMULATION & MODELLING											
	(Group G:Professional Elective)											
Cou	Course Code : 16EI7G1 CIE : 100 Marks											
Credits: L:T:P:S		:	4:0:0:0		SEE		100 Marks					
Total Hours: 45LSEE Duration: 3.00						3.00 Hours						
Cou	rse Learning O	bjo	ectives: The student	s will be able to								
1	Define the ba	sic	s of simulation mod	deling and replicating	g the practical situat	ions	s in organiza-					
	tions.											
2	Generate rand	om	numbers and rando	m varieties using diff	erent techniques.							
3	Analysis of Si	mu	lation models using	input analyzer, and o	utput analyzer.							
4	Develop and v	ali	date the simulation	model.								

UNIT – I	09 Hrs								
Introduction to Simulation: Simulation, Advantages, Disadvantages, Areas of applica	tion, System								
environment, components of a system, Model of a system, types of models, steps in	a simulation								
study.									
Simulation Examples: Waveform generator, speed control of dc motor, stepper motor control.									
UNIT – II	09 Hrs								
General Principles: Concepts in discrete-event simulation, event scheduling/ Time ad rithm, simulation using event scheduling.	dvance algo-								
Random Numbers: Properties, Generations methods, Tests for Random number- Frequency test, Runs test, Autocorrelation test.									
UNIT – III	09 Hrs								
Random Variant Generation: Inverse Transform Technique- Exponential, Uniform, V angular distributions, Direct transformation for Normal and log normal Distributions, methods- Erlang distribution, Acceptance Rejection Technique Optimization Via Simulation: Meaning, difficulty, Robust Heuristics, Random Search.									
UNIT – IV	09 Hrs								
Analysis of Simulation Data Input Modeling: Data collection, Identification and distribute data, parameter estimation, Goodness of fit tests, Selection of input models without data, and time series analysis.									
Verification and Validation of Model: Model Building, Verification, Calibration and of Models.	Validation								
UNIT – V	09 Hrs								
Output Analysis: Types of Simulations with Respect to Output Analysis, Stochastic Natt data, Measures of Performance and their estimation, Output analysis of terminating simu- put analysis of steady state simulations. Simulation Software: Selection of Simulation Software, Simulation packages, Trend in Software.	ulation, Out-								

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Understand and remember the role of important elements of discrete event simulation and								
	modeling paradigm.								
CO2:	Apply the simulation software to construct and execute goal-driven system models.								
CO3:	Analyze the real-world situations related to systems development decisions, originating from								
	source requirements and goals.								
CO4:	Develop a simulation model for real time application.								

Refer	rence Books
1	Discrete Event system Simulation, Jerry Banks, John S Carson, II, Berry L Nelson, David M
	Nicol,5th Edition,2013, PearsonNew International, Asia, ISBN: 1292037261, 9781292037264.
2	System Simulation, Geoffrey Gordon, 2 nd Edition, 1978, Prentice Hall publication, ISBN: 81-
	203-0140-4.
3	Simulation Modelling & Analysis, Averill M Law, W David Kelton, 4th Edition, 2014,
	McGraw Hill International Editions- Industrial Engineering series, ISBN: 0077595963,
	9780077595968.
4	Systems Simulation and Modelling, Shankar Sen Gupta, 2013, Pearsons Publishers, ISBN:
	978813774472, ISBN: 9789332514195.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO MAPPING												
CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	-	-	-	-	-	-	-	-	-	-	1	
CO2	1	1	-	-	-	-	-	-	-	-	-	1	
CO3	1	2	-	1	-	-	-	-	-	-	-	1	
CO4	1	-	1	1	-	-	-	_	-	1	-	1	

Low-1 Medium-2 High-3

				Semester: VII								
				EM ON CHIP (SOC	/							
C	(Group G:Professional Elective) Course Code : 16EI7G2 CIE : 100 Marks											
		:				: 100 Mark : 100 Mark						
	lits: L:T:P:S ll Hours	:	4:0:0:0 45L		SEE SEE Duration							
		:)hid		will be able to	SEE DUration	:	5.00 Hours					
1	cessors, memories, peripheral controllers, and connectivity sub-systems.											
2	Describe how hardware and software are to be co-designed, co-simulated, and co-verified. Verify SoC at each design levels, how SoC testing is to be performed, and how configurable											
3	Verify SoC at each design levels, how SoC testing is to be performed, and how configurable processors are to be used in SoC design.											
4			oc design flow.	vation behind SoC d	lesign, the challenge	es o	f SoC design,					
				I T – I ficroprocessor and M			09 Hrs					
 ded systems. Differences between Embedded systems and SOCs. System design, Concept of system, importance of system architectures, introduction to IMD, SSID, MIMD and MISD architectures, concept of pipelining and parallelism. Motivation for SoC Design: Review of Moore's law and CMOS scaling, benefits of system-on-chip integration in terms of cost, power, and performance. Comparison on System-on-Board, System-in-Package and System-on-Chip. Typical goals in SoC design – cost reduction, power reduc- 												
tion	, design effort r	edu	ction, performance i	naximization. T – II			09 Hrs					
IBM Pro Con	f's core connec cessors used in	t bu n S roce	s, concept of PLB-p OCs: Introduction t	l in SOCs. Introducti rocessor local bus an o CISC, RISC, Von Microblaze RISC pro	d OPB-on chip perip Neuman and Harwa	her drd	al bus. Architecture.					
	*		UNI	Γ – III			09 Hrs					
ries cohe	cache memorie erence. MESI p	es, f roto	lash memories, emb ocol and Directory-b	epts, Semiconductor edded DRAM. Topic ased coherence. Stud Performance Consid	es related to cache n y of features like em	nem ibec	nories. Cache Ided RAM's,					
				$\Gamma - IV$			09 Hrs					
top Syst code	System On Chip Design Process: A canonical SoC Design, SoC Design flow, waterfall vs spiral, top down vs bottom up, Specification requirement, Types of Specification, System Design Process, System level design issues, Soft IP vs Hard IP, IP verification and Integration, Hardware-Software code sign, Hardware Accelerators in Soc. Productivity gap issues and the ways to improve the gap – IP based design and design reuse.											
UNIT – V 09 Hrs												
On gies MPS	. Mesh-based N	int NoC hy, 1	erfaces. Bus archite . Routing in an NoC How MPSoCs, Tech	cture and its limitation. Packet switching and niques for designing	d wormhole routing.							

Cours	Course Outcomes: After completing the course, the students will be able to									
CO1	Understand components of digital hardware, analog hardware and embedded software.									
CO2	Apply the concept to understand the design flows for digital hardware, analog hardware and									

	embedded software.
CO3	Analysis and evaluate the architectures and trade-offs concerning performance, cost and pow-
	er consumption of single chip and embedded systems using tools and techniques in these three
	domains.
CO4	Develop a simulation model of SoC for a particular application.

Reference Books

1	Computer System Design: System on Chip, Michael J. Flynn, 2012, Wiley India Pvt Ltd, ISBN 13: 9788126535682.
2	Introduction to system on package sop- Miniaturization of the Entire System, Rao R. Tumma- la, Madhavan Swaminathan, 2008, McGraw-Hill, ISBN: 9780071459068
3	CMOS Digital Integrated Circuits, Sung-Mo Kang, Yusuf Leblebici, 3 rd Edition, Tata McGraw- Hill, ISBN: 978007246537.
4	Reuse Methodology Manual for System on Chip designs, Michael Keating, Pierre Bricaud, 2 nd Edition, 2008, Kluwer Academic Publishers, ISBN13: 9780306476402.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO MAPPING												
CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	-	-	-	-	-	-	-	-	-	-	1	
CO2	1	1	-	-	-	-	-	-	-	-	-	1	
CO3	1	2	-	1	-	-	-	-	-	-	-	1	
CO4	1	-	1	1	-	-	-	-	-	1	-	1	

Low-1 Medium-2 High-3

				Semester: VII						
				TY INSTRUMENTA						
~			``````````````````````````````````````	p G:Professional Ele	,	1	40075			
	rse Code	:	16EI7G3		CIE	:	100 Marks			
	dits: L:T:P:S	:	4:0:0:0		SEE	: 100 Mark				
	Total Hours: 45LSEE Duration: 3.00 HoursCourse Learning Objectives: The students will be able to									
1				ustrial safety concepts						
2				res and reliability eng		5.				
3				tegrated levels and Sy						
4	Apply the con	cep	ts of SIF, SIL &	SIS for oil and gas in	dustry.					
				UNIT – I			09 Hrs			
Ind	naduation to S	ofe			Coty Toohnology in D.	2000				
				l Systems: Scope-Saf						
				tion-Robotics—Fire T						
	e e			ss control & Safety	instrumented Syster	ns -	Definitions -			
Ac	ronyms- Overvi	ew	of Standards and	i Kegulations.						
				UNIT – II			09 Hrs			
Int	troduction to F	Reli			ire, Failure rate, time	dep				
			ability engineer	ring: Equipment failu			endent failur			
rate	e, confidence f	acto	ability engineer	ring: Equipment failu between failure, Mear	n time to restore, rel	ation	endent failur ship between			
rate M7	e, confidence fa FBF, MTTR an	acto d f	ability engineer	ring: Equipment failu	n time to restore, rel	ation	endent failur ship between			
rate MT fail	e, confidence fa FBF, MTTR an lure on demand.	acto d f	ability engineer or, mean time b ailure rate. Rela	ring: Equipment failu between failure, Mear tionship between reli	n time to restore, rel ability and unreliabil	ation ity,	endent failur nship between Probability o			
rate MT fail Sy s	e, confidence fa IBF, MTTR an lure on demand. stem Reliability	acto d f	ability engineer or, mean time b ailure rate. Rela ngineering: Relia	ring: Equipment failu between failure, Mear itionship between reli ability block diagram,	n time to restore, rel ability and unreliabil series and parallel con	ation ity,	endent failur nship between Probability o			
rate MT fail Sy s	e, confidence fa IBF, MTTR an lure on demand. stem Reliability	acto d f	ability engineer or, mean time b ailure rate. Rela ngineering: Relia modeling, Mark	ring: Equipment failu between failure, Mear tionship between reli ability block diagram, ov solution technique.	n time to restore, rel ability and unreliabil series and parallel con	ation ity,	endent failur nship between Probability o uration, fault			
rate MT fail Sys tree	e, confidence fa IBF, MTTR an lure on demand. stem Reliability e analysis, Mark	acto d f y en	ability engineer or, mean time b ailure rate. Rela ngineering: Relia modeling, Mark	ing: Equipment failu between failure, Mear ationship between reli ability block diagram, ov solution technique.	n time to restore, rel ability and unreliabil series and parallel con	ation ity, nfigu	endent failur aship between Probability o aration, fault 09 Hrs			
rate MT fail Sys tree Th	e, confidence f IBF, MTTR an lure on demand. stem Reliability e analysis, Mark e concept of S	acto d f y en tov	ability engineer or, mean time b failure rate. Rela ngineering: Relia modeling, Mark U ty integrity: H	ing: Equipment failu between failure, Mean ationship between reli ability block diagram, ov solution technique. JNIT – III AZOP (Hazard and	n time to restore, rel ability and unreliabil series and parallel con operability study), La	ation ity, nfigu	endent failur nship between Probability o uration, fault 09 Hrs of protection			
rate MT fail Sys tree Th (L0	e, confidence fa IBF, MTTR an lure on demand. stem Reliability e analysis, Mark e concept of S OPA), As low a	acto d f y en tov Safe s re	ability engineer or, mean time b failure rate. Rela ngineering: Relia modeling, Mark U ty integrity: H	ing: Equipment failu between failure, Mear ationship between reli ability block diagram, ov solution technique.	n time to restore, rel ability and unreliabil series and parallel con operability study), La	ation ity, nfigu	endent failur nship between Probability o uration, fault 09 Hrs of protection			
rate MT fail Sys tree Th (L0 targ	e, confidence fr FBF, MTTR an lure on demand. stem Reliability e analysis, Mark e concept of S OPA), As low a get requirements	acto d f y en tov Safe s re s.	ability engineer or, mean time b ailure rate. Rela ngineering: Relia modeling, Mark U ety integrity: H easonably practic	ring: Equipment failu between failure, Mean ationship between reli ability block diagram, ov solution technique. JNIT – III AZOP (Hazard and al (ALARP), Differen	n time to restore, rel ability and unreliabil series and parallel con operability study), La nt levels of Safety inte	ation ity, nfigu ayer grity	endent failur nship between Probability o aration, fault 09 Hrs of protection / level and th			
rate MT fail Sys tree Th (LC tary Sys	e, confidence fr FBF, MTTR an lure on demand. stem Reliability e analysis, Mark e concept of S OPA), As low a get requirements stem Architect	acto d f y en cov Safe s re s. ure	ability engineer or, mean time b ailure rate. Rela ngineering: Relia modeling, Mark U ety integrity: H easonably practic	ing: Equipment failu between failure, Mean ationship between reli ability block diagram, ov solution technique. JNIT – III AZOP (Hazard and al (ALARP), Different ecture, redundancy an	n time to restore, rel ability and unreliabil series and parallel con operability study), La nt levels of Safety inte	ation ity, nfigu ayer grity non	endent failur nship between Probability o uration, fault 09 Hrs of protection / level and the Mode failure			
rate MT fail Sys tree Th (LC targ Sys imj	e, confidence fa TBF, MTTR an lure on demand. stem Reliability e analysis, Mark e concept of S OPA), As low a get requirements stem Architect portance of redu	acto d f y en cov Safe s re s. ure	ability engineer or, mean time b ailure rate. Rela ngineering: Relia modeling, Mark U ety integrity: H easonably practic es: MooN archite ancy and diversi	ing: Equipment failupetween failure, Mean ationship between reliability block diagram, ov solution technique. JNIT – III AZOP (Hazard and al (ALARP), Different ecture, redundancy an ty, Hardware design p	n time to restore, rel ability and unreliabil series and parallel con operability study), La nt levels of Safety inte ad voting logic, Comr principles for function	ation ity, nfigu ayer grity non al sa	endent failur nship between Probability o uration, fault 09 Hrs of protection level and the Mode failure afety (Meeting			
rate MT fail Sys tree Th (L0 tar; Sys imj IE0	e, confidence fa TBF, MTTR an lure on demand. stem Reliability e analysis, Mark e concept of S OPA), As low a get requirements stem Architect portance of redu C 61508 Standa	acto d f y en cov Safe s re s. une unda rd]	ability engineer or, mean time b failure rate. Rela ngineering: Relia modeling, Mark U ety integrity: H easonably practic es: MooN archite ancy and diversi Part 2) fault tole	ing: Equipment failupetween failure, Mean ationship between reliability block diagram, ov solution technique. JNIT – III AZOP (Hazard and al (ALARP), Different ecture, redundancy an ty, Hardware design p rance, Safety PLCs, S	n time to restore, rel ability and unreliabil series and parallel con operability study), La nt levels of Safety inte ad voting logic, Comr principles for function	ation ity, nfigu ayer grity non al sa	endent failur nship between Probability o uration, fault 09 Hrs of protection level and the Mode failure afety (Meeting			
rate MT fail Sys tree Th (L0 tars Sys imj IE0	e, confidence fa TBF, MTTR an lure on demand. stem Reliability e analysis, Mark e concept of S OPA), As low a get requirements stem Architect portance of redu C 61508 Standa	acto d f y en cov Safe s re s. une unda rd]	ability engineer or, mean time b ailure rate. Rela agineering: Relia modeling, Mark U ety integrity: H easonably practic es: MooN archite ancy and diversi Part 2) fault tole n of safe faults, a	ing: Equipment failu between failure, Mean ationship between reli ability block diagram, ov solution technique. JNIT – III AZOP (Hazard and al (ALARP), Differen ecture, redundancy an ty, Hardware design p rance, Safety PLCs, S nd dangerous faults.	n time to restore, rel ability and unreliabil series and parallel con operability study), La nt levels of Safety inte ad voting logic, Comr principles for function	ation ity, nfigu ayer grity non al sa	endent failur nship between Probability o uration, fault 09 Hrs of protection level and the Mode failure afety (Meeting re mode effect			
rate MT fail Sys tree Th (L0 tar; Sys imj IE0 ana	e, confidence fr FBF, MTTR an lure on demand. stem Reliability e analysis, Mark e concept of S OPA), As low a get requirements stem Architect portance of redu C 61508 Standa alysis, identifica	acto d f y en cov Safe s re s. ure unda rd l tior	ability engineer or, mean time b ailure rate. Rela ngineering: Relia modeling, Mark U ety integrity: H easonably practic es: MooN archite ancy and diversi Part 2) fault tole n of safe faults, a	ing: Equipment failupetween failure, Mean ationship between reliability block diagram, ov solution technique. JNIT – III AZOP (Hazard and al (ALARP), Different ecture, redundancy an ty, Hardware design p rance, Safety PLCs, S nd dangerous faults. JNIT – IV	n time to restore, rel ability and unreliabil series and parallel con operability study), La nt levels of Safety inte ad voting logic, Comr principles for function Safety requirements, F	ation ity, nfigu ayer grity non al sa ailun	endent failur nship between Probability o uration, fault 09 Hrs of protection / level and the Mode failure afety (Meeting re mode effect 09 Hrs			
rate MT fail Sys tree Th (LC tars Sys imj IEC ana	e, confidence fa TBF, MTTR an lure on demand. stem Reliability e analysis, Mark e concept of S OPA), As low a get requirements stem Architect portance of redu C 61508 Standa alysis, identifica ftware design p	acto d f y en tov Safe s re s. und srd l tior	ability engineer or, mean time b failure rate. Relating modeling, Mark work the second second second ety integrity: H easonably practice es: MooN archite ancy and diversi Part 2) fault tole of safe faults, a utiples for funct	ing: Equipment failupetween failure, Mean ationship between reliability block diagram, ov solution technique. JNIT – III AZOP (Hazard and al (ALARP), Differen ecture, redundancy an ty, Hardware design p rance, Safety PLCs, S nd dangerous faults. JNIT – IV ional safety (Meeting	n time to restore, rel ability and unreliabil series and parallel con operability study), La nt levels of Safety inte d voting logic, Comr principles for function Safety requirements, F IEC 61508 Standard I	ation ity, nfigu ayer grity non al sa ailun Part	endent failur endent failur ship between Probability o uration, fault 09 Hrs of protection level and the Mode failure afety (Meeting re mode effect 09 Hrs 3): Software			
rate MT fail Sys tree Th (LC tars Sys imp IEC ana Sof req	e, confidence fr TBF, MTTR an lure on demand. stem Reliability e analysis, Mark e concept of S OPA), As low a get requirements stem Architect portance of redu C 61508 Standa alysis, identifica ftware design p quirements for S	acto d f y en cov Safe s. ure s. ure indi tior Tin IS,	ability engineer or, mean time b failure rate. Relating ingineering: Reliting modeling, Mark U ety integrity: H easonably practic es: MooN archite ancy and diversi Part 2) fault tole n of safe faults, a U ciples for funct Introduction to S	ing: Equipment failu between failure, Mean ationship between reli ability block diagram, ov solution technique. JNIT – III AZOP (Hazard and al (ALARP), Differen ecture, redundancy an ty, Hardware design p rance, Safety PLCs, S <u>nd dangerous faults.</u> JNIT – IV ional safety (Meeting Safe failure fraction, s	n time to restore, rel ability and unreliabil series and parallel con operability study), La nt levels of Safety inte d voting logic, Comr principles for function Safety requirements, F IEC 61508 Standard I	ation ity, nfigu ayer grity non al sa ailun Part	endent failur endent failur ship between Probability o uration, fault 09 Hrs of protection level and the Mode failure afety (Meeting re mode effect 09 Hrs 3): Software			
rate MT fail Sys tree Th (LC tars Sys imp IEC ana Sof req	e, confidence fr TBF, MTTR an lure on demand. stem Reliability e analysis, Mark e concept of S OPA), As low a get requirements stem Architect portance of redu C 61508 Standa alysis, identifica ftware design p quirements for S	acto d f y en cov Safe s. ure s. ure indi tior Tin IS,	ability engineer or, mean time b failure rate. Relating ingineering: Reliting modeling, Mark U ety integrity: H easonably practic es: MooN archite ancy and diversi Part 2) fault tole n of safe faults, a U ciples for funct Introduction to S	ing: Equipment failupetween failure, Mean ationship between reliability block diagram, ov solution technique. JNIT – III AZOP (Hazard and al (ALARP), Differen ecture, redundancy an ty, Hardware design p rance, Safety PLCs, S nd dangerous faults. JNIT – IV ional safety (Meeting	n time to restore, rel ability and unreliabil series and parallel con operability study), La nt levels of Safety inte d voting logic, Comr principles for function Safety requirements, F IEC 61508 Standard I	ation ity, nfigu ayer grity non al sa ailun Part	endent failur endent failur ship between Probability o uration, fault 09 Hrs of protection level and the Mode failure afety (Meeting re mode effect 09 Hrs 3): Software			
rate MT fail Sys tree Th (LC tars Sys imp IEC ana Sof req	e, confidence fr TBF, MTTR an lure on demand. stem Reliability e analysis, Mark e concept of S OPA), As low a get requirements stem Architect portance of redu C 61508 Standa alysis, identifica ftware design p quirements for S	acto d f y en cov Safe s. ure s. ure indi tior Tin IS,	ability engineer or, mean time b ailure rate. Rela ngineering: Relia modeling, Mark tety integrity: H easonably practic es: MooN archite ancy and diversi Part 2) fault tole n of safe faults, a teiples for funct Introduction to a faults using qual	ing: Equipment failu between failure, Mean ationship between reli ability block diagram, ov solution technique. JNIT – III AZOP (Hazard and al (ALARP), Differen ecture, redundancy an ty, Hardware design p rance, Safety PLCs, S <u>nd dangerous faults.</u> JNIT – IV ional safety (Meeting Safe failure fraction, s	n time to restore, rel ability and unreliabil series and parallel con operability study), La nt levels of Safety inte d voting logic, Comr principles for function Safety requirements, F IEC 61508 Standard I	ation ity, nfigu ayer grity non al sa ailun Part	endent failur endent failur ship between Probability o uration, fault 09 Hrs of protection level and the Mode failure afety (Meeting re mode effect 09 Hrs 3): Software			

Course Outcomes: After completing the course, the students will be able to					
CO1:	Understand the operation of safety systems and their applications.				
CO2:	Apply the principle of industrial safety during process design				
CO3:	Analyze the standards of various safety mechanisms				
CO4:	Conceptualize and design industrial system safety.				

Refer	ence Books						
1	Safety Instrum	ented System	S Verification:	Practical	Probabilistic	Calculations,	Harry
	Cheddie, W.M	. Goble, 200	4, ISA Publi	cation,ISBN	I: 155617909	X. (Chapters	1, 2,

	3,4,5,12,13, Appendix E & F).
2	The Safety Critical Systems Handbook, A Straightforward Guide to Functional Safety: IEC
	61508, IEC 61511 and Related Guidance, David Smith, 4th Edition, ISBN: 9780081008973.
	(Chapter 3.1 to 3.6, 4.1 to 4.6.)
3	Safety Integrity Level Selection, Edward M. Marsza, 2002, ISA Publication, ISBN:
	1556177771.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

					CO-P	O MAPI	PING					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	1	-	-	-	-	-	-	-	1
CO2	2	1	-	1	1	1	-	-	-	-	-	1
CO3	1	3	2	1	1	1	-	-	-	1	1	2
CO4	-	2	1	1	2	1	-	-	-	1	1	2

Low-1 Medium-2 High-3

	Semester: VII							
	WIRELESS INSTRUMENTATION							
			(Grou	p G:Professional Elec	ctive)			
Cou	rse Code	:	16EI7G4		CIE	:	100 Marks	
Cred	lits: L:T:P:S	:	4:0:0:0		SEE	:	100 Marks	
Tota	l Hours	:	45L		SEE Duration	:	3.00 Hours	
Cou	rse Learning O	bje	ectives: The stude	ents will be able to				
1	Emphasize the	e ba	sic design princi	ples and applications o	of intelligent sensors	usin	g case studies	
	and numerical	ex	amples.					
2	Discuss signa	1 p	rocessing operati	ons such as linearizati	ion, calibration, and	con	npensation on	
	which intellig	ent	sensors rely.				_	
3								
4	Investigate ar	tific	ial intelligence a	s a critical component	of intelligent sensors	s in :	real-world ap-	
	plications.		_		-		-	

UNIT – I	09 Hrs
Intelligent Sensors: Introduction, classification, smart sensors, cogent sensors, soft or	
sors, self adaptive sensors, self validating sensors, VLSI sensors, Temperature compens	ating intelli-
gent sensors, indirect sensing.	
Sensor with Artificial Intelligence: Introduction, artificial intelligence, multidimensio	
gent sensors, artificial intelligence for profrostic instrumentation, ANN based intelligent	
UNIT – II	09 Hrs
Intelligent Sensor Standards & Protocols: Introduction, IEEE 1451 Standard, network	c topologies,
LAN talk, CEBUS communication protocol for smart home, J1850 bus, MI bus, plug-in	n-play smart
sensor protocol.	
Basic principle of Radio frequency identification: Basics of RFID, passive and ac	tive RFID
systems, classification of RFID, application and frequency selection.	
UNIT – III	09 Hrs
Smart sensor system: Third Industrial Revolution. Definitions for Several Kinds of Se	nsors. Auto-
mated Production Machines. Automated Consumer Products.	
Optical sensors: Introduction, Photon Absorption in Silicon. The Interface: Photon T	ransmission
Into Silicon. Photon Detection in Silicon Photoconductors. Photon Detection in Silicon p	on Junctions.
Detection Limit. Photon Detectors with Gain. Application Examples. Future Trends.	
Data Acquisition for Frequency- and Time-domain Sensors: Introduction.DAQ Boa	
the Art.DAQ Board Design for Quasi-digital Sensors Universal Frequency-to-digital	Converters
(UFDC) Applications and Examples.	
UNIT – IV	09 Hrs
Wireless Instrument and Sensor Networks: Wireless Sensor Architecture and Networks	ork Design,
Wireless Instrument Architecture and Network Design, Wireless Sensor and Instrume	
Design, Wireless Integrated Network Sensors, Plug-and-Play Sensors and Network	s, Industrial
Wireless Networks and Automation.	
UNIT – V	09 Hrs
Wireless Sensor and Instrument Applications: Application-Specific Wireless Senso	ors and In-
struments, Application-Specific Wireless Sensors and Networks, Application Commer	cial Wire-
less Sensors and Instruments, Wireless Instruments and Sensor Networks in Research a	
	nd Devel-
opment, Industrial Wireless Sensor and Instrument Networks, Wireless Human Health M	nd Devel- Aonitoring
	nd Devel- Aonitoring

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Understand and remember the comprehensive review of both groundbreaking technology as					
	well as applications in the field of smart sensors.					
CO2:	Apply the smart sensor technology to the real-world applications.					
CO3:	Analyze the response of the smart sensors for various applications.					
CO4:	Develop a wireless system for a specific application.					

Reference Books

Nelei el	ICC DOOKS							
1	Intelligent Instrumentation, Manabendra Bhayan, Special Indian Edition, 2016, CRC Press,							
	ISBN 9781420089530.							
2	RFID Design Fundamentals and Applications, Albert Lozano, Nicto, 2011, CRC Press,							
	ISBN 9781420091250.							
3	Wireless Sensors and Instruments Networks, Design, and Applications, Halit							
	Eren,2006,CRC Taylor & Francis Group,ISBN 978-0-8493-3674-4.							
4	Smart sensor systems, Gerardc M Meijer, 2008. ISBN: 978-0-470-86691-7.							

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO MAPPING											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	-	-	-	-	-	-	1	-	1
CO2	1	1	1	-	-	-	-	-	-	1	-	1
CO3	1	2	1	1	-	-	-	-	-	1	-	1
CO4	1	-	2	1	-	1	0	0	2	1	1	1

Low-1 Medium-2 High-3

				Semester: VII			
				ANOTECHNOLO			
(Group H: Global Elective)							
	Course Code : 16G7H01 CIE : 100 Marks Credits: L:T:P : 3:0:0 SEE : 100 Marks						
	lits: L:1:P l Hours	:	3:0:0 36L		SEE SEE Duration	:	100 Marks 3.00 Hours
		l i Ohi/		ents will be able to	SEE DUITATION	•	5.00 Hours
1				anomaterials and the	process.		
2					racterization can be ena	ablec	1.
3	netic, Chemi	cal f	ield.		n mechanical, electrical		
4	mechanism.		-	-	ed on sensing, transduc		and actuating
5	To have awa	rene	ss about the nanc	scale products used i	n multidisciplinary fiel	ds.	
				TT 94 T			07 11
In t-	- d 4 - >	Jarr		Unit-I	ogy, structures and pro		06 Hrs
Dian	nond like cart rids: hybrid bi	on(I	DLC) Nanocarrie	rs, bionanomaterails anosafety Issues: To	Vano Shells, Quantum s: protein & DNA bas pxicology health effect	ed r	anostructures, used by nano-
				Unit – II			08 Hrs
micr Nano dowr	oscopy: Atom o Synthesis and n approaches	nic Fo nd F using	orce microscopy abrication : Intro g processes like	(AFM), Scanning tur oduction & overview Ball milling, Sol-ge	on microscopy (TEM nnel microscopy (STM) of Nanofabrication: B el Process, Chemical ard & Soft lithography). Sotto Vapo	m up and Top
(, F			Unit –III	8)-	09 Hrs
catio Mecl	ns. Electroma	gnet	ic nanosensors: I	Electronic nose and e anosensors, Mechan	et. Types of Nanosense electronic tongue, Mag ics of CNTs, Biosens	netio	e nanosensors. Biosensors in
				Unit –IV			06 Hrs
and I equa	Mechanical Ti	ansc	lucers –Sensing a	ind Actuators. Micro derations of flow in	dics: MEMS/NEMS: Nofludics: Laminar flow, n small channels, mixi	Hag	gen-Peouiselle nicrovalves &
Unit –V 07 Hrs Applications of Nanotechnology: Molecular electronics, molecular switches, mechanical cutting							
tools	, machine con	npon	ents, DLC coated	grinding wheels. so	molecular switches, r lar cells, Batteries, fuel delivery and Nanosurg	cell	s, Nanofilters.
Сош	rse Outcomes	: Af	ter completing t	he course, the stude	nts will be able to		
CO1			· ·		of nanomaterials and th	neir u	ises.
		-					
	CO2:Interpret and apply the techniques of manufacturing and characterization processesCO3:Apply the knowledge of Nanosensors, related to nanosensors in electronics, mechanical,						

chemical, and biological systems.

CO4: Create and evaluate nano Design, Devices and Systems in various disciplines

Refere	ence Books
	B.S. Murty., P. Shankar., B.Raj, B.B. Rath, and J. Murday, Textbook of Nanosciences and
1	Nanotechnology, Springer, Co-publication with University Press (India) Pvt. Ltd. VCH,
	XII.1st Edition, 2013, ISBN- 978-3-642-28030-6.
2	V. K. Khanna, Nanosensors:, Physical, Chemical and Biological, CRC press, 1st
2	edition, 2013, ISBN 9781439827123 (Unit III).
2	C. C. Kock., Nanostructured materials, Nanostructured materials, William Andrew Publish-
3	ing, 2nd edition, 2007, ISBN 0-8155-1534-0.
4	M .Wilson., K. Kannangara., G.Smith., M.Simmons., B. Raguse., Nanotechnology, , overseas
4	Press (India) Private Ltd.,1st edition, 2005,ISBN 81-88689-20-3.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

		Т	NDUSTRIA	Semester I SAFFTV AN		NACEMENT		
INDUSTRIAL SAFETY AND RISK MANAGEMENT (Group H: Global Elective)								
Course Code : 16G7H02			CIE		:	100 Marks		
Credits: L:T:P Total Hours		:			1	SEE SEE Duration	:	100 Marks 3.00 Hours
		:						
Cou				students will be				
1	Understand the basics of risk assessment methodologies							
2	Select appropriate risk assessment techniques							
3	Analyze public and individual perception of risk							
4	Relate safety, ergonomics and human factors							
5	Carry out ri	sk a	ssessment in	process industri	ies			
	eral Risk Ider			Unit-I				08 Hrs
prop	•	U,		o fire in multi flo Unit – II		types of hazards and buildings.	,	
prop Risk Risk prob	Assessment Maintain adjusted disco adjusted disco	Metl ount ution	10ds – II: ed rate meth n, coefficien	Unit – II od, certainty eq	oor industries		quan	07 Hrs
prop Risk Risk prob	Assessment M adjusted disco	Metl ount ution	10ds – II: ed rate meth n, coefficien	Unit – II od, certainty eq	oor industries	and buildings.	quan	07 Hrs titative analysis ackle approach
prop Risk Risk prob Hille Risk	Assessment M adjusted disco ability distributer "s model, He Management	Metl ount ution rtz N	nods – II: ed rate meth n, coefficien Aodel. II:	Unit – II od, certainty eq at of variation Unit –III	oor industries quivalent coef method, Sin	ficient method, on the second	quan , Sh	07 Hrs titative analysis ackle approach 07 Hrs
Prop Risk Risk prob Hille Risk Eme tems risk	Assessment M adjusted disco ability distribu- er''s model, He Management rgency relief S s, risk manage	Metlount ution rtz M t – I Syste emeno	nods – II: ed rate meth n, coefficien Aodel. II: ems, Diers pr nt plan, man	Unit – II od, certainty eq t of variation <u>Unit –III</u> rogram, bench s datory technolo gement plans, ris	oor industries puivalent coef method, Sin scale experim ogy option an	and buildings.	quan , Sh emerg	07 Hrs atitative analysis ackle approach 07 Hrs gency relief sys nent alternatives applosion method
prop Risk Risk prob Hille Risk Eme tems risk Mon	Assessment M adjusted disco ability distribu- er"s model, He Management rgency relief S , risk manage management t d index Metho	Metlount ution rtz N t - I Syste emenois ools	nods – II: ed rate meth n, coefficien Model. II: ems, Diers pr nt plan, man , risk manag	Unit – II nod, certainty eq nt of variation <u>Unit –III</u> rogram, bench s datory technolo gement plans, ris <u>Unit –IV</u>	oor industries puivalent coef method, Sin scale experim ogy option an	ficient method, on the second	quan , Sh emerg	07 Hrs titative analysis ackle approach 07 Hrs gency relief sys nent alternatives
Prop Risk Prob Hille Risk Eme tems risk Mon Risk Prop	Assessment M adjusted disco ability distribu- er"s model, He Management rgency relief S a, risk manage management t id index Metho Assurance an perty insurance	Metlount ount ution rtz M t - I Syste emen ools od. md A x_{z} , tra	nods – II: ed rate meth n, coefficien Aodel. II: ems, Diers pr nt plan, man , risk manag	Unit – II nod, certainty eq nt of variation Unit –III rogram, bench s datory technolo gement plans, ris Unit –IV - IV:	oor industries quivalent coef method, Sin scale experim ogy option an sk index met insurance, ris	ficient method, on the second	quan , Sh emerg agem d ex	07 Hrs atitative analysis ackle approach 07 Hrs gency relief sys ant alternatives applosion method 07 Hrs
Prop Risk Prob Hille Risk Eme tems risk Mon Risk Prop	Assessment M adjusted disco ability distribu- er"s model, He Management rgency relief S a, risk manage management t id index Metho Assurance an perty insurance	Metlount ount ution rtz M t - I Syste emen ools od. md A x_{z} , tra	nods – II: ed rate meth n, coefficien Aodel. II: ems, Diers pr nt plan, man , risk manag	Unit – II od, certainty eq at of variation <u>Unit –III</u> rogram, bench s idatory technolo gement plans, ris <u>Unit –IV</u> - IV: rance, liability i	oor industries quivalent coef method, Sin scale experim ogy option an sk index met insurance, ris	ficient method, nulation method ents, design of e alysis, risk mana hod, Dowfire an	quan , Sh emerg agem d ex	07 Hrs atitative analysis ackle approach 07 Hrs gency relief sys pent alternatives plosion method 07 Hrs

Course Outcomes: After completing the course, the students will be able to		
CO1:	Recall risk assessment techniques used in process industry	
CO2:	Interpret the various risk assessment tools	
CO3:	Use hazard identification tools for safety management	
CO4:	Analyze tools and safety procedures for protection in process industries	

Refere	Reference Books				
1	Kirkcaldy K.J.D Chauhan, Functional Safety in the Process Industry : A Handbook of practi- cal Guidance in the application of IEC61511 and ANSI/ISA-84,North corolina, Lulu publi- cation,2012,ISBN:1291187235				
2	Goble and William M. Safety Instrumented Systems Verification Practical probabilistic cal- culations, Pensulvania ISA publication,2005,ISBN:155617909X				
3	Laird Wilson and Doug Mc Cutcheon. Industrial safety and risk Management, The University of Alberta press, Canada, 1 st Edition, 2003, ISBN: 0888643942.				

4	Sincero A P and Sincero G A Environmental Engineering – A Design Approach, Prentice Hall of India, New Delhi, 1996, ISBN: 0024105643
5	Pandya C G, Risks in Chemical units, Oxford and IBH publications, New Delhi,1992,ISBN: 8120406907

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

			S	emester: VII			
				T TRANSPORT S H: Global Elective			
Co	urse Code	:	16G7H03		CIE	:	100 Marks
Cre	edits: L:T:P	:	3:0:0		SEE	:	100 Marks
Tot	tal Hours	:	36L		SEE Duration	:	3.00 Hours
Cou	rse Learning ()bje	ctives: The student	s will be able to			
1	Understand ba	asic	traffic flow and cor	ntrol for ITS			
2	Understand us	ser s	ervices for applicat	ion in transportation	system		
3	Understand I	ΓS aı	rchitecture and its p	lanning at various le	evels		
4	Evaluate user	serv	vices at various leve	els			

 Unit – I
 8 Hrs

 Introduction: –Historical Background, Definition, Future prospectus, ITS training and educational needs.

Fundamentals of Traffic Flow and Control- Traffic flow elements, Traffic flow models, Shock waves in Traffic streams, Traffic signalization and control principles, Ramp metering, Traffic simulation

Unit – II6 HrsITS User services-User services bundles, Travel and Traffic management, Public Transportation Operations, Electronic Payment, Commercial Vehicles Operations, Emergency Management, Advanced
Vehicle Control and safety systems, Information Management, Maintenance and construction Management

Unit –III	7 Hrs
ITS Applications and their benefits-Freeway and incident management systems-objective	ves, func-
tions, traffic Surveillance and incident detection, Ramp control, incident management, Adva	nced arte-
rial traffic control systems- historical development, Adaptive traffic control algorithms,	Advanced
Public Transportation Systems-Automatic vehicle location systems, Transit Operations sof	tware and
information systems, Electronic fare payment systems, Multimodal Traveler Information sys	tems
TT 1/ TTT	

Unit –IV7 HrsITS Architecture-Regional and Project ITS Architecture, Need of ITS architecture, concept of Oper-
ations, National ITS Architecture, Architecture development tool.ITS Planning-Transportation planning and ITS, Planning and the National ITS Architecture, Plan-

ning for ITS, Integrating ITS into Transportation Planning, relevant case studies. Unit –V 8 Hrs

ITS Standards-Standard development process, National ITS architecture and standards, ITS standards application areas, National Transportation Communications for ITS Protocol, Standards testing. **ITS Evaluation** – Project selection at the planning level, Deployment Tracking, Impact Assessment, Benefits by ITS components, Evaluation Guidelines, Challenges and Opportunities.

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Identify various applications of ITS
CO2:	Apply ITS applications at different levels.
CO3:	Examine ITS architecture for planning process.
CO4:	Define the significance of ITS for various levels

Refere	nce Books
1	Choudury M A and Sadek A, "Fundamentals of Intelligent Transportation Systems Plan-
1	ning" Artech House publishers (31 March 2003); ISBN-10: 1580531601
2	Bob Williams, "Intelligent transportation systems standards", Artech House, London, 2008.
2	ISBN-13: 978-1-59693-291-3.
	Asier Perallos, Unai Hernandez-Jayo, Enrique Onieva, Ignacio Julio García Zuazola "Intel-
3	ligent Transport Systems: Technologies and Applications" Wiley Publishing ©2015,
	ISBN:1118894782 9781118894781
4	ITS Hand Book 2000 Recommendations for World Road Association (PIARC) by Kan Paul
4	Chen, John Miles.
	Dominique Luzeaux ,Jean-René Ruault, Michel Chavret "Intelligent Transport Systems" 7
5	MAR 2013 Copyright © 2010 by John Wiley & Sons, Inc
	DOI: 10.1002/9781118557495.ch6

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

			INTEI	Semester: VII LLIGENT SYSTEM	S		
				p H: Global Elective			
Cou	rse Code	:	16G7H04		CIE	:	100 Marks
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks
Tota	l Hours	:	36L		SEE Duration	:	3.00 Hours
Cou	rse Learning C)bje	ectives: The student	s will be able to			
1	Understand fu	Inda	amental AI concepts	and current issues.			
2				echniques including s	earch, logic-based	reaso	oning, neural
	networks and	rea	soning with uncertai	in information.			
3	U U		1	uited to an intelligent	2		
4	Identify and li	st t	he basic issues of kr	nowledge representati	on, blind and heuris	stic s	search.

Unit-I	07 Hrs
Introduction: The Foundations of Artificial Intelligence, History of Artificial Intelligence,	
of the Art, Intelligent Agent: Introduction, How Agents Should Act, Structure of Intelligent	
Problem-solving: Solving Problems by Searching Search Strategies, Avoiding Repeat	•
Avoiding Repeated States	ied States
Unit – II	07 Hrs
Informed Search Methods: Best-First Search, Heuristic Functions, Memory Bounded Sea	
tive Improvement Algorithms	rein, neru
Game Playing: Introduction: Games as Search Problems, Perfect Decisions in Two-Perso	on. Games
Imperfect Decisions, Alpha-Beta Pruning, Games That Include an Element of Chance	,
Unit –III	07 Hrs
Knowledge Inference	
Knowledge representation -Production based system, Frame based system. Inference -	Backward
chaining, Forward chaining, Rule value approach, Fuzzy reasoning - Certainty factors, Ba	
Uncertainty Principles, Bayesian Theory-Bayesian Network-Dempster - Shafer theory.	
Unit –IV	07 Hrs
Learning from Observations: A General Model of Learning Agents, Inductive Learning,	Learning
Decision Trees, Using Information Theory, Learning General Logical Descriptions, Why	Learning
Works: Computational Learning Theory	-
Reinforcement Learning: Passive Learning in a Known Environment, Passive Learning	in an Un-
known Environment, Active Learning in an Unknown Environment	
Unit –V	07 Hrs
Expert Systems, Components, Production rules, Statistical reasoning, certainty factors, meas	ure of be-
lief and disbelief, Meta level knowledge, Introspection. Expert systems - Architecture of e	xpert sys-
tems, Roles of expert systems - Knowledge Acquisition -Meta knowledge, Heuristics. Typi	cal expert
systems - MYCIN, DART, XOON, Expert systems shells.	
Course Outcomes: After completing the course, the students will be able to	
CO1: Understand and explore the basic concepts and challenges of Artificial Intelligence.	

CO1:	Understand and explore the basic concepts and challenges of Artificial Intelligence.
CO2:	Analyze and explain basic intelligent system algorithms to solve problems.
CO3:	Apply Artificial Intelligence and various logic-based techniques in real world problems.
CO4:	Assess their applicability by comparing different Intelligent System techniques

Refere	ence Books
1	AI – A Modern Approach ,Stuart Russel, Peter Norvig , 2 nd Edition, Pearson Education, 2010, ISBN-13: 978-0137903955.
2	Artificial Intelligence (SIE) ,Kevin Night, Elaine Rich, Nair B., ,McGraw Hill, 1 st Edition, 2008, ISBN: 9780070087705

3	Introduction to AI and ES ,Dan W. Patterson, Pearson Education, 1st Edition ,2007. ISBN: 0132097680
4	Introduction to Expert Systems ,Peter Jackson, 3 rd Edition, Pearson Education, 2007, ISBN- 978-0201876864

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

				Semester: VII			
		Π	MAGE PROCESS	ING AND MACHIN	E LEARNING		
				p H: Global Elective			
Cours	e Code	:	16G7H05		CIE	:	100 Marks
Credit	ts: L:T:P:S	:	3:0:0:0		SEE	:	100 Marks
Total	Hours	:	40L		SEE Duration	:	03 Hours
Cours	e Learning C)bje	ectives: The student	s will be able to			
1	Understand th	e n	najor concepts and to	echniques in image pr	ocessing and Machi	ne I	Learning
2	To explore, m	ani	pulate and analyze i	mage processing tech	niques		
				nethods, classification			
4]	Demonstrate i	ma	ge processing and N	Iachine Learning kno	wledge by designing	g an	d implement-
i	ing algorithms	s to	solve practical prob	olems			
				Unit-I			08 Hrs
	luction to ima						
				DPI, Bitmap images,			
age file	e formats, Co	lor		e, Ellipsoid, Gamma c	correction, Advanced	1 1m	
D 1		6		nit — II			08 Hrs
	of Python &			1	1 (1 0 1)	1	
	A •			data structures, contro			
loading	g & viewing a	in 11		tion, gamma correctio nit –III	n, determining struc	lura	08 Hrs
Advar	and Imagan	N 00	essing using Open				UO IIIS
				and Brightness Addin	a Text to Images Sr	200	thing Images
				Filter ,Changing the			
				orming Histogram Eq		, ביבי	iceting inage
1111051	ioranig ;eure			nit –IV			08 Hrs
Machi	ine Learning	Те	chniques in Image				001115
				nood Methods, Neura	l Networks: Non-pa	aran	netric models:
				ines, Logistic Regress			,
		/		nit –V			08 Hrs
Introd	luction to obj	ject	Tracking, Modeli	ng & Recognition			•
				Contours, and Appe	earance Models. Me	an-	shift tracking;
Contou	ur-based mode	els,	Adaboost approach	es: Face Detection / F	Recognition, Trackin	g.	
			••				
Cours	e Outcomes:	Af	ter completing the	course, the students	will be able to		
CO1:				pts of Image Processi			
CO2:	Identify ma	chii	ne learning techniqu	es suitable for a given	n problem		
CO3:	Write progr	ams	s for specific applic	ations in image proces	ssing		

CO3: Write programs for specific applications in image processingCO4: Apply different techniques for various applications using machine learning techniques.

Refe	erence Books
1	Practical Machine Learning and Image Processing: For Facial Recognition, Object Detection,
1	and Pattern Recognition Using Python", by Himanshu Singh, Apress publisher.
2	Pattern Recognition and Machine Learning, by Christopher Bishop, Springer, 2008
_	Computer Vision: A modern Approach" by David Forsyth and Jean Ponce, Prentice Hall India
3	2004.
4	Machine Vision : Theory Algorithms Practicalities ,by E.R. Davies Elsevier 2005.
5	Digital Image Processing, Rafael C. Gonzalez and Richard E. Woods Pearson Education, Ed,
5	2001.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

			Semester: VI	1			
		DESIGN C	OF RENEWABLE EN (Group H: Global E				
Course Code	:	16G7H06		CIE Marks	:	100	
Credits: L:T:P:S	:	3:0:0		SEE Marks	:	100	
Total Hours	:	40L		SEE Dura-	:	3.00 H	ours
				tion			
Course Learning	Obj	ectives:					
1 To provide opp	ortu	nity for stude	ents to work on multid	isciplinary projects.			
2 To familiarize	the	students with	the basic concepts of	f nonconventional ene	rgy s	sources a	and allied
technological s							
3 To impart skill	to	formulate, so	olve and analyze basi	c Non – conventional	ene	rgy prob	lems and
prepare them for	r gr	aduate studie	es.				
4 To enable the s	tude	ent to design	primarily solar and wi	nd power systems.			
5 To expose the s	tud	ents to variou	is applications of solar	, wind and tidal systen	ıs.		
			UNIT – I				07 Hrs
An introduction to) en	ergy sources	S:				
				pective, Relevant prol	olem	s discus	sion, cur-
rent positions of ren							
*			UNIT – II				09 Hrs
PV Technology:							
	·. P'	V projects. F	Building-integrated PV	system, PV cell tech	nolo	gies, sol	ar energy
maps, Technology							
		us. I потохо	LAIC I OWEL SYSTEMS.			. Duurva	ieni eiec-
trical circuit, open-	circ	uit voltage a	nd short-circuit curren	nt, I-V and P-V curves			
trical circuit, open-	circ	uit voltage a	nd short-circuit current eration, system compo	nt, I-V and P-V curves			n (differ-
trical circuit, open-	circ , pe	uit voltage a ak-power op	nd short-circuit curren	nt, I-V and P-V curves			
trical circuit, open- ent methodologies) Wind Speed and I Speed and power r speed distribution components , turbi	circ , pe Ener elat (par ne r	uit voltage a ak-power operations, power ameters calciating , power	nd short-circuit current eration, system compo- UNIT – III extracted from the wi ulations), wind speed r vs. speed and TSR,	nt, I-V and P-V curves	Arr l wi ver ure,	nd patte Systems maximu	n (differ- 09 Hrs rns, wind : system
trical circuit, open- ent methodologies) Wind Speed and I Speed and power r speed distribution components , turbi	circ , pe Ener elat (par ne r	uit voltage a ak-power operations, power ameters calciating , power	nd short-circuit current eration, system compo- UNIT – III extracted from the wi ulations), wind speed r vs. speed and TSR,	nd, Air density, Globa prediction, Wind Po maximum energy cap	Arr l wi ver ure,	nd patte Systems maximu	n (differ- 09 Hrs rns, wind : system
trical circuit, open- ent methodologies) Wind Speed and I Speed and power r speed distribution (components, turbi operation, system-co Geothermal and o Geothermal power Comparison of flas Energy from ocea	circ , pe Ener elat (par ne r lesi lesi (par ne r lesi (par ne r elat	uit voltage a ak-power operation rgy: ions, power ameters calcu- ating , power gn trade-offs n energy: o pressured steam and to DTEC power	nd short-circuit current eration, system compo- UNIT – III extracted from the wi- ulations), wind speed r vs. speed and TSR, , system control require UNIT – IV sources, Geothermal va- tal flow concept generation, OPEN and lal and double basin tide	nd, Air density, Globa prediction, Wind Pov maximum energy cap rements, environmenta well drilling, advantag	Arri l wi ver ure, l asp es a	nd patte Systems maximu pects. nd disad	n (differ- 09 Hrs rns, wind : system m power 07 Hrs vantages, of Energy
trical circuit, open- ent methodologies) Wind Speed and I Speed and power r speed distribution components , turbi operation, system-o Geothermal and o Geothermal power Comparison of flas Energy from ocea and power in simpl	circc , pe Ener elat (par ne t lesiş cea , ge hed n: C e si	uit voltage a ak-power operation rgy: ions, power ameters calcu- ating , power gn trade-offs n energy: o pressured steam and to DTEC power	nd short-circuit current eration, system compo- UNIT – III extracted from the wi- ulations), wind speed r vs. speed and TSR, , system control require UNIT – IV sources, Geothermal va- tal flow concept generation, OPEN and	nd, Air density, Globa prediction, Wind Pov maximum energy cap rements, environmenta well drilling, advantag	Arri l wi ver ure, l asp es a	nd patte Systems maximu pects. nd disad	n (differ- 09 Hrs rns, wind : system im power 07 Hrs vantages,
trical circuit, open- ent methodologies) Wind Speed and I Speed and power r speed distribution components , turbi operation, system-or Geothermal and o Geothermal power Comparison of flas Energy from ocea and power in simpl Stand alone system	circ , pe Ener elat (par ne 1 lesi lesi (par ne 1 lesi (par ne 1 lesi lesi (par ne 1 lesi lesi lesi lesi (par ne 1 lesi lesi lesi lesi lesi lesi lesi lesi	uit voltage a ak-power operation rgy: ions, power ameters calculation ating , power gn trade-offs n energy: o pressured steam and to DTEC power ngle basin tic	nd short-circuit current eration, system compo- UNIT – III extracted from the wi- ulations), wind speed r vs. speed and TSR, , system control require UNIT – IV sources, Geothermal va- tal flow concept generation, OPEN and lal and double basin tide UNIT – V	nd, Air density, Globa prediction, Wind Po maximum energy cap rements, environmenta well drilling, advantag d CLOSED cycle OTE dal system	Ari I wi ver ure, I asp es a C. E	nd patte Systems maximu pects. nd disad stimate o	m (differ- 09 Hrs rns, wind : system im power 07 Hrs vantages, of Energy 08 Hrs
trical circuit, open- ent methodologies) Wind Speed and I Speed and power r speed distribution (components, turbi operation, system-co Geothermal and o Geothermal power Comparison of flas Energy from ocea and power in simpl Stand alone system PV stand-alone, El	circ , pe Ener elat (par ne 1 lesi lesi (par ne 1 lesi (par ne 1 lesi lesi (par ne 1 lesi lesi lesi lesi (par ne 1 lesi lesi lesi lesi lesi lesi lesi lesi	uit voltage a ak-power operation rgy: ions, power ameters calculation ating , power gn trade-offs n energy: o pressured steam and to DTEC power ngle basin tic	nd short-circuit current eration, system compo- UNIT – III extracted from the wi- ulations), wind speed r vs. speed and TSR, , system control require UNIT – IV sources, Geothermal va- tal flow concept generation, OPEN and lal and double basin tide UNIT – V	nd, Air density, Globa prediction, Wind Pov maximum energy cap rements, environmenta well drilling, advantag	Ari I wi ver ure, I asp es a C. E	nd patte Systems maximu pects. nd disad stimate o	m (differ- 09 Hrs rns, wind : system im power 07 Hrs vantages, of Energy 08 Hrs
trical circuit, open- ent methodologies) Wind Speed and I Speed and power r speed distribution (components, turbi operation, system-co Geothermal and o Geothermal power Comparison of flas Energy from ocea and power in simpl Stand alone system PV stand-alone, El farm sizing.	circe , pe Cner elat (par ne r lesi cea , ge hed n: C e si ectr	uit voltage a ak-power operation rgy: ions, power ameters calcu- rating , power gn trade-offs n energy: o pressured steam and to DTEC power ngle basin tic	nd short-circuit current eration, system compo- UNIT – III extracted from the wi- ulations), wind speed r vs. speed and TSR, , system control requir UNIT – IV sources, Geothermal va- tal flow concept generation, OPEN and lal and double basin tid UNIT – V	nd, Air density, Globa prediction, Wind Pov maximum energy cap rements, environmenta well drilling, advantag d CLOSED cycle OTE dal system	Arri I wi ver ure, 1 asp es a C. E	nd patte Systems maximu bects. nd disad stimate of stem size	n (differ- 09 Hrs rns, wind : system im power 07 Hrs vantages of Energy 08 Hrs ing, wind
trical circuit, open- ent methodologies) Wind Speed and I Speed and power r speed distribution components , turbi operation, system-co Geothermal and o Geothermal power Comparison of flas Energy from ocea and power in simpl Stand alone system PV stand-alone, El farm sizing. Grid-Connected S	circe , pe Ener elat (par ne r lesiş cea hed n: C e sir ectr	uit voltage a ak-power operation rgy: ions, power ameters calcu- ating , power gn trade-offs n energy: o pressured steam and to DTEC power ngle basin tic ic vehicle, w ems: introdu	nd short-circuit current eration, system compo- UNIT – III extracted from the wi- ulations), wind speed r vs. speed and TSR, , system control require UNIT – IV sources, Geothermal va- tal flow concept generation, OPEN and lal and double basin tide UNIT – V vind standalone, hybri- ction, interface require	nd, Air density, Globa prediction, Wind Pov maximum energy cap rements, environmenta well drilling, advantag d CLOSED cycle OTE dal system d systems (case study) ements, synchronizing	Arri I wi ver ure, 1 asp es a C. E	nd patte Systems maximu bects. nd disad stimate of stem sizi n the grid	m (differ- 09 Hrs rns, wind : system im power 07 Hrs vantages, of Energy 08 Hrs ing, wind d, operat-
trical circuit, open- ent methodologies) Wind Speed and I Speed and power r speed distribution components , turbi operation, system-o Geothermal and o Geothermal power Comparison of flas Energy from ocea and power in simpl Stand alone system PV stand-alone, El farm sizing. Grid-Connected S ing limit, Energy st	circe , pe Ener elat (par ne r lesiş cea hed n: C e sir ectr	uit voltage a ak-power operation rgy: ions, power ameters calcu- ating , power gn trade-offs n energy: o pressured steam and to DTEC power ngle basin tic ic vehicle, w ems: introdu	nd short-circuit current eration, system compo- UNIT – III extracted from the wi- ulations), wind speed r vs. speed and TSR, , system control require UNIT – IV sources, Geothermal va- tal flow concept generation, OPEN and lal and double basin tide UNIT – V vind standalone, hybri- ction, interface require	nd, Air density, Globa prediction, Wind Pov maximum energy cap rements, environmenta well drilling, advantag d CLOSED cycle OTE dal system	Arri I wi ver ure, 1 asp es a C. E	nd patte Systems maximu bects. nd disad stimate of stem sizi n the grid	m (differ- 09 Hrs rns, wind : system im power 07 Hrs vantages, of Energy 08 Hrs ing, wind d, operat-
trical circuit, open- ent methodologies) Wind Speed and I Speed and power r speed distribution components , turbi operation, system-o Geothermal and o Geothermal power Comparison of flas Energy from ocea and power in simpl Stand alone syster PV stand-alone, El farm sizing. Grid-Connected S	circe , pe Ener elat (par ne r lesiş cea hed n: C e sir ectr	uit voltage a ak-power operation rgy: ions, power ameters calcu- ating , power gn trade-offs n energy: o pressured steam and to DTEC power ngle basin tic ic vehicle, w ems: introdu	nd short-circuit current eration, system compo- UNIT – III extracted from the wi- ulations), wind speed r vs. speed and TSR, , system control require UNIT – IV sources, Geothermal va- tal flow concept generation, OPEN and lal and double basin tide UNIT – V vind standalone, hybri- ction, interface require	nd, Air density, Globa prediction, Wind Pov maximum energy cap rements, environmenta well drilling, advantag d CLOSED cycle OTE dal system d systems (case study) ements, synchronizing	Arri I wi ver ure, 1 asp es a C. E	nd patte Systems maximu bects. nd disad stimate of stem sizi n the grid	m (differ- 09 Hrs rns, wind : system m power 07 Hrs vantages, of Energy 08 Hrs ing, wind d, operat-
trical circuit, open- ent methodologies) Wind Speed and I Speed and power r speed distribution components , turbi operation, system-or Geothermal and o Geothermal power Comparison of flas Energy from ocea and power in simpl Stand alone system PV stand-alone, El farm sizing. Grid-Connected S ing limit, Energy st Course outcomes:	circe , pe Ener elat (par ne r lesi (par ne r) lesi (par ne r) lesi lesi lesi lesi lesi lesi lesi lesi	uit voltage a ak-power operation rgy: ions, power ameters calce ating , power gn trade-offs n energy: o pressured steam and to DTEC power ngle basin tid ic vehicle, w ems: introdu ge and load s	nd short-circuit current eration, system compo- UNIT – III extracted from the wi- ulations), wind speed r vs. speed and TSR, , system control require UNIT – IV sources, Geothermal ve- tal flow concept generation, OPEN and lal and double basin tide UNIT – V vind standalone, hybri- ction, interface require cheduling, Grid stabilitie	nd, Air density, Globa prediction, Wind Pov maximum energy cap rements, environmenta well drilling, advantag d CLOSED cycle OTE dal system d systems (case study) ements, synchronizing	Ari l wi ver ure, l asp es a C. E , sy with owe	nd patte Systems maximu bects. Ind disad stimate of stem sizion n the gridential r generat	m (differ- 09 Hrs rns, wind : system im power 07 Hrs vantages of Energy 08 Hrs ing, wind d, operat- tion.
trical circuit, open- ent methodologies) Wind Speed and I Speed and power r speed distribution components , turbi operation, system-o Geothermal and o Geothermal power Comparison of flas Energy from ocea and power in simpl Stand alone system PV stand-alone, El farm sizing. Grid-Connected S ing limit, Energy st Course outcomes: CO1: Demonstrate energy.	circe , pe elat (par ne r lesiş cea hed n: C e sir ectr syst ora; an	uit voltage a ak-power operation rgy: ions, power ameters calcu- rating , power gn trade-offs n energy: o pressured steam and to DTEC power ngle basin tic ic vehicle, w ems: introdu ge and load s understandin	nd short-circuit current eration, system compo- UNIT – III extracted from the wi- ulations), wind speed r vs. speed and TSR, , system control require UNIT – IV sources, Geothermal va- tal flow concept generation, OPEN and lal and double basin tion UNIT – V vind standalone, hybri- ction, interface require cheduling, Grid stabili- g of the scientific prire	nd, Air density, Globa prediction, Wind Po maximum energy cap rements, environmenta well drilling, advantag d CLOSED cycle OTE dal system d systems (case study) ements, synchronizing ity issues, distributed p	Arri l wi ver ure, l asp es a C. E , sy with owe	nd patte Systems maximu bects. nd disad stimate of stem sizion the grid r generat Non-con	m (differ- 09 Hrs rns, winc : system im power 07 Hrs vantages of Energy 08 Hrs ing, winc d, operat- tion.
trical circuit, open- ent methodologies) Wind Speed and I Speed and power r speed distribution components , turbi operation, system-o Geothermal and o Geothermal power Comparison of flas Energy from ocea and power in simpl Stand alone syster PV stand-alone, El farm sizing. Grid-Connected S ing limit, Energy st Course outcomes: CO1: Demonstrate energy. CO2: Acquire wor	circe , pe Pelat Cher Pelat (par ne r lesiş cea hed n: C e sir ectr n: ectr syst orag an king	uit voltage a ak-power operation rgy: ions, power ameters calcu- ating , power gn trade-offs n energy: o pressured steam and to DTEC power ngle basin tic ic vehicle, w ems: introdu- ge and load s understandin g knowledge	nd short-circuit current eration, system compo- UNIT – III extracted from the wi- ulations), wind speed r vs. speed and TSR, , system control require UNIT – IV sources, Geothermal va- tal flow concept generation, OPEN and lal and double basin tion UNIT – V vind standalone, hybri- ction, interface require cheduling, Grid stabili- g of the scientific prire of different Renewable	nd, Air density, Globa prediction, Wind Pov maximum energy cap rements, environmenta well drilling, advantag d CLOSED cycle OTE dal system d systems (case study) ements, synchronizing ity issues, distributed p neiples of methodology	Ari l wi ver ure, l asp es a C. E , sy with owe vor d top	ay desig	n (differ- 09 Hrs rns, wind : system im power 07 Hrs vantages of Energy 08 Hrs ing, wind d, operat- tion.
trical circuit, open- ent methodologies) Wind Speed and I Speed and power r speed distribution components , turbi operation, system-of Geothermal and o Geothermal power Comparison of flas Energy from ocea and power in simpl Stand alone system PV stand-alone, El farm sizing. Grid-Connected S ing limit, Energy st Course outcomes: CO1: Demonstrate energy. CO2: Acquire wor CO3: Ability to an	circe , pe elat (par ne 1 lesi (par ne 1 lesi lesi (par ne 1 lesi (par ne 1 lesi (par ne 1 lesi lesi lesi lesi (par ne 1 lesi lesi lesi lesi lesi lesi lesi lesi	uit voltage a ak-power operation rgy: ions, power ameters calcrating , power gn trade-offs n energy: o pressured steam and to OTEC power ngle basin tic ic vehicle, w ems: introdu ge and load s understandin g knowledge te the system	nd short-circuit current eration, system compo- UNIT – III extracted from the wi- ulations), wind speed r vs. speed and TSR, , system control require UNIT – IV sources, Geothermal va- tal flow concept generation, OPEN and lal and double basin tid UNIT – V vind standalone, hybri- ction, interface require cheduling, Grid stabili- g of the scientific print of different Renewable related concepts effect	nd, Air density, Globa prediction, Wind Pov maximum energy cap rements, environmenta well drilling, advantag d CLOSED cycle OTE dal system d systems (case study) ements, synchronizing ity issues, distributed p nciples of methodology e energy science-relate	Ari l wi ver ure, l asp es a C. E , sy with owe v of d top gy d	ay desig	n (differ- 09 Hrs rns, winc : system im power 07 Hrs vantages of Energy 08 Hrs ing, winc d, operat- tion. ventional

Ref	ference Books
1.	Wind and Solar Power Systems Design, Analysis and operation, Mukund R Patel, 2 nd Edition,
	2006, Taylor and Francis publishers, ISBN 978-0-8493-1570-1.
2.	Non-Conventional sources of energy, G.D.Rai, 4th Edition, 2009, Khanna Publishers, ISBN
	8174090738, 9788174090737,
	Solar Energy, Sukhatme, 4th Edition, 2017, McGraw Hill Education, ISBN-13: 978-
	9352607112
4.	Renewable energy sources, John Twidell, Tony Weir, 3rd Edition, 2015, Routledge Publisher,
	ISBN-13: 978-0415584388.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	Semester :VII						
	SYSTEMS ENGINEERING						
				(Group H: Global Ele	ctive)		
Co	urse Code	:	16G7H07		CIE Marks	:	100
Cr	edits: L:T:P:S	:	3:0:0:0		SEE Marks	:	100
Total Hours			33L		SEE Duration	:	03 Hours
Co	urse Learning (Ob	jectives:				
1	Develop an ap	pre	ciation and u	nderstanding of the role	of systems engine	eri	ng processes and sys-
	tems managem	ien	t in producin	g products and services.			
2	Document syst	ten	natic measure	ment approaches for gen	nerally cross disc	ipli	nary development ef-
	fort.						_
3	3 Discuss capability assessment models to evaluate and improve orgnizational systems engineering				systems engineering		
	capabilities.						
	cupuomites.						

Unit-I	07 Hrs
System Engineering and the World of Modem System: What is System Engineering?	, Origins of
System Engineering, Examples of Systems Requiring Systems Engineering, System 1	Engineering
viewpoint, Systems Engineering as a Profession, The power of Systems Engineering, probl	lems.
Structure of Complex Systems: System building blocks and interfaces, Hierarchy of Co	omplex sys-
tems, System building blocks, The system environment, Interfaces and Interactions.	
The System Development Process: Systems Engineering through the system Life Cycle,	, Evolution-
ary Characteristics of the development process, The system engineering method, Testing	throughout
system development, problems.	_
Unit – II	07 Hrs
Systems Engineering Management: Managing systems development and risks, Work	breakdown
structure (WBS), System Engineering Management Plan (SEMP), Risk Management, Org	anization of
Systems Engineering, Systems Engineering Capability Maturity Assessment, Systems	Engineering
standards, Problem.	
Needs Analysis: Originating a new system, Operations analysis, Functional analysis, Feas	ibility anal-
ysis, Feasibility definition, Needs validation, System operational requirements, problems.	
Concept Exploration: Developing the system requirements, Operational requirements ar	nalysis, Per-
formance requirements formulation, Implementation concept exploration, Performance re-	equirements
validation, problems.	
variation, problems.	
Unit – III	07 Hrs
Unit – III	Functional
Unit – III Concept Definition: Selecting the system concept, Performance requirements analysis,	Functional
Unit – III Concept Definition: Selecting the system concept, Performance requirements analysis, analysis and formulation, Concept selection, Concept validation, System Development pla tem Functional Specifications, problems Advanced Development: Reducing program risks, Requirements analysis, Functional A	Functional nning, Sys-
Unit – III Concept Definition: Selecting the system concept, Performance requirements analysis, analysis and formulation, Concept selection, Concept validation, System Development pla tem Functional Specifications, problems	Functional nning, Sys-
Unit – III Concept Definition: Selecting the system concept, Performance requirements analysis, analysis and formulation, Concept selection, Concept validation, System Development platem Functional Specifications, problems Advanced Development: Reducing program risks, Requirements analysis, Functional A Design, Prototype development, Development testing, Risk reduction, problems. Unit – IV	Functional unning, Sys- nalysis and 06 Hrs
Unit – III Concept Definition: Selecting the system concept, Performance requirements analysis, analysis and formulation, Concept selection, Concept validation, System Development platem Functional Specifications, problems Advanced Development: Reducing program risks, Requirements analysis, Functional A Design, Prototype development, Development testing, Risk reduction, problems. Unit – IV Engineering Design: Implementing the System Building blocks, requirements analysis,	Functional mning, Sys- nalysis and 06 Hrs Functional
Unit – III Concept Definition: Selecting the system concept, Performance requirements analysis, analysis and formulation, Concept selection, Concept validation, System Development platem Functional Specifications, problems Advanced Development: Reducing program risks, Requirements analysis, Functional A Design, Prototype development, Development testing, Risk reduction, problems. Unit – IV Engineering Design: Implementing the System Building blocks, requirements analysis, analysis and design, Component design, Design validation, Configuration Management, pr	Functional unning, Sys- nalysis and 06 Hrs Functional oblems.
Unit – III Concept Definition: Selecting the system concept, Performance requirements analysis, analysis and formulation, Concept selection, Concept validation, System Development platem Functional Specifications, problems Advanced Development: Reducing program risks, Requirements analysis, Functional A Design, Prototype development, Development testing, Risk reduction, problems. Unit – IV Engineering Design: Implementing the System Building blocks, requirements analysis, analysis and design, Component design, Design validation, Configuration Management, pr Integration and Evaluation: Integrating, Testing and evaluating the total system, Test p	Functional unning, Sys- nalysis and 06 Hrs Functional oblems. lanning and
Unit – III Concept Definition: Selecting the system concept, Performance requirements analysis, analysis and formulation, Concept selection, Concept validation, System Development platem Functional Specifications, problems Advanced Development: Reducing program risks, Requirements analysis, Functional A Design, Prototype development, Development testing, Risk reduction, problems. Unit – IV Engineering Design: Implementing the System Building blocks, requirements analysis, analysis and design, Component design, Design validation, Configuration Management, pr	Functional unning, Sys- nalysis and 06 Hrs Functional oblems. lanning and
Unit – III Concept Definition: Selecting the system concept, Performance requirements analysis, analysis and formulation, Concept selection, Concept validation, System Development platem Functional Specifications, problems Advanced Development: Reducing program risks, Requirements analysis, Functional A Design, Prototype development, Development testing, Risk reduction, problems. Unit – IV Engineering Design: Implementing the System Building blocks, requirements analysis, analysis and design, Component design, Design validation, Configuration Management, pr Integration and Evaluation: Integrating, Testing and evaluating the total system, Test p	Functional unning, Sys- nalysis and 06 Hrs Functional oblems. lanning and
Unit – III Concept Definition: Selecting the system concept, Performance requirements analysis, analysis and formulation, Concept selection, Concept validation, System Development platem Functional Specifications, problems Advanced Development: Reducing program risks, Requirements analysis, Functional A Design, Prototype development, Development testing, Risk reduction, problems. Unit – IV Engineering Design: Implementing the System Building blocks, requirements analysis, analysis and design, Component design, Design validation, Configuration Management, pr Integration and Evaluation: Integrating, Testing and evaluating the total system, Test p preparation, System integration, Developmental system testing, Operational test and evaluatiens. Unit – V	Functional mning, Sys- nalysis and 06 Hrs Functional oblems. lanning and ation, prob- 06 Hrs
Unit – III Concept Definition: Selecting the system concept, Performance requirements analysis, analysis and formulation, Concept selection, Concept validation, System Development platem Functional Specifications, problems Advanced Development: Reducing program risks, Requirements analysis, Functional A Design, Prototype development, Development testing, Risk reduction, problems. Unit – IV Engineering Design: Implementing the System Building blocks, requirements analysis, analysis and design, Component design, Design validation, Configuration Management, pr Integration and Evaluation: Integrating, Testing and evaluating the total system, Test p preparation, System integration, Developmental system testing, Operational test and evaluations.	Functional mning, Sys- nalysis and 06 Hrs Functional oblems. lanning and ation, prob- 06 Hrs
Unit – III Concept Definition: Selecting the system concept, Performance requirements analysis, analysis and formulation, Concept selection, Concept validation, System Development platem Functional Specifications, problems Advanced Development: Reducing program risks, Requirements analysis, Functional A Design, Prototype development, Development testing, Risk reduction, problems. Unit – IV Engineering Design: Implementing the System Building blocks, requirements analysis, analysis and design, Component design, Design validation, Configuration Management, pr Integration and Evaluation: Integrating, Testing and evaluating the total system, Test p preparation, System integration, Developmental system testing, Operational test and evaluatiens. Unit – V	Functional unning, Sys- analysis and 06 Hrs Functional oblems. lanning and ation, prob- 06 Hrs from devel-
Unit – III Concept Definition: Selecting the system concept, Performance requirements analysis, analysis and formulation, Concept selection, Concept validation, System Development platem Functional Specifications, problems Advanced Development: Reducing program risks, Requirements analysis, Functional A Design, Prototype development, Development testing, Risk reduction, problems. Unit – IV Engineering Design: Implementing the System Building blocks, requirements analysis, analysis and design, Component design, Design validation, Configuration Management, pr Integration and Evaluation: Integrating, Testing and evaluating the total system, Test p preparation, System integration, Developmental system testing, Operational test and evalu lems. Unit – V Production: Systems Engineering in the factory, Engineering for production, Transition opment to production, Production operations, Acquiring a production knowledge base, prof Operations and support: Installing, maintenance and upgrading the system, Installation at the system and system installation at the system	Functional mning, Sys- analysis and 06 Hrs Functional oblems. lanning and ation, prob- 06 Hrs from devel- blems. and test, In-
Unit – III Concept Definition: Selecting the system concept, Performance requirements analysis, analysis and formulation, Concept selection, Concept validation, System Development platem Functional Specifications, problems Advanced Development: Reducing program risks, Requirements analysis, Functional A Design, Prototype development, Development testing, Risk reduction, problems. Unit – IV Engineering Design: Implementing the System Building blocks, requirements analysis, analysis and design, Component design, Design validation, Configuration Management, pr Integration and Evaluation: Integrating, Testing and evaluating the total system, Test p preparation, System integration, Developmental system testing, Operational test and evalue lems. Unit – V Production: Systems Engineering in the factory, Engineering for production, Transition opment to production, Production operations, Acquiring a production knowledge base, production	Functional mning, Sys- analysis and 06 Hrs Functional oblems. lanning and ation, prob- 06 Hrs from devel- blems. and test, In-
Unit – III Concept Definition: Selecting the system concept, Performance requirements analysis, analysis and formulation, Concept selection, Concept validation, System Development platem Functional Specifications, problems Advanced Development: Reducing program risks, Requirements analysis, Functional A Design, Prototype development, Development testing, Risk reduction, problems. Unit – IV Engineering Design: Implementing the System Building blocks, requirements analysis, analysis and design, Component design, Design validation, Configuration Management, pr Integration and Evaluation: Integrating, Testing and evaluating the total system, Test p preparation, Systems integration, Developmental system testing, Operational test and evalu lens. Unit – V Production: Systems Engineering in the factory, Engineering for production, Transition opment to production, Production operations, Acquiring a production knowledge base, prof Operations and support: Installing, maintenance and upgrading the system, Installation at the system and system installation at the syste	Functional mning, Sys- analysis and 06 Hrs Functional oblems. lanning and ation, prob- 06 Hrs from devel- blems. and test, In-

Cours	Course Outcomes: After completing the course, the students will be able to					
CO1	Understand the Life Cycle of Systems.					
CO2	Explain the role of Stake holders and their needs in organizational systems.					
CO3	Develop and Document the knowledge base for effective systems engineering processes.					
CO4	Apply available tools, methods and technologies to support complex high technology systems.					
CO5	Create the frameworks for quality processes to ensure high reliability of systems.					

Ref	erence Books
1	Systems Engineering – Principles and Practice, Alexander Kossoakoff, William N Sweet, 2012, John Wiley & Sons, Inc, ISBN: 978-81-265-2453-2
2	Systems Engineering and Analysis, Blanchard, B., and Fabrycky W, 5 th Edition, 2010, Saddle River, NJ, USA: Prentice Hall.
3	Handbook of Human Systems Integration, Booher, H. (ed.) 2003. Hoboken, NJ, USA: Wiley.
4	Systems Engineering: A 21 st Century Methodology, Hitchins, D., 2007. Chichester, England: Wiley.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	Semester: VII							
	MEMS AND APPLICATIONS							
			(Grou	p H: Global Electiv	e)			
Cou	rse Code	:	16G7H08		CIE	:	100 Marks	
Credits: L:T:P		:	3:0:0:0		SEE	:	100 Marks	
Total Hours : 35L			35L		SEE Duration	:	3.00 Hours	
Cou	rse Learning C)bj	ectives: The student	s will be able to				
1	Understand th	e ri	udiments of Micro fa	abrication techniques				
2	2 Identify and associate the various sensors and actuators to applications.							
3	3 Analyze different materials used for MEMS.							
4	Degion annlia	otic	ns of MEMS to disc	ainling				

4 Design applications of MEMS to disciplines.

Unit - I Overview of MEMS & Microsystems: MEMS and Microsystems, Typical MEMS and micr products, Evolution of micro fabrication, Microsystems and microelectronics, Multidiscipli	06 Hrs
	o system
ture of Microsystems, Design and manufacture, Applications of Microsystems in aut	
healthcare, aerospace and other industries.	.011101110,
Working Principle of Microsystems: Biomedical and biosensors. Micro sensors: Acoustic	Chemi-
cal, Optical, Pressure, Thermal.	,
Unit – II	08 Hrs
Micro actuation: Using thermal forces, shape memory alloys, Piezoelectric crystals and electric	ctrostatic
forces. MEMS with micro actuators: Microgrippers, micromotors, microvalves and micropu	mps, mi-
croaccelerometers, microfluidics.	-
Introduction to Scaling: Scaling in Geometry, Scaling in Rigid body dynamics, Scaling in	Electro-
static forces, scaling in electromagnetic forces and scaling in fluid mechanics.	
Unit – III	08 Hrs
Materials for MEMS and Microsystems: Substrates and wafers, Active substrate materials	s, Silicon
as substrate material, Silicon Compounds, Si-Piezoresistors, GaAs, Quartz, Piezoelectric	Crystals,
Polymers and packaging materials. Three level of Microsystem packaging, Die level packag	
vice level packaging, System level packaging. Interfaces in microsystem packaging. Essential	l packag-
ing technologies: die preparation, Surface bonding, Wire bonding, Sealing, 3D packaging.	
Unit – IV	06 Hrs
Microsystem Fabrication Process: Introduction to microsystems, Photolithography, Ion I	.
tion, Diffusion, Oxidation, CVD, PVD-Sputtering, Deposition of Epiaxy, Etching, LIGA	
General description, Materials for substrates and photoresists, Electroplating and SLIGA proc	ess.
Unit – V	07 Hrs
Tactile and Flow sensors - Piezoelectric sensors and actuators - piezoelectric effects - piezo	coelectric
materials – Applications to Inertia, Acoustic, Tactile and Flow sensors.	
Overview, Application, Fabrication Process in Applications:	
Silicon Capacitive Accelerometer, Piezo resistive Pressure sensor, Electrostatic Comb drive,	Portable
blood analyzer, Piezo electric Inkjet Print head, Micromirror array for Video projection.	

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Understand the operation of micro devices, micro systems and their applications.						
CO2:	Apply the principle of material science to sensor design.						
CO3:	Analyze the materials used for sensor designs.						
CO4 :	Conceptualize and design micro devices, micro systems.						

Refere	ence Books
1	MEMS & Microsystems Design and Manufacture, Tai-Ran Hsu, 2 nd Edition, 2002, Tata
	McGraw Hill Education, New Delhi, ISBN-13:978-0-07-048709-3.
2	Foundations of MEMS, Chang Liu, 2012, Pearson Education Inc., ISBN-13:978-0-13-
2	249736-7.
2	Smart Material Systems and MEMS, Vijay K Varadan, K. J. Vinoy, S. Gopalakrishnan, 2006,
3	Wiley-INDIA, ISBN-978-81-265-3170-7.
4	Micro and Smart Systems, G.K. Ananthasuresh, K.J. Vinoy, K.N. Bhat, V.K. Aatre, 2015,
4	Wiley Publications, ISBN-:978-81-265-2715-1.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	Semester: VII								
	INTRODUCTION TO INTERNET OF THINGS								
			(Grou	p H: Global Elective	e)				
Cou	rse Code	:	16G7H09		CIE	:	100 Marks		
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks		
Total Hours			39L		SEE Duration	:	3.00 Hours		
Cou	rse Learning (Dbj	ectives: The student	ts will be able to					
1	Learn the fun	dan	nentals of IoT						
2	Understands	the 1	hardware, networks	& protocols used in I	oT development				
3	3 Illustrate smart applications using IoT devices and building applications								
4									
5	Learn the fundamentals of IoT								

	Unit-I	06 Hrs
Funda	mentals Of IOT: Introduction, Physical design of IoT, Logical design of IoT, IoT	Enabling
technol	ogies, IoT Levels and Deployment Templates, , IoTvs M2M	
	Unit – II	06 Hrs
IOT D	esign Methodology: Need for IoT systems management, IoT Design Methodology	
Intern	et of Things Strategic Research and Innovation Agenda: Internet of Things Vi	sion, IoT
Strateg	ic Research and Innovation Directions, IoT Smart-X Applications, Internet of Thing	s and Re-
lated F	uture Internet Technologies.	
	Unit –III	11 Hrs
IOT S	ystems - Logical Design using Python: Provides an introduction to Python, installin	g Python,
Python	data types & data structures, control flow, functions, modules, packages, file input/o	utput, da-
ta/time	operations and classes.	
	Unit –IV	09 Hrs
IOT P	hysical Devices & Endpoints: What is an IoT device, Raspberry Pi device, About t	he board,
Linux o	on Raspberry Pi, Raspberry Pi interfaces, Programming Raspberry Pi with Python.	
	Unit –V	07 Hrs
IOT P	hysical Servers & Cloud Offerings: Provides an introduction to the use of cloud	platforms
	meworks such as Xively and AWS for developing IoT applications.	•
<u>.</u>		
Course	e Outcomes: After completing the course, the students will be able to	
CO1:		
CO2:	Analyse the IoT devices, programming, networking requirements and protocols for b	ouilding
	IoT products.	C

	for products.	
CO3:	Apply the concepts to design and develop IoT applications	

CO4: Creating applications of IoT using physical devices and interfacing with cloud.

Refere	Reference Books					
1	Internet of Things (A Hands-on-Approach), Vijay Madisetti and ArshdeepBahga, 1st Edition,					
1	VPT, 2014, ISBN-13: 978-0996025515.					
	Internet of Things - From Research and Innovation to Market Deployment, OvidiuVermesan,					
2	Peter Friess, River Publishers Series in Communication, River Publishers, 2014, ISBN:					
	ISBN: 978-87-93102-94-1 (Hard copy), 978-87-93102-95-8 (Ebook) (UnitsII 2 nd part)					
2	Rethinking the Internet of Things: A Scalable Approach to Connecting Everything, Francis					
5	daCosta, , 1st Edition, Apress Publications, 2013, ISBN-13: 978-1430257400.					
4	Meta products - Building the Internet of Things, WimerHazenberg, Menno Huisman, BIS					
4	Publishers, 2012, ISBN: 9789863692515.					

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	Semester: VII						
	INDUSTRY 4.0- SMART MANUFACTURING FOR THE FUTURE						
			(Grou	p H: Global Elective	e)		
Cou	rse Code	:	16G7H10		CIE	:	100 Marks
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours
Cou	Course Learning Objectives: The students will be able to						
1	Understand the importance and role of Smart Manufacturing Systems, IoT and IIoT						
2	Explain importance of automation technologies, sensors, Robotics and Machine vision.						
3	Understand application of artificial intelligence and the need for data transformation, handling,						
	storing and security.						
4	Understand simulation, predictive and knowledge modeling along with analysis						
5	Learn network	cing	g, sustainable techno	ology and factory net	works.		

Unit-I	06 Hrs					
Smart Manufacturing and Industry 4.0						
Need for Smart Manufacturing, Advantages, Emerging technologies in Smart manufacturing, CAD						
Architecture surrounding 3D Models (B-rep and CSG), MEMS, Industry 4.0-Interoperabili	ty, Infor-					
mation transparency, Technical assistance, Decentralized decision-making, Internet of Thi	ngs(IoT),					
Industry Internet of Things (IIoT), Future of Manufacturing industries						
Unit – II	09 Hrs					
Manufacturing Automation						
Technology intensive manufacturing and cyber-physical systems, Automation using Robot	tics, Data					
storage, retrieval, manipulation and presentation; Mechanisms for sensing state and modif	ying pro-					
cesses, Material handling systems, controlling material movement and machine flow, Mech	natronics,					
Transducers and sensors, Proximity sensors, Biosensors, Acceleration Machine Vision-Fla	w detec-					
tion, Positioning, Identification, Verification and Measurement-Application of Machine	Vision in					
industries						
Unit –III	09 Hrs					
Data handling using Embedded Systems						
Data transformation-Mathematical functions, Regression, Need for different functions, Da	ata merg-					
ing-Discrete and Random variables, Transformation languages, Interfacing	systems-					
Microprocessors, Direct memory access, Data transfer schemes and systems, Communica	tion sys-					
tems-Modulation, Time domain and frequency domain, Industrial Network Data Commun	nications,					
	tworks –					
Supervised, Unsupervised and Reinforced learning						
Unit –IV	06 Hrs					
Simulation, Modeling and Analysis						
Simulation - system entities, input variables, performance measures, and Functional relations	hips,					
types of simulation. Predictive modeling and simulation tools, Knowledge Modeling -types a	nd tech-					
nology options, Functional analysis of control systems - Linear and Non-linear, Function	nal de-					
composition, Functional sequencing, Information / dataflow, Interface						
Unit –V	09 Hrs					
Performance Measures of Smart Manufacturing Systems- Smart manufacturing- Sensing	and Per-					
ception, Manipulation, Mobility and Autonomy, Factory Networks, Information Modeling a	and Test-					
ing, Performance Measurement and Optimization, Engineering System integration, Produc	tion Net-					
work integration, Production network data quality, Sustainable Processes and Resources, In	itegration					
Infrastructure for Sustainable Manufacturing						

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Explain role and importance of Smart Manufacturing Systems, IoT and IIoT					
CO2:	Explain importance of automation technologies, sensors, robotics and machine vision					
CO3:	Illustrate the application of artificial intelligence and need for data transformation, handling					
CO4:	Explain analytical and simulation for performance study of smart technologies and networks					

Refere	Reference Books						
1	Zongwei Luo, Smart Manufacturing Innovation and Transformation: Interconnection And Intelligence, 1 st Edition, IGI Global Publications, 2014,ISBN-13: 978-1466658363 ISBN-10: 1466658363						
2	Yan Lu. KC Morris, Simon Frechette, Smart Manufacturing Standards, NIST, 1 st Edition, 2016, Project report.						

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	Semester: VII						
	SPACE TECHNOLOGY AND APPLICATIONS						
			(Gro	up H: Global Electiv	e)		
Cou	rse Code	:	16G7H11		CIE	:	100 Marks
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks
Total Hours		:	35L		SEE Duration	:	3.00 Hours
Cou	Course Learning Objectives: The students will be able to						
1	Define the earth environment and its behavior, launching vehicles for satellites and its associat-						
	ed concepts.						
2	2 Analyze satellites in terms of technology, structure and communications.						
3	3 Use satellites for space applications, remote sensing and metrology.						
4	Apply the sp	ace	technology, tech	mology mission and	advanced space sy	sten	ns to nation's
	growth.						

UNIT-I	07 Hrs
Earth's environment: Atmosphere, ionosphere, Magnetosphere, Van Allen Radiatio	
terplanetary medium, Solar wind, Solar- Earth Weather Relations.	in cons, in
Launch Vehicles: Rocketry, Propellants, Propulsion, Combustion, Solid, Liquid and Cry	vogenic en-
gines, Control and Guidance system, Ion propulsion and Nuclear Propulsion.	-8
UNIT-II	07 Hrs
Satellite Technology: Structural, Mechanical, Thermal, Power control, Telemetry,	Telecomm
and Quality and Reliability, Payloads, Space simulation.	
Satellite structure: Satellite Communications, Transponders, Satellite antennas.	
UNIT-III	07 Hrs
Satellite Communications: LEO, MEO and GEO orbits, Altitude and orbit controls, M	Iultiple Ac-
cess Techniques.	
Space applications: Telephony, V-SAT, DBS system, Satellite Radio and TV, Tele-Educ	ation Tala
Spuce applications, Telephony, Tele Educ	ation, rele-
medicine, Satellite navigation, GPS.	ation, rele-
	07 Hrs
medicine, Satellite navigation, GPS.	07 Hrs
medicine, Satellite navigation, GPS. UNIT-IV	07 Hrs , Land use,
medicine, Satellite navigation, GPS. UNIT-IV Remote Sensing: Visual bands, Agricultural, Crop vegetation, Forestry, water Resources	07 Hrs , Land use, techniques.
medicine, Satellite navigation, GPS. UNIT-IV Remote Sensing: Visual bands, Agricultural, Crop vegetation, Forestry, water Resources Land mapping, geology, Urban development resource Management, and image processing	07 Hrs s, Land use, techniques.
medicine, Satellite navigation, GPS. UNIT-IV Remote Sensing: Visual bands, Agricultural, Crop vegetation, Forestry, water Resources Land mapping, geology, Urban development resource Management, and image processing Metrology: Weather forecast (Long term and Short term), weather modelling, Cyclo	07 Hrs s, Land use, techniques.
medicine, Satellite navigation, GPS. UNIT-IV Remote Sensing: Visual bands, Agricultural, Crop vegetation, Forestry, water Resources Land mapping, geology, Urban development resource Management, and image processing Metrology: Weather forecast (Long term and Short term), weather modelling, Cyclo tions, Disaster and flood warning, rainfall predictions using satellites. UNIT-V	07 Hrs 5, Land use, techniques. one predic- 07 Hrs
medicine, Satellite navigation, GPS. UNIT-IV Remote Sensing: Visual bands, Agricultural, Crop vegetation, Forestry, water Resources Land mapping, geology, Urban development resource Management, and image processing Metrology: Weather forecast (Long term and Short term), weather modelling, Cyclo tions, Disaster and flood warning, rainfall predictions using satellites.	07 Hrs 5, Land use, techniques. one predic- 07 Hrs
medicine, Satellite navigation, GPS. UNIT-IV Remote Sensing: Visual bands, Agricultural, Crop vegetation, Forestry, water Resources Land mapping, geology, Urban development resource Management, and image processing Metrology: Weather forecast (Long term and Short term), weather modelling, Cyclo tions, Disaster and flood warning, rainfall predictions using satellites. UNIT-V Satellite payloads: Technology missions, deep space planetary missions, Lunar missions,	07 Hrss, Land use,techniques.one predic-07 Hrszero gravi-
medicine, Satellite navigation, GPS. UNIT-IV Remote Sensing: Visual bands, Agricultural, Crop vegetation, Forestry, water Resources Land mapping, geology, Urban development resource Management, and image processing Metrology: Weather forecast (Long term and Short term), weather modelling, Cyclo tions, Disaster and flood warning, rainfall predictions using satellites. UNIT-V Satellite payloads: Technology missions, deep space planetary missions, Lunar missions, ty experiments, space biology and International space Missions.	07 Hrss, Land use,techniques.one predic-07 Hrszero gravi-
medicine, Satellite navigation, GPS. UNIT-IV Remote Sensing: Visual bands, Agricultural, Crop vegetation, Forestry, water Resources Land mapping, geology, Urban development resource Management, and image processing Metrology: Weather forecast (Long term and Short term), weather modelling, Cyclo tions, Disaster and flood warning, rainfall predictions using satellites. UNIT-V Satellite payloads: Technology missions, deep space planetary missions, Lunar missions, ty experiments, space biology and International space Missions. Advanced space systems: Remote sensing cameras, planetary payloads, space shuttle, sp	07 Hrss, Land use,techniques.one predic-07 Hrszero gravi-
medicine, Satellite navigation, GPS. UNIT-IV Remote Sensing: Visual bands, Agricultural, Crop vegetation, Forestry, water Resources Land mapping, geology, Urban development resource Management, and image processing Metrology: Weather forecast (Long term and Short term), weather modelling, Cyclo tions, Disaster and flood warning, rainfall predictions using satellites. UNIT-V Satellite payloads: Technology missions, deep space planetary missions, Lunar missions, ty experiments, space biology and International space Missions. Advanced space systems: Remote sensing cameras, planetary payloads, space shuttle, sp	07 Hrss, Land use,techniques.one predic-07 Hrszero gravi-

Course	course outcomes, riter completing the course, the students will be able to					
CO1	Explain different types of satellites, orbit and associated subsystems.					
CO2	Apply the basics of launching vehicles, satellites and sub systems for space applications.					
CO3	Analyze the applications of satellite in the area of communication, remote sensing, metrolo-					
	gy etc.,					
CO4	Study technology trends, satellite missions and advanced space systems.					

Refe	erence Books
1	Atmosphere, weather and climate, R G Barry, Routledge publications, 2009,
	ISBN- 10 :0415465702.
2	Fundamentals of Satellite Communication, K N Raja Rao, PHI, 2012, ISBN:9788120324015.
3	Satellite Communication, Timothy pratt, John Wiley, 1986 ISBN: 978-0-471-37007-9,
	ISBN 10: 047137007X.
4	Remote sensing and applications, B C Panda, VIVA books Pvt. Ltd., 2009,
	ISBN: 108176496308.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

				Semester: VII			
			ADVAN	ICED LINEAR AI	LGEBRA		
			· · · · · · · · · · · · · · · · · · ·	oup H: Global Ele	ctive)		•
	rse Code	:	16G7H12		CIE	:	100 Marks
	dits: L:T:P	:	3:0:0		SEE	:	
	al Hours	:	39L		SEE Duration	:	3.00 Hours
				ents will be able to			
1					to model a system of l	linear	equations an
			tion of system of	2			
2	Analyze and	exte	end the structure	of vector spaces, lin	near transformations, S	Symm	etric matrice
	quadratic for	ms r	equired in application	ations of Business, S	Science and Engineerir	ıg.	
3	Apply the co	ncep	ot of Eigenvalues	to study differential	l equations and dynam	ical s	ystems. Appl
	the concept o	f Or	rthogonality to ex	amine some of the l	east-squares problems.	•	- *
4	Apply Linear	Pro	ogramming to Net	work problems and	Game theory.		
	11.5		0 0	1	5		
	em of linear ed	-		Unit-I	ar equations. Linear r	nodel	07 Hrs
Mata Scie	rices and system	m o	f linear equations	s, Geometry of line nodel in Economics	ear equations, Linear r s, Balancing chemical		s in Business ions and Elec
Mata Scie trica	rices and system nce and Engine l networks.	m o eerir	f linear equations ng-Input-Output n	s, Geometry of line nodel in Economics Unit – II			s in Business
Mati Scie trica Vect Revi App sor j	rices and system nce and Engine 1 networks. tor spaces and ision of Vector lications to Dif	m o eerir line Spa fere vec	f linear equations ng-Input-Output n ear transformation aces, Subspaces, I ence equations, M tor spaces. Introd	s, Geometry of line nodel in Economics Unit – II ons Linear independence larkov chains. Inters uction to Linear tra		equat	s in Business ions and Elec 09 Hr ange of basis aces and Ter interpretation
Math Scie trica Vect Revi App sor p in 2-	rices and system nee and Engine 1 networks. tor spaces and ision of Vector lications to Diff product of two dimensions and	m o cerir line Spa fere vec d 3-o	f linear equations ng-Input-Output n ear transformation aces, Subspaces, I ence equations, M tor spaces. Introd dimensions.	s, Geometry of line nodel in Economics Unit – II ons Linear independence larkov chains. Inters uction to Linear tra Unit –III	e, Basis, Dimension and section, Sum, Product	equat	s in Business ions and Elec 09 Hr aange of basis aces and Ter
Math Scie trica Vect Revi App sor p in 2-	rices and system nee and Engine 1 networks. tor spaces and ision of Vector lications to Diff product of two dimensions and	m o cerir line Spa fere vec d 3-o	f linear equations ng-Input-Output n ear transformation aces, Subspaces, I ence equations, M tor spaces. Introd	s, Geometry of line nodel in Economics Unit – II ons Linear independence larkov chains. Inters uction to Linear tra Unit –III	e, Basis, Dimension and section, Sum, Product	equat	s in Business ions and Elec 09 Hr ange of basis aces and Ter interpretation
Math Scie trica Vect Revi App sor p in 2- Orth Orth Four	rices and system nce and Engine 1 networks. tor spaces and ision of Vector lications to Difference or oduct of two dimensions and hogonality, Eignogonality, Inne- rier transform.	m o cerir line Space ffere vecc d 3-c gen Eigen	f linear equations ng-Input-Output n ear transformation aces, Subspaces, I ence equations, M tor spaces. Introd dimensions. values and Eigen roduct spaces, Ap	s, Geometry of line nodel in Economics Unit – II ons Linear independence larkov chains. Inters uction to Linear tra Unit –III vectors oplications to Weigh	e, Basis, Dimension and section, Sum, Product	equat	s in Business ions and Elec 09 Hr ange of basis aces and Ter interpretation 09 Hr er series, Fas
Math Scie trica Vect Revi App sor p in 2- Orth Orth Four	rices and system nce and Engine 1 networks. tor spaces and ision of Vector lications to Difforduct of two edimensions and hogonality, Eig logonality, Inne	m o cerir line Space ffere vecc d 3-c gen Eigen	f linear equations ng-Input-Output n ear transformation aces, Subspaces, I ence equations, M tor spaces. Introd dimensions. values and Eigen roduct spaces, Ap	s, Geometry of line nodel in Economics Unit – II ons Linear independence farkov chains. Inters fuction to Linear tra Unit –III vectors oplications to Weigh gen vectors, Applic	s, Balancing chemical e, Basis, Dimension an section, Sum, Product insformations, Geomet	equat	s in Business ions and Elec 09 Hr aange of basis aces and Ter interpretation 09 Hr er series, Fast ions, Discret
Math Scie trica Vect Revi App sor 1 in 2- Orth Orth Foun dyna	rices and system nce and Engine 1 networks. tor spaces and ision of Vector lications to Difference or oduct of two dimensions and hogonality, Eignogonality, Inne- rier transform.	m o cerir line Spa fere vec d 3-c d 3-c gen Eig	f linear equations ng-Input-Output n ear transformatic aces, Subspaces, 1 ence equations, M tor spaces. Introd dimensions. values and Eigen roduct spaces, Ap en values and Ei	s, Geometry of line nodel in Economics Unit – II ons Linear independence larkov chains. Inters uction to Linear tra Unit –III vectors oplications to Weigh gen vectors, Applic Unit –IV	s, Balancing chemical e, Basis, Dimension an section, Sum, Product insformations, Geomet	equat	s in Business ions and Elec 09 Hr ange of basis aces and Ter interpretation 09 Hr er series, Fas
Math Scie trica Vect Revi App sor p in 2- Orth Foun dyna Sym	rices and system nee and Engine 1 networks. tor spaces and ision of Vector lications to Difference orduct of two orduct of two dimensions and hogonality, Eignogonality, Inne- rier transform. mical systems.	line Space ffere vec: d 3-e gen Eig es a	f linear equations ng-Input-Output n ear transformation aces, Subspaces, I ence equations, M tor spaces. Introd dimensions. values and Eigen roduct spaces, Ap en values and Eigen nd quadratic for tric matrices, Qua	s, Geometry of line nodel in Economics Unit – II ons Linear independence larkov chains. Inters uction to Linear tra Unit –III vectors oplications to Weigh gen vectors, Applic Unit –IV ms	e, Basis, Dimension and section, Sum, Product insformations, Geomet inted least-squares and cations to Differential	equat	s in Business ions and Elec 09 Hr ange of basi aces and Ter interpretation 09 Hr er series, Fas ions, Discret 07 Hr

Linear programming and game theory

A Geometrical introduction to Linear programming, Simplex method and its geometrical meaning, Network models-Max flow-min cut theorem, Payoff matrix and Matrix games.

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Identify and interpret the fundamental concepts of linear equations, vector spaces, linear
	transformations, Orthogonality, Eigen values, symmetric matrices, quadratic forms, linear
	programming and game theory.
CO2:	Apply the knowledge and skills of Linear algebra to solve linear equations, difference and
	differential equations, constrained optimization problems, linear programming problems and
	related problems.
CO3:	Analyze the input-output models, Markov chains, discrete dynamical systems, singular value
	decomposition, network models and related problems.
CO4:	Using the overall mathematical knowledge of Linear Algebra to solve problems arising in
	practical situations.

Refere	Reference Books					
1	David C Lay; Linear Algebra and Its Applications; Pearson Education; III Edition; 2003;					
-	ISBN: 978-81-775-8333-5.					
2	Gareth Williams; Linear Algebra with Applications; 6 th edition; 2008; Narosa publications;					
2	ISBN: 978-81-7319-981-3.					
2	Gilbert Strang; Linear Algebra and Its Applications; IV Edition; Cengage Learning India					
3	Edition; 2006; ISBN: 81-315-0172-8.					
	Howard Anton and Chris Rorres; Elementary Linear Algebra Applications Version; Wiley					
4	Global Education; 11th Edition; 2013; ISBN: 9781118879160.					

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 60 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	Semester: VII THIN FILM NANOTECHNOLOGY (Group H: Global Elective)						
Cou	rse Code	:	16G7H13	CIE	:	100 Marks	
Credits: L:T:P			3:0:0	SEE		100 Marks	
Total Hours : 39L SEE Duration : 3.00 Hours						3.00 Hours	
Cou	rse Learning C	bj	ectives: The students	will be able to	•		
1	Understand the importance of vacuum in thin film fabrication						
2	Acquire the k	nov	vledge of thin film pre	paration by various techniques			
3	Analyze the p	rop	erties of thin films usi	ing different characterization met	hods		
4	Optimize the process parameter and property dependence						
5							

Unit-I	08 Hrs			
Vacuum Technology: Basics of Vacuum - Principles of different vacuum pumps: Rotary, Ro	oots, Dif-			
fusion, Turbo molecular and Cryogenic pumps; Measurement of vacuum - Concept of Capacitance				
Manometer, Pirani and Penning gauges - Vacuum Systems & Applications.				
Unit – II	08 Hrs			
Methods of thin film preparation				
Physical Vapor Deposition (PVD) Techniques:				
<i>Evaporation</i> : Thermal evaporation, Electron beam evaporation, Laser ablation, and Cathode				
sition. Sputtering: DC sputtering, RF Sputtering, Magnetron sputtering, Reactive Sputtering	, and Ion			
beam sputtering.				
Chemical Vapor Deposition (CVD) Techniques: Conventional CVD, Plasma Enhan	ce CVD			
(PECVD) and Atomic layer deposition (ALD).				
Other Methods: Spin coating and Spray Pyrolysis.				
Unit –III	07 Hrs			
Surface Modification and Growth of Thin Films:				
Surface preparation & Engineering for Thin film growth: Cleaning, Modification, Masking &	'z Pattern-			
ing, Base Coats and Top Coats.				
Thin Film growth: Sequence of thin film growth, Defects and impurities, Effect of Depos	sition Pa-			
rameters on film growth.				
Unit –IV	08 Hrs			
Properties and Characterization of Thin Films				
Film thickness (Quartz crystal thickness monitor and Stylus Profiler);				
Film Adhesion (Tape, Cross-hatch test, and Humidity methods);				
Surface morphology and topography (SEM and AFM);				
Film composition (X-ray Photoelectron Spectroscopy);				
Film structure (X-ray diffraction and Raman studies);				
Electrical characterization (Four Probe and Semiconductor Analyzer); and				
Optical characterization (Spectrophotometer).				
Unit –V	08 Hrs			
Thin Film Applications:				
 Electrodes: Deposition of a Metal film, Ex: Aluminum. 				
 Transparent conducting oxides (TCO) – Preparation and Optimization of a semicond 	ucting			
film, Ex: ZnO.				
 Optimization of a dielectric film, Ex: Al₂O₃ or Si₃N₄. 				

Thin Film Devices:

- Thin Film Transistors (TFT),
- Thin Film Sensors
- Thin Film Capacitors

- Thin film Solar Cells,
- Thin film Solar Absorbers
- Diamond-like carbon (DLC) coating
- EMI Shielding coatings
- Hard coatings
- Coatings on Plastics/Polymers.

Cours	Course Outcomes: After completing the course, the students will be able to					
CO1	Understand the importance of vacuum technology for thin film growth					
CO2	Prepare various kinds of thin films using different deposition techniques					
CO3	Characterize the deposited films for various properties					
CO4	Fabricate thin film based devices.					

Reference Books

1.	Vacuum Technology by A. Roth, Elsevier, 3rd Edition, 1976, ISBN: 9780444880109,
	9780444598745,
2.	Thin Film Phenomenon by K.L. Chopra, McGraw-Hill, 1st Edition, 1969, ISBN: 0070107998,
	978-0070107991
3.	Materials Science of Thin Films by Milton Ohring, Elsevier, 2 rd Edition, 2001, ISBN:
	9780125249751
4.	Thin-Film Deposition: Principles and Practice by Donald Smith, McGraw-Hill, 1st Edition,
	1995, ISBN: 0070585024, 9780070585027

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 60 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10. Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	Semester: VII							
	ENGINEERING MATERIALS FOR ADVANCED TECHNOLOGY							
			(Grouj	o H: Global H	Elective)			
Cou	Course Code: : 16G7H14 CIE : 100 Marks					100 Marks		
Cree	dits: L:T:P	:	3:0:0		SEE	:	100 Marks	
Tota	Total Hours: 39LSEE Duration: 3.00 Hours					3.00 Hours		
Cou	rse Learning Obj	ect	ives: The students	will be able t	0			
1	Aapply the basic	Aapply the basic concepts of Chemistry to develop futuristic materials for high-tech applica-						
1	tions in the area of Engineering.							
Impart sound knowledge in the different fields of material chemistry so as to apply it t				to apply it to the				
2	2 minipart sound knowledge in the different fields of material chemistry so as to apply it to the problems in engineering field.							
3		Develop analytical capabilities of students so that they can characterize, transform and use ma-						
3	terials in enginee	terials in engineering and apply knowledge gained in solving related engineering problems.						
	terrais in engineering and apply knowledge gamed in solving related engineering problems.							

Comme and having materials				
Surface Coating materials:				
Synthesis and applications of Polymer coating materials: Teflon, Silicone films Polyvinyl chloride &				
its copolymers, Poly vinyl acetate, Poly ethylene-HDPE, LDPE, Polyurethane.				
Properties required in a pigment and extenders.				
Inorganic pigments-titanium dioxide, zinc oxide, carbon black, chromate pigments, chr	ome green,			
ultramarine blue, iron blue, cadmium red.				
Corrosion inhibiting pigments- zinc phosphate, zinc and barium chromate pigments, ceramic pig				
ments, metal flake pigments, extenders.				
Developments in new polymers such as dendrimers, biopoplymers & biodegradable polymers.				
Packaging materials:				
Food products: Cellulosic and Polymeric packaging materials and their properties – including barrier				
properties, strength properties, optical properties. Glass, aluminium, tin, paper, plastics, composites.				
Pharmaceutical products: Injectibles and tablet packaging materials.				
UNIT-II 07 Hrs				

UNIT-I

Adhesives

Coating and packaging materials

Introduction-Classification of Adhesives-Natural adhesives, synthetic adhesives-drying adhesives, pressure sensitive adhesives, contact adhesives, hot adhesives. One part adhesives, multi part adhesives. Adhesive Action. Development of Adhesive strength- Physical factors influencing Adhesive Action-surface tension, surface smoothness, thickness of adhesive film, elasticity and tensile strength. Chemical Factors Influencing Adhesive action - presence of polar groups, degree of polymerization, complexity of the adhesive molecules, effect of pH. Adhesive action- specific adhesive action, mechanical adhesive action, fusion adhesion. Development of adhesive strength-adsorption theory and diffusion theory. Preparation, curing and bonding Processes by adhesives-with reference to Epoxy, phenolics, Silicone, Polyurethane, Acrylic adhesives, Poly vinyl alcohol, Polyvinyl acetate.

Optical fibre materials

Fiber Optics, Advantages of optical fiber communication over analog communication, Classification based on refractive index of the core- step index and graded index optical fibres, Classification based on core radius-single mode and multimode optical fibres, Fibre fabrication.-Methods to manufacture optical glass fibres. Double crucible method and preform methods. Manufacture of perform- Chemical Vapour Deposition (CVD), Modified vapour deposition (MCVD) Plasma activated vapour deposition (PCVD), Outside vapour deposition (OVD)-Vapour-phase axial deposition (VAD). Drawing the fibres from perform, coating and jacketing process.

Ion exchange resins and membranes

Ion exchange resins-Introduction, Types, physical properties, chemical properties-capacity, swelling, kinetics, stability, ion exchange equilibrium, regeneration. Applications of ion exchange resinssoftening of water, demineralization of water, advantages and disadvantages of ion exchange resins-

08 Hrs

calcium sulphate fouling, iron fouling, adsorption of organic matter, bacterial contamination. Ion exchange membranes, Types, Classification, Fabrication of ion exchange cottons- anion exchange cotton and cation exchange cotton. Application of ion exchange membranes in purification of water by electro dialysis method.

Hrs

08 Hrs

Spectroscopic Characterization of materials:

Electromagnetic radiation, interaction of materials with electromagnetic radiation.

UNIT-IV

UNIT-V

UV- visible spectrophotometry:Introduction-Electronic transitions- factors influencing position and intensity of absorption bands-absorption spectra of dienes, polyene and α,β -unsaturated carbonyl compounds, Working of UV-Vis spectrophotometer, Theoretical calculation of λ_{max} by using Wood-ward-Fieser rules- for cyclic and α,β -unsaturated carbonyl compounds.

IR Spectroscopy: Introduction, principle, molecular vibrations, vibrational frequency, number of fundamental vibrations, factors influencing fundamental vibrations, instrumentation of IR spectrophotometer, sampling techniquesand application of IR spectroscopy in characterization of functional groups.

NMR spectroscopy:

H¹ NMR Spectroscopy: Basic concepts- relaxation process. NMR spectrometer-FT NMR-Solvents used in NMR, internal standards-Chemical equivalence -Integrals and Integrations- chemical shift-Factors affecting chemical shifts- shielding and deshielding effects – chemical and magnetic equivalent –magnetic anisotropy-spin-spin splitting rules- Application of NMR on various compounds such as alkanes, alkenes, alkynes, alkyl halides, alcohols, ethers, amines, aldehydes, ketones, carboxylic acids, esters, amides & mono substituted aromatic compounds. Problems on prediction of structure of compounds.

Cou	Course Outcomes: After completing the course, the students will be able to				
CO	I Identify sustainable engineering materials and understand their properties.				
CO2	2 Apply the basic concepts of chemistry to develop futuristic materials for high-tech applications				
	in different areas of engineering.				
CO3	Analyze and evaluate the specific application of materials.				
CO4	Design the route for synthesis of material and its characterization.				
Refe	erence Books				
1.	Materials Science, G.K.Narula, K.S.Narula & V.K.Gupta. 38th Editon, 2015, Tata McGraw-Hill				
	Publishing Company Limited ISBN: 978-0-07-451796-3.				
2.	Solar Lighting, Ramachandra Pode and Boucar Diouf, Springer e-book, 2011, ISBN: 978-1-44-				
	712133-6 (Print) 978-1-44-712134-3 (Online),				
3.	Spectroscopy of organic compounds, P.S.Kalsi, 6th Edition, 2013, New Age International(P)				
	ltd,publisher, ISBN: 978-1-22-415438-6.				
4.	Food Packaging Materials, Mahadeviah M & Gowramma RV,6 th Edition, 1996, Tata McGraw				
	Hill Publishing Company Ltd. ISBN :746-2-23-82 9780-0.				

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks cov-

ering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	Semester: VII						
	APPLIED PSYCHOLOGY FOR ENGINEERS						
	(Group H: Global Elective)						
	Course Code : 16G7H15 CIE : 100						
	dits: L:T:P	:	3:0:0		SEE	:	100
	l Hours	:	35L		SEE Duration	:	3 Hours
Cou			ectives: The studen				
1	To appreciate human behavior and human mind in the context of learner's immediate society and environment.						
2				felong learning and p e nature of work evolv		o su	stain personal
3		stude	ents with knowledge	e and skills for buildin		or tl	ne suitable en-
4	To prepare s	tude		ffective Engineering P zation.	sychologists in an Ir	ndus	strial,
5	To enable stu	uden	ts to use psycholog	ical knowledge, skills sonal goals and societ		patio	onal pursuits
				U nit – I			7 Hrs
Intel genc genc	lligence and A e. Theories of e tests, Types	Apti f Inte of t	tude: Concept and elligence – Spearm	Unit - II definition of Intellig an, Thurston, Guilford of Intelligence and A allized Intelligence.	d Vernon. Character	istic	es of Intelli-
	1 0			nit – III			7 Hrs
cio- Asse Proje ment Burr	Personality: Concept and definition of personality, Approaches of personality- psychoanalytical, So- cio- Cultural, Interpersonal and developmental, Humanistic, Behaviorist, Trait and type approaches. Assessment of Personality: Self- report measures of Personality, Questionnaires, Rating Scales and Projective techniques, its Characteristics, advantages & limitations, examples. Behavioral Assess- ment. Psychological Stress: a. Stress- Definition, Symptoms of Stress, Extreme products of stress v s Burnout, Work Place Trauma. Causes of Stress – Job related causes of stress. Sources of Frustra- tion, Stress and Job Performance, Stress Vulnerability-Stress threshold, perceived control.						
				nit – IV			7 Hrs
ogy, to w recei	Application of Psychology in Working Environment: The present scenario of information technol- ogy, the role of psychologist in the organization, Selection and Training of Psychology Professionals to work in the field of Information Technology. Distance learning, Psychological consequences of recent developments in Information Technology. Type A and Type B Psychological Counseling - Need for Counseling, Types – Directed, Non- Directed, Participative Counseling.						
			l	Jnit – V			7 Hrs
lov), expt	Learning: Definition, Conditioning – Classical Conditioning, Basics of Classical Conditioning (Pav- lov), the process of Extinction, Discrimination and Generalization. Operant Conditioning (Skinner expt). The basics of operant conditioning, Schedules of reinforcement. Cognitive – Social approaches to learning – Latent Learning, Observational Learning, Trial and Error Method, Insightful Learning.						

Experimental Psychology (Practicals)- Self Study 2 Hrs /Week

1.Bhatia's Battery of Performance and intelligence test

2. Multidimensional Assessment of Personality

3. David's Battery of Differential Abilities (Aptitude test)

4.Bilateral Transfer of Training Mirror drawing apparatus with Electronic Digital Reset Error Counter (Performance)

5. Student Stress Scale.

Cours	e Outcomes: After completing the course, the students will be able to
CO1	Describe the basic theories, principles, and concepts of applied psychology as they relate to behaviors and mental processes.
CO2	Define learning and compare and contrast the factors that cognitive, behavioral, and Humanistic theorists believe influence the learning process.
CO3	Develop understanding of psychological attributes such as intelligence, aptitude, creativity, resulting in their enhancement and apply effective strategies for self-management and self-improvement.
CO4	Apply the theories into their own and others' lives in order to better understand their person- alities and experiences.
CO5	Understand the application of psychology in engineering and technology and develop a route to accomplish goals in their work environment.

Reference Books:

1. Understanding Psychology Feldman R. S, IV edition, (1996) McGraw Hill India

2. Psychology Robert A. Baron, III edition (1995) Prentice Hall India.

3. Organizational Behaviour , Stephen P Robbins Pearson Education Publications, 13th Edition, ISBN - 81-317 - 1132 - 3

4. Organisational Behaviour : Human Behaviour at Work ,John W.Newstrem and Keith Davis. Tata McGraw Hill India, 10th Edition, ISBN 0-07-046504-5

5. Psychology-themes and variations, Wayne Weiten, IV edition, Brooks / Cole Publishing Co.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10. Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks. Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course con-

	Semester: VII						
	FOUNDATIONAL COURSE ON ENTREPRENEURSHIP						
	(Group H : Global Elective)						
	urse Code	:	16G7H16		CIE Marks	:	100
	edits: L:T:P:S	:	3:0:0:0		SEE Marks	:	100
	Fotal Hours:36LSEE Duration:03 Hours						
	urse Learning (Db	jectives:				-
1				ver their innate flow, entreprene	eurial style, and ide	nti	fy problems
•	worth solving t				•.• 1 .		1 .1 1
2	-	arti	cipants on leas	n methodology to craft value pr	roposition and get i	ead	ly with lean
3	canvas	ior	demo by con	ducting customer interviews an	d finding problem	<u>co</u> 1	ution fit for
3	building Minim				a mang problem-	501	
4				cost structure, pricing, revenue	types and importat	nce	of adopting
-	shared leadersh				oppos una importan	100	or unopping
5				ng brand and identify various sa	les channels for the	ir p	products and
	services	L				1	
6				cs of business regulations and o	other legal terms alo	ng	with under-
	standing of Inte	elle	ctual Property	Rights	-	-	
				Unit-I			07 Hrs
	f Discovery and						
				tifying the Effectuation princip			
				nking; Brainstorming; Presentir	ng the Identified pro	obl	ems; Identi-
Tyn	fying the Entrepreneurial Style. Unit – II 07 Hrs						
Cu	stomer, Solutio	n a	nd Lean Meth				07 111 5
				on and Targeting; Identifying	Jobs. Pains. and G	ain	s and Early
				n Canvas (VPC); Presenting VF			
	· · ·			Canvas; Risks and Assumptions			
	••			Unit – III			07 Hrs
	oblem-Solution						
				Strategy Canvas; Four Action			
				rategy; Building Solution Dem	U	So	ution Inter-
vie	ws; Problem-Sol	luti	on Fit; Buildin	g MVP; Product-Market Fit; Pre	esenting MVP.		0.677
Π.	. 101 .		T D '11'	Unit – IV			06 Hrs
	ancial Planning				Т		
	Cost Structure - Estimating Costs; Revenues and Pricing: Revenue Streams, Revenue Types, Identify-						
ing Secondary Revenue Streams, Estimating Revenue and Price; Profitability Checks; Bootstrapping and Initial Financing; Practising Pitch; Shared Leadership; Hiring and Fitment, Team Role and Re-							
sponsibilities.							
bpe	Unit – V 09 Hrs						
Ma	rketing, Sales.	Re	gulations and	Intellectual Property			
	0		0	Sales Planning; Project Manage	ement; Basics of Bu	isir	ess Regula-
	tions; How to Get Help to Get Started; Patents, Trademark, Licensing, Contracts; Common Legal mis-						
				ation Documents, Compliance; l			
4 1	ershin and Transfer						

ership and Transfer.

Cours	Course Outcomes: After completing the course, the students will be able to				
CO1	showcase the ability to discern distinct entrepreneurial traits				
CO2	Know the parameters to assess opportunities and constraints for new business ideas				
CO3	Understand the systematic process to select and screen a business idea				
CO4	design strategies for successful implementation of ideas				
CO5	Create Business Model and develop Minimum Viable Product				

Ref	Reference Books					
1	Running Lean: Iterate from Plan A to a Plan That Works. O'Reilly Media, Maurya, A., 2012.					
2	2 Entrepreneurship.Roy, R., 2012. Oxford University Press					
3	3 Intellectual Property Law in India. Gupta, T. S., 2011. Kluwer Law International					
4	Flow: The Psychology of Optimal Experience. Czikszentmihalyi, M., 2008. Harper Perennial					
4	Modern Classics					
5	Effectuation: Elements of Entrepreneurial Expertise. Sarasvathy, S. D., 2009. Edward Elgar Pub-					
3	lishing Ltd.					

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

Semester: VII								
UNMANNED AERIAL VEHICLES								
			(Grou	p H: Global Elective	e)			
Cou	Course Code : 16G7H17 CIE : 100 Marks							
Crea	lits: L:T:P	:	3:0:0:0		SEE	:	100 Marks	
Tota	Total Hours:36LSEE Duration:3.00 Hours						3.00 Hours	
Cou	rse Learning O	bjo	ectives: The student	s will be able to				
1	Get an overvie	ew	of the history of UA	V systems				
2	Understand th	e i	mportance of aerody	ynamics, propulsion,	structures and avion	ics	in the design	
	of UAV							
3				rious mission payloa	ds - on-board & off-	boa	rd, propulsion	
	systems, integ	rati	ion with manned sys	stems				
4								

Unit-I	06 Hrs				
Introduction to Flight Vehicles:	001115				
History of Flight Vehicles and UAVs, Classifications, Woking principles of flight vehicle.					
Introduction to Unmanned Aircraft Systems					
Types of UAVs, configurations and their advantages disadvantages, System Composition,	Applica-				
tions of UAVs, Characteristics of Aircraft					
Unit – II	07 Hrs				
Design of UAV Systems: Governing aspects:					
a. Aerodynamics, b. Propulsion, C. structure, d. Controls					
Aerodynamics:					
Introduction basic Aerodynamics, lift, drag, Aerofoils, wing area optimization.					
Propulsion:					
Introduction to propulsion system in UAV, Propulsion system for fixed wing UAV and VTOI					
cal take-off and landing) UAV, Advanced propulsion systems, fuel cells, generators based sys					
Unit -III	07Hrs				
Structures of UAV:					
Mechanic loading, basics of types of load calculation and structural engineering, Material					
UAV (general introduction), FRP and methods of usage in UAV, Testing of FRP specimens for					
selection criteria for structure, Types of structural elements used in UAV their significance a	nd char-				
acteristics, Methods of manufacturing UAV structure.					
Unit -IV	07 Hrs				
Controls, Avionics, Hardware, Communication, Payloads:					
Basics of control system and Systems for control system in UAV, PID control, simulation introduc-					
tion to Hardware in loop system (HILS), Avionics: Autopilot (AP) - architecture of AP, sensors, ac-					
tuators, power supply, integration, installation, configuration, and testing.					
Hardware, Communication					
Electronics Hardware in UAV, Communication methods, communication antenna and their	signifi-				
cance.	C				
Payloads:					
Payload types and their applications					
Unit -V	09 Hrs				
Design of UAV Systems:	07 111 3				
Fixed wing UAV and Rotary wing UAV (VTOL)					
Task specific, activity based exercise					
Course Outcomes: At the end of this course the student will be able to :					
CO1 Appraise the evolution of UAVs and understand the current potential benefits of UAVs	3				

CO2	Apply the principles of Aerospace Engineering in design and development of UAVs					
CO3 Determine and evaluate the performance of UAV designed for various Missions and app tions						
CO4	Assess the performance and airworthiness of the designed UAV					

Reference Books

Nei	
1	Unmanned Aircraft Systems UAV design, development and deployment, Reg Austin, 1st Edi-
1	tion, 2010, Wiley, ISBN 9780470058190.
2	Flight Stability and Automatic Control, Robert C. Nelson, 2 nd Edition, October 1, 1997,
2	McGraw-Hill, Inc, ISBN 978-0070462731.
3	Advances in Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy, Kimon P.
3	Valavanis, 1st Edition,2007, Springer ISBN 9781402061141
4	Introduction to UAV Systems, Paul G Fahlstrom, Thomas J Gleason, 4th Edition, 2012, Wiley,
4	ISBN: 978-1-119-97866-4
5	Design of Unmanned Air Vehicle Systems, Dr. Armand J. Chaput, 3rd Edition, 2001, Lockheed
5	Martin Aeronautics Company, ISBN: 978-1-60086-843-6

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

Semester: VIII							
	MAJOR PROJECT						
	(Common to all Programs)						
Course Code	:	16EI81		CIE	:	100 Marks	
Credits: L:T:P:S	:	0:0:16:0		SEE	:	100 Marks	
Hours / Week	:	32		SEE Duration	:	3.00 Hours	

Course Learning Obie	ctives: The students will be able to
Course Learning Obje	cuves: The students will be able to

1	Acquire the ability to make links across different areas of knowledge and to generate, develop					
	and evaluate ideas and information so as to apply these skills to the project task.					
2	Acquire the skills to communicate effectively and to present ideas clearly and coherently to a					
	specific audience in both written and oral forms.					
3	Acquire collaborative skills through working in a team to achieve common goals.					
4	Self-learn, reflect on their learning and take appropriate action to improve it.					
5	Prepare schedules and budgets and keep track of the progress and expenditure.					

Major Project Guidelines:

- 1. The project topic, title and synopsis have to be finalized and submitted to their respective internal guide(s) before the beginning of the 8th semester.
- 2. The detailed Synopsis *(approved by the department Project Review Committee*) has to be submitted during the 1st week after the commencement of 8th semester.

Batch Formation:

- Students are free to choose their project partners from within the program or any other program;
- Each student in the team must contribute towards the successful completion of the project. The project may be carried out In-house / Industry / R & D Institution;
- > The project work is to be carried out by a team of two to four students, in exceptional cases where a student is placed in a company and offered an internship through the competitive process or student is selected for internship at national or international level through competitive process, the student can work independently.
- > The students are allowed to do either a project for full 5 days in the industry or full 5 days in the college.
- In case the project work is carried out outside Bengaluru, such students must be available during Project Evaluation process scheduled by the respective departments and they must also interact with their guide regularly through Email / Webinar / Skype etc.

Project Topic Selection:

The topics of the project work must be in the *field of respective program areas or in line with CoE's (Centre of Excellence) identified by the college* or List of project areas as given by industry/Faculty. The projects as far as possible should have societal relevance with focus on sustainability.

Project Evaluation:

- Continuous monitoring of project work will be carried out and cumulative evaluation will be done.
- The students are required to meet their internal guides once in a week to report their progress in project work.
- Weekly Activity Report (WAR) has to be maintained in the form of a diary by the project batch and the same has to be discussed with the Internal Guide regularly.
- In case of Industry project, during the course of project work, the internal guides will have continuous interaction with external guides and will visit the industry at least twice during the project period.

- > For CIE assessment the project groups must give a final seminar with the draft copy of the project report.
- > The presentation by each group will be for 20-30 minutes and every member of the team needs to justify the contributions to the project.
- > The project team is required to submit Hard copies of the detailed Project Report in the prescribed format to the department.
- ▶ For CIE 50% weightage should be given to the project guide and 50% weightage to the project evaluation committee.
- > Before the final evaluations the project group is required to produce a No dues certificate from Industry, Central Library and Department.

Course Outcomes of Major Project: Apply knowledge of mathematics, science and engineering to solve respective engineering 1 domain problems. Design, develop, present and document innovative/multidisciplinary modules for a complete 2 engineering system. Use modern engineering tools, software and equipment to solve problem and engage in life-3 long learning to follow technological developments. Function effectively as an individual, or leader in diverse teams, with the understanding of pro-4 fessional ethics and responsibilities.

CIE Assessment:

The following are the weightings given for the various stages of the project.

1.	Selection of the topic and formulation of objectives	10%
2.	Design and Development of Project methodology	25%
3.	Execution of Project	25%
4.	Presentation, Demonstration and Results Discussion	30%
5.	Report Writing & Publication	10%
E A	ssessment:	
Th	e following are the weightages given during Viva Examination.	

SEF

Th	e following are the weightages given during Viva Examination.	
1.	Written presentation of synopsis	10%
2.	Presentation/Demonstration of the project	30%
3.	Methodology and Experimental Results & Discussion	30%
4.	Report	10%
5.	Viva Voce	20%

Calendar of Events for the Project Work:

Week	Event
Beginning of 7th Semester	Formation of group and approval by the department committee.
7 th Semester	Problem selection and literature survey
Last two weeks of 7 th Semester	Finalization of project and guide allotment
II Week of 8 th Semester	Synopsis submission and preliminary seminar
III Week	First visit of the internal guides to industry (In case of project being carried out in industry)
III to VI Week	Design and development of project methodology
VII to IX Week	Implementation of the project
X Week	Submission of draft copy of the project report
XI and XII Week	Second visit by guide to industry for demonstration. Final seminar by Department project Committee and guide for internal assess- ment. Finalization of CIE.

Scheme of Evaluation for CI	Scheme of Evaluation for SEE		
Particulars	%Marks	Particulars	%Marks
Project Evaluation I	10%	Project Synopsis (Initial Write up)	10%
Project Evaluation II	25%	Project Demo / Presentation	30%
Project Evaluation III	25%	Methodology and Results Dis- cussion	30%
Project Evaluation Phase-IV (Submission of Draft Project Report for Verification)	30%	Project Work Report	10%
Project Evaluation Phase-V (Project Final Internal Evaluation)	10%	Viva-voce	20%
Total	100	Total	100

Evaluation Scheme for CIE and SEE

Semester: VIII						
TECHNICAL SEMINAR						
		()	Common to all F	rograms)		
Course Code	:	16EI82		CIE	:	100 Marks
Credits: L:T:P:S	:	0:0:2:0		SEE	:	100 Marks
Hours / Week	:	04		SEE Duration	:	3.00 Hours

Course Learning Objectives: The students will be able to

1	Recognize recent developments in specific program and in multidisciplinary fields.
2	Summarize the recent technologies and inculcate the skills for literature survey.
3	Demonstrate good presentation skills.
4	Plan and improve the Technical Report writing skills.
5	Support Group discussion and Team work.

General Guidelines for the Seminar

- 1. The seminar has to be presented by individual student.
- 2. The topic of the seminar should be from current thrust area along with consultation with the guide.
- 3. The topic can be based on standard papers (like IEEE/ACM/CSI etc.) in the thrust area for the selected topic.
- 4. Presenting/publishing this paper in conference/ Journal will be given weightage in CIE.
- 5. The student needs to submit both hard & soft copy of the seminar report.
- 6. As Outcome of Technical Seminar, each student has to prepare a technical paper out of seminar topic.

Course Outcomes of Technical Seminar:

1	Communicate effectively on complex engineering problems and demonstrate contextual
	knowledge to assess societal and environmental contexts.
2	Identify formulate review research literature analyze and Design solutions for complex en-

- 2 Identify, formulate, review research literature, analyze and Design solutions for complex engineering problems using appropriate techniques with effective documentation.
- 3 Analyze, interpret and synthesize the information to provide valid conclusions with innovative ideas and ethical principles.
- 4 Apply the knowledge of engineering specialization to suggest solutions to complex engineering problems and recognize the need for technological changes.

Evaluation of CIE Marks:

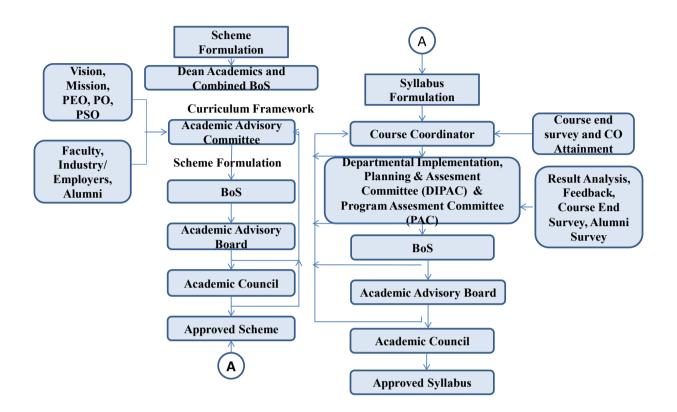
1.	Relevance of the topic	10%
2.	Literature Survey	10%
3.	Presentation	40%
4.	Report	20%
5.	Paper Publication	20%

					CO-P	O MAI	PPING					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		1	1	-	-	1	-	2	-	-	-	2
CO2	2	1	2	-	1	-	-	-	-	-	2	2
CO3	-	2	1	-	2	-	-	-	-	-	-	2
CO4	1	2	2	1	1	2	2	-	2	2	-	2

Low-1 Medium-2 High-3

Electronics and Instrumentation Engineering

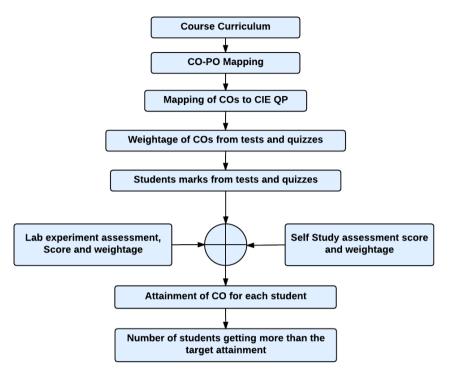
Semester: VIII							
INNOVATION & SOCIAL SKILLS							
	(Common to all Programs)						
Course Code	:	16HS83		CIE	:	NA	
Credits: L:T:P:S	:	0:0:1:0		SEE	:	NA	
Hours / Week	:	02		SEE Duration	:	NA	

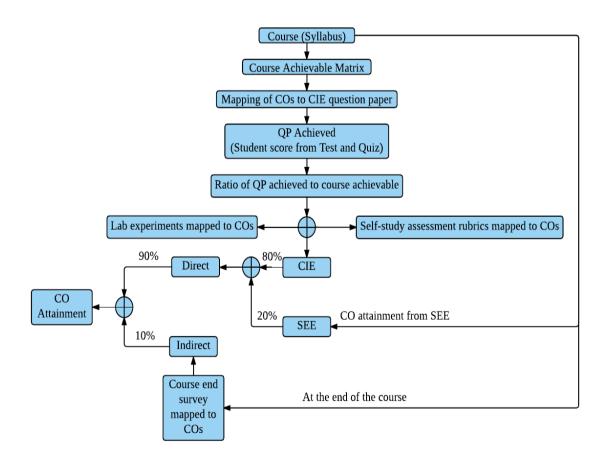

Cou	Course Learning Objectives: The students will be able to					
1	To provide a platform for the students to exhibit their organizational capabilities, team building,					
	ethical values and extra mural abilities.					
2	To encourage to carryout innovative ideas and projects.					
3	Take part in societal and community building activities.					
4	Make self-learning, ethics and lifelong learning a motto.					

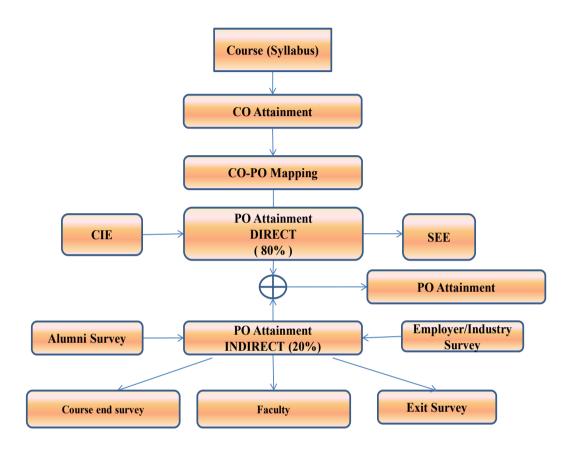
Guidelines

- The HSS will be evaluated individually based on the broad parameters which include the progress made by student during 3rd& 4th year in innovative projects, Seminar, Paper Presentation, Field activity & other Co-curricular activities.
- 2. Students shall submit a report and documents as a proof his/her achievements.

Cou	Course Outcomes of Innovation & Social Skills:					
1	Apply the knowledge and skills for solving societal issues					
2	Plan to work in team in various areas with inclusive effort and sustainability					
3	Organize various events and use managerial and budgeting abilities					
4	Demonstrate leadership qualities and ethics					


Curriculum Design Process


Academic Planning and Implementation


PROCESS FOR COURSE OUTCOME ATTAINMENT

Final CO Attainment Process

Program Outcome Attainment Process

Guidelines for Fixing Targets

• The target may be fixed based on last 3 years' average attainment

PROGRAM OUTCOMES (POs)

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.

2. **Problem analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.

4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.