Go, change the world

RV Educational Institutions [®] RV College of Engineering [®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Bachelor of Engineering (B.E) Scheme and Syllabus of VII & VIII Semesters

2018 SCHEME

ELECTRONICS & INSTRUMENTATION ENGINEERING

2021-2022

VISION

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

MISSION

- 1. To deliver outcome based Quality education, emphasizing on experiential learning with the state of the art infrastructure.
- 2. To create a conducive environment for interdisciplinary research and innovation.
- 3. To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- 4. To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- 5. To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

QUALITY POLICY

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

CORE VALUES

Professionalism, Commitment, Integrity, Team Work, Innovation

RV COLLEGE OF ENGINEERING[®]

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus of VII & VIII Semesters

2018 SCHEME

DEPARTMENT OF ELECTRONICS & INSTRUMENTATION ENGINEERING

DEPARTMENT VISION

Achieving academic excellence in Instrumentation Technology by adopting interdisciplinary research with a focus on sustainable and inclusive technologies.

DEPARTMENT MISSION

- To create an environment for students to excel in domain areas and get motivated to involve in interdisciplinary research by utilizing state of the art infrastructure.
- To impart technical knowledge, encourage experiential learning and develop future professional leaders.
- To establish industry-academia networking and develop industry-ready students and future entrepreneurs, to meet societal & industrial challenges.
- To motivate lifelong learning and research in sustainable technologies to find improved solutions for the betterment of society

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO1 Apply Instrumentation, Electronics, Controls and Automation concepts to develop ethnical solutions for industrial problems

Exhibit competency in adapting to various industrial challenges and work in inter

- **PEO2** disciplinary projects with team spirit and professional ethics for achieving organizational goals.
- **PEO2** Pursue higher education in technology or management and achieve professional excellence by imbibing leadership qualities and communication skills.
- **PEO4** Become entrepreneurs with a focus on sustainable technologies and develop innovative solutions to meet industrial and societal needs

PROGRAM SPECIFIC OUTCOMES (PSOS)

Design, analyze and practice the instrumentation, controls and automation concepts

PSO1 and techniques required for industrial and/or research pursuits resulting in product development, publications or patents.

Demonstrate the knowledge of basic science, mathematics, electronic system design

PSO2 and programming for real-time applications, towards developing industrial solutions and become technology leaders of future.

Lead Society: International Society of Automation (ISA)

ABBREVIATIONS

Sl. No.	Abbreviation	Meaning
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	SEE	Semester End Examination
5.	PE	Professional Core Elective
6.	GE	Global Elective
7.	HSS	Humanities and Social Sciences
8.	CV	Civil Engineering
9.	ME	Mechanical Engineering
10.	EE	Electrical & Electronics Engineering
11.	EC	Electronics & Communication Engineering
12.	IM	Industrial Engineering & Management
13.	EI	Electronics & Instrumentation Engineering
14.	CH	Chemical Engineering
15.	CS	Computer Science & Engineering
16.	TE	Telecommunication Engineering
17.	IS	Information Science & Engineering
18.	BT	Biotechnology
19.	AS	Aerospace Engineering
20.	PY	Physics
21.	CY	Chemistry
22.	MA	Mathematics

INDEX

		VII Semester	
Sl. No.	Course Code	Course Title	Page No.
1.	18HS71	Constitution of India and Professional Ethics	1
2.	18EI72	Industrial Automation Technologies	3
3.	18EI73	Advanced Image Processing	6
4.	18EI74	Internship	9
5.	18EI7F1	Safety Instrumentation	11
6.	18EI7F2	Product Design Technology	13
7.	18EI7F3	Advanced Software Tools for Instrumentation and Controls	15
8.	18EI7F4	IoT based Agricultural Automation	17
9.	18EI7G1	Industrial Wireless Technologies	19
10.	18EI7G2	Virtual and Augmented Reality	21
11.	18EI7G3	Bio -Medical Signal Processing	23
12.	18EI7G4	Low Power VLSI Design	25
13.	18G7H01	Unmanned Aerial Vehicles	27
14.	18G7H02	Bioinformatics	29
15.	18G7H03	Industrial Safety And Risk Management	31
16.	18G7H04	Web Programming	33
17.	18G7H05	Solid Waste Management And Statutory Rules	35
18.	18G7H06	Image Processing And Machine Learning	37
19.	18G7H07	Renewable Energy Sources And Storage System	39
20.	18G7H08	MEMS & Applications	41
21.	18G7H09	Project Management	43

22.	18G7H10	Cyber Forensics And Digital Investigations	45
23.	18G7H11	Robotics And Automation	47
24.	18G7H12	Space Technology And Applications	49
25.	18G7H13	Introduction To Astrophysics	51
26.	18G7H14	Materials For Advanced Technology And Spectroscopic Characterization	53
27.	18G7H15	Applied Psychology For Engineers	56
28.	18G7H16	Advanced Course In Entrepreneurship	58

		VIII Semester	
Sl. No.	Course Code	Course Title	
1.	18EIP81	Major Project	60

RV COLLEGE OF ENGINEERING[®] (Autonomous Institution Affiliated to VTU, Belagavi) ELECTRONICS & INSTRUMENTATION ENGINEERING

	SEVENTH SEMESTER CREDIT SCHEME							
SI.	Course Code	Course Title	BoS	Cred	Total			
No.			_ 0.0	L	Т	P	Credits	
1.	18HS71	Constitution of India and Professional Ethics	HSS	3	0	0	3	
2.	18EI72	Industrial Automation Technologies	EI	4	0	1	5	
3.	18EI73	Advanced Image Processing	EI	3	0	1	4	
4.	18EI74	Internship	EI	0	0	2	2	
5.	18EI7FX	Elective F (PE)	EI	3	0	0	3	
6.	18EI7GX	Elective G (PE)	EI	3	0	0	3	
7.	18G7HXX	Elective H (GE)*	Res. BOS	3	0	0	3	
	Total Number of Credits190423				23			
	Total number of Hours/Week19010							

	EIGHT SEMESTER CREDIT SCHEME						
Sl. Course Code		Course Title	BoS	Credit Allocation			Total
No.	No.		200	L	Т	P	Credits
1.	18EIP81	Major Project	EI	0	0	16	16
Total Number of Credits			0	0	16	16	
		Total number of Hours/Week		0	0	32	32

		VII Semester	
		PROFESSIONAL ELECTIVES (GROUP F)	
Sl. No.	Course Code	Course Title	Credits
1.	18EI7F1	Safety Instrumentation	3
2.	18EI7F2	Product Design Technology	3
3.	18EI7F3	Advanced Software Tools for Instrumentation and Controls	3
4.	18EI7F4	IoT based Agricultural Automation	3

		VII Semester	
		PROFESSIONAL ELECTIVES (GROUP G)	
Sl. No.	Course Code	Course Title	Credits
1.	18EI7G1	Industrial Wireless Technologies	3
2.	18EI7G2	Virtual and Augmented Reality	3
3.	18EI7G3	Bio Medical Signal Processing	3
4.	18EI7G4	Low Power VLSI Design	3

		VII Semester	
		GLOBAL ELECTIVES (GROUP H)	
Sl. No.	Course Code	Course Title	Credits
1.	18G7H01	Unmanned Aerial Vehicles	3
2.	18G7H02	Bioinformatics	3
3.	18G7H03	Industrial Safety And Risk Management	3
4.	18G7H04	Web Programming	3
5.	18G7H05	Solid Waste Management And Statutory Rules	3
6.	18G7H06	Image Processing And Machine Learning	3
7.	18G7H07	Renewable Energy Sources And Storage System	3
8.	18G7H08	MEMS & Applications	3
9.	18G7H09	Project Management	3
10.	18G7H10	Cyber Forensics And Digital Investigations	3
11.	18G7H11	Robotics And Automation	3
12.	18G7H12	Space Technology And Applications	3
13.	18G7H13	Introduction To Astrophysics	3
14.	18G7H14	Materials For Advanced Technology And Spectroscopic Characterization	3
15.	18G7H15	Applied Psychology For Engineers	3
16.	18G7H16	Advanced Course In Entrepreneurship	3

Semester: VII							
	CONSTITUTION OF INDIA AND PROFESSIONAL ETHICS						
	(Common to All Programs)						
Cou	rse Code	:	18HS71		CIE	:	100 Marks
Crea	lits: L:T:P	:	3:0:0		SEE	:	100 Marks
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours
Cou	rse Learning	Ob	jectives: Th	ne students will be able to			
1	Apply the ki	nov	ledge of th	e constitutional literacy to bec	come aware of the	fun	damental rights
	and duties in	the	eir role as E	ngineers.			
2	Understandi	ng o	of ethical an	d legal aspects of advertising,	consumer problems	and	their redressal
	mechanism r	ela	ted to produ	ct and service standards.			
3	Discuss the	knc	wledge of s	substantive Labor law and to	develop skills for l	egal	reasoning and
	statutory inte	erpr	etations.				
4	Evaluate ind	ivi	lual role, re	sponsibilities and emphasize	on professional/ en	gine	eering ethics in
	shaping prof	ess	ons.				
				Unit - I			10 Hrs
Indi	an Constituti	on-	Salient fea	tures of Indian Constitution, I	Preamble to the Co	nsti	tution of India;
Prov	isions Relatin	g to	o Citizenshij	p in India- at the Commencem	ent of the Constitut	tion	and Later with
lates	t amendments	, M	odes of Acc	quisition and Termination of C	itizenship of India.	Sco	ope & Extent of
Fund	lamental Righ	nts	Articles 14-	32 with case studies; Right	to Information Ac	t, 2	005 with Case
studi	es.						
				Unit – II			10 Hrs
Dire	ctive Princip	ples	of State	Policy- Significance of Di	irective Principles	of	State Policy,
studi Dire	es. ctive Princip	ples	of State	Unit – II Policy- Significance of Di	irective Principles	of	10 Hrs State Policy,

Fundamental Duties in the Constitution of India; Union Executive- President and State Executive-Governor; Parliament & State Legislature; Council of Ministers; Anti-defection law; Union and State Judiciary; Emergency provisions; Elections, Administrative tribunals. Human Rights & Human Rights Commission.

Unit –III06 HrsConsumer Protection Law - Definition and Need of Consumer Protection; Consumer Rights under
the Consumer Protection Act, 2019; Unfair Trade Practice, Defect in goods, Deficiency in services;
Product liability and Penal Consequences, False and Misleading Advertisement, E-Commerce,
Alternate dispute Redress mechanism; Redresses Mechanisms under the Consumer Protection Act,
2019.

An overview of Indian Penal Code 1860 (Law Of Crimes)

 Unit – IV
 06 Hrs

 Introduction to Labour Legislations - Industrial Relation, Labour Problem and Labour Policy in India; Labour Welfare and Social Security- Factories Act, 1948, Sexual Harassment of Women at Workplace (Prevention, Prohibition and Redressal) Act, 2013; the Child Labour (Prohibition and Regulation) Act, 1986, Maternity Benefit (Amendment) Act, 2017; Industrial Dispute Act, 1947, Reference of Disputes to Boards, Courts or Tribunals.
 07 Hrs

Scope and aims of engineering ethics (NSPE Code of Ethics), Responsibility of Engineers, Impediments to responsibility. Honesty, Integrity and reliability, Risks, Safety and Liability in Engineering. Corporate Social Responsibility. Statutory Provision regarding prohibition and prevention of Ragging.

Cours	e Outcomes: After completing the course, the students will be able to
CO1	Demonstrate the citizen's fundamental Rights, duties & consumer responsibility capability
	and to take affirmative action as a responsible citizen.
CO2	Identify the conflict management in legal perspective and judicial systems pertaining to
	professional environment, strengthen the ability to contribute to the resolve of human rights
	& Ragging issues and problems through investigative and analytical skills.
CO3	Understanding process of ethical and moral analysis in decision making scenarios and
	inculcate ethical behavior as a trait for professional development.
CO4:	Apply the knowledge to solve practical problems with regard to personal issues & business
	Enterprises.

Refer	ence Books
1	Dr. J. N Pandey, Constitutional Law of India, Central Law Agency, 2020 edition
2	Avtar Singh: Law of Consumer Protection: Principles and Practice, Eastern Book Company,
2	5 th Edition, 2015, ISBN -13:978-9351452461
3	S.C. Srivastava: Industrial Relation and Labour Laws, Vikas Publishing House, 6th Edition,
	2012, ISBN: 9789325955400
4	Jr. Charles E Harris, Michael. S. Pritchard and Michael J Rabins, Engineering Ethics,
	Wadsworth Cengage Learning, 5th Edition, 2009, ISBN-978-0495502791

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	-	-	-	-	-	-	-	1	-	1	
CO2	3	2	2	1	-	-	-	-	-	1	-	1	
CO3	3	3	2	2	-	-	-	-	-	1	-	1	
CO4	3	3	3	3	-	-	-	-	-	1	-	1	

High-3: Medium-2 : Low-1

				KV College of Engli	ieering					
				Semester: V	II					
INDUSTRIAL AUTOMATION TECHNOLOGIES										
Cou	rse Code	:	18EI72		CIE	:	100 + 50 Marks			
Cree	lits: L:T:P	:	4:0:1		SEE	:	100 + 50 Marks			
Tota	l Hours	:	52L+12P		SEE Duration	:	3.00 +3.00 Hours			
Cou	rse Learning	Ob	jectives: The	e students will be able	to					
1	To understa	nd t	basic concept	of PLC, SCADA and	DCS Systems and t	their	interfacing.			
2	To impart k program flo	tnov w ir	vledge about structions.	the working of time	rs, counters, seque	ncer	s; and the about PLC			
3	To provide automation.	an	overview of	f applications of PLC	C, SCADA and D	CS	Systems to industrial			
4	To develop	an I	ndustrial Aut	omation applications u	ising PLC					
				Unit I			10Hrs			
Intr	oduction:			Unit-1			101115			
Intro	duction to In	dus	trial Automa	tion, Historical backg	ound, Principles o	f Or	erations, PLC Versus			
Othe	r types of Co	ontr	ols, PLC Pro	duct Application Ran	ges, Why to use P	LC,	Introduction to Fixed			
and	Modular I/O	Har	dware, PLC	Operation: Binary Dat	a representation, In	put	and output status files			
for modular and fixed PLC configuration, Addressing concept and PLC Memory.										
				Unit – II			11 Hrs			
PLC	Hardware:	、·	, . ,	11 D. 40	100. 11	~				
Inpu	it modules: L	JISC	rete input mo	dules, Discrete AC and	d DC input module		tput Modules:			
Disc	rete & solid s	tate	output modu	Unit III	relay output modu	les.	11Ung			
Raci	os of DI C Dr	ogr	ammina	Unit –III						
Basi	c Relay Instr	ucti	ion. Bit or r	elay instructions NO	NC One Shot (Dutn	ut latching negated			
Outr	out and International	al B	it Type instru	ictions.		Juip	ut latenning, negated			
Spec	ial program	min	g Instructio	ns: Timer and Counte	r Instructions: On	dela	y and Off delay and			
reter	tive timer ins	truc	ctions, PLC C	ounter up and down ir	structions, combin	ing o	counters and timers			
				Unit –IV			10Hrs			
Con	iparison &D)ata	manipulati	on Instructions: EQ	U, NEQ, LES, LI	EQ,	GRT, GEQ, MOVE,			
MO	VM, FRD TO	DD,	COPY Math	nematical Instructions	and Logical Instru	ictio	ns: AND, OR, XOR,			
NOT	, Looping Ins	stru	ctions.							
		Ŧ		Unit –V	1.5	•	10 Hrs			
SCA	DA & DCS	: In	troduction to	Supervisory Control	and Data Acquisit	tion	(SCADA), SCADA			
Harc	lware and S	offy	ware, Introdu	action to Distributed	control system	(DC	S), DCS Software.			
App	Studion example	ple	of SCADA	t Control of Duccos	Value Comercine	Car				
Case	e Studies: Mic	otor	Starter Circu	it, Control of Process,	valve Sequencing,	Cor	iveyor bell control			
ТАТ		יזאי	гс.							
LAC	EAFERINI	LIN.	15:							
PLC	Experiment	:s :								
	1. PLC prog	ram	ming for cyli	ndrical sequencing usi	ng a TIMER.					
-	2. Auto recip	oroc	ating Hydrau	llic piston using Timer	and Counter					
	3. Sequentia	l op	eration of the	ee motors using Timer	°S					

- 4. Interface Automation Studio PLC for 2 Way Traffic Light to an External 24 Volt based Traffic Light.
- 5. Automation Studio I/O Interfacing with external hardware units: Material Sorting
- 6. Logic and implementation of Bottle filling plant using Automation Studio

- 7. Programming and Simulation of Elevator System using PLC.
- 8. Programming and Simulation of Bottle-filling process using PLC.
- 9. Programming and Simulation of Automatic Material Sorting by Conveyor using PLC
- 10. AC Drive control using PLC
- 11. Pick and Place Robot using Servo and stepper drives
- 12. Development of GUI using different type of scripting on SCADA software
- 13. Interfacing of PLC with SCADA software package

Course Outcomes: After completing the course, the students will be able to

CO1: Understand the basic concepts of PLC's and SCADA techniques.

CO2: Apply the programming concepts to interface peripheral.

- **CO3:** Analyze and evaluate the automation techniques for industrial applications.
- **CO4:** Develop a system for automation application.

Reference Books

1101011	
1	Introduction to Programmable Logic Controllers, Garry Dunning, CENGAGE Learning, 3 rd Edition, 2007, ISBN: 978-8131503027
2	Industrial Control and Instrumentation, Bolton W, Universities Press, 6th Edition, 2006. ISBN 978-0128029299
3	Computer Based Industrial control, Krishna Kant, PHI Publishers, 2 nd Edition, 2010. ISBN 978-8120339880.
4	Programmable-Controllers-Theory-Implementation, Bryan, Library of Congress Cataloguing- in-Publication Data, 2nd Edition, 2010, 978-0826913005.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks are considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16marks adding up to 80 marks. Each main question may have sub questions. The question from Units I,

IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	-	-	-	-	-	1	-	1
CO4	3	3	3	3	-	-	-	-	-	1	-	1

High-3: Medium-2: Low-1

	Semester: VII									
	ADVANCED IMAGE PROCESSING									
Cou	rse Code	:	18EI73		CIE	:	100 + 50 Marks			
Crea	lits: L:T:P	:	3:0:1		SEE	:	100+ 50 Marks			
Tota	l Hours	:	39L+12P		SEE Duration	:	3.00 +3.00 Hours			
Cou	Course Learning Objectives: The students will be able to									
1	Describe and	l ex	plain basic p	principles of digital ima	ge processing.					
2	Design and i	mp	lement algo	rithms that perform bas	ic image processir	ıg (e.	g., noise removal and			
	image enhan	cer	nent);							
3	Design and i	mp	lement algor	rithms for advanced image	age analysis (e.g.,	imag	e compression, image			
	segmentation)									
4	Assess the p	erfo	ormance of in	mage processing algorit	hms and systems					
5	Use of mathe	ema	atical IT tool	s to analyze and visuali	ze the above conce	epts.				

Digital image fundamentals:

Introduction, Fundamental steps in DIP, A simple image formation model, representing digital images, Spatial & Gray level resolution, Basic relationship between pixels.

Unit-I

Image Enhancement:

Point operations, Spatial averaging, Median filtering, Spatial low Pass, high pass and band pass filtering, Histogram equalization, Transform operations, Application discussion on Biomedical Digital Image Processing.

Unit – II	09 Hrs
Image Segmentation: Detection of discontinuities, Edge linking and Boundary detection	by local
processing & global processing using Hough transform, Region based segmentation, Ap	plication
discussion on Biomedical Digital Image Processing.	

 Unit –III
 09 Hrs

 Morphological Image Processing: Basic concepts of set theory, Logical operations involving binary images, Dilation and erosion, Opening and closing, The hit-or-miss transformation, Basic morphological algorithms.

Unit –IV

 Image Representation and Description: Representation – Chain codes, polygonal approximations, signatures, boundary segments, skeletons, Boundary descriptors – Some simple descriptors, Shape numbers, Fourier descriptors, statistical moments.

 Unit –V
 07 Hrs

Image Compression: Huffman coding, DFT, DCT, Wavelet coding & JPEG standard, Application discussion on Biomedical Digital Image Processing.

LABEXPERIMENTS:

12 Hrs

07 Hrs

07 Hrs

Perform different image processing experiments as listed below by using

MATLAB/SCILAB/PYTHON.

- 1. Medical Image enhancement –Histogram based.
- 2. Medical Image enhancement by varying gray levels.
- 3. Medical Image smoothing.
- 4. Medical Image sharpening.
- 5. Algorithm for low pass filter, high pass filter, median filter.
- 6. Point detection, Line detection, Edge detection (Masks operations).
- 7. Medical Image Segmentation (Water shed segmentation, Fuzzy k means clustering).
- 8. Medical Image Restoration.
- 9. Applications of Wavelets in Medical Image Processing.
- 10. Assignments on real medical image problem.

Refere	ence Books
1	Digital Image Processing, Rafael C. Gonzalez & Richard E. Woods, 3 rd Edition, 2011,
1	Pearson Education Inc. ISBN: 9780133002324
2	Fundamentals of Digital Image Processing, Anil K. Jain, 1 st Edition, 2010, Prentice Hall
2	of India, ISBN : 9788120309296.
2	Image Processing, Analysis and Machine Vision, Milan Sonka, Vaclav Hlavac & Roger
5	Boyle, 4 th Edition, 2015, Springer Science Publishers, ISBN-9781133593607.
	Practical Algorithms for Image Analysis, Description, Examples & Codes, Michael Seul, and
4	Lawrence O'Gorman, Michael J.Sammon, 2 nd Edition, 2008, Cambridge University Press,
	ISBN: 978-0-521-88411-2.

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understand the fundamentals of Digital image processing including the topics of filtering,
	transforms, morphology, image analysis and compression.
CO2:	Evaluate algorithms for image analysis based on segmentation, shape & texture, registration,
	recognition and classification.
CO3:	Analyze the different image processing algorithms of segmentation, registration, object
	recognition and classification using MATLAB.
CO4:	Develop the necessary skill base to explore and implement Digital Image Processing
	algorithms.

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks are considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	-	-	-	-	-	-	-	1	-	1	
CO2	3	2	2	1	-	-	-	-	-	1	-	1	
CO3	3	3	2	2	-	-	-	-	-	1	-	1	
CO4	3	3	3	3	-	-	-	-	-	1	-	1	

High-3: Medium-2: Low-1

			Semester: VII			
			INTERNSHIP			
Course Code	:	18EI74		CIE	:	50 Marks
Credits: L:T:P	:	0:0:2		SEE	:	50 Marks
Hours/week	:	4		SEE Duration	:	3.00 Hours

GUIDELINES

- 1) The duration of the internship shall be for a period of 6/8 weeks on full time basis after IV semester final exams and before the commencement of VII semester.
- 2) The student must submit letters from the industry clearly specifying his / her name and the duration of the internship on the company letter head with authorized signature.
- 3) Internship must be related to the field of specialization of the respective UG programme in which the student has enrolled.
- 4) Students undergoing internship training are advised to report their progress and submit periodic progress reports to their respective guides.
- 5) Students have to present the internship activities carried out to the departmental committee and only upon approval by the committee, the student can proceed to prepare and submit the hard copy of the final internship report. However, interim or periodic reports as required by the industry / organization can be submitted as per the format acceptable to the respective industry /organizations.
- 6) The reports shall be printed on A4 size with 1.5 spacing and Times New Roman with font size 12, outer cover of the report (wrapper) has to be Ivory color for UG circuit Programs and Light Blue for Non-Circuit Programs.
- 7) The broad format of the internship final report shall be as follows
 - Cover Page
 - Certificate from College
 - Certificate from Industry / Organization
 - Acknowledgement
 - Synopsis
 - Table of Contents
 - Chapter 1 Profile of the Organization: Organizational structure, Products, Services, Business Partners, Financials, Manpower, Societal Concerns, Professional Practices,
 - Chapter 2 Activities of the Department
 - Chapter 3 Tasks Performed: summaries the tasks performed during 8-week period
 - Chapter 4 Reflections: Highlight specific technical and soft skills that you acquired during internship
 - References & Annexure

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Apply engineering and management principles.
CO2:	Analyze real-time problems and suggest alternate solutions
CO3:	Communicate effectively and work in teams
CO4 :	Imbibe the practice of professional ethics and need for lifelong learning.

Scheme of Continuous Internal Evaluation (CIE):

The evaluation committee shall consist of Guide, Professor/Associate Professor and Assistant Professor. The committee shall assess the presentation and the progress reports in two reviews.

The evaluation criteria shall be as per the rubrics given below:

Reviews	Activity	Weightage
Review-I	Explanation of the application of engineering knowledge in industries, ability to comprehend the functioning of the organization/ departments,	45%
Review-	Importance of resource management, environment and sustainability	
II	presentation skills and report writing	55%

Scheme for Semester End Evaluation (SEE):

The SEE examination shall be conducted by an external examiner (domain expert) and an internal examiner. Evaluation shall be done in batches, not exceeding 6 students per batch.

	Semester: VII							
	SAFETY INSTRUMENTATION							
			(Group F : Professional Elective)				
Course Code : 18EI7F1 CIE : 100 Mark					100 Marks			
Credits: L:T:P		:	3:0:0	SEE		:	100 + Marks	
Total Hours		:	39L	SEE Dura	ation	:	3.00 Hours	
Cour	se Learning	Obj	jectives: The	students will be able to				
1	1 Understand the importance of Industrial Safety concepts.							
2	2 Analyze system failures and system Reliability.							
3	3 Evaluate the various Safety Integrity levels and System Architectures.							
4	Apply Hard	war	e & Software	design principles for functional safety.				

Unit-I	07 Hrs
Introduction to Safety Instrumented Systems: Scope-Safety Technology in Process Autom	ation- Fire
Triangle, Fire& Gas Detection, Learning from Major Accidents-Basic Process control System	ns (BPCS)
& Safety Instrumented Systems (SIS) - Definitions –Overview of Standards and Regulations.	
Unit – II	09 Hrs
Introduction to Reliability engineering: Equipment failure, Failure rate, time dependent fa	ailure rate,
confidence factor, mean time between failure, mean time to restore, relationship between	en MTBF,
MTTR and failure rate. Probability of failure on demand.	
System Reliability engineering: Reliability block diagram, series and parallel configuration,	fault tree
analysis, Markov modeling, Markov solution technique.	
Unit –III	09 Hrs
Equipment Failure Modes, Fail-safe, Fail-danger, Annunciation, Detected/Undetected, SIF	Modeling
of Failure Modes, PFS / PFD, PFD _{avg} , Problems on classification of Failure modes.	
SIS Sensors: Instrument Selection, Probabilistic Modeling of Sensors, Examples.	
The concept of Safety integrity: HAZOP (Hazard and operability study), Layer of protection	n (LOPA),
As low as reasonably practicable (ALARP), Different levels of Safety Integrity Level (SIL), and the
target requirements.	1
Unit –IV	07 Hrs
System Architectures: MooN architecture, redundancy and voting logic, Common Moo	le failure,
importance of redundancy and diversity.	
Hardware design principles for functional safety (Meeting IEC 61508 Standard Par	t 2) fault
tolerance, Safety PLCs, Safety requirements, Failure mode effect analysis (FMEA), identitiend	fication of
safe faults, and dangerous faults.	1
Unit –V	07 Hrs
Software design principles for functional safety: (Meeting IEC 61508 Standard Part 3)	Software
requirements for SIS, Introduction to Safe failure fraction (SFF), software verification req	uirements.
Reduction of systematic faults using quality management.	
Course Outcomes: After completing the course, the students will be able to	
CO1: Understand the functions of SIS and their applications.	
CO2: Apply the principles of Reliability to evaluate systems.	

		i	7
CO3.	Evoluate th	a SIL a and System	Architectures
	- Evaluate th	e on a and ovalem.	AICHIECTULES.

CO4: Analyze the H/w & S/w standards of various safety mechanisms.

Refer	ence Books									
1	Safety Instrumented Systems Verification: Practical Probabilistic Calculations, Harry Cheddie,									
1	W.M. Goble, 2004, ISA Publication, ISBN: 155617909X									
2	The Safety Critical Systems Handbook, A Straightforward Guide to Functional Safety: IEC									
	61508, IEC 61511 and Related Guidance, David Smith, 4th Edition, ISBN: 9780081008973.									
3	Safety Integrity Level Selection, Edward M. Marsza, 2002, ISA Publication, ISBN:									
	1556177771.									
	Functional Safety in the Process Industry: A Handbook of Practical Guidance in the Application									
4	of IEC61511 and ANSI/ISA-84, KJ Kirkcaldy, D Chauhan, Lulu Publication, 2012.									

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks are executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	1	-	-	-	-	-	-	-	1
CO2	2	1	-	1	1	1	-	-	-	-	-	1
CO3	1	3	2	1	1	1	-	-	-	1	1	2
CO4	-	2	1	1	2	1	-	-	-	1	1	2

High-3: Medium-2: Low-1

	Semester: VII							
			PRO	DUCT DESIGN TECHNOLOGY				
			(G	roup F : Professional Elective)				
Course Code		: 18EI7F2		CIE		:	100 Marks	
Credits: L:T:P		:	3:0:0	SEE		:	100 Marks	
Total Hours		:	39L	SEE Dura	tion	:	3.00 Hours	
Co	Course Learning Objectives: The students will be able to							
1	1 To develop skills and concepts on economic product development and development of					elopment of		
	Organization.							
2	To understand cu	usto	mer needs a	nd converting them to specifications.				
3	3 To know the PCB testing procedures and PC based automation of PCB making for large							
	numbered PCBs.							
4	To design autom	atic	soldering t	echniques.				

Introduction:

Characteristics of successful product development, who Designs and develops products, duration and cost of product development, the challenges of product development

Unit-I

Development Processes and Organizations:

A generic development process, concept development: the front-end process, adapting the generic product development process.

Product Planning:

The product planning process, identify opportunities. Evaluate and prioritize projects, allocate resources and plan timing, complete pre-project planning.

				Unit – II	09 Hrs
 0	4	ЪT	1		

Identifying Customer Needs:

Gather raw data from customers, interpret raw data in terms of customer needs, organize the needs into a hierarchy, establish the relative importance of the needs and reflect on the results and the process.

Product Specifications:

Multilayer PCB Design:

What are specifications, when are specifications established, establishing target specifications, setting the final specifications.

Concept Generation and Selection:

The activity of concept generation, clarifies the problem search externally, search internally, explore systematically, and reflect on the results and the process. Concept screening, concept scoring.

Unit –III	09 Hrs
PCB Technology:	
Introduction to PCB, Types of PCB, PCB layout design and artwork generation Usin	ng CAD.
Properties of copper clad sheets, materials used for fabrication of copper clad sheet, P	CB film,

properties of film, film master preparation.

Unit –IV	07 Hrs

S

07 Hrs

Introduction, multilayer PCB design and test consideration, multilayered construction, equipment, laminating process, further processing

Mechanical Machining Operations Solders and Soldering Techniques:

Introduction, Grinding, milling, principal of solder connection, solder alloys, solder fluxes, deferent soldering techniques, solder mask, Reflow of soldering practice.

Unit –V	07 Hrs
Prototyping, Product Development Economics, Managing Projects	
Prototyping basics, principles of prototyping, Technologies, planning for prototypes. Ele	ments of
economic analysis, base case financial mode. Understanding and representing task, baselin	ie project
planning. Accelerating projects. Project execution. Post-mortem project evaluation.	

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understand principles and concepts of process development and product planning.
CO2:	Apply concept of adaptive and original redesign of engineering and consumer products.
CO3:	Understand concepts of PCB design and fabrication as per customer needs.
CO4:	Implement Multilayer PCB design and Artwork by using engineering specification knowledge
	as per customer needs through a team work.

Refere	ence Books
1	Product Design and Development, Karl.T.Ulrich and Steven D Eppinger, 5 th Edition, 2011, Tata
	McGraw-Hill, ISBN : 978 - 00/34047/6
2	Printed circuit Boards: Design and Technology, Walter C Boshart, 29 th reprint, 2009, McGraw-
	Hill, ISBN: 978 – 0074515495.
3	Product Design and Manufacturing, C Chitale and R C Gupta,5th Edition, 2011, , PHI, ISBN :
	978 - 8120342828
4	New Product Development, Timjones, Butterworth Heinmann, 1st Edition, 1996, Oxford. UCI,
	ISBN: 978 – 0750624275.

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks are executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	2	-	-	-	-	-	-	-	1	-	1			
CO2	3	2	2	1	-	-	-	-	-	1	-	1			
CO3	3	3	2	2	-	-	-	-	-	1	-	1			
CO4	3	3	3	3	-	-	-	-	-	1	-	1			

High-3: Medium-2 : Low-1

	Semester: VII											
	ADVANCED SOFTWARE TOOLS FOR INSTRUMENTATION AND CONTROLS											
	(Group F : Professional Elective)											
Cou	rse Code	:	18EI7F3	С	IE	:	100 Marks					
Cree	dits: L:T:P	:	3:0:0	SI	EE	:	100 Marks					
Tota	l Hours	:	39L	SI	EE Duration	:	3.00 Hours					
Cou	rse Learning	Ob	jectives: Th	e students will be able to								
1	To understa	nd t	he software t	ools for sensor and control syste	em design.							
2	To impart t	he	knowledge o	f mathematical skills for mode	elling of variou	is se	nsors in macro,					
	meso and m	icro	scale and to	study its characteristics through	simulation.							
3	To Provide	an c	overview to m	odel the physical systems, desig	gn and evaluati	on o	f various control					
	methods.											
4	To develop	real	time control	implementation platforms and t	o practice on in	npler	nentation of					
	simple contr	colle	ers	simple controllers								

Unit-I	07 Hrs
Introduction to Finite Element Method:	
Overview and Introduction, FEM Background. The Ritz Method: Example 1.1: Ritz	z method
application-displacement of a cantilever beam. FEM Formulation Case studies on Ritz metho	od
Unit – II	09 Hrs
Matrix Approach:	
Example 1.2: Analysis of a 2D truss. Shape Functions, Convergence and Stability. Example	1.4: Heat
transfer in a slender steel bar. Case studies on Matrix method	
COMSOL 5 and Application Builder: Overview COMSOL, Desktop Interface, COMSOL	Modules,
COMSOL Model and Application Libraries and Tutorials, Application Builder, General C	duidelines
for Building a Model with COMSOL	
Unit –III	09 Hrs
The Need for System-Level Models for Microsystems:	
Coupled Multiphysics Microsystems, Multiscale Modeling and Simulation.	
Case studies: Design and simulation of sensors (Capacitive, pressure, piezoelectric et	tc., using
COMSOL MEMS Module)	
Unit –IV	07 Hrs
Introduction to Scilab:	
Basic syntax, Mathematical Operators, Predefined constants, Built in functions. Complex n	umbers,
Polynomials, Vectors, Matrix. Handling these data structures using built in functions.	
Programming Functions, Loops, Conditional statements, Handling .sci files, Graphics hand	iling
2D, 3D, Generating .jpg files, Function plotting, Data plotting	
Unit –V	07 Hrs
Applications:	
Numerical Linear Algebra (Solving linear equations, Eigen values.), Numerical Analysis,	iterative
methods, Signal and Image Processing	
X X	

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Understand the basic concepts of COMSOL, SCILAB.								
CO2:	Apply the Mathematical analysis for designing sensors.								
CO3:	Analyze and evaluate the sensors by simulation.								
CO4:	Developing an real time applications using Comsol and SCI lab.								

Refer	ence Books
1	Multiphysics Modeling Using COMSOL [®] : A First Principles Approach, Roger W. Pryor,
	Jones and Bartlett Publishers, 1 st Edition, 2011.ISBN: 978-9380298603
2	System-level Modeling of MEMS, Tamara Bechtold, Gabriela Schrag and Lihong Feng
2	,Wiley-VCH verlag GmbH & Co, 1 st Edition, 2013, ISBN: 9783527647132
	COMSOL5 for engineers-Mercury Learning and Information, Tabatabaian, Mehrzad,
3	MERCURY LEARNING AND INFORMATION Dulles, Virginia Boston, Massachusetts
	New Delhi, ISBN: 978-1-942270-42-3.
	SCI Lab- A beginners Approach, AnilKumar Verma, CENGAGE publication.1st Edition,
4	2018

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks are executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	2	-	-	-	-	-	-	-	1	-	1			
CO2	3	2	2	1	-	-	-	-	-	1	-	1			
CO3	3	3	2	2	1	-	-	-	-	1	-	1			
CO4	3	3	3	3	1	-	-	-	1	1	1	1			

High-3: Medium-2 : Low-1

	Semester: VII										
	IOT BASED AGRICULTURAL AUTOMATION										
			(*	Group F : Professional Elect	ive)						
Cour	se Code	:	18EI7F4		CIE	:	100 Marks				
Cred	its: L:T:P	:	3:0:0	S	SEE	:	100 Marks				
Tota	l Hours	: 39L SEE Duration		SEE Duration	:	3.00 Hours					
Cour	se Learning	Ob	jectives: The	students will be able to:							
1	Understand	the	various appli	cations and challenges of IOT	in agriculture.						
2	2 Apply the Deep learning and IOT based agricultural applications.										
3	3 Analyze Data Mining and the different Data Processing Techniques.										
4	Create IoT s	olu	tions for Agr	icultural applications.							

Unit-I	07 Hrs					
Introduction: IoT Groundwork, IoT-Enabled Agricultural System Applications, Applications of IoT in						
Agriculture, Challenges and Issues in IoT-Enabled Agriculture, Technical Issues, Benefits and	nd Pitfalls					
of IoT-Enabled Agricultural Systems.						
Unit – II	09 Hrs					
IoT Based Agricultural Systems: Four-Stage IOT Architecture Implemented in Agriculture.						
Overview of IoT Network: IoT Network Technologies and Standards.						
Characteristics of Internet of Things: Various IoT Platforms for Smart Agriculture.						
Applications of IoT in Smart Agriculture: Challenges for the Implementation of IoT	in Smart					
Farming, Cloud Platform for Agricultural Big Data Storage						
Unit –III	09 Hrs					
Design of IoT-Based Agricultural System for Optimal Management: Introduction, Data	Mining in					
Agriculture, Foundation of Agro-Data Mining.						
Forms of Data Pre-processing: Data Cleansing, Data Transformation, Data Integrat	ion, Data					
Reduction. Type of Sensors and Network in IoT Classification & description of Sensors us	sed in IoT					
Network, Fog Cloud Computing in Agriculture Platform, Wireless Communication Protocol	ls, Pros &					
Cons and uses of NFC.						
Unit –IV	07 Hrs					
Deep Learning and IoT for Agricultural Applications: Common Deep Learning Algorith	nms, Deep					
Learning Frameworks, Tensor Flow, Cafe (Convolution Architecture for Feature Extractio	n), Major					
Application Areas in Agriculture and sources of data – a comparison.						
Unit –V	07 Hrs					
Case Studies: IoT in Agriculture: Survey on technology, challenges and future scope, Role	of IoT in					
sustainable farming, Smart farming by IoT, Smart irrigation using IoT, Automated sy	ystems in					
agriculture via IoT, A complete automated solution for farm field and garden applications, usin	ng IoT.					

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Understand the IOT applications for Agricultural.								
CO2:	Analyze the different challenges and IOT architectures suitable for Agricultural applications.								
CO3:	Understand the IoT sensors, networks, and IOT protocols.								
CO4:	Apply deep learning and IoT techniques for Agri- applications.								

Refere	ence Books
1	IoT and Analytics for Agriculture- Studies in Big Data, (Volume 63), Prasant Kumar Pattnaik,
1	Raghvendra Kumar, Souvik Pal, S. N. Panda, Springer Nature Singapore Pte Ltd. 2020
2	AGRICULTURE 5.0 - Artificial Intelligence, IoT, & Machine Learning, Latief Ahmad and
2	Firasath Nabi, 1st edition published 2021, CRC Press.
2	Smart Agriculture - Emerging Pedagogies of Deep Learning, Machine Learning, and Internet of
3	Things, Govind Singh Patel, CRC Press, 2021.
4	Internet of Things (IoT) Concepts and Applications, Mansaf Alam, Kashish Ara Shakil, &
4	Samiya Khan, Springer Nature Switzerland, 2020

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks are executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	2	-	-	-	-	-	-	-	1	-	1			
CO2	3	2	2	1	-	-	-	-	-	1	-	1			
CO3	3	3	2	2	1	-	-	-	-	1	-	1			
CO4	3	3	3	3	1	-	-	-	1	1	1	1			

High-3: Medium-2: Low-1

	Semester: VII										
	INDUSTRIAL WIRELESS TECHNOLOGIES										
			(Group G : Professional Elective)							
Cou	rse Code	:	18EI7G1	C	EIE	:	100 Marks				
Credits: L:T:P		:	3:0:0	S	EE	:	100 Marks				
Tota	al Hours	:	39L	S	EE Duration	:	3.00 Hours				
Cou	rse Learning	; Oł	jectives: The	e students will be able to							
1	Understand	the	fundamental	concepts of wireless communication	on systems.						
2	Identify diff	ere	nt multiple ac	cess techniques used in wireless co	ommunication						
3	3 Explore different application specific areas in wireless domain										
4 Apply and analyze different wireless technologies to industries and other areas											

Unit-l	07 Hrs
Evolution of Wireless Communication Systems: Brief History of Wireless Commun	ications,
Advantages of Wireless Communications, Disadvantages of Wireless Communications, V	Wireless
Network Generations, Comparison of Wireless Systems, Evolution to Next-Generation No	etworks,
Applications of Wireless Communications, Potential Market Areas, Challenges for Research.	

Unit – II09 HrsMultiple Access Techniques: Introduction, Frequency Division Multiple Access, Time-DivisionMultiple Access, Code Division Multiple Access, Comparison of Multiple-Access Techniques,
Overview of OFDM

Unit –III

Technical Principles:

Industrial Wireless Sensor Networks- Applications, Standardization Activities, Technical challenges. RFID Technology and Its Industrial Applications- RFID Architecture, Item Tracking and Tracing. Ultralow-Power Wireless Communication-Introduction, Hardware approaches

Unit –IV	07 Hrs
Application-Specific Areas:	
Embedded Networks in Civilian Aircraft Avionics Systems, Process Automation, Building a	and Home
Automation, Communications in Medical Applications	
Unit –V	07 Hrs

Technologies:

LonWorks, 6LoWPAN: IP for Wireless Sensor Networks and Smart Cooperating Objects, Wireless HART, ISA100.11a, LoRa, AT command set

Course Outcomes: After completing the course, the students will be able to						
CO1:	Understand the basics of wireless communication and multiple access techniques					
CO2:	Analyze the technical principles involved in different wireless systems.					
CO3:	Apply wireless technologies in different application areas.					
CO4:	Evaluate different case studies involved using industrial wireless technologies.					

Refere	ence Books
1	Wireless communication, T L Singal, 1 st Edition, 2010, Tata McGraw Hill Education Private
I	Limited, ISBN: 978-007068178-1.
2	Industrial communication systems, Bogdan M. Wilamowski and J. david Irwin,2 nd Edition,
2	2011, CRC Press, ISBN 978-1-4398-0281-6
2	Wireless Communications: Principles and Practice, Theodore.S. Rappaport, 2nd Edition,
3	2009, Pearson Education, ISBN: 978-8131731864.
4	The Wireless Internet of Things, Daniel Chew,1st Edition, 2019, John Wiley & Sons, ISBN:
4	9781119260578

09 Hrs

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks are executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	-	-	-	-	-	1	-	1
CO4	3	3	3	3	-	-	-	-	-	1	-	1

High-3: Medium-2 : Low-1

	Semester: VII						
	VIRTUAL AND AGUMENTED REALITY						
			(0	Group G : Professional Elective)			
Course	Code	:	18EI7G2	CIE		:	100 Marks
Credits	: L:T:P	:	3:0:0	SEE		:	100 Marks
Total H	lours	:	39L	SEE	Duration	:	3.00 Hours
Course	Learning	Ob	jectives: The	students will be able to			
1	Understar	nd v	virtual and au	gmented reality technologies, with an	emphasis or	n d	esigning and
	developin	g iı	nteractive virt	ual and augmented reality experiences			
2	Demonstr	ate	the history o	f the area, fundamental theory, interact	tion techniqu	les,	and specific
	application areas.						
3	3 Apply the concepts from the contributing fields of computer vision, computer graphics and						
	human computer interaction will be introduced in the context of virtual and augmented reality						
4	Create their own virtual or augmented reality application.						

Unit-I	07 Hrs
Introduction of Virtual Reality: Fundamental Concept and Components of Virtual Reality	7. Primary
Features and Present Development on Virtual Reality.	
Multiple Models of Input and Output Interface in Virtual Reality: Input - Tracker, Sense	or, Digital
Glove, Movement Capture, Video-based Input, 3D Menus & 3DScanner etc. Output - Visual /	Auditory /
Haptic Devices.	
Unit – II	09 Hrs
Visual Computation in Virtual Reality: Fundamentals of Computer Graphics. Software and	Hardware
Technology on Stereoscopic Display. Advanced Techniques in CG: Management of La	arge-Scale
Environments & Real Time Rendering.	
Interactive Techniques in Virtual Reality: Body Track, Hand Gesture, 3D Menus, Object Gr	asp.
Unit –III	09 Hrs
Development Tools and Frameworks in Virtual Reality: Frameworks of Software Dev	velopment
Tools in VR. X3D Standard; Vega, MultiGen, Virtools.	
Application of VR in Digital Entertainment: VR Technology in Film & TV Produc	ction. VR
Technology in Physical Exercises and Games. Demonstration of Digital Entertainment by VR.	
Unit –IV	07 Hrs
Augmented and Mixed Reality, Taxonomy, technology and features of augmented reality,	difference
between AR and VR, Challenges with AR, AR systems and functionality.	
Augmented reality methods, visualization techniques for augmented reality, wireless d	isplays in
educational augmented reality applications, mobile projection interfaces, marker-less tra	cking for
augmented reality, enhancing interactivity in AR environments, evaluating AR systems.	
Unit –V	07 Hrs
Applications: Medical, robotics, Advanced Real time Tracking, games, movies, simulations, the	nerapy.
Frontiers: Touch, haptics, taste, smell, robotic interfaces, telepresence, brain-machine interfac	es.

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Understand the perspective on the VR/AR landscape; past, present, and future						
CO2:	Apply the fundamental computer vision, computer graphics and human-computer interaction						
	techniques related to VR/AR						
CO3:	Demonstrate insights to key application areas for VR/AR						
CO4:	Design and implement VR/AR experiences.						

Refer	ence Books	\$						
1	Augment	ed Reality: I	Principles a	nd Pra	ctice, D. Schmalstieg a	and T. Höllerer	Addison	-Wesley,
1	Boston, 2	016, ISBN-1	13 978-0-32	2-18835	57.			
2	Virtual	Reality.	Steven	М.	LaVallCambridge	University	Press,	2017,
2	http://vr.	cs.uiuc.edu/	(Links to a	n exteri	nal site.) (Available on	line for free)		
3	Hand-wri	tten VR lect	ure notes fr	om UII	UC course in Spring 20	15, on which t	he book w	as based
4	Steve Lav	Valle's record	ded VR lec	tures fr	om NPTEL at IIT Mad	lras, July 2015.		

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks are executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-]	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	1	-	-	-	-	1	-	1
CO4	3	3	3	3	1	-	-	-	1	1	1	1

High-3: Medium-2 : Low-1

			Semester: VII				
		BIO	MEDICAL SIGNAL PROCE	SSING			
(Group G : Professional Elective)							
Course Code	:	18EI7G3	•	CIE	:	100 Marks	
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks	
Total Hours	:	39L		SEE Duration	:	3.00 Hours	
Course Learning	Ob	jectives: The	students will be able to			1	
1 Classify and	est	imate various	biomedical signals, average th	e signals and proc	esses	5.	
2 Acquire kn techniques.	ow]	ledge of car	diological signal processing	and neurological	sig	nal processing	
3 Learn about	eve	ent detection a	and waveform analysis with cas	se studies.			
4 Apply adapt	ive	filtering tech	niques for cancelling noise and	interference in va	rious	Bio-signals.	
1							
		1		· · · · · · · · · · · · · · · · · · ·	1	07 Hrs	
Introduction: Ge	nera	al measureme	ent and diagnostic system, Cla	ssification of sign	als,	Introduction to	
ond enalusis	s ar	id their chara	icteristics, Difficulties encount	ered in biomedica	u sig	inal acquisition	
FCC • FCG signal	ori	gin ECG lea	systems FCG signal character	eristics			
Signal Conversion	. 011	Simple sign	al conversion systems Conv	version requireme	nts	for biomedical	
signals. Signal con	ver	sion circuits.		ersion requireme	into .	ior bioinculcul	
			Unit – H			09 Hrs	
ECG parameter	s-P	ower spectru	im of the ECG, Bandpass	filtering technique	les,	Differentiation	
techniques, Templ	ate	matching tec	hniques, A QRS detection algo	orithm, ST segmer	nt ana	alyzer, Portable	
arrhythmia monito	or.	-				•	
Signal Averaging	: Ba	asics of signa	l averaging, Signal averaging as	s a digital filter, A	typi	cal averager,	
Software and limit	atic	ons of signal a	veraging.				
			Unit –III			09 Hrs	
EEG: EEG signal	cha	aracteristics, S	Sleep EEG classification and ep	oilepsy.			
Applications usin	g A	Adaptive Filt	ers: Introduction, General struc	cture of adaptive f	filter	noise canceler,	
LMS adaptive filt	ter,	Elimination	of 60 Hz interference in ECC	G, Elimination of	ECC	interferences,	
Elimination of electrosurgical interferences, Noise reduction for the hearing impaired, Cancellation of							
maternal ECG in fetal ECG.							
Unit –IV 07Hrs							
Event Detection and waveform analysis: Need for event detection, Detection of events & waves,							
Correlation analysis of EEG signals, The matched filter, Detection of the P wave, Morphological							
analysis of EUG waves, analysis of activity.							
$\frac{\text{Unit} - \text{V}}{\text{ECC} \text$							
EUG Data Reduction: Direct data compression Techniques: Turning Point, AZTEC, Cortes, FAN,							
Huiiman coding, I	Jata	a compression	i recnniques comparison.				

Course	e Outcomes: After completing the course, the students will be able to							
CO1:	Analyze the characteristics of different biomedical signals and evaluate the performance of							
	time series and frequency domain analysis for a given signal.							
CO2:	Apply the various signal processing techniques for a given biomedical signal.							
CO3:	Develop an algorithm for detection of arrhythmias using the concepts learnt during the							
	course.							
CO4:	Design and implement biomedical instruments and equipment.							

	Refere	ence Books
	1	Biomedical Digital Signal Processing, Willis J. Tompkins, PHI, 2 nd Edition, ISBN-13: 978-
	1	8120314788.
	2	Biomedical Signal Analysis, Rangaraj M Rangayyan, A case study approach, John Wiley
	2	publications, 2 nd edition, 2009. ISBN-13: 978-8126522194.
Ī	2	Biomedical Signal Processing Principles and Techniques, D.C.Reddy, Tata Mc Graw-Hill, 1st
	3	edition, 2009, ISBN: 13: 9780070583887.
Γ	4	Biomedical Signal Processing Time and Frequency Domains Analysis, Arnon Cohen, Volume I,
	4	CRC press, 2 nd edition, 2010, ISBN 13: 9780849359330.

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks are executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	1	2	1	1	-	-	1	-	2	2	-	1		
CO2	1	-	1	1	-	1	1	-	2	2	-	1		
CO3	1	1	1	1	-	-	1	-	2	-	-	2		
CO4	1	1	1	1	-	1	1	-	2	2	-	2		

High-3: Medium-2: Low-1

Semester: VII												
	LOW POWER VLSI DESIGN											
(Group G : Professional Elective)												
Course Code : 18E17G4 CIE : 100 Ma							100 Marks					
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks					
Total Hours		:	39L		SEE Duration	:	3.00 Hours					
Course Learning Objectives: The students will be able to												
1	Apply State	-of-	the art approa	ches to power estimation and re	eduction.							
2	Describe the	e va	rious power r	eduction and the power estimat	ion methods.							
3	Explain pov	wer	dissipation	at all layers of design hierar	chy from technol	logy,	circuit, logic,					
	architecture	and	l system				_					
4	Know the b	asic	es and advance	ed techniques in low power d	esign which is a	hot t	opic in today's					
	market when	re tł	ne power play	s a major role.								
5	Practice the	low	power techn	iques using current generation	design style and p	roces	s technology.					
				Unit-I			07 Hrs					

Introduction: Need for low power VLSI chips, charging and discharging capacitance, short circuit current in CMOS, leakage current, Reverse Biased PN-junction, Sub threshold Channel Leakage, Leakage Current in Digital Design, static current, basic principles of low power design, Reduce Switching Voltage, Reduce Switching Frequency, low power figure of merits.

Unit – II09 HrsSimulation Power Analysis: SPICE Basics, SPICE Power Analysis, Discrete Transistor Modeling and
Analysis, Tabular Transistor Model, Switch Level Analysis, Gate-level Logic Simulation, Gate-level
Logic Simulation, Capacitive Power Dissipation, Internal Switching Energy, Internal Switching Energy, Gate-level Power Analysis. (Ref.1)

Probabilistic power analysis: Random logic signals, Characterization of Logic Signals, Continuous and Discrete Random Signals, probability & frequency, state and Conditional Probability and Frequency, Word-level and Bit-level Statistics, probabilistic power analysis techniques, Propagation of Static Probability in Logic Circuits, Transition Density Signal Model, Propagation of Transition Density, signal entropy.

Unit –III

09 Hrs

Logic: Gate reorganization, Local Restructuring, signal gating, logic encoding, Binary versus Gray Code Counting, Binary versus Gray Code Counting, state machine encoding, Transition Analysis of State Encoding, Output Don't-care Encoding, Design Trade-offs in State Machine Encoding, pre-computation logic. (Ref.1)

Low power Clock Distribution: Power dissipation in clock distribution, single driver Vs distributed buffers, Zero skew v/s tolerable skew, chip & package co design of clock network.

 Unit –IV
 07Hrs

 Circuit: Transistor and gate sizing, Sizing an Inverter Chain, Transistor and Gate Sizing for Dynamic
 Power Reduction, equivalent pin ordering, Transistor Sizing for Leakage Power Reduction, Transistor

 Network Partitioning and Reorganization, network restructuring and reorganization, special latches and flip flops, Combinational Flip-flop, Double Edge Triggered Flip-flop, low power digital cell library, Cell Sizes and Spacing, Varieties of Boolean Functions, adjustable device threshold voltage.

 Unit –V
 07 Hrs

Low power Architecture & Systems: Power & performance management, Microprocessor Sleep Modes, Performance Management, Adaptive Filtering, switching activity reduction, Guarded Evaluation, Bus Multiplexing, Bus Multiplexing, parallel architecture with voltage reduction, flow graph transformation, Operator Reduction, Loop Unrolling. (Ref.1).

Low power arithmetic components: Introduction, circuit design style, adders, multipliers, division.

Course	Course Outcomes: After completing the course, the students will be able to										
CO1:	Identify the sources of power dissipation in CMOS circuits.										
CO2:	Perform power analysis using simulation based approaches and probabilistic analysis.										
CO3:	Use optimization and trade-off techniques that involve power dissipation of digital circuits.										
CO4:	Make the power design a reality by making power dimension an integral part of the design. Use										
	practical low power design techniques and their analysis at various levels of design abstraction										
	and analyse how these are being captured in the latest design.										

Refere	Reference Books									
1	Gary K. Yeap, Practical Low Power Digital VLSI Design, Kluwer Academic, 2008.ISBN:978-									
	8184891874.									
2	Jan M.Rabaey, Massoud Pedram, Low Power Design Methodologies, Kluwer Academic, 2010.									
2	ISBN: 978-1 4614-4270-7.									
	Kaushik Roy, Sharat Prasad, Low-Power CMOS VLSI Circuit Design" Wiley, 2009. ISBN:									
3	978-8126520237.									
4	S. Ramamurthy, Low-Power Digital VLSI Design Circuits and Systems, Medtech, 2014. ISBN:									
4	978-9384007034.									

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks are executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	-	-	-	-	-	-	-	1	-	1		
CO2	3	2	2	1	-	-	-	-	-	1	-	1		
CO3	3	3	2	2	1	-	-	-	-	1	-	1		
CO4	3	3	3	3	1	-	-	-	1	1	1	1		

High-3: Medium-2: Low-1

	Semester: VII										
	UNMANNED AERIAL VEHICLES										
	(Group H: Global Elective)										
Cou	rse Code	:	18G7H01	CIE		:	100 Marks				
Credits: L:T:P:S		:	3:0:0:0	SEE		:	100 Marks				
Hours		:	39L	SEE I	Duration:	:	3.00 Hrs				
Cou	rse Learning O	bje	ctives: The	students will be able to							
1	Get an overvie	ew o	of the history	of UAV systems							
2	Understand th	Understand the importance of aerodynamics, propulsion, structures and avionics in the design of									
2	UAV	UAV									
3	Demonstrate a	abil	ity to addres	ss the various mission payloads - on-boa	rd & off-bo	barc	l, propulsion				
5	systems, integ	rati	on with manı	ned systems							
4	Comprehend t	he i	mportance of	f guidance and navigation of a UAV							

Unit-I	07 Hrs						
Overview of Unmanned Aerial Vehicles and Systems: History of UAVs, Need of unmanned aerial							
systems, Overview of UAV Systems-System Composition, Classification of UAVs based on si	ize, range						
and endurance, Basic working of fixed, rotary and flapping UAVs, Applications of UAVs.							
Unit – II	08 Hrs						
Aerodynamics of Unmanned Aerial Vehicles: Airfoil nomenclature and its characteristi	cs, Basic						
aerodynamics equations, Aircraft polar, Types of drag, Aerodynamics of rotary and flappir Airframe configurations-HTOL, VTOL and Hybrids.	ng wings,						
Unit -III	08 Hrs						
Structures of UAV: Mechanic loading, Load calculation, Materials used for UAV (general intro	oduction),						
Selection criteria for structure, Types of structural elements used in UAV their signific	ance and						
characteristics.							
UAV Propulsion Systems: Thrust Generation, Powered Lift, Sources of Power for UAVs- Piston, Rotary,							
Gas turbine engines, electric or battery powered UAVs.							
Unit -IV	08 Hrs						
Payloads of UAVs : Non-dispensable Payloads- Electro-optic Payload Systems, Radar Imaging	Payloads,						
Electronic Warfare Payloads, Dispensable Payloads and other payloads.							
Launch and Recovery Systems for UAVs: UAV Launch Methods for Fixed-Wing Vehic	cles- Rail						
Launchers, Pneumatic Launchers, Hydraulic/Pneumatic Launchers, Zero Length RATO Launch	of UAVs,						
UAV Recovery Systems-Conventional Landings, Vertical Net Systems, Parachute Recovery, VTC	DL UAVs,						
Mid-Air Retrieval, Shipboard Recovery.							
Unit -V	08 Hrs						
UAV Navigation and Guidance Systems							
Navigation, Dead Reckoning, Inertial, Radio Navigation, Satellite-Way point Navigation, UAV	Guidance,						
Types of guidance, UAV communication systems, Ground control station, Telemetry, UAS future.							

Course Outcomes:

CO1	Appraise the evolution of UAVs and understand the current potential benefits of UAVs
CO2	Apply the principles of Aerospace Engineering in design and development of UAVs
CO3	Determine and evaluate the performance of UAV designed for various Missions and applications

CO4 Appreciate the guidance and navigation systems for enabling the versatility of UAV systems

Ref	erence Books
1	Unmanned Aircraft Systems UAV design, development and deployment, Reg Austin, 1 st Edition,
1	2010, Wiley, ISBN 9780470058190.
2	Introduction to UAV Systems, Paul G Fahlstrom, Thomas J Gleason, 4 th Edition, 2012, Wiley,
2	ISBN: 978-1-119-97866-4
2	Advances in Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy, Kimon P.
3	Valavanis, 1 st Edition,2007, Springer ISBN 9781402061141
4	Flight Stability and Automatic Control, Robert C. Nelson, 2 nd Edition, October 1, 1997, McGraw-
4	Hill, Inc, ISBN 978-0070462731.
5	Design of Unmanned Air Vehicle Systems, Dr. Armand J. Chaput, 3 rd Edition, 2001, Lockheed
3	Martin Aeronautics Company, ISBN: 978-1-60086-843-6

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	3	1	1	3	2	2	-	-	-	1		
CO2	2	3	3	3	1	1	1	1	-	-	-	2		
CO3	1		3	3	-	-	-	-	-	-	-	2		
CO4	3	3	3	3	-	2	1	2	-	-	-	2		

High-3 : Medium-2 : Low-1
Semester: VII													
BIOINFORMATICS													
(Group H: Global Elective)													
Cou	Course Code:18G7H02CIE:100 Marks												
Cree	lits: L:T:P	:	3:0:0:0		SEE	:	100 Marks						
Tota	Total Hours : 39 L SEE Duration : 3.00 Hours												
Course Learning Objectives: The students will be able to													
1	1 Acquire the knowledge of biological database and its role in insilico research												
2	Understand	the	e essential	algorithms behind the biologic	al data analysis	sucl	n as Dynamic						
	programming	g, E	Dot plotting, 1	Evolutionary and Clustering algorithm	ithms along with th	eir i	mplementation.						
3	Use various	too	ls and techn	iques for the prediction of linear	& non-linear struct	tures	s of both macro						
	and micro r	nol	ecules and s	tudy the dynamics of macromol	lecules and High '	Thro	oughput Virtual						
	Studies.												
4	4 Perform annotation of unknown DNA and Protein sequences and explore the principles of molecular												
	modelling			-									
5	Apply the k	nov	wledge towa	rds analyzing the sequences usir	ng programming la	ingu	ages and Drug						
	development	t											

Unit-I	08 Hrs							
Biomolecules and Introduction to Bioinformatics:								
Introduction to Biomolecules. Structure, Types and Functions of Carbohydrates, Lipids, Nucleic Acids and								
Proteins. Genetic code, Codon degeneracy, Genes and Genomes. Introduction to Bioinformatics, Goals,								
Scope, Applications in biological science and medicine. Biological databases - Sequence, structure	, Special							
Databases and applications - Genome, Microarray.								
Unit – II	08 Hrs							
Sequence analysis: Introduction, Types of sequence alignments, Pairwise sequence alignment,	Multiple							
sequence alignment, Alignment algorithms Needleman & Wunch, Smith & Waterman and Pro	ogressive							
global alignment, Database Similarity Searching- Scoring matrices - BLOSSUM and PAM, Bas	ic Local							
Alignment Search Tool (BLAST), and FASTA. Next Generation Sequencing - Alignment and A	ssembly.							
Molecular Phylogenetics: Introduction, Terminology, Forms of Tree Representation. Phylogenetic Tree								
Construction Methods - Distance-Based, Character-Based Methods and Phylogenetic Tree evaluation								
Unit –III	09 Hrs							
Predictive and structural bioinformatics: Gene prediction programs - ab initio and homolog	gy based							
approaches. ORFs for gene prediction. Detection of functional sites and codon bias in the DNA. P	redicting							
RNA secondary structure, Protein structure basics, structure visualization, comparison and class	fication.							
Protein structure predictive methods using protein sequence, Protein identity based on com	position.							
Structure prediction - Prediction of secondary structure.	-							
Unit –IV	07 Hrs							
PERL: Introduction to Perl, writing and executing a Perl program, Operators, Variables and	Special							
variables. Object Oriented Programming in Perl-Class and object, Polymorphism, inherita	nce and							
encapsulation. Data Types - Scalar, Array and Associative array. Regular Expressions (F	EGEX),							
Components of REGEX - Operators, Metacharacters and Modifiers.								
Unit –V	07 Hrs							
BioPERL: Introduction to BioPerl, BioPerl Modules, Applications of BioPerl - Sequence retrie	val from							
Database and submission of sequence to online Database, Indexing and accessing local databases, S	Sequence							
alignments BioPerl and Sequence Analysis - Pair wise and Multiple sequence alignment, Parsing	BLAST							
and FASTA results.								

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Demonstrate the knowledge of retrieval of the biological data in the essential formats and its
	analysis.
CO2:	Analyse the gene, protein and RNA data to find the degree of similarities and identifying the
	patterns
CO3:	Apply the drug designing methods for screening and inventing the new targets and drugs
CO4:	Predict the structure of a compound and design the molecule.

Reference Books

1.	Essential Bioinformatics, JinXiong, 2006, Cambridge University Press, ISBN: 978-05-216-00828.
2.	Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins; D. Andreas Baxevanis and B. F; Francis Ouellette. 2009; Wiley-IEEE; 3rd edn; ISBN: 978-81-265-21920.
3	Bioinformatics: Sequence and Genome Analysis; D W Mount; 2014; CSHL Press; 2nd edn; ISBN: 9780879697129.
4	Computational Systems Biology; A Kriete and R Eils; 2006; Academic Press; Illustrated edn; ISBN: 978-01-208-87866.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	2	-	-	-	-	-	-	-	1	-	1			
CO2	3	2	2	1	-	-	-	-	-	1	-	1			
CO3	3	3	2	2	-	-	-	-	-	1	-	1			
CO4	3	3	3	3	-	-	-	-	-	1	-	1			

	Semester: VII											
INDUSTRIAL SAFETY AND RISK MANAGEMENT												
(Group H: Global Elective)												
Cou	Course Code:18G7H03CIE:100 Marks											
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks					
Tota	l Hours	:	39 L		SEE Duration	:	3.00 Hours					
Cou	rse Learning	Oł	jectives: The	e students will be able to								
1	Select appro	opri	ate risk asses	sment techniques.								
2	2 Analyze public and individual perception of risk.											
3	Relate safet	y, e	rgonomics an	d human factors.								
1	Carry out ri	ck a	assessment in	process industries								

Unit-I	08 Hrs						
Introduction: Introduction to industrial safety engineering, major industrial accidents, safe	ety and						
health issues, key concepts and terminologies, Hazard theory, Hazard triangle, Hazard actuation,							
Actuation transition, Causal factors, Hazard recognition.							
Unit – II	08 Hrs						
Risk assessment and control: Individual and societal risks, Risk assessment, Risk percentered	ception,						
Acceptable risk, ALARP, Prevention through design.							
Hazard Identification Methods: Preliminary Hazard List (PHL): Overview, metho	dology,						
worksheets, case study. Preliminary Hazard Analysis (PHA): Overview, methodology, work	csheets,						
risk index, example.							
Unit –III	08 Hrs						
Hazard analysis: Hazard and Operability Study (HAZOP): Definition, Process parameters, Guide							
words, HAZOP matrix, Procedure, Example. Failure Modes and Effects Analysis (F	MEA):						
Introduction, system breakdown concept, methodology, example.							
Unit –IV	08 Hrs						
Application of Hazard Identification Techniques: Case of pressure tank, system brea	kdown						
structure, safety ontology, Accident paths, HAZOP application, risk adjusted discounted rate n	nethod,						
probability distribution, Hiller's model							
Unit –V	07 Hrs						
Safety in process industries and case studies: Personnel Protection Equipment (PPE): Safety	glasses,						
face shields, welding helmets, absorptive lenses, hard hats, types of hand PPE, types of foot PP	E, types						
of body PPE. Bhopal gas tragedy, Chernobyl nuclear disaster, Chemical plant explosion ar	nd fire.						
· · · · · · · · ·							
Course Outcomes: After completing the course, the students will be able to							
CO1: Recall risk assessment techniques used in process industry.							

- **CO2:** Interpret the various risk assessment tools.
- **CO3:** Use hazard identification tools for safety management.
- **CO4:** Analyze tools and safety procedures for protection in process industries.

Reference Books1Functional Safety in the Process Industry: A Handbook of practical Guidance in the
application of IEC61511 and ANSI/ISA-84, Kirkcaldy K.J.D Chauhan, 2012, North corolina,
Lulu publication, ISBN:12911872352Safety Instrumented Systems Verification Practical probabilistic calculations, Goble and William
M., 2005, Pensulvania ISA publication, ISBN:155617909X3Industrial safety and risk Management, Laird Wilson and Doug Mc Cutche, 1st Edition, 2003,
The University of alberta press, Canada, ISBN: 0888643942.4Industrial Safety, Health and Environment Management Systems, R K Jain, Sunil S Rao, 4th
Edition, 2005, Khanna Publishers, New Delhi, ISBN: 8174092102

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	1	-	1	1	1	-	-	1	-
CO2	2	3	1	-	1	1	-	-	-	-	-	-
CO3	3	2	1	1	2	-	1	-	-	1	1	-
CO4	3	-	1	-	-	-	-	-	1	-	1	-

CO-PO Mapping

				Semester: VII								
WEB PROGRAMMING												
			(Gi	oup H: Global Elective)			1					
Cou	rse Code	:	18G7H04		CIE	:	100 Marks					
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks					
Tota	l Hours	:	39 L		SEE Duration	:	3.00 Hours					
Course Learning Objectives: The students will be able to												
1 Understand the standard structure of HTML/XHTML and its differences.												
 Adapt HTML and CSS syntax & semantics to build web pages. Learn the definitions and syntax of different web programming tools such as laveSeriet. VML 												
3 Learn the definitions and syntax of different web programming tools such as JavaScript, XML and Aiax to design web pages												
and Ajax to design web pages.												
4 Design and develop interactive, client-side, server-side executable web applications using different techniques such as CSS JavaScript XMJ and Ajav												
different techniques such as CSS, JavaScript, XML and Ajax.												
Unit-I 07 Hrs												
Unit-1 07 Hrs												
Fund	amentals of	We	b(Internet, WWW	, Web Browsers and Wel	b Servers, URLs	, N	AIME, HTTP,					
Secu	rity, the Wel	b P	rogrammers Toolb	ox), XHTML: Basic synta	ax, Standard stru	ictu	re, Basic text					
mark	up, Images, H	Iyp	ertext Links, Lists,	Tables, Forms, Frames.								
HTN	IL 5:Core H	ΓМ	L attributes, headir	gs, paragraphs and breaks,	quotations, prefor	rma	tted text, lists,					
horiz	contal rules, b	oloc	k-level elements,	text-level elements The au	idio Element; Th	e v	ideo Element;					
Orga	nization Elem	nent	s; The time Elemer	it, Syntactic Differences bet	ween HTML and	XH	TML.					
				Unit – II			08 Hrs					
Intro Font <spat The Over</spat 	duction, Leve properties, L n> and <div> Basics of Jav view of JavaS</div>	els o ist tag aSc	of style sheets, Sty properties, Color, s, Conflict resolution ript: pt: Object orientation	e specification formats, Sel Alignment of text, The bo on.	lector forms, Prop x model, Backgro syntactic character	oert oun	y value forms, d images, The					
opera	ations, and exp	pres	sions; Screen outp	ut and keyboard input; Cont	rol statements.		,					
-			· · · · · ·	Unit –III			09 Hrs					
Java	Script (conti	nue	d):				· · · · ·					
Obje expro	ct creation a essions; Error Serint and H	nd s in	modification; Arras	ays; Functions; Constructo	r; Pattern matchi	ng	using regular					
The	JavaScript ex		tion environment.	The Document Object Mo	del· Element acc	-55	in JavaScript.					
Even	ts and event	han	dling: Handling ev	rents from the Body element	nts. Button element	nts.	Text box and					
Pass	word elements	s; T	he DOM 2 event m	odel; The navigator object.	,	,,						
		,		Unit –IV			08 Hrs					
Dyna	amic Docume	ents	with JavaScript:				1					
Introduction to dynamic documents; Positioning elements; Moving elements; Element visibility; Changing colors and fonts; Dynamic content; Stacking elements; Locating the mouse cursor; Reacting to a mouse click; Slow movement of elements; Dragging and dropping elements. Introduction to PHP: Origins and uses of PHP; overview of PHP; General syntactic characteristics; Primitives, Operations												
and Hand	and Expressions; Output; Control statements; Arrays; Functions; Pattern Matching; Form Handling;Cookies; Session Tracking.											
VM	.Introduction	,. ¢	Suntax: Document	UIIII –V	a definitiona. M							
scher Ajax The	nas; Displayin : Overview o Response Doc	ng 1 ng 1 of A cum	aw XML document jax; Basics of Aja ent; The Receiver J	ts; Displaying XML document x: The Application; The Fo Phase.	ents with CSS; XS rm Document; Th	sLT ne F	Style sheets. Request Phase;					

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Understand the basic syntax and semantics of HTML/XHTML.									
CO2:	Apply HTML/XHTML tags for designing static web pages and forms using Cascading Style									
	Sheet.									
CO3:	Develop Client-Side Scripts using JavaScript and Server-Side Scripts using PHP and utilize the									
	concepts of XML & Ajax to design dynamic web pages.									
CO4:	Develop web based applications using PHP, XML and Aiax.									

Reference Books

110101	
1	Programming the World Wide Web – Robert W. Sebesta, 7 th Edition, Pearson Education, 2013, ISBN-13:978-0132665810.
2	Web Programming Building Internet Applications – Chris Bates, 3 rd Edition, Wiley India, 2006, ISBN: 978-81-265-1290-4.
3	Internet & World Wide Web How to H program – M. Deitel, P.J. Deitel, A. B. Goldberg, 3 rd Edition, Pearson Education / PHI, 2004, ISBN-10: 0-130-89550-4
4	The Complete Reference to HTML and XHTML- Thomas A Powell, 4 th Edition, Tata McGraw Hill, 2003, ISBN: 978-0-07-222942-4.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	1	-	2	-	1	1	1	-	-	-	-	1			
CO2	-	-	2	-	1	1	-	-	-	-	-	-			
CO3	-	-	-	-	2	-	-	-	2	-	-	2			
CO4	-	-	3	-	2	-	-	-	2	-	-	2			

	Semester: VII								
	SOLID WASTE MANAGEMENT AND STATUTORY RULES								
				(Group H: Global Elective)					
Course Code		:	18G7H05	CI	CIE		100 Marks		
Credits: L:T:P		:	3:0:0	SE	E		100 Marks		
Total Hours		:	39 L	SE	E Duration		3.00 Hours		
Cour	rse Learning C)bje	ectives: The st	udents will be able to					
1	Impart the kr	low	ledge of pres	ent methods of solid waste manag	ement system a	nd t	o analyze the		
	drawbacks.								
2	Understand va	ario	us waste mana	gement statutory rules for the presen	nt system.				
3	Analyze diffe	ren	t elements of s	olid waste management and design	and develop rec	ycli	ng options for		
	biodegradabl	e w	aste by compo	sting.					
4	Identify haza	rdo	us waste, e-w	aste, plastic waste and bio medi-	cal waste and t	heir	management		
	systems.								

Unit-I	08 Hrs						
Introduction: Present solid waste disposal methods. Merits and demerits of open dumping, incineration,							
pyrolysis, composting, sanitary landfill. Scope and importance of solid waste management. Definition and							
functional elements of solid waste management.							
Sources: Sources of Solid waste, types of solid waste, composition of municipal solid waste,	generation						
rate, Problems.							
Collection and transportation of municipal solid waste: Collection of solid waste- services and	nd systems,						
Municipal Solid waste (Management and Handling) 2016 rules with amendments. Site visit to	o collection						
system.	1						
Unit – II	08 Hrs						
Composting Aerobic and anaerobic composting - process description, process mil	crobiology,						
Vermicomposting, Site visit to compost plant, Numerical problems.							
Sanitary land filling: Definition, advantages and disadvantages, site selection, methods, reaction	n occurring						
in landfill- Gas and Leachate movement, Control of gas and leachate movement, Site visit to la	ndfill site.						
Unit –III	08 Hrs						
Hazardous waste management: Definitions, Identification of hazardous waste, Classi	fication of						
hazardous waste, onsite storage, collection, transfer and transport, processing, disposal, Hazardous waste, onsite storage, collection, transfer and transport, processing, disposal, Hazardous waste, on the storage of	ardous and						
other wastes (Management and Transboundary Movement) Rules, 2016 with amendments. S	ite visit to						
hazardous landfill site	(
Unit –IV	08 Hrs						
Bio medical waste management: Classification of bio medical waste, collection, transportation	n, disposal						
of bio medical waste, Biomedical waste management (Management & Handling Rules) 2016 with							
amendments. Site visit to hospital to observe biomedical waste collection and transportation system and							
visit to biomedical waste incineration plant.							
visit to biomedical waste incineration plant. Unit –V	07 Hrs						
visit to biomedical waste incineration plant. Unit –V E-waste management: Definition, Components, Materials used in manufacturing electron	07 Hrs						

to e- waste treatment plant. **Plastic waste management:** Manufacturing of plastic with norms. Plastic waste management. Plastic manufacture, sale & usage rules 2009 with amendments.

	RV College of Engineering							
Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand the current solid waste management system and statutory rules.							
CO2:	Analyse drawbacks in the present system and provide recycling and disposal options for each type							
	of waste in compliance to rules.							
CO3:	Distinguish Hazardous waste, Biomedical waste, E waste and to provide scientific management							
	system.							
CO4:	Evaluate and monitor the Biomedical waste, Hazardous waste, E waste, Plastic and Municipal							
	waste management as per the rules laid by Ministry of Environment, Forest and Climate change.							

Refere	ence Books :						
	Integrated Solid Waste Management, George.C. Tchobanoglous, International edition ,1993,						
1	McGraw hill publication. ISBN 978-0070632370						
	Electronic waste management, R.E. Hester, Roy M Harrison, , Cambridge, UK, 2009, RSC						
2	Publication, ISBN 9780854041121						
2	Solid Waste Management Rules 2016, Ministry of Environment, Forest and Climate Change						
3	Notification, New Delhi, 8 th April 2016						
1	Hazardous and other wastes (Management and Transboundary Movement) Rules, 2016, Ministry						
4	of Environment, Forest and Climate Change Notification, New Delhi, 04 th April, 2016.						
5	Biomedical waste management (Management & Handling Rules) 2016,. Ministry of						
Э	Environment & Forest Notification, New Delhi, amendment on 28th March, 2016.						
6	E-waste (Management) Rules 2016, Ministry of Environment, Forest and Climate Change						
0	Notification, New Delhi, 23 rd March, 2016.						
7	Plastic Waste (Management and Handling) Rules, 2011 as amended in 2018, Ministry of						
/	Environment, Forest and Climate Change Notification, New Delhi, 27th March, 2018						

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	2	2	1	-	1	-	2
CO2	2	2	2	2	-	1	2	1	-	-	-	-
CO3	1	-	2	2	-	1	2	1	-	1	-	-
CO4	2	-	-	3	-	1	2	1	-	-	-	1

	Semester: VII								
IVIAGE PROCESSING AND MACHINE LEARNING (Group H: Global Elective)									
Cou	rse Code	:	18G7H06		CIE	:	100 Marks		
Cre	dits: L:T:P	:	3:0:0		SEE	:	100 Marks		
Tota	al Hours	:	40 L		SEE Duration	:	3.00 Hours		
Cou	rse Learning O	bje	ctives: The st	udents will be able to	1				
1	Understand the	e ma	ajor concepts	and techniques in image pro	ocessing and Machi	ine L	earning		
2	To explore, ma	anip	oulate and ana	lyze image processing tech	niques		¥		
3	To become far	nili	ar with regres	sion methods, classification	methods, clusterin	g me	ethods.		
4	Demonstrate in	nag	ge processing	and Machine Learning know	wledge by designing	g and	d implementing		
	algorithms to s	olv	e practical pro	oblems					
				Unit-I			08 Hrs		
Intr	oduction to ima	ge	processing:						
Intro	oduction to ima	ige	processing,	Applications of image p	rocessing, Compor	nents	s of an image		
proc	essing system, F	unc	damental step	s in image processing, Ima	ge formation and r	epres	sentation, Color		
imag	gery, basic defin	itio	ns, Pixels, In	age resolution, PPI and D	PI, Bitmap images,	, Los	ssless and lossy		
com	pression, Image	file.	formats, Colo	or spaces, Bezier curve, Elli	psoid, Gamma cori	rectio	on, Examples of		
Z001	ning and shrinki	ng i	in image proc	essing Advanced image con	icepts.		00 11		
Dag	as of Duthon S	.:	timaga P. A.	Unit – II Ivanaad Imaga Dugaasing	using Onon CV.		U8 Hrs		
Basi	ics of python, So	CIKI Zarij	\mathbf{t} image $\boldsymbol{\alpha}$ A	types data structures of	using Open CV:	ditio	nal statements		
unlo	ading & viewing	/ a116 7 . 9 n	image Imag	resolution gamma correct	ion determining st	ructi	ral similarities		
upic		5 an	mage, mag	Unit –III	ion, determining st	lucit	08 Hrs		
Adv	anced Image pr	.006	essing using (Dnen CV			00 III 5		
Bler	iding Two Imag	es,	Changing Co	ntrast and Brightness Addi	ng Text to Images	Smo	oothing Images,		
Med	lian Filter, Gau	ssia	n Filter, Bil	ateral Filter, Changing the	e Shape of Image	es, E	ffecting Image		
Thre	esholding, Calcul	latir	ng Gradients,	Performing Histogram Equ	alization	ĺ	0 0		
				Unit –IV			08 Hrs		
Ima	ge Processing u	sing	g Machine Lo	earning					
Feat	ure mapping us	sing	SIFT algori	thm, Image registration u	sing the RANSAG	C alg	gorithm, Image		
class	sification using A	Arti	ficial Neural	Networks, Image classifica	ation using CNNs,	Imag	ge classification		
usin	using machine learning Approaches.								
				Unit –V			08 Hrs		
Rea	l time use CASI	ES				-			
Exh	austive vs. Stoc	has	tic Search, S	hapes, Contours, and App	earance Models. N	Aean	shift tracking;		
Con	Contour-based models, finding palm lines, Face Detection / Recognition, Tracking movements.								

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Gain knowledge about basic concepts of Image Processing							
CO2:	Identify machine learning techniques suitable for a given problem							
CO3:	Write programs for specific applications in image processing							
CO4 :	Apply different techniques for various applications using machine learning techniques.							

Ref	erence Books
1	Digital Image Processing, Rafael C. Gonzalez and Richard E. Woods Pearson Education, 3 rd
-	Edition, ISBN 978-81-317-2695-2.
	Practical Machine Learning and Image Processing: For Facial Recognition, Object Detection,
2	and Pattern Recognition Using Python, Himanshu Singh, 1st Edition, Apress, ISBN:978-1-
	4842-4149-3
2	Pattern Recognition and Machine Learning, Christopher Bishop, 1st Edition Springer, 2008,
5	ISBN: 978-0387-31073-2
4	Computer Vision: A modern Approach, David Forsyth and Jean Ponce, 2 nd Edition, Prentice
	Hall India 2004, ISBN: 978-0136085928

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for assignment is 20. The total marks of CIE are 100.

Total CIE is 30(Q)+50(T)+20(EL)=100Marks

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	3	2	-	-	-	-	-	-	1
CO2	-	3	-	1	2	-	-	1	2	-	-	1
CO3	3	-	2	1	3	-	-	1	1	1	-	1
CO4	3	3	3	3	2	-	-	1	1	1	-	1

Semester: VII									
	RENEWABLE ENERGYSOURCES AND STORAGE SYSTEM								
	(Group H: Global Elective)								
Course Code:18G7H07CIE:100 Marks						100 Marks			
Credits: L:T:P		:	3:0:0	SEE		100 Marks			
Total Hours		:	39L	SEE Duration	:	3.00 Hours			
Cours	se Learning Ob	ject	tives: The st	udents will be able to					
1	Understand Co	once	epts of nonco	nventional energy sources and allied technol	ogy	required for			
	energy conver	sion	l.						
2	2 Analyse the Basics of battery working and sizing of battery for a given application.								
3	Design aspect	s of	solar and win	nd power systems.					
4	Energy storage	e tec	hniques						

UNIT-I	08 Hrs
Basics of Renewable Energy: Energy balance of the earth, Solar radiation, wind energy, g	eothermal
energy.	
Geothermal Energy – principles, technical description, heat supply by hydro-geothermal sys	stems,
heat supply by deep wells, geothermal generation, economic and environmental analysis.	
Biomass Energy: Biomass Production, Energy Plantation, Biomass Gasification, T	heory of
Gasification, Gasifier and Their Classifications, Updraft, Downdraft and Cross-draft	Gasifiers,
Applications of Biomass Gasifier.	
Tidal Energy: Introduction, Tidal Energy Resource, Tidal Power Basin, Advant	ages and
Disadvantages of Tidal Power.	
Unit – II	08 Hrs
Photo Voltaic Systems: PV Cell, Module and array; Equivalent electrical circuit, Open -circ	uit
voltage and short circuit current, I-V and P-V curves, Array design, Peak power Tracking, Sy	stem
Components,	
Grid Connected Solar PV Power System: Introduction to grid connected PV system, Con	figuration
of Grid-connected solar PV system, Components of Grid -connected solar PV systems, Grid	connected
PV system Design for small power Applications, Grid- connected PV system design for power	er plants.
Unit -III	08 Hrs
Wind Power: Introduction, site selection, Advantages and Disadvantages, Wind power insta	llations in
the world.	
Wind Speed and Energy:Speed and Power Relations,Power Extracted from the wind. Ro	otor-Swept
Area, Air Density, Global Wind Patterns, Wind Speed Distribution	n,Weibull
Probability, Distribution, Mode and Mean Speeds, Root Mean Cube Speed, Mode, Mean,	and RMC
Speeds, Energy Distribution, Digital Data Processing, Effect of Hub Height, Importance o	f Reliable
Data, Wind Speed Prediction, Wind Energy Resource Maps.	
Wind Power Systems: System Components, Tower, Turbine, Blades, Speed Control, Turbin	ne Rating
Power vs Speed and TSR.	
Unit –IV	08 Hrs
Wind Power Systems: Maximum Energy Capture, Maximum Power Operation Con	stant-TSR
Scheme, Peak-Power-Tracking scheme, System-Design Trade-offs, Turbine Towers and	Spacing,
Number of Blades, Rotor Upwind or Downwind, Horizontal vs. Vertical Axis.	
System Control Requirements: Speed Control. Rate Control.	

Environmental Aspects: Audible Noise, Electromagnetic Interference (EMI), Effects on Birds.

Unit –V									
Energy storage									
Batteries: Different types of batteries, Equivalent Electrical Circuit, Battery charging	, Battery								
management									

Flywheels: Energy Relations, Components, Benefits over battery

Other Storage devices: Superconducting magnetic energy storage, Compressed air, Pumped storage hydropower, Hydrogen Energy storage

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Understand the concepts of power generation from various renewable sources.						
CO2:	Design the Size of the battery required for solar PV applications.						
CO3:	Design main components of solar and wind power systems.						
CO4:	Execute projects in renewable power generation.						

Reference Books

11010101	
1	Renewable energy: Technology, Economics and Environment, Martin Kaltschmitt, Wolfgang
	Streicher Andreas Wiese, Springer Publication, 2007, ISBN 978-3-540-70947-3
2	Solar photo voltaic Technology and systems, Chetan Singh Solanki, third edition(2013), PHI
2	,Learning private limited New Delhi ISBN: 978-81-203-4711-3
2	Wind and solar power system design, Analysis and operation, Mukund R. Patel, 2 nd Edition.
3	CRC Group , Taylor and Francis group, New Delhi , ISBN 978-0-8493-1570-1
4	Power System Energy Storage Technologies, Paul Breeze, Academic Press, 2018, ISBN 978-
4	0-12-812902-9

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	2	-	-	-	-	-	1	-	1
CO2	3	3	2	1	1	2	-	-	-	1	-	1
CO3	3	2	2	2	2	2	2	1	-	1	-	1
CO4	3	3	3	3	2	3	1	1	1	3	1	3

	Semester: VII						
	MEMS AND APPLICATIONS						
			(Gre	oup H: Global Ele	ective)		
Course	Code	:	18G7H08		CIE	:	100 Marks
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks
Total H	Total Hours		39 L		SEE Duration	:	3.00 Hours
Course	Learning (Object	ives: The studen	ts will be able to			
1	Understand	d the r	udiments of Mic	ro fabrication tech	niques.		
2	Identify and associate the various sensors and actuators to applications.						
3	3 Analyze different materials used for MEMS.						
4	4 Design applications of MEMS to disciplines.						

Unit-I	06 Hrs					
Overview of MEMS & Microsystems: MEMS and Microsystems, Typical MEMS and micro system						
products, Evolution of micro fabrication, Microsystems and microelectronics, Multidisciplinary nature						
of Microsystems, Design and manufacture, Applications of Microsystems in automotive, h	ealthcare,					
aerospace and other industries.						
Working Principle of Microsystems: Biomedical and biosensors. Micro sensors: Acoustic, G	Chemical,					
Optical, Pressure, Thermal.						
Unit – II	09 Hrs					
Micro actuation: Using thermal forces, shape memory alloys, Piezoelectric crystals and ele	ectrostatic					
forces. MEMS with micro actuators: Microgrippers, micromotors, microvalves and mic	ropumps,					
microaccelerometers, microfluidics.						
Introduction to Scaling: Scaling in Geometry, Scaling in Rigid body dynamics, Scaling in Ele	ectrostatic					
forces, scaling in electromagnetic forces and scaling in fluid mechanics.						
Unit –III	09 Hrs					
Materials for MEMS and Microsystems: Substrates and wafers, Active substrate materials,	Silicon as					
substrate material, Silicon Compounds, Si-Piezoresistors, GaAs, Quartz, Piezoelectric	Crystals,					
Polymers and packaging materials. Three level of Microsystem packaging, Die level packagin	g, Device					
level packaging, System level packaging. Interfaces in microsystem packaging. Essential p	backaging					
technologies: die preparation, Surface bonding, Wire bonding, Sealing, 3D packaging.						
Unit –IV	08 Hrs					
Microsystem Fabrication Process: Introduction to microsystems, Photolithography, Ion Imp	lantation,					
Diffusion, Oxidation, CVD, PVD-Sputtering, Deposition by Epitaxy, Etching, LIGA process	: General					
description, Materials for substrates and photoresists, Electroplating and SLIGA process.						
Unit –V	07 Hrs					
Micro Sensors, Actuators, Systems and Smart Materials: An Overview						
Silicon Capacitive Accelerometer, Piezo resistive Pressure sensor, Fibre-optic sensors, Conductometric						
Gas Sensor, Electrostatic Comb drive, Magnetic Microrelay, Portable blood analyzer, Piezo electric						
Inkjet Print head, Micromirror array for Video projection, Micro-PCR Systems, Smart materials and						
systems.						
Course Outcomest After completing the course, the students will be able to						

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand the operation of micro devices, micro systems and their applications.							
CO2:	Apply the principle of material science to sensor design.							
CO3:	Analyze the materials used for sensor designs.							
CO4:	Conceptualize and design micro devices, micro systems.							

Refere	ence Books
1	MEMS & Microsystems Design and Manufacture, Tai-Ran Hsu, 2 nd Edition, 2002, Tata
1	McGraw Hill Education, New Delhi, ISBN-13:978-0-07-048709-3.
2	Micro and Smart Systems, G.K. Ananthasuresh, K.J. Vinoy, K.N. Bhat, V.K. Aatre, 2015,
2	Wiley Publications, ISBN-:978-81-265-2715-1.
3	Foundations of MEMS, Chang Liu, 2012, Pearson Education Inc., ISBN-13:978-0-13-249736-7.

4	Smart Material Systems and MEMS, Vijay K Varadan, K. J. Vinoy, S. Gopalakrishnan, 2006,
4	Wiley-INDIA, ISBN-978-81-265-3170-7.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-		-	1	-	1
CO3	3	3	2	2	1	-	-		-	1	-	1
CO4	3	3	3	3	1	-	-		1	1	1	1

	Semester: VII						
	PROJECT MANAGEMENT						
			(Gr	oup H: Global E	lective)		
Cou	rse Code	:	18G7H09		CIE	:	100 Marks
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks
Tota	l Hours	:	39L		SEE Duration	:	3.0 Hours
Cou	rse Learning	Ob	jectives: The stude	nts will be able to			
1	To understar	nd t	he principles and co	omponents of proj	ect management.		
2	To appreciat	e th	e integrated approa	ich to managing pi	ojects.		
3	To explain d	liffe	rent process groups	s and knowledge a	reas used to manag	e pro	oject.
			U	nit-I			07 Hrs
Intro	oduction: Wh	at i	s project, what is pr	oject management	, relationships amo	ng p	ortfolio management,
program management, project management, and organizational project management, relationship							
between project management, operations management and organizational strategy, business value, role							
of the project manager, project management body of knowledge.							
	Unit – II 09 Hrs						

Organizational influences & Project life cycle: Organizational influences on project management, project state holders & governance, project team, project life cycle.

Project Integration Management: Develop project charter, develop project management plan, direct & manage project work, monitor & control project work, perform integrated change control, close project or phase.

 Unit –III
 09 Hrs

 Project Scope Management: Project scope management, collect requirements define scope, create

 WBS, validate scope, control scope.

Project Time Management: Plan schedule management, define activities, sequence activities, estimate activity resources, estimate activity durations, develop schedule, control schedule.

Unit –IV	07 Hrs
Project Cost management: Project Cost management, estimate cost, determine budg	et, control costs.
Project Quality management: Plan quality management, perform quality assurance,	control quality.
Unit –V	07 Hrs
Project Dials Management. Dian right management identify right nonforme quality	tirra miale amaleraia

Project Risk Management: Plan risk management, identify risks, perform qualitative risk analysis, perform quantitative risk analysis, plan risk resources, control risk.Project Procurement Management: Project Procurement Management, conduct procurements, control

procurements, close procurement.

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Understand the concepts, tools and techniques for managing large projects.								
CO2:	Explain various knowledge areas and process groups in the project management framework.								
CO3:	Analyze and evaluate risks in large and complex project environments.								
CO4:	Develop project plans for various types of organizations.								
-									

Refere	ence Books
1	A Guide to the Project Management Body of Knowledge(PMBOK Guide), Project Management Institute, 5 th Edition, 2013, ISBN: 978-1-935589-67-9
2	Project Planning Analysis Selection Financing Implementation & Review, Prasanna Chandra, 7 th Edition, 2010, Tata McGraw Hill Publication, ISBN 0-07-007793-2.
3	Project Management A System approach to Planning Scheduling & Controlling, Harold Kerzner, 10 th Edition, 2009, CBS Publishers and Distributors, ISBN 047027806.
4	Strategic Project Management Made Simple: Practical Tools for Leaders and Teams, Terry Schmidt, 1 st Edition, 2009, John Wiley & Sons, ISBN: 978-0470411582

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks**.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2											
CO2	2	2		1	1							
CO3							1	1				
CO4	2		3		1							

Low-1 Medium-2 High-3

	Semester: VII								
	CYBER FORENSICS AND DIGITAL INVESTIGATIONS								
			(Gr	oup H: Global Elective)					
Cour	Course Code:18G7H10CIE:100 Marks								
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks		
Total Hours		:	39 L		SEE Duration	:	3.00 Hours		
Cour	rse Learning ()bje	ectives: The students	s will be able to					
1	To provide an	un	derstanding Comput	er forensics fundamentals	and comprehend the	he i	mpact of		
	cybercrime and forensics.								
2	2 Describe the motive and remedial measures for cybercrime, detection and handling.								
3	Demonstrate	and	investigate the use of	of Tools used in cyber fore	ensics.				

4 Analyse areas affected by cybercrime and identify Legal Perspectives in cyber security.

Unit-I	09 Hrs			
Introduction to Cybercrime: Cybercrime: Definition and Origins of the Word, Cybercrime:	rcrime and			
Information Security, Who are Cybercriminals, Classifications of Cybercrimes, Cybercrime En	ra: Survival			
Mantra for the Netizens.				
Cyber offenses: How Criminals Plan Them: How Criminals Plan the Attacks, Social E	ngineering,			
Cyberstalking, Cyber cafe and Cybercrimes, Botnets: The Fuel for Cybercrime, Attack Vector, Cloud				
Computing.				
Unit – II	08 Hrs			
Cybercrime: Mobile And Wireless Devices: Introduction, Proliferation of Mobile and Wirele	ess Devices,			
Trends in Mobility, Credit Card Frauds in Mobile and Wireless Computing Era, Security Challe	enges Posed			
by Mobile Devices, Registry Settings for Mobile Devices, Authentication Service Security,	Attacks on			
Mobile/Cell Phones, Mobile Devices: Security Implications for organizations, Organizational M	leasures for			
Handling Mobile devices, Organizational Security Policies and Measures in Mobile Com	puting Era,			
Laptops.				
Unit –III	07 Hrs			
Tools And Methods Used In Cybercrime: Introduction, Proxy Servers and Anonymizers	s, Phishing,			
Password Cracking, Keyloggers and Spywares, Virus and Worms, Trojan Horses and	Backdoors,			

Tools And Methods Used In Cybercrime: Introduction, Proxy Servers and Anonymizers, Phishing, Password Cracking, Keyloggers and Spywares, Virus and Worms, Trojan Horses and Backdoors, Steganography, DoS and DDoS Attacks, SQL Injection, Buffer Overflow, Attacks on Wireless Networks. **Phishing and Identity Theft**: Introduction, Phishing, Identity Theft (ID Theft).

Unit –IV08 HrsUnderstanding Computer Forensics: Introduction, Historical Background of Cyber forensics, Digital
Forensics Science, The Need for Computer Forensics, Cyber forensics and Digital Evidence, Forensics
Analysis of E-Mail, Digital Forensics Life Cycle, Chain of Custody Concept, Network Forensics,
Approaching a Computer Forensics Investigation, Setting up a Computer Forensics Laboratory:
Understanding the Requirements, Computer Forensics and Steganography, Relevance of the OSI 7 Layer
Model to Computer Forensics, Forensics and Social Networking Sites: The Security/Privacy Threats,
Computer Forensics from Compliance Perspective, Challenges in Computer Forensics, Special Tools and
Techniques, Forensics Auditing, Anti-forensics.

Unit –V

07 Hrs

Cybercrime And Cyber Security: The Legal Perspectives-Introduction, Why Do We Need Cyberlaws: The Indian Context, The Indian IT Act, Challenges to Indian Law and Cybercrime Scenario in India, Digital Signatures and the Indian IT Act, Amendments to the Indian IT Act, Cybercrime and Punishment.

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Interpret the basic concepts of cyber security, cyber law and their roles.					
CO2:	Articulate evidence collection and legal challenges.					
CO3:	Discuss tool support for detection of various attacks.					
CO4:	Demonstrate through use of proper tools knowledge on the cyber security, Cybercrime and					
	forensics					

Refere	ence Books :
1	Cyber Security: Understanding Cyber Crimes, Computer Forensics And Legal Perspectives,
1	SunitBelapure and Nina Godbole, , Wiley India Pvt Ltd, ISBN: 978-81-265-21791, 2013.
2	Introduction to information security and cyber laws, Dr. Surya PrakashTripathi, RitendraGoyal,
2	Praveen Kumar Shukla, KLSI. Dreamtech Press, ISBN: 9789351194736, 2015.
2	Cybersecurity: Managing Systems, Conducting Testing, and Investigating Intrusions, Thomas J.
3	Mowbray, Copyright © 2014 by John Wiley & Sons, Inc, ISBN: 978 -1-118 84965 -1
4	Cyber Forensics, Technical Publications, I. A. Dhotre, 1 st Edition, 2016, ISBN-13: 978-
4	9333211475

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	-	-	-	-	-	-	3	1	-	-
CO2	1	2	-	2	2	-	-	2	2	3	1	2
CO3	2	3	-	2	2	2	-	2	3	2	-	-
CO4	3	2	3	2	3	1	-	2	3	2	1	1

Semester: VII									
	ROBOTICS AND AUTOMATION								
				(Group H: Global Elec	ctive)				
Co	Course Code:18G7H11CIE:100 Marks								
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks		
Total Hours		:	39 L		SEE Duration	:	3.00 Hours		
Co	ourse Learning	g O	bjectives: The s	students will be able to					
1	1 Understand the concepts of robotics and automation.								
2	Impart the knowledge of robotic programming and robotic operation control								
3	Selection and	an	alysis of robot c	onfiguration and kinema	tics				

4 Importance of automation manufacturing techniques and processing industries

5 Development of automation system for manufacturing and processing industries

Unit-I	06 Hrs
Introduction - Basics of kinematics, Anatomy of robot, Robot configuration, Robot join	ts, Sensors
and drive system, Control modes, Specification of robots, Robot programming methods.	
Unit – H	09 Hrs

	07 1110
Robot Kinematics - Position and orientation of objects, Objects coordinate frame, Rota	tion matrix,
Euler angles roll, pitch and yaw angles coordinate transformations, Joint variables and pos	ition of end
effector, Homogeneous transformation.	

D-H parameters and conventions, D-H matrix, Direct kinematic and inverse analysis of planar and 3 DoF robots.

Chint III	10 111 5
Trajectory planning - Introduction, Path versus trajectory, Joint-space versus Carte	sian-space
descriptions, Basics of trajectory planning, Joint-space trajectory planning, Third-order and I	Fifth-order
polynomial trajectory planning.	

Automation in Production Systems - Manufacturing support systems, Automation principles and strategies, Levels of Automation, Production Concepts and Mathematical models, Numericals.

Unit –IV	08 Hrs
Machine Vision - Object recognition by features, Basic features used for object ide	entification,
Moments, Template matching, Discrete Fourier descriptors, Computed Tomography (0	CT), Depth
measurement with vision systems, Scene analysis versus mapping, Range detection	and Depth
analysis, Stereo imaging, Scene analysis with shading and sizes, Specialized lighting,	Image data
compression, Intraframe spatial domain techniques, Interframe coding, Compression	techniques,
Colour images, Heuristics, Applications of vision systems	
Unit –V	06 Hrs

Flexible Manufacturing Systems - Introduction to FMS - concepts, integration in the data processing systems, FMS scheduling. Case studies.

Material Handling systems - Conveyors - AGVs - industrial robots in material handling - Automated Storage and retrieval system.

Distributed data processing in FMS - Database Management System and their applications in CAD/CAM and FMS – distributed systems in FMS - Integration of CAD and CAM

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Understand the characteristics and working principle of robots.								
CO2:	Apply the related mathematical model to formulate the kinematics and trajectory planning of								
	industrial robot.								
CO3:	Analyse the machine vision for effective Flexible Manufacturing Systems.								
CO4:	Develop model and integrate drives for industrial robots and automation systems.								

Refer	ence Books
1	Mohsen Shahinpoor, "A Robot Engineering Textbook", Harper & Row Publishers, 3 rd Edition, New York, ISBN:006045931X
2	John J. Craig, "Introduction to Robotics", Pearson Education International, 3 rd Edition, ISBN:109876543, 1-13-123629-6
3	Mikell P Groover, "Automation, Production Systems, and Computer-integrated Manufacturing", Pearson Publishing, 3 rd Edition, 2014, ISBN 978 81 203 3418 2
4	Joseph Talavage, "Flexible Manufacturing Systems in Practice Design: Analysis and Simulation", CRC Press, 1987, ISBN 9780824777180

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	-	1	-	-	1	-	-	-	2	-	2	
CO2	3	3	1	3	1	1	-	-	-	2	-	2	
CO3	2	-	2	-	1	1	-	-	2	-	-	2	
CO4	3	3	2	3	1	1	-	2	3	-	3	2	

	Semester: VII									
SPACE TECHNOLOGY AND APPLICATIONS										
(GROUP H: GLOBAL ELECTIVE)										
Cou	rse Code	:	18G7H12	С	CIE	:	100 Marks			
Credits: L:T:P		:	3:0:0	S	EE	:	100 Marks			
Total Hours			39L	S	EE Duration	:	3.00 Hours			
Cou	rse Learning C)bj	ectives: The stu	dents will be able to						
1	Define the ear	th	environment an	d its behaviour, launching ve	chicles for satellit	tes	and its associated			
	concepts.									
2	2 Analyse satellites in terms of technology, structure and communications.									
3	Use satellites f	or s	space application	s, remote sensing and metrolo	ogy.					
Crec Tota Cou 1 2 3	lits: L:T:P ll Hours rse Learning C Define the ear concepts. Analyse satelli Use satellites f	: bj th tes	3:0:0 39L ectives: The stu environment an in terms of techn space application	S dents will be able to d its behaviour, launching ve nology, structure and commun ns, remote sensing and metrolo	EE Duration EE Duration ehicles for satellit nications.	: : tes	100 Marks 3.00 Hours and its assoc			

4 Apply the space technology, technology mission and advanced space systems to nation's growth.

UNIT-I

Earth's environment: Atmosphere, ionosphere, Magnetosphere, Van Allen Radiation belts, Interplanetary medium, Solar wind, Solar- Earth Weather Relations.

Launch Vehicles: Rocketry, Propellants, Propulsion, Combustion, Solid, Liquid and Cryogenic engines, Control and Guidance system, Ion propulsion and Nuclear Propulsion.

			UNIT-I	Ι				07 Hrs
Satellite	Technology:	Structural,	Mechanical,	Thermal,	Power	control, Telemetry,	Teleco	mm and
Quality an	nd Reliability, I	Payloads, Cla	ssification of s	satellites.				
Catallita /	Anna Cata	11: to Commun	inations Tree		Jatallita .			

Satellite structure: Satellite Communications, Transponders, Satellite antennas.

		UNIT-III							08 Hrs
Satellite Communications:	LEO, MEO	and GEO	orbits,	Altitude	and c	orbit	controls,	Multiple	e Access
Techniques.									
Construction Tolent	VCAT	DDC		4-11:4- D.	. 1:	. 1 т	U T -1 -	E 1	T-1-

Space applications: Telephony, V-SAT, DBS system, Satellite Radio and TV, Tele-Education, Telemedicine, Satellite navigation, GPS.

0111-17	00 111 5
Remote Sensing: Visual bands, Agricultural, Crop vegetation, Forestry, water Resources, Land u	ise, Land
mapping, geology, Urban development resource Management, and image processing techniques.	
Metrology: Weather forecast (Long term and Short term), weather modelling, Cyclone pro-	edictions,
Disaster and flood warning, rainfall predictions using satellites.	

	6)	1			0					
			UN	IT-V						08Hrs
Space Missions:	Technology	missions,	deep	space	planetary	missions,	Lunar	missions,	zero	gravity

experiments, space biology and International space Missions. Advanced space systems: Remote sensing cameras, planetary payloads, space shuttle, space station, Inter-

space communication systems.

Cours	Course Outcomes: After completing the course, the students will be able to							
CO1	Explain different types of satellites, orbit and associated subsystems.							
CO2	Apply the basics of launching vehicles, satellites and sub systems for space applications.							
CO3	Analyze the applications of satellite in the area of communication, remote sensing, metrology etc.							
CO4	Study technology trends, satellite missions and advanced space systems.							

08 Hrs

Refe	rence Books
1	Atmosphere, weather and climate, R G Barry, Routledge publications, 2009,
	ISBN- 10 :0415465702.
2	Fundamentals of Satellite Communication, K N Raja Rao, PHI, 2012, ISBN:9788120324015.
3	Satellite Communication, Timothy pratt, John Wiley, 1986 ISBN: 978-0- 471- 37007 -9,
	ISBN 10: 047137007X.
4	Remote sensing and applications, B C Panda, VIVA books Pvt. Ltd., 2009,
	ISBN: 108176496308.

CIE is executed by the way of Tests (T), Quizzes (Q) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	-	-	-	-	-	-	-	-	1	-
CO2	2	2	1	1	-	-	-	-	-	-	1	-
CO3	2	2	1	-	-	-	-	-	-	-	1	-
CO4	2	2	1	-	-	-	-	-	-	-	1	-

				RV College of Engine	ering					
	Semester: VII									
	INTRODUCTION TO ASTROPHYSICS									
(Group H: Global Elective)										
С	ourse Code	:	18G7H13		CIE	:	100 Marks			
C	redits: L: T:P	:	3:0:0		SEE	:	100 Marks			
Т	otal Hours	:	39 L		SEE Duration	:	3.00 Hours			
C	ourse Learning O	bjec	tives: The stud	lents will be able to		1	1			
1	1 Familiarize with the various celestial bodies and the laws governing their behavior									
2	Understand the	fund	lamental conce	pts of relativity an	d establish the rela	ation	between light and			
i i	matter						-			
3	Study the method	ds us	sed to identify a	and investigate the n	ature of different sto	ellar	bodies			
4	Determine the ch	arac	teristic features	s of any star by und	erstanding its spectr	al pr	operties			
5	Contemplate the	com	plex system of	the milky way gala	xy and its component	nts				
				Unit-I			07 Hrs			
F	undamental conc	epts	in Astronomy	•						
C	Origin of the Universe, Major constituents of the universe, Cosmic Microwave Radiation (CMR)									
b	ackground, Geocei	ntric	Universe, Retr	ograde Motion of p	lanets, Brief introdu	ctior	n to the Copernican			
R	evolution, Positio	ns o	of the Celestia	al Sphere: Altitude	-Azimuth Coordina	ate S	System, Equatorial			
C	Coordinate System,	Sola	ar System, Plan	ets - laws of motior	n of planets, inner pl	anets	s, outer planets,			
				Unit – II			08 Hrs			
T	heory of Special l	Rela	tivity:							
G	alilean Transform	ation	ns, Failure of G	alilean Transformat	tions, Lorentz Trans	form	ations, Derivation,			
T	ime & Space in S	spec	ial Relativity,	Momentum & Ene	rgy in Relativity, L	opp	ler Effect for light			
(1	Red & Blue Shift), 1	he equivalence	e principle, the pri	nciple of minimal	grav	itational coupling,			
S	chwarzschild space	etim	e, Past-Present	-Future (Light Cone	diagram).		00.11			
0				Unit –III			U8 Hrs			
	tellar Astrophysic	cs:		o an Colon and Tana	- anatura Stallan Dan	- 11 - - -	Magnituda Casla			
B	ife evels of store ()	1, CC D:#1	Diffe & Deeth) Hertzermung Dug	perature, Stellar Par		, Magnitude Scale,			
	file cycle of stars (I	Biru	i, Life & Death	i), Herizsprung-Rus	sei Diagram, Classii	Tean	on of Binary Stars,			
	Nass Determination using visual Binaries, Eclipsing Spectroscopic Binaries, Formation of Spectral									
	Lines, Schrödinger's time-dependent and independent equations, Boltzmann-Saha Equation,									
	nandrasnekar's Li	mit,	black holes (qu	lalitatively).			00 11			
T	ight and Matter						Uð Hrs			
	Agnt and Matter:	(D.	iana 🧧 Cuatin	a) Creatural Linea	de Dreeliele Werre	1	the and Energy on arr			
	Ispersion of light	(Pl	u Dringinlo Dr	g), spectral Lines,	ue-Brogne's wave	leng	in and rrequency,			
	nostrol Character		y Finciple, Bro	badening of Spectra	i mies					
0	pectral Unaractel		ion of Stars:	tallan Onagity, Tra	. f. D.	C *1				
	ntical Telescores	ĸad	nation rield, S	cenar Opacity, Ira		+	of Chapter Line -			
	Optical Telescopes, Radio Telescopes (Case Studies)									
	<u>r ····· · · · · · · · · · · · · · · · ·</u>	Rad	lio Telescopes ((Case Studies)	nsier Equation, Pro	ofile	of Spectral Lines,			
	<u></u>	Rad	lio Telescopes ((Case Studies) Unit –V	nsier Equation, Pro	ofile	of Spectral Lines,			

The Milky way Galaxy, Counting the Stars, Historical Models, Differential & Integrated Star Counts, Extrasolar planets, Methods of detection of extrasolar planets, Distance to the Galactic Centre, Galactic Coordinate System, Classification of Galaxies, Introduction to Elliptical galaxies, Irregular galaxies, Dwarf galaxies.

Course	Outcomes: After completing the course, the students will be able to
CO1:	Contemplate the nature of our universe by identifying and studying the behavior of celestial
	bodies.
CO2:	Explain the usefulness of the theory of relativity, light and matter in establishing the
	fundamental behavior of stellar bodies.
CO3:	Utilize various techniques to discover the components of our universe and conclude their
	celestial properties.
CO4:	Interpret the spectral properties of any astronomical body to illustrate its properties.
CO5:	Inspect the milky way galaxy to identify the proponents and their characteristic features.

Refere	ence Books
1	Carroll Bradley W, and Dale A Ostlie, An Introduction to Modern Astrophysics. Reading, 2 nd Edition, 1995, MA: Addison-Wesley Pub, ISBN: 9780201547306.
2	Padmanabhan, T, Theoretical Astrophysics, Vols.1-3, 2005, Cambridge University Press, ISBN- 9780521016278.
3	Shu F, The Physical Universe, New Edition, 1982, University of California, ISBN- 978-0935702057.
4	Harwit M, Astrophysical Concepts, 3rd Edition, 2000, Springer-verlag, ISBN- 978-0387949437.
5	Shapiro, Stuart L, and Saul A Teukolsky, Black Holes, White Dwarfs, and Neutron Stars, 1st Edition, 1983, Wiley, ISBN: 9780471873167.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Assignment/Presentation/Project 20.

Total CIE is 30(Q) +50(T) +20(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

				(CO-PO	Mappi	ing					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	2	-	-	1	-	1	-	-	2
CO2	3	2	2	2	-	-	1	-	1	-	-	2
CO3	2	3	1	2	2	1	1	-	2	1	-	2
CO4	3	3	1	2	2	1	2	-	3	3	-	2

	Semester: VII						
	MATERIALS FOR ADVANCED TECHNOLOGY AND SPECTROSCOPIC						
				CHARACTERIZAT	ION		
				(Group H: Global Ele	ctive)		-
Cours	Course Code:18G7H14CIE:100 Marks						100 Marks
Credi	ts: L:T:P	:	3:0:0		SEE	:	100 Marks
Total	Hours	:	40L		SEE Duration	:	3.00 Hours
Cours	se Learning	; Oł	ojectives: Th	e students will be able to			
1	Apply the	e b	asic concep	ts of Chemistry to dev	velop futuristic mater	ials	for high-tech
	application	ns iı	n the area of	Engineering.			
2	2 Impart sound knowledge in the different fields of material chemistry so as to apply it to the						
	problems in engineering field.						
3	3 Develop analytical capabilities of students so that they can characterize, transform and use						
	materials i	n ei	ngineering ar	nd apply knowledge gained	l in solving related engi	neeri	ng problems.

Unit-I	08 Hrs
Coating and packaging materials	

Surface Coating materials:

Synthesis and applications of Polymer coating materials: Teflon, Silicone films Polyvinyl chloride & its copolymers, Poly vinyl acetate, Poly ethylene-HDPE, LDPE, Polyurethane.

Properties required in a pigment and extenders.

Inorganic pigments-titanium dioxide, zinc oxide, carbon black, chromate pigments, molybdate orange, chrome green, ultramarine blue, iron blue, cadmium red.

Corrosion inhibiting pigments- zinc phosphate, zinc and barium chromate pigments, ceramic pigments, metal flake pigments, extenders.

Developments in new polymers such as dendrimers, biopolymers & biodegradable polymers.

Packaging materials:

Food products: Cellulosic and Polymeric packaging materials and their properties – including barrier properties, strength properties, optical properties. Glass, aluminum, tin, paper, plastics, composites. Pharmaceutical products: Injectables and tablet packaging materials

That maceutical products. Injectables and tablet packaging materials.	
Unit – II	08 Hrs
Adhesives	
Introduction-Classification of Adhesives-Natural adhesives, synthetic adhesives-drying a	adhesives,
pressure sensitive adhesives, contact adhesives, hot adhesives. One-part adhesives, n	nulti part
adhesives. Adhesive Action. Development of Adhesive strength- Physical factors in	ifluencing
Adhesive Action-surface tension, surface smoothness, thickness of adhesive film, elasticity a	nd tensile
strength. Chemical Factors Influencing Adhesive action - presence of polar groups, of	degree of
polymerization, complexity of the adhesive molecules, effect of pH. Adhesive action	- specific
adhesive action, mechanical adhesive action, fusion adhesion. Development of adhesive	strength-
adsorption theory and diffusion theory. Preparation, curing and bonding Processes by adhes	sives-with
reference to Epoxy, phenolics, Silicone, Polyurethane, Acrylic adhesives, Poly vinyl	alcohol.

Optical fibre materials

Polyvinyl acetate.

Fiber Optics, Advantages of optical fiber communication over analog communication, Classification based on refractive index of the core- step index and graded index optical fibres, Classification based on core radius-single mode and multimode optical fibres, Fibre fabrication. -Methods to manufacture optical glass fibres. Double crucible method and preform methods. Manufacture of perform- Chemical Vapour Deposition (CVD), Modified vapour deposition (MCVD) Plasma activated vapour deposition (PCVD), Outside vapour deposition (OVD)-Vapour-phase axial deposition (VAD). Drawing the fibres from perform, coating and jacketing process.

Unit –III

Ion exchange resins and membranes

Ion exchange resins-Introduction, Types-cation and anion exchange resins, examples, physical properties, chemical properties-capacity, swelling, kinetics, stability, ion exchange equilibrium, regeneration. Applications of ion exchange resins-softening of water, demineralization of water,

08 Hrs

advantages and disadvantages of ion exchange resins-calcium sulphate fouling, iron fouling, adsorption of organic matter, bacterial contamination. Ion exchange membranes, Types-anion and cation exchange membranes. Classification of ion exchange membranes based on connection way between charged groups and polymeric matrix-homogeneous and heterogeneous ion exchange membranes, examples. Fabrication of ion exchange cottons- anion exchange cotton and cation exchange cotton. Application of ion exchange membranes in purification of water by electro dialysis method.

Unit –IV

08 Hrs

08 Hrs

Spectroscopic Characterization of materials:

Electromagnetic radiation, interaction of materials with electromagnetic radiation.

UV- visible spectrophotometry: **Introduction**-Electronic transitions- factors influencing position and intensity of absorption bands-absorption spectra of dienes, polyene and α,β -unsaturated carbonyl compounds, Working of UV-Vis spectrophotometer, Theoretical calculation of λ_{max} by using Woodward-Fieser rules- for cyclic and α,β -unsaturated carbonyl compounds.

IR Spectroscopy: Introduction, principle, molecular vibrations, vibrational frequency, number of fundamental vibrations, factors influencing fundamental vibrations, instrumentation of IR spectrophotometer, sampling techniques, application of IR spectroscopy in characterization of functional groups.

Unit –V

NMR spectroscopy:

H¹ NMR Spectroscopy: Basic concepts- relaxation process. NMR spectrometer-FT NMR-Solvents used in NMR, internal standards-Chemical equivalence -Integrals and Integrations- chemical shift-Factors affecting chemical shifts- shielding and deshielding effects – chemical and magnetic equivalent –magnetic anisotropy-spin-spin splitting rules- Application of NMR on various compounds such as alkanes, alkenes, alkynes, alkyl halides, alcohols, ethers, amines, aldehydes, ketones, carboxylic acids, esters, amides & mono substituted aromatic compounds. Problems on prediction of structure of compounds. Application of NMR in magnetic resonance imaging (MRI).

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Identify sustainable engineering materials and understand their properties.							
CO2:	Apply the basic concepts of chemistry to develop futuristic materials for high-tech applications							
	in different areas of engineering.							
CO3:	Analyze and evaluate the specific application of materials.							
CO4:	Design the route for synthesis of material and its characterization.							

Reference Books

1	Materials Science by G.K.Narula, K.S.Narula & V.K.Gupta. 38 th Editon, Tata McGraw-Hill Publishing Company Limited-2015, ISBN: 9780074517963
2	Solar Lighting by Ramachandra Pode and Boucar Diouf, Springer e-book, 2011, ISBN: 978-1-4471-2133-6 (Print) 978-1-4471-2134-3 (Online).
3	Spectroscopy of organic compounds by P.S.Kalsi, New Age International (P) ltd, Publisher, 2005, ISBN 13: 9788122415438
4	Food Packaging Materials. Mahadeviah M & Gowramma RV, Tata McGraw Hill Publishing Company Limited, 1996, ISBN :0074622382 9780074622384.

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	-	-	-	-	-	-	-	-
CO2	3	-	-	-	-	2	2	-	-	1	-	-
CO3	-	3	-	2	-	-	-	-	-	-	-	-
CO4	-	-	3	-	-	1	1	-	-	-	-	1

	Semester: VII							
	APPLIED PSYCHOLOGY FOR ENGINEERS							
	(Group H: Global Elective)							
Course	Code	:	18G7H15		CIE	:	100 Marks	
Credits	s: L:T:P : 3:0:0 SEE : 100 Marks							
Total H	ours	:	39 L		SEE Duration	:	3.00 Hours	
Course	Course Learning Objectives: The students will be able to							
1	To apprec	ciat	e human beha	vior and human mind in	the context of le	arne	r's immediate	
	society an	d e	nvironment.					
2	To under	star	nd the importa	nce of lifelong learning	and personal fle	xibi	lity to sustain	
	personal a	nd	Professional d	evelopment as the nature	of work evolves.			
3	To provid	le	students with	knowledge and skills fo	or building firm f	cound	dation for the	
	suitable en	ngi	neering profess	ions.				
4	To prepar	e st	udents to funct	ion as effective Engineer	ing Psychologists	in ar	n Industrial,	
	Governmental or consulting organization.							
5	To enable	e st	udents to use	psychological knowledge	e, skills, and valu	es ir	occupational	
	pursuits in	1 a '	variety of settin	ngs that meet personal go	als and societal ne	eds.	-	
-								

Unit-I	07 Hrs				
Introduction to Psychology: Definition and goals of Psychology: Role of a Psychologist in the					
Society: Today's Perspectives (Branches of psychology). Psychodynamic, Beha	vioristic,				
Cognitive, Humanistic, Psychological Research and Methods to study Human l	Behavior:				
Experimental, Observation, Questionnaire and Clinical Method.					
Unit – II	09 Hrs				
Intelligence and Aptitude: Concept and definition of Intelligence and Aptitude, N	Nature of				
Intelligence. Theories of Intelligence - Spearman, Thurston, Guilford Vernon. Character	ristics of				
Intelligence tests, Types of tests. Measurement of Intelligence and Aptitude, Concer	ot of IQ,				
Measurement of Multiple Intelligence – Fluid and Crystallized Intelligence.					
Unit –III	09 Hrs				
Personality: Concept and definition of personality, Approaches of personality- psychoa	nalytical,				
Socio- Cultural, Interpersonal and developmental, Humanistic, Behaviorist, Trait	and type				
approaches. Assessment of Personality: Self- report measures of Personality, Questi	onnaires,				
Rating Scales and Projective techniques, its Characteristics, advantages & limitations, e	examples.				
Behavioral Assessment. Psychological Stress: a. Stress- Definition, Symptoms of Stress,	Extreme				
products of stress v s Burnout, Work Place Trauma. Causes of Stress - Job related causes	of stress.				
Sources of Frustration, Stress and Job Performance, Stress Vulnerability-Stress t	hreshold,				
perceived control					
Unit IV	07 Uma				

Application of Psychology in Working Environment: The present scenario of information technology, the role of psychologist in the organization, Selection and Training of Psychology Professionals to work in the field of Information Technology. Distance learning, Psychological consequences of recent developments in Information Technology. Type A and Type B Psychological Counseling - Need for Counseling, Types – Directed, Non- Directed, Participative Counseling.

Unit -V07 HrsLearning: Definition, Conditioning – Classical Conditioning, Basics of Classical Conditioning
(Pavlov), the process of Extinction, Discrimination and Generalization. Operant Conditioning
(Skinner expt). The basics of operant conditioning, Schedules of reinforcement. Cognitive – Social
approaches to learning – Latent Learning, Observational Learning, Trial and Error Method,
Insightful Learning.

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understand the application of psychology in engineering and technology and develop a
	route to accomplish goals in their work environment.
CO2:	Define learning and compare and contrast the factors that cognitive, behavioral, and
	Humanistic theorists believe influence the learning process.
CO3:	Develop understanding of psychological attributes such as intelligence, aptitude, creativity,
	resulting in their enhancement and apply effective strategies for self-management and self-
	improvement.
CO4:	Apply the theories into their own and others' lives in order to better understand their
	personalities and experiences.

Referen	Reference Books							
1	Understanding Psychology Feldman R. S, IV edition, (1996) McGraw Hill India							
2	Psychology Robert A. Baron, III edition (1995) Prentice Hall India.							
3	3. Organizational Behaviour , Stephen P Robbins Pearson Education Publications, 13^{th} Edition, ISBN $- 81-317 - 1132 - 3$							
4	4. Organisational Behaviour : Human Behaviour at Work ,John W.Newstrem and Keith Davis. Tata McGraw Hill India, 10th Edition, ISBN 0-07-046504-5							

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	-	-	-	-	-	1	-	1
CO4	3	3	3	3	-	-	-	-	-	1	-	1

	Semester: VII						
			Advanc	ed course in Entrepreneurs	hip		
			(G	Froup H: Global Elective)			
C	ourse Code	:	18G7H16	(CIE		100 Marks
Credits: L:T:P		:	3:0:0	S	SEE	:	100 Marks
Total Hours		Hours : 39		L SEE Duratio		:	3.00 Hours
С	ourse Learning Ob	jec	tives: The students	s will be able to			·
1	Acquire additional	kn	owledge and skills	s for developing early custome	er traction into a	repea	atable business.
2	2 Learn the tools and methods for achieving sustainable growth, such as by refining their product or service						
	and business models, building brand strategy, making a sales and financial plan						
3	Develop brand strategy and create digital presence, Develop channel strategy for customer outreach.						
4	т • 1	1.	· 1		1 4 4 5 4	•	1

4 Leverage social media to reach new customers cost effectively, Develop strategies to increase revenues and expand markets

Unit-I	07 Hrs				
Intro to building Products & Value Proposition: Diagnose: Where are you today on the Product Life Cycle?					
Assess your Start-up's attractiveness					
Competition & testing: Conduct a Competition Analysis Identify your Competitive Advantage					
Unit – II	06 Hrs				
Market Validation: Market validation, Customer Usability Interviews, Analyzing Customer feedback	- -				
Delivering Value: Enlist marketing channels, Identify partners for your venture, Create a Sales plan					
Unit –III	07 Hrs				
Customer acquisition & growth channels: Types of Marketing Channels: Targeting Blogs, Unconventional					
PR, Search Engine Marketing, Search Engine Optimization, Social ads, display ads and existing platfo	PR, Search Engine Marketing, Search Engine Optimization, Social ads, display ads and existing platforms, Emai				
Marketing, Viral Marketing, Affiliate programs, Magazines, Newspaper, Radio and TV ads, Offline A	ds, Trade				
Shows					
Unit –IV	10 Hrs				
Business model: Reiterate and Refine your Business Model Canvas, Choose the right business model	for your				
start-up	•				
Financial Planning: Forecasting sales and revenue projections, Cash-flow statement					
Unit –V	09 Hrs				
Pitching: Create your funding plan, Build your pitch deck and compose your pitch.					

Experiential Learning: Student teams will present their practice ventures: business model, business plan, growth achieved, and key learnings to their classmates, faculty, and other entrepreneurs

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Develop strategies to increase revenues and expand markets, Explore licensing and franchising for					
	business expansion.					
CO2:	Leverage technologies and platforms for growth stage companies, Develop key metrics to track					
	progress.					
CO3:	Basics of registering a company, Understanding business regulations and compliances.					
CO4:	Advanced concepts of business finance, Financial planning.					

Referen	Reference Books						
1	Running Lean: Iterate from Plan A to a Plan That Works. O'Reilly Media, Maurya, A., 2012.						
2	Entrepreneurship. Roy, R., 2012. Oxford University Press						
3	Intellectual Property Law in India. Gupta, T. S., 2011. Kluwer Law International						
4	Flow: The Psychology of Optimal Experience. Czikszentmihalyi, M., 2008. Harper Perennial						
4	Modern Classics						

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of tests (T) and Milestones (M). A minimum of four milestone submission have to be submitted and first three milestones (M1, M2, M3) are evaluated for 10 marks adding up to 30 marks and the final milestone (M4) is evaluated for 20 marks. All milestone submissions are online and as per format and portal prescribed by Wadhwani foundations. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(M1, M2 and M3) +50(T) +20(M4) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	-	-	-	-	-	1	-	1
CO4	3	3	3	3	-	-	-	-	-	1	-	1

Semester: VIII								
	MAJOR PROJECT							
Course Code : 18		18EI81		CIE	:	100 Marks		
Credits: L:T:P		:	0:0:16		SEE	:	100 Marks	
Total Hours		:	32		SEE Duration	:	3.00 Hours	
Cour	Course Learning Objectives: The students will be able to							
1	Acquire the	ab	ility to make	links across different areas of	knowledge and t	o gei	nerate, develop	
	and evaluate ideas and information so as to apply these skills to the project task.							
2	Acquire the	e sk	ills to comm	unicate effectively and to prese	ent ideas clearly	and	coherently to a	
	specific audience in both written and oral forms.							
3	3 Acquire collaborative skills through working in a team to achieve common goals.							
4	4 Self-learn, reflect on their learning and take appropriate action to improve it.							
5	Prepare sch	edu	les and budg	ets and keep track of the progres	ss and expenditure	e.		

Major Project Guidelines:

- 1. The project topic, title and synopsis have to be finalized and submitted to their respective internal guide(s) before the beginning of the 8th semester.
- The detailed Synopsis (approved by the department *Project Review Committee*) has to be submitted during the 1st week after the commencement of 8th semester.

Batch Formation:

- Students are free to choose their project partners from within the program or any other program.
- Each student in the team must contribute towards the successful completion of the project. The project may be carried out In-house / Industry / R & D Institution.
- The project work is to be carried out by a team of two to four students, in exceptional cases where a student is placed in a company and offered an internship through the competitive process or student is selected for internship at national or international level through competitive process, the student can work independently.
- The students are allowed to do either a project for full 5 days in the industry or full 5 days in the college.
- In case the project work is carried out outside Bengaluru, such students must be available during Project Evaluation process scheduled by the respective departments and they must also interact with their guide regularly through Email / Webinar / Skype etc.

Project Topic Selection:

The topics of the project work must be in the *field of respective program areas or in line with CoE's(Centre of Excellence) identified by the college* or List of project areas as given by industry/Faculty. The projects as far as possible should have societal relevance with focus on sustainability.

Students can select courses in *NPTEL* from the discipline of *Humanities and Social Sciences, Management, Multidisciplinary and Design Engineering.* The course chosen could be either of *4w/8w/12w* duration. The students need to enrol for a course, register for the exam and submit the e-certificate to the department, as and when it is released by NPTEL. *The same will be considered as one of the components during project evaluation of phase 2 and phase 5.*

Project Evaluation:

- Continuous monitoring of project work will be carried out and cumulative evaluation will be done.
- The students are required to meet their internal guides once in a week to report their progress in project work.
- Weekly Activity Report (WAR) has to be maintained in the form of a diary by the project batch and the same has to be discussed with the Internal Guide regularly.
- In case of *Industry project*, during the course of project work, the internal guides will have continuous interaction with external guides and will visit the industry at least twice during the project period.
- For CIE assessment the project groups must give a final seminar with the draft copy of the project report.
- The presentation by each group will be for 20-30 minutes and every member of the team needs to justify the contributions to the project.
- The project team is required to submit Hard copies of the detailed Project Report in the prescribed format to the department.
- For CIE 50% weightage should be given to the project guide and 50% weightage to the project evaluation committee.
- Before the final evaluations the project group is required to produce a No dues certificate from Industry, Central Library and Department.

Course	Course Outcomes of Major Project:						
CO1:	Apply knowledge of mathematics, science and engineering to solve respective engineering						
	domain problems.						
CO2:	Design, develop, present and document innovative/multidisciplinary modules for a complete						
	engineering system.						
CO3:	Use modern engineering tools, software and equipment to solve problem and engage in life-						
	long learning to follow technological developments.						
CO4:	Function effectively as an individual, or leader in diverse teams, with the understanding of						
	professional ethics and responsibilities.						

CIE Assessment:

The following are the weightings given for the various stages of the project.

1.	Selection of the topic and formulation of objectives	10%
2.	Design and Development of Project methodology	25%
3.	Execution of Project	25%
4.	Presentation, Demonstration and Results Discussion	30%
5.	Report Writing & Publication	10%

SEE Assessment:

The following are the weightage given during Viva Examination.

1.	Written presentation of synopsis	10%
2.	Presentation/Demonstration of the project	30%
3.	Methodology and Experimental Results & Discussion	30%
4.	Report	10%
5.	Viva Voce	20%

Calendar of Events for the Project Work:

Week	Event
Beginning of 7 th Semester	Formation of group and approval by the department
	committee.
7 th Semester	Problem selection and literature survey
Last two weeks of 7 th Semester	Finalization of project and guide allotment
II Week of 8 th Semester	Synopsis submission and preliminary seminar
III Week	First visit of the internal guides to industry (In case of project
	being carried out in industry)
III to VI Week	Design and development of project methodology
VII to IX Week	Implementation of the project
X Week	Submission of draft copy of the project report
XI and XII Week	Second visit by guide to industry for demonstration. Final
	seminar by Department project Committee and guide for
	internal assessment. Finalization of CIE.

Evaluation Scheme for CIE and SEE

Scheme of Evaluation for CIE		Scheme of Evaluation for SEE	
Particulars	%Marks	Particulars	%Marks
Project Evaluation I	10%	Project Synopsis (Initial Write up)	10%
Project Evaluation II	25%	Project Demo / Presentation	30%
Project Evaluation III	25%	Methodology and Results Discussion	30%
Project Evaluation Phase-IV (Submission of Draft Project Report for Verification)	30%	Project Work Report	10%
Project Evaluation Phase-V (Project Final Internal Evaluation)	10%	Viva-voce	20%
Total	100	Total	100

Curriculum Design Process

Academic Planning And Implementation

Process For Course Outcome Attainment

Final CO Attainment Process

Program Outcome Attainment Process

PROGRAM OUTCOMES (POs)

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.

2. **Problem analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.

6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.