

RV COLLEGE OF ENGINEERING[®]

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus of V & VI Semesters

2018 SCHEME

ELECTRONICS & INSTRUMENTATION ENGINEERING

VISION

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

MISSION

- 1. To deliver outcome based Quality education, emphasizing on experiential learning with the state of the art infrastructure.
- 2. To create a conducive environment for interdisciplinary research and innovation.
- 3. To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- 4. To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- 5. To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

QUALITY POLICY

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

CORE VALUES

Professionalism, Commitment, Integrity, Team Work, Innovation

RV COLLEGE OF ENGINEERING[®]

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus of V & VI Semesters

2018 SCHEME

DEPARTMENT OF

ELECTRONICS & INSTRUMENTATION ENGINEERING

DEPARTMENT VISION

Achieving academic excellence in Instrumentation Technology by adopting interdisciplinary research with a focus on sustainable and inclusive technologies.

DEPARTMENT MISSION

- To create an environment for students to excel in domain areas and get motivated to involve in interdisciplinary research by utilizing state of the art infrastructure.
- To impart technical knowledge, encourage experiential learning and develop future professional leaders.
- To establish industry-academia networking and develop industry-ready students and future entrepreneurs, to meet societal & industrial challenges.
- To motivate lifelong learning and research in sustainable technologies to find improved solutions for the betterment of society

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **PEO1.** Apply Instrumentation, Electronics, Controls and Automation concepts to develop technical solutions for industrial problems
- **PEO2.** Exhibit competency in adapting to various industrial challenges and work in interdisciplinary projects with team spirit and professional ethics for achieving organizational goals.
- **PEO3.** Pursue higher education in technology or management and achieve professional excellence by imbibing leadership qualities and communication skills.
- **PEO4.** Become entrepreneurs with a focus on sustainable technologies and develop innovative solutions to meet industrial and societal needs

PROGRAM SPECIFIC OUTCOMES (PSOS)

PSO	Description
PSO1	Design, analyze and practice the instrumentation, controls and automation concepts and techniques required for industrial and/or research pursuits resulting in product development, publications or patents.
PSO2	Demonstrate the knowledge of basic science, mathematics, electronic system design and programming for real-time applications, towards developing industrial solutions and become technology leaders of future.

Lead Society: International Society of Automation (ISA)

ABBREVIATIONS

Sl. No.	Abbreviation	Meaning		
1.	VTU	Visvesvaraya Technological University		
2.	BS	Basic Sciences		
3.	CIE	Continuous Internal Evaluation		
4.	SEE	Semester End Examination		
5.	PE	Professional Core Elective		
6.	GE	Global Elective		
7.	HSS	Humanities and Social Sciences		
8.	CV	Civil Engineering		
9.	ME	Mechanical Engineering		
10.	EE	Electrical & Electronics Engineering		
11.	EC	Electronics & Communication Engineering		
12.	IM	Electronics & Communication Engineering Industrial Engineering & Management		
13.	EI	Electronics & Instrumentation Engineering		
14.	СН	Chemical Engineering		
15.	CS	Computer Science & Engineering		
16.	TE	Telecommunication Engineering		
17.	IS	Information Science & Engineering		
18.	BT	Biotechnology		
19.	AS	Aerospace Engineering		
20.	PY	Physics		
21.	CY	Chemistry		
22.	MA	Mathematics		

INDEX

	V Semester					
Sl. No.	Course Code	Course Title	Page No.			
1.	18HEM51	Foundations of Management and Economics	1			
2.	18EI52	Data Networks	3			
3.	18TE53	Digital Signal Processing	5			
4.	18EI54	VLSI Design	7			
5.	18EI55	Virtual Instrumentation & Simulation	9			
6.	18EC5AX	Group A: Professional Electives (MOOC Courses)	11-17			
7.	18G5BXX	Elective-B	GE-B1-B38			

		VI Semester	
Sl. No.	Course Code	Course Title	Page No.
1.	18HSI61	IPR & Entrepreneurship	19
2.	18EI62	Automatic Process Control Technology	21
3.	18EI63	Advanced Micro-controller & Application	24
4.	18EI64	Minor Project	27
5.	18EI6CX	Group C: Professional Electives	29-35
6.	18EI6DX	Group C: Professional Electives	37-44
7.	18G6EXX	Elective-E	GE-E1-E35
8.	18HS68	Professional Practice-II	45

RV COLLEGE OF ENGINEERING[®]

(Autonomous Institution Affiliated to VTU, Belagavi)

ELECTRONICS & INSTRUMENTATION ENGINEERING

	FIFTH SEMESTER CREDIT SCHEME							
SL No	Course	Course Title	BoS	Cred	lit Alloc	cation	Total	
51. INU	Code	Course The	D03	L	Т	Р	Credits	
1.	18HEM51	Foundations of Management and Economics	HSS	3	0	0	3	
2.	18EI52	Data Networks	EI	3	1	0	4	
3.	18TE53	Digital Signal Processing (Common to TE, EI, & EE) (Theory & Practice)	TE	3	0	1	4	
4.	18EI54	VLSI Design (Theory & Practice)	EI	4	0	1	5	
5.	18EI55	Virtual Instrumentation & Simulation (Practice)	EI	0	0	2	2	
6.	18EI5AX	Group A: Professional Electives (MOOC Courses)	EI	3	0	0	3	
7.	18G5BXX	Group B: Global Elective Smart Sensors & Instrumentation	EI	3	0	0	3	
		Total Number of Credits		19	1	10	24	
		Total number of Hours/Week		19	2	20	24	

	GROUP	A: PROFESSIONAL ELECTIVES (MOOC COURSES)	
Sl. No.	Course Code	Course Title	Duration
1.	18EC5A1	Programming in Java	12 Weeks
2.	18EI5A2	Analog Communication	12 Weeks
3.	18IS5A3	Artificial Intelligence: Search Methods for Problem Solving	12 Weeks
4.	18TE5A4	Computer Architecture and Organization	12 Weeks
5.	18CS5A5	The Joy of Computing using Python	12 Weeks

RV COLLEGE OF ENGINEERING[®]

(Autonomous Institution Affiliated to VTU, Belagavi)

ELECTRONICS & INSTRUMENTATION ENGINEERING

SI.	~ ~ ~ ~		BoS	Cre	dit All	ocation	Total	
No.	Course Code	Course Title		L	Т	Р	Credits	
1.	18HSI61	IPR & Entrepreneurship	HSS	3	0	0	3	
2.	18EI62	Automatic Process Control Technology (Theory & Practice)	EI	3	0	1	4	
3.	18EI63	Advanced Micro-controller & Application (Theory & Practice)	EI	3	1	1	5	
4.	18EI64	Minor Project**	EI	0	0	2	2	
5.	18EI6CX	Elective C: Professional Electives	EI	3	0	0	3	
6.	18EI6DX	Elective D: Professional Electives	EI	3	0	0	3	
7.	18G6EXX	Elective E: Global Elective Virtual Instrumentation & Applications	EI	3	0	0	3	
8.	18HSE68	Professional Practice-II	HSS	0	0	1	1	
	•	Total Number of Credits		18	1	5	24	
		Total number of Hours/Week		18	2	10+2.5	24	

	GROUP C: PROFESSIONAL ELECTIVES					
Sl. No.	Course Code	Course Title	Credits			
1.	18CS6C1	Internet of Things	03			
		(common to all branches)				
2.	18EI6C2	Aircraft Instrumentation	03			
3.	18CS6C3	Advanced Control Systems	03			
4.	18CS6C4	Robotics	03			

	GROUP D: PROFESSIONAL ELECTIVES					
Sl. No.	Course Code	Course Title	Credits			
1.	18CS6D1	Machine Learning	03			
		(common to AE, BT, CH, CV, EC, EE, EI, ET, IM, & ME)				
2.	18EI6D2	Biomedical Instrumentation	03			
3.	18EI6D3	Application Specific Integrated Circuits (ASIC)	03			
4.	18EI6D4	Real Time Operating Systems	03			

		V	Sem Global Electives of 2018 Scheme	
Sl. No.	Dept	Course Code	Course Title	Credits
1.	AS	18G5B01	Fundamentals of Aerospace Engineering	03
2.	BT	18G5B02	Nanotechnology	03
3.	СН	18G5B03	Fuel Cell Technology	03
4.	CS	18G5B04	Intelligent Systems	03
5.	CV	18G5B05	Remote Sensing and Geographic Information System	03
6.	EC	18G5B06	Automotive Electronics	03
7.	EE	18G5B07	E-Mobility	03
8.	EI	18G5B08	Smart Sensors & Instrumentation	03
9.	IM	18G5B09	Operations Research	03
10.	IS	18G5B10	Management Information Systems	03
11.	ME	18G5B11	Automotive Mechatronics	03
12.	TE	18G5B12	Telecommunication systems	03
		Courses o	offered by Science Departments & HSS Board	
13.	PY	18G5B13	Quantum Mechanics Of Hetero/Nano Structures	03
14.	РҮ	18G5B14	Thin Films and Nanotechnology	03
15.	CY	18G5B15	Advances in Corrosion Science and Technology	03
16.	MA	18G5B16	Computational Advanced Numerical Methods	03
17.	MA	18G5B17	Mathematics for Machine Learning	03
18.	HSS	18G5B18	Engineering Economics	03

		N	/I Sem Global Electives of 2018 Scheme	
Sl. No.	Dept	Course Code	Course Title	Credits
1.	AS	18G6E01	Aircraft Systems	03
2.	BT	18G6E02	Bioinspired Engineering	03
3.	СН	18G6E03	Sustainable Technology	03
4.	CS	18G6E04	Graph Theory	03
5.	CV	18G6E05	Disaster Management	03
6.	EC	18G6E06	Wearable Electronics	03
7.	EE	18G6E07	Energy Auditing and Management	03
8.	EI	18G6E08	Virtual Instrumentation & Applications	03
9.	IM	18G6E09	System Engineering	03
10.	IS	18G6E10	Introduction to Mobile Application Development	03
11.	ME	18G6E11	Industrial Automation	03
12.	TE	18G6E12	Mobile Network System and standards	03
		Courses	offered by Science Departments & HSS Board	
13.	PY	18G6E13	Thin Film Nanodevice Fabrication Technology	03
14.	CY	18G6E14	Chemistry of Advanced Energy Storage Device For E- Mobility	03
15.	MA	18G6E15	Advanced Statistical Methods	03
16.	MA	18G6E16	Mathematical Modeling	03
17.	HSS	18G6E17	Foundational Course In Entrepreneurship	03

			S	emester: V		
]	INT		IANAGEMENT & ECO	NOMICS	
				THEORY)		-
Co	urse Code	:	18HEM51	CIE	:	100 Marks
Credits: L:T:P		:	3:0:0	SEE	:	100 Marks
Total Hours			Hours : 39L SEE		ouration :	03 Hrs
Co	urse Learning C) bje	ectives: The students w	ill be able to		
1	Understand	the	evolution of managem	ent thought.		
2	Acquire kno	owle	edge of the functions of	f Management.		
3 Gain basic knowledge of essentials of Micro economics and Macroeconomics.						
4	Understand	the	concepts of macroecor	nomics relevant to differen	nt organizational	l contexts.

Unit-I 07 Hrs
Introduction to Management: Management Functions, Roles & Skills, Management History -
Classical Approach: Scientific Management & Administrative Theory, Quantitative Approach:
Operations Research, Behavioral Approach: Hawthorne Studies, Contemporary Approach: Systems &
Contingency Theory.Case studies
Unit – II 09 Hrs
Foundations of Planning: Types of Goals & Plans, Approaches to Setting Goals & Plans, Strategic
Management Process, Corporate & Competitive Strategies. Case studies
Organizational Structure & Design: Overview of Designing Organizational Structure: Work
Specialization, Departmentalization, Chain of Command, Span of Control, Centralization &
Decentralization, Formalization, Mechanistic & Organic Structures. Case studies
Unit –III 09 Hrs
Motivating Employees: Early Theories of Motivation: Maslow's Hierarchy of Needs Theory,
McGregor's Theory X & Theory Y, Herzberg's Two Factor Theory, Contemporary Theories of
Motivation: Adam's Equity & Vroom's Expectancy Theory. Case studies
Managers as Leaders: Behavioral Theories: Ohio State & University of Michigan Studies, Blake &
Mouton's Managerial Grid, Contingency Theories of Leadership: Hersey & Blanchard's Situational Leadership, Contemporary Views of Leadership: Transactional & Transformational Leadership. Case
studies
Unit –IV 07 Hrs
Introduction to Economics: Importance of Economics, Microeconomics and Macroeconomics, Theories and Models to Understand Economic Issues, An Overview of Economic Systems. Demand,
Supply, and Equilibrium in Markets for Goods and Services ,Price Elasticity of Demand and Price
Elasticity of Supply, Elasticity and Pricing ,Changes in Income and Prices Affecting Consumption
Choices, Monopolistic Competition, Oligopoly.
Unit –V 07Hrs
Essentials of Macroeconomics: Prices and inflation, Exchangerate, Gross domestic product(GDP)
components of GDP, the Labor Market, Money and banks, Interestrate, Macroeconomic models- an
overview, Growth theory, The classical model, Keynesian cross model, IS-LM-model, The AS-AD-
model, The complete Keynesian model, The neo-classical synthesis, Exchange rate determination and
the Mundell-Fleming model
Reference Books
1 Stephen Robbins, Mary Coulter & Neharika Vohra, Management, , 10 th Edition, Pearson
Education Publications, ISBN: 978-81-317-2720-1.
2 James Stoner, Edward Freeman & Daniel Gilbert Jr, Management, 6 th Edition, PHI, ISBN: 81- 203-0981-2.
3 Steven A. Greenlaw ,David Shapiro,Principles of Microeconomics,2 nd Edition,ISBN:978-1- 947172-34-0
4 Dwivedi.D.N, Macroeconomics: Theory and Policy, 3 rd Edition, 2010, McGraw Hill Education ISBN-13: 978-0070091450.

5	Peter Jochumzen, Essentials of Macroeconomics, e-book(<u>www.bookboon.com</u>), 1 st Edition.,
	2010, ISBN:978-87-7681-558-5.

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Explain the principles of management theory & recognize the characteristics of an organization.							
CO2:	Demonstrate the importance of key performance areas in strategic management and design appropriate organizational structures and possess an ability to conceive various organizational dynamics.							
CO3:	Select & Implement the right leadership practices in organizations that would enable systems orientation.							
CO4:	Understand the basic concepts and principles of Micro economics and Macroeconomics.							

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

50% weightage should be given to case studies. Total CIE is 30(Q) + 50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level. **50% weightage should be given to case studies.**

	CO-PO Mapping											
CO/ PO	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3		1			3		3	3	3	3	3
CO2	3	2						1	2	3	2	2
CO3			1			2		2	2	3	3	3
CO4	2		2			3	1	3	2	2	3	3

	Semester: V							
	DATA NETWORKS							
				(Theory)				
Cou	rse Code	:	18EI52	CIE	:	100 Marks		
Credits: L:T:		:	3:1:0	SEE	:	100 Marks		
Hrs/	Week	:	39L+26T	SEE Dura	tion :	3.00 Hrs		
Cou	rse Learning	g O	bjectives:					
1	Understand	l th	e various lay	ers of OSI and TCP/IP communication models	•			
2	Apply the	app	propriate con	cepts of data rate of channels; decide on cable	es based	on bandwidth		
	requirements.							
3	Analyze th	e di	fferent netw	orking algorithms.				
4	Evaluate the hardware and software components of networking.							

Unit-I	07 Hrs					
Introduction to Data Communication: Components, Data flow, Representation, Networks, Uses of						
Computer networks, Network Hardware, Network Software, Reference models.						
Unit – II	09Hrs					
The Physical Layer: The theoretical basis for data communications, Guided Transmission	n media,					
The public switched telephone network						
The Data Link Layer: Data link layer design issues, Error detecting Codes, Sliding	window					
protocols						
Unit -III	08 Hrs					
The medium access control sublayer: The channel allocation problem, multiple access prot	ocols.					
Ethernet: Classic Ethernet Physical Layer, Classic Ethernet MAC sublayer protocol,	Ethernet					
Performance, Switched Ethernet.						
Unit –IV	08Hrs					
The Network Layer: Network layer design issues.						
Routing Algorithms: The optimality principle, shortest path algorithm, flooding, Distance	e vector					
routing, Link state vector routing, Hierarchical Routing.						

The network layer in the internet: IP version4, IP address, IP version6

Unit	–V

07 Hrs

Network Security: Introduction to Cryptography, substitution Ciphers, transposition Ciphers, Symmetric Key algorithm: DES, AES, RSA algorithm, Firewall.

Course	Course outcomes: On completion of the course, the student should have acquired the ability to							
CO1:	Understand the fundamentals of computer communication networks and their techniques.							
CO2:	Apply the various networking protocols and methodologies for different networking scenarios.							
CO3:	Analyze the different networking principles / algorithms and their applications.							
CO4:	Develop simulation models for computer networks.							

Reference Books1Computer Networks, Andrews S. Tanenbaum, 5th Edition, 2014, Pearson Publication, ISBN:
978-93-325-1874-2.2Data Communications and Networking, Behrouz A Forouzan, 5th Edition, 2012, McGraw-
Hill, ISBN: 9781259064753.3Data and Computer Communications, W.Stallings, 10th Edition, 2014, Pearson Education,
ISBN: 978-0024542526.4Introduction to Data Communications and Networking, Wayne Tomasi, 1st Edition, 2011,
Pearson Education, ISBN: 978-81- 31709306.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks are executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	1	-		-	-	-	-		-	-
CO2	-	2	-	-	-	-	-	-	-	-	-	-
CO3	1	1	2	-	1	-	-	-	1	1	-	
CO4	1	-	1	-	2	-	-	-	2	2	-	2

	Semester: V								
	DIGITAL SIGNAL PROCESSING								
	(Theory & Practice)								
		1		(Common to T					
	rse Code	:	18TE53		CIE	:		0 Marks	
Cred	lits: L:T:P	:	3:0:1		SEE	:	100+5	0 Marks	
Hrs/	Week	:	40L+33P		SEE Duratio	n :	3.00+3	3.00Hrs	
Cou	rse Learning	g O	bjectives:						
1	Explain sig	gnal	processing	operations, features	of signal processors and a	pplicat	ions of I	DSP.	
2	Analyze th	e cł	naracteristics	and representation	s of systems.				
3	Design & i	mp	lement analo	g and digital filters					
4		-		for discrete-time sy					
				5					
				Unit-I				08 Hrs	
LTI	Systems an	d Z	Z Transform	s: LTI Systems: 7	Fransfer Function, Causali	ty and	Stability	, Inverse	
Syste	ems and Syst	tem	Identificatio	on.					
Real	ization of]	IIR	systems:	Direct form struc	tures, Transposed structu	res, Ca	ascade f	form and	
Paral	llel-Form Str	uct	ures.		_				
				Unit – II				10 Hrs	
Ana	log Filters: (Cha	racteristics	of commonly used	Analog Filters-Butterwort	h and (Chebysh	ev Type-	
					rmation in the Analog Don				
	Digital Filters: Analog to Digital Transformations: Impulse Invariance Technique, Bilinear								
Tran	sformation.	Des	ign of Digita	al IIR Filters using	Impulse Invariance and Bi	linear 7	Fransfor	mation	
			- 0	Unit -III	-			08 Hrs	

FIR Filters: Characteristics of practical Frequency SelectiveFilters, Symmetric and anti-symmetric FIR Filters, Window functions: Rectangular, Hann, Hamming, Blackmann and Kaiser. Design of FIR Filters using Windows, Design of Linear phase FIR filters by frequency sampling method. **Realization of FIR filters**: Direct form, Linear Phase form, Cascade form and lattice form structures. Quantization of coefficients in FIR filters, Round-off effects in digital filters: Scaling to prevent overflow.

Unit –IV

07Hrs

Digital Signal Processor: Features of fixed point and floating point processors. **TMS320C67x Processor:** Introduction, Features, Internal architecture, CPU, General purpose Register files, Functional units and operations, Data paths, control Register file.

Applications of DSP: Digital Audio system, Speech Coding and Compression, Compact-Disc recording system, Interference cancellation in electrocardiography, DTMF generation and detection

Unit –V07 HrsMultirate Digital Signal Processing: Introduction, Up sampling, Down sampling, Interpolation and
Decimation. Sampling rate conversion (Reduction, Increase), Sampling rate change by non-integer
factor, Multistage Decimation, Poly phase structures and implementation.

Part – A

Simulation using MATLAB/SCILAB tool:

- 1) Computation of Circular, Linear Convolution, Correlation.
- 2) Study of multi rate operations.
- 3) Computation of DFT, IDFT.
- 4) Computation of Response of discrete-time systems.
- 5) Design of digital filters and study of response in time domain and frequency domain.

Part – B

Simulation using DSP hardware:

- 1) Implementation of various operations: DFT, Convolution and Correlation.
- 1. Design and implementation of various digital filters.

Course	Course outcomes: On completion of the course, the student should have acquired the ability to						
CO1:	Explain the various signal processing operations and features of filters.						
CO2:	Analyze signals and systems; and perform various signal processing operations.						
CO3:	Design, implement and present analog & digital filters for required specifications						
CO4:	Evaluate the digital signal processing systems using simulation tool and DSP processors.						

Reference Books

1101010	
1	Digital Signal Processing, Proakis G, Dimitris G. Manolakis, 4 th Edition, 2007, PHI, ISBN: 81-317-1000-9.
2	Digital Signal Processing – Fundamentals and Applications, Li Tan, 2008, Elsevier, ISBN: 978-0-12-374090-8
3	B. Venkataramani and M. Bhaskar, Digital Signal Processors: Architecture, Programming and Applications, 2 nd Edition, 2012, McGraw Hill, ISBN: 978-0-07-070256-1.
4	Modern Digital Signal Processing, V.Udayashankara, 2 nd Edition, 2012 PHI, ISBN: 978-81-203-4567-6.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks are considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks are executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2		3	2							1
CO2	3	2			2							1
CO3	3	3	2	2	3				2	2	1	2
CO4	3	3	3	2	3				2	2	1	2

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

							Sem	nester	: V						
								I DES							
						(1	Theory	y & Pi	ractice)						
Cour	rse Code	:	18EI:	54				·		CIE		:	1(00+50	0 Marks
	lits: L:T:P	:	4:0:1							SEE		:	_		0 Marks
Tota	l Hours	:	50L+	-33P						SEE	Duration	:	03	3+03	Hours
Cour	rse Learnin	<u> </u>	<u> </u>												
1											process of N		De	evice.	
2											haracteristi		~ 1		
3											nation of C				
4	To describ	e th	e work	ing of	of di	igital C	CMOS	circui	ts (both c	combin	ational and	sequ	len	tial).	
							Unit-l	T							10 Hrs
Intro	oduction: O	ver	view o	of VL	SI	Desig			ogies Ma	oore's	aw VLSI	desi	σn	flow	
	rchy, Conce												0.,	110 11	, 2005
	ication of 1											S ti	ans	sistor	, CMOS
	l, pwell and								• ·						
							Unit – I								11 Hrs
	5 Transistor														
	cteristics, c					dulatio	on, MO	OSFE	T trans	conduc	tance and	outp	out	cond	luctance,
NMC	OS inverter a	nd	it's wo	orking.	3.	T	Unit –I	TT							11 11
СМ)S Inventor	. L			CI						. .				11 Hrs
	ter. Symme										. Design pa CMOS inv				
inver CMC MOS	ter. Symme DS inverter d S design Pr	tric lelay oce	CMO y. ss: Lar)S inv mbda	ivert a ba	ter. Sv sed de	witchin esign ru	ng cha ules, l	aracterist	ics of	CMOS inv	erte	r. I	Estim	ation of
inver CMC MOS	ter. Symme OS inverter d	tric lelay oce	CMO y. ss: Lar)S inv mbda	ivert a ba	ter. Sv sed de e and N	witchin esign ru	ng cha rules, l ate.	aracterist	ics of	CMOS inv	erte	r. I	Estim	ation of
inver CMC MOS CMC	ter. Symme DS inverter d S design Pr	tric lelay oce 2 in	y. ss: Lar put NA)S inv mbda	ivert a ba	ter. Sv sed de e and N	witchin esign ru NOR ga	ng cha rules, l ate.	aracterist	ics of	CMOS inv	erte	r. I	Estim	ation of
inver CMC MOS CMC Digit	ter. Symme OS inverter d S design Pr OS inverter, 2 tal CMOS I binational of	tric lelay oce 2 in Desi circ	CMO y. ss: Lar put NA gn: cuits: C	OS inv mbda AND g	a bas gate S Lo	ter. Sv sed de <u>e and N</u> Ogic C	witchin esign ru <u>NOR ga</u> <u>Unit –I</u> Circuits,	ng cha ules, a <u>ate.</u> IV , Com	stick dia	ics of agram a	CMOS inv	for	r. I NN	Estim MOS	ation of inverter 09 Hrs
inver CMC MOS CMC Digit Com Statio	ter. Symme OS inverter d S design Pr OS inverter, 2 tal CMOS E binational d c CMOS des	tric lelay oce 2 in Desi circ	CMO y. ss: Lar put NA gn: cuits: C , ration	OS inv mbda AND g CMOS ned log	a bas gate S Lo ogic,	ter. Sv sed de e and N U ogic C , pass 1	witchin esign ru <u>NOR ga</u> Unit –I Circuits, transist	ng cha ules, ate. IV , Com tor log	stick dia plex Log	ics of agram a	CMOS inv and layouts hits, CMOS	for Tra	r. I NN	Estim MOS	inverter 09 Hrs
inver CMC MOS CMC Digit Com Static Sequ	ter. Symme OS inverter d S design Pr OS inverter, 2 tal CMOS E binational d c CMOS des tential Circu	tric lelay oce 2 in Desi circ sign uits	CMO y. ss: Lat put NA gn: cuits: C , ration : Beha	OS inv mbda AND g CMOS aed log viour	a bas gate S Lo ogic,	ter. Sv sed de e and N U ogic C , pass 1	witchin esign ru <u>NOR ga</u> Unit –I Circuits, transist	ng cha ules, ate. IV , Com tor log	stick dia plex Log	ics of agram a	CMOS inv and layouts hits, CMOS	for Tra	r. I NN	Estim MOS	inverter, 09 Hrs
inver CMC MOS CMC Digit Com Static Sequ	ter. Symme OS inverter d S design Pr OS inverter, 2 tal CMOS E binational d c CMOS des	tric lelay oce 2 in Desi circ sign uits	CMO y. ss: Lat put NA gn: cuits: C , ration : Beha	OS inv mbda AND g CMOS aed log viour	a bas gate S Lo ogic,	ter. Sw sed de <u>e and N</u> ogic C , pass t bi-stal	witchin esign ru <u>NOR ga</u> <u>Unit –I</u> Eircuits, transist ble eler	ng cha ules, a ate. IV , Com tor log ment,	stick dia plex Log	ics of agram a	CMOS inv and layouts hits, CMOS	for Tra	r. I NN	Estim MOS	ation of inverter, 09 Hrs on Gates, rcuits, D
inver CMC MOS CMC Digit Com Static Sequ trigge	ter. Symme OS inverter d S design Pr OS inverter, 2 tal CMOS I binational d c CMOS des iential Circu ered and edg	tric lelay oce 2 in Desi circ ign uits ge tr	cMO y. ss: Lar put NA gn: uits: C , ration : Beha iggeree	OS inv mbda AND g CMOS ned log viour d.	s Lo bailt S Lo bgic, r of	ter. Sv sed de e and N U ogic C , pass 1 bi-stal	witchin esign ru <u>NOR ga</u> Unit –I Sircuits, transist ble eler Unit –	ng cha ules, a ate. IV , Com tor log ment, V	racterist Stick dia plex Log gic. SR latch	ics of agram a gic circu	CMOS inv and layouts hits, CMOS ed latch and	for Tra 1 flip	r. I NM nsn	Estim MOS nissio op cir	ation of inverter, 09 Hrs on Gates, rcuits, D 09 Hrs
inver CMC MOS CMC Digit Com Static Sequ trigge Anal	ter. Symme OS inverter d S design Pr OS inverter, 2 tal CMOS I binational d c CMOS des iential Circu ered and edg og CMOS	tric lelay oce 2 in Desi circ ign uits ge tr Des	CMO y. ss: Lar put NA gn: uits: C , ration : Beha iggerec	OS inv mbda AND g CMOS ned log viour d. Basic (s Lo baile S Lo bgic, r of	ter. Sv sed de e and N ogic C , pass t bi-stal	witchin esign ru <u>NOR ga</u> Unit –I Sircuits, transist ble elen <u>Unit –'</u> 5, Comr	ng cha ules, a ate. IV , Com tor log ment, V mon s	stick dia plex Log gic. SR latch	ics of agram a gic circu n, clock	CMOS inv and layouts hits, CMOS ed latch and h resistive	for Tra d flip	r. I NM nsn p fl	Estim MOS nissio op cir	ation of inverter, 09 Hrs on Gates, rcuits, D 09 Hrs on gate,
inver CMC MOS CMC Digit Com Static Sequ trigge Anal source	ter. Symme OS inverter d S design Pr OS inverter, 2 tal CMOS E binational d c CMOS des tential Circu ered and edg og CMOS ce follower, 1	tric lelay oce 2 in Desi circ ign uits ge tr Des	CMO y. ss: Lar put NA gn: uits: C , ration : Beha iggerec	OS inv mbda AND g CMOS ned log viour d. Basic (s Lo baile S Lo bgic, r of	ter. Sv sed de e and N ogic C , pass t bi-stal	witchin esign ru <u>NOR ga</u> Unit –I Sircuits, transist ble elen <u>Unit –'</u> 5, Comr	ng cha ules, a ate. IV , Com tor log ment, V mon s	stick dia plex Log gic. SR latch	ics of agram a gic circu n, clock	CMOS inv and layouts hits, CMOS ed latch and h resistive	for Tra d flip	r. I NM nsn p fl	Estim MOS nissio op cir	ation of inverter, 09 Hrs on Gates, rcuits, D 09 Hrs on gates
inver CMC MOS CMC Digit Com Static Sequ trigge Anal source	ter. Symme OS inverter d S design Pr OS inverter, 2 tal CMOS I binational d c CMOS des tential Circu ered and edg og CMOS ce follower, 1 tical's:	tric lelay oce 2 in Desi circ ign uits ge tr Desi basi	cMO y. ss: Lar put NA gn: uits: C , ration : Beha iggered sign: B ic diffe	PS inv mbda AND g CMOS med log viour d. Basic C erentia	a ba: gate S Lc ogic, r of Cor al pa	ter. Sv sed de e and N ogic C , pass t bi-stal ncepts, air (qu	witchin esign ru <u>NOR ga</u> <u>Unit –I</u> Circuits, transist ble elen <u>Unit –'</u> a, Comr aalitativ	ng cha nules, a ate. IV , Com tor log ment, V mon s ve and	stick dia plex Log gic. SR latch ource sta quantita	ics of agram a gic circu age wit tive and	CMOS inv and layouts hits, CMOS ed latch and h resistive alysis only)	for Tra I flip load and	r. I NN nsn p fl <u>l, C</u> <u>Gi</u>	Estim MOS nissio op cir Comm Ibert	ation of inverter, 09 Hrs on Gates, rcuits, D 09 Hrs on gates
inver CMC MOS CMC Digit Com Static Sequ trigge Anal sourc Prac	ter. Symme OS inverter d S design Pr OS inverter, 2 tal CMOS I binational d c CMOS des tential Circu ered and edg og CMOS ce follower, 1 tical's: Design o	tric lelay oce 2 in Desi ign uits ge tr Des basi f Cl	CMO y. ss: Lar put NA gn: uits: C , ration : Beha iggered sign: B ic diffe	PS inv mbda AND g CMOS ned log voiour d. Basic C erentia nverte	s Loggic, r of Cor al part	ter. Sv sed de and <u>1</u> ogic C , pass t bi-stal ncepts, air (qu n scher	witchin esign ru <u>NOR ga</u> Unit –I Circuits, transist ble elen Unit –' , Comr ialitativ	ng cha ules, a ate. V V tor log ment, V mon s ve and and sin	racterist Stick dia plex Log gic. SR latch ource sta quantita nulation	ics of agram a gic circu a, clock age with tive and of trans	CMOS inv and layouts hits, CMOS ed latch and h resistive alysis only)	for Tra I flip load and	r. I NM nsn p fle <u>Gi</u>	Estim MOS nissio op cir Comm Ibert	ation of inverter, 09 Hrs on Gates, rcuits, D 09 Hrs oon gate, cell.
inver CMC MOS CMC Digit Com Static Sequ triggo Anal source Prac	ter. Symme OS inverter d S design Pr OS inverter, 2 tal CMOS I binational d c CMOS des tential Circu ered and edg og CMOS ce follower, 1 tical's: Design o 2 Design a	tric lelay oce 2 in Desi circ ign uits ge tr Dess bassi f Cl nd s	CMO y. ss: Lar put NA gn: uits: C , ration : Beha iggerec sign: B ic diffe	PS inv mbda AND g CMOS ned log wiour d. Basic C erentia nverte tion of	a baa gate S Lo ogic, r of Cor al pa cer in of sta	ter. Sv sed de e and N ogic C , pass t bi-stal ncepts, air (qu n scher atic ch	witchin esign ru <u>NOR ga</u> Unit –I Circuits, transist ble elen <u>Unit –'</u> a, Comr ualitativ matic a naracter	ng cha ules, a ate. IV , Com tor log ment, V mon s ve and and sin ristics	racteristi Stick dia plex Log gic. SR latch ource sta quantita nulation of two in	ics of agram a gic circu age circu age with tive and of trans	CMOS inv and layouts hits, CMOS ed latch and h resistive alysis only) sistor charac	for Tra I flip load and	r. I NM nsn p fle <u>Gi</u>	Estim MOS nissio op cir Comm Ibert	ation of inverter, 09 Hrs on Gates, rcuits, D 09 Hrs oon gate, cell.
inver CMC MOS CMC Digit Com Static Sequ trigge Anal sourc Prac 1 2 3	ter. Symme OS inverter d S design Pr OS inverter, 2 Eal CMOS I binational d c CMOS des cential Circu ered and edg og CMOS ce follower, 1 tical's: Design o Design a Design a	tric lelay oce 2 in Desi circ ign uits ge tr Desi basi f Cl nd s nd s	CMO y. ss: Lar put NA gn: uits: C , ration : Beha iggered sign: B ic diffe MOS in simulat	PS inv mbda AND g CMOS ned log viour d. Basic C erentia nverte tion of	a baa gate S Leogic, r of Cor al pa cer in of sta	ter. Sv sed de e and <u>1</u> ogic C , pass t bi-stal ncepts, air (qu n scher atic ch atic ch	witchin esign ru <u>NOR ga</u> <u>Unit –I</u> Circuits, transist ble elen <u>Unit –'</u> alitativ matic a naracter naracter	ng cha ules, a ate. V V tor log ment, V mon s ve and and sin ristics ristics	stick dia plex Log gic. SR latch ource sta quantita nulation of two in of CMO	ics of agram a gic circu age wit tive and of trans nput NA OS inver	CMOS inv and layouts hits, CMOS ed latch and h resistive alysis only) sistor charac	for Tra I flip load and	r. I NM nsn p fle <u>Gi</u>	Estim MOS nissio op cir Comm Ibert	ation of inverter, 09 Hrs on Gates, rcuits, D 09 Hrs oon gate, cell.
inver CMC MOS CMC Digit Com Static Sequ triggo Prac 1 2 3 4	ter. Symme OS inverter d S design Pr OS inverter, 2 tal CMOS I binational d c CMOS des tential Circu ered and edg og CMOS ce follower, 1 tical's: Design o Design a Realizati	tric lelay oce 2 in Desi circ ign uits ge tr Desi basi f Cl nd s nd s on a	CMO y. ss: Lar put NA gn: uits: C , ration : Beha iggered sign: B ic diffe MOS in simulat simulat	PS inv mbda AND g CMOS ned log viour d. Basic C erentia nverte tion of nulatio	a baa gate S Lcogic, r of Cor al pa cer in of station of	ter. Sv sed de and <u>1</u> ogic C , pass t bi-stal ibi-stal ncepts, air (qu n scher atic ch atic ch of two	witchin esign ru <u>NOR ga</u> <u>Unit –I</u> Circuits, transist ble elen <u>Unit –'</u> , Comr ialitativ matic a naracter naracter	ng cha ules, a ate. V V tor log ment, V mon s ve and and sin ristics ristics exclus	plex Log gic. SR latch ource sta quantita nulation of two in of CMO sive OR §	ics of agram a gic circu age wit tive ana of trans nput NA OS inver gate.	CMOS inv and layouts hits, CMOS ed latch and h resistive alysis only) sistor charac	for Tra I flip load and	r. I NM nsn p fle <u>Gi</u>	Estim MOS nissio op cir Comm Ibert	ation of inverter, 09 Hrs on Gates, rcuits, D 09 Hrs oon gate, cell.
inver CMC MOS CMC Digit Com Static Seque trigge Anal source Prac 1 2 3 4 5	ter. Symme OS inverter d S design Pr OS inverter, 2 tal CMOS I binational d c CMOS des tential Circu ered and edg og CMOS ce follower, 1 tical's: Design o 2 Design a 5 Design a 6 Realizati	tric lelay oce 2 in Desi ign uits ge tr Dess basi f Cl nd s nd s on a on a	stand simulat and simulat simu	PS inv mbda AND g CMOS ned log viour d. Basic C erentia nverte tion of nulatic nulatic	vert a ba gate S Lc ogic, r of Cor al pa cer in of sta ion o	ter. Sv sed de e and N ogic C , pass t bi-stal ncepts, air (qu n scher atic ch atic ch atic ch of two of one	witchin esign ru <u>NOR ga</u> Unit –I Circuits, transist ble eler <u>Unit –'</u> a, Comr ualitativ matic a naracter naracter naracter o input o e bit ful	ng cha ules, z ate. V v v v v v v v v	racteristi Stick dia plex Log gic. SR latch ource sta quantita nulation of two in of CMO sive OR § r in CMO	ics of agram a gic circu age circu age with tive and of trans nput NA OS inver gate. OS.	CMOS inv and layouts hits, CMOS ed latch and h resistive alysis only) sistor charac	for Tra I flip load and	r. I NM nsn p fle <u>Gi</u>	Estim MOS nissio op cir Comm Ibert	ation of inverter, 09 Hrs on Gates, rcuits, D 09 Hrs oon gate, cell.
inver CMC MOS CMC Digit Com Static Sequ trigge Anal sourc Prac 1 2 3 4 5 6	ter. Symme OS inverter d S design Pr OS inverter, 2 tal CMOS I binational d c CMOS des tential Circu ered and edg og CMOS ce follower, 1 tical's: Design a Design a Realizati Realizati 5 Realizati	tric lelay oce 2 in Desi circ ign uits ge tr Desi basi f Cl nd s on a on a on a	CMO y. ss: Lar put NA gn: uits: C , ration : Beha iggered sign: B ic diffe MOS in simulat simulat and sim and sim	PS inv mbda AND g CMOS ned log viour d. Basic C erentia nverte tion of nulatic nulatic	a baa gate S Lo S Lo S Lo S Lo S Lo S Lo S to S Lo S S S Lo S S S Lo S S S Lo S S S Lo S S S Lo S S S S S S S S S S S S S S S S S S S	ter. Sw sed de and <u>1</u> ogic C , pass t bi-stal ncepts, air (qu n scher atic ch atic ch atic ch of two of one of a gi	witchin esign ru <u>NOR ga</u> <u>Unit –I</u> Circuits, transist ble eler <u>Unit –'</u> alitativ matic a naracter naracter naracter o input de bit full iven Bo	ng cha ules, a ate. V V , Com tor log ment, V mon s ve and and sin ristics ristics exclus Il adde polean	racterist Stick dia plex Log gic. SR latch ource sta quantita nulation of two in of CMO sive OR § er in CMO	ics of agram a gic circu age wit tive and of trans nput NA OS inver gate. OS. ion.	CMOS inv and layouts uits, CMOS ed latch and h resistive alysis only) sistor character AND, NOR	for Tra I flip load and cteri	r. I NM nsn p fl <u>l</u> , C <u>Gi</u> stic	Estim MOS nissio op cir Comm Ibert cs. and C	ation of inverter, 09 Hrs on Gates, rcuits, D 09 Hrs on gate, cell.
inver CMC MOS CMC Digit Com Static Sequ triggo Prac 1 2 3 4 5 6 7	ter. Symme OS inverter d S design Pr OS inverter, 2 tal CMOS I binational d c CMOS des cential Circu ered and edg og CMOS ce follower, 1 tical's: Design a Design a Realizati Realizati Realizati	tric lelay occe 2 in Desi circ ign uits ge tr Desi basi f Cl nd s on a on a on a	c CMO y. ss: Lar put NA gn: uits: C , ration : Beha iggered iggered sign: B ic diffe MOS in simulat simulat and sim and sim and sim	PS inv mbda AND g CMOS ned log viour d. Basic C erentia nverte tion of nulatio nulatio nulatio	a baa gate S Lcogic, r of Cor al pa cer in of station of ion of ion of	ter. Sv sed de and <u>1</u> ogic C , pass 1 bi-stal ibi-stal incepts, air (qu n scher atic ch atic ch of two of one of a gi of a fo	witchin esign ru <u>NOR ga</u> <u>Unit –I</u> Circuits, transist ble eler <u>Unit –'</u> , Comr ialitativ matic a naracter naracter naracter baracter baracter naracter baracter baracter naracter naracter	ng cha nules, a <u>ate.</u> IV , Com tor log ment, V mon s ve and and sin ristics ristics ristics exclus ll adde polean one mu	stick dia plex Log gic. SR latch ource sta quantita nulation of two in of CMO sive OR § r in CMO expressi iltiplexer	ics of agram a gic circu age wit tive ana of trans nput NA OS inver gate. OS. ion.	CMOS inv and layouts hits, CMOS ed latch and h resistive alysis only) sistor charac	for Tra I flip load and cteri	r. I NM nsn p fl <u>l</u> , C <u>Gi</u> stic	Estim MOS nissio op cir Comm Ibert cs. and C	ation of inverter, 09 Hrs on Gates, rcuits, D 09 Hrs on gate, cell.
inver CMC MOS CMC Digit Com Static Sequ trigge Anal sourc Prac 1 2 3 4 4 5 6 6 7 8	ter. Symme OS inverter d S design Pr OS inverter, 2 tal CMOS I binational d c CMOS des ential Circu ered and edg og CMOS e follower, 1 tical's: Design a Design a Design a Realizati Realizati Realizati Realizati	tric lelar occe 2 in Desi circ ign uits ge tr Desi basi f Cl nd s on a on a on a on a	stand simulat simulat and simulat simu	PS inv mbda AND g CMOS ned log viour d. Basic (crentia nucrete tion of nulatio nulatio nulatio nulatio	s Leopgic, r of Cor al particular control of station of ion of ion of ion of	ter. Sv sed de e and N ogic C , pass t bi-stal ncepts, air (qu n scher atic ch atic ch atic ch of two of one of a gi of a fo of D, J	witchin esign ru <u>NOR ga</u> <u>Unit –I</u> fircuits, transist ble eler <u>Unit –'</u> a, Comr ialitativ matic a naracter naracter naracter b input de bit ful iven Bo pur to o JK and	ng cha ate. IV , Com tor log ment, V mon s ve and and sin ristics ristics ristics exclus il adde polean one mu	racteristi Stick dia plex Log gic. SR latch ource sta quantita nulation of two in of CMO sive OR § r in CMO expressi altiplexer in CMO	ics of agram a gic circu age circu age wit tive and of trans nput NA OS inver gate. OS. ion. c using t S.	CMOS inv and layouts hits, CMOS ed latch and h resistive alysis only) sistor character. AND, NOR ter.	Tra Tra d flip load and cteri , AN	r. I NM nsn p fl <u>l</u> , C <u>Gi</u> stic	Estim MOS nissio op cir Comm Ibert cs. and C	ation of inverter, 09 Hrs on Gates, rcuits, D 09 Hrs oon gate, cell.
inver CMC MOS CMC Digit Com Static Seque trigge Anal sourc Prac 1 2 3 4 5 6 6 7 7 8 9	ter. Symme OS inverter d S design Pr OS inverter, 2 tal CMOS I binational d c CMOS des ential Circu ered and edg og CMOS e follower, 1 tical's: Design a Design a Design a Realizati Realizati Realizati Realizati	tric lelay occe 2 in Desi circ ign uits ge tr Desi basi f Cl nd s on s on s on s on s on s	CMO y. ss: Lar put NA gn: uits: C , ration : Beha iggered siggered	PS inv mbda AND g CMOS ned log viour d. Basic C crentia nverte tion of nulation nulation nulation nulation	s Loggic, s Loggic, r of Cor al pa cer in of station of ion of ion of ion of	ter. Sv sed de and N ogic C , pass 1 bi-stal ncepts, air (qu n scher atic ch atic ch atic ch of two of one of a gi of a fo of a fo	witchin esign ru <u>NOR ga</u> <u>Unit –I</u> Eircuits, transist ble elen <u>Unit –'</u> 5, Communitative matic a naracter naracter naracter naracter bit full iven Bo pur to o JK and pur bit a	ng cha ate. IV , Com tor log ment, V mon s ve and and sin ristics ristics ristics exclus il adde polean one mu	racteristi Stick dia plex Log gic. SR latch ource sta quantita nulation of two in of CMO sive OR § r in CMO expressi altiplexer in CMO	ics of agram a gic circu age circu age wit tive and of trans nput NA OS inver gate. OS. ion. c using t S.	CMOS inv and layouts uits, CMOS ed latch and h resistive alysis only) sistor character AND, NOR	Tra Tra d flip load and cteri , AN	r. I NM nsn p fl <u>l</u> , C <u>Gi</u> stic	Estim MOS nissio op cir Comm Ibert cs. and C	ation of inverter, 09 Hrs on Gates, rcuits, D 09 Hrs oon gate, cell.

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand the fundamentals of VLSI design.							
CO2:	Apply the fundamentals concepts of VLSI to analog and digital circuits.							
CO3:	Analyze and evaluate the performance characteristics of MOSFETs.							
CO4:	Design of CMOS Analog and Digital circuits.							

Reference Books

1	Basic VLSI Design, Douglas A.Pucknell, Kamran Esharghain, 3 rd Edition, 2005, PHI, ISBN: 978-81-203-0986-9.
2	CMOS Digital Integrated Circuits Analysis and Design, Sung-Mo Kang & Yusuf Leblebici, 3 rd Edition, 2004, Tata McGraw Hill, ISBN: 978-1-4020-7234-5.
3	Design of CMOS Analog IC, Behzad Razavi, 2 nd Edition, 2016, McGraw-Hill Education, ISBN-13: 978-0072524932.
4	Albert Raj, T Latha, VLSI Design, 1st Edition, 2008, PHI learning, , ISSBN 978-8120334311

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks are considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks are executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	-	3	-	-	-	2	2	-	3
CO2	1	1	1	-	1	-	-	-	1	1	-	2
CO3	2	1	1	-	2	-	-	-	2	2	-	2
CO4	2	1	1	-	2	-	-	-	2	1	-	2

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

				Semester: V				
			VIRTU	AL INSTRUMENTATION & SIMULATION				
				(Practice)				
Course Code		:	18EI55	CIE	:	50 Marks		
Credits: L:T:P		:	0:0:2	SEE	:	50 Marks		
Tota	Total Hours		33P	SEE Durat	ion :	03 Hours		
Cou	rse Learnin	g O	bjectives:	The students will be able to				
1	Understand	ling	the differe	ence between conventional and graphical program	ning			
2	Differentia	ting	g the real ti	me and virtual instrument.				
3	Analyzing	the	basics of d	ata acquisition and learning the concepts of data a	cquisitio	on with		
	LabVIEW							
4	4 Developing a real time application using myRIO and myDAQ programming concepts.							

Practical:

Software/Hardware Experiments

- 1 Introduction to Lab VIEW-subVI, For, While, Structure, Case, Formulae Node
- 2 Basic Operation using LabVIEW-Array, Cluster, File Operation, String
- 3 Producer-Consumer Design Pattern-Event Structure
- 4 State Machine Operation
- 5 Master-Slave operation- Notifier,
- 6 Synchronization using Semaphore

myDAQ Experiments

- 1 Control of LED Intensity using myDAQ.
- 2 Acquisition of Temperature using DAQ
- 3 Counter operation using DAQ
- 4 Determine warning VI using DAQ
- 5 Room Temperature control using myDAQ and LM32
- 6 DC Motor speed control using low level VI Program

myRIO Experiments

- 1 Configuring on board Sensors in myRIO
- 2 Configuring on LCD Program (UART Protocol)
- 3 Speed control of DC motor using room temperature.(I2C protocol)
- 4 Street Light control using Ambient Light sensor (SPI protocol)
- 5 Configuring on Key Pad Program
- 6 IoT and machine Learning based experiment

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Remember and understand the fundamentals of Virtual Instrumentation and data Acquisition.							
CO2:	Apply the theoretical concepts to realize practical systems.							
CO3:	Analyze and evaluate the performance of Virtual Instrumentation Systems.							
CO4:	Create a VI system to solve real time problems using data acquisition.							

Refere	ence Books
1	Jovitha Jerome, Virtual instrumentation Using LabVIEW,4th Edition, 2010, PHI Learning
1	Pvt.Ltd , ISBN: 978-8120340305
2	Sanjay Gupta & Joseph John, Virtual Instrumentation Using LabVIEW, 2 nd Edition, 2017,
2	Tata McGraw Hill Publisher Ltd, ISBN: 978-0070700284
2	Lisa. K. Wills, LabVIEW for Everyone, 2 nd Edition, 2008, Prentice Hall of India, , ISBN :
3	978-013185672
4	Garry Johnson, Richard Jennings, LabVIEW Graphical Programming, , 4th Edition , 2017,
4	McGraw Hill Professional, ISBN: 978-1259005336

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks are considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Practical (50 Marks) = Total 50 Marks

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	-	0	0	-	-	-	-	-	-	1
CO2	1	1	-	0	-	-	-	-	-	-	-	1
CO3	1	2	1	1	1	-	-	-	-	-	-	1
CO4	1	-	1	1	1	-	-	-	1	1	1	1

				Semester: V					
	PROGRAMMIMG JAVA								
	(Elective-A: PROFESSIONAL ELECTIVES, MOOC COURSE)								
	rse Code	:	18EC5A1		CIE Marks	:	100		
	dits: L:T:P	:	3:0:0		SEE Marks	:	100		
	l Hours	:	39L		SEE Duration	:	Online Exam		
Cou	rse Learning	Obj	ectives: The stu	dents will be able to					
1.	1. Understand the structure and model of the Java programming language.								
2.	Write Java	app	lication progra	ms using OOP prin	ciples and proper p	orog	ram structuring		
3.	Demonstrat	e th	e concepts of	oolymorphism and	inheritance and w	rite	Java programs to		
	implement of	erro	r handling tech	niques using excep	tion handling				
4.				ical user interface (GUI) with Java S	wing	g and networking		
	^		latabase conne	•					
5.	Understand	hov	w to design app	olications with threa	ıds in Java.				
	•								
				Unit – I			7 Hrs		
Prog	ramming, Dat	a T	ypes, Variables,	Programming and and Arrays, Type C nts, Input-Output Han	onversion and Cast		Java Programming		
-				Unit – II	D 1 1 011	~	9 Hrs		
				Class Fundamentals, ding Methods, Introd					
				g super to Call Supe					
				Abstract Classes, Usi					
			6, 8	Unit – III	0		7 Hrs		
Usin Mul Crea	Exception Handling: Exception-Handling Fundamentals, Exception Types, Uncaught Exceptions, Using try and catch, Multiple catch Clauses, Nested try Statements, throw, Java's Built-in Exceptions Multithreaded Programming: The Java Thread Model, The Main Thread, Creating a Thread, Creating Multiple Threads, Using isAlive() and join(), Thread Priorities, Inter thread Communication, Suspending, Resuming, and Stopping Threads								
				Unit – IV			7 Hrs		
				Fundamentals, Usin	g instance of, The	trar	sient and volatile		
	lifiers, Using and			wing Toolkit (AW	F) •Introducing Swi	na	A Simple Swing		
				a Swing Applet,					
	ducing Swing					, • •			
Netv	vorking with a	Java	a: Networking E	Basics, The Networkin		face	s, InetAddress,		
				on, TCP/IP Server Sc					
				Unit – V			7 Hrs		
Iove	Java Object Database Connectivity (ODBC): Introduction, Sql Syntax ., Sample Code, Driver Types, Connections, Transactions, Sql exception Methods								

Interface and Packages for Software Development:Introduction to Packages, Types of Packages, Creating a Package, Interface, Extending interfaces, Implementing interfaces, Marker Interface, Differences between Abstract class and Interface

Course	Outcomes: After completing the course, the students will be able to
CO 1:	Identify classes, objects, members of a class and relationships among them needed for a
	specific problem.
CO 2:	Evaluate user requirements for software functionality required to decide whether the Java
	programming language can meet user requirements (analysis)
CO 3:	Propose the use of certain technologies by implementing them in the Java programming
	language to solve the given problem (synthesis)
CO 4:	Choose an engineering approach to solving problems, starting from the acquired knowledge
	of programming and knowledge of operating systems. (evaluation)

Refere	Reference Books:							
1.	Herbert Schildt, "Java the Complete Reference", Tata Mcgraw Hill Education. 8th							
	edition ISBN:978-0-07-160630-1							
2.	Kathy Sierra & Bert Bates, "Head First Java", O'Reilly, 2nd Edition ISBN:							
	9780596009205							
3.	E Balagurusamy, "Programming with Java A Primer", Tata Mcgraw Hill Education,							
	4th edition. ISBN: 9780070141698							

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	3	2	-	-	-	-	-	1	-	1		
CO2	3	2	2	1	2	2	-	-	-	1	-	1		
CO3	3	3	2	2	2	2	2	2	-	1	-	1		
CO4	3	3	3	3	2	3	2	3	3	3	3	3		

	Semester: V										
	ANALOG COMMUNICATION										
	(Elective-A: PROFESSIONAL ELECTIVES, MOOC COURSE)										
Cour	rse Code	:	18EI5A2		CIE Marks	:	100				
Cred	lits: L:T:P	:	3:0:0		SEE Marks	:	100				
Tota	l Hours	:	39L		SEE Duration	:	Online Exam				
Cou	rse Learning (Obj	ectives: The stu	dents will be able to							
1.	Understand t	he f	fundamentals con	ncepts of communica	tion system concepts						
2.	Study genera	tior	n and detection c	f AM, DSB modulati	on and de modulatio	n te	chniques.				
3.	Study genera	tior	n and detection of	f VSB and SSB mod	ulation and de modul	latic	on techniques.				
4. Understand fundamentals of digital modulation techniques.											
5.	5. Study the generation of ASK, FSK generation techniques.										

Unit – I							
Introduction to Fourier Series and Fourier Transform, Energy and Power Spectral Densities,							
Modulation Theory							
Unit – II	8 Hrs						
Amplitude Modulation – AM and DSB-SC, SSB-SC and VSB, Angle Modulation –	FM, PM						
Unit – III	8 Hrs						
Sampling Theorem, Pulse Modulation and PCM							
Unit – IV	8 Hrs						
Introduction to Random Process, Spectral Analysis of Random Process							
Unit – V 7 Hrs							
Characteristics of Band-pass noise, Performance Analysis of AM, DSB-SC with Noise							

Course	Course Outcomes: After completing the course, the students will be able to								
CO 1:	Understand fundamentals of analog communication systems								
CO 2:	Apply the fundamental concepts of communication for modulation and demodulation techniques.								
CO 3:	Evaluate the performance of different modulation techniques.								
CO 4:	Create a modulation system using the pros and cons of different modulation techniques.								

Refere	nce Books:
1.	Simon Haykin, "Communication systems", Willey Publishers, 3rd Edition, 2007, ISBN:
	978-8126513666.
2.	Leon W. Couch, "Digital and analog communication", Pearson publishers, 8th Edition,
	2013, ISBN: 9789332518582, 9332518580.
3.	George Kennedy, "Electronic Communication Systems", TATA McGraw-Hill, 5th Edition,
	2011, ISBN: 978-0071077828.

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	-	-	-	-	-	-	-	-	-	-	1		
CO2	1	-	1	-	-	-	-	-	-	-	-	1		
CO3	-	-	1	1	-	-	-	-	-	-	-	2		
CO4	1	2	2	-	1	-	-	1	1	1	-	2		

	Semester: V											
	ARTIFICIAL INTELLIGENCE: SEARCH METHODS FOR PROBLEM SOLVING											
	(Elective-A: PROFESSIONAL ELECTIVES, MOOC COURSE)											
Cou	rse Code	:	18IS5A3		CIE Marks	:	100					
Cred	lits: L:T:P	:	3:0:0		SEE Marks	:	100					
Tota	l Hours	:	39L		SEE Duration	:	Online Exam					
Cou	rse Learning	Obj	ectives: The stu	dents will be able to								
1.	Understand	the f	fundamentals con	ncepts of Artificial in	telligence.							
2.	Study the his	stori	cal perspective of	of Artificial intelliger	ice.							
3.	Understand	the f	fundamental con	cepts of State space s	earch, Heuristic Sear	rch.						
4.	4. Understand fundamentals of Different search algorithms.											
5.	Study the techniques of Planning.											

Unit – I	8 Hrs					
Introduction and Historical Perspective: Turing Test, Language and Thought, Agents, Introduction						
and Historical Perspective: Mind, Reasoning, Computation, Chess, State Space Search: Dept	h First					
Search.						
Unit – II	8 Hrs					
Breadth First Search, DFID, Heuristic Search: Best First Search, Hill Climbing, Beam Search	1,					
Traveling Salesman Problem, Tabu Search, Simulated Annealing.						
Unit – III	8 Hrs					
Population Based Search: Genetic Algorithms, Ant Colony Optimization, Branch & Bound,						
Algorithm A, Admissibility of A, Monotone Condition, IDA, RBFS,						
Unit – IV	8 Hrs					
Pruning OPEN and CLOSED in A Problem Decomposition, Algorithm AO, Game Playing C	Jame					
Playing: Algorithms Minimax, AlphaBeta, SSS, Rule Based Expert Systems, Inference Engi	ne					
Unit – V	7 Hrs					
Rete Algorithm Planning: Forward/Backward Search, Goal Stack Planning, Sussman's Anon	naly Plan					
Space Planning, Algorithm Graphplan						

Course	Course Outcomes: After completing the course, the students will be able to								
CO 1:	1: Explore real-world problems where artificial intelligence technology can be applied.								
CO 2:	Analyze and design a real-world problem for implementation and understand the dynamic								
	behavior of a system.								
CO 3:	Build algorithms to make important business decisions in the organization.								
CO 4:	Use different machine learning techniques to design AI machine and enveloping applications								
	for real world problems.								

Refer	ence Books:									
1.	Deepak Khemani. A First Course in Artificial Intelligence, McGraw Hill Education (India),									
	2013.									
2.	Stefan Edelkamp and Stefan Schroedl. Heuristic Search: Theory and Applications, Morgan									
	Kaufmann, 2011.									
3.	Pamela McCorduck, Machines Who Think: A Personal Inquiry into the History and Prospects									
	of Artificial Intelligence, A K Peters/CRC Press; 2 edition, 2004.									

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	-	2	-	1	-	-	-	-	-	-	-	1			
CO2	-	-	-	-	-	-	-	-	-	-	-	1			
CO3	3	-	-	-	1	-	-	-	-	-	-	-			
CO4	-	-	3	-	1	-	-	1	1	1	-	2			

	Semester: V											
	COMPUTER ARCHITECTURE AND ORGANIZATION											
	(Elective-A: PROFESSIONAL ELECTIVES, MOOC COURSE)											
Cou	rse Code	:	18TE5A4		CIE Marks	:	100					
Cred	lits: L:T:P	:	3:0:0		SEE Marks	:	100					
Tota	l Hours	:	39L		SEE Duration	:	Online Exam					
Cou	rse Learning	Obj	ectives: The	students will be able to								
1.	Understand t	he f	functions of n	najor components and their or	ganization in a con	npu	iter.					
2.	Analyze the	vari	ous processo	rs, Memory and bus architectu	ires.							
3.	Analyze the	algo	orithms for co	mputational units.								
4. Choose architecture and associated components for a given application.												
5.	5. Understand the functions of major components and their organization in a computer.											

Unit – I	8 Hrs
Evolution of Computer Systems, Instruction set Architecture	
Unit – II	8 Hrs
Quantitative Principles of Computer Design, Control Unit Design, Memory System Design	
Unit – III	8 Hrs
Design of Cache Memory Systems, Design of Arithmetic Unit, Design of Arithmetic Unit ((contd.)
Unit – IV	8 Hrs
Input - Output System Design, Input-Output System Design (contd.)	
Unit – V	7 Hrs
Instruction Set Pipelining, Parallel Processing Architectures	

Course	Course Outcomes: After completing the course, the students will be able to							
CO 1:	Describe the basic architecture and operational concepts involved in computer system							
	design.							
CO 2:	Identify the memory and bus structure requirements for a given system design.							
CO 3:	Design Memory of a computer & ALU by applying fast computation algorithms.							
CO 4:	Choose the appropriate processor for a particular application.							

Refe	rence Books:
1.	Computer Architecture: A Quantitative Approach, D.A. Patterson and J.L. Hennessy, 5/E", Morgan Koffman, 2011.
2.	Computer Organization and Design: The Hardware/Software Interface, D.A. Patterson and J.L. Hennessy, 5/E", Elsevier India, 2016.
3.	Computer Organization and Architecture: Designing for Performance, W. Stallings, Pearson, 2015.
4.	Computer Organization, C. Hamacher, Z. Vranesic and S. Zaky, 5/E", McGraw Hill, 2011.
5.	Computer Architecture and Organization, J.P. Hayes, 3/E", McGraw Hill, 1998.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1					1		2		1
CO2	2	2	2					1		2		1
CO3	3	3	3					1		2		2
CO4	3	3	3					1		2		3

	Semester: V						
					USING PYTHON		
	(]	Elec	tive-A: PROFE	SSIONAL ELEC	CTIVES, MOOC CO	URS	E)
Cou	rse Code	:	18CS5A5		CIE Marks	:	100
Credits: L:T:P		:	3:0:0		SEE Marks	:	100
Total Hours : 39L SEE Duration : Online Example					Online Exam		
Cou	rse Learning	Obj	ectives: The stu	lents will be able	to		
1.	Understand	wh	y Python is a u	seful scripting la	nguage for develop	ers.	
2.	Learn how to use lists, tuples, and dictionaries in Python programs.						
3.	3. Define the structure and components of a Python program.						
4.	4. Develop cost-effective robust applications using the latest Python trends and technologies						

Unit – I	8 Hrs
Motivation for Computing, Welcome to Programming, Variables and Expressions: D	esign
your own calculator, Loops and Conditionals: Hopscotch once again. Lists, Tuples and	nd
Conditionals: Let's go on a trip, Abstraction Everywhere: Apps in your phone.	
Unit – II	8 Hrs
Counting Candies: Crowd to the rescue, Birthday Paradox : Find your twin, Google	Franslate
: Speak in any Language, Currency Converter : Count your foreign trip expenses.	
Unit – III	8 Hrs
Monte Hall: 3 doors and a twist, Sorting: Arrange the books, Searching: Find in sec	conds,
Substitution Cipher : What's the secret !!, Sentiment Analysis : Analyse your Faceboo	ok data
Permutations : Jumbled Words, Spot the similarities : Dobble game	
Unit – IV	8 Hrs
Count the words : Hundreds, Thousands or Millions, Rock, Paper and Scissor : Chear	ting not
allowed !!, Lie detector : No lies, only TRUTH , Calculation of the Area : Don't mea	sure, Six
degrees of separation, Image Processing : Fun with images	
Unit – V	7 Hrs
Tic tac toe : Let's play, Snakes and Ladders : Down the memory lane, Recursion : To	ower of
Hanoi, Page Rank : How Google Works !!	
1 5	wer of

Course	Course Outcomes: After completing the course, the students will be able to							
CO 1:	Explore and apply the concept of python to solve real world problems.							
CO 2:	Design Classes and establish relationships among Classes for various applications							
	from problem definition.							
CO 3:	Develop applications using google translator and gaming application.							
CO 4:	Implement real time application such as browser automation, NLP, Image processing							
	etc using python							

Refere	nce Books:
1.	Head First Python, Paul Barry, 10 th Edition, 2016, O'Reilly, ISBN 978-9352134823.
2.	Python Cookbook: Recipes for Mastering Python 3,David Beazley, Brian K. Jones, 9 th Edition, 2017, O'Reilly, ISBN 978-1449340377.
3.	Python: The Complete Reference, Martin C Brown,7 th Edition,2018,McGraw Hill Education, ISBN 978-9387572942.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	-	-	-	-	-	-	1
CO2	1	-	1	-	-	-	-	-	-	-	-	1
CO3	-	-	1	1	-	-	-	-	-	-	-	2
CO4	1	2	2	-	1	-	-	1	1	1	-	2

High-3: Medium-2: Low-1

	Semester: V							
	FUNDAMENTALS OF AEROSPACE ENGINEERING							
	(GROUP B: GLOBAL ELECTIVE)							
Com	(Theory) Course Code : 18G5B01 CIE : 100 Marks							
		:		•		:		
Cred	lits: L:T:P	:	3:0:0			:	100 Marks	
Hours		:	39L	SI	EE Duration	:	3.00 Hours	
Cou	rse Learning	g O	bjectives: To enable	the students to:				
1	Understand	l th	e history and basic pri	inciples of aviation				
2	2 Demonstrate and explain foundation of flight, aircraft structures, material, aircraft propulsion							
3 Comprehend the importance of all the systems and subsystems incorporated on an air vehicle								
4 Appraise the significance of all the subsystems in achieving a successful flight								

Unit-I	08 Hrs
Introduction to Aircraft: History of aviation, International Standard atmosphere, Atmosph	ere and its
properties, Temperature, pressure and altitude relationships, Classification of aircrafts, Anat	omy of an
aircraft & Helicopters, Basic components and their functions, Simple Problems on	Standard
Atmospheric Properties.	
Unit – II	08 Hrs
Basics of Aerodynamics: Bernoulli's theorem, Centre of pressure, Lift and drag, Type	s of drag,
Aerodynamic Coefficients, Aerodynamic centre, Wing Planform Geometry, Airfoil nomenclar	ure, Basic
Aerodynamic characteristics of airfoil, NACA nomenclature, Simple problems on lift and dra	lg.
Unit -III	07 Hrs
Aircraft Propulsion: Introduction, Classification of power plants, Gas Turbine Engine: Bray	ton Cycle,
Principle of operation of turbojet, turboprop, turbofan engines, ramjet and scramjet	engines,
Comparative merits and demerits of different types Engines.	-
Unit -IV	09 Hrs
Introduction to Space Flight: The upper atmosphere, Introduction to basic orbital mechanics	, Kepler's
Laws of planetary motion, Orbit equation, and Space vehicle trajectories.	
Rocket Propulsion: Principles of operation of rocket engines, Rocket Equation, Types of rock	ets: Solid,
Liquid and Hybrid Propellant Rockets, Rocket Performance parameters: Thrust, Specific	Impulse,
Exhaust Velocity, Simple Problems on rocket performance.	•
Unit -V	07 Hrs
Aerospace Structures and Materials: Introduction, General types of construction, Monocod	jue, Semi-
Monocoque and Geodesic structures, Structure of Wing and Fuselage and its basic construction	_
Course Outcomes: At the end of this course the student will be able to:	

Course	Course Outcomes: At the end of this course the student will be able to:						
CO1:	Appreciate and apply the basic principles of aviation						
CO2:	Apply the concepts of fundaments of flight, basics of aircraft structures, aircraft propulsion and						
GO2	aircraft materials during the development of an aircraft						
CO3:	Comprehend the complexities involved during development of flight vehicles.						
CO4 :	Evaluate and criticize the design strategy involved in the development of airplanes						

]	Ref	erence Books
	-	Introduction to Flight, John D. Anderson, 7th Edition, 2011, McGraw-Hill Education, ISBN
	I	9780071086059.
		Rocket Propulsion Elements, Sutton G.P., 8th Edition, 2011, John Wiley, New York, ISBN:
	2	1118174208, 9781118174203.

	3	Fundamentals of Compressible Flow, Yahya, S.M, 5 th Edition, 2016, New Age International, ISBN: 8122440223
-		Aircraft structural Analysis, T.H.G Megson, 2010, Butterworth-Heinemann Publications, ISBN:
	4	978-1-85617-932-4

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	3	2	2	-	-	-	1
CO2	2	2	2	3	2	1	1	1	-	-	-	1
CO3	1	-	3	3	-	-	-	-	-	-	-	1
CO4	2	2	3	3	-	2	2	2	-	-	-	1

Semester: V									
	NANOTECHNOLOGY								
			(GROUP B:	: GLOBAL ELEC	CTIVE)				
				(Theory)					
Cour	rse Code	:	18G5B02		CIE	:	100 Marks		
Cred	lits: L:T:P	:	3:0:0		SEE	••	100 Marks		
Tota	l Hours	:	39L		SEE Duration	••	3.00 Hours		
Cour	rse Learning ()bj	ectives: The student	ts will be able to					
1	Understand	the	basic knowledge	of nanomaterials a	and the process to	sy	inthesize and		
	characterize t	he	nanoparticles.						
2	Learn about	Na	ano sensors and th	heir applications ir	n mechanical, elect	rica	l, electronic,		
	magnetic, che	emi	cal fields.						
3	Apply the con	nce	pt of nanotechnolog	y in sensing, transdu	icing and actuating r	nec	hanism.		
4	4 Design the nanoscale products used in multidisciplinary fields.								
. <u> </u>									
	Unit-I 08 Hrs								

Omt-1	UO IIIS					
Introduction to Nanomaterials: History of Nanotechnology, structures and properties of	of carbon					
based, metal based, bio-nanomaterails and hybrids: Bucky Ball, Nanotubes, Diam	ond like					
carbon(DLC), Quantum Dots, Nano Shells, Dendrimers, Nanocarriers, Nanocrystals	s, hybrid					
biological/inorganic, protein & DNA based nanostructures. Nanosafety Issues: Toxicological/inorganic, protein & DNA based nanostructures.	gy health					
effects caused by nanoparticles.						
Unit – II	09 Hrs					
Nano Synthesis and Fabrication: Introduction & overview of Nanofabrication: Bottom up and						
Top down approaches using processes like Ball milling, Sol-gel Process, and Chemica	1 Vapour					
deposition (CVD), electrodeposition and various lithography techniques (Hard & Soft litho	ography).					

Characterization of Nanostructures: Spectroscopy - UV-Visible spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy, X-ray spectroscopy. Electron Microscopy - Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM). Scanning Probe Microscopy - Atomic Force microscopy (AFM), Scanning Tunnel Microscopy (STM).

Unit –III							
Nanosensors: Overview of nanosensors, prospects and market. Types of Nanosensors							
applications. Electromagnetic nanosensors: Electronic nose and electronic tongue,							
nanosensors. Mechanical nanosensors: Cantilever Nanosensors, Mechanics of CNTs, Biosensor							
Biosensors in modern medicine.							

 Unit –IV
 07 Hrs

 Micro & Nano-Electromechanical systems and Microfluidics: MEMS/NEMS: Magnetic,

 Chemical and Mechanical Transducers –Sensing and Actuators. Microfluidics: Laminar flow,

 Hagen-Peouiselle equation, basic fluid ideas, Special considerations of flow in small channels,

 mixing, microvalves & micropumps.

Unit –v	U/ Hrs
Applications of Nanotechnology: Molecular electronics, molecular switches, mechanica	al cutting
tools, machine components, magnets, DLC coated grinding wheels. Electrical, electron	nic, solar
cells, Batteries, fuel cells, Nanofilters. Medical nanotechnology: in Diagnostics, Therapeut	ics, Drug
delivery and Nanosurgery. Nano in Agriculture- nanopesticides, nanofertilizers etc.	

Course (Course Outcomes: After completing the course, the students will be able to									
CO1:	Understand the structures of nano materials and their properties.									
CO2:	Apply the various synthesis and fabrication methods and interpret the characterization									
	results.									
CO3:	Analyze the working mechanism of nanosensors and transducers and Apply its									
	knowledge in various fields.									
CO4:	Create and evaluate nano Design, Devices and Systems in various disciplines.									

Refere	Reference Books							
	B.S. Murty., P. Shankar., B.Raj, B.B. Rath, and J. Murday, Textbook of Nanosciences and							
1	Nanotechnology, Springer, Co-publication with University Press (India) Pvt. Ltd. VCH,							
	XII.1st Edition, 2013, ISBN- 978-3-642-28030-6.							
	V. K. Khanna, Nanosensors: Physical, Chemical and Biological, CRC press, 1st Edition,							
2	2013, ISBN 9781439827123 (Unit III).							
2	C. C. Kock., Nanostructured materials, Nanostructured materials, William Andrew							
3	Publishing, 2 nd Edition, 2007, ISBN 0-8155-1534-0.							
	M. Wilson., K. Kannangara., G.Smith., M.Simmons., B. Raguse., Nanotechnology, ,							
4	overseas Press (India) Private Ltd.,1st Edition, 2005,ISBN 81-88689-20-3.							

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	3	2	3	3	-	-	1	2	-
CO2	3	3	3	2	3	3	2	-	2	-	-	-
CO3	3	2	2	2	2	1	1	-	-	-	1	-
CO4	1	2	3	3	3	2	1	-	-	2	-	-

				Se	emester: V						
]	FUEL CEL		OLOGY	•				
	(GROUP B: GLOBAL ELECTIVE)										
(Theory)											
Cour	se Code	:	18G5B03		<u> </u>		CIE	:	100 Marks		
Cred	its: L:T:P	:	3:0:0				SEE	:	100 Marks		
Total Hours:39L							SEE Duration	:	3.00 Hours		
Cour	se Learning (· ·			ill be able to	0					
1	Recall the c										
2	Distinguish		• •				es				
3	Know the ap					ains					
4	Understand	the c	haracteriza	tion of fuel	cells						
				Unit	+ T				07 Hrs		
Intro	duction – I:			Unit	I-I				07 1115		
		hist	orical deve	elopments v	vorking pri	nciple of	fuel cell, compos	nen	ts of fuel cell		
	of the cell, Fu			-		—	—				
				Unit -		en prope			07 Hrs		
Туре	s of fuel cells	– II:		0					01 1115		
• •			Types of fuel cells – II:								
Classification of fuel cells, alkaline fuel cell, polymer electrolyte fuel cell, phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel cell, advantages and disadvantages of each									acid fuel cell.		
					•	•			acid fuel cell,		
					, advantage	•			acid fuel cell,		
molte		iel ce	ell, solid ox	ide fuel cell Unit -	, advantage	•					
molte	en carbonate fu iencies, losses	and	ell, solid ox kinetics– l	ide fuel cell Unit -	, advantage –III	es and disa		h	07 Hrs		
molte Effici Intrin	en carbonate fu iencies, losses usic maximum	and efficient	ell, solid ox kinetics– l ciency, vol	ide fuel cell Unit - III: Itaic efficier	, advantage -III ncy, farada	es and disa	advantages of eac	cien	07 Hrs		
molte Effici Intrin losses	en carbonate fu iencies, losses usic maximum	and efficient	kinetics– l kinetics– l ciency, vol	ide fuel cell Unit - III: Itaic efficien I current, of	, advantage -III ncy, farada	es and disa	advantages of eac	cien	07 Hrs		
molte Effici Intrin losses activa	en carbonate fu iencies, losses isic maximum s, fuel crosso ation/electrode	and and efficience ver a	kinetics– l kinetics– l ciency, vol and internal ction kinetic	ide fuel cell Unit - III: Itaic efficien I current, of	, advantage - III ncy, farada hmic losse	es and disa	advantages of eac	cien	07 Hrs		
molte Effici Intrin losses activa Fuel	en carbonate fu iencies, losses sisic maximum s, fuel crosso ation/electrode Cell Characte	ael ce and efficience ver a e/reac	kinetics- I ciency, vol and internation kinetic cs - IV:	ide fuel cell Unit - III: Itaic efficien I current, of cs Unit -	, advantage -III ncy, farada hmic losse -IV	ic efficie s, mass t	advantages of eac ncy, overall effic ransport/concentr	cien cien	07 Hrs cy, activation on losses, and 08 Hrs		
molte Effici Intrin losses activa Fuel In-sit	en carbonate fu iencies, losses sic maximum s, fuel crosso ation/electrode Cell Character u characteriza	ael ce and efficience ver a c/reace eristi	kinetics– l ciency, vol and internal ction kinetic cs – IV: I-V curve	ide fuel cell Unit - III: Itaic efficien I current, of cs Unit -	, advantage -III ncy, farada hmic losse -IV voltage me	es and disa ic efficie s, mass t easuremen	advantages of eac	cien cien	07 Hrs cy, activation on losses, and 08 Hrs		
molte Effici Intrin losses activa Fuel In-sit cyclic	en carbonate fu iencies, losses sic maximum s, fuel crosso ation/electrode Cell Characteriza u characteriza c voltammetry	ael ce and efficience eristi ation: , elec	kinetics– I kinetics– I ciency, vol nd internation kinetic cs– IV: I-V curve ctrochemica	ide fuel cell Unit - III: Itaic efficien I current, of cs Unit - , current – il impedance	, advantage -III ncy, farada hmic losse -IV voltage me e spectrosce	ic efficie s, mass t easuremen	advantages of eac ncy, overall effic ransport/concentr nt, current interru	cien catic	07 Hrs cy, activation on losses, and 08 Hrs measurement,		
molte Effici Intrin losses activa Fuel In-sit cyclic Ex-si	en carbonate fu iencies, losses sic maximum s, fuel crosso ation/electrode Cell Characteriza u characteriza c voltammetry tu characteriz	ael ce and efficience eristi ation: , elec	kinetics – I ciency, vol and internation kinetic cs – IV: I-V curve trochemication	ide fuel cell Unit - III: Itaic efficien I current, of cs <u>Unit -</u> I current – I impedance s: Proton c	, advantage -III ncy, farada hmic losse -IV voltage me e spectrosco conductivity	ic efficie s, mass t easuremen	advantages of eac ncy, overall effic ransport/concentr	cien catic	07 Hrs cy, activation on losses, and 08 Hrs measurement,		
molte Effici Intrin losses activa Fuel In-sit cyclic Ex-si	en carbonate fu iencies, losses sic maximum s, fuel crosso ation/electrode Cell Characteriza u characteriza c voltammetry	ael ce and efficience eristi ation: , elec	kinetics – I ciency, vol and internation kinetic cs – IV: I-V curve trochemication	ide fuel cell Unit - III: Itaic efficien I current, of cs Unit - I current – I impedance s: Proton c ectrochemic	, advantage -III ncy, farada hmic losse -IV voltage me e spectrosco onductivity cal activity	ic efficie s, mass t easuremen	advantages of eac ncy, overall effic ransport/concentr nt, current interru	cien catic	07 Hrs cy, activation on losses, and 08 Hrs measurement conductivity.		
molte Efficient Intrin losses activa Fuel In-sit cyclic Ex-si electr	en carbonate fu iencies, losses sic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriz rochemical sur	and a efficience of the second	kinetics – I ciency, vol and internal ction kinetic cs – IV: I-V curve trochemica technique area and ele	ide fuel cell Unit - III: Itaic efficien I current, of cs <u>Unit -</u> I current – I impedance s: Proton c	, advantage -III ncy, farada hmic losse -IV voltage me e spectrosco onductivity cal activity	ic efficie s, mass t easuremen	advantages of eac ncy, overall effic ransport/concentr nt, current interru	cien catic	07 Hrs cy, activation on losses, and 08 Hrs measurement, conductivity,		
molte Effici Intrin losses activa Fuel In-sit cyclic Ex-si electr Appl	en carbonate fu iencies, losses sic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriz cochemical sur ications of fue	and a efficience eristi ation: , election face el cel	kinetics – I ciency, vol and internal ction kinetic cs – IV: I-V curve ctrochemica technique area and ele Is – V:	ide fuel cell Unit - III: Itaic efficien I current, of cs Unit - d impedance s: Proton c ectrochemic Unit	, advantage –III ncy, farada hmic losse –IV voltage me e spectrosco onductivity cal activity –V	es and disa cic efficie s, mass t easuremen opy y, flexura	advantages of eac ncy, overall effic ransport/concentr nt, current interru l strength, electri	h cien catic upt ical	07 Hrs cy, activation on losses, and 08 Hrs measurement, conductivity, 10 Hrs		
molte Effici Intrin losses activa Fuel In-sit cyclic Ex-si electr Appli	en carbonate fu iencies, losses isic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriza c voltammetry tu characteriza ications of fue	and a efficiency ver a c/reaccy eristintion: , eleccation ation face el cel l cell	kinetics – I ciency, vol and internal ction kinetic cs – IV: I-V curve ctrochemica technique area and ele Is – V: s in air, roa	ide fuel cell Unit - III: Itaic efficien I current, of cs Unit - I impedance s: Proton c ectrochemic Unit d and rail tr	, advantage –III ncy, farada hmic losse –IV voltage me e spectrosco onductivity cal activity –V	es and disa cic efficie s, mass t easuremen opy y, flexura	advantages of eac ncy, overall effic ransport/concentr nt, current interru	h cien catic upt ical	07 Hrs cy, activation on losses, and 08 Hrs measurement, conductivity, 10 Hrs		
molte Effici Intrin losses activa Fuel In-sit cyclic Ex-si electr Appli	en carbonate fu iencies, losses sic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriz cochemical sur ications of fue	and a efficiency ver a c/reaccy eristintion: , eleccation ation face el cel l cell	kinetics – I ciency, vol and internal ction kinetic cs – IV: I-V curve ctrochemica technique area and ele Is – V: s in air, roa	ide fuel cell Unit - III: Itaic efficien I current, of cs Unit - I impedance s: Proton c ectrochemic Unit d and rail tr	, advantage –III ncy, farada hmic losse –IV voltage me e spectrosco onductivity cal activity –V	es and disa cic efficie s, mass t easuremen opy y, flexura	advantages of eac ncy, overall effic ransport/concentr nt, current interru l strength, electri	h cien catic upt ical	07 Hrs cy, activation on losses, and 08 Hrs measurement conductivity. 10 Hrs		
molte Effici Intrin losses activa Fuel In-sit cyclic Ex-si electr Appli Appli Produ	en carbonate fu iencies, losses asic maximum s, fuel crosso ation/electrode Cell Characterizate u characterizate tu characterizate cochemical sur ications of fue action and stor	and a efficience ver a eristi ation: , elect ation face el cell age c	ell, solid ox kinetics– I ciency, vol and internal etion kinetic cs - IV: I-V curve etrochemica technique area and ele ls - V: s in air, roa of hydrogen	ide fuel cell Unit - III: Itaic efficien I current, of es <u>Unit -</u> I impedance s: Proton c ectrochemic <u>Unit</u> d and rail trai	, advantage -III ncy, farada hmic losse -IV voltage me e spectrosco conductivity cal activity -V ransport, hy	es and disa ic efficie s, mass t easuremen opy v, flexural drogen st	advantages of eac ncy, overall effic ransport/concentr nt, current interru l strength, electri orage, handling at	h cien catic upt ical	07 Hrs cy, activation on losses, and 08 Hrs measurement conductivity. 10 Hrs		
molte Effici Intrin losses activa Fuel In-sit cyclic Ex-si electr Appli Appli Produ	en carbonate fu iencies, losses sic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriza c voltammetry c v	and a efficience ver a eristicon: , election face el cell cage c cage c	ell, solid ox kinetics – I ciency, vol and internal tion kinetic cs - IV: I-V curve trochemica technique area and ele ls - V: s in air, roa of hydroger er complet	ide fuel cell Unit - III: Itaic efficien I current, of es <u>Unit -</u> I impedance s: Proton c ectrochemic <u>Unit</u> d and rail trai	, advantage -III ncy, farada hmic losse -IV voltage ma e spectrosco onductivity cal activity -V ransport, hy rse, the stu	es and disa ic efficie s, mass t easuremen opy y, flexural drogen str udents wil	advantages of eac ncy, overall effic ransport/concentr nt, current interru l strength, electri orage, handling at	h cien catic upt ical	07 Hrs cy, activation on losses, and 08 Hrs measurement conductivity. 10 Hrs		
molte Effici Intrin losses activa Fuel In-sit cyclic Ex-si electr Appli Appli Produ	en carbonate fu iencies, losses isic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriza c voltammetry tu characteriza cochemical sur ications of fue action and stor se Outcomes	and a efficiency ver a c/reacce eristi ation: , elecce ation face el cel cel cell rage ce cage cel cage cel cage cel	ell, solid ox kinetics – I ciency, vol and internal tion kinetic cs - IV: I-V curve trochemica technique area and ele ls - V: s in air, roa of hydroger er complet	ide fuel cell Unit - III: Itaic efficien I current, of CS Unit - I impedance s: Proton c ectrochemic Unit d and rail trans- ing the cour- als and char	, advantage -III ncy, farada hmic losse -IV voltage me e spectrosco conductivity cal activity -V ransport, hy rse, the sture racteristics of	es and disa ic efficie s, mass t easuremen opy v, flexural drogen sta udents wil of fuel ce	advantages of eac ncy, overall effic ransport/concentr nt, current interru l strength, electri orage, handling at	cien catic upt ical	07 Hrs cy, activation on losses, and 08 Hrs measurement conductivity 10 Hrs safety issues.		
molte Effici Intrin losses activa Fuel In-sit cyclic Ex-si electr Appli Produ Cour CO1	en carbonate fu iencies, losses isic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriza c voltammetry tu characteriza cochemical sur ications of fue action and stor se Outcomes	and a efficiency ver a c/reacce eristi ation: , elecce ation face el cel cel cell rage ce cage cel cage cel cage cel	ell, solid ox kinetics – I ciency, vol and internal tion kinetic cs - IV: I-V curve trochemica technique area and ele ls - V: s in air, roa of hydroger er complet	ide fuel cell Unit - III: Itaic efficien I current, of CS Unit - I impedance s: Proton c ectrochemic Unit d and rail trans- ing the cour- als and char	, advantage -III ncy, farada hmic losse -IV voltage me e spectrosco conductivity cal activity -V ransport, hy rse, the sture racteristics of	es and disa ic efficie s, mass t easuremen opy v, flexural drogen sta udents wil of fuel ce	advantages of eac ncy, overall effic ransport/concentr nt, current interru l strength, electri orage, handling at ll be able to lls	cien catic upt ical	07 Hrs cy, activation on losses, and 08 Hrs measurement, conductivity, 10 Hrs safety issues.		
molte Effici Intrin losses activa Fuel In-sit cyclic Ex-si electr Appli Produ Cour CO1	en carbonate fu iencies, losses sic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu character	and a efficiency ver a c/reaccent eristi ation: , eleccent ation face el cell age c c c Afte	ell, solid ox kinetics – I ciency, vol and internal etion kinetic cs - IV: I-V curve etrochemica technique area and ele ls - V: s in air, roa of hydroger er complet fundament l engineeri	ide fuel cell Unit - III: Itaic efficien I current, of CS Unit - , current – I impedance s: Proton c ectrochemic Unit d and rail trans- ing the cour als and char	, advantage -III ncy, farada hmic losse -IV voltage me e spectrosce onductivity cal activity -V ansport, hy rse, the stu- acteristics es to distir	es and disa ic efficie s, mass t easuremen opy y, flexural drogen sta drogen sta udents wil of fuel cel nguish fue	advantages of eac ncy, overall effic ransport/concentr nt, current interru l strength, electri orage, handling at ll be able to lls	cien catic upt ical nd s	07 Hrs cy, activation on losses, and 08 Hrs measurement, conductivity, 10 Hrs safety issues. ntional energy		

Reference Books							
1	Fuel Cells – Principles and Applications, Viswanathan and M Aulice Scibioh, 1 st Edition, 2009, Universities Press, ISBN – 13: 978 1420 060287						
1	2009, Universities Press, ISBN – 13: 978 1420 060287						
2	Fuel Cell Systems Explained, James Larminie and Andrew Dicks, 2 nd Edition, 2003, John						
2	Wiley & Sons, ISBN – 978 0470 848579						

3	Fuel Cell Fundamentals, O 'Hayre, R. P., S. Cha, W. Colella, F. B. Prinz, 1 st Edition, 2006, Wiley, New York, ISBN – 978 0470 258439
4	Recent Trends in Fuel Cell Science and Technology, Basu. S, 1 st Edition, 2007, Springer, ISBN – 978 0387 688152

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	-	1	-	1	-	-	-
CO2	2	-	2	-	-	-	-	-	-	-	-	-
CO3	-	3	-	-	-	-	3	-	2	-	-	-
CO4	-	2	2	-	-	-	2	-	3	-	-	2

	Semester: V								
	INTELLIGENT SYSTEMS								
	(GROUP B: GLOBAL ELECTIVE)								
	(Theory)								
Cou	rse Code	:	18G5B04		CIE Marks	:	100 Marks		
Cree	dits: L:T:P	:	3:0:0		SEE Marks	:			
	al Hours	:	39L		SEE Duration	:	3.00 Hours		
Cou	rse Learning	g Obj	ectives: The stu	dents will be able to					
1.	Understand	func	lamental AI con	cepts and current issues.					
2.	Understand	and	apply a range of	AI techniques including sea	rch, logic-based r	easc	oning, neural		
	networks an	nd rea	asoning with une	certain information.					
3.	Recognize	comp	outational proble	ms suited to an intelligent sy	stem solution.				
4.	Identify and	l list	the basic issues	of knowledge representation	, blind and heurist	tic s	earch.		
	1 -			- *					
				Unit – I			07 Hrs		
Intr	oduction: Th	e Fo	undations of Ar	tificial Intelligence, History	of Artificial Intell	lige	nce, The State		
				ction, How Agents Should A		-			
		-	-	by Searching Search Stra					
Avo	iding Repeate	ed Sta	ates						
				Unit – II			08 Hrs		
Info	rmed Searc	h M	ethods: Best-F	irst Search, Heuristic Fund	ctions, Memory	Bou	inded Search,		
Itera	tive Improve	ment	Algorithms						
Gan	ne Playing: I	Intro	luction: Games	as Search Problems, Perfec	t Decisions in Tw	vo-P	Person, Games		
Impe	erfect Decisio	ons, A	Alpha-Beta Prun	ing, Games That Include an	Element of Chance	e			
Unit – III 08 Hrs									
Kno	Knowledge Inference								
Kno	wledge repre	senta	tion -Productio	n based system, Frame bas	sed system. Infer	ence	e - Backward		
chair	ning, Forward	d cha	ining, Rule val	ue approach, Fuzzy reasonin	ng - Certainty fac	tors	, Bayes Rule,		
Unce	ertainty Princ	iples	, Bayesian Theo	ry-Bayesian Network-Demp	ster - Shafer theor	y.			
	Unit – IV 08 Hrs								
Lear	rning from (Obse	rvations: A Gen	neral Model of Learning Ag	gents, Inductive L	earr	ning, Learning		
	Decision Trees, Using Information Theory, Learning General Logical Descriptions, Why Learning								
	Works: Computational Learning Theory								
			-	Learning in a Known Env		e Lo	earning in an		
Unknown Environment, Active Learning in an Unknown Environment									
				Unit – V			08 Hrs		
_		Expert Systems, Components, Production rules, Statistical reasoning, certainty factors, measure of							
1 1'	belief and disbelief, Meta level knowledge, Introspection. Expert systems - Architecture of expert								
			Aeta level know		rt systems - Arch	itec	ture of expert		
syste	ems, Roles o	f exp	Meta level knov pert systems - I	Vledge, Introspection. Exper Knowledge Acquisition –Me DN, Expert systems shells.	rt systems - Arch	itec	ture of expert		

Course	Course Outcomes: After completing the course, the students will be able to							
CO 1:	CO 1: Understand and explore the basic concepts and challenges of Artificial Intelligence.							
CO 2:	2: Analyze and explain basic intelligent system algorithms to solve problems.							
CO 3:	Apply Artificial Intelligence and various logic-based techniques in real world problems.							
CO 4:	Assess their applicability by comparing different Intelligent System techniques							

Reference Books:

AI – A Modern Approach, Stuart Russel, Peter Norvig, 3 rd Edition, 2010, Pearson Education,
ISBN-13: 978-0-13-604259-4
Artificial Intelligence (SIE), Kevin Night, Elaine Rich, Nair B., 3 rd Edition, 2008, McGraw
Hill, ISBN: 9780070087705
Introduction to AI and ES, Dan W. Patterson, Pearson Education, 3rd Edition, 2007, ISBN-
13: 978-0134771007
Introduction to Expert Systems, Peter Jackson, 4th Edition, Pearson Education, 2007, ISBN-
13: 978-8131709337

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12										PO12		
CO1	3	3	3	3	3	2	2	1	2	-	2	2
CO2	3	3	3	3	3	2	2	1	2	-	2	2
CO3	3	3	3	3	3	2	1	1	2	-	2	2
CO4	3	3	3	3	3	1	2	1	1	1	2	2

			Semester: V					
R	EMOT		ND GEOGRAPHIC II JP B: GLOBAL ELI		YSTI	EM		
			(Theory)					
Course Code	:	18G5B05		CIE	:	100 Marks		
Credits: L:T:P		3:0:0		SEE		100 Marks		
Total Hours		39 L		SEE Duration	:	3.00 Hours		
Course Learni	ng Ob	jectives: The stu	dents will be able to					
1 Understan	Understand concept of using photographic data to determine relative positions of points.							
2 Study the	Study the methods of collection of land data using Terrestrial and Aerial camera.							
3 Analyze th	Analyze the data gathered from various sensors and interpret for various applications.							
4 Apply the	4 Apply the principles of RS, GIS and GPS in various scopes of Civil Engineering.							
I								
			Unit-I			07 Hi		

Unit-I	07 Hrs						
Remote Sensing- Definition, types of remote sensing, components of remote sensing, elec	tromagnetic						
spectrum, Black body, Atmospheric windows, energy interaction with earth surface features. Spectral							
reflectance curve. Platforms and sensors. Sensor resolutions. Types of satellites- Indian	reflectance curve. Platforms and sensors. Sensor resolutions. Types of satellites- Indian and other						
remote sensing satellites (IRS, IKONS and Landsat). Principle of visual interpretation - key	elements.						
Unit – II	08 Hrs						
Photogrammetry: Introduction types of Photogrammetry, Advantages Photogrammetry, I	Introduction						
to digital Photogrammetry.							
Aerial Photogrammetry: Advantages over ground survey methods- geometry of vertical p	hotographs,						
scales of vertical photograph. Ground coordination- relief displacement, scale ground co	ordinates –						
flight planning.							
Unit –III	08 Hrs						
Geographic Information System- Introduction, Functions and advantages, sources of data for GIS.							
Database – Types, advantages and disadvantages. Data Analysisoverlay operations, network analysis,							
spatial analysis. Outputs and map generation.							
GPS- components and working principles.							
Unit –IV	08 Hrs						
Applications of GIS, Remote Sensing and GPS: Water Resources engineering and r	nanagement						
(prioritization of river basins, water perspective zones and its mapping), Highway and tra	ansportation						
(highway alignment, Optimization of routes, accident analysis), Environmental Engineering (Geo-							
statistical analysis of water quality, rainfall).							
Unit –V	08 Hrs						
Applications of GIS, Remote Sensing and GPS: Urban Planning & Management, ur	ban sprawl,						
Change detection studies, forests and urban area, agriculture, Disaster Management. La	youts: Dead						
end, Radial, Grid iron, Circular system.							

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand and remember the principle of Remote Sensing (RS) and Geographical Information							
	Systems (GIS) data acquisition and its applications.							
CO2:	Apply RS and GIS technologies in various fields of engineering and social needs							

CO3:	Analyze and evaluate the information obtained by applying RS and GIS technologies.
CO4:	Create a feasible solution in the different fields of application of RS and GIS

Refer	rence Books									
1	Geographic Information System-An Introduction, Tor Bernharadsen, 2009, 3 rd Edition, Wiley									
	India Pvt. Ltd. New Delhi, ISBN - 9788126511389.									
2	Principles of Remote sensing and Image Interpretation, Lillesand and Kiefer, 2011, 6th Edition,									
2	John Wiley Publishers, New Delhi, ISBN – 8126532238.									
2	Higher Surveying, Chandra A.M, 2015, 3rd Edition, New age international (P) Ltd,									
3	ISBN: 8122438121									
4	Remote Sensing, Robert A. Schowengerdt, 2009, 3 rd Edition, Elsevier India Pvt Ltd, New Delhi.									
_	Remote Sensing and GIS, Bhatta B, 2011, Oxford University Press, New Delhi,									
3	ISBN - 0198072392									

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	1	-	-	-	-	-	-
CO2	2	1	-	-	1	1	-	-	-	-	-	-
CO3	2	2	1	-	2	1	1	-	-	-	-	1
CO4	2	2	1	-	3	2	2	-	-	-	1	1

	Semester: V							
	AUTOMOTIVE ELECTRONICS							
			(GR	OUP B: GLOBAL ELECTIVE)				
		1	100	(Theory)		100 3.5		
Co	ourse Code	:	18G5B06	CIE Marks	:	100 Marks		
Cr	redits: L:T:P	:	3:0:0	SEE Marks	:	100 Marks		
He	Hours		39L	SEE Duration	ı :	3.00 Hours		
Co	ourse Learning	Ob	jectives: The s	tudents will be able to				
1	Acquire the kn	ow	ledge of autom	otive domain fundamentals, need of Electronics a	nd co	ommunication		
I	interfaces in A	utoi	motive systems					
2	Apply various	typ	es of sensors, a	ctuators and Motion Control techniques in Autom	otive	systems		
2	Understand digital engine control systems and Embedded Software's and ECU's used in automotive							
3	3 systems.							
4	Analyse the co	nce	pts of Diagnost	ics, safety and advances in Automotive electronic	Syst	ems.		

UNIT-I

Fundamentals of Automotive: Evolution and Use of Electronics in Automotive, Automotive Systems, The Engine, Engine Control, Internal Combustion Engines, Spark Ignition Engines and Alternative Engines. Ignition System, Ignition Timing, Drivetrain, Suspensions, Brakes and Steering Systems. **Basics of electronic engine control:** Motivation for Electronic Engine Control, Concept of an Electronic Engine control system, Definition of General terms, Definition of Engine performance terms, Engine mapping, Effect of Air/Fuel ratio, spark timing and EGR on performance, Control Strategy, Electronic Fuel control system, Analysis of intake manifold pressure, Electronic Ignition.

08 Hrs

07 Hrs

08 Hrs

Automotive Sensors and Actuators:

Automotive Control System Applications of Sensors and Actuators,

Sensors: Air Flow Sensor, Engine Crankshaft Angular Position Sensor, Throttle Angle Sensor, Temperature Sensor, Sensors for Feedback Control, Sensors for Driver Assistance System: Radar, Lidar, Video Technology.

Actuators: Solenoids, Piezo Electric Force Generators, Fluid mechanical Actuators, Electric Motors and Switches.

UNIT-III

UNIT-II

Digital Engine Control Systems: Digital Engine control features, Control modes for fuel Control (Seven Modes), EGR Control, Electronic Ignition Control - Closed Loop Ignition timing, Spark Advance Correction Scheme, Integrated Engine Control System.

Vehicle Motion Control: Typical Cruise Control System, Digital Cruise Control System, Digital Speed Sensor, Throttle Actuator, Digital Cruise Control configuration, Cruise Control Electronics (Digital only), Antilock Brake System (ABS), Electronic Suspension System, Electronic Steering Control.

UNIT-IV	08 Hrs
Automotive Communication Systems:	
Automotive networking: Bus systems, Technical principles, network topology. Buses in motor	vehicles:
CAN, Flex Ray, LIN, Ethernet, IP, PSI5, MOST, D2B and DSI.	

Automotive Embedded Software Development

Fundamentals of Software and software development lifecycles. Overview of AUTOSAR methodology and principles of AUTOSAR Architecture.

Diagnostics and Safety in Automotive:

Timing Light, Engine Analyzer, Electronic Control System Diagnostics: Onboard diagnostics, Off-board diagnostics, Expert Systems, Occupant Protection Systems – Accelerometer based Air Bag systems, Case study on ON-BOARD, OFF-BOARD diagnostics.

Advances in Automotive Electronic Systems: Alternative Fuel Engines, Electric and Hybrid vehicles, Fuel cell powered cars, Collision Avoidance Radar warning Systems, Navigation: Navigation Sensors, Radio Navigation, dead reckoning navigation, Video based driver assistance systems, Night vision Systems.

Course	Outcomes: After completing the course, the students will be able to						
CO1:	Acquire the knowledge of automotive domain fundamentals, need of Electronics and						
	communication interfaces in Automotive systems.						
CO2:	Apply various types of sensors, actuators and Motion Control techniques in Automotive						
	systems						
CO3:	Analyze digital engine control systems and Embedded Software's and ECU's used in						
	automotive systems.						
CO4:	Illustrate the concepts of Diagnostics, safety and advances in Automotive electronic Systems.						

Referen	ice Books							
1.	Understanding Automotive Electronics, Williams. B. Ribbens, 6th Edition, 2003, Elsevier							
	science, Newness publication, ISBN-9780080481494.							
2.	Automotive Electronics Handbook, Robert Bosch, 2004, John Wiley and Sons, ISBN-							
	0471288357							
3.	Automobile Electrical and Electronic Systems, Tom Denton, 3rd Edition, Elsevier Butterworth-							
	Heinemann. ISBN 0-7506-62190.							
4.	Advanced Automotive Fault Diagnosis, Tom Denton, 2 nd Edition, Elsevier Butterworth-							
	Heinemann. ISBN 0-75-066991-8.							

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	1	-	-	-	1	2	1	-	1
CO2	3	2	1	1	1	-	1	1	1	1	-	1
CO3	3	2	2	2	1	-	1	1	2	1	-	1
CO4	3	2	2	2	-	1	2	1	1	1	-	1

	Semester: V							
	e- MOBILITY							
	(GROUP B: GLOBAL ELECTIVE)							
	(Theory)							
Co	ourse Code	:	18G5B07		CIE	:	100 Marks	
Cr	edits: L:T:P	:	3:0:0		SEE	:	100 Marks	
Total Hours			39L		SEE Duration	:	3.00 Hours	
Co	ourse Learning	g O	bjectives: The stud	ents will be able to				
1	Understand th	ne b	asics of electric and	hybrid electric vehi	cles, their architectur	e ar	nd modelling.	
2	Explain differ	ent	energy storage tech	nologies used for el	ectric vehicles and th	leir	management	
	system.							
3	Describe vari	ous	electric drives and	its integration with	Power electronic cire	cuit	s suitable for	
	electric vehicles.							
4	4 Design EV Simulator through performance evaluation and system optimization techniques							
	and need for t	the	charging infrastruct	ure.				

Unit-I	06 Hrs
Electromobility and the Environment: A Brief History of the Electric Powertrain,	Energy
Sources for Propulsion and Emissions, The Advent of Regulations, Drive Cycles, BE	EV Fuel
Consumption, Range, and mpge, Carbon Emissions for Conventional and Electric Power	ertrains,
An Overview of Conventional, Battery, Hybrid, and Fuel Cell Electric Systems, A Com	parison
of Automotive and Other Transportation Technologies.	_
Vehicle Dynamics: Vehicle Load Forces, Vehicle Acceleration, Simple Drive Cycle for	Vehicle
Comparisons	
Unit – II	09 Hrs
Batteries: Batteries Types and Battery Pack, Lifetime and Sizing Considerations,	Battery
Charging, Protection, and Management Systems, Battery Models, Determining the Co	ell/Pack
Voltage for a Given Output\Input Power, Cell Energy and Discharge Rate.	
Battery Charging: Basic Requirements for Charging System, Charger Architecture	es, Grid
Voltages, Frequencies, and Wiring, Charging Standards and Technologies, SAE J1772, W	Vireless
Charging, The Boost Converter for Power Factor Correction.	
Unit -III	10 Hrs
Battery Management System: BMS Definition, Li-Ion Cells, Li-Ion BMSs, Li-Ion B	atteries,
BMS Options: Functionality, CCCV Chargers, Regulators, Balancers, Protectors, Funct	ionality
Comparison, Technology, Topology.	
BMS Functions: Measurement: Voltage, Temperature, Current, Management: Pro	otection,
Thermal Management, Balancing, Distributed Charging, Evaluation, External Commun	ication:
Dedicated analog and digital wires.	
Unit –IV	07 Hrs
Electric Drivetrain: Overview of Electric Machines, classification of electric machines	used in
automobile drivetrains, modelling of electric machines, Power Electronics, controlling	electric
machines, electric machine and power electronics integration Constraints.	
Unit –V	07 Hrs
EV Simulation: system level simulation, EV simulator, simulator modules, perfo	ormance
evaluation, system optimization.	
EV Infrastructure: Domestic charging infrastructure, Public charging infrast	ructure,
Standardization and regulations, Impacts on power system.	

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Explain the basics of electric and hybrid electric vehicles, their architecture, technologies								
	and modelling.								
CO2:	Discuss and implement different energy storage technologies used for electric vehicles								
	and their management system.								
CO3:	Analyze various electric drives and its integration techniques with Power electronic								
	circuits suitable for electric vehicles.								
CO4 :	Design EV Simulator for performance evaluation and system optimization and								
	understand the requirement for suitable EV infrastructure.								

Reference Books						
	Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric					
1	and Fuel Cell Vehicles, John G. Hayes, G. Abas Goodarzi, 1st Edition, 2018, Wiley, ISBN					
	9781119063667.					
2	Battery Management system for large Lithium Battery Packs, Davide Andrea, 1st Edition,					
2	2010, ARTECH HOUSE, ISBN-13 978-1-60807-104-3					
3	Hybrid Vehicles from Components to System, F. BADIN, Ed, 1st Edition, 2013, Editions					
3	Technip, Paris, ISBN 978-2-7108-0994-4.					
1	Modern Electric Vehicle Technology C.C. Chan and K.T. Chau, 1st Edition, 2001, Oxford					
-	university press, ISBN 0 19 850416 0.					

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-P	O Map	ping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	2	2	2	3	-	2	-	-	1
CO2	3	3	3	3	3	3	3	-	2	2	1	-
CO3	2	3	3	3	3	2	3	-	2	1	1	-
CO4	3	3	3	3	3	2	3	2	2	-	1	-

	Semester: V								
	SMART SENSORS & INSTRUMENTATION								
	(GROUP B: GLOBAL ELECTIVE)								
		_		(Theory)					
Cour	rse Code	:	18G5B08	CIE	:	100 Marks			
Credits: L:T:P		:	3:0:0	SEE	:	100 Marks			
Tota	Total Hours		39L	SEE Dura	ation :	3.00 Hours			
Cour	rse Learning	g ()	bjectives: The	students will be able to					
1	Understand	l th	e fundamentals	of transducers and sensors.					
2	2 Demonstrate the working principles of different transducers and sensors.								
3	3 Apply the principles of different type of sensors and transducers on state of art problems.								
4	Create a system using appropriate transducers and sensors for a particular application.								

Unit-I	07 Hrs
Introduction: Definition of a transducer, Block Diagram, Classification of Transducers, A	dvantages
of Electrical transducers.	
Resistive Transducers:	
Potentiometers: Characteristics, Loading effect, and problems.	
Strain gauge: Theory, Types, applications and problems.	
Thermistor, RTD: Theory, applications and problems.	
Unit – II	09 Hrs
Thermocouple: Measurement of thermocouple output, compensating circuits, lead comp	pensation,
advantages and disadvantages of thermocouple.	
LVDT: Principle, Characteristics, Practical applications and problems.	
Capacitive Transducers: Capacitive transducers using change in area of plates, distance	between
plates and change of dielectric constants, Applications of Capacitive Transducers and problem	ns
Unit –III	09 Hrs
Piezo-electric Transducers: Principles of operation, expression for output voltage, Piez	o-electric
materials, equivalent circuit, loading effect, Frequency response and Problems.	
Special Transducers: Hall effect transducers, Thin film sensors, and smart transducers:	Principles
and applications, Introduction to MEMS Sensors and Nano Sensors, Schematic of the	design of
sensor, applications.	
Unit –IV	07 Hrs
Chemical sensors: pH value sensor, dissolved oxygen sensor, oxidation-reduction potenti	al sensor,
Zirconium probe Sensors, Chem FET sensors.	
Photo sensors: Photo resistor, Photodiode, Phototransistor, Photo-FET, Charge coupled devi	.ce.
Tactile sensors: Construction and operation, types.	
Unit –V	07 Hrs
Humidity Sensors and Moisture Sensors: Concept of humidity, Electrical Conductivity	Sensors,
Thermal Conductivity Sensors, Optical Hygrometer, Oscillating Hygrometer.	
IR Sensors: Golay cells, Thermopile, pyroelectric sensor, bolometers, Active Far-Infrared	l Sensors,
Gas flame detectors	

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understand the basic principles of different transducers and sensors.
CO2:	Apply the knowledge of transducers and sensors to comprehend digital instrumentation
	systems.
CO3:	Analyze and evaluate the performance of different transducers and sensors for various
	applications.
CO4:	Create a system using appropriate transducers and sensors for a particular application.

Refere	ence Books
1	Jacob Fraden, Handbook of Modern Sensors: Physics, Designs, and Applications, 4th Edition
	2008, PHI Publication, ISBN: 978-1-4419-6465-6.
2	Clarence W.de Silva, Sensors and Actuators: Control systems Instrumentation, 2013 Edition,
2	CRC Press, ISBN: 978-1-4200-4483-6.
3	A.K. Sawhney, Electrical and Electronic Measurements and Instrumentation, 18th Edition,
3	2008, Dhanpat Rai and Sons, ISBN: 81-7700-016-0.
1	Transducers and Instrumentation, D.V.S. Murthy, 2 nd Edition 2008, PHI Publication, ISBN:
-	978-81-203-3569-1.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks are executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	-	-	-	-	-	-	-	-	-
CO2	2	3	-	-	2	2	-	-	-	-	-	-
CO3	1	2	2	-	1	1	-	-	-	-	-	2
CO4	-	-	-	-	1	1	-	-	-	3	-	1

				Semester: V				
			OI	PERATIONS RESEARCH				
				UP B: GLOBAL ELECTI				
			× ×	(Theory)	,			
Cour	rse Code	:	18G5B09	× × /	CIE	: 100 Marks		
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks	
Tota	l Hours	:	39 L		SEE Duration	:	3.00 Hours	
Cour	rse Learning (Dbje	ectives: The stu	idents will be able to				
1	Develop the	ski	lls in the appl	cation of operations resear	rch models for	con	nplex decision-	
	making situat	ions	s	-			-	
2 Implement the methodology and tools of operations research to assist decision-making.								
	1			1				
				UNIT-I			07 Hrs	
Intro	oduction: OR	metl	hodology, Defii	ition of OR, Application of	OR to Engineeri	ng	and Managerial	
probl	lems, Features	of C	OR models, Lin	itations of OR.				
Line	ar Programm	ing	Definition, Ma	thematical Formulation, Sta	ndard Form, Sol	utio	n Space, Types	
	-	-		e, Solution through Graphic				
			•	ad assignments only)	e	,		
10 40		(ue	monstrations a	UNIT-II			10Hrs	
Sim	olex Method &	k Se	ensitivity Anal	ysis: Simplex methods, Arti	ficial Stating So	luti		
				nalysis - Graphical sensitiv	-			
	-		-	tput from software packages	• •	-	fulle sensitivity	
unury	sis. interpretat	1011	of grupineur ou	UNIT-III	buen us mis Like	01	10 Hrs	
Tran	sportation P	rob	lem:Formulatio	on of transportation mode	el. Basic feasib	le		
	-			hods, Unbalanced transpo			-	
	portation prob			n Transportation Problem	-			
probl		1011	is, variants	in multiportution recordin	s, rippiloutions	01	mansportation	
•		em	Formulation	of the Assignment problen	n Solution meth	hod	of assignment	
-	-			method of assignment problem			-	
-	-		raveling Salesm			icu	iou, variants in	
•	•		e					
Usag	ge of software t	0015	s to demonstrate	Transportation and Assignment	nent problems		06 11	
Droi	oot Managam	mt	Liging Notwork	UNIT-IV Analysis:Network construct	ation Datarmina	tion	06 Hrs	
-	-		-				-	
		, CI	PM - Elements	of crashing, Usage of softw	are tools to dem	ons	strate N/W flow	
probl	lems							
C	- The	1		UNIT-V			06 Hrs	
	=		-	son Zero Sum game, Pure st	-		-	
-			ne rules of do	minance, solution method	of games with	iou	t saddle point,	
Arith	metic method.							
Corre	man Autoomore	A 6	ton 00m-1-4:	the course the stordards	ll he able to			
				the course, the students wi			augh	
CO1			ie basic conce	pts of different models	or operations r	ese	arch and then	
	application			Models and Assignment M				

CO2:	Build and	solve Transp	portation M	odels and Assignment M	Iodels.
000	D :	. 1	1 1 1 1 1		1

CO3:	Design new simple models, like: CPM, MSPT to improve decision -making and develop
	critical thinking and objective analysis of decision problems.
CO4:	

ſ

1	Operation Research an Introduction, Taha H A, 8th Edition, 2004, PHI, ISBN:0130488089.
2	Operations Research: Principles and Practice, Ravindran, Phillips, Solberg, 2 nd Edition, 2007,
	John Wiley & Sons, ISBN: 8126512563
3	Introduction to Operation Research, Hiller and Liberman, 8th Edition, 2004, Tata McGraw Hill,
	ISBN: 0073017795.
4	Operations Research Theory and Application, J K Sharma, 2 nd Edition, 2003, Pearson Education
	Pvt Ltd, ISBN: 0333-92394-4.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	-	3	2	2	-	-	-	1	-	-	1	
CO2	-	2	-	-	-	-	-	-	-	1	-	1	
CO3	2	-	-	2	2	-	-	1	-	-	-	-	
CO4													

			Semester: V			
		MANAGEN	IENT INFORMATION SYS	TEMS		
		(GROU	P B: GLOBAL ELECTIV	E)		
		T	(Theory)			
Course Code	:	18G5B10		CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	39L		SEE Duration	:	3.00 Hours
Course Learning	Obje	ectives: The stude	nts will be able to			
1 To understa	nd the	e basic principles	and working of information tec	hnology.		
2 Describe the	role	of information tec	hnology and information syste	ms in business.		
3 To contrast	and c	compare how inter	net and other information techn	ologies support bu	sine	ess processes.
4 To give an	overa	all perspective of	he importance of application of	of internet technol	ogie	es in business
administrati						
			Unit-I			08 Hrs
Information system	ns in '	Global Business	Foday:			
The role of inform	nation	n systems in busi	ness today, Perspectives on	information system	ms,	Contemporar
approaches to inform	natio	on systems, Hands	on MIS projects. Global E-Bu	siness and Collal	bor	ation: Busines
process and information	ation	systems, Types of	business information systems	, Systems for colla	aboı	ation and tear
work, The informati	on sy	stems function in	business. A Case study on E bu	isiness.		
			Unit – II			08 Hrs
Information System	ns, O	Organizations and	Strategy:			
Organizations and	inforr	mation systems, H	low information systems impa	act organization a	nd	business firms
Using information s	syster	ms to gain compe	itive advantage, management	issues, Ethical an	d S	ocial issues in
Information System	ns: U	Understanding eth	cal and Social issues related t	o Information Sys	stem	ns, Ethics in an
information society,	The	moral dimensions	of information society. A Case	study on business	pla	nning.
			Unit –III			08 Hrs
IT Infrastructure a	ınd E					08 Hrs
		Emerging Techno		tform trends, Cont	emj	
IT infrastructure, In	frastr	Emerging Techno ructure component	logies:		-	porary softwar
IT infrastructure, In platform trends, M	frastr Ianag	Emerging Techno ructure component gement issues. Se	l ogies: s, Contemporary hardware pla	s: System vulner	abil	porary softwar ity and abuse
IT infrastructure, In platform trends, N Business value of se	frastr Ianag ecurit	Emerging Techno ructure component gement issues. Se ty and control, Est	logies: s, Contemporary hardware pla curing Information System	s: System vulner	abil	porary softwar ity and abuse
IT infrastructure, In platform trends, N Business value of se	frastr Ianag ecurit	Emerging Techno ructure component gement issues. Se ty and control, Est	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi	s: System vulner	abil	porary softwar ity and abuse
IT infrastructure, In platform trends, N Business value of se	frastr Ianag ecurit nation	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV	s: System vulner	abil	porary softwar ity and abuse ology and tool
IT infrastructure, In platform trends, M Business value of se for protecting inforr Achieving Operation	frastr Ianag ecurit nation	Emerging Techno ructure component gement issues. See ty and control, Est n resources. A cas Excellence and C	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV	s: System vulnera ty and control, Tea	abil chn	porary softwar ity and abuse ology and tool 08 Hrs
IT infrastructure, In platform trends, M Business value of se for protecting inforr Achieving Operatie Enterprise systems,	frastr Ianag ecurit nation onal I Supp	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas Excellence and C ply chain manage	logies: s, Contemporary hardware pla curing Information Systems ablishing framework for securi e study on cybercrime. Unit –IV ustomer Intimacy:	s: System vulnera ty and control, Tea ner relationship ma	abil chn ana	porary softwar ity and abuse ology and tool 08 Hrs gement (CRM
IT infrastructure, In platform trends, M Business value of se for protecting inforr Achieving Operation Enterprise systems, systems, Enterprise	frastr Ianag ecurit nation onal I Supp appli	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas Excellence and C ply chain manage ication. E-comme	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV ustomer Intimacy: ment (SCM) systems, Custom	s: System vulnera ty and control, Tea ner relationship ma Goods: E-commerc	abil chn ana ce a	porary softwar ity and abuse ology and tool 08 Hrs gement (CRM nd the internet
IT infrastructure, In platform trends, M Business value of se for protecting inforr Achieving Operation Enterprise systems, systems, Enterprise	frastr Ianag ecurit nation onal I Supp appli	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas Excellence and C ply chain manage ication. E-comme ad technology, The	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV ustomer Intimacy: ment (SCM) systems, Custon rce: Digital Markets Digital (s: System vulnera ty and control, Tea ner relationship ma Goods: E-commerc	abil chn ana ce a	porary softwar ity and abuse ology and tool 08 Hrs gement (CRM nd the interne
IT infrastructure, In platform trends, M Business value of so for protecting inform Achieving Operation Enterprise systems, systems, Enterprise E-commerce-busine	frastr Ianag ecurit nation onal I Supp appli	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas Excellence and C ply chain manage ication. E-comme ad technology, The	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV ustomer Intimacy: ment (SCM) systems, Custon rce: Digital Markets Digital (s: System vulnera ty and control, Tea ner relationship ma Goods: E-commerc	abil chn ana ce a	porary softwar ity and abuse ology and tool 08 Hrs gement (CRM nd the interne
IT infrastructure, In platform trends, M Business value of so for protecting inform Achieving Operation Enterprise systems, systems, Enterprise E-commerce-busine	frastr Ianag ecurit nation onal I Supp appli ss an A Ca	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas Excellence and C ply chain manage ication. E-comme ad technology, The	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV ustomer Intimacy: ment (SCM) systems, Custom rce: Digital Markets Digital G mobile digital platform and r	s: System vulnera ty and control, Tea ner relationship ma Goods: E-commerc	abil chn ana ce a	porary softwar ity and abuse ology and tool 08 Hrs gement (CRM nd the interner Building and E
IT infrastructure, In platform trends, M Business value of so for protecting inform Achieving Operation Enterprise systems, systems, Enterprise E-commerce-busine commerce web site. Managing Knowle	frastr lanag ecurit nation onal l Supp appli ass an A Ca dge:	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas Excellence and C ply chain manage ication. E-comme ad technology, The ase study on ERP.	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV ustomer Intimacy: ment (SCM) systems, Custom rce: Digital Markets Digital (mobile digital platform and r	s: System vulnera ty and control, Tea ner relationship ma Goods: E-commerc nobile E-commerc	abil chn ana ce a e, F	porary softwar ity and abuse ology and tool 08 Hrs gement (CRM nd the interne Building and E 07 Hrs
IT infrastructure, In platform trends, M Business value of so for protecting inform Achieving Operation Enterprise systems, systems, Enterprise E-commerce-busine commerce web site. Managing Knowle The knowledge mage	frastr Ianag ecurit nation onal I Supp appli ess an A Ca dge: anage	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas Excellence and C ply chain manage ication. E-comme ad technology, The ase study on ERP.	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV ustomer Intimacy: ment (SCM) systems, Custom rce: Digital Markets Digital (e mobile digital platform and r Unit –V	s: System vulnera ty and control, Tea ner relationship ma Goods: E-commerc nobile E-commerc	abil chn ana ce a e, F	porary softwar ity and abuse ology and tool 08 Hrs gement (CRM nd the interne Building and E 07 Hrs nowledge wor

Systems as planned organizational change, Overview of systems development.

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand and apply the fundamental concepts of information systems.							
CO2:	Develop the knowledge about management of information systems.							
CO3:	Interpret and recommend the use information technology to solve business problems.							
CO4 :	Apply a framework and process for aligning organization's IT objectives with business strategy.							

Reference Books Kenneth C. La

1	Kenneth C. Laudon and Jane P. Laudon: Management Information System, Managing the Digital Firm, Pearson Education, 14 th Global edition, 2016, ISBN:9781292094007.								
2	James A. O' Brien, George M. Marakas: Management Information Systems, Global McGraw Hill, 10 th Edition, 2011, ISBN: 978-0072823110.								
3	Steven Alter: Information Systems, The Foundation of E-Business, Pearson Education, 4 th Edition, 2002, ISBN:978-0130617736.								
4	W.S. Jawadekar: Management Information Systems, Tata McGraw Hill, 2006, ISBN: 9780070616349.								

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	3	-	-	-	-	-	-	-	1	-	1
CO3	3	3	1	-	2	-	-	-	-	1	-	1
CO4	3	3	2	1	2	-	-	-	-	1	-	1

			V	Semester			
				'E MECHATRONICS			
			`	LOBAL ELECTIVE)		
0		1		Theory)	CIE		100 M
	se Code	:	18G5B11		CIE	:	100 Marks
Cred	its: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours : 39 L SEE 1					SEE Duration	:	3.00 Hours
Cour	rse Learning O	bje	ctives: The students will	be able to			
1	Identify vario	us N	Iechatronics systems of a	a modern automobile			
2	Describe how	the	proper quantity/grade of	fuel affects engine perfe	ormance.		
3	Understand B	hara	t-VI / EURO-VI emissio	on norms			
4	Apply the know	wle	dge of engineering and s	cience to analyse the per	rformance of Me	cha	tronics
	system						
5	Analyse vehic	ele s	ub-systems comprising o	f sensors and actuators			

Unit-I	06 Hrs
Automobile Engines	
Classifications of Internal Combustion Engines. Engine nomenclature and mechanics. Mixture	formation
and direct fuel injection - homogeneous and stratified injection. Thermodynamic principles of	Otto and
Diesel cycle. Operation, characteristics and energy yield in a 4-stroke engine. Fuels: Gasoline,	Diesel,
LPG and Natural Gas for automotive applications. Fuel properties- Octane number and Cetane	number.
Unit-II	10 Hrs
Engine Auxiliary Systems:	
Air Intake and Exhaust System (Bharat Stage -VI norms) - Intake manifold, Turbocharger, In	tercooler,
Exhaust manifold, 3-way and oxidation catalytic convertor, Exhaust Gas Recirculation system.	
Common Rail Fuel Injection system- Low pressure and high-pressure fuel systems, Re	turn line,
Quantity control valve, Injectors – solenoid and piezo injectors.	
Unit-III	10 Hrs
Vehicular Auxiliary Systems:	
Vehicle frame and body classification- Hatchback, Sedan, SUV, Coupe, Roadster. Adaptive	Brakes -
Disc and drum brakes, Antilock Braking Systems, ESP, TCS. Wheels and Tyres- Toe-In,	Toe-Out,
Caster and Camber angle. Classification of tyres, Radial, Tubeless.	
Supplemental Restraint System: Active and passive safety, Vehicle structure, Gas generator	and air
bags, Belt Tensioner, Acceleration sensor, Rollover sensor, Seat occupancy recognition.	
Unit-IV	07 Hrs
Principles of motor vehicle electronics - Basic structure of control units, Functions of control	rol units and
On-Board Diagnostic kit.	
Telematics in vehicles – Radio Transmission, Interference and signal processing. Lubrication	and cooling
system- Components, working principle, Properties, Viscosity.	
Unit-V	06 Hrs
Sensors: Oxygen sensors, Crankshaft Angular Position Sensor, Manifold Absolute Pressure Se	ensor,
Coolant Temperature Sensor, Hot Film Mass Air flow Sensor, Throttle Position Sensor.	

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	CO1: Describe the functions of Mechatronic systems in a modern automobile							
CO2:	Evaluate the performance of an engine by its parameters							
CO3:	Analyse the automotive exhaust pollutants as per emission norms							
CO4:	Demonstrate communication of control modules using a On-Board Diagnostic kit							

Refere	nce Books								
1.	Automotive Technology – A systems approach, Jack Erjavec, 5th Edition, Delamr Cengage								
	Learning, ISBN-13: 978-1428311497								
2.	Automotive Engineering Fundamentals, Richard Stone and Jeffrey K. Ball, 2004,								
	SAE International, ISBN: 0768009871								
3.	Bosch Automotive Handbook, Robert Bosch, 9th Edition, 2004, ISBN: 9780768081527								
4.	Understanding Automotive Electronics, William B Ribbens, 5th Edition, Butterworth-								
	Heinemann, ISBN 0-7506-7008-8								

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30 (Q) + 50 (T) + 20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	2	1	2	1	-	-	1	2	3	-	-
CO2	2	1	2	1	3	-	-	2	2	3	-	-
CO3	1	2	2	1	2	-	-	2	2	3	-	-
CO4	1	2	2	1	2	-	-	2	2	1	-	1

				Semester: V			
			TELECOM	MUNICATION SYS	STEMS		
			(GROUP I	B: GLOBAL ELEC	(TIVE)		
				(Theory)			
Cou	rse Code	:	18G5B12		CIE	:	100 Marks
Credits: L:T:P			3:0:0		SEE	:	100 Marks
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours
Cou	rse Learning C	bje	ectives: The student	s will be able to			·
1	Represent sch	em	atic of communicati	on system and identif	Ty its components.		
2	Classify satell	ite	orbits and sub-syste	ms for communication	on.		
3	Analyze differ	rent	telecommunication	i services, systems an	d principles.		
4	Explain the ro	le d	of optical communic	ation system and its	components.		
5	Describe the f	eat	ures of wireless tech	nologies and standar	ds		

UNIT-I	06 Hrs					
Introduction to Electronic Communication: The Significance of Human Commu	nication,					
Communication Systems, Types of Electronic Communication, Modulation and Multiplexing,						
Electromagnetic Spectrum, Bandwidth, A Survey of Communication Applications.						
The Fundamentals of Electronics: Gain, Attenuation, and Decibels.						
Radio Receivers: Super heterodyne receiver.						
UNIT-II	10 Hrs					
Modulation Schemes: Analog Modulation: AM, FM and PM- brief review.						
Digital Modulation: PCM, Line Codes, ASK, FSK, PSK.						
Wideband Modulation: Spread spectrum, FHSS, DSSS.						
Multiple Access: FDMA, TDMA, CDMA.						
UNIT-III	09 Hrs					
Satellite Communication: Satellite Orbits, Satellite Communication Systems, Satellite Sub	systems,					
Ground Stations, Satellite Applications, Global Positioning System.						
UNIT-IV	07 Hrs					
Optical Communication: Optical Principles, Optical Communication Systems, Fiber-Optical	c Cables,					
Optical Transmitters and Receivers, Wavelength-Division Multiplexing, Passive Optical Network	vorks.					
UNIT-V	07 Hrs					
0111-1						
Cell Phone Technologies: Cellular concepts, Frequency allocation, Frequency reuse,	Internet					
	Internet					
Cell Phone Technologies: Cellular concepts, Frequency allocation, Frequency reuse,						

Cours	se Outcomes: After completing the course, the students will be able to
CO1	Describe the basics of communication systems.
CO2	Analyze the importance of modulation and multiple access schemes for communication
	systems.
CO3	Analyze the operational concept of cell phone and other wireless technologies.
CO4	Justify the use of different components and sub-system in advanced communication systems.

Ref	erence Books
1	Principles of Electronic Communication Systems, Louis E. Frenzel, 4th Edition, 2016, Tata
	McGraw Hill, ISBN: 978-0-07-337385-0.
2	Electronic Communication Systems, George Kennedy, 3rd Edition, 2008, Tata McGraw Hill,
	ISBN: 0-02-800592-9.
3	Introduction to Telecommunications, Anu A. Gokhale, 2 nd Edition, 2008, Cengage Learning
	ISBN: 981-240-081-8.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	-	1	1	-	-	-	1	-	-	-
CO2	2	1	-	1	1	-	-	-	1	-	-	-
CO3	2	1	-	1	1	-	-	-	2	-	-	-
CO4	1	1	-	1	1	1	-	-	1	-	-	-

· · · · · · · · · · · · · · · · · · ·				Semester: V				
	(QUA	NTUM MECHA	NICS OF HETERO	/NANO STRUCT	JRES	5	
			(GROU	P B: GLOBAL EL	ECTIVE)			
~	~ .	, , ,		(Theory)				. <u>.</u>
	se Code	:	18G5B13		CIE	:	100 M	
	ts: L:T:P Hours	:	3:0:0 39L		SEE SEE Duration	:	100 M 3.00 H	
) Dhie	Sectives: The studen	ts will be able to	SEE Duration	:	5.00 П	lours
	8	÷		chanics in physical pr	coossos os wo rodu	o dir	ansion	
				of low dimensional s				
	-		-					lig.
				l in transport propertie	es of low dimension	ai ma	aterials.	
			heterostructures in		1 (1 ((1	
	-	now	ledge to design and	d develop smart devic	ces and sensors that	runs	on the q	uantum
1	technology.							
				Unit-I				08 Hrs
Dovio	w of Quantu	m M	Iechanics and Soli					U8 Hrs
	-			tainty Principle, grou	n valaaity. Tima in	1	donton	d damam dami
	•	•	•	• • • •	•	•		•
	•			, Perturbation theory				
	•		•	states and its depend		•		
-		-		ons and holes in b	ands, Effective ma	ass, o	listinct	regimes of
condu	ction and the	imp	ortant parameters c					
			ors and lower dim	Unit – II				08 Hrs
differe (From	ent geometrie 0-Dim to 3 I	es-Sq		l and intra-band pro Friangular and their	cess. Quantum we	lls o	t nanos	
			-	and its effect on band		n Dot		s and wells
). Strained Layers a ects in them.			n Dot		s and wells in Quantum
	tum Nano sti	c eff	-	Unit –III		n Dot		s and wells
Quant Archit Homo Lattice genesi	ecture and w -junction, He e: Kronig Pe as of Quantum As), hot elect	ruct ruct vork etero nney n Tr	ects in them. ures and Quantum ing of n-channel -junction, Hetero-s / Model of a supe ansport: Parallel tr	Unit –III	semiconductor cont on and strain doped ling Approximation nechanism, experim	a Dot nergy act(in Qua of a nenta	nterface) ntum W a super l data(fo	s and wells in Quantum 08 Hrs in details, Vells. Super lattice. The ocus will be
Quant Archit Homo Lattice genesi on Ga.	ecture and w -junction, He e: Kronig Pe as of Quantum As), hot elect	ruct ruct vork etero nney n Tr	ects in them. ures and Quantum ing of n-channel -junction, Hetero-s / Model of a supe ansport: Parallel tr	Unit –III n Transport: MOSFET, metal – s structures. Modulatio er-lattice, Tight Bind cansport : scattering r	semiconductor cont on and strain doped ling Approximation nechanism, experim	a Dot nergy act(in Qua of a nenta	nterface) ntum W a super l data(fo	s and wells in Quantum 08 Hrs) in details, Vells. Super lattice. The ocus will be per lattices:
Quant Archit Homo Lattice genesi on Ga. Stark e	ecture and w -junction, He e: Kronig Pe as of Quantun As), hot elect effect.	c efference ructor vorkie etero nney n Tr trons	ects in them. ures and Quantum ing of n-channel -junction, Hetero-s / Model of a supe ansport: Parallel tr 2. Perpendicular tra	Unit –III n Transport: MOSFET, metal – s structures. Modulatio er-lattice, Tight Bind cansport : scattering r ansport: Resonant tur	semiconductor cont on and strain doped ling Approximation nechanism, experin neling. Electric fiel	a Dot nergy act(in Qua of a nenta	nterface) ntum W a super l data(fo	s and wells in Quantum 08 Hrs 0 in details, Vells. Super lattice. The ocus will be
Quant Archit Homo Lattice genesi on Ga. Stark e Trans Quanti quanti other s of Sta	ecture and w -junction, He e: Kronig Per is of Quantum As), hot elect effect. Sport in Nano ized conducta zed conducta systems. Viol utes of a 2D	c eff ructu vorki etero nney n Tr rrons 	ects in them. ures and Quantum ing of n-channel -junction, Hetero-s Model of a supe ansport: Parallel tr b. Perpendicular tra uctures in electric : Landauer Buttike of devices like qu n of Kirchhoff's ci tem in a magnetic	Unit –III n Transport: MOSFET, metal – s structures. Modulatio er-lattice, Tight Bind cansport : scattering r ansport: Resonant tur Unit –IV c and magnetic fields er transmission form antum point contacts ircuit laws for quantue c field. Landau qua	semiconductor cont on and strain doped ling Approximation mechanism, experin meling. Electric fiel s: alism, Application s. Aharonov-Bohm um conductors. Cou untization of electro	n Dot nergy act(in Qua of a nenta d effe of fo effec	nterface) ntum W super data(fo ect in su ormalism of in gol o Blocka	s and wells in Quantum 08 Hrs in details, Vells. Super lattice. The ocus will be per lattices: 08 Hrs n to explain d rings and ide. Density
Quant Archit Homo Lattice genesi on Ga. Stark e Trans Quanti quanti other s of Sta	ecture and w -junction, He e: Kronig Per is of Quantum As), hot elect effect. Sport in Nano ized conducta zed conducta systems. Viol utes of a 2D	c eff ructu vorki etero nney n Tr rrons 	ects in them. ures and Quantum ing of n-channel -junction, Hetero-s Model of a supe ansport: Parallel tr b. Perpendicular tra uctures in electric : Landauer Buttike of devices like qu n of Kirchhoff's ci tem in a magnetic	Unit –III n Transport: MOSFET, metal – s structures. Modulatio er-lattice, Tight Bind cansport : scattering r ansport: Resonant tur Unit –IV c and magnetic fields er transmission form nantum point contacts ircuit laws for quantu c field. Landau qua Effect-integer and qua	semiconductor cont on and strain doped ling Approximation mechanism, experin meling. Electric fiel s: alism, Application s. Aharonov-Bohm um conductors. Cou untization of electro	n Dot nergy act(in Qua of a nenta d effe of fo effec	nterface) ntum W super data(fo ect in su ormalism of in gol o Blocka	s and wells in Quantum 08 Hrs in details, Vells. Super lattice. The per lattices: 08 Hrs to explain d rings and ide. Density gnetic field.
Quant Archit Homo Lattice genesi on Ga. Stark e Trans Quanti quanti other s of Sta Shubn	tecture and w -junction, He e: Kronig Pe is of Quantum As), hot elect effect. Sport in Nano ized conducta zed conducta systems. Viol ttes of a 2D ikov-de Haas	c eff ructivork: etero nney n Tr crons str ance lation syst	ects in them. ures and Quantum ing of n-channel -junction, Hetero-s Model of a supe ansport: Parallel tr b. Perpendicular tra uctures in electric : Landauer Buttike of devices like qu n of Kirchhoff's ci tem in a magnetic	Unit –III n Transport: MOSFET, metal – s structures. Modulatio er-lattice, Tight Bind cansport : scattering r ansport: Resonant tur Unit –IV c and magnetic fields er transmission form nantum point contacts ircuit laws for quantu c field. Landau qua Effect-integer and qua Unit –V	semiconductor cont on and strain doped ling Approximation mechanism, experin meling. Electric fiel s: alism, Application s. Aharonov-Bohm um conductors. Cou untization of electro	n Dot nergy act(in Qua of a nenta d effe of fo effec	nterface) ntum W super data(fo ect in su ormalism of in gol o Blocka	s and wells in Quantum 08 Hrs in details, Vells. Super lattice. The ocus will be per lattices: 08 Hrs n to explain d rings and ide. Density

transport devices, Single-electron transistors, Optical properties of Quantum Wells and Superlattices, Quantum Dots and Nano crystals. Quantum confined Stark effect, Stark ladders, Bloch oscillations. Spintronics, transport of spin, spin valve, Giant Maneto-resistance, Spin Injection (Johnson-Silsbee experiments).

Course	e Outcomes: After completing the course, the students will be able to
CO1:	After successful completion of the course the student will be able to identify the different domains
	of application of the concepts of Quantum mechanics in Nano structures, super-lattices and
	Photonics.
CO2:	The student will gain knowledge to understand the crucial physics layers and principles that are at
	the core of nano and meso technology.
CO3:	The student will be able to apply the concepts to solve problems (quantitative and qualitative)
CO4 :	The student can apply the concepts in an interdisciplinary manner and can create new ideas and
	products related to appliances and sensors, that use the said concepts.

Refere	ence Books
1	The Physics of Low Dimensional Semiconductors an introduction, John H Davies, xxx Edition,
1	1998, Cambridge University Press, ISBN: 0-521-48491-X (pbk).
2	Introduction to Quantum Mechanics, David J Griffiths & Darrell F. Schroeter, 3 rd Edition, 2018,
2	Cambridge University Press, ISBN: 978-1107189638
3	Nanotechnology for Microelectronics and Optoelectronics, J.M. Martinez-Duert, R.J. Martin Palma
3	and F. Agullo-Rueda, 1st Edition, 2006, Elsevier Press, ISBN: 9780080456959
4	Electronic Transport in Mesoscopic Systems, Supriyo Datta, 1 st Edition, 1997, Cambridge
4	University Press ISBN: 9780521599436
5	Semiconductor Optoelectronic devices, Pallab Bhattacharya, 2 nd Edition, 1996, Prentice Hall of
5	India, ISBN: 978-0134956565
(Semiconductor Devices, Physics and Technology, S. M. Sze, 2 nd Edition, 2008, Wiley Student
6	Edition, ISBN: 978-8126516810

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO	-PO Ma	apping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	1	3	2	2	-	-	-	1
CO2	3	3	3	2	1	2	1	1	-	-	-	1
CO3	3	3	3	2	1	1	1	1	-	-	-	1
CO4	1	2	1	2	1	2	2	1	2	2	-	1

				Semester: V				
			THIN FILM	IS AND NANOTE	CHNOLOGY			
			(GROU	P B: GLOBAL EI	LECTIVE)			
<u> </u>	~ .	1	100	(Theory)		-	400.35	
	rse Code	:	18G5B14		CIE	:	100 Marks	
	dits: L:T:P	:	3:0:0 39L		SEE SEE Duration	:	100 Marks	
	al Hours rso Loorning (:)bic	SPL ctives: The students	will be able to	SEE Duration	:	3.00 Hours	
<u>1</u>			asics of thin films st		X 7			
2					y. us techniques and the	air ch	aracterization	
4	methods.	now	ledge of unit time p	reparation by vario	us teeninques and the		aracterization	
3		w1	day to salast the mo	et potential mathe	ls to produce thin fill	me fo	r wonted	
3	applications.	JWIE	uge to select the III	si potential metho	is to produce thin fill	115 10	n wanteu	
4	**	thin	film applications.					
-+	Asses typical	um	min applications.					
				Unit-I			08 H	Hre
Non	ostructures an			0			001	
Type dime Quai	es of nanostru ensional, One d ntum Dots, shel	ictui lime ll st	ructures, Multilayer	nsional nano-struct thin films and sup	tured materials. Carl per lattice clusters. S	bon N ynthe	Nano Tubes (CN esis through Sol	NT) 1 ge
Type dime Quan and	es of nanostru ensional, One d ntum Dots, shel	ictui lime ll st sis.	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic	nsional nano-struct thin films and sup cal-chemical prop	tured materials. Carl	bon N ynthe	Nano Tubes (CN esis through Sol and challenges	NT) l gel s of
Type dime Quar and nanc	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar	lictur lime ll st sis. note	res and properties ensional, Zero-dime ructures, Multilayer Mechanical-physic chnology.	nsional nano-struct thin films and sup	tured materials. Carl per lattice clusters. S	bon N ynthe	Nano Tubes (CN esis through Sol	NT) l ge s of
Type dime Quan and nanc Thir	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar	lime lime ll st sis. note	res and properties ensional, Zero-dime ructures, Multilayer Mechanical-physic chnology.	nsional nano-struct thin films and sup cal-chemical prop Unit – II	tured materials. Carl per lattice clusters. S erties. Current tren	bon N ynthe nds	Vano Tubes (CN esis through Sol and challenges 08 H	NT) 1 ge ⁻ s of Hrs
Type dime Quan and nanc Thir Vac	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nan Film Prepara uum technolog	lime lime ll st sis. note tion y- I	res and properties ensional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p	nsional nano-struct thin films and sup cal-chemical prop <u>Unit – II</u> umps and vacuum	tured materials. Carl per lattice clusters. S erties. Current tren measurements, Phys	bon N ynthe nds	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit	NT) 1 ge s of Hrs ition
Type dime Quar and nanc Thir Vac (PV)	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar Film Prepara uum technolog D) Techniques	ictur lime ll st sis. note tion y- I s: E	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum nal evaporation, E	tured materials. Carl per lattice clusters. S erties. Current tren measurements, Phys lectron beam evapo	bon 1 ynthe nds sical S	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode	NT). 1 gel s of Hrs ition
Type dime Quan and nanco Thir Vacu (PV)	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar Film Prepara uum technolog D) Techniques	ictur lime ll st sis. note tion y- I s: E	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF	nsional nano-struct thin films and sup cal-chemical prop <u>Unit – II</u> umps and vacuum nal evaporation, E Sputtering, Magne	tured materials. Carl per lattice clusters. S erties. Current tren measurements, Phys	bon 1 ynthe nds sical S	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering.	NT) 1 gel s of Hrs ition
Type dime Quan and nanc Thir Vac (PV) depc	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar n Film Prepara uum technolog D) Techniques osition. Sputter	ictur lime ll st sis. note tion y- I :: E ring	res and properties nsional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum nal evaporation, E Sputtering, Magne Unit –III	tured materials. Carl per lattice clusters. S erties. Current tren measurements, Phys lectron beam evapo	bon 1 ynthe nds sical S	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode	NT) 1 gel s of Hrs ition
Type dime Quan and nanco Thir Vacu (PV) depo	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar Film Prepara uum technolog D) Techniques osition. Sputter	ictum lime ll st sis. note tion y- I :: E ring	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF nd Growth of Thim	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum nal evaporation, E Sputtering, Magne Unit –III Films:	tured materials. Carl per lattice clusters. S erties. Current tree measurements, Phys lectron beam evapo etron sputtering, and	bon N ynthe nds sical S pration	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H	NT) 1 ge ² s of Hrs ition e arc Hrs
Type dime Quar and nanco Thir Vacu (PV) depo Surf Nucl	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar Film Prepara uum technolog D) Techniques osition. Sputter face Preparatio leation – theoret	ictum lime ll st sis. note tior y- I : E ring Dn a	res and properties nsional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF nd Growth of Thim and experimental a	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum nal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre	tured materials. Carl per lattice clusters. S erties. Current tree measurements, Phys lectron beam evapo etron sputtering, and p paration & Engineer	bon N ynthe nds sical S pration Ion b	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grov	NT) 1 ge s of Hrs ition e arc Hrs
Type dime Quar and nance Thir Vace (PV) depoe Surf Nucl Clea	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar n Film Prepara uum technolog D) Techniques osition. Sputter face Preparatio leation – theoret ning, Modificat	ictum lime ll st sis. note tion y- I :: E ring on a tical	res and properties nsional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF nd Growth of Thim and experimental a Masking & Patterr	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum nal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre uing, Base Coats an	tured materials. Carl per lattice clusters. S erties. Current tree measurements, Phys lectron beam evapo etron sputtering, and i paration & Engineer ad Top Coats. Thin F	bon N ynthe nds sical S oration Ion b ing fo	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grow growth: Sequenc	NT) 1 ge s of <u>Hrs</u> ition e arc <u>Hrs</u> wwth ce of
Type dime Quar and nanco Thir Vacu (PV) depo Surf Nucl Clea thin	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar n Film Prepara uum technolog D) Techniques osition. Sputter face Preparatio leation – theoret ning, Modificat film growth, D	ictur lime ll st sis. note tion y- I :: E ing Dn a tical ion	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF nd Growth of Thim and experimental a Masking & Patterr cts and impurities,	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum nal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre- ting, Base Coats an Effect of Deposition	tured materials. Carl per lattice clusters. S erties. Current tree measurements, Phys lectron beam evapo etron sputtering, and i paration & Engineer ad Top Coats. Thin F on Parameters on fil	bon N ynthe nds sical S oration Ion b ing fo	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grow growth: Sequenc	NT) 1 ge s o <u>Hrs</u> itior itior e arc <u>Hrs</u> wwth ce of
Type dime Quar and nanco Thir Vacu (PV) depo Surf Nucl Clea thin	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar n Film Prepara uum technolog D) Techniques osition. Sputter face Preparatio leation – theoret ning, Modificat film growth, D	ictur lime ll st sis. note tion y- I :: E ing Dn a tical ion	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm DC sputtering, RF nd Growth of Thim and experimental a Masking & Patterr cts and impurities, Thickness, Surface,	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum hal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre ning, Base Coats an Effect of Deposition Physical, Chemical	tured materials. Carl per lattice clusters. S erties. Current tree measurements, Phys lectron beam evapo etron sputtering, and i paration & Engineer ad Top Coats. Thin F on Parameters on fil	bon N ynthe nds sical S oration Ion b ing fo	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grov growth: Sequence rowth. Properties	NT) 1 ge s or Hrs itior itior e arc Hrs wwth ce of es of
Type dime Quan and nance Thir Vace (PV) depce Surf Nucl Clea thin Thin	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar Film Prepara uum technolog D) Techniques osition. Sputter face Preparatio leation – theoret ning, Modificat film growth, D Films: Adhesio	tion y - I y - I y - I i : E ing on a tical tical	res and properties nsional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Thern : DC sputtering, RF nd Growth of Thin and experimental a Masking & Patterr cts and impurities, Fhickness, Surface,	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum hal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre hing, Base Coats an Effect of Deposition Physical, Chemical Unit –IV	tured materials. Carl per lattice clusters. S erties. Current tree measurements, Phys lectron beam evapo etron sputtering, and i paration & Engineer ad Top Coats. Thin F on Parameters on fil	bon N ynthe nds sical S oration Ion b ing fo	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grow growth: Sequenc	NT) 1 ge s o Hrs ition e ard Hrs wth ce o es o
Type dime Quar and nancc Thir Vacu (PV) depcc Surf Nucl Clea thin Thin	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar n Film Prepara uum technolog D) Techniques osition. Sputter face Preparation leation – theoret ning, Modificat film growth, D n Films: Adhesio racterization o	tion tion y- H ing note ing n a tical ion Defe on, '	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF nd Growth of Thin and experimental a Masking & Patterr cts and impurities, Thickness, Surface,	nsional nano-struct thin films and sup- cal-chemical prop Unit – II umps and vacuum nal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre- ting, Base Coats an Effect of Deposition Physical, Chemical Unit –IV S:	tured materials. Carl per lattice clusters. S erties. Current tree measurements, Phys lectron beam evapo etron sputtering, and i paration & Engineer ad Top Coats. Thin F on Parameters on fil	bon N ynthe nds sical S pration Ion b ing fo iing fo	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grov growth: Sequenc rowth. Properties 08 H	NT) 1 ge s o Hrs ition e ard Hrs wwth ce o es o Hrs
Type dime Quan and nance Thir Vacu (PV) depce Surf Nucl Clea thin Thin Thin Film	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar n Film Prepara uum technolog D) Techniques osition. Sputter face Preparatio leation – theoret ning, Modificat film growth, D n Films: Adhesio racterization o n thickness me	tion y- I tical tical tical tical tical tical tical tical tical tical tical tical tical	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm DC sputtering, RF nd Growth of Thim and experimental a Masking & Patterr cts and impurities, Thickness, Surface, min Film Properties rement: Quartz cry	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum hal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre ning, Base Coats an Effect of Deposition Physical, Chemical Unit –IV s: stal thickness mo	tured materials. Carl per lattice clusters. S erties. Current tren measurements, Phys lectron beam evapo etron sputtering, and i paration & Engineer and Top Coats. Thin F on Parameters on fill and Mechanical.	bon N ynthe nds sical S oration Ion b ing fo film g lm gr	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grov growth: Sequenc rowth. Properties 08 H r methods. Surf	NT) 1 ge s or Hrs itior e ard Hrs wwth ce or es or Hrs
Type dime Quar and nance Thir Vact (PV) depo Surf Nucl Clea thin Thin Thin Thin Thin Thin Thin	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar Film Prepara uum technolog D) Techniques osition. Sputter face Preparation leation – theoret ning, Modificat film growth, D a Films: Adhesion racterization on thickness met phology and to	tion y- I is: E ing on a tical tical f T asun	res and properties nsional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF nd Growth of Thim and experimental a Masking & Patterr cts and impurities, Thickness, Surface, in Film Properties rement: Quartz cry raphy by SEM, A	nsional nano-struct thin films and sup- cal-chemical prop Unit – II umps and vacuum nal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre- ting, Base Coats an Effect of Deposition Physical, Chemical Unit –IV s: stal thickness mo FM. Film compos	tured materials. Carl per lattice clusters. S erties. Current tren measurements, Phys lectron beam evapo etron sputtering, and i paration & Engineer ad Top Coats. Thin F on Parameters on fil and Mechanical.	bon N ynthe nds sical S ration Ion b ing fo film g lm gr	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grov growth: Sequence owth. Properties 08 H r methods. Surf ctron Spectrosco	NT) l ge s o Hrs ition e ard Hrs with ce o es o Hrs copy

Thin Film Applications:

Band gap Engineering through thin films for electrical and optical applications. Thin Film for energy applications - coating on solar cells, fuel cells, batteries and super capacitors. Thin film thermo electric materials for thermal sensor applications. Thin film coating as protective coating for optical surfaces and as anti-reflection. Thin Film drug delivery and antibacterial surfaces - opportunities and challenges

07 Hrs

Ellipsometry, Raman Spectroscopy. Dielectric and Mechanical properties characterization.

Unit –V

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understand the basic mechanism of surface modification and thin film growth.
CO2:	Attain strong hold on thin film preparation by various techniques and their characterization
	methods.
CO3:	Apply the knowledge to select the most potential methods to produce thin films for wanted
	applications.
CO4:	Detailed knowledge of thin film selection for various applications.

Refere	ence Books
1	Thin Film Phenomenon, K.L.Chopra, 1 st edition, 1969, McGraw-Hill ISBN-13: 978-0070107991.
2	Materials Science of Thin Films, Milton Ohring, 2 nd Edition, Academic Press, 2002, ISBN 978-0-
2	12-524975-1
2	Thin-Film Deposition: Principles and Practice, Donald Smith, 1st edition, 1994, McGraw-Hill
3	College, ISBN-13: 978-0071139137.
4	Handbook of Thin-Film Technology, Hartmut Frey, Hamid R Khan Editors, 1st edition, 2015,
4	Springer, ISBN 978-3-642-05429-7.
	Nanostructures and Thin Films for Multifunctional Applications Technology, Properties and
5	Devices, Ion Tiginyanu, Pavel Topala, Veaceslav Ursaki, 1st edition, 2016, Springer, ISBN 978-3-
	319-30197-6.

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-]	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	-	-	-	-	-	-	-	-	2
CO2	3	2	2	2	-	-	-	-	-	-	-	2
CO3	2	3	3	2	-	1	1	1	-	-	-	2
CO4	2	3	3	2	1	2	2	2	2	2	-	2

				Semester	: V			
	4	ADV	VANCES IN C		ENCE AND TECHNOL	OGY	7	
	-			ROUP B: GLOBA				
			X -	(Theory				
Cou	rse Code	:	18G5B15		CIE	:	100 Ma	rks
Cre	dits: L:T:P	:	3:0:0		SEE	:	100 Ma	ırks
Tota	al Hours	:	39L		SEE Duration	:	3.00 Ho	ours
Cou	rse Learning (Dbje	ectives: The stu	dents will be able	0			
1	Understand th	ne fi	Indamental & so	ocio, economic asp	pects of corrosion.			
2	Identify pract	ices	for the prevent	ion and remediatio	n of corrosion.			
3	Analyzing me	etho	dologies for pre	edicting corrosion t	endencies.			
4					nt suitable corrosion contr	ol me	asures.	
-	L'unduce vuil	040	corrosion situat	ions and impremen		01 1110	ubui obi	
				Unit-I				08 Hrs
Intr	oduction to con	rros	ion and its effe					00110
					on, economic losses, In	direct	losses -	Shutdown
					nvironmental damage, I			
			-	•	ustries, corrosion map of	-		corrosion
-				-	-			:1 and as
		_			on, chemical processing	indu	stries, o	ii and gas
Indu	stries, pulp and	pap	per plants, corro	sion effect in elect	ronic industry.			I
				Unit – II				08 Hrs
		nic	-	•	pes: Galvanic corrosion, stress corrosion, seas			
corre emb Crev	osion, intergra rittlement, high vice corrosion-r	nic nula tem	series, Pilling- r corrosion, o perature corros nanism of diffe	erosion corrosion sion, bacterial corro rential aeration co	pes: Galvanic corrosion, , stress corrosion, seas osion, corrosion in polyme rrosion, mixed potential	son c er (pla	eracking, astic) mat	hydrogen terials.
corre emb Crev	osion, intergra rittlement, high vice corrosion-r	nic nula tem	series, Pilling-H r corrosion, on perature corros	erosion corrosion sion, bacterial corro rential aeration co s.	, stress corrosion, seas	son c er (pla	eracking, astic) mat	hydrogen erials. lerstanding
corre emb Crev com	osion, intergra rittlement, high vice corrosion-r mon corrosion o	nic nula tem necl of m	series, Pilling-H ar corrosion, on perature corros manism of diffe metals and alloys	erosion corrosion sion, bacterial corre- rential aeration co s. Unit –III	, stress corrosion, seas	son c er (pla	eracking, astic) mat	hydrogen terials.
corre emb Crev com	osion, intergra rittlement, high vice corrosion-r mon corrosion o rosion in diffe	nic nula tem necl of m	series, Pilling-H ar corrosion, of aperature corros nanism of diffe netals and alloys t engineering n	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials	, stress corrosion, seas osion, corrosion in polymo rrosion, mixed potential	son c er (pla	eracking, astic) mat	hydrogen erials. lerstanding
corre emb Crev com Con	osion, intergra rittlement, high vice corrosion-r mon corrosion o rosion in diffe crete structures,	nic nula tem necl of m ren	series, Pilling-H ar corrosion, o perature corros nanism of diffe netals and alloys t engineering n plex, super dupl	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels,	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites.	son c er (pla theor	eracking, astic) mat y for und	hydrogen terials. lerstanding 07 Hrs
corre emb Crev com Corre Corre	osion, intergra rittlement, high vice corrosion-r mon corrosion o rosion in diffe crete structures, rosion in Speci	nic nula tem necl of m ren , duj	series, Pilling-H ar corrosion, o aperature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nic	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium	son c er (pla theor	eracking, astic) mat y for unc	hydrogen terials. lerstanding 07 Hrs oys.
corre emb Crev com Corr Corr Corr The	osion, intergra rittlement, high vice corrosion-r mon corrosion o rosion in diffe crete structures, rosion in Speci rmodynamics	nic nula tem necl of m ren , duj fic l	series, Pilling-H ar corrosion, o perature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nic	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites.	son c er (pla theor	eracking, astic) mat y for unc	hydrogen terials. lerstanding 07 Hrs oys.
corre emb Crev com Corr Corr Corr The	osion, intergra rittlement, high vice corrosion-r mon corrosion o rosion in diffe crete structures, rosion in Speci	nic nula tem necl of m ren , duj fic l	series, Pilling-H ar corrosion, o perature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po	erosion corrosion sion, bacterial corro rential aeration co s. Unit –III naterials lex stainless steels, rosion of Iron, Nic ourbaix diagram	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium	son c er (pla theor	eracking, astic) mat y for unc	hydrogen terials. lerstanding 07 Hrs 0ys. on and its
corre emb Crev com Con Con Con The calce	osion, intergra rittlement, high vice corrosion-r mon corrosion o rosion in diffe crete structures, rosion in Speci rmodynamics ulation for Al, C	nic nula tem necl of m ren fic I of Cu, I	series, Pilling-H ar corrosion, of aperature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe.	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nic	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium	son c er (pla theor	eracking, astic) mat y for unc	hydrogen terials. lerstanding 07 Hrs oys.
corre emb Crev com Corr Corr Corr Corr Corr Corr Corr Co	osion, intergra rittlement, high vice corrosion-r mon corrosion o rosion in diffe crete structures, rosion in Speci rmodynamics ulation for Al, C ances in Corro	nic nula tem necl of m ren fic I of Cu, I	series, Pilling-H ar corrosion, of aperature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe.	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u>	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in	son c er (pla theor n and metal	stic) mat stic) mat y for und Super all corrosid	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs
corre emb Crev com Cor Cor Cor The calce Adv	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics ulation for Al, C ances in Corro ciples of corro	nic nula tem necl of m ren fic du ific Cu, l	series, Pilling-H ar corrosion, of aperature corros nanism of diffe- netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe. n Control n prevention, r	erosion corrosion sion, bacterial corro rential aeration co s. Unit –III naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram Unit –IV naterial selection,	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in the design considerations,	son c er (pla theory n and metal	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment
correction control con	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics alation for Al, C ances in Corro ciples of corro ease in veloc	nic nula tem necl of m ren fic fic Cu, l of Cu, l	series, Pilling-H ar corrosion, of aperature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe. h Control n prevention, r passivity, res	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u> material selection, moval oxidizer,	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in the design considerations, Inhibitors and passival	a and metal contro	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- - organic
corre emb Crev com Con Con Cor The calcu Adv Prin decr elect	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics ulation for Al, C ances in Corro ciples of corro ease in veloc croplating of Co	nic nula tem necl of m ren fic fic Cu, l of Cu, l	series, Pilling-H ar corrosion, of aperature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe. h Control n prevention, r passivity, res	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u> material selection, moval oxidizer,	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in the design considerations,	a and metal contro	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- - organic,
corrections of the correction	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics alation for Al, C ances in Corro ciples of corro ease in veloc	nic nula tem necl of m ren fic fic Cu, l of Cu, l	series, Pilling-H ar corrosion, of aperature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe. h Control n prevention, r passivity, res	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u> material selection, moval oxidizer, Chromium, physic	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in the design considerations, Inhibitors and passival	a and metal contro	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- - organic, ess plating
corrections of the correction of N	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics alation for Al, C ances in Corro ease in veloc croplating of Co ickel.	nic nula tem necl of m ren , duj fic 1 of Cu, 1 Osion Sion Sion	series, Pilling-H ar corrosion, of aperature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe. h Control n prevention, r passivity, res	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u> material selection, moval oxidizer,	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in the design considerations, Inhibitors and passival	a and metal contro	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- - organic
corrections of N	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics alation for Al, C ances in Corro ease in veloc croplating of Co ickel.	nic nula tem necl of m ren fic 1 of Cu, 1 osion city, oppo	series, Pilling-H ar corrosion, of aperature corros nanism of diffe- netals and alloys t engineering n olex, super dupl Materials: Corr Corrosion: Po Ni and Fe. n Control n prevention, r passivity, rei er, Nickel and O	erosion corrosion sion, bacterial corro rential aeration co s. Unit –III naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram Unit –IV material selection, moval oxidizer, Chromium, physic Unit –V	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in design considerations, Inhibitors and passivat al vapor deposition-sputt	n and metal	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- - organic, ess plating 09 Hrs
corrections of the correction	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics alation for Al, C ances in Corro ciples of corro ease in veloc croplating of Co ickel.	nic nula tem mecl of m ren , duj ffic 1 of Cu, 1 Osion Sion Sion Sion Meth	series, Pilling-H ar corrosion, of aperature corros nanism of diffe- netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe. n Control n prevention, r passivity, res er, Nickel and O	erosion corrosion sion, bacterial corro rential aeration co s. Unit –III naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u> material selection, moval oxidizer, Chromium, physic <u>Unit –V</u> ens, environment,	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in the design considerations, Inhibitors and passival	n and metal	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- - organic ess plating 09 Hrs
corrections of the correction	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics alation for Al, C ances in Corro ciples of corro ease in veloc croplating of Co ickel.	nic nula tem mecl of m ren , duj ffic 1 of Cu, 1 Osion Sion Sion Sion Meth	series, Pilling-H ar corrosion, of aperature corros nanism of diffe- netals and alloys t engineering n olex, super dupl Materials: Corr Corrosion: Po Ni and Fe. n Control n prevention, r passivity, rei er, Nickel and O	erosion corrosion sion, bacterial corro rential aeration co s. Unit –III naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u> material selection, moval oxidizer, Chromium, physic <u>Unit –V</u> ens, environment,	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in design considerations, Inhibitors and passivat al vapor deposition-sputt	n and metal	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- - organic, ess plating 09 Hrs
corrections of the second seco	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics ulation for Al, C ances in Corro ciples of corro case in veloc croplating of Co ickel.	nic nula tem mecl of n ren fic 1 of Cu, 1 of Cu, 1 osion city, oppe	series, Pilling-H ar corrosion, of aperature corros nanism of diffe- netals and alloys tengineering n olex, super dupl Materials: Corr Corrosion: Po Ni and Fe. h Control n prevention, re- passivity, re- er, Nickel and O hods: Specime ray, service test	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u> material selection, moval oxidizer, Chromium, physic <u>Unit –V</u> ens, environment, ss.	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in design considerations, Inhibitors and passivat al vapor deposition-sputt	on control on and metal control tors, ering,	Super all corrosid	hydroger terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- organic ess plating 09 Hrs Accelerated

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understand the causes and mechanism of various types of corrosion
CO2:	Identify, analyze and interpret corrosion with respect to practical situations.
CO3:	Apply the knowledge of chemistry in solving issues related to corrosion.
CO4:	Develop practical solutions for problems related to corrosion.

Reference Books

1	Corrosion Engineering, M.G, Fontana, 3 rd Edition, 2005, Tata McGraw Hill, ISBN: 978-0070214637.
2	Principles and Prevention of Corrosion, D. A Jones, 2 nd Edition, 1996, Prentice Hall, ISBN: 978-0133599930.
3	Design and corrosion prevention, Pludek, 1978, McMillan, ISBN: 978-1349027897
4	Introduction to metal corrosion, Raj Narain, 1983, Oxford &IBH, ISBN: 8120402995.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-l	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	2	-	-	-	-	1	-	1
CO4	3	3	3	3	2	-	-	-	-	1	-	1

				Semester: V							
		CC	OMPUTATIONA	L ADVANCED NUN	IERICAL METHO	ODS					
			(GRO	UP B: GLOBAL ELI	ECTIVE)						
		-	1	(Theory)	I						
	rse Code	:	18G5B16		CIE	:	100 Marks				
	dits: L:T:P	:	3:0:0		SEE	:	100 Marks				
	al Hours	:) :/	39L	unta uvill ha ahla ta	SEE Duration	:	3.00 Hours				
	0	•		ents will be able to	1 1 1						
1	-		•	lternative methods to s	solve algebraic and	trans	cendental equations				
-	using suitable numerical techniques.2 Use the concepts of interpolation techniques arising in various fields.										
3	3 Solve initial value and boundary value problems which have great significance in engineering										
	practice.			1 •	1.1.1.1.1.1	1					
4	·	nce	pts of eigen value	e and eigen vector to c	obtain the critical va	alues	of various physical				
	phenomena.				1 1 0 1						
5				nming language, imp	plementation of alg	gorith	ims and computer				
	programs to s	solve	e mathematical pro	oblems.							
				TT •4 T			07.11				
Alac	hunia and Tua		endental Equatio	Unit-I			07 Hrs				
0			-		ive method Aitken	nrook	Muller method				
			nulation using MA	ce - Fixed point iteration	ive method, Altken	proce	ess, wunter method,				
Chei	bysnev method.	. 511					07 11				
Into	rpolation:			Unit – II			07 Hrs				
	-	e di	fferences Finite d	lifferences of a polyno	mial Divided differ	ence	Newton's divided				
				te interpolation, Spline							
	-		nulation using MA		e interpolation - ini	cal, (quadratic and cubic				
spin		. 51		Unit –III			08 Hrs				
Diff	erential Equat	ions	s I•				001115				
	-			methods to solve diffe	erential equations B	Round	ary value problems				
		-	-	ing method, Differen	-						
			using MATLAB.	ing method, Differen		104 1					
equu	dions. Sindian			Unit –IV			08 Hrs				
Diff	erential Equat	ions	s II:	Cint IV			UO III S				
				blems - Runge-Kutta r	nethod, Milne metho	od. C	ubic spline method.				
			-	ear, Nonlinear differen			-				
				Unit –V			09 Hrs				
Eige	en Value Probl	ems	5:				07 1115				
0				ver method, Inverse	Power method. Bo	ounds	on Eigen values.				
-		-		hod for symmetric m			-				
	8 		,								

MATLAB.

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Identify and interpret the fundamental aspects of different Mathematical concepts and
	corresponding computational techniques.
CO2:	Apply the knowledge and skills of computational techniques to solve different types of application
	problems.
CO3:	Analyze the physical problem and use appropriate method to solve numerically using
	computational techniques.
CO4:	Distinguish the overall mathematical knowledge gained to demonstrate and analyze the problems
	arising in engineering practice.

Refere	ence Books
1	Numerical methods for scientific and engineering computation, M. K. Jain, S. R. K. Iyengar and R.
L	K. Jain, 6 th Edition, 2012, New Age International Publishers, ISBN-13: 978-81-224-2001-2.
2	Numerical Analysis, Richard L. Burden and J. Douglas Faires, 9th Edition, 2012, Cengage
2	Learning, ISBN-13: 978-81-315-1654-6.
3	Introductory Methods of Numerical Analysis, S. S. Sastry, 4th Edition, 2011, PHI Learning Private
5	Ltd., ISBN: 978-81-203-2761-0.
4	Numerical Methods for Engineers, Steven C. Chapra, Raymond P. Canale, 5th Edition, 2011, Tata
-	Mcgraw Hill, ISBN-10: 0-07-063416-5.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-I	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

MATHEMATICS FOR MACHINE LEARNING (GROUP B: GLOBAL ELECTIVE) (Theory) Course Code : 1865B17 CIE : 100 Marks Credits: L:T:P : 3:0:0 SEE : 100 Marks Course Code : 100 Marks Course Learning Objectives: The students will be able to 1 Understand the basic knowledge on the fundamental concepts of linear algebra that form foundation of machine intelligence. 2 Acquire practical knowledge of vector calculus and optimization to understand the machine learn algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of mach learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decis problems. Unit-I 07 Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Compleme Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit - II Vector Calculus and Continuous					Semester: V										
(Theory) Course Code : 100 Marks Credits: L:T:P : 3:0:0 SEE : 100 Marks Course Learning Objectives: The students will be able to SEE Duration : 3:0:0 More SEE 100 Marks Course Learning Objectives: The students will be able to 1 Understand the basic knowledge on the fundamental concepts of linear algebra that form foundation of machine intelligence. 2 Acquire practical knowledge or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of machine learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decis problems. Unit-I 07 Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Compleme Inner Product of Functions, Orthogonal Projections, Rotations,				MATHEMAT		E LEARNING									
Course Code : 18G5B17 CIE : 100 Marks Credits: L:T:P : 30:0 SEE : 100 Marks Total Hours : 39L SEE Duration : 3.00 Hours Course Learning Objectives: The students will be able to SEE Duration : 3.00 Hours Course Learning Objectives: The students will be able to Hours of machine intelligence.				(GROU	P B: GLOBAL ELI	ECTIVE)									
Credits: L:T:P : 3:0:0 SEE : 100 Marks Total Hours : 391 SEE Duration : 3.00 Hours Course Learning Objectives: The students will be able to Indextand the basic knowledge on the fundamental concepts of linear algebra that form foundation of machine intelligence. Acquire practical knowledge of vector calculus and optimization to understand the machine learn algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of mach learning. Analyze the appropriate mathematical techniques for classification and optimization of decis problems. 5 Analyze the appropriate mathematical techniques for classification and optimization of decis problems. Unit-I 07 Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Compleme Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. O7 Hrs Unit - II 07 Hrs Vector Calculus and Continuous Optimization: Intel Interization and Multivariate Taylor Series, Optimization. Unit - II 07 Hrs Orthogonal Projections, Rotation			-		(Theory)	1		1							
Total Hours : 39L SEE Duration : 3.00 Hours Course Learning Objectives: The students will be able to 1 Understand the basic knowledge on the fundamental concepts of linear algebra that form foundation of machine intelligence. Acquire practical knowledge of vector calculus and optimization to understand the machine learnin algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of machine learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decisi problems. Unit-I Of Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complemed Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit -I Of Hrs Vector Calculus and Continuous Optimization Inter I OT Hrs Sign colspan= 2 Unit - II OT Hrs Vector S			-				-								
Course Learning Objectives: The students will be able to 1 Understand the basic knowledge on the fundamental concepts of linear algebra that form foundation of machine intelligence. 2 Acquire practical knowledge of vector calculus and optimization to understand the machine learn algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of mach learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decise problems. Unit-I 07 Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Compleme Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit - II 07 Hrs Vector Calculus and Continuous Optimization Gradients of Matrices, Identities for Computing Gradiert Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. Unit - II Vector Calculus and Continuous Optimization Unit - III <td col<="" th=""><th></th><th></th><th>:</th><th></th><th></th><th></th><th></th><th></th></td>	<th></th> <th></th> <th>:</th> <th></th> <th></th> <th></th> <th></th> <th></th>			:											
1 Understand the basic knowledge on the fundamental concepts of linear algebra that form foundation of machine intelligence. 2 Acquire practical knowledge of vector calculus and optimization to understand the machine learn algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of mach learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decis problems. Unit-I Of Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit - II Of Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradiert Brobability and Distributions: Onstruction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit -IV Unit -IV Unit -IV) Ohid		s will be able to	SEE Duration	•	5.00 Hours							
foundation of machine intelligence. 2 Acquire practical knowledge of vector calculus and optimization to understand the machine learn algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of mach learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decise problems. Of Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit - II Of Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit - II 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradiert Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. Unit -III 08 Hrs <td <="" colspan="2" td=""><td></td><td colspan="12"></td></td>	<td></td> <td colspan="12"></td>														
2 Acquire practical knowledge of vector calculus and optimization to understand the machine learn algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of mach learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decise problems. Unit-I 07 Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complemed Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit - II 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradiert Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. Unit -II 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs <td>I</td> <td colspan="11"></td>	I														
algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of mach learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decis problems. 6 Unit-I 07 Hrs 7 Inear Algebra: 7 Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Compleme Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit – II 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradier Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Unit –IV 08 Hrs	2														
3 Use the concepts of probability and distributions to analyze possible applications of mach learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decis problems. 6 Unit-I 07 Hrs 7 Linear Algebra: 07 Hrs 8 Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complement 1 Unit – II 07 Hrs Vector Calculus and Continuous Optimization: 07 Hrs 1 Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradiert 1 Unit – II 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Unit –IV 08 Hrs	2														
learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decise problems. 6 Unit-I 07 Hrs 1 Linear Algebra: 07 Hrs Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complemed Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradier Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. Unit –III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs	3														
4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decise problems. 6 Unit-I 07 Hrs 1 Linear Algebra: 07 Hrs Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complemed Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradiert Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Unit –IV 08 Hrs	U		leept	s of probability a	nd distributions to	unaryze possible a	ippin	cations of machine							
5 Analyze the appropriate mathematical techniques for classification and optimization of decise problems. 6 Unit-I 07 Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complement Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit – II O7 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradiert Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Unit –IV 08 Hrs	4		ncer	ts of regression and	estimation to solve a	problems of machin	e lea	rning							
problems. O7 Hrs Linear Algebra: 07 Hrs Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Compleme Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. 07 Hrs Vector Calculus and Continuous Optimization: 07 Hrs Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradier Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. Unit – III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Unit –IV 08 Hrs	-							-							
Unit-I 07 Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Compleme Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit – II 07 Hrs Vector Calculus and Continuous Optimization: 07 Hrs Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradier Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. 08 Hrs Probability and Distributions: 07 Nrs Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Unit –IV 08 Hrs	5	•	чрр	iopriate mathemati	cur teeninques 101 (and the and th	Pun								
Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complement Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit – II 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradient Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization: Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Unit – III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs		Problems.													
Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complement Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit – II 07 Hrs Vector Calculus and Continuous Optimization: 07 Hrs Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradient Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization: Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. 08 Hrs Probability and Distributions: 08 Hrs Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Linear Regression: 08 Hrs				l	Unit-I			07 Hrs							
Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complement Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit – II 07 Hrs Vector Calculus and Continuous Optimization: 07 Hrs Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradiert Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization: Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. 08 Hrs Probability and Distributions: 08 Hrs Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Unit –IV 08 Hrs	Line	ar Algebra:						·							
Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit – II 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradient Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization: Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Unit –III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Unit –IV 08 Hrs	Revi	ew of Vector	Spac	ces-Linear Independ	dence, Basis, Rank a	and Linear Mappin	gs. A	Affine Spaces, Inner							
Unit – II07 HrsVector Calculus and Continuous Optimization:Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing GradientBackpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, OptimizationUsing Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization.Unit –III08 HrsProbability and Distributions:Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform.Unit –IV08 HrsLinear Regression:	Prod	ucts, Lengths a	and]	Distances, Angles a	nd Orthogonality. O	rthonormal Basis, (Drtho	gonal Complement							
Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradient Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Unit –III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs		, 0		<i></i>				Sonar Complement							
Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradient Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Unit –III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs Linear Regression: 08 Hrs	Inner	-		-											
Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Unit –III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs Linear Regression:		r Product of Fu	Incti	ons, Orthogonal Pro	jections, Rotations, S nit – II										
Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Unit –III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs Linear Regression:	Vect	r Product of Fu	nction	ons, Orthogonal Pro U Continuous Optimi	ojections, Rotations, S nit – II zation:	Singular Value Dec	ompo	osition. 07 Hrs							
Unit –III08 HrsProbability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform.Unit –IV08 HrsLinear Regression:08 Hrs	Vect Grad	r Product of Fu cor Calculus an lients of Vect	nction nd C	ons, Orthogonal Pro U: Continuous Optimiz /alued Functions,	ojections, Rotations, S nit – II zation: Gradients of Matri	Singular Value Dec	ompo Cor	mputing Gradients							
Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs Linear Regression:	Vect Grad Back	r Product of Fu cor Calculus and lients of Vector appropagation and	nd C tor-V	ons, Orthogonal Pro U Continuous Optimi Valued Functions, utomatic Differentia	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a	Singular Value Dec ices, Identities for and Multivariate Ta	Cor Vor S	mputing Gradients Series, Optimization							
Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs Linear Regression:	Vect Grad Back	r Product of Fu cor Calculus and lients of Vector appropagation and	nd C tor-V	ons, Orthogonal Pro U Continuous Optimi Valued Functions, utomatic Differentia t, Constrained Optim	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization and nization and Lagrang	Singular Value Dec ices, Identities for and Multivariate Ta	Cor Vor S	mputing Gradients Series, Optimization ex Optimization.							
Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs Linear Regression:	Vect Grad Back Usin	r Product of Fu cor Calculus an lients of Vect cpropagation an g Gradient Des	nd C tor-V nd A	ons, Orthogonal Pro U Continuous Optimi Valued Functions, utomatic Differentia t, Constrained Optim	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization and nization and Lagrang	Singular Value Dec ices, Identities for and Multivariate Ta	Cor Vor S	mputing Gradients Series, Optimization ex Optimization.							
Inverse Transform. Unit –IV 08 Hrs Linear Regression:	Vect Grad Back Usin	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Des	nd C tor-V nd A scent	ons, Orthogonal Pro U Continuous Optimi Valued Functions, utomatic Differentia t, Constrained Optim Un butions:	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C	Conve	mputing Gradients Series, Optimization ex Optimization. 08 Hrs							
Unit –IV08 HrsLinear Regression:08	Vect Grad Back Usin Prob	r Product of Fu cor Calculus and lients of Vecto coropagation and g Gradient Des coability and Distruction of a I	nd C tor-V nd A scent istri Prob	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discr	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum	Cor ylor S Conve	mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and							
Linear Regression:	Vect Grad Back Usin Prob Cons Baye	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese pability and Distruction of a I estruction of a I	nd C tor-V nd A scent istri Prob	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discr	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum	Cor ylor S Conve	mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and							
	Vect Grad Back Usin Prob Cons Baye	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese pability and Distruction of a I estruction of a I	nd C tor-V nd A scent istri Prob	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discussion Distribution, O	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum	Cor ylor S conve	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables							
	Vect Grad Back Usin Prob Cons Baye Inver	r Product of Fu cor Calculus and lients of Vecto appropagation and g Gradient Dese Dability and Distruction of a H es' Theorem, Conservation of a H rse Transform.	nd C tor-V nd A scent istri Prob	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discussion Distribution, O	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum	Cor ylor S conve	mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and							
Problem Formulation, Parameter Estimation, Bayesian Linear Regression, Maximum Likelihood	Vect Grad Back Usin Prob Cons Baye Inver	r Product of Fu for Calculus and lients of Vector g Gradient Des pability and Di struction of a I es' Theorem, C rse Transform.	nd C tor-V ad A scent istri istri Gaus	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discussian Distribution, O	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the I nit –IV	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family	Corve	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs							
	Vect Grad Back Usin Prob Cons Baye Inver	r Product of Fu cor Calculus and lients of Vecto appropagation and g Gradient Des Dability and Di struction of a H es' Theorem, O rse Transform.	inction nd C tor-V ad A scent istri istri Gaus	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discussian Distribution, O	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the I nit –IV	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family	Corve	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs							
	Vect Grad Back Usin Prob Cons Baye Inver Line Prob Orthe	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese pability and Distruction of a I estruction of a I estruc	Inctional of the second of the	ons, Orthogonal Pro U: Continuous Optimi: Valued Functions, utomatic Differentia t, Constrained Optim Ui butions: ability Space, Discussian Distribution, O Ui Parameter Estima	pjections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the I nit –IV tion, Bayesian Line	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family	Corve	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs							
•	Vect Grad Back Usin Prob Cons Baye Inver Line Prob Ortho Dens	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Des bability and Distruction of a H es' Theorem, C rse Transform. car Regression lem Formulation ogonal Projector	inction nd C tor-V nd A scent istri istri istri ion, ion, ion, n wi	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, C Un Parameter Estima th Gaussian Mixtu	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models:	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M	Corylor S conve Rule , Cha	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs 08 Hrs hum Likelihood as							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia	Vect Grad Back Usin Prob Cons Baye Inver Line Prob Ortho Dens Gaus	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese oability and Distruction of a H estruction of a H estruc	inction nd C tor-V nd A scent istri istri istri ion, ion, ion, n wi	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, C Un Parameter Estima th Gaussian Mixtu	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models:	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M	Corylor S conve Rule , Cha	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs 08 Hrs hum Likelihood as							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective.	Vect Grad Back Usin Prob Cons Baye Inver Line Prob Ortho Dens Gaus	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese oability and Distruction of a H estruction of a H estruc	inction nd C tor-V nd A scent istri istri istri ion, ion, ion, n wi	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discu- sian Distribution, C Un Parameter Estima th Gaussian Mixtu el, Parameter Learn	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M	Corylor S conve Rule , Cha	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs hum Likelihood as hum, Latent-Variables							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. 09 Hrs	Vect Grad Back Usin Prob Cons Baye Inver Prob Orthe Dens Gaus Persp	r Product of Fu cor Calculus and lients of Vector corpopagation and g Gradient Des oability and Distruction of a H es' Theorem, O rse Transform. ear Regression lem Formulation ogonal Projection sity Estimation ssian Mixture H pective.	inction nd C tor-V nd A scent istri istri Gaus : ion, ion, ion. Mod	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discr sian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Al	Corylor S conve Rule , Cha	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs hum Likelihood as hum, Latent-Variables							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA):	Vect Grad Back Usin Prob Cons Baye Inver Inver Prob Ortho Dens Gaus Persp	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Dese oability and Distruction of a H ess' Theorem, O rse Transform. Car Regression lem Formulation ogonal Projection sity Estimation sian Mixture H pective.	inction nd C tor-V nd A scent istri istri Gaus ion, ion, ion. Mod	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim butions: ability Space, Discr sian Distribution, O U: Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the I nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V I Component Analys)	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA):	Conve vlor S conve Rule , Cha laxim	Opsition. O7 Hrs mputing Gradients Series, Optimization Series, Optimization. 08 Hrs ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs num Likelihood as 08 Hrs hum, Latent-Variable 09 Hrs							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation at the setting of the setting of the setting.	Vect Grad Back Usin Prob Cons Baye Inver Inver Prob Ortho Dens Gaus Persp Prob	r Product of Fu cor Calculus and lients of Vector corpopagation and g Gradient Des oability and Distruction of a H es' Theorem, O rese Transform. Car Regression lem Formulation ogonal Projector sity Estimation ssian Mixture H pective.	inction nd C tor-V nd A scent istri istri Prob Gaus :: ion, ion. n wi Mod	ons, Orthogonal Pro U: Continuous Optimiz Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Per	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V I Component Analys spective, Projection	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen	Corve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation a Low-Rank Approximations, PCA in High Dimensions, Key Steps of PCA in Practice, Latent Varia	Vect Grad Back Usin Prob Cons Baye Inver Inver Prob Gaus Persp Dime Prob	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Dese oability and Distruction of a H ess' Theorem, O rse Transform. Car Regression lem Formulatt ogonal Projections sian Mixture H pective. ensionality Re lem Setting, M -Rank Approx	inction nd C tor-V nd A scent istri istri Prob Gaus :: ion, ion. n wi Mod	ons, Orthogonal Pro U: Continuous Optimiz Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Per	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V I Component Analys spective, Projection	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen	Corve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation a Low-Rank Approximations, PCA in High Dimensions, Key Steps of PCA in Practice, Latent Varia Perspective.	Vect Grad Back Usin Prob Cons Baye Inver Inver Prob Gaus Persp Dime Prob Low Persp	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese pability and Distruction of a H ess' Theorem, Of rise Transform. Car Regression lem Formulat ogonal Projections sian Mixture H pective. ensionality Re lem Setting, M -Rank Approx pective.	inction nd C tor-V nd A scent istri istri Prob Gaus istri ion, ion, ion, ion, Mod educ Maxi imat	ons, Orthogonal Pro U: Continuous Optimi: /alued Functions, utomatic Differentia t, Constrained Optimi butions: ability Space, Discr sian Distribution, O Ui Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Per tions, PCA in High	ojections, Rotations, Solution, Internet Solution: Gradients of Matriation, Linearization and Lagrangenit and Lagrangenit and Lagrangenit and Continuous Conjugacy and the Herrice and Continuous Conjugacy and the Herrice Models: The	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen	Corve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation a Low-Rank Approximations, PCA in High Dimensions, Key Steps of PCA in Practice, Latent Varia Perspective. Classification with Support Vector Machines:	Vect Grad Back Usin Prob Cons Baye Inver Prob Orthe Dens Gaus Persp Prob Class	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Des oblity and Distruction of a H es' Theorem, O rse Transform. Car Regression lem Formulat ogonal Projection sity Estimation sian Mixture H pective. ensionality Re lem Setting, M -Rank Approx pective. sification with	inction nd C tor-V nd A scent istri istri Gaus Gaus Caus Caus Caus Caus Caus Caus Caus C	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Persions, PCA in High poport Vector Mach	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I <u>Init –V</u> I Component Analysis spective, Projection n Dimensions, Key mines:	Singular Value Dec aces, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen Steps of PCA in F	Conve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables of Wariables 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and ce, Latent Variable							
Orthogonal Projection. Density Estimation with Gaussian Mixture Models:	Vect Grad Back Usin Prob Cons Baye Inver	r Product of Fu cor Calculus and lients of Vecto appropagation and g Gradient Dese Dability and Distruction of a H es' Theorem, Conservation of a H rse Transform.	nd C tor-V nd A scent istri Prob	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discussion Distribution, Constrained Optim	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum	Cor ylor S conve	07 Hrs 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables							
Density Estimation with Caussian Mixture Models.	Vect Grad Back Usin Prob Cons Baye Inver Line Prob Orthe	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese pability and Distruction of a I estruction of a I estruc	Inctional of the second of the	ons, Orthogonal Pro U: Continuous Optimi: Valued Functions, utomatic Differentia t, Constrained Optim Ui butions: ability Space, Discussian Distribution, O Ui Parameter Estima	pjections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the I nit –IV tion, Bayesian Line	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family	Corve	05 ition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs							
Density Estimation with Gaussian Mixture Woulds.	Vect Grad Back Usin Prob Cons Baye Inver Inver Line Prob	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese pability and Distruction of a I estruction of a I estruc	Inctional of the second of the	ons, Orthogonal Pro U: Continuous Optimi: Valued Functions, utomatic Differentia t, Constrained Optim Ui butions: ability Space, Discussian Distribution, O Ui Parameter Estima	pjections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the I nit –IV tion, Bayesian Line	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family	Corve	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs							
•	Vect Grad Back Usin Prob Cons Baye Inver Inver Line Prob Orthe Dens	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Des bability and Distruction of a H es' Theorem, C rse Transform. car Regression lem Formulation ogonal Projector	inction nd C tor-V nd A scent istri istri istri ion, ion, ion, n wi	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, C Un Parameter Estima th Gaussian Mixtu	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models:	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M	Corylor S conve Rule , Cha	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs 08 Hrs hum Likelihood as							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia	Vect Grad Back Usin Prob Cons Baye Inver Line Prob Ortho Dens Gaus	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese oability and Distruction of a H estruction of a H estruc	inction nd C tor-V nd A scent istri istri istri ion, ion, ion, n wi	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, C Un Parameter Estima th Gaussian Mixtu	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models:	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M	Corylor S conve Rule , Cha	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs 08 Hrs hum Likelihood as							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. 09 Hrs	Vect Grad Back Usin Prob Cons Baye Inver Line Prob Orthe Dens Gaus Persp	r Product of Fu cor Calculus and lients of Vector corpopagation and g Gradient Des oability and Distruction of a H es' Theorem, O rse Transform. ear Regression lem Formulation ogonal Projection sity Estimation ssian Mixture H pective.	inction nd C tor-V nd A scent istri istri Gaus : ion, ion, ion. Mod	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discr sian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Al	Corylor S conve Rule , Cha	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs hum Likelihood as hum, Latent-Variables							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA):	Vect Grad Back Usin Prob Cons Baye Inver Inver Line Prob Ortho Dens Gaus Persp	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Dese oability and Distruction of a H ess' Theorem, O rse Transform. Car Regression lem Formulation ogonal Projection sity Estimation sian Mixture H pective.	inction nd C tor-V nd A scent istri istri Gaus ion, ion, ion. Mod	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim butions: ability Space, Discussian Distribution, O U: Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the I nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V I Component Analys)	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA):	Conve vlor S conve Rule , Cha laxim	Opsition. O7 Hrs mputing Gradients Series, Optimization Series, Optimization. 08 Hrs ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs num Likelihood as 08 Hrs hum, Latent-Variable 09 Hrs							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation at the provide the provided of the p	Vect Grad Back Usin Prob Cons Baye Inver Inver Prob Ortho Dens Gaus Persp Prob	r Product of Fu cor Calculus and lients of Vector corpopagation and g Gradient Des oability and Distruction of a H es' Theorem, O rese Transform. Car Regression lem Formulation ogonal Projector sity Estimation ssian Mixture H pective.	inction nd C tor-V nd A scent istri istri Prob Gaus :: ion, ion. n wi Mod	ons, Orthogonal Pro U: Continuous Optimiz Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Per	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V I Component Analys spective, Projection	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen	Corve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation a Low-Rank Approximations, PCA in High Dimensions, Key Steps of PCA in Practice, Latent Varia	Vect Grad Back Usin Prob Cons Baye Inver Inver Line Prob Gaus Persp Dime Prob	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Dess oability and Distruction of a H ess' Theorem, O rse Transform. Car Regression lem Formulatt ogonal Projections sian Mixture H pective. ensionality Re lem Setting, M -Rank Approx	inction nd C tor-V nd A scent istri istri Prob Gaus :: ion, ion. n wi Mod	ons, Orthogonal Pro U: Continuous Optimiz Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Per	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V I Component Analys spective, Projection	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen	Corve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation a Low-Rank Approximations, PCA in High Dimensions, Key Steps of PCA in Practice, Latent Varia Perspective. Perspective	Vect Grad Back Usin Prob Cons Baye Inver Inver Prob Gaus Persp Dime Prob Low Persp	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese pability and Distruction of a H ess' Theorem, Of rise Transform. Car Regression lem Formulat ogonal Projections sian Mixture H pective. ensionality Re lem Setting, M -Rank Approx pective.	inction nd C tor-V nd A scent istri Prob Gaus istri ion, ion, ion, ion, ion, Mod	ons, Orthogonal Pro U: Continuous Optimi: /alued Functions, utomatic Differentia t, Constrained Optimi butions: ability Space, Discr sian Distribution, O Ui Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Per tions, PCA in High	ojections, Rotations, Solution, Internet Solution: Gradients of Matriation, Linearization and Lagrangenit and Lagrangenit and Lagrangenit and Continuous Conjugacy and the Herrice and Continuous Conjugacy and the Herrice Models: The	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen	Corve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation a Low-Rank Approximations, PCA in High Dimensions, Key Steps of PCA in Practice, Latent Varia Perspective. Classification with Support Vector Machines:	Vect Grad Back Usin Prob Cons Baye Inver Prob Orthe Dens Gaus Persp Prob Cow- Persp Clas	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Des oblity and Distruction of a H es' Theorem, O rse Transform. Car Regression lem Formulat ogonal Projection sity Estimation sian Mixture H pective. ensionality Re lem Setting, M -Rank Approx pective. sification with	inction nd C tor-V nd A scent istri istri Gaus Gaus Caus Caus Caus Caus Caus Caus Caus C	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Persions, PCA in High poport Vector Mach	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I <u>Init –V</u> I Component Analysis spective, Projection n Dimensions, Key mines:	Singular Value Dec aces, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen Steps of PCA in F	Conve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables of Wariables 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and ce, Latent Variable							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation a Low-Rank Approximations, PCA in High Dimensions, Key Steps of PCA in Practice, Latent Varia Perspective.	Vect Grad Back Usin Prob Cons Baye Inver Inver Prob Orthe Dens Gaus Persp Dime Prob Low- Persp Clas Sepa	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Dess bability and Distruction of a H ess' Theorem, O rise Transform. Car Regression lem Formulation ogonal Projections sian Mixture H pective. ensionality Re lem Setting, N -Rank Approx pective. sification with arating Hyperp	inction nd C tor-V nd A scent istri istri ion, ion, ion, ion, Mod educ Aaxi imat a Suj blane	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Persions, PCA in High poport Vector Mach	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I <u>Init –V</u> I Component Analysis spective, Projection n Dimensions, Key mines:	Singular Value Dec aces, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen Steps of PCA in F	Conve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables of Wariables 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and ce, Latent Variable							

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Explore the fundamental concepts of mathematics involved in machine learning techniques.
CO2:	Orient the basic concepts of mathematics towards machine learning approach.
CO3:	Apply the linear algebra and probability concepts to understand the development of different
	machine learning techniques.
CO4:	Analyze the mathematics concepts to develop different machine learning models to solve practical
	problems.

Refere	ence Books
1	Mathematics for Machine Learning, M. P. Deisenroth, A. A. Faisal and C. S. Ong, 1st Edition,
1	2020, Cambridge University Press.
2	Linear Algebra and Learning from Data, Gilbert Strang, 1st Edition, 2019, Wellesley Cambridge
4	Press, ISBN: 0692196382, 9780692196380.
3	Introduction to Machine Learning, Ethem Alpaydin, 2 nd Edition, 2010, PHI Publication, ISBN-
5	978-81-203-4160-9.
4	The Elements of Statistical Learning, Trevor Hastie, Robert Tibshirani and Jerome Friedman, 2 nd
4	Edition, 2009, Springer, ISBN: 978-0-387-84857-0, 978-0-387-84858-7.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-I	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

			V Semester						
			ENGINEERING ECONOMY						
		(0	ROUP B: GLOBAL ELECTIVI	E)					
		I	(Theory)		1	[
Course Code	:	18G5B18		CIE	:	100 Marks			
Course Code	ourse Code : 18G5B02 SEE					100 Marks			
Total Hours	:	39L		SEE Duration	:	03 Hours			
Course Learnin	ng O	bjectives: Stud	lents are expected to						
1. To incul	cate	an understandi	ng of concept of money and its imp	portance in the ev	valu	ation of			
projects.									
2. Analyze	the p	present worth o	f an asset.						
3. Evaluate	the	alternatives ba	sed on the Equivalent Annual Wort	h.					
4. Illustrate	e con	cept of money	and its importance in evaluating th	e projects.					

Unit – I	07 Hrs
Introduction: Principles of Engineering Economy, Engineering Decision- Makers, Engineering	ering and
Economics, Problem solving and Decision making, Intuition and Analysis, Tactics and Strategy.	
Interest and Interest Factors: Interest rate, Simple interest, Compound interest, Cash- flow	diagrams,
Exercises and Discussion.	
Unit – II	07 Hrs
Present worth comparison : Conditions for present worth comparisons, Basic Present worth com	nparisons,
Present worth equivalence, Net Present worth, Assets with unequal lives, infinite lives, Futu	re worth
comparison, Pay – back comparison, Exercises, Discussions and problems.	
Unit – III	07 Hrs
Equivalent annual worth comparisons: Equivalent Annual Worth Comparison methods, Situ	ations for
Equivalent Annual Worth Comparison Consideration of asset life, Comparison of assets with	equal and
unequal lives, Use of sinking fund method, Exercises, Problems.	
Rate of return calculations: Rate of return, Minimum acceptable rate of return, IRR, IRR miscon	nceptions,
Problems.	
Unit – IV	06 Hrs
Replacement Analysis: Replacement studies, replacement due to deterioration, obsolescence, in	adequacy,
economic life for cyclic replacements, Exercises, Problems.	
Break- Even Analysis: Basic concepts, Linear Break- Even analysis, Exercises, Problems.	
Unit – V	06 Hrs
Depreciation: Causes of Depreciation, Basic methods of computing depreciation charges, I	Exercises,
Problems.	
Effects of inflation: Causes, consequences and control of inflation, inflation in economic analysis	8.
Course Outcomes: After going through this course the student will be able to	
CO 1: Explain the time value of money, and how to sketch the cash flow diagram	

	1
CO 2:	Compare the alternatives using different compound interest factors, Select a feasible alternative
	based on the analysis.
CO 3:	Formulate a given problem for decision making

CO 4:	Evaluate alternatives and develop capital budget for different scenarios
	Drandate anternatives and develop capital badget for anterent section

Referen	Reference Books:							
1.	Engineering Economy, Riggs J.L., 5th Edition, Tata McGraw Hill, ISBN 0-07-058670-5							
2.	Engineering Economics, R Panneerselvam, Eastern Economy Edition 2001, PHI, ISBN – 81-							
	203-1743-2.							
3.	Cost Accounting, Khan M Y, 2 nd Edition, 2000, Tata McGraw-Hill, ISBN 0070402248							
4.	Mechanical Estimating & Costing, T.R.Banga, S.C.Sharma, 16th Edition, 2011, Khanna							
	Publishers, ISBN 8174091009							

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	1	1	-	-	-	-	-	-	-	-	1
CO2	2	1	1	-	-	-	-	-	-	-	-	-
CO3	1	1	1	-	1	-	-	-	-	-	-	-
CO4	-	1	2	-	1	1	-	-	-	-	1	-

				Semester: VI							
	INTE	LLE	CTUAL PROP		D ENTREPRENEUR	SHI	Р				
(Theory)											
	ourse Code	:	18HSI61		CIE	:	100 Marks				
	edits: L:T:P	:			SEE	:					
	otal Hours	:	38L		SEE Duration	:	03Hrs				
				lents will be able to	•• • •						
1					uild the perspectives of	n the	concepts and				
2				gy innovation and IPI							
2					disclosure of new Tech	nolo	gy and to				
3			ard innovativene		rong foundations skills	to a	nable starting				
3				ell as sustainable vent		5 10 0	naule starting				
4					ng with critical skills	and	knowledge to				
•			viated with entrep		5 , the ended skills	anu	into mouge u				
				Unit-I			08 Hrs				
In	troduction: Tvr	nes o	f Intellectual Pro	operty WIPO							
					patentable and non-pat	ontal	le inventions				
					; Biotechnology pate	nts,	protection o				
				patents and remedy, C							
Tr	ade Secrets: De	efinit	tion, Significance		Trade Secrets: Definition, Significance, Tools to protect Trade secrets in India.						
T			Unit – II 08 Hrs								
		Trade Marks: Concept, function and different kinds and forms of Trade marks, Registrable and non-									
reg	netrable marke			lifferent kinds and for	rms of Trade marks, R		able and non				
		Reg	istration of Trad	lifferent kinds and for le Mark; Deceptive s	rms of Trade marks, R similarity; Transfer of		able and non				
		Reg	istration of Trad	lifferent kinds and for le Mark; Deceptive s de Mark with Case stu	rms of Trade marks, R similarity; Transfer of		rable and non e Mark, ECC				
La	bel, Passing off,	Reg , Infr	istration of Trac ingement of Tra	lifferent kinds and for le Mark; Deceptive s de Mark with Case str Unit –III	rms of Trade marks, R similarity; Transfer of udies and Remedies.	Trad	rable and non e Mark, ECC 09 Hrs				
La In	bel, Passing off, dustrial Design	Reg Infr	istration of Trac ingement of Tra troduction of Ind	lifferent kinds and for le Mark; Deceptive s de Mark with Case str Unit –III dustrial Designs Feat	rms of Trade marks, R similarity; Transfer of udies and Remedies. ures of Industrial, Des	Trad	rable and non e Mark, ECC 09 Hrs				
La In ob	bel, Passing off, dustrial Design taining Design F	Reg Infr Infr Infr Rote	istration of Trac ingement of Tra troduction of In- ction, Revocatio	lifferent kinds and for le Mark; Deceptive s de Mark with Case stu Unit –III dustrial Designs Feat n, Infringement and F	rms of Trade marks, R similarity; Transfer of udies and Remedies. ures of Industrial, Des Remedies, Case studies	Trad	able and non e Mark, ECC 09 Hrs Procedure fo				
La In ob Co	bel, Passing off, dustrial Design taining Design F py Right: Intro	Reg Infr Infr Infr Infr Infr Infr Infr Infr	istration of Trac ingement of Tra troduction of In- ction, Revocatio tion, Nature and	lifferent kinds and for le Mark; Deceptive s de Mark with Case str Unit –III lustrial Designs Feat n, Infringement and F scope, Rights confer	rms of Trade marks, R similarity; Transfer of udies and Remedies. ures of Industrial, Des Remedies, Case studies red by copy right, Cop	Trad	rable and non e Mark, ECC 09 Hrs Procedure fo ght protection				
La In ob Co tra	bel, Passing off, dustrial Design taining Design F py Right: Intro nsfer of copy r	Reg Infr Infr Infr Infr Infr Infr Infr Infr	istration of Trac ingement of Tra troduction of Ind ction, Revocatio tion, Nature and s, right of broad	lifferent kinds and for le Mark; Deceptive s de Mark with Case str Unit –III dustrial Designs Feat n, Infringement and F scope, Rights confer casting organization	rms of Trade marks, R similarity; Transfer of udies and Remedies. ures of Industrial, Des Remedies, Case studies	Trad	rable and non e Mark, ECC 09 Hrs Procedure fo ght protection				
La In ob Co tra Co	bel, Passing off, dustrial Design taining Design F py Right: Intro nsfer of copy r py Right, Infrin	Reg Infr I Infr Protectoduct ights geme	istration of Trac ingement of Tra troduction of In- ction, Revocatio tion, Nature and s, right of broad ent of Copy Rigl	lifferent kinds and for le Mark; Deceptive s de Mark with Case str Unit –III dustrial Designs Feat n, Infringement and F scope, Rights confer casting organization nt with case studies	rms of Trade marks, R similarity; Transfer of udies and Remedies. ures of Industrial, Des Remedies, Case studies red by copy right, Cop as and performer's rig	Trad ign. by rig hts,	able and non e Mark, ECC 09 Hrs Procedure fo ght protection Exceptions o				
La ob Co tra Co In	bel, Passing off, dustrial Design taining Design F opy Right: Intro nsfer of copy r opy Right, Infrin tellectual prope	Reg Infr Infr Protection oduct ights geme erty	istration of Trac ingement of Tra troduction of In- ction, Revocatio tion, Nature and s, right of broad ent of Copy Rigl and cyberspace	lifferent kinds and for le Mark; Deceptive s de Mark with Case str Unit –III dustrial Designs Feat n, Infringement and F scope, Rights confer casting organization the with case studies e: Emergence of cybe	rms of Trade marks, R similarity; Transfer of udies and Remedies. ures of Industrial, Des Remedies, Case studies red by copy right, Cop as and performer's rig er-crime; Meaning and	Trad ign. by rig hts,	able and non e Mark, ECC 09 Hrs Procedure fo ght protection Exceptions o erent types o				
La ob Co tra Co In	bel, Passing off, dustrial Design taining Design F opy Right: Intro nsfer of copy r opy Right, Infrin tellectual prope	Reg Infr Infr Protection oduct ights geme erty	istration of Trac ingement of Tra troduction of In- ction, Revocatio tion, Nature and s, right of broad ent of Copy Rigl and cyberspace	lifferent kinds and for le Mark; Deceptive s de Mark with Case str Unit –III dustrial Designs Feat n, Infringement and F scope, Rights confer casting organization th with case studies Emergence of cybe echnology Act 2000 a	rms of Trade marks, R similarity; Transfer of udies and Remedies. ures of Industrial, Des Remedies, Case studies red by copy right, Cop as and performer's rig	Trad ign. by rig hts,	able and non e Mark, ECC 09 Hrs Procedure fo ght protection Exceptions o erent types o 8				
La Ind ob Co tra Co Int cyl	bel, Passing off, dustrial Design taining Design F py Right: Intro nsfer of copy r py Right, Infrin tellectual prope bercrime. Overv	Reg Infr Infr Protection oduct ights geme erty	istration of Trac ingement of Tra troduction of In- ction, Revocatio tion, Nature and s, right of broad ent of Copy Rigl and cyberspace of Information T	lifferent kinds and for le Mark; Deceptive s de Mark with Case str Unit –III dustrial Designs Feat n, Infringement and F scope, Rights confer casting organization it with case studies Emergence of cybe echnology Act 2000 a Unit –IV	rms of Trade marks, R similarity; Transfer of udies and Remedies. ures of Industrial, Des Remedies, Case studies red by copy right, Cop as and performer's rig er-crime; Meaning and and IT Amendment Act	Trad ign. by rig hts, l diff 200	able and non e Mark, ECC 09 Hrs Procedure fo ght protection Exceptions o erent types o 8 06 Hrs				
La Ind ob Co tra Co Int cyl	bel, Passing off, dustrial Design taining Design F opy Right: Intro nsfer of copy r opy Right, Infrin tellectual prope bercrime. Overv	Reg Infr Infr Protectoduct ights geme erty iew of ntre	istration of Trac ingement of Tra troduction of In- ction, Revocatio tion, Nature and s, right of broad ent of Copy Rigl and cyberspace of Information T preneurship – I	lifferent kinds and for le Mark; Deceptive s de Mark with Case str Unit –III dustrial Designs Feat n, Infringement and F scope, Rights confer casting organization at with case studies e: Emergence of cybe echnology Act 2000 a Unit –IV Learn how entreprenet	rms of Trade marks, R similarity; Transfer of udies and Remedies. ures of Industrial, Des Remedies, Case studies red by copy right, Cop as and performer's rig er-crime; Meaning and and IT Amendment Act	Trad ign. by rig hts, l diff 200	able and non e Mark, ECC 09 Hrs Procedure fo ght protection Exceptions o erent types o 8 06 Hrs				
La Ind ob Co tra Co Int cyl	bel, Passing off, dustrial Design taining Design F opy Right: Intro nsfer of copy r opy Right, Infrin tellectual proper- bercrime. Overv troduction to E trepreneurial my	Reg Infr i: Int Protecoduct ights geme erty iew of ntre	istration of Trac ingement of Tra troduction of In- ction, Revocatio tion, Nature and s, right of broad ent of Copy Rigl and cyberspace of Information T preneurship – I and uncover the	lifferent kinds and for le Mark; Deceptive s de Mark with Case str Unit –III dustrial Designs Feat n, Infringement and F scope, Rights confer casting organization at with case studies e: Emergence of cybe dechnology Act 2000 a Unit –IV Learn how entreprenet crue facts. Explore E-o	rms of Trade marks, R similarity; Transfer of udies and Remedies. ures of Industrial, Des Remedies, Case studies red by copy right, Cop as and performer's rig er-crime; Meaning and and IT Amendment Act urship has changed the cells on Campus	Trad ign. by rights, diff 200 worl	able and non e Mark, ECC 09 Hrs Procedure fo ght protection Exceptions o erent types o 8 06 Hrs d. Identify site				
La Ind ob Co tra Co Int cyl Int Lis	bel, Passing off, dustrial Design taining Design F opy Right: Intro nsfer of copy r opy Right, Infrin tellectual prope bercrime. Overv troduction to E trepreneurial my sten to Some	Reg Infr i Int Protecoduct ights geme erty iew of ntre ths a Suc	istration of Trac ingement of Trac troduction of In- ction, Revocatio tion, Nature and s, right of broad ent of Copy Righ and cyberspace of Information T preneurship – I and uncover the cess Stories: –	lifferent kinds and for le Mark; Deceptive s de Mark with Case str Unit –III dustrial Designs Feat n, Infringement and F scope, Rights confer casting organization t with case studies e: Emergence of cybe echnology Act 2000 a Unit –IV Learn how entreprenet crue facts. Explore E-o Global legends Un	rms of Trade marks, R similarity; Transfer of udies and Remedies. ures of Industrial, Des Remedies, Case studies red by copy right, Cop as and performer's rig er-crime; Meaning and and IT Amendment Act urship has changed the cells on Campus derstand how ordinat	Trad ign. by rights, diff 200 worl	able and non e Mark, ECC 09 Hrs Procedure fo ght protection Exceptions o erent types o 8 06 Hrs d. Identify size cople becom				
La Ind ob Co tra Co Int cyl Int ent Lis sud	bel, Passing off, dustrial Design taining Design F py Right: Intro nsfer of copy r py Right, Infrin tellectual prope bercrime. Overv troduction to E trepreneurial my sten to Some ccessful global e	Reg , Infr :: Int Protector ights gemoderty tiew of ntrej vths a Succentrej	istration of Trac ingement of Trac troduction of Inc ction, Revocatio tion, Nature and s, right of broad ent of Copy Rigl and cyberspace of Information T preneurship – I and uncover the to cess Stories: – preneurs, their jo	lifferent kinds and for le Mark; Deceptive s de Mark with Case str Unit –III dustrial Designs Feat n, Infringement and F scope, Rights confer casting organization t with case studies e: Emergence of cybe echnology Act 2000 a Unit –IV learn how entreprenet true facts. Explore E-o Global legends Un purneys, their challen	rms of Trade marks, R similarity; Transfer of udies and Remedies. ures of Industrial, Des Remedies, Case studies red by copy right, Cop as and performer's rig er-crime; Meaning and and IT Amendment Act urship has changed the cells on Campus derstand how ordinating ges, and their success	Trad iign. oy rią hts, l diff : 200 worl	able and non e Mark, ECC 09 Hrs Procedure fo ght protection Exceptions o erent types o 8 06 Hrs d. Identify size cople becom				
La Ind ob Co tra Co Int cyl Int ent Lis suc	bel, Passing off, dustrial Design taining Design F py Right: Intro nsfer of copy r py Right, Infrin tellectual prope bercrime. Overv troduction to E trepreneurial my sten to Some ccessful global e w ordinary peop	Reg Reg Infr Infr Protecoduct ights gemo erty iew of ntrep tths a Succentrep ole fro	istration of Trac ingement of Trac troduction of In- ction, Revocatio tion, Nature and s, right of broad ent of Copy Rigl and cyberspace of Information T preneurship – I and uncover the t cess Stories: - preneurs, their jo om their own co	lifferent kinds and for le Mark; Deceptive s de Mark with Case str Unit –III dustrial Designs Feat n, Infringement and F scope, Rights confer casting organization it with case studies e: Emergence of cybe echnology Act 2000 a Unit –IV cearn how entreprenet rue facts. Explore E-o Global legends Un purneys, their challen untries have become s	rms of Trade marks, R similarity; Transfer of udies and Remedies. ures of Industrial, Des Remedies, Case studies red by copy right, Cop as and performer's rig er-crime; Meaning and and IT Amendment Act urship has changed the cells on Campus derstand how ordinan ges, and their success a successful entrepreneut	Trad ign. yy riş hts, l diff 200 worl worl	able and nor e Mark, ECO 09 Hr Procedure for ght protection Exceptions of Cerent types of 06 Hr d. Identify si cople becomes. Understand				
La Indo ob Co Co tra Co Ind cyl Ind ent Lis suc ho Ch	bel, Passing off, dustrial Design taining Design F opy Right: Intro nsfer of copy r opy Right, Infrin, tellectual prope bercrime. Overv troduction to E trepreneurial my sten to Some ccessful global e w ordinary peop naracteristics of	Reg Reg Infr Prote- oduct ights gema erty tiew of ntrep ths a Succentrep ole fr f a S	istration of Trac ingement of Trac troduction of In- ction, Revocatio tion, Nature and s, right of broad ent of Copy Rigl and cyberspace of Information T preneurship – I and uncover the cess Stories: - preneurs, their jo om their own co successful Entre	tifferent kinds and for le Mark; Deceptive s de Mark with Case str Unit –III dustrial Designs Feat n, Infringement and F scope, Rights confer casting organization it with case studies Emergence of cybe echnology Act 2000 a Unit –IV cearn how entreprenet rue facts. Explore E-o Global legends Un purneys, their challen untries have become s preneur Understand	rms of Trade marks, R similarity; Transfer of udies and Remedies. ures of Industrial, Des Remedies, Case studies red by copy right, Cop as and performer's rig er-crime; Meaning and and IT Amendment Act urship has changed the cells on Campus derstand how ordinating ges, and their success	Trad ign. by rights, l diff 200 worl y po storie rs. urney	able and non e Mark, ECC 09 Hrs Procedure for Exceptions of erent types of 06 Hrs d. Identify since excepte becom es. Understand				

concept of different entrepreneurial styles. Identify your own entrepreneurship style based on your personality traits, strengths, and weaknesses. Learn about the 5M Model, each of the five entrepreneurial styles in the model, and how they differ from each other. **Communicate Effectively:** Learn how incorrect assumptions and limiting our opinions about people can negatively impact our communication. Identify the barriers which cause communication breakdown, such as miscommunication and poor listening, and learn how to overcome them.

Communication Best Practices. Understand the importance of listening in communication and learn to listen actively. Learn a few body language cues such as eye contact and handshakes to strengthen communication. (Practical Application)

Unit –V	07Hrs
Design Thinking for Customer Delight: - Understand Design Thinking as a problem	m-solving
process. Describe the principles of Design Thinking. Describe the Design Thinking process.	
Sales Skills to Become an Effective Entrepreneur: - Understand what customer focus is an	nd how all
selling effort should be customer-centric. Use the skills/techniques of personal selling, Show	and Tell,

and Elevator Pitch to sell effectively.

Managing Risks and Learning from Failures: - Identify risk-taking and resilience traits. Understand that risk-taking is a positive trait. Learn to cultivate risk-taking traits. (Practical Application) Appreciate the role of failure on the road to success, and understand when to give up. Learn about some entrepreneurs/risk-takers. (Practical Application).

Are You Ready to be an Entrepreneur: - Let's ask "WHY" Give participants a real picture of the benefits and challenges of being an entrepreneur. Identify the reasons why people want to become entrepreneurs. Help participants identify why they would want to become entrepreneurs.

Reference Books

1.	Law Relating to Intellectual Property, Wadehra B L,5 th Edition, 2012, Universal Law Pub Co.
	LtdDelhi, ISBN: 9789350350300

- 2. Intellectual Property Rights: Unleashing Knowledge Economy, PrabuddhaGanguly, 1st Edition, 2001, Tata McGraw Hill Publishing Company Ltd., New Delhi, ISBN: 0074638602.
- 3. Intellectual Property and the Internet, Rodney Ryder, 2002, Lexis Nexis U.K., ISBN: 8180380025, 9788180380020.
- **4.** Entrepreneurship, Rajeev Roy, 1st Edition, 2012, Oxford University Press, New Delhi, ISBN: 9780198072638.

Course Outcomes: After completing the course, the students will be able to

- **CO1:** Comprehend the applicable source, scope and limitations of Intellectual Property within the purview of engineering domain.
- **CO2:** Knowledge and competence related exposure to the various Legal issues pertaining to Intellectual Property Rights with the utility in engineering perspectives.
- **CO3:** Enable the students to have a direct experience of venture creation through a facilitated learning environment.
- **CO4:** It allows students to learn and apply the latest methodology, frameworks and tools that entrepreneurs use to succeed in real life.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	2	-	1	2	2	-	1
CO2	1	1	-	-	-	3	2	3	1	2	-	1
CO3	-	1	-	-	-	2	1	3	3	3	3	3
CO4	-	1	2	2	3	-	-	-	1	-	2	1

	Semester: VI						
	AUTOMATIC PROCESS CONTROL TECHNOLOGY						
	(Theory & Practice)						
Cou	rse Code	:	18EI62		CIE	:	100+50 Marks
Cree	dits: L:T:P	:	3:0:1		SEE	:	100+50 Marks
Tota	l Hours	:	39L+33P		SEE Duration	:	03+03 Hours
Cou	rse Learning (Dbj	ectives: The s	tudents will be able to			
1		ne c	oncepts and a	pplications of basic & advar	nced Automatic F	roce	ess Control
	Systems.						
2				nance of various Analog and		ic Pl	D controllers.
3			•	s Control loop Tuning proce	edures.		
4	Create ISA sy	/mb	ols and create	P&ID flow Diagrams.			
							1
				Unit-I			07 Hrs
	Introduction to Process control: Introduction, Process control systems, Process-Control Block						
-	Diagram, control system evaluation, Stability, Steady State Regulation, Transient Regulation.						
	Analog & Digital Processing: Data representation, On/Off Control, Analog Control, Digital Control,						
1			0	control, Smart Sensor, No		ol Sy	stems, PLC for
On/O	Off Control app	lica	tion, Process	Control Drawings, Problems	5.		1
				Unit – II			09 Hrs
				n, Process Characteristics	, Process Equa	tion,	Process Load,
	0,		U ,	ntrol System Parameters.			
Con	troller Modes	Controller Modes: Continuous Controller Modes, Mathematical Analysis of Two-Position Controller					

Controller Modes: Continuous Controller Modes, Mathematical Analysis of Two-Position Controller Mode, Direct & Reverse Action, **Mathematical Analysis** of Single-Mode (P-Controller), 2-Mode & 3-Mode Composite Controllers, Applications & Problems on Predicting Controller Outputs - analytically.

Unit –III09 HrsAnalog controller Design: Introduction, Electronic controllers, Error Detector, Design of an On/Off
Controller, Design of Single-Mode, 2-Position and 3-Position continuous Controller Modes, Design
exercises.

Alarms: Single and multi-variable alarms, Design examples.

Unit –IV 07 Hrs Digital controllers: Introduction, Digital Electronic Methods, Computers in Process Controls, DAS, Supervisory Control, Controller Software, Computer Controller Modes, P, I, D, and PID Digital Controller Algorithms, Computer Controllers- Examples. Control loop characteristics: Introduction, Control system configurations, Cascade Control, Multi-Variable Control systems, Analog Control, Supervisory & Direct Digital Control. Unit –V 07Hrs Process loop tuning methods: Open-Loop Transient Response Method and Ziegler-Nichols Closed-Loop Method for P, PI, & PID control Modes, Frequency Response Methods for P, I, & D Modes. P&ID Symbols, Introduction, Connecting Lines, General Instruments or Functions, Actuators & Process Elements, P&ID for a Chemical Process, ISA Flow Diagrams, - Drill Problems. Practical: **PID Automatic Controller Tuning Experiments:** Tuning and Testing the Performance of Flow control loop. 1 2 Tuning and Testing the Performance of Temperature control loop. Tuning and Testing the Performance of Level control loop. 3 4 Tuning and Testing the Performance of Pressure control loop. Virtual Instrumentation Based Process Control Experiments: Simulation experiment on V.I. for temperature indication and annunciation 1 Simulate level measurement and indication of emergency shutdown feature using 2 LabVIEW.

3 LabVIEW based Data Acquisition System design and realization for Multiple Parameter (temperatures) measurements using NI-DAQ.

Two-Point Calibration Technique for Analog Instruments Calibration:

- 1 Op-Amp-based Electronic Temperature Indicator using Thermocouple transducer signal conditioning and 2-point Calibration.
- 2 Op-Amp-based Electronic Strain Indicator using Cantilever set-up signal conditioning and 2-point Calibration

Micro Controller - based Calibration Experiments:

- 1 MC-based Thermistor Temperature Indicator Programming, & Calibration using Look-Up Table Technique.
- 2 MC-based Load Indicator Programming, & Calibration using Look-Up Table Technique

Advanced Process Control Demo Experiments using Universal Process Control Trainer:

- 1 Design and demonstrate the Ratio Process Controller to control the ratio of two liquids to be mixed with the given ratio using UPCT.
- 2 Configure and realize a cascade multi-variable Process variable control loop with level & flow control loops, using UPCT
- 3 Tuning and Testing the Performance of Advanced Process control loops, using the Multi-Process Trainer

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand the basic concepts and develop schematics & block diagrams for various							
	Industrial process control systems, using ISA Standards.							
CO2:	Analyze & Design electronic analog P, I, D, PI, PD, PID controllers and write the algorithms							
	for their digital implementation.							
CO3:	Apply the techniques of control loop tuning for accurate control of Processes.							
CO4:	Create ISA Flow Diagrams using P&ID Symbols for industrial process control environment.							

Refer	rence Books
1	Curtis D. Johnson, Process Control Instrumentation Technology, 7 th Edition, 2012, Prentice hall of India , ISBN 81-7758-410-3
2	S. K. Singh, Process Control – Concepts, Dynamics and Applications, 2009, Prentice Hall of India, ISBN-978-81-203-3678-0.
3	Bela G. Liptak, Instrument Engineers Handbook, Process Measurement, Volume 1,"Process Control", volume-2, 3 rd Edition, 2010, Chilton Book Company, ISBN-81-7956-540-8
4	Kirk & Rimboi, Instrumentation, 2 nd Edition, 2010, PHI, ISBN 81-7758-410-5.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	3	3	1	1	-	2	3	1	3
CO2	3	3	3	3	3	2	2	-	2	3	2	3
CO3	3	3	3	2	3	1	-	-	2	3	1	2
CO4	2	3	3	3	2	1	-	-	1	2	-	3

			Sei	mester: VI				
		A	ADVANCED MICRO-CO	ONTROLLER & APPLICA	TION			
			(Theor	ry & Practice)				
Course Code : 18EI63				CIE :			100+50 Marks	
Credits: L:T:P :		:	3:1:1	SEE	:	: 100+50 Mark		
	l Hours	:	39L+26T+ 35P	SEE Duration	n :	03+03	Hours	
Cour			bjectives: The students wi					
1				ARM processor architecture				
2	Learn the	А	RM Instruction set of	ARM microcontroller and	to lea	rn the	assembly	
	programmi	<u> </u>						
3			numb instructions of ARM					
4	Understand	l Va	arious Interrupts and excep	tion handling in ARM control	ller.			
			TT •	T			07.11	
	(Unit			1	07 Hrs	
				philosophy, The ARM desig	gn philo	osophy,	embeddec	
			bedded system software, A		minalin		vtonciona	
	-		-	rrent program status register,	pipeini	e, core e	xtensions	
Arch	itecture revi	5101	ns, ARM processor families				0.0.77	
			Unit -				09 Hrs	
				rocessing Instructions, Branch				
Instru	uctions, Soft	wa	re Interrupt Instruction, Pro	ogram Status Register Instruc	tions, L	oading	Constants	
ARM	Iv5E Extens	ion	s, and Conditional Execution	on.				
			Unit -	-III			09 Hrs	
Intro	duction to	the	e THUMB Instruction se	t: Thumb register Usage, AF	RM-Thu	ımb Inte	rworking	
				Instructions, Single register				
			-	k Instructions, and Software				
	amming.	LU	ad Store Instructions, Sta	instructions, and Software	menu	pr mser		
progr	anning.		Unit -	N /			07 Hrs	
Intor						Tutoma		
	-			ns, Exception Handling, Inte	rrupis,	Interrup	t nandling	
scher	nes, vector t	abi					0	
			Unit				07 Hrs	
	-			link a group of 8 LEDs with		•	per moto	
contr	ol, DC moto	or co	ontrol LCD interface, 4 x 4	Keypad, Timers, ADC, DAC	, UAR	Г.		
Prac	tical:							
Softv	vare Simula	tio	n Programs					
1				data stored in one memory to	anothe	r block		
2			gram to Exchange block of					
3				mber out of 5 data stored in n	nemory			
4			gram to sort 10 data stored					
5			gram to add two 64 bit num					
	6 Write a program to find factorial of given number using LOOK UP TABLE							
7			ram to convert 3 digit Hex	to BCD				
			ING PROGRAMS					
1				gram for LEDs with a delay.	1			
2	0			gram for Stepper motor contro		~		
3				gram for DC motor control Int	erracing	g.		
4			develop an interfacing prog					
	besign a	uu (develop an interfacing prog	grann 101 4 x 4 Neypau.				

Course Outcomes: After completing the course, the students will be able to					
CO1:	Understand the Design of a system as per needs and specifications using ARM controller.				
CO2:	Apply suitable code and interface to solve engineering problems using ARM controller.				
CO3:	Analyze and evaluate the different coding techniques to design compact code.				
CO4:	Develop a system for real time applications.				

Reference Books					
1	ARM system developers guide, Andrew N Sloss, Dominic Symes and Chris Wright, Elsevier,				
	2008, Morgan Kaufman publishers, ISBN: 1558608745.				
2	LPC 2148 User Manual				
3	ARM System on chip Architecture, Addison Wesley, Formatted: paperback, 2008, ISBN:				
	978-0201675191.				
4	Embedded Systems: An Integrated Approach, Lyla B Das, 2013, Pearson Education,				
	ISBN: 978-81-317-8766-3.				

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks are considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks are executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	-	0	0	-	-	-	-	-	-	1
CO2	1	1	-	0	-	-	-	-	-	-	-	1
CO3	1	2	1	1	1	-	-	-	-	-	-	1
CO4	1	-	1	1	1	-	-	-	1	1	1	1

	Semester: VI								
	MINOR PROJECTS								
Cou	rse Code	:	18EI64		CIE	:	50 Marks		
Crec	lits: L:T:P	:	0:0:2		SEE	:	50 Marks		
Tota	Total Hours		26P		SEE Duration	:	2.00 Hours		
Cou	Course Learning Objectives: The students will be able to								
1	Knowledge	e A	pplication: A	equire the ability to make links a	cross different are	eas	of knowledge		
	and to gen	era	te, develop a	nd evaluate ideas and informatio	n so as to apply t	hes	e skills to the		
	project tasl	ζ.							
2	Communic	atio	on: Acquire	he skills to communicate effectiv	ely and to present	ide	as clearly and		
	coherently	to a	a specific au	lience in both the written and oral	forms.		-		
3	Collaborati	ion	: Acquire co	llaborative skills through working	ng in a team to a	achi	ieve common		
	goals.		_	-					
4	Independen	nt L	Learning: Lea	rn on their own, reflect on their l	earning and take a	ppr	opriate action		
	to improve it.								

Guidelines for Minor Project

- 1. The minor project is to be carried out individually or by a team of two-three students.
- 2. Each student in a team must contribute equally in the tasks mentioned below.
- 3. Each group has to select a current topic that will use the technical knowledge of their program of study after intensive literature survey.
- 4. The project should result in system/module which can be demonstrated, using the available resources in the college.
- 5. The CIE evaluation will be done by the committee constituted by the department. The committee shall consist of respective guide & two senior faculty members as examiners. The evaluation will be done for each student separately.
- 6. The final copy of the report should be submitted after incorporation of any modifications suggested by the evaluation committee.

The minor-project tasks would involve:

- 1. Carry out the Literature Survey of the topic chosen.
- 2. Understand the requirements specification of the minor-project.
- 3. Detail the design concepts as applicable through appropriate functional block diagrams.
- 4. Commence implementation of the methodology after approval by the faculty.
- 5. Conduct thorough testing of all the modules developed and carry out integrated testing.
- 6. Demonstrate the functioning of the minor project along with presentations of the same.
- 7. Prepare a project report covering all the above phases with proper inference to the results obtained.
- 8. Conclusion and Future Enhancements must also be included in the report.

The students are required to submit the report in the prescribed format provided by the department.

Course	Outcomes: After completing the course, the students will be able to							
CO 1:	Interpreting and implementing the project in the chosen domain by applying the concepts							
	learnt.							
CO 2:	The course will facilitate effective participation by the student in team work and							
	development of communication and presentation skills essential for being part of any of the							
	domains in his / her future career.							
CO 3:	Appling project life cycle effectively to develop an efficient product.							
CO 4:	Produce students who would be equipped to pursue higher studies in a specialized area or							
	carry out research work in an industrial environment.							

Scheme of Evaluation for CIE Marks:

Evaluation will be carried out in three phases:

Phase	Activity	Weightage
Ι	Synopsis submission, approval of the selected topic, Problem	10M
	definition, Literature review, formulation of objectives, methodology	
II	Mid-term evaluation to review the progress of implementation,	15M
	design, testing and result analysis along with documentation	
III	Submission of report, Final presentation and demonstration	25M
	Total	50M

Scheme of Evaluation for SEE Marks:

Sl. No.	Evaluation Component	Marks
1.	Written presentation of synopsis: Write up	5M
2.	Presentation/Demonstration of the project	15M
3.	Demonstration of the project	20M
4.	Viva	05M
5.	Report	05M
	Total	50M

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	2	1	2	2	2	2	2
CO2	3	3	3	3	2	2	1	2	2	2	2	2
CO3	3	3	3	3	2	2	1	2	2	2	2	2
CO4	1	1	1	1	1	1	1	2	1	2	1	1

	Semester: VI							
	INTERNET OF THINGS							
				(Elective C: Professional Elective	e)			
				(Common to All Branches)				
Cour	rse Code	:	18CS6C1		CIE	:	100 Marks	
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks	
Tota	l Hours	•••	39L		SEE Duration	:	3.00 Hours	
Cour	rse Learning	g 0	bjectives: T	he students will be able to				
1	Understand	l de	sign principl	es in IoT ,edge ,fog computing an	d its challenges			
2	Identify the	e In	ternet Conne	ctivity, security issues and its proto	ocols			
3	Explore and	d ir	nplement Int	ernet of Things (IoT) and New Con	nputing Paradign	ıs		
4	Apply and	an	alyze the Or	chestration and resource managem	nent inioT, 5G, I	Fog,	Edge, and	
	Clouds		-	-			-	

	Unit-I	08 Hrs						
	t of Things Strategic Research and Innovation Agenda -Internet of Things Vi							
	Strategic Research and Innovation Directions , IoT Applications , Internet of Things and Related							
Future Internet Technologies , Infrastructure , Networks and Communication , Processes , Data								
Manag	Management, Security, Privacy & Trust, Device Level Energy Issues							
	Unit – II	08 Hrs						
	t of Things Standardisation - Status, Requirements, Initiatives and Organi							
	action , M2M Service Layer Standardisation , OGC Sensor Web for IoT , IEEE ar							
	. Simpler IoT Word(s) of Tomorrow, More Interoperability Challenges to Cop							
	al vs Virtual, Solve the Basic First — The Physical Word, The Data Interoperabi							
	tic Interoperability, The Organizational Interoperability, The Eternal Interoperabi	lity, The						
Import	ance of Standardisation — The Beginning of Everything							
	Unit –III	08 Hrs						
Intern	et of Things Privacy, Security and Governance-Introduction, Overview of Activ	ity Chain						
- Go	vernance, Privacy and Security Issues, Contribution From FP7 Project, Security and	d Privacy						
Challer	nge in Data Aggregation for the IoT in Smart Cities-Security, Privacy and Trust in	Iot-Data-						
Platfor	Platforms for Smart Cities, First Steps Towards a Secure Platform, Smartie Approach							
1 IutiOI	*							
1 14101	Unit –IV	08 Hrs						
Intern	Unit –IV et of Things (IoT) and New Computing Paradigms Fog and Edge Computing Computi	ompleting						
Intern the Clo	Unit –IV et of Things (IoT) and New Computing Paradigms Fog and Edge Computing Co oud ,Advantages of FEC: SCALE , How FEC AchievesThese Advantages: SCANC 9,	ompleting Hierarchy						
Intern the Clo of Fog	Unit –IV et of Things (IoT) and New Computing Paradigms Fog and Edge Computing Co oud ,Advantages of FEC: SCALE , How FEC AchievesThese Advantages: SCANC 9, and Edge Computing , Business Models , Addressing the Challenges in Federat	ompleting Hierarchy ing Edge						
Intern the Clo of Fog Resour	Unit –IV et of Things (IoT) and New Computing Paradigms Fog and Edge Computing Co oud ,Advantages of FEC: SCALE , How FEC AchievesThese Advantages: SCANC 9,	ompleting Hierarchy ing Edge						
Intern the Clo of Fog	Unit –IV et of Things (IoT) and New Computing Paradigms Fog and Edge Computing Co oud ,Advantages of FEC: SCALE , How FEC AchievesThese Advantages: SCANC 9, and Edge Computing , Business Models , Addressing the Challenges in Federat rces, The Networking Challenge, The Management Challenge , Integrating IoT	ompleting Hierarchy ing Edge + Fog +						
Intern the Clo of Fog Resour	Unit –IV et of Things (IoT) and New Computing Paradigms Fog and Edge Computing Co oud ,Advantages of FEC: SCALE , How FEC AchievesThese Advantages: SCANC 9, and Edge Computing , Business Models , Addressing the Challenges in Federat	ompleting Hierarchy ing Edge						
Intern the Clc of Fog Resour Cloud Manag	Unit –IV et of Things (IoT) and New Computing Paradigms Fog and Edge Computing Co oud ,Advantages of FEC: SCALE , How FEC AchievesThese Advantages: SCANC 9, and Edge Computing , Business Models , Addressing the Challenges in Federat rces, The Networking Challenge, The Management Challenge , Integrating IoT Unit –V gement and Orchestration of Network Slices in 5G, Fog, Edge, and Clouds Introdu	ompleting Hierarchy ing Edge + Fog + 07 Hrs action ,						
Intern the Clo of Fog Resour Cloud Manag Backgr	Unit –IV et of Things (IoT) and New Computing Paradigms Fog and Edge Computing Co oud ,Advantages of FEC: SCALE , How FEC AchievesThese Advantages: SCANC 9, and Edge Computing , Business Models , Addressing the Challenges in Federat rces, The Networking Challenge, The Management Challenge , Integrating IoT Unit –V gement and Orchestration of Network Slices in 5G, Fog, Edge, and Clouds Introdu- round, Network Slicing in 5G, Network Slicing in Software-Defined Clouds, Network	ompleting Hierarchy ing Edge + Fog + 07 Hrs action ,						
Intern the Clo of Fog Resour Cloud Manag Backgr	Unit –IV et of Things (IoT) and New Computing Paradigms Fog and Edge Computing Co oud ,Advantages of FEC: SCALE , How FEC AchievesThese Advantages: SCANC 9, and Edge Computing , Business Models , Addressing the Challenges in Federat rces, The Networking Challenge, The Management Challenge , Integrating IoT Unit –V gement and Orchestration of Network Slices in 5G, Fog, Edge, and Clouds Introdu	ompleting Hierarchy ing Edge + Fog + 07 Hrs action ,						
Intern the Clo of Fog Resour Cloud Manag Backgr	Unit –IV et of Things (IoT) and New Computing Paradigms Fog and Edge Computing Co oud ,Advantages of FEC: SCALE , How FEC AchievesThese Advantages: SCANC 9, and Edge Computing , Business Models , Addressing the Challenges in Federat rces, The Networking Challenge, The Management Challenge , Integrating IoT Unit –V gement and Orchestration of Network Slices in 5G, Fog, Edge, and Clouds Introdu- round, Network Slicing in 5G, Network Slicing in Software-Defined Clouds, Network	ompleting Hierarchy ing Edge + Fog + 07 Hrs action ,						
Intern the Clo of Fog Resour Cloud Manag Backgr Manag	Unit –IV et of Things (IoT) and New Computing Paradigms Fog and Edge Computing Co bud ,Advantages of FEC: SCALE , How FEC AchievesThese Advantages: SCANC 9, and Edge Computing , Business Models , Addressing the Challenges in Federat rces, The Networking Challenge, The Management Challenge , Integrating IoT Unit –V gement and Orchestration of Network Slices in 5G, Fog, Edge, and Clouds Introdu ound, Network Slicing in 5G, Network Slicing in Software-Defined Clouds, Networ ement in Edge and Fog	ompleting Hierarchy ing Edge + Fog + 07 Hrs action , rk Slicing						
Intern the Clo of Fog Resour Cloud Manag Backgr Manag	Unit –IV et of Things (IoT) and New Computing Paradigms Fog and Edge Computing Co oud ,Advantages of FEC: SCALE , How FEC AchievesThese Advantages: SCANC 9, and Edge Computing , Business Models , Addressing the Challenges in Federat rces, The Networking Challenge, The Management Challenge , Integrating IoT Unit –V gement and Orchestration of Network Slices in 5G, Fog, Edge, and Clouds Introdu- round, Network Slicing in 5G, Network Slicing in Software-Defined Clouds, Network ement in Edge and Fog Understand and Explore Internet of Things (IoT) with New Computing Paradigms	ompleting Hierarchy ing Edge + Fog + 07 Hrs action , rk Slicing						
Intern the Clo of Fog Resour Cloud Manag Backgr Manag Course CO1:	Unit –IV et of Things (IoT) and New Computing Paradigms Fog and Edge Computing Co oud ,Advantages of FEC: SCALE , How FEC AchievesThese Advantages: SCANC 9, and Edge Computing , Business Models , Addressing the Challenges in Federat rces, The Networking Challenge, The Management Challenge , Integrating IoT Unit –V gement and Orchestration of Network Slices in 5G, Fog, Edge, and Clouds Introdu- ound, Network Slicing in 5G, Network Slicing in Software-Defined Clouds, Network ement in Edge and Fog e Outcomes: After completing the course, the students will be able to Understand and Explore Internet of Things (IoT) with New Computing Paradigms Fog, Edge, and Clouds	mpleting Hierarchy ing Edge + Fog + 07 Hrs ottion , tk Slicing						
Intern the Clo of Fog Resour Cloud Manag Backgr Manag	Unit –IV et of Things (IoT) and New Computing Paradigms Fog and Edge Computing Co oud ,Advantages of FEC: SCALE , How FEC AchievesThese Advantages: SCANC 9, and Edge Computing , Business Models , Addressing the Challenges in Federat rces, The Networking Challenge, The Management Challenge , Integrating IoT Unit –V gement and Orchestration of Network Slices in 5G, Fog, Edge, and Clouds Introdu- ound, Network Slicing in 5G, Network Slicing in Software-Defined Clouds, Network ement in Edge and Fog e Outcomes: After completing the course, the students will be able to Understand and Explore Internet of Things (IoT) with New Computing Paradigms Fog, Edge, and Clouds Analyze Prototyping and demonstrate resource management concepts in New C	mpleting Hierarchy ing Edge + Fog + 07 Hrs ottion , tk Slicing						
Intern the Clo of Fog Resour Cloud Manag Backgr Manag Course CO1:	Unit –IV et of Things (IoT) and New Computing Paradigms Fog and Edge Computing Co oud ,Advantages of FEC: SCALE , How FEC AchievesThese Advantages: SCANC 9, and Edge Computing , Business Models , Addressing the Challenges in Federat rces, The Networking Challenge, The Management Challenge , Integrating IoT Unit –V gement and Orchestration of Network Slices in 5G, Fog, Edge, and Clouds Introdu- ound, Network Slicing in 5G, Network Slicing in Software-Defined Clouds, Network ement in Edge and Fog e Outcomes: After completing the course, the students will be able to Understand and Explore Internet of Things (IoT) with New Computing Paradigms Fog, Edge, and Clouds	ompleting Hierarchy ing Edge + Fog + 07 Hrs action , rk Slicing s like 5G, omputing						

applications
CO4: Propose IoT-enabled applications for building smart spaces and services with security
features, resource management and edge computing

Refere	Reference Books								
1	Raj Kamal, Internet of Things: Architecture and Design Principles, TMH Publications, ISBN: 9789352605224, 2017.								
2	Rajkumar Buyya, Satish Narayana Srirama, Fog and Edge Computing: Principles and Paradigms, 2019, Wiley series on parallel and distributed computing, ISBN: 978-1-119-52498-4.								
3	Vijay Madisetti and Arshdeep Bahga, Internet of Things (A Hands-on-Approach), 1 st Edition, 2014, VPT, ISBN: 978-0996025515.								
4	Daniel Minoli, Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M Communications, 1 st Edition,2013, Willy Publications , ISBN: 978-1-118-47347-4,								

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks are executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	1	-	2	2	-	-	1	-	2
CO2	2	2	1	1	-	2	2	-	1	1	-	3
CO3	1	2	1	1	-	2	2	-	1	1	-	2
CO4	1	2	2	2	-	3	3	1	2	2	-	3

				Semester: VI				
			1	AIRCRAFT INSTRUMENTATI	ON			
	(Professional Elective : Group C)							
Cou	rse Code	:	18EI6C2		CIE	:	100 Marks	
	dits: L:T:P	:	3:0:0		SEE	:	100 Marks	
Tota	al Hours	:	39L		SEE Duration	:	3.00 Hours	
Course Learning Objectives: The students will be able to								
1 Understand qualitative and quantitative displays of an aircraft.								
2	Gain knowledge on air data instruments and how they are incorporated in an aircraft.							
3	Develop th	e k	nowledge of	safety aspects of an aircraft such a	as warning system	s		
4				ope and its related flight instrum			ew of engine	
				nprove its efficiency			C	
	•		*	- · ·				
				Unit-I			07 Hrs	
Case				ys -Qualitative and quantitative dis rajectory Data Using Flight Instru				
			Intro du ati an	UUD Evendormentals Agentication	a and Evanuation (Car	a atta diaa)	
неа	d-up Displa	ys:	Introduction	, HUD Fundamentals, Application Unit – II	s and Examples. (Cas	09 Hrs	
X 7	4]	T., J	: Instantaneous Vertical Airspeed i				
				beed indicator, Mach warning syste				
				ntroduction, guidance vs. navigati				
				Trade-offs, and Integrated Avioni		1 110	vigation, The	
vem	cic, i nases o	11.	iigiit, Desigi	Unit –III			09 Hrs	
Fno	gine Instru	m	nts. Dre	ssure measurements indicatin	a systems pre	0011	1	
	,			indicating systems: variable re				
	eatstone brid			indicating systems. variable re	sistance system	.s, i	sensor units,	
		<u> </u>	•		uala aantaantian	<u>_1</u>	light southal	
0	•	•		nary and secondary flight cont		al i	light control	
lınk	age system,	ΡĽ	y by wire c	ontrol system, fly by light control	ol systems.			
				Unit –IV			07 Hrs	
prec	ession, lim			nts: The gyroscope and its pro- yroscope, gyro horizon, direct				
mai	cators			TI '4 X 7			07.11	
1712	14 D-4- D			Unit –V	-1.4 1.4. D. 1		07 Hrs	
				Box introduction, contents, Flip				
				ion of Flight Recorders, Aircraft	integrated Data S	yste	ms, Types of	
Sign	iais to be reco	ord	eu, UVK, FL	DR, DAS, PCM.				
0	0 1		A 64					
				leting the course, the students wi			<u> </u>	
CO				nd extent of avionics and identify	y the different typ	pes	or instrument	
				the indicators in each category. measurement in Aircraft Instrumer				
CO2		+0 1	the need tor	moosurement in Aircrett Instrumer	totion			

- **CO3:** Analyze different instrumentation and its applications.
- **CO4:** Interpret the Case Studies with the theory learnt and hence develop a system concept operational in latest aircraft instrumentation.

1	Refere	nce Books
	1	E H J Pallet , Aircraft instruments and Integrated systems, , 2 nd Edition, 1992, Pitman and Sons Longman Publishers, ISBN: 582086272
	2	Cary Spitzer, Uma Ferrell, Thomas Ferrell, Digital Avionics Handbook, 2017, CRC Press, ISBN: 978-1138076983
	3	Avionics Navigation Systems Myron Kayton & Walter R Fried, John Wiley & Sons. ISBN: 978-0471547952.
	4	Introduction to Flight, John.D.Anderson, 7 th edition, 2011, Mcgraw Hill Education. ISBN: 9780070700116.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks are executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	2	1	-	-	1	-	2	2	-	1
CO2	1	-	1	2	-	1	1	-	2	2	-	1
CO3	1	1	2	1	-	-	1	-	2	-	-	2
CO4	1	1	1	1	-	1	1	-	2	2	-	2

				Semester: VI		
			A	ADVANCED CONTROL SYSTEMS		
				(Professional Elective : Group C)		
Cour	rse Code	:	18EI6C3	CIE	:	100 Marks
Cred	lits: L:T:P	:	3:0:0	SEE	:	100 Marks
Tota	l Hours	:	39L	SEE Duration	:	3.00 Hours
Cour	rse Learning	g O	bjectives: T	The students will be able to		
1	To understa placement.		basics of lin	near and nonlinear control systems, state space analy	sis /	and pole
2	To understa	and	different an	alysis techniques.		
3	To create a	nd	analyze state	e space models.		
4	To develop) sta	ite space mo	dels.		
				Unit-I		07 Hrs
				n, properties of nonlinear systems.		
				ems: Incidental nonlinearity, Intentional nonlinearit		
				action, basics of describing function analysis,		
Deriv	vation of des	cril	oing function	n for relays, Stability criteria in terms of describing	func	
						0.0 TT
				Unit – II		09 Hr
				ction, Concept of state, state space model from		sfer function
						sfer function
Deter		ft		ction, Concept of state, state space model from		sfer function
Deter Cano	rmination o	ft	ransfer fun	ction, Concept of state, state space model from	n or	sfer function Controllab
Deten Cano Deco	rmination o	ft	ransfer fun	ction, Concept of state, state space model from ction from state equation, Phase variable Form nction : Series decomposition, parallel decomposit	n or	sfer function Controllabl
Deter Cano Deco repea	rmination o onical Model omposition ated poles.	of t	ransfer fund	ction, Concept of state, state space model from ction from state equation, Phase variable Form nction: Series decomposition, parallel decomposit Unit –III	n or	sfer function Controllabl
Deter Cano Deco repea	rmination o onical Model omposition ated poles. racteristic E	of t	ransfer fund transfer fund ations, Eige	ction, Concept of state, state space model from ction from state equation, Phase variable Form nction: Series decomposition, parallel decomposi Unit –III en values and Eigenvectors:	n or tion-	sfer function Controllabl -simple pole 09 Hrs
Deter Cano Deco repea Char Intro	rmination o onical Model omposition o ated poles. racteristic E duction, De	of t of Cqu	ransfer fund transfer fund ations, Eige ation of ch	ction, Concept of state, state space model from ction from state equation, Phase variable Form nction : Series decomposition, parallel decomposi Unit –III on values and Eigenvectors: haracteristic Equation from Differential Equatio	tion-	sfer function Controllabl -simple pole 09 Hrs Derivation c
Deter Cano Deco repea Char Introd chara	rmination o onical Model omposition o ated poles. racteristic E duction, De acteristic Eq	of t of Cqu eriv	ransfer fund transfer fund ations, Eige ation of cl ion from Tr	ction, Concept of state, state space model from ction from state equation, Phase variable Form nction : Series decomposition, parallel decomposit Unit –III on values and Eigenvectors: haracteristic Equation from Differential Equatio ransfer Function, Derivation of characteristic Equ	n or tion- on,] uatic	sfer function Controllabl -simple poles 09 Hrs Derivation con from Stat
Deter Cano Deco repea Char Introd chara Equa	rmination o onical Model omposition ated poles. racteristic E duction, De acteristic Eq ation. State S	of t of Cqu eriv uat	ransfer fund transfer fund ations, Eige ation of ch ion from Tr we Represent	ction, Concept of state, state space model from ction from state equation, Phase variable Form nction : Series decomposition, parallel decomposit Unit –III on values and Eigenvectors: haracteristic Equation from Differential Equatio ransfer Function, Derivation of characteristic Equations of Transfer Function Systems. Eigen values a	n or tion- on, 1 uatic	sfer function Controllabl -simple poles 09 Hrs Derivation con from Stat Eigen vectors
Deter Cano Deco repea Char Introd chara Equa	rmination o onical Model omposition ated poles. racteristic E duction, De acteristic Eq ation. State S	of t of Cqu eriv uat	ransfer fund transfer fund ations, Eige ation of ch ion from Tr we Represent	ction, Concept of state, state space model from ction from state equation, Phase variable Form nction : Series decomposition, parallel decomposit Unit –III on values and Eigenvectors: haracteristic Equation from Differential Equatio ransfer Function, Derivation of characteristic Equ	n or tion- on, 1 uatic	sfer function Controllabl -simple poles 09 Hrs Derivation con from Stat Eigen vectors
Deter Cano Deco repea Char Intro- chara Equa Gene	rmination o onical Model omposition o ated poles. racteristic Eq duction, De acteristic Eq ation. State S eralized Eig	of t of cqu criv uat pac gen	ransfer fun transfer fun ations, Eige ation of cl ion from Tr we Represent vectors. Si	ction, Concept of state, state space model from ction from state equation, Phase variable Form nction : Series decomposition, parallel decomposit Unit –III on values and Eigenvectors: haracteristic Equation from Differential Equatio ransfer Function, Derivation of characteristic Equations of Transfer Function Systems. Eigen values a	n or tion- on, 1 uatic	sfer function Controllabl -simple pole 09 Hrs Derivation con from Stat Eigen vector
Deter Cano Deco repea Char Intro- chara Equa Gene	rmination o onical Model omposition o ated poles. racteristic Eq duction, De acteristic Eq ation. State S eralized Eig	of t of cqu criv uat pac gen	ransfer fun transfer fun ations, Eige ation of cl ion from Tr we Represent vectors. Si	ction, Concept of state, state space model from ction from state equation, Phase variable Form nction : Series decomposition, parallel decomposit Unit –III en values and Eigenvectors: haracteristic Equation from Differential Equatio ransfer Function, Derivation of characteristic Equations of Transfer Function Systems. Eigen values a milarity Transformations: Invariance Propertie	n or tion- on, 1 uatic	sfer function Controllabl -simple poles 09 Hrs Derivation con from Stat Eigen vectors
Deter Cano Deco repea Char Intro chara Equa Gene Trans	rmination o onical Model omposition ated poles. racteristic E duction, De acteristic Eq ation. State S eralized Eig sformation, G	f t of Cqu eriv pac gen Cor	ransfer fun transfer fun ations, Eige ation of cl ion from Tr ve Represent vectors. Si ntrollable Ca	ction, Concept of state, state space model from ction from state equation, Phase variable Form nction : Series decomposition, parallel decomposi Unit –III en values and Eigenvectors: haracteristic Equation from Differential Equatio ransfer Function, Derivation of characteristic Equations of Transfer Function Systems. Eigen values a milarity Transformations: Invariance Propertie nonical Form.	n or tion- on, 1 uatic and 1 es o	Sfer function Controllabl -simple poles 09 Hrs Derivation con from Stat Eigen vectors of Similarit
Deter Cano Deco repea Char Introd chara Equa Gene Trans Solut	rmination o onical Model omposition of ated poles. racteristic E duction, De acteristic Eq ation. State S eralized Eig sformation, O tion of Stat	f t of cqu eriv uat pac gen Cor e F	transfer fund transfer fund ations, Eige ation of cl ion from Tr we Represent vectors. Si attrollable Ca	ction, Concept of state, state space model from ction from state equation, Phase variable Form nction : Series decomposition, parallel decomposi Unit –III en values and Eigenvectors: haracteristic Equation from Differential Equatio ransfer Function, Derivation of characteristic Equations of Transfer Function Systems. Eigen values a milarity Transformations: Invariance Propertie nonical Form. Unit –IV	n or tion- uatic and 1 es o	sfer function Controllabl -simple poles 09 Hrs Derivation con from Stat Eigen vectors of Similarit 07 Hrs sistion Matrix
Deter Cano Deco repea Char Introd chara Equa Gene Trans Solut Propo	rmination o onical Model omposition of ated poles. racteristic Eq duction, De acteristic Eq tion. State S eralized Eig sformation, of tion of Stat erties of state	f t of Cqu eriv uat pac gen Cor e E e tra	transfer fund transfer fund ations, Eige ation of cl ion from Tr we Represent vectors. Si htrollable Ca Cquations: I ansition mat	ction, Concept of state, state space model from ction from state equation, Phase variable Form nction : Series decomposition, parallel decomposit Unit –III on values and Eigenvectors: haracteristic Equation from Differential Equatio ransfer Function, Derivation of characteristic Equations of Transfer Function Systems. Eigen values a milarity Transformations: Invariance Propertie nonical Form. Unit –IV Introduction, classical power series method, State 7	n or tion- uatio and 2 Tran	Sfer function Controllable -simple pole 09 Hrs Derivation of Derivation of Similarit 07 Hrs sistion Matriz rmula.
Deter Cano Deco repea Char Introd chara Equa Gene Trans Solut	rmination o onical Model omposition of ated poles. racteristic Eq duction, De acteristic Eq ation. State S eralized Eig sformation, O tion of Stat erties of state tion of No	f t of Cqu eriv uat pac gen Cor e E e tra n-H	ransfer fun transfer fun ations, Eige ation of ch ion from Tr exe Represent vectors. Si ntrollable Ca cquations: I ansition mat Homogeneou	ction, Concept of state, state space model from ction from state equation, Phase variable Form nction : Series decomposition, parallel decomposition Unit –III en values and Eigenvectors: haracteristic Equation from Differential Equatio ransfer Function, Derivation of characteristic Equations of Transfer Function Systems. Eigen values a milarity Transformations: Invariance Propertie nonical Form. <u>Unit –IV</u> ntroduction, classical power series method, State 7 rix, Caley Hamilton theorem, Sylvester interpolation us state equation with input: classical solution	n or tion- uatio and 2 Tran	Sfer function Controllable -simple pole 09 Hrs Derivation of Derivation of Similarit 07 Hrs sistion Matriz rmula.
Deter Cano Deco repea Char Introd chara Equa Gene Trans Solut	rmination o onical Model omposition of ated poles. racteristic Eq duction, De acteristic Eq ation. State S eralized Eig sformation, O tion of Stat erties of state tion of No	f t of Cqu eriv uat pac gen Cor e E e tra n-H	ransfer fun transfer fun ations, Eige ation of ch ion from Tr exe Represent vectors. Si ntrollable Ca cquations: I ansition mat Homogeneou	ction, Concept of state, state space model from ction from state equation, Phase variable Form nction : Series decomposition, parallel decomposit Unit –III on values and Eigenvectors: haracteristic Equation from Differential Equation ransfer Function, Derivation of characteristic Equations of Transfer Function Systems. Eigen values a milarity Transformations: Invariance Propertie nonical Form. Unit –IV Introduction, classical power series method, State ' rix, Caley Hamilton theorem, Sylvester interpolation	n or tion- uatio and 2 Tran	Sfer function Controllabl -simple poles 09 Hrs Derivation con from Stat Eigen vectors of Similarit 07 Hrs sition Matriz mula. of differentia
Deter Cano Deco repea Char Introd chara Equa Gene Trans Solut equat	rmination o onical Model omposition ated poles. racteristic E duction, De acteristic Eq ation. State S eralized Eig sformation, O tion of Stat erties of state tion of No tion, Concep	f t of cqu criv pac cor cor cor e E e tra n-H	ransfer fun transfer fun ations, Eige ation of cl ion from Tr vectors. Si ntrollable Ca Cquations: I ansition mat Homogeneou f controllabil	ction, Concept of state, state space model from ction from state equation, Phase variable Form nction : Series decomposition, parallel decomposition Unit –III en values and Eigenvectors: haracteristic Equation from Differential Equation ransfer Function, Derivation of characteristic Equations of Transfer Function Systems. Eigen values a milarity Transformations: Invariance Propertie nonical Form. Unit –IV Introduction, classical power series method, State 7 rix, Caley Hamilton theorem, Sylvester interpolation us state equation with input: classical solution lity and observability. Unit –V	n, 1 n, 1 uatic and 2 rran n for on (Sfer function Controllabl -simple poles 09 Hrs Derivation con from Stat Eigen vectors of Similarit 07 Hrs sition Matriz rmula. of differentia
Deter Cano Deco repea Char Introd chara Equa Gene Trans Solut Propo Solut equat	rmination o onical Model omposition ated poles. racteristic E duction, De acteristic Eq ation. State S eralized Eig sformation, O tion of Stat erties of state tion of No tion, Concep Placement	f t of cqu eriv gen Cor cor e E e tra n-H ot of	ransfer fun transfer fun ations, Eige ation of cl ion from Tr exe Represent vectors. Si introllable Ca cquations: I ansition mat Homogeneou f controllabil echnique: In	ction, Concept of state, state space model from ction from state equation, Phase variable Form nction : Series decomposition, parallel decomposit Unit –III n values and Eigenvectors: haracteristic Equation from Differential Equatio ransfer Function, Derivation of characteristic Equations of Transfer Function Systems. Eigen values a milarity Transformations: Invariance Propertie nonical Form. Unit –IV ntroduction, classical power series method, State 7 rix, Caley Hamilton theorem, Sylvester interpolation us state equation with input: classical solution lity and observability. Unit –V ntroduction, Necessary and sufficient conditions	n or tion- n, 1 uatic and 2 es o Tran n for for	Sfer function Controllable -simple pole 09 Hrs Derivation con from State Eigen vectors of Similarit 07 Hrs sistion Matrix mula. of differentia 07 Hrs arbitrary pol
Deter Cano Deco repea Char Introd chara Equa Gene Trans Solut Propo Solut equat Pole place	rmination o onical Model omposition ated poles. racteristic E duction, De acteristic Eq ation. State S eralized Eig sformation, O tion of Stat erties of state tion, Concep Placement ement, Deter	f t of cqu eriv gen Cor cor e F e tra n-H ot of Te mir	ransfer fun transfer fun ations, Eige ation of cl ion from Tr exe Represent vectors. Si introllable Ca cquations: I ansition mat f controllabil echnique: In nation matrix	ction, Concept of state, state space model from ction from state equation, Phase variable Form nction : Series decomposition, parallel decomposit Unit –III unit –III n values and Eigenvectors: haracteristic Equation from Differential Equatio ransfer Function, Derivation of characteristic Equations of Transfer Function Systems. Eigen values a milarity Transformations: Invariance Propertie nonical Form. Unit –IV Introduction, classical power series method, State 7 rix, Caley Hamilton theorem, Sylvester interpolation us state equation with input: classical solution lity and observability. Unit –V ntroduction, Necessary and sufficient conditions x k, concept of state observer, full order state observer	n or tion- in, 1 uatic and 2 es of Tran n for for ver,	Sfer function Controllable -simple pole 09 Hrs Derivation con from State Eigen vectors of Similarit 07 Hrs sistion Matrix mula. of differentia 07 Hrs arbitrary pol dual problem
Deter Cano Deco repea Char Introd chara Equa Gene Trans Solut equat Propo Solut equat	rmination o onical Model omposition of ated poles. racteristic Eq duction, De acteristic Eq ation. State S eralized Eig sformation, O tion of Stat erties of state tion of Stat erties of state tion, Concep Placement ement, Deter ssary and su	f t of cqu eriv gen Cor cor e F e tra n-H ot of Te mir	ransfer fun transfer fun ations, Eige ation of cl ion from Tr exe Represent vectors. Si introllable Ca cquations: I ansition mat f controllabil echnique: In nation matrix	ction, Concept of state, state space model from ction from state equation, Phase variable Form nction : Series decomposition, parallel decomposit Unit –III n values and Eigenvectors: haracteristic Equation from Differential Equatio ransfer Function, Derivation of characteristic Equations of Transfer Function Systems. Eigen values a milarity Transformations: Invariance Propertie nonical Form. Unit –IV ntroduction, classical power series method, State 7 rix, Caley Hamilton theorem, Sylvester interpolation us state equation with input: classical solution lity and observability. Unit –V ntroduction, Necessary and sufficient conditions	n or tion- in, 1 uatic and 2 es of Tran n for for ver,	Sfer function Controllabl -simple poles 09 Hrs Derivation con from Stat Eigen vectors of Similarit 07 Hrs sition Matriz mula. of differentia 07 Hrs arbitrary pol dual problem
Deter Cano Deco repea Char Introd chara Equa Gene Trans Solut equat Propo Solut equat Pole place matri	rmination o onical Model omposition of ated poles. racteristic Eq duction, De acteristic Eq duction. State S eralized Eig sformation, O tion of Stat erties of state tion of Stat tion, Concep Placement ement, Deter ssary and su ix.	f t of cqu eriv uat pac gen Cor e E e tra n-H ot of Te miru	ransfer fund transfer fund ations, Eige ation of cl ion from Tri- ce Represent vectors. Si ntrollable Ca Cquations: I ansition mat Homogeneon f controllabil cchnique: In nation matrix cient condit	ction, Concept of state, state space model from ction from state equation, Phase variable Form nction : Series decomposition, parallel decomposition Unit –III en values and Eigenvectors: haracteristic Equation from Differential Equatio ransfer Function, Derivation of characteristic Equations of Transfer Function Systems. Eigen values a milarity Transformations: Invariance Propertie nonical Form. <u>Unit –IV</u> Introduction, classical power series method, State 7 rix, Caley Hamilton theorem, Sylvester interpolation us state equation with input: classical solution lity and observability. <u>Unit –V</u> Introduction, Necessary and sufficient conditions x k, concept of state observer, full order state observ- ion for state observation, and determination of st	n or tion- tion- n,]] uatic and] es of Es of Tran n for for ver, fate	sfer function Controllable -simple poles 09 Hrs Derivation confrom State Eigen vectors of Similarit 07 Hrs arbitrary poles dual problem observer gai
Deter Cano Deco repea Char Introd chara Equa Gene Trans Solut equat Propo Solut equat Place necess matri Adva	rmination o onical Model omposition ated poles. racteristic E duction, De acteristic Eq duction. State S eralized Eig sformation, O tion of Stat erties of state tion of Stat tion, Concep Placement ement, Deter ssary and su ix. anced Applie	f t of Quation con cor cor cor cor cor cor cor cor cor cor	ransfer fund transfer fund ations, Eige ation of cl ion from Tri- ve Represent vectors. Si introllable Ca Cquations: I ansition mat f controllabil echnique: In nation matrix cient condit	ction, Concept of state, state space model from ction from state equation, Phase variable Form nction : Series decomposition, parallel decomposit Unit –III unit –III n values and Eigenvectors: haracteristic Equation from Differential Equatio ransfer Function, Derivation of characteristic Equations of Transfer Function Systems. Eigen values a milarity Transformations: Invariance Propertie nonical Form. Unit –IV Introduction, classical power series method, State 7 rix, Caley Hamilton theorem, Sylvester interpolation us state equation with input: classical solution lity and observability. Unit –V ntroduction, Necessary and sufficient conditions x k, concept of state observer, full order state observer	n or tion- uatic and 2 es of Tran n for on of for ver, fate bile	sfer function Controllable -simple poles 09 Hrs Derivation confrom State Eigen vectors of Similarit 07 Hrs arbitrary poles dual problem observer gai

Course	ourse Outcomes: After completing the course, the students will be able to						
CO1:	Have a good understanding of linear, nonlinear, continuous & discrete control systems,						
	dynamic system modelling and analysis.						
CO2:	Apply the concepts of dynamic modelling, stability, pole-placement of control systems.						
CO3:	Analyze and evaluate dynamic control systems.						
CO4:	Develop/Create solutions for control systems problems.						

Refere	ence Books
1	B.N.Sarkar, Advanced control systems, 1 st Edition, 2013, PHI, ISBN: 9788120347106.
2	Dr.K.M.Soni, P.M.Tiwari, Ayushi Sharma, Advanced control systems, 4 th Edition 2013,
2	S.K.Kataria & Sons, ISBN: 978-81-907386-0-6.
2	Nagoor Kani, Advanced control Theory, 2 nd Edition, 2014, RBA Publications, ISBN:
3	4567146603.
4	Arthur G.O. Mutambara, Design and Analysis of Control Systems, 2 nd Edition,2017, CRC
4	Press Book, ISBN: 9781315140940.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks are executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	-	2	1	-	-	1	-	-	2
CO2	3	1	2	-	2	2	-	-	2	-	-	2
CO3	2	2	2	-	2	1	-	-	-	-	-	2
CO4	1	1	1	-	2	2	-	-	-	-	-	2

Semester: VI								
ROBOTICS								
				(Professional Elective : Group C)				
Cou	rse Code	:	18EI6C4	CIE		:	100 Marks	
Cree	Credits: L:T:P		3:0:0	SEE		:	100 Marks	
Tota	l Hours	:	39L	SEE	Duration	:	3.00 Hours	
Cou	rse Learning	g O	bjectives: T	he students will be able to				
1	Understand	l th	ne generic t	echnology and principles associated wi	th robotics	an	d automation	
	systems.							
2	Understand	l th	e principles	and operations of different sensors used for	or robotic ap	ppli	cations.	
3 Understand the kinematics and dynamics aspects of robotic system								
1	Give an insight into the different types of trajectories							

4 Give an insight into the different types of trajectories.

Unit-I	07 Hrs
Introduction: History of robots, asimovs laws of robotics, types of robots, robot usage, App	
robotics subsystems, Classification of robots, Robotic programming, and Degrees of Freedom	n.
Unit – II	09 Hrs
Actuators and Grippers: Hydraulic Actuators, Pneumatic Actuators, Grippers.	
Sensor and Vision: Sensor classification, Internal Sensors, External Sensors, Vision.	
Unit –III	09 Hrs
Robot kinematics: Direct Kinematics Problem, rotation matrices, composite rotation	matrices,
rotation about arbitrary axis, Euler Angles representation, homogeneous transformation,	denavit-
hartenberg parameters, Transformation between DH frames.	
Unit –IV	07 Hrs
Robot dynamics: Lagrangian formulation, Newton Euler formulation, recursive Newton	on Euler
algorithms.	
Unit –V	07 Hrs
Trajectory planning: Introduction, General considerations on Trajectory planning, joint-int	erpolated
Trajectories, calculation of a 4-3-4 Joint trajectory, Cubic Spline Trajectory.	

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understand a generic technology and principles associated with robotics and automation
	systems.
CO2:	Apply the principles and operations of different sensors used for robotic applications.
CO3:	Analyze the kinematics and dynamics aspects of robotic system.
CO4 :	Develop the necessary skill base to explore and implement a robotic system.

Refere	ence Books
1	S.K Saha, Introduction to Robotics, 2 nd Edition, 2014, Tata McGraw-Hill Education, ISBN: 9789332902800.
2	K.S.Fu, R.C.Gonzalez, C.S.G. Lee, Robotics control sensing Vision and Intelligence, 2013, Mcgraw-Hill, ISBN: 9780070226258.
3	Saeed B Niku, Introduction to Robotics, 2 nd Edition, 2005, Prentice Hall of India, ISBN: 978-0130613097.
4	James G.Keramas, Robot Technology Fundamentals, 1 st Edition, 2008, Cengage learning Publishers, ISBN: 978-0827382367.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks are executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	1	1	-	-	1	-	1	2	-	1
CO2	1	-	1	1	-	1	1	-	1	2	-	1
CO3	1	1	1	1	-	-	1	-	1	-	-	2
CO4	1	1	1	1	-	1	1	-	1	2	-	2

	Semester: VI							
	MACHINE LEARNING							
				(Professional Elective : Group D)				
	((Co	ommon to A	AE, BT, CH, CV, EC, EE, EI, ET, IM,	& ME)			
Cou	urse Code : 18CS6D1 CIE : 100 Mar							
Cred	Credits: L:T:P : 3:0:0		3:0:0	SEE	:	100 Marks		
Tota	l Hours	:	39L	SEE Du	ration :	3.00 Hours		
Cou	rse Learning	g O	bjectives: T	he students will be able to				
1	Understand	l th	e concepts of	Supervised and unsupervised learning.				
2	Analyze m	node	els such as	support vector machines, kernel SVM, nai	ive Bayes	, decision tree		
	classifier, random forest classifier, logistic regression, K-means clustering and more in Python							
3 Implement and work with state-of-art tools in machine learning								

Unit-I 07 Hrs
Introduction to Machine Learning: Introduction, What is Human Learning?, Types of Human
Learning, What is Machine Learning? Types of Machine Learning - Supervised learning,
Unsupervised learning, Reinforcement learning, Comparison – supervised, unsupervised, and
reinforcement learning, Problems Not To Be Solved Using Machine Learning, Applications of
Machine Learning, State-of-The-Art Languages/Tools In Machine Learning, Issues in Machine
Learning.
Preparing to Model: Introduction, Machine Learning Activities, Basic Types of Data in Machine
Learning, Exploring Structure of Data, Data Quality and Remediation, Data Pre-Processing
Unit – II 09 Hrs
Modelling and Evaluation: Introduction, Selecting a Model, Training a Model (for Supervised
Learning), Model Representation and Interpretability, Evaluating Performance of a Model, Supervised
learning – classification, Supervised learning – regression, Unsupervised learning – clustering,
Improving Performance of a Model.
Basics of Feature Engineering, Introduction, Feature Transformation, Feature construction,
Feature extraction, Feature Subset Selection, Issues in high-dimensional data, Key drivers of feature
selection – feature relevance and redundancy, Measures of feature relevance and redundancy, Overall
feature selection process, Feature Selection Approaches.
Unit –III 09 Hrs
Bayesian Concept Learning: Introduction, Why Bayesian Methods are Important?, Bayes' Theorem,
Bayes' Theorem and Concept Learning, Brute-force Bayesian algorithm, Concept of consistent
learners, Bayes optimal classifier, Naïve Bayes classifier, Applications of Naïve Bayes classifier,
Handling Continuous Numeric Features in Naïve Bayes Classifier, Bayesian Belief Network,
Independence and conditional independence, Use of the Bayesian Belief network in machine learning
Unit –IV 07 Hrs
Supervised Learning: Classification Introduction, Example of Supervised Learning, Classification
Model, Classification Learning Steps, Common Classification Algorithms, k-Nearest Neighbour
(KNN), Decision tree, Random forest model, Support vector machines.
Super vised Learning: Regression, Introduction, Example of Regression, Common Regression
Algorithms, Simple linear regression, Multiple linear regression, Assumptions in Regression
Analysis, Main Problems in Regression Analysis, Improving Accuracy of the Linear Regression
Model, Polynomial Regression Model, Logistic Regression, Maximum Likelihood Estimation
Unit –V 07 Hrs
Unsupervised Learning, Introduction, Unsupervised vs Supervised Learning, Application of
Unsupervised Learning, Clustering, Clustering as a machine learning task, Different types of
clustering techniques, Partitioning methods, K-Medoids: a representative object-based technique,
Hierarchical clustering, Density-based methods – DBSCAN, Finding Pattern using Association Rule,
Definition of common terms, Association rule, The apriori algorithm for association rule learning,
Build the apriori principle rules.

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Explore and apply the fundamentals of machine learning techniques.
CO2:	Understand different techniques of data pre processing.
CO3:	Analyze the strength and weakness of different machine learning models to solve real world
	problems.
CO4:	Implement and apply different supervised and unsupervised machine learning algorithms.

Refere	ence Books
1	Machine Learning, Amit Kumar Das, SaikatDutt, Subramanian Chandramouli, Pearson
	Education India, April 2018 ISBN: 9789389588132.
2	Introduction to Machine Learning, EthemAlpaydin, 2 nd Edition, 2010, PHI Publication,
2	ISBN-978-81-203-4160-9.
2	Practical data science with R, Zumel, N., & Mount J, Manning Publications, 2014, ISBN
3	9781617291562
	Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence
4	Algorithms, Nikhil Buduma, O'Reilly Publications, 2016 Edition, ISBN-13: 978-
	1491925614.
_	Pattern Recognition and Machine Learning, Christopher M Bishop, Springer, February 2006,
5	ISBN-10: 0-387-31073-8, ISBN-13: 978-0387-31073-2.
(The Elements of Statistical Learning, Trevor Hastie, Robert Tibshirani, and Jerome Friedman,
6	Springer, Second Edition, April 2017, ISBN 978-0-387-84858-7

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks are executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-]	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	1	-	-	-	-	-	-	1
CO2	2	2	2	2	1	-	-	-	-	-	-	1
CO3	3	3	3	3	2	-	-	-	-	-	-	1
CO4	3	3	3	3	2	2	-	-	-	-	-	2

				Semester: VI			
			BIC	DMEDICAL INSTRUMENTATI	ON		
				(Professional Elective : Group D)			
	rse Code	:	18EI6D2		CIE	:	100 Marks
Crea	lits: L:T:P	:	3:0:0		SEE		100 Marks
	l Hours	:	39L		SEE Duration	:	3.00 Hours
-				e students will be able to			
1				signals and the instrumentation to n			
2			ight into the	working principle of instruments to	o measure the vi	tal	physiological
2	parameters.		- mood of a	nitical cana diagnastica duning an			
3	defibrillato		e need of c	ritical care diagnostics during en	nergencies like	pac	cemakers and
4			orking of pu	monary function analyser and hem	odialysis machin	ac	
4	Describe un		orking of pu	monary function analyser and hem		ics.	
				Unit-I			07 Hrs
Fune	damentals:	Sou	rces of Bio	medical signals, Basic medical i	nstrumentation	svs	
				nstrumentation systems.		5	,
				odes: Origin of bioelectric signal	ls, Types of bio	sele	ectric signals,
Reco	ording electro	odes	, Electrode-	tissue interface, Polarization, Skin	contact impeda	nce	, Silver-silver
chlor	ride electrode	es, E	Electrodes for	ECG, EEG, EMG, Microelectrode	es.		
				Unit – II			09 Hrs
				activity of heart, Genesis and char			
1 N	· ·	agra	m descriptio	n of an Electrocardiograph, ECG l	ead systems, Mu	ılti-	channel ECG
mach						10	2 0 E 1 1
1	-	<u> </u>	-	s of EEG, Block diagram descript	ion of an EEG,	10	-20 Electrode
syste	em, Compute	rize	d analysis				00 11.00
Dati	ant Manitar	ina	System, D	Unit –III adaida manitara Cantral Manitar	Maggunaman		09 Hrs
				edside monitors, Central Monitor taneous heart rate meter, Measuren			
				et method, Automatic blood pres			
	otkoff's meth			et method, Automatic blobd pres	sure measuring	чp	paratus using
			v. ear oxin	eter, pulse oximeter, skin reflecta	ance oximeter a	nd	intravascular
oxim			<i>, , , , , , , , , , , , , , , , , , , </i>	, p			
				Unit –IV			07 Hrs
Bloo	d Flow Met	ers:	Electromag	netic blood flow meter, Types of ele	ectromagnetic bl	000	l flow meters,
				IR blood flow meters, and Laser Do			
1				ibrillators: Need for Cardiac p			
				of Implantable Pacemaker, Ver			
		-		acemaker. Need for a defibrillato	r, DC defibrilla	tor,	Defibrillator
elect	rodes, DC de	efibr	illator with s	ynchronizer.			05.77
				Unit –V	<u> </u>		07 Hrs
				Pulmonary function measurement,	Spirometry, Pn	eun	notachometer,
				gen washout technique.	interne Harris	4:-1	voia meatin-
	modialysis n able kidney n			on of kidneys, Artificial kidney, D	iaryzers, Haemo	uial	iysis machine,
rorta	able kluney n	laci	innes.				

Note: Students should make use of biomedical equipments and controllers to develop a real time prototype.

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understand the sources of biomedical signals and basic biomedical instruments.
CO2:	Apply concepts for the design of biomedical devices
CO3:	Analyze the methods of acquisition and signal conditioning to be applied to the physiological
	parameters.
CO4:	Develop instrumentation for measuring and monitoring biomedical parameters.

Reference Books

Ittitit	Life Dooks
1	Handbook of Biomedical Instrumentation, R. S. Khandpur,3 rd Edition, Reprint 2016, Tata
	McGraw-Hill, ISBN: 9780070473553.
2	Biomedical Instrumentation and Measurements, Leslie Cromwell & others, 2 nd Edition,
2	Reprint 2015, ISBN: 9780130771315.
2	Medical instrumentation: Application and Design, J. G. Webster, 3 rd Edition, Reprint 2015,
3	Wiley Publications, ISBN: 9788126511068.
4	Principles of Biomedical Instrumentation and Measurement, Richard Aston, 4 th Edition, 2005,
4	Prentice Hall of India, ISBN: 9780675209434.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks are executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	1	1	-	-	1	-	2	2	-	1
CO2	1	-	1	1	-	1	1	-	2	2	-	1
CO3	1	1	1	1	-	-	1	-	2	-	-	2
CO4	1	1	1	1	-	1	1	-	2	2	-	2

				Semester: VI			
		AP	PLICATIO	N SPECIFIC INTEGRATED CII)	
		1	1	(Professional Elective : Group D)			
	rse Code	:	18EI6D3		CIE	:	100 Marks
	dits: L:T:P	:	3:0:0		SEE	:	100 Marks
	al Hours	:	39L		SEE Duration	:	3.00 Hours
				he students will be able to			
1			<i>.</i>	ustom and semicustom design flow.			
2			t ASIC libra				
3				anning and placement.			
4	Analyze ba	IS1C	design conc	epts of Routing.			
				T T •/ T			07.11
.		11	~	Unit-I n ASIC, Semicustom ASICS, Stand			07 Hrs
ASI	C Library I	Des	ign: Logical	C cell libraries. Unit – II l effort: practicing delay, logical a h delay, optimum number of stages, Unit –III			09 Hrs ciency logical
Larr	lavel Desig	- T	many Cale	natic Entry: Hierarchical design. T	ha aall library N	[07 0
Icon	s &Symbols	, N	lets, schema	tic entry for ASIC'S, vectored in k annotation connections.			edit in place
				Unit –IV			07 Hrs
Parti plani	itioning, Est	ima olar	ating ASIC	anning and placement: Physica size, partitioning methods. Floor ment algorithms, iterative placement	planning tools,	I/0) and power
•				Unit –V			07 Hrs
	sical Design: DRC	: Gl	obal Routin	g, Local Routing, Detail Routing, S	pecial Routing, C	Circ	uit Extraction

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Understand the full custom and semicustom design flow.						
CO2:	Apply the concept to design standard cell library.						
CO3:	Analyse and evaluate the different design techniques and physical design algorithms to						
	achieve effective power, area and timing.						
CO4:	Design a complex system using different design flow.						

Refere	ence Books
1	Michael John Sebastin Smith, Application Specific Integrated Circuits, Pearson Education, 2008, ISBN, 0201500221
2	Malcolm R. Haskard, Lan.C.May, Analog VLSI Design-NMOS and CMOS, 1998, Prentice Hall, ISBN-10: 0130326402
3	Andrew Brown, VLSI Circuits and Systems in Silicon, 2001, McGraw Hill, ISBN-10: 0077072219.
4	Norman G. Einspruch and Norman Einspruch, Application Specific Integrated Circuit (ASIC) Technology - Academic Press, 2012, ISBN: 978-0124315211

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks are executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	1	-	-	-	-	-	-	-	-	1
CO2	1	1	1	-	-	-	-	-	-	-	-	1
CO3	1	1	1	1	-	-	-	-	-	-	-	1
CO4	1	1	1	1	-	-	-	-	1	1	-	1

REAL TIME OPERATING SY (Professional Elective : Grou (Professional Elective : Grou Course Code : 18EI6D4 Credits: L:T:P : 3:0:0 Total Hours : 39L Course Learning Objectives: The students will be able to 1 To explore through the basics of Real Time Operating Sys command set, that can be used to work comfortably. 2 To impart knowledge of real time concepts like semapho etc. 3 The ability to combine commands to perform tasks that a command. 4 Acquire knowledge of real time memory management	up D) CIE SEE SEE Duration stems and to master theores, mutex, thread, p		100 Marks 100 Marks 3.00 Hours
Course Code : 18EI6D4 Credits: L:T:P : 3:0:0 Total Hours : 39L Course Learning Objectives: The students will be able to 1 To explore through the basics of Real Time Operating Syscommand set, that can be used to work comfortably. 2 To impart knowledge of real time concepts like semaphoetc. 3 The ability to combine commands to perform tasks that a command.	CIE SEE SEE Duration stems and to master th ores, mutex, thread, p	he e	100 Marks 3.00 Hours
Credits: L:T:P : 3:0:0 Total Hours : 39L Course Learning Objectives: The students will be able to 1 To explore through the basics of Real Time Operating Syscommand set, that can be used to work comfortably. 2 To impart knowledge of real time concepts like semaphoetc. 3 The ability to combine commands to perform tasks that a command.	SEE SEE Duration Stems and to master th ores, mutex, thread, p	he e	100 Marks 3.00 Hours
Total Hours : 39L Course Learning Objectives: The students will be able to 1 To explore through the basics of Real Time Operating Syscommand set, that can be used to work comfortably. 2 To impart knowledge of real time concepts like semaphoetc. 3 The ability to combine commands to perform tasks that a command.	SEE Duration estems and to master theores, mutex, thread, p	he e	3.00 Hours
 Course Learning Objectives: The students will be able to To explore through the basics of Real Time Operating Syscommand set, that can be used to work comfortably. To impart knowledge of real time concepts like semaphoetc. The ability to combine commands to perform tasks that a command. 	stems and to master th	he e	
 To explore through the basics of Real Time Operating Syscommand set, that can be used to work comfortably. To impart knowledge of real time concepts like semaphoetc. The ability to combine commands to perform tasks that a command. 	ores, mutex, thread, p		essential
 command set, that can be used to work comfortably. To impart knowledge of real time concepts like semaphoetc. The ability to combine commands to perform tasks that a command. 	ores, mutex, thread, p		essential
 To impart knowledge of real time concepts like semapho etc. The ability to combine commands to perform tasks that a command. 	· · · · · ·	roc	
etc. 3 The ability to combine commands to perform tasks that a command.	· · · · · ·	roc	
3 The ability to combine commands to perform tasks that a command.	are not possible to ach		ess, priorities
command.	are not possible to ach		
		nev	e using singl
4 Acquire knowledge of real time memory management			
XX • / X			
Unit-I Introduction to OS and RTOS			07 Hrs
Process Management of OS/RTOS Uniprocessor Scheduling: Types of scheduling, scheduling alg Robin, UNIX Multi-level feedback queue scheduling, Multiproc			ot.
Unit –III			09 Hrs
Process Synchronization Concurrency: Principles of Concurrency, Mutual Exclusion Semaphores and Mutex, Message Passing, Monitors, Classical F Writers Problem, Producer Consumer Problem. Deadlock: Principles of deadlock, Deadlock Prevention, Dead An Integrated Deadlock Strategies, Dining Philosopher problem	Problems of Synchron dlock Avoidance, Dea	niza	tion: Readers
Unit –IV			07 Hrs
Memory Management requirements : Memory partitioning: System Memory allocation Strategies (First Fit, Best Fit, V Swapping, Segmentation, Paging, Virtual Memory, Demand pag	Worst Fit, Next Fit)		ragmentation
Unit –V			07 Hrs
RTOS APPLICATION DOMAINS Comparison and study of RTOS: Case studies: RTOS for Imag voice over IP – RTOS for fault Tolerant Applications – RTOS for		oedd	led RTOS fo

Course	Course Outcomes. After completing the course, the students will be able to						
CO1:	Understand the fundamental concepts of real-time operating systems						
CO2:	Analyze the different techniques used to develop an application through RTOS						
CO3:	Appreciate the use of multitasking techniques in real-time systems						
CO4:	Understand the impact of real time operating systems on application area.						

Refere	Reference Books							
1	William Stallings, Operating Systems-Internals and Design Principles, 7th Edition, 2012, Prentice Hall, ISBN: 978-0-13-230998-1.							
2	Abraham Silberschatz, Operating System Concepts, 2019, John Wiley & Sons, Limited, ISBN: 9781119586166.							

3	Tanenbaum, Modern Operating Systems, 3 rd Edition, 2007, Pearson Edition. ISBN: 013359162X, 9780133591620
4	Embedded Systems-Architecture, Programming and Design, Raj Kamal, 2 nd Edition, 2008, McGraw Hill Publishing Company, ISBN: 978-0-07-066764-8.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks are executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	1	-	-	1	-	2	2	-	1
CO2	2	-	2	2	-	1	1	-	2	2	-	1
CO3	1	2	2	1	-	-	1	-	2	-	-	2
CO4	1	1	1	1	-	1	1	-	2	2	-	2

	Semester: VI						
	AIRCRAFT SYSTEMS						
			(GROI	UP E: GLOBAL ELECTIV	VE)		
				(Theory)			
Cou	rse Code	:	18G6E01	С	IE	:	100 Marks
Credits: L:T:P			3:0:0	SI	EE	••	100 Marks
Hou	rs	:	39L	SI	EE Duration		3.00 Hours
Cou	rse Learning O	bje	ectives: To ena	ble the students to:			
1	List the variou	is s	ystems involve	d in the design of an aircraft			
2	Demonstrate t	he 1	technical attrib	utes of all the subsystems of an	n aircraft		
3							
4	Demonstrate t	he i	integration of the	he systems with the airplane			

Unit-I	07Hrs		
Flight Control Systems: Primary and secondary flight controls, Flight control linkage	e system,		
Conventional Systems, Power assisted and fully powered flight controls.			
Unit – II	10Hrs		
Aircraft Hydraulic & Pneumatic Systems: Components of a typical Hydraulic system, W	orking or		
hydraulic system, Power packs, Hydraulic actuators. Pneumatic system and components, Use	e of bleed		
air, Landing gear and braking, Shock absorbers-Retraction mechanism.			
Unit -III	08Hrs		
Aircraft Fuel Systems: Characteristics of aircraft fuel system, Fuel system and its components,			
Gravity feed and pressure feed fuel systems, Fuel pumps-classification, Fuel control unit.			
Unit -IV	07Hrs		
Environmental Control Systems: Air-conditioning system, vapour cycle system, de-icing	and anti-		
icing system, Fire detection- warning and suppression. Crew escape aids.			
Engine Systems: Engine starting sequence, Starting and Ignition systems, Engine oils and a typical lubricating system.			
Engine Systems: Engine starting sequence, Starting and Ignition systems, Engine oils and lubricating system.	l a typical		
	a typical 07Hrs		
lubricating system.	07Hrs		
lubricating system. Unit -V	07Hrs		
lubricating system. Unit -V Aircraft Instruments : Instruments displays, panels & layouts, Instrumentation grouping, N	07Hrs Vavigation		

sensing, stall warning, Mach warning, altitude alerting system.

Course Outcomes:

At the end of this course the student will be able to :

CO1:	Categorise the various systems required for designing a complete airplane
CO2:	Comprehend the complexities involved during development of flight vehicles.
CO3:	Explain the role and importance of each systems for designing a safe and efficient flight vehicle
CO4 :	Demonstrate the different integration techniques involved in the design of an air vehicle

Reference Books

	Introduction to Flight, John D. Anderson, 7 th Edition, 2011, McGraw-Hill Education, ISBN 9780071086059.
2	Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration, Moir, I. and Seabridge, A.,3 rd Edition, 2008, Wiley Publications, ISBN- 978-0470059968

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	3	2	2	-	-	-	1
CO2	2	3	3	3	1	1	1	1	-	-	-	1
CO3	2	2	3	3	1	-	-	-	-	-	-	2
CO4	3	3	3	3	1	2	1	2	-	-	-	1

Semester: VI BIO INSPIRED ENGINEERING (GROUP E: GLOBAL ELECTIVE)							
Соц	rse Code	:	18G6E02	(Theory)	CIE	:	100 Marks
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks
Tota	l Hours	:	39 L		SEE Duration	:	3.00 Hours
Cou	rse Learning ()bj	ectives: The studen	ts will be able to			
1	To familiarize	e er	igineering students	with basic biologica	l concepts		
2	Utilize the si	mil	arities noted in nat	ture for a particular	problem to bring i	nsp	iration to the
	designer.			_		_	
3	Explain appli	cat	ions such as smart	structures, self-heali	ng materials, and ro	bot	ics relative to
	their biologic	al a	inalogs		-		
4	To gain an u	nde	rstanding that the d	esign principles from	m nature can be tran	islat	ed into novel
	devices and st	truc	ctures.	_			

Unit-I	08 Hrs
Introduction to biological systems: General and Special biomolecules, Plant, an	imal and
microbial cell types, Somatic and Sensory system. Plant process - Photosynthesis. Neural	networks,
Neuron models-Signal encoding architecture, Synaptic plasticity-Supervised, unsuper	vised and
reinforcement learning, Evolution of artificial neural networks-Hybrid neural systems	with case
study Harvesting Desert Fog.	
Unit – II	08 Hrs
Introduction to Biomimetics: Introduction to micro architectural aspects. Structures and	l physical
functions of biological composites of engineering – related case study: Camera from eyes	, clothing
designs and hooks from Velcro Criteria for future materials design and processing. Con	mputation
Cellular systems: Cellular automata - modelling with cellular systems with cellular s	systems –
artificial life – analysis and synthesis of cellular systems: Nature's Water Filter.	
Unit –III	08 Hrs
Engineering of synthetic organs: Growth, development and principle of artificial skins	s, hearing
aids, artificial limbs, artificial lungs and artificial lever. Implants-working principle of pa	acemaker,
Breast Implants, Artificial Eye Lenses, Blood sugar monitoring, artificial heart. Appl	ication of
Spine Screws, Rods and Artificial Discs, Metal Screws, Pins, Plates and Rods	
Unit –IV	07 Hrs
Biosimilars: Introduction, characteristics and bioequivalence. Criteria for Bioequivalence.	uivalence,
Development of Biosimilars, Statistical Methods for Assessing Biosimilarity, I	ssues on
Immunogenicity Studies, Regulatory Requirements, Stability Analysis of Biosimilar	Products,
Challenges involved in Biosimilars.	
Unit –V	08 Hrs
Biomechatronics: Introduction to MEMS based devices, Evolution of behavioural	systems,
learning in behavioural systems – co evolution of body and control. Behaviour in cognitiv	ve science
and artificial intelligence. Biological inspiration for robots, Robots as biological mo	
robotics behaviour, Application of sleek scale of shark skin.	
Course Outcomest After completing the course the students will be able to	

Course Outcomes: After completing the course, the students will be able to						
CO1:	Remember and explain the concepts of biological and physiological processes					
CO2:	Elucidate the basic principles for design and development of biological systems.					
CO3:	Differentiate biological phenomena to support inspiration for visual and conceptual design problems					

CO4:	Develop technical solutions to customer needs by utilizing a variety of bio-inspiration
	techniques.

Reference Books

MUICIC	LICC DOORS
1	Yoseph Bar-Cohen. Biomimetics: Biologically Inspired Technologies D. Floreano and C. Mattiussi, "Bio-Inspired Artificial Intelligence", CRC Press, 2018. ISBN: 1420037714, 9781420037715.
	Bououdina, Mohamed. Emerging Research on Bioinspired Materials Engineering. IGI
2	
_	Global, 2016. ISBN: 1466698128, 9781466698123.
	Christopher H. M. Jenkins. Bio-Inspired Engineering. Momentum Press, 2011. ISBN:
3	1606502255, 9781606502259.
	Göran Pohl, Werner Nachtigall. Biomimetics for Architecture & Design: Nature -
4	
-	Analogies – Technology. Springer, 2019. ISBN: 3319191209, 978331919120

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks**.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover the entire unit having the same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	-	1	3	2	-	1	1	1	-
CO2	3	3	2	3	2	-	1	2	-	1	2	-
CO3	2	2	2	3	3	3	2	2	-	1	2	2
CO4	2	2	3	3	2	-	1	2	1	-	-	-

			Semester: VI			
		SUSTA	AINABLE TECHNO	DLOGY		
		(GROU	P E: GLOBAL ELE	CTIVE)		
			(Theory)			
Course Code	:	18G6E03		CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	39L		SEE Duration	:	3.00 Hours
Course Learning	; Obj	ectives: The stud	ents will be able to			
			epts related to interact	tion of industrial and e	ecolo	gical systems
		•	life cycle assessment.			
			t methodology using a		es.	
4 Use concep	ts of s	systems-based, tr	ans-disciplinary appro	bach to sustainability.		
			TT •4 T			
Introduction to a			Unit-I			08 Hrs
Introduction to s		•	pts and Life Cycle	Analysis Matarial	flor	v and west
		•	ects, Character of Env	-	110	w and wast
management, enc	mea		Unit – II	nonnentar i robienis		07 Hrs
Environmental I)ata (Collection and L	CA Methodology:			07 111
			es, Statistical Analys	sis of Environmenta	l D	ata, Commo
			CA Methodology. – Go			,
•			Unit –III			08 Hrs
Life Cycle Assess	smen	t:				·
			cle Interpretation, LCA	A Benefits and Drawb	acks	
Wet Biomass Ga						
			ck for biogas generation			
-	•	0	ctors affecting bio-dia		1 of	biogas plants
Floating drum pla	nt and	a fixed dome plai	nt their advantages and Unit –IV	d disadvantages.		08 Hrs
Design for Susta	nahi	1:4	Unit –I v			
0		•	ental Design for Susta	inahility		
Dry Biomass Ga			chiai Design for Susta	maomry.		
v			rmal gasification of bi	iomass. Classification	of g	asifiers. Fixe
bed systems:		,	0	,	0	,
•			Unit –V			08 Hrs
Case Studies:						
	r Org	anics Treatment	Plant, Bio-methanatic	on, Bioethanol produc	tion.	Bio fuel from
water hyacinth.						
		<u> </u>	he course, the studer			
			challenges facing the	-	and	systems-base
approach	es req	uired to create su	stainable solutions fo	r society.		
CO2: Identify	oroble	ems in sustainab	ility and formulate a	ppropriate solutions	based	l on scientifi
research,	applie	ed science, social	and economic issues.			
			stems-based, trans-dis		susta	inability
11 2		•	ns based on scientific			÷
	- upp			- research, applied s		e, social all

]	Refere	nce Books									
	1	Sustainable	Engineering	Principles	and	Practice,	Bavik	R	Bhakshi,	2019,	Cambridge
	I	University F	ress, ISBN - 9	9781108333	726.						

economic issues.

	Environmental Life Cycle Assessment, Olivier Jolliet, Myriam Saade-Sbeih, Shanna Shaked,
2	Alexandre Jolliet, Pierre Crettaz, 1st Edition, CRC Press, ISBN: 9781439887660.
2	Sustainable Engineering: Drivers, Metrics, Tools, and Applications, Krishna R. Reddy,
3	Claudio Cameselle, Jeffrey A. Adams, 2019, John Wiley & Sons, ISBN-9781119493938

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	-	-	-	-	-	1	-	1
CO4	3	3	3	3	-	-	-	-	-	1	-	1

	Semester: VI							
	GRAPH THEORY							
	(GROUP E: GLOBAL ELECTIVE)							
			(Theory)					
Course Code	:	18G6E04		CIE Marks	:	100 Marks		
Credits: L:T:P	:	3:0:0		SEE Marks	:	100 Marks		
Total Hours	:	39L		SEE Duration	:	3.00 Hours		

Cour	se Learning Objectives: The students will be able to
1	I understand the basics of smark the same and their requires a moment

Cour		ing Ob	jeen co.	Incs	luucin	9 WH						
1	Understa	and the	basics of	graph	theory	and	their	various	prope	erties.		
0	37 11	1.1	•	1	1.	1	.1	1.1	1		•	11

2

- Model problems using graphs and to solve these problems algorithmically. Apply graph theory concepts to solve real world applications like routing, TSP/traffic control, 3 etc.
- Optimize the solutions to real problems like transport problems etc., 4

UNIT-I	07 Hrs
Introduction to graph theory	
Introduction, Mathematical preliminaries, definitions and examples of graphs, degree	es and regular
graphs, sub graphs, directed graphs, in degrees and out degrees in digraphs.	C
Basic concepts in graph theory	
Paths and cycles, connectivity, homomorphism and isomorphism of graphs, connectivity	y in digraphs.
UNIT-II	09 Hrs
Graph representations, Trees, Forests	·
Adjacency matrix of a graph, Incidence matrix of a graph, Adjacency lists, Trees and	d properties of
trees, Characterization of trees, Centers of trees, Rooted trees, Binary threes, Spann	ning trees and
forests, Spanning trees of complete graphs, An application to electrical networks, I	Minimum cos
spanning trees.	
UNIT-III	09 Hrs
Fundamental properties of graphs and digraphs	•
Bipartite graphs, Eulerian graphs, Hamiltonian graphs, Hamiltonian cycles in wei	ighted graphs
Eulerian digraphs.	0 0 1
Planar graphs, Connectivity and Flows	
Embedding in surfaces, Euler's formula, Characterization of planar graphs, Kuratow	ski's theorem
Dual of a planar graphs.	
UNIT-IV	07 Hrs
Matchings and Factors	
Min-Max theorem, Independent sets and covers, Dominating sets, maximum bipartite m	atching.
Coloring of graphs	
The chromatic number of a graph, Results for general graphs, The chromatic polynom	ial of a graph
Basic properties of chromatic polynomial, chordal graphs, powers of graphs, Edge color	ing of graphs
UNIT-V	07Hrs
Graph algorithms	
Graph connectivity algorithms, Breadth first search and Depth first search, Shortest pa	ath algorithms
Dijikstra's shortest path algorithm, Minimum cost spanning tree algorithms, Algorithm	•
and Prim's.	
Course Outcomes: After completing the course, the students will be able to	
CO1. Understand and explore the basics of graph theory.	

Course	Course Outcomes: After completing the course, the students will be able to							
CO1.	Understand and explore the basics of graph theory.							
CO2.	Analyse the significance of graph theory in different engineering disciplines							
CO3.	Demonstrate algorithms used in interdisciplinary engineering domains.							
CO4.	Evaluate or synthesize any real world applications using graph theory.							

Reference	Books

1.	Introduction to graph theory, Douglas B. West, 2 nd Edition, 2001, PHI, ISBN- 9780130144003,
	ISBN-0130144002.
2.	Graph Theory, Modeling, Applications and Algorithms, Geir Agnarsson, Raymond Greenlaw,
	Pearson Education, 1 st Edition, 2008, ISBN- 978-81-317-1728-8.
3.	Introduction to Algorithms, Cormen T.H., Leiserson C. E, Rivest R.L., Stein C., 3rd Edition,
	2010, PHI, ISBN:9780262033848

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-l	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	-	-	-	-	-	-	1	1	-	-
CO2	2	3	2	1	-	-	-	-	2	2	-	1
CO3	2	2	3	2	-	-	-	-	2	2	-	1
CO4	2	2	3	2	-	1	-	-	2	2	-	1

			Semester: VI			
		DI	ISASTER MANAGE	MENT		
		(GRO	UP E: GLOBAL EI	LECTIVE)		
(Theory)						
Course Code	:	18G6E05	()	CIE	•	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	39L		SEE Duration	:	3.00 Hours
Course Learning	Ob	jectives: The stu	dents will be able to		_	1
1 Study the env	viror	nmental impact of	of natural and manmad	e calamities		
2 Learn to anal	yze	and assess risk i	nvolved due to disaster	rs.		
		ole of public part				
4 Learn the ma	nage	ement tools and	mitigation techniques.			
			Unit-I			08 Hrs
Natural disasters				111 .1 1		
			Hazards- floods, land			
			ients, harmful gases, B			
			tivities. Preparation of Post disaster plans. Re			
organization and a			-	ner camp organizatio	II. N	ole of voluntary
organization and a	inte	u torees during (Unit – II			07 11
Diale analysis and			Unit – 11			07 Hrs
Risk analysis and			alysis. Analytical te	abriques and tools	of	rick accomment
			k characterization. Ris			
emergency respon						inagomoni, i ii ii
			Unit –III			08 Hrs
Environmental In	npa	ct Assessment (
			ciples of EIA. Regula	atory framework in I	ndia	. Environmental
inventory. Base lin				-		
			Unit –IV			08 Hrs
Assessment and M	Met	hodologies				
		0	es, Socio economic an	d cultural environment	ntal	assessment. EIA
			list approaches. Econo			
EIA. Public partic	cipa	tion in environn	nental decision makin	g. Procedures for rev	iewi	ng EIA analysis
and statement. Dec	cisic	on methods for e	valuation of alternative	es.		
			Unit –V			08 Hrs
Disaster Mitigati	on a	nd Managemer				
e		0	management, tools an	d techniques, primary	and	l secondary data
•			ies-Earthquake hazard			•
			andslides-causes and			-
			ement, Cyclones and			-
Regional and glob	al d	isaster mitigation	n.	-		_
Course Outcome	s: A	fter completing	g the course, the stude	ents will be able to		
			f disasters and manage		ter s	ituation.
CO2. Estimata			the might by conductin			1

CO4: Analyze and evaluated the impact of measures adopted to mitigate the impacts.

Refer	rence Books
1	Environmental Impact Analysis Hand Book, John G Rau and David C Wooten, Edition: 2013, ISBN: 978-0070512177.
2	Introduction to environmental Impact assessment, John Glasson, RikiTherivel, Andrew Chadwick, Edition: 2012, Research Press, ISBN:000-0415664705.2005, Reliance Publishing House, New Delhi.
3	Natural Disaster Reduction, Girish K Mishrta, G C Mathew (eds), Edition, 2005, Reliance Publishing House, New Delhi,
4	Remote Sensing and Image Interpretation, Thomas M. Lillisand and R.W. Keifer, 6 th Edition, 2002, John Wiley, ISBN:9780470052457.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO	-PO M	apping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	1	1	-	-	1	1	-	-	-	-	-
CO2	-	2	1	-	-	2	1	1	-	-	-	-
CO3	-	2	1	-	-	2	1	3	-	-	-	-
CO4	-	1	1	-	-	3	2	1	-	-	-	-

			Sen	nester: VI		
			WEARABLI	E ELECTRONICS		
			(GROUP E: GI	LOBAL ELECTIVE)		
			(7)	Theory)		
Course Code		:	18G6E06	CIE	:	100 Marks
Credits: L:T:P		:	3:0:0	SEE	:	100 Marks
Total Hours		: 39L		SEE Duration	:	3.00 Hours
Cou	rse Learning	Obj	ectives: The students will	be able to		
1	Explain the t	ypes	and application of wearab	le sensor.		
2	Describe the	wor	king of sensitivity, conduc	tivity and energy generation in wear	abl	e devices.
3	Explain the v	varic	us facets of wearable appli	cation, advantage & challenges.		
4	Understand of	liffe	rent testing and calibration	in wearable devices.		

Unit-I	08 Hrs
Introduction: world of wearable (WOW), Role of wearable, The Emerging Concept of	Big Data, The
Ecosystem Enabling Digital Life, Smart Mobile Communication Devices, Attributes	of Wearables,
Taxonomy for Wearables, Advancements in Wearables, Textiles and Clothing, Applications	s of Wearables.
[Ref 1: Chapter 1.1]	

Unit – II 08 Hrs Wearable Bio and Chemical Sensors: Introduction, System Design, Microneedle Technology, Sampling Gases, Types of Sensors, Challenges in Chemical Biochemical Sensing, Sensor Stability, Interface with the Body, Textile Integration, Power Requirements, Applications: Personal Health, Sports Performance, Safety and Security, Case studies. [Ref 1: Chapter 2.1]

Unit –III					
Smart Textile: Conductive fibres for electronic textiles: an overview, Types of con	nductive fibre,				
Applications of conductive fibres, Bulk conductive polymer yarn, Bulk conductive	polymer yarn,				
Techniques for processing CPYs, Wet-spinning technique, Electrospinning technique, case studies, H					
on project in wearable textile: Solar Backpack, LED Matrix wallet. [Ref 2: Chapter 1,2] &.	Ref 3: Chapter				
6,9]					
Unit –IV	08 Hrs				

	00 1115			
Energy Harvesting Systems: Introduction, Energy Harvesting from Temperature Gradient,				
Thermoelectric Generators, Dc-Dc Converter Topologies, Dc-Dc Converter Design for Ult	tra-Low Input			
Voltages, Energy Harvesting from Foot Motion, Ac-Dc Converters, Wireless Energy Trans	smission,			
Energy Harvesting from Light, Case studies. [Ref 1: Chapter 4.1]				

Unit –V					
Wearable antennas for communication systems: Introduction, Background of textile antennas, Design					
rules for embroidered antennas, Integration of embroidered textile surfaces onto polyn	mer substrates,				
Characterizations of embroidered conductive, textiles at radio frequencies, RF p	erformance of				
embroidered textile antennas, Applications of embroidered antennas. [Ref 2: Chapter 10]					

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Describe the different types and wearable sensors, textile, energy harvesting systems and antenna					
CO2:	Analysis measurable quantity and working of wearable electronic devices.					
CO3:	Determine & interpret the outcome of the wearable devices and solve the design challenges					
CO4:	Analyse and Evaluate the wearable device output parameter in real time scenario or given problem					
	statement.					

Refer	rence Books
1	Wearable Sensors: Fundamentals, Implementation and Applications, Edward Sazonov, Michael R.
l	Neuman Academic Press, 1 st Edition, 2014, ISBN-13: 978-0124186620.
2	Electronic Textiles: Smart Fabrics and Wearable Technology, Tilak Dias, Woodhead Publishing;
2	1 st Edition, ISBN-13: 978-0081002018.
2	Make It, Wear It: Wearable Electronics for Makers, Crafters, and Cosplayers, McGraw-Hill
3	Education, 1st Edition, ISBN-13: 978-1260116151.
	Flexible and Wearable Electronics for Smart Clothing: Aimed to Smart Clothing, Gang Wang,
4	Chengyi Hou, Hongzhi Wang, Wiley, 1st Edition, ISBN-13: 978-3527345342
_	Printed Batteries: Materials, Technologies and Applications, Senentxu Lanceros-Méndez, Carlos
5	Miguel Costa, Wiley, 1st Edition, ISBN-13: 978-1119287421

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	-	-	-	-	-	-		-	-
CO2	3	2	2	3	-	-	-	2	2		-	-
CO3	2	2	3	3	-	-	-	2	2		-	-
CO4	3	3	3	3	2	3	2	3	3	3	2	3

	Semester: VI							
	ENERGY AUDITING AND MANAGEMENT							
	(GROUP E: GLOBAL ELECTIVE)							
				(Theory)		_		
Course Code			18G6E07		CIE	:	100 Marks	
Cr	edits: L:T:P	:	3:0:0		SEE		100 Marks	
To	otal Hours	:	39L		SEE Duration	:	3.00 Hours	
Co	ourse Learning	g O	bjectives: The stud	ents will be able to				
1	Understand th	ne r	eed for energy audi	t, energy manageme	nt and the concepts	of t	ooth.	
2	2 Explain Processes for energy audit of electrical systems.							
3	3 Design and develop processes for energy audit of mechanical systems.							
4	Prepare the fo	orm	at for energy audit of	of buildings and ligh	ting systems.			

Unit-I	06 Hrs				
Types of Energy Audit and Energy-Audit Methodology: Definition of Energy Audit, Place of					
Audit, Energy – Audit Methodology, Financial Analysis, Sensitivity Analysis, Project Financing					
Options, Energy Monitoring and Training.					
Survey Instrumentation: Electrical Measurement, Thermal Measurement, Light Measurement,					
Speed Measurement, Data Logger and Data Acquisition System,					
Energy Audit of a Power Plant: Indian Power Plant Scenario, Benefit of Audit, Types of					
Power Plants, Energy Audit of Power Plant.					
Unit – II 10 Hrs					
Electrical Load Management: Electrical Passiag Electrical Load Management, Variable	•				

Electrical-Load Management: Electrical Basics, Electrical Load Management, Variable-Frequency Drives, Harmonics and its Effects, Electricity Tariff, Power Factor, Transmission and Distribution Losses.

Energy Audit of Motors: Classification of Motors, Parameters related to Motors, Efficiency of a Motor, Energy Conservation in Motors, BEE Star Rating and Labelling.

Energy Audit of Pumps, Blowers and Cooling Towers: Pumps, Fans and Blowers, Cooling Towers

Unit -III 10 Hrs
Energy Audit of Boilers: Classification of Boilers, Parts of Boiler, Efficiency of a Boiler, Role
of excess Air in Boiler Efficiency, Energy Saving Methods.
Energy Audit of Furnaces: Parts of a Furnace, classification of Furnaces, Energy saving
Measures in Furnaces, Furnace Efficiency
Energy Audit of Steam-Distribution Systems :S team as Heating Fluid, Steam Basics,
Requirement of Steam, Pressure, Piping, Losses in Steam Distribution Systems, Energy
Conservation Methods
Unit –IV 07 Hrs
Unit –IV 07 Hrs Compressed Air System: Classification of Compressors, Types of Compressors, Compressed
Compressed Air System: Classification of Compressors, Types of Compressors, Compressed
Compressed Air System : Classification of Compressors, Types of Compressors, Compressed Air – System Layout, Energy – Saving Potential in a Compressed – Air System.
Compressed Air System : Classification of Compressors, Types of Compressors, Compressed Air – System Layout, Energy – Saving Potential in a Compressed – Air System. Energy Audit of HVAC Systems: Introduction to HVAC, Components of Air – Conditioning

Unit –V06 HrsEnergy Audit of Lighting Systems: Fundamentals of Lighting, Different Lighting Systems,
Ballasts, Fixtures (Luminaries), Reflectors, Lenses and Louvres, Lighting Control Systems,
Lighting System Audit, Energy Saving Opportunities.06 Hrs

Energy Audit Applied to Buildings: Energy – Saving Measures in New Buildings, Water Audit, Method of Audit, General Energy – Savings Tips Applicable to New as well as Existing Buildings.

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Explain the need for energy audit, prepare a flow for audit and identify the instruments								
	needed.								
CO2:	Design and perform the energy audit process for electrical systems.								
CO3:	Design and perform the energy audit process for mechanical systems								
CO4 :	Propose energy management scheme for a building								

Reference Books

INCIG	LICHCE DOORS
1	Handbook of energy audit, Sonal Desai, Kindle Edition, 2015, McGraw Hill Education, ISBN: 9339221346, 9789339221348
2	Energy management handbook, Wayne C Turner and Steve Doty, 6 th Edition, 2015, CRC Press, ISBN: 0-88173-542-6
3	Energy management, Sanjeev Singh and Umesh Rathore, 1 st Edition, 2016, Katson Books, ISBN 10: 9350141019, ISBN 13: 9789350141014
4	Energy audit of building systems, Moncef Krarti, 2 nd Edition, 2010, CRC Press ISBN: 9781439828717

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-I	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	1	2	3	2	1	1	1	2
CO2	3	3	2	2	2	2	3	2	1	1	2	2
CO3	3	3	2	2	2	2	3	2	1	1	2	2
CO4	3	3	2	2	2	2	3	3	1	1	2	2

				Semester: VI					
	VIRTUAL INSTRUMENTATION & APPLICATIONS								
	(GROUP E: GLOBAL ELECTIVE)								
	(Theory)								
	rse Code	:	18G6E08		CIE	:	100 Marks		
	dits: L:T:P	:	3:0:0		SEE	:	100 Marks		
	al Hours	:	39L		SEE Duration	:	3.00 Hours		
		<u> </u>	v	e students will be able to					
1				e between conventional and graph	ical programmin	g			
2				and virtual instrument.	6.1.4	•••	• • • • • •		
3	Analyzing LabVIEW	the	e dasies of dat	a acquisition and learning the conc	epts of data acqu	151t	tion with		
4		ר <u>א</u> ד	real time annl	cation using myRIO and myDAQ	programming co	nce	ents		
-	Developing	<u>,</u> u	icar time appi	ication using mytero and myDrig	programming ee				
				Unit-I			07 Hrs		
Basi	c of Virtual	Inst	rumentation,	Introduction to Lab VIEW, Comp	onents of LabVI	EW	V and Labels.,		
Cont	troller, Indic	cato	rs data type	s, wiring tool, debugging tools	, Creating Sub-	Vis	s, Boolean, -		
Mec	hanical actio	n- s	witch, and la	ch actions, Enum, Text, Ring, Typ	e Def, Strict Typ	e E	Def.		
				Unit – II			09 Hrs		
For	Loop, While	Lo	op , Shift reg	sters, stack shift register, feedbac	k node, and tunn	el,	elapsed time,		
				mula node, Sequence structures, L			^		
				Unit –III			09 Hrs		
Arra	ys and cluste	ers,	Visual displa	y types- graphs, charts, XY graph,	Introduction to	Stri			
	-		-	cal examples, File Formats, File I/C			-		
	0		, ,1	Unit –IV	, ,	1	07 Hrs		
Desi	gn Pattern-	Pro	oducer-Consu	mer Model, Event Structure Mo	odel, Master-Sla	ve	Model, State		
	•			n using Semaphore, Introduction to					
		-		ssistants, Analysis Assistants, I	· •				
			-	•					
	application using myDAQ Configured it as Virtual labs, Counters, Low level Lab-VIEW Program, Unit –V 07 Hrs								
Sign	al Processing	y A	pplication- Fo	purier transforms, Power spectrum,	Correlation met	hoc			
-				-			-		
	& flittering, Real time application using myRIO, Communication protocol (SPI, I2C, UART) for Embedded Applications, Configure myRIO for speed control of DC Motor using encoder, Keypad								
			•	and onboard sensors. Develop	•		• •		
~ ~	isition and p			and onboard sensors. Develop.	ment of control		, stem, mage		
acqu	instruori and p		ossing						

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Remember and understand the fundamentals of Virtual Instrumentation and data Acquisition.							
CO2:	Apply the theoretical concepts to realize practical systems.							
CO3:	Analyze and evaluate the performance of Virtual Instrumentation Systems.							
CO4 :	Create a VI system to solve real time problems using data acquisition.							

Reference Books							
1	Jovitha Jerome, Virtual instrumentation Using LabVIEW,4th Edition, 2010, PHI Learning						
I	Pvt.Ltd , ISBN: 978-8120340305						

2	Sanjay Gupta & Joseph John, Virtual Instrumentation Using LabVIEW, 2 nd Edition, 2017, Tata McGraw Hill Publisher Ltd, ISBN : 978-0070700284
2	Tata McGraw Hill Publisher Ltd, ISBN : 978-0070700284
2	Lisa. K. Wills, LabVIEW for Everyone, 2 nd Edition, 2008, Prentice Hall of India, , ISBN :
3	978-013185672
	Garry Johnson, Richard Jennings, LabVIEW Graphical Programming, , 4thEdition , 2017,
4	McGraw Hill Professional, ISBN: 978-1259005336

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks are executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	-	-	-	-	-	1	1	-	1
CO2	1	3	2	1	2	-	-	-	1	1	-	1
CO3	2	2	3	3	3	-	-	-	1	1	-	2
CO4	1	2	2	3	3	1	0	2	3	2	1	2

				Semester: VI			
				EMS ENGINEERING	-		
			(GROUP I	E: GLOBAL ELECT	IVE)		
				(Theory)		1	1
Cou	rse Code	:	18G6E09	CI	E	:	100 Marks
Crec	lits: L:T:P	:	3:0:0	SE	E	:	100 Marks
Total Hours		:	39 L	SE	E Duration	:	3.00 Hours
Cou	rse Learning (Obje	ectives:				
1.	1. Understand the Life Cycle of Systems.						
2.	Explain the role of Stake holders and their needs in organizational systems.						
3.	Develop and Document the knowledge base for effective systems engineering processes.						
4.	Apply available tools, methods and technologies to support complex high technology systems.						
5.	Create the frameworks for quality processes to ensure high reliability of systems.						

UNIT-I 0	06 Hrs
System Engineering and the World of Modem System: What is System Engineering?, Orig	gins of
System Engineering, Examples of Systems Requiring Systems Engineering, System Engin	neering
viewpoint, Systems Engineering as a Profession, The power of Systems Engineering, problems.	
Structure of Complex Systems: System building blocks and interfaces, Hierarchy of Co	omplex
systems, System building blocks, The system environment, Interfaces and Interactions.	
The System Development Process: Systems Engineering through the system Life Cycle, Evolut	tionary
Characteristics of the description of the matter of the sector of the se	

Characteristics of the development process, The system engineering method, Testing throughout system development, problems.

UNIT – II10 HrsSystems Engineering Management: Managing systems development and risks, Work breakdownstructure (WBS), System Engineering Management Plan (SEMP), Risk Management, Organization ofSystems Engineering, Systems Engineering Capability Maturity Assessment, Systems Engineeringstandards, Problem.

Needs Analysis: Originating a new system, Operations analysis, Functional analysis, Feasibility analysis, Feasibility definition, Needs validation, System operational requirements, problems.

Concept Exploration: Developing the system requirements, Operational requirements analysis, Performance requirements formulation, Implementation concept exploration, Performance requirements validation, problems.

UNIT – III10 HrsConcept Definition: Selecting the system concept, Performance requirements analysis, Functional
analysis and formulation, Concept selection, Concept validation, System Development planning,
System Functional Specifications, problems10 Hrs

Advanced Development: Reducing program risks, Requirements analysis, Functional Analysis and Design, Prototype development, Development testing, Risk reduction, problems.

UNIT – IV	07 Hrs
Engineering Design: Implementing the System Building blocks, requirements analysis, Fu	nctional
analysis and design, Component design, Design validation, Configuration Management, proble	ems.
Integration and Evaluation: Integrating, Testing and evaluating the total system, Test plant	ning and
preparation, System integration, Developmental system testing, Operational test and eva	aluation,
problems.	
LINIT – V	06 Hrs

Production: Systems Engineering in the factory, Engineering for production, Transition from development to production, Production operations, Acquiring a production knowledge base, problems.

Operations and support: Installing, maintenance and upgrading the system, Installation and test, Inservice support, Major system upgrades: Modernization, Operational factors in system development, problems.

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Understand the Life Cycle of Systems.						
CO2:	Explain the role of Stake holders and their needs in organizational systems.						
CO3:	Develop and Document the knowledge base for effective systems engineering processes.						
CO4:	Apply available tools, methods and technologies to support complex high technology systems.						
CO5:	Create the frameworks for quality processes to ensure high reliability of systems.						

Reference Books:

-	
1.	Systems Engineering – Principles and Practice, Alexander Kossoaikoff, William N Sweet, 2012,
	John Wiley & Sons, Inc, ISBN: 978-81-265-2453-2
2.	Handbook of Systems Engineering and Management, Andrew P. Sage, William B. Rouse, 1999,
	John Wiley & Sons, Inc., ISBN 0-471-15405-9
3.	General System Theory: Foundation, Development, Applications, Ludwig von Bertalanffy, 1973,
	Penguin University Books, ISBN: 0140600043, 9780140600049.
4.	Systems Engineering and Analysis, Blanchard, B., and Fabrycky, W., 5th edition, 2010, Prentice
	Hall, Saddle River, NJ, USA

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-P	O mapp	oing					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	1	-	-	-	-	-	1
CO2	-	2	3	-	1	-	-	1	-	-	2	-
CO3	-	3	-	-	-	2	2	1	-	3	2	-
CO4	-	-	2	1	-	-	-	-	-	-	-	-
CO5	1	1	-	2	-	1	2	-	3	-	-	-

			S	emester: VI			
	I	NTI	RODUCTION TO MOBI	LE APPLICATION I	DEVELOPMEN	JT	
			(GROUP E: C	GLOBAL ELECTIV	'E)		
				(Theory)			<u></u>
	e Code	:	18G6E10		CIE	:	100 Marks
	ts: L:T:P	:	3:0:0		SEE	:	100 Marks
Total]		:	39L		SEE Duration	:	3.00 Hours
			ctives: The students will b		1 1		
1	-		e knowledge on essentials		<u>^</u>		
2			e basic and advanced featu				
	3 Develop the skills in designing and building mobile applications using android platform.						
4							
5	Comprehen	d th	e knowledge on essentials	of android application	development.		
			T	•			00.11
TA	1 4*		Un	it-I			08 H
	luction:		. 1 . 1	1° (° T (1		1 т	/ 11° A 1
		-	systems and smart phone				-
	-		oid app project, deploying			JIL	Jesign: Building
•			, Layouts, Views and Reso		•	• • • •	Intende Tredit
			The Activity Lifecycle,		-		
-		ng s	upport libraries, The And	droid Studio Debugger	, Testing androi	ld a	ipp, The Andro
Suppo	rt Library.		T T •/				
I. ann a			Unit	; – II			08 H
	experience:	T	anut Controlo Monuo Co	man Naviation Dear	lan Wiener Deliel		1
			nput Controls, Menus, Sch		-		-
	-		Themes, Material Design,	Providing Resources in	or Adaptive Lay	outs	s, resulig app (
Tesun	g the User Inte	eria		TTT			00 11
Work	ing in the bac	lzar	Unit	-111			08 H
	0	0	vncTask and Async Task	Loader Connect to th	a Internet Bree	daa	st Docoivors
-			heduling and optimizing				
	Ferring Data E	-	v , v	background tasks - Iv	otifications, Sen	Cut	ning Alarins, a
1141151			Unit	IV			08 H
All ah	out data:			- I V			00 11
		ting	s, Storing Data, Shared Pro	eferences Ann Setting	s Storing data us	sinc	sol ite - SOL
		-	e. Sharing data with conten		-	-	
			s and Debugging, Displayi		-		os and Fragmer
-		-	ogramming: Internet, E	÷ •	-	-	
			web pages and maps, con				
		-	d services, Sensors.	municating with SND		aun	
301 1100	lo - Location (Jase		t V			07 H
			Uni	t - V			1 U/ H
Hardy	vare Sunnort	8					0711
	ware Support			curity Firebase and A	dMob Publish	and	

Form Factors, Using Google Services.

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Comprehend the basic features of android platform and the application development process.
	Acquire familiarity with basic building blocks of Android application and its architecture.
CO2:	Apply and explore the basic framework, usage of SDK to build Android applications incorporating
	Android features in developing mobile applications.
CO3:	Demonstrate proficiency in coding on a mobile programming platform using advanced Android
	technologies, handle security issues, rich graphics interfaces, using debugging and troubleshooting
	tools.
CO4:	Create innovative applications, understand the economics and features of the app marketplace by
	offering the applications for download.

Refere	ence Books
1	Android Programming, Phillips, Stewart, Hardy and Marsicano, Big Nerd Ranch Guide, 2 nd Edition,
1	2015, ISBN-13 978-0134171494
2	Android Studio Development Essentials - Android 6, Neil Smyth, 2015, Createspace Independent
2	Publishing Platform, ISBN: 9781519722089
3	Android Programming – Pushing the limits, Eric Hellman, 2013, Wiley, ISBN-13: 978-1118717370
4	Professional Android 2 Application Development, Reto Meier, Wiley India Pvt.Ltd 1st Edition,
4	2012, ISBN-13: 9788126525898
=	Beginning Android 3, Mark Murphy, Apress Springer India Pvt Ltd, 1st Edition, 2011, ISBN-13:
5	978-1-4302-3297-1
(Android Developer Training - https://developers.google.com/training/android/
6	Android Testing Support Library - https://google.github.io/android-testing-support-library/

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	3	-	-	-	-	-	-	2
CO2	3	-	-	-	3	-	-	-	-	-	1	2
CO3	-	3	3	-	3	-	1	-	-	2	1	3
CO4	3	3	3	1	3	2	1	2	2	1	1	3

	Semester: VI							
	INDUSTRIAL AUTOMATION (GROUP E: GLOBAL ELECTIVE)							
				OBAL ELECTIVE) (OERY)				
Cour	se Code	:	18G6E11	CIE	:	100 Marks		
		:	3:0:0	SEE	:	100 Marks		
Total Hours:39 L				SEE Duration	:	3.00 Hours		
Cou	rse Learning (Dbj	ectives: The students will	be able to				
1	Identify the v	ario	ous types of Actuators, ser	nsors and switching devices us	sed in	n industrial		
	automation.							
2	Understand	the	fundamentals of CNC, PL	C and Industrial robots.				
3	Describe the	fun	ctions of hardware compo	nents for automation				
4	Prepare simp	le n	anual part programs for C	CNC and Ladder logic for PLO	С.			
5	Demonstrate	the	ability to develop suitable	e industrial automation system	is usi	ng all the concepts		

Unit-I	06 Hrs
Overview of Automation in Industry	
Basic kinds of Industrial type equipment, automation and process control, mechanization vs au	tomation.
continuous and discrete control, basic elements of an automated system, advanced automation	functions,
levels of automation, basic automation circuits.	
Unit-II	10 Hrs
Sensors and Industrial Switching elements.	
Sensor terminology, Classification of sensors and transducers, Limit switch, Temperature s	ensors,
Light sensors, position sensors, inductive and capacitive proximity sensors, optical encoders,	Relays,
Solenoids, moving part logic elements, fluidic elements, timers, comparisons between sw	vitching
elements.	
Industrial Automation Synthesis	
Introductory principles, basic automation examples, meaning of the electrical and mechanical	latch,
automation circuits with sensors, design regulations and implementation.	
Unit-III	10 Hrs
Logical Design of Automation Circuits	
Postulates and theorems of Boolean algebra, Classical state diagrams, state diagrams with sens	ors, step
by step transition due to discrete successive signal, state diagram with time relays, compone	nts state
diagram method, state diagrams and minimum realisations, sequential automation s	systems,
Applications - Bi directional lead screw movable worktable with two speeds, Palindromic mo	ovement
of a worktable with memory.	
Elements of electro pneumatic actuation	
Basic elements of pneumatic system, pneumatic cylinders, Symbolic representations of pneum	atic and
electrical switching devices, Indirect control of double acting cylinders, memory control	circuit,
cascading design, automatic return motion, quick exhaust valve circuit, and cyclic operat	ion of a
cylinder, pressure sequence valve and time delay valve circuits. Automatic return motion, Se	parating
similar balls, Stamping device.	
Unit-IV	06 Hrs
Numerical Control and Robotics	·
Numerical control, components of CNC, classification, coordinate systems, motion control str	ategies,
	-

Numerical control, components of CNC, classification, coordinate systems, motion control strategies, interpolation, NC words, Simple part programming for turning, milling and drilling. Components of the robot, base types, grippers, Configurations and simple programming using VAL.

Unit-V	07 Hrs

Programmable logic control systems

Internal structure, principles of operation, latching, ladder diagrams, programming instructions, types of timers, forms of counters, writing simple ladder diagrams from narrative description and Boolean logic. Programming exercises on motor control in two directions, traffic control, cyclic movement of cylinder, conveyor belt control, alarm system, sequential process, and continuous filling operation on a conveyor.

Course	Outcomes: After completing the course, the students will be able to
CO1:	Recall and Illustrate the application of sensors actuators, switching elements and inspection
	technologies in industrial automation.
CO2:	Build the circuit diagrams for fluid power automation, Ladder diagrams for PLC and
	identify its application areas.
CO3:	Evaluate CNC part programs for 2D complex profiles, perform machining and turning
	centres interfaced with Robots.
CO4:	Develop a suitable industrial automated system integrating all of the above advanced
	automation concepts

Referen	ce Books
1.	Stamatios Manesis, George Nikolakopoulos, 'Introduction to Industrial Automation', CRC Press, 2018, ISBN - 978-1-4987-0540-0
	TTESS, 2010, ISBN - 978-1-4987-0540-0
2.	David W. Pessen, 'Industrial automation; Circuit design and components', Wiley India, 1st
	Edition, 2011, ISBN -13-978-8126529889.
3.	Joji P, 'Pneumatic Controls', Wiley India, 1st Edition, ISBN – 978–81–265–1542–4.
4.	Petruzella, Frank D, Programmable logic controllers, McGraw-Hill, 4th Edition, 2013, ISBN-
	13: 978-0-07-351088-0

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30 (Q) + 50 (T) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	2	2	-	3	1	-	-	-	1	-	1
CO2	2	2	3	2	2	-	-	-	1	2	-	1
CO3	2	2	3	3	2	-	-	-	-	2	-	-
CO4	3	3	3	2	2	-	-	-	-	2	-	1

	Semester: VI								
MOBILE NETWORK SYSTEM AND STANDARDS (GROUP E: GLOBAL ELECTIVE) (Theory)									
Cou	rse Code	:	18G6E12	CIE	:	100 Marks			
Crec	Credits: L:T:P		3:0:0	SEE	:	100 Marks			
Hrs/	Week	:	40L	SEE Duration	:	3.00 Hrs			
Cou	rse Learning	; Ol	ojectives: The	students will be able to					
1	Understand the perform		•	ciples of cellular communication and	factors that	t might degrade			
2	Describe the	e se	cond-Generati	on pan-European digital mobile cellula	communi	cation standards.			
3	Analyze the	30	G cellular techr	ologies including GPRS and UMTS.					
4	Compare th	e ez	kisting and fut	are trends in Wireless technologies.					

Unit-I	07 Hrs
Principle of Cellular Communication: Cellular Terminology, Cell Structure and Cluster, F	requency
Reuse Concept, Cluster size and System Capacity, Method of Locating Co-channel cells, F	requency
Reuse distance, Co-channel Interference and Signal Quality, Co-channel interference F	eduction
Methods.	
Unit – II	08 Hrs
Basic Cellular system: Consideration of components of a cellular system- A basic cellular	r system
connected to PSTN, Main parts of a basic cellular system, Operation of a Cellular	system,
Performance criteria- Voice quality, Trunking and Grade of Service, Spectral Efficiency of	f FDMA
and TDMA systems.	
Unit –III	09 Hrs
Second generation Cellular Technology: GSM: GSM Network Architecture, Identifiers	s used in
GSM System, GSM channels, Authentication and Security in GSM, GSM Call Procedu	re, GSM
Hand-off Procedures.	
IS-95: Forward Link, Reverse Link, Soft-handover in IS-95.	
Unit –IV	08 Hrs
3G Digital Cellular Technology: GPRS: GPRS technology, GPRS Network Architectur	e, GPRS
signalling, Mobility Management in GPRS.	
UMTS: UMTS Network Architecture, UMTS Interfaces, UMTS Air Interface Specification	s, UMTS
Channels.	
Unit –V	08 Hrs
Wireless Personal Area Networks: Network architecture, components, Bluetooth,	Zigbee,
Applications. Wireless Local Area networks: Network Architecture, Standards, Application	
rippileutons, i in cless Locul in cu networks, i termore cleare, standards, i ippileuton	s.

architecture, Protocol stack.

Course	Course Outcomes: After completing the course, the students will be able to							
CO1	Describe the concepts and terminologies for Cellular Communication.							
CO2	Analyze the Architecture, Hand-off and Security aspects in 2G and 3G Networks.							
CO3	Compare the performance features of 2G and 3G Cellular Technologies.							
CO4	Analyze and Compare the architectures of various Wireless technologies and standards.							

Reference Books

Keitt	
1	Wireless Communications, T.L. Singal, 2 nd Reprint 2011, Tata McGraw Hill Education
1	Private Limited, ISBN: 978-0-07-068178-1.
2	Wireless and Mobile Networks Concepts and Protocols, Dr.Sunil Kumar S Manvi, 2010,
2	Willey India Pvt. Ltd., ISBN: 978-81-265-2069-5.
3	Wireless Communication, Upena Dalal, 1 st Edition, 2009, Oxford higher Education,
5	ISBN-13:978-0-19-806066-6.
4	Wireless Communications Principles and practice, Theodore S Rappaport, 2 nd Edition,
4	Pearson, ISBN 97881-317-3186-4.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	-	2	-	-	-		-	-	
CO2	3	2	3	-	2	-	-	-	2	-	-	
CO3	3	3	-	2	2	-	-	-	2	-	-	3
CO4	3	2	2	-	2	-	-	-	2	-	-	3

				Semester: VI						
	THIN FILM NANO DEVICE FABRICATION TECHNOLOGY									
	(GROUP E: GLOBAL ELECTIVE)									
C	(Theory) Course Code : 18G6E13 CIE : 100 Marks									
		:				:				
	lits: L:T:P	:	3:0:0		SEE	:				
	l Hours	:	39L		SEE Duration	n : 3.00 Hours				
-	<u> </u>		ectives: The students							
1			ing of vacuum and r		C (1) C'1 1					
2	-	_	-	nd characterization o		ostri	uctures			
3	U 11 1		<u> </u>	for desired application						
4	Fabricate and	Eva	aluate thin film nand	devices for advanced	d applications					
				Unit-I			08 Hrs			
Vacu	um Technolog	gy:								
Intro	duction (KTG,	cla	ssification of Vacu	um), Gas transport a	nd pumping, Q-rate	e ca	lculation, Basics of			
Vacu	um - Principles	s of	different vacuum pu	umps: Rotary, Roots,	Diffusion, Turbo mo	olec	ular, and Cryogenic			
	-		-	pump (TSP); differe			• •			
				and Penning gauges.	I I O , I					
cone	ept of cupuoli			Unit – II			08 Hrs			
Subs	strate Surfaces	&]	Thin Film Nucleation				00 1115			
Aton	nic view of sub	stra	te surfaces, Thermo	odynamic aspects of	nucleation, Kinetic	pro	cesses in nucleation			
				tion and growth (Brie		•				
Defe	cts in Thin Fil	ms:								

0-D (point defects), 1-D (line defects), 2&3-D (grain boundaries, stacking faults, crystal twins, voids and precipitates), strain mismatch, Ion implantation defects (Amorphization), Effects of defects on the film (Electrical resistivity, PN junction leakage current, diffusion, Mechanical stress), defect propagation in films

08 Hrs

Fabrication Techniques

Chemical Approaches: Electro Spinning and spin coating routes, Pulsed electro-chemical vapor deposition (PECVD)

Unit –III

Physical Approaches: Metalorganic chemical vapor deposition (MOCVD), Atomic Layer Deposition (ALD) - pulsed laser deposition, Arc plasma deposition.

Lithography: Photo/FIB techniques, Etching process: Dry and Wet etching

Unit –IV07 HrsCharacterization TechniquesSurface morphology measurements: Kelvin-probe Force Microscopy (KFM), Surface X-ray Diffraction(SXRD), Vacancy type defects and interfacial surface chemistry: Positron Annihilation LifetimeSpectroscopy (PALS), Angle Resolved X-ray Photoelectron spectroscopy (ARXPS) Point, line defects,grain boundary studies: Transmission Electron microscopy (TEM), UV Visible Spectroscopy (UV-Vis)Unit –V08 HrsSilicon wafer fabrication – Wafer to cell formation - I-V characteristics and spectral response of c-Si solarcells. Factors limiting the efficiency, Differences in properties between crystalline silicon and amorphous(a-Si) siliconThin Film Solar Cells: Principle of multi-junction cells, Structure and fabrication of GaInP/GaAs/Ge triplejunction solar cell - Cell configuration – techniques used for the deposition of each layer- cellcharacteristics, optical efficiency measurements (brief)

Thin film Nano Biosensor: Biosensors and nanotechnology, Basic biosensor architecture, Biosensor

(receptor/antigen) recognition element, Biosensor transducer (electrochemical, optical, thermal, mass), Glucowatch TM, Examples in cancer detection

Field Effect Transistors: Overview, Basic Structure, I-V Characteristics, Lateral transport of electrons in different regions of transistors.

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Choose the right choice of material for the desired application
CO2:	Improve the desired nanostructures and their properties
CO3:	Fabricate appropriate Nanodevices
CO4:	Optimize the nanodevice fabrication process for repeatability.

Refere	ence Books
1	Solid State Physics, Ashcroft & Mermin, 2 nd Edition, Brooks/Cole, 1976, ISBN-13: 978-
1	0030839931
2	Nanotechnology for photovoltaics, Loucas Tsakalakos, 1st Edition, 2010, ISBN 9781420076745.
2	Microfabrication for Industrial Applications, Regina Luttge, 1st Edition, William Andrew,2011,
3	ISBN: 9780815515821.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-]	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	-	-	-	-	-	-		-	2
CO2	3	2	2	2	-	-	-	-	-		-	2
CO3	2	3	3	2	2	1	1	1	-	1	-	2
CO4	2	3	3	2	2	2	2	2	2	2	-	2

					Semeste	er: VI					
	CHEMIS	TRY	OF AD	VANCE	D ENERGY S		E DEVICES I	FOR E	2-N	IOBILIT	Y
				(GRO	OUP E: GLOB	BAL ELEC	CTIVE)				
					(Theo			r			
	e Code	:	18G6E	14			CIE		:	100 Mar	
	ts: L:T:P	:	3:0:0				SEE		:	100 Mar	
Total]			39L				SEE Duration	n	:	3.00 Hou	irs
					ents will be abl dvanced storag						
					e devices for E	0					mina
			<u> </u>							•	
V	vehicles.				mistry to ana		•				ric/nybri
4 I	Develop kno	owled	lge of bat	ttery mar	nagement syste	em and recy	cling of stora	ge dev	vice	es.	
			~	~	Unit-I						07 Hrs
		0	•	•	ns in Electric						
-			-	•	es and sustaina	-			-		
	-				on. Vehicle pe				-		
			•	•••	and power re	•	ts for various	HEV	S	and EVs	Vehicle
Fundar	mentals of b	attery	y technol	ogy in hy	ybrid vehicles.						
					Unit – II						08 Hrs
Advan	ced Lithiu	m ior	a Battery	7 Techno	logy for Floot	twig wohigh	0.0.0				
				Ittimo	hogy for Elect	uric-venicio	es:				
Basic of	concepts of	lithiu	•		vanced Lithiun			y: Cel	1 c	onstructio	n, batter
	-		um batter	ries, Adv		n batteries	for E-mobilit	•			
compo	nents, prin	ciple	um batter of oper	ries, Adv ration, e	vanced Lithiun	n batteries rication, el	for E-mobilit ectrolytes, ba	attery	m	odules an	d packs
compo Constr	nents, prin	ciple king	um batter of oper and futur	ries, Adv ration, e re applica	vanced Lithiun electrode fabri	n batteries rication, el	for E-mobilit ectrolytes, ba	attery	m	odules an	d packs
compo Constr	nents, prinuction, wor	ciple king	um batter of oper and futur	ries, Adv ration, e re applica	vanced Lithiun electrode fabri	n batteries rication, el	for E-mobilit ectrolytes, ba	attery	m	odules an	d packs
compo Constr sulfide	nents, prinuction, wor	ciple king olid-s	um batter of oper and futur tate batte	ries, Adv ration, e re applica pries.	vanced Lithium electrode fabri ations of Li-po Unit –III	n batteries rication, el	for E-mobilit ectrolytes, ba	attery	m	odules an	nd packs y, Li-iro
compo Constr sulfide Future	nents, prin uction, worl cells and so e Scope in n	ciple king blid-s	um batter of oper and futur tate batte	ries, Adw ration, e re applica pries. Batterie	vanced Lithium electrode fabri ations of Li-po Unit –III	n batteries rication, el olymer batt	for E-mobilit ectrolytes, ba eries, Li-S ba	attery ttery, 1	m Li-	odules an Air batter	nd packs y, Li-iro 08 Hrs
compo Constr sulfide Future Limita	nents, prin uction, work cells and so e Scope in r tions of lit	ciple king blid-s blid-s	um batter of oper and futur tate batte Lithium batteries	ries, Adv ration, e re applica eries. Batterie s. Const	vanced Lithium electrode fabri ations of Li-po Unit –III es:	n batteries rication, el olymer batt	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a	attery ttery, 1	m Li-	odules an Air batter	nd packs y, Li-iro 08 Hrs n-Lithiur
compo Constr sulfide Future Limita batterie	e Scope in r tions of lit	ciple king blid-s blid-s non- l hium batte	um batter of oper and futur tate batte Lithium batteries ry, Magr	ries, Adv ration, e re applica eries. Batterie s. Const nesium b	vanced Lithiun electrode fabri ations of Li-po Unit –III es: ruction, comp	n batteries rication, el olymer batt ponents, we Metal Hyd	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery,	attery ttery, 1 pplicat Zebra		odules an Air batter	d packs y, Li-iro 08 Hrs n-Lithiur dium an
compo Constr sulfide Future Limita batterie iron-ba	e Scope in r tions of littes: Sodium- ased batteri	ciple king blid-s blid-s hium batte es, 1	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp pattery, Nickel tteries. Advan	n batteries rication, el olymer batt ponents, we Metal Hyd nced batter	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans	attery ttery, 1 pplicat Zebra	m Li- Lion	odules an Air batter ns of Nor ells, Vana n: Ni-MH	d packs y, Li-iro 08 Hrs n-Lithiur dium an
compo Constr sulfide Future Limita batterie iron-ba	e Scope in r tions of littes: Sodium- ased batteri	ciple king blid-s blid-s hium batte es, 1	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp pattery, Nickel tteries. Advan ntages and app	n batteries rication, el olymer batt ponents, we Metal Hyd nced batter	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans	attery ttery, 1 pplicat Zebra	m Li- Lion	odules an Air batter ns of Nor ells, Vana n: Ni-MH	nd packs y, Li-iro 08 Hrs n-Lithiur dium an l battery
compo Constr sulfide Future Limita batterie iron-ba horizon	e Scope in r tions of littes: Sodium- ased batteri	ciple king blid-s non- l hium batte es, l b-Aci	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro d batterie	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp battery, Nickel tteries. Advan ntages and app Unit –IV	n batteries rication, el olymer batt ponents, we Metal Hyd nced batter	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans	attery ttery, 1 pplicat Zebra	m Li- Lion	odules an Air batter ns of Nor ells, Vana n: Ni-MH	nd packs y, Li-iro 08 Hrs n-Lithiur dium an l battery
compo Constr sulfide Future Limita batterid iron-ba horizon	e Scope in r tions of littes: Sodium- ased batteri ntal plate Pt	ciple king blid-s bon- hium batte es, 1 b-Acie	um batter of oper and futur tate batter Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp pattery, Nickel tteries. Advan ntages and app Unit –IV ices:	n batteries rication, el olymer batt ponents, we Metal Hyd need batter plications of	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium l	pplicat Zebra Sportat	m Li- ion ior es.	odules an Air batter ns of Nor ells, Vana n: Ni-MH	d packs y, Li-iro 08 Hrs n-Lithiur dium an battery 08 Hrs
compo Constr sulfide Futuro Limita batterio iron-ba horizon Chemi Introdu	e Scope in r tions of litters sed batterint ntal plate Pt istry of Alter action to su	ciple king blid-s blid-s non- hium batte es, I b-Acid ernat	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora apacitor,	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material	vanced Lithium electrode fabri ations of Li-po Unit –III es: rruction, comp pattery, Nickel tteries. Advan ntages and app Unit –IV ices: I characteristic	n batteries rication, el olymer batt ponents, we Metal Hyd need batter plications of	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium l ction, workin	pplicat zebra sportat batterio	ma Li- ion ior es. ap	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications	nd packs y, Li-iro 08 Hrs n-Lithiur dium an l battery 08 Hrs of Supe
compo Constr sulfide Future Limita batteric iron-ba horizon Chemi Introdu capacit	e Scope in r tions of littes: Sodium- ased batteri ntal plate Pt istry of Alter action to su tors and Ul	ciple king blid-s blid-s blid-s blid-s bli	um batter of oper and futur tate batter Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora apacitor, apacitor	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E m	vanced Lithium electrode fabri ations of Li-po Unit –III es: rruction, comp battery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double	n batteries rication, el olymer batt ponents, we Metal Hyd need batter plications of cs. Constru le layer Su	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium ction, workin per capacitors	pplicat Zebra sportat batterio g and s, Aqu	ion ion ior es. ap	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super	d packs y, Li-iro 08 Hrs n-Lithiur dium an battery 08 Hrs of Supe capacitor
compo Constr sulfide Futuro Limita batterio iron-ba horizon Chemi Introdu capacit organio	e Scope in retions of littles: Sodium- ased batteri ntal plate Ptroving and Ulicons and Ul	ciple king blid-s blid-s non-l hium batte es, l b-Acie ernat per c tra ca er ca	um batter of oper and futur tate batter Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora apacitor, apacitors,	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E me asymmet	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp battery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa	n batteries fication, el olymer batt ponents, we detal Hyd need batter blications of cs. Constru le layer Su acitors and	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium l ction, workin per capacitors Ultra capacito	pplicat pplicat Zebra sportat batterio g and s, Aqu	ma Li- Lion ion es. ap ieo dva	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super a anced batt	nd packs y, Li-iro 08 Hrs n-Lithiur dium an l battery 08 Hrs of Supe capacitor ery-supe
compo Constr sulfide Future Limita batteric iron-ba horizon Chemi Introdu capacit organic capacit	e Scope in retions of litters: Sodium- ased batterintal plate Ptrivial plate Ptrivial plate Ptrivial plate and units of a superior of the second seco	ciple king blid-s blid-s non-l hium batte tra ca er cap for la	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora apacitor, apacitor, pacitors, rge vehic	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E ma asymmet	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp battery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa tery-Fuel cell h	n batteries rication, el olymer batt ponents, we Metal Hyd need batter plications of es. Constru le layer Su acitors and hybridizatio	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium ction, workin per capacitors Ultra capacito on for transpor	g and sports. Aquors. A	me Li- ion ior es. ap ieo dv: ap	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super a anced batt oplications	n-Lithiur dium an battery 08 Hrs of Supe capacitor ery-supe , Battery
compo Constr sulfide Future Limita batterie iron-ba horizon Chemi Introdu capacit organie capacit	e Scope in retions of litters: Sodium- ased batterintal plate Ptrivial plate Ptrivial plate Ptrivial plate and units of a superior of the second seco	ciple king blid-s blid-s non-l hium batte tra ca er cap for la	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora apacitor, apacitor, pacitors, rge vehic	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E ma asymmet	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp pattery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa tery-Fuel cell h	n batteries rication, el olymer batt ponents, we Metal Hyd need batter plications of es. Constru le layer Su acitors and hybridizatio	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium ction, workin per capacitors Ultra capacito on for transpor	g and sports. Aquors. A	me Li- ion ior es. ap ieo dv: ap	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super a anced batt oplications	d packs y, Li-iro 08 Hrs n-Lithiur dium an l battery 08 Hrs of Supe capacitor ery-supe , Battery energy.
compo Constr sulfide Futuro Limita batterio iron-ba horizon Chemi Introdu capacit organic capacit Solar C	nents, prin uction, work cells and so e Scope in r tions of litt es: Sodium- ased batteri ntal plate Pt istry of Alte uction to su tors and Ul c based supe tor hybrids f	ciple king blid-s blid-s on- l hium batte es, l b-Acie es, l b-Acie ernat per c tra ca for la coltaic	um batter of oper and futur tate batter Lithium batteries ry, Magr Ni-Hydro d batteries ive Stora apacitor, apacitor, apacitors, rge vehic c) hybridi	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E me asymmet cles, Batt ization, a	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp battery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa tery-Fuel cell h	n batteries rication, el olymer batt ponents, we Metal Hyd need batter plications of es. Constru le layer Su acitors and hybridizatio	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium ction, workin per capacitors Ultra capacito on for transpor	g and sports. Aquors. A	me Li- ion ior es. ap ieo dv: ap	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super a anced batt oplications	d packs y, Li-iro 08 Hrs n-Lithiur dium an l battery 08 Hrs of Supe capacitor ery-supe , Battery energy.
compo Constr sulfide Future Limita batterid iron-ba horizon Chemi Introdu capacit organid capacit Solar C Batter	nents, prin uction, work cells and so e Scope in r tions of litt es: Sodium- ased batteri ntal plate Pt istry of Alte uction to su tors and Ul c based supe tor hybrids f Cell (Photov	ciple king blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora apacitor, apacitor, apacitors, rge vehic c) hybridi	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E me asymmet cles, Batt ization, a	Vanced Lithium electrode fabri ations of Li-po Unit –III es: rruction, compositery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa tery-Fuel cell h and advanced e Unit –V	n batteries rication, el olymer batt bonents, we Metal Hyd need batter blications of cs. Constru le layer Su acitors and hybridizatio	for E-mobilit ectrolytes, ba eries, Li-S ba orking and ap dride Battery, ries for trans f non-lithium l ection, workin per capacitors Ultra capacito on for transpor age devices fo	g and s, Aquors, Aquor	me Li- Li- ior es. ap leo dva ap	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super anced batt plications o of solar o	d packs y, Li-iro 08 Hrs n-Lithiur dium an battery 08 Hrs of Supe capacitor ery-supe , Battery energy. 08 Hrs
compo Constr sulfide Future Limita batterie iron-ba horizon Chemi Introdu capacit organic capacit Solar C Batter Battery	e Scope in retions of littles: Sodium- ased batteri ntal plate Ptroving and Ulic based superior of Alteriant intal plate Ptroving and Ulic based superior of the corn hybrids for Cell (Photov y Maintena	ciple king blid-s blid-s non- bhium batte es, 1 b-Acie es, 1 b-Acie ernat per c tra ca for la coltaic ance a	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora apacitor; apacitor; c) hybridi and Recy ystems (E	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E me asymmet cles, Batt ization, a ycling: BMS), Fu	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp pattery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa tery-Fuel cell h and advanced e Unit –V	n batteries fication, el olymer batt bonents, we detal Hyd need batter blications of cs. Constru le layer Su acitors and hybridizations energy stors	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium l ection, workin per capacitor Ultra capacitor age devices fo anagement sys	pplicat Zebra sportat batterio g and s, Aqu ors. A rtation or back	me Li- Lion ion es. ap eo dva ap -up	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super anced batt pplications o of solar of ancel solar of ancel solar of	d packs y, Li-iro 08 Hrs n-Lithium dium and battery 08 Hrs of Supe capaciton ery-supe , Battery energy. 08 Hrs
compo Constr sulfide Future Limita batteric iron-ba horizon Chemi Introdu capacit organic capacit Solar C Battery Battery	e Scope in re- tions of litters: Sodium- ased battering tal plate Pterson istry of Alters istry of Alters istr	ciple king blid-s blid-s non-l hium batte es, l b-Acie er cap for la oltaic ance a ent Sy Viana	um batter of oper and futur tate batter batteries ry, Magr Ni-Hydro d batteries ive Stora apacitor, apacitor, coacitors, rge vehic c) hybridi	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E ma asymmet cles, Batt ization, a ycling: BMS), Fu Passive o	vanced Lithium electrode fabri ations of Li-po Unit –III es: rruction, comp battery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa tery-Fuel cell h and advanced e <u>Unit –V</u> undamentals of cooling – PCN	m batteries rication, el olymer batt ponents, we Metal Hyd need batter plications of cs. Constru le layer Su acitors and hybridization energy stors f battery ma M systems,	for E-mobilit ectrolytes, ba eries, Li-S ba orking and ap dride Battery, ries for trans f non-lithium l ction, workin per capacitors Ultra capacito on for transpor age devices fo anagement sys	g and sportat g and s, Aquors. A rtation or back stems a ng – L	me Li- Lion ior es. ap leo dv: ap -up	odules an Air batter Air batter ans of Nor ells, Vana n: Ni-MH plications us super anced batt pplications o of solar of solar of ancel solar of ancel solar of ancel solar of	d packs y, Li-iro 08 Hrs n-Lithiur dium an battery 08 Hrs of Supe capaciton ery-supe , Battery energy. 08 Hrs
compo Constr sulfide Future Limita batterie iron-ba horizon Chemi Introdu capacit organic capacit Solar C Battery Battery Battery	e Scope in retions of littles: Sodium- ased batteri ntal plate Ptr istry of Alteriation to su tors and Ulic based superior to su tors and Ulic classed superior to su tor hybrids f Cell (Photov y Maintena y Management y Recycling	ciple king blid-s blid-s non-l hium batte es, l b-Acid ernat per c tra ca for la coltaic ance a coltaic ance a for la	um batter of oper and futur tate batter batteries ry, Magr Ni-Hydro d batteries ive Stora apacitor, apacitor, c) hybridi and Recy ystems (E gement: 1 hnologies	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E me asymmet cles, Batt ization, a ycling: BMS), Fu Passive o s: Techn	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, compositery, Nickel tteries. Advan ntages and app Unit –IV ices: I characteristic obility: Double tric super capa tery-Fuel cell h and advanced e Unit –V undamentals of cooling – PCN pology and eco	n batteries rication, el olymer batt ponents, we Metal Hyd need batter blications of cs. Constru le layer Su acitors and hybridizatio energy stora f battery ma M systems, onomic asp	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium l ection, workin per capacitor Ultra capacitor age devices fo anagement sys Active coolin pects of batter	pplicat Zebra sportat batterio g and s, Aqu ors. A rtation or back stems a ng – L ry recy	me Li- Li- ior es. ap eo dv: ap -up -up -up	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super anced batt plications o of solar of l controls. uids & air ing. Envir	d packs y, Li-iro 08 Hrs n-Lithiur dium an l battery 08 Hrs of Supe capacitor ery-supe , Battery energy. 08 Hrs
compo Constr sulfide Future Limita batterie iron-ba horizon Chemi Introdu capacit organie capacit Solar C Batter Battery Battery safety	e Scope in retions of littles: Sodium- ased batteri ntal plate Ptr istry of Alteriation to su tors and Ulic based superior to su tors and Ulic classed superior to su tor hybrids f Cell (Photov y Maintena y Management y Recycling	ciple king blid-s blid-s non- bhium batte es, 1 b-Acid ernat per c tra ca for la coltaid ent Sy Mana recy	um batter of oper and futur tate batter Lithium batteries ry, Magr Ni-Hydro d batteries ive Stora apacitor apacitor, apacitor, apacitors, rge vehic c) hybridi and Recy ystems (E gement: hnologies cling pro	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E me asymmet cles, Batt ization, a ycling: BMS), Fu Passive o s: Techn ocess. Re	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp pattery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa tery-Fuel cell h and advanced e Unit –V undamentals of cooling – PCN ology and ecc egulations and	n batteries rication, el olymer batt ponents, we Metal Hyd need batter blications of cs. Constru le layer Su acitors and hybridizatio energy stora f battery ma M systems, onomic asp	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium l ection, workin per capacitor Ultra capacitor age devices fo anagement sys Active coolin pects of batter	pplicat Zebra sportat batterio g and s, Aqu ors. A rtation or back stems a ng – L ry recy	me Li- Li- ior es. ap eo dv: ap -up -up -up	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super anced batt plications o of solar of l controls. uids & air ing. Envir	d packs y, Li-iro 08 Hrs n-Lithiur dium an l battery 08 Hrs of Supe capacitor ery-supe , Battery energy. 08 Hrs

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understanding the fundamentals of advanced batteries, super capacitors and fuel cells for electric
	vehicles.
CO2:	Applying the chemistry knowledge used for hybridization of various energy storage and conversion
	devices for vehicle electrification.
CO3:	Analyses of battery management, safety, global market trends for large format batteries.
CO4:	Evaluation of efficiency of a battery with respect to cost, environmental safety, material, energy
	consumption, reuse and recycling.

Refere	ence Books
1	Battery reference book, T. R. Crompton., 3rd edition, NEWNES Reed Educational and Professional
1	Publishing Ltd 2000, ISBN: 07506 4625 X.
2	Batteries for Electric Vehicles, D. A. J. Rand, R. Woods, and R. M. Dell, Society of Automotive
2	Engineers, Warrendale PA, 2003. ISBN 10: 0768001277.
2	Lithium Batteries, Science and Technology, GA. Nazri and G. Pistoa, Kluwer Academic Publisher,
3	2003, ISBN 978-0-387-92675-9.
4	Battery Technology Handbook, H. A. Kiehne, Marcel Dekker, NYC, 2003. ISBN: 0824742494
4	9780824742492.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	-	-	2	-	-	-	-	1	-	1		
CO2	3	3	2	2	2	-	-	-	1	1	-	1		
CO3	2	2	3	3	2	-	-	-	3	1	2	1		
CO4	3	3	2	3	2	-	-	-	2	1	3	1		

				Semester: VI						
			ADVANCE	ED STATISTICAL	METHODS					
			(GROU	P E: GLOBAL ELE	ECTIVE)					
				(Theory)	ſ	-	ſ			
	rse Code	:	18G6E15		CIE	:	100 Marks			
	lits: L:T:P	:	3:0:0		SEE	:	100 Marks			
	ll Hours	:	39L		SEE Duration	:	3.00 Hours			
			ctives: The student		-1: C'					
1				basic knowledge on	classification and re	egres	ssion trees that form			
			analyzing data.							
2		-	•	and conjoint analysis	· ·					
3	Apply the concepts of discriminant analysis and factor analysis which have great significance in									
	engineering p	ract	ice.							
4	Demonstrate	the p	practical importance	e of regression and lo	glinear models.					
				Unit-I			07 Hrs			
Clas	sification and	Reg	ression Trees:							
			-	orical or Quantitative	-	ion [Frees, Classification			
Trees	s, Stopping Ru	les, l	Pruning and Cross-V	Validation, Loss func	tions, Geometry.					
				Unit – II			07 Hrs			
Clus	ster Analysis:									
Intro	duction, Types	s of	Clustering, Correlat	tions and Distances,	Hierarchical Cluster	ring,	Partitioning via K-			
mear	ns, Additive Tr	ees.								
				Unit –III			08 Hrs			
Conj	joint Analysis:	:								
Intro	duction, Addit	tive	Tables, Multiplicat	tive Tables, Comput	ting Table Margins	bas	sed on an Additive			
Mod	el, Applied Co	njoii	nt Analysis.	-						
		0	•	Unit –IV			08 Hrs			
Disc	riminant Anal	ysis	and Factor Analys	sis:			Ι			
Intro	duction, Linea	r Di	scriminant Model,	Linear discriminant	function, Discrimi	nant	analysis, Principal			
				nponents versus Fact			•			
	1 /			Unit –V	5 / 11		09 Hrs			
Logi	stic Regressio	n an	d Loglinear Mode				•> 115			
	0		0	ogit, Conditional Lo	git. Discrete Choice	e Lo	git. Stepwise Logit.			
	ng a Loglinear	-	-				5, Step Logit,			
1 1111	is a Dogiment	.,100								
Сош	rse Outcomes	Aft	er completing the	course, the students	will be able to					
CO1			1 0	of statistical methods		ielde	engineering			
CO2	1			statistical techniques						
002	· Apply the R	110 %	reuge and skins of	statistical techniques	to understand valio	usiy	pes of analysis.			

CO3:	Analyze the appropriate statistical techniques to solve the real-world problem and to optimize the
	solution.
CO4.	Distinguish the overall knowledge goined to demonstrate the problems origing in many prestical

CO4: Distinguish the overall knowledge gained to demonstrate the problems arising in many practical situations.

Refere	ence Books
1	Statistics I, SYSTAT 10.2, ISBN 81-88341-04-5.
2	Nonparametric Statistical Inference, Gibbons J., D., and Chakraborti, S., 4 th Edition, 2003, Marcel Decker, New York. ISBN: 0-8247-4052-1.

3	Applied Statistics and Probability for Engineers, Douglas C. Montgomery and George C. Runger, 6 th Edition, 2014, John Wiley & Sons, ISBN: 13 9781118539712, ISBN (BRV):9781118645062.
4	An Introduction to Multivariate Analysis, T. W. Anderson, 3 rd Edition, 2003, John Wiley & Sons, New Jersey, ISBN: 0-471-36091-0.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	-	1	-	-	-	-	-	-	-	2		
CO2	3	2	1	-	-	-	-	-	-	-	-	2		
CO3	2	3	2	2	-	-	-	-	-	-	-	1		
CO4	3	3	1	2	1	-	-	-	-	-	-	3		

				Semester:	VI		
			MA	THEMATICAL			
			(GRO		L ELECTIVE)		
~	~ .		10000	(Theory			400.7.7.7
	rse Code	:	18G6E16		CIE	:	100 Marks
	dits: L:T:P	:	3:0:0		SEE	:	100 Marks
	al Hours):)::	39L	lanta mill ha ahla t	SEE Duration	:	3.00 Hours
	0			lents will be able t		1:	
1	· ·				lge of mathematical mode	nng.	
2		-	-	ess models arising			
3	Apply the copractice.	once	epts of modelin	ig of nano liquid	s which have great sigr	iifica	nce in engineering
4	Demonstrate	the	practical impor	tance of graph th	eoretic models, variationa	ıl pro	blem and dynamic
	programming	5 .					
				Unit-I			07 Hrs
Eler	nentary Mathe	ema	tical Modeling:				
Basi	c concepts. Re	al v	world problems,	(Science and En	gineering), Approximatio	n of	the problem, Steps
	-		-		l, Logistic model, Model		
		-	-	•	blems), Chemical reaction		
				0 01	trical circuits (LCR).	1, DI	ug ubsorption from
0100		011 0	a projectile, et	Unit – II	inear chedits (LCK).		07 Hrs
Dia	crete Process	Ма	dolar	0mt – 11			07 1115
				T . 1			1 1 1 1 1
			—		discrete models-simple of		-
		diff	erence equation	is in economics,	finance, population dyna	amics	s and genetics and
prob	ability theory.						
Mod	leling of Nano			Unit –III			08 Hrs
		_	_				•
	o liquids-Basic	_	_		of nano liquids-Buongio	rno]	•
Nan	•	c co	oncepts, Mathem	natical modeling			Model (Two phase
Nan mod	lel): Relative in	c co mpo	oncepts, Mathem ortance of the n	natical modeling anoparticle transp	of nano liquids-Buongio	vatio	Model (Two phase n equation for two
Nan mod	lel): Relative in	c co mpo	oncepts, Mathem ortance of the n	natical modeling anoparticle transp	of nano liquids-Buongio ort mechanisms. Conser	vatio	Model (Two phase n equation for two
Nan mod phas	lel): Relative in se nano liquids:	c co mpo The	oncepts, Mathem ortance of the n e Continuity equa	natical modeling anoparticle transp ation, Momentum	of nano liquids-Buongio ort mechanisms. Conser	vatio	Model (Two phase n equation for two
Nan mod phas Gra	el): Relative in se nano liquids: ph Theoretic N	c co mpo The Mod	oncepts, Mathem ortance of the n e Continuity equa	natical modeling anoparticle transp ation, Momentum Unit –IV	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equa	vation.	Model (Two phase n equation for two 08 Hrs
Nan mod phas Gra Mat	lel): Relative in se nano liquids: ph Theoretic M hematical mod	c co mpo The Mod eling	oncepts, Mathem ortance of the n e Continuity equa lels: g through graph	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equa	vation.	Model (Two phase n equation for two 08 Hrs
Nan mod phas Gra Mat	lel): Relative in se nano liquids: ph Theoretic M hematical mod	c co mpo The Mod eling	oncepts, Mathem ortance of the n e Continuity equa lels: g through graph	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equa	vation.	Model (Two phase n equation for two 08 Hrs cted graphs, signed
Nan mod phas Gra Mat grap	el): Relative in se nano liquids: ph Theoretic M hematical mod hs and weighte	c co mpo The Mod eling d gr	oncepts, Mathem ortance of the n e Continuity equa lels: g through graph raphs. Problems	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equa	vation.	Model (Two phase n equation for two 08 Hrs
Nan mod phas Gra Mati grap Var	el): Relative in se nano liquids: ph Theoretic M hematical mod hs and weighte iational Proble	c co mpo The VIod eling d gr	oncepts, Mathem ortance of the n e Continuity equa lels: g through graph aphs. Problems	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V rogramming:	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equa ns of undirected graphs, pplications.	vation. tion. direc	Model (Two phase n equation for two 08 Hrs cted graphs, signed 09 Hrs
Nan mod phas Gra Mati grap Var Opti	el): Relative in se nano liquids: ph Theoretic N hematical mod hs and weighte iational Proble mization princ	c co mpo The Mod eling d gr em a ciple	e Continuity equates of the n continuity equations of the	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V rogramming: ues, Mathematica	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equa	vation. tion. direc	Model (Two phase n equation for two 08 Hrs cted graphs, signed 09 Hrs
Nan mod phas Gra Mati grap Var Opti	el): Relative in se nano liquids: ph Theoretic N hematical mod hs and weighte iational Proble mization princ	c co mpo The Mod eling d gr em a ciple	oncepts, Mathem ortance of the n e Continuity equa lels: g through graph aphs. Problems	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V rogramming: ues, Mathematica	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equa ns of undirected graphs, pplications.	vation. tion. direc	Model (Two phase n equation for two 08 Hrs cted graphs, signed 09 Hrs
Nan mod phas Gra Mat grap Var Opti prog	el): Relative in se nano liquids: ph Theoretic M hematical mod hs and weighte iational Proble mization princ gramming, Prob	c co mpo The Mod elin, d gr em a ciple	oncepts, Mathem ortance of the n e Continuity equa- lels: g through graph aphs. Problems y and Dynamic Pr es and techniqu s with engineerin	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V rogramming: nes, Mathematica ng applications.	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equants of undirected graphs, pplications.	vation. tion. direc	Model (Two phase n equation for two 08 Hrs cted graphs, signed 09 Hrs
Nan mod phas Gra Mat grap Var Opti prog	el): Relative in se nano liquids: ph Theoretic M hematical mod hs and weighte iational Proble mization princ gramming, Prob	c co mpo The Mod elin, d gr em a ciple isiple isiple	encepts, Mathem ortance of the n e Continuity equa elels: g through graph raphs. Problems and Dynamic Pr es and techniqu s with engineerin ter completing t	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V rogramming: nes, Mathematica ng applications.	of nano liquids-Buongio port mechanisms. Conser equation and Energy equa ns of undirected graphs, pplications.	direc	Model (Two phase n equation for two 08 Hrs cted graphs, signed 09 Hrs olem and dynamic
Nan mod phas Gra Mati grap Var Opti prog Cou	iel): Relative in se nano liquids: ph Theoretic M hematical mod hs and weighte iational Proble mization prince gramming, Prob irse Outcomes: i: Explore the	v co mpo The Mod elin, d gr em a ciple lem : Aft	oncepts, Mathem ortance of the n e Continuity equa- lels: g through graph aphs. Problems of and Dynamic Pr es and techniqu s with engineerin ter completing to adamental conce	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V rogramming: nes, Mathematica ng applications.	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equants of undirected graphs, pplications.	direct prot	Model (Two phase n equation for two 08 Hrs cted graphs, signed 09 Hrs blem and dynamic
Nan mod phas Gra Mat grap Var Opti prog	iel): Relative in se nano liquids: ph Theoretic M hematical mod hs and weighte iational Proble mization prince gramming, Prob irse Outcomes: i: Explore the	v co mpo The Mod elin, d gr em a ciple lem : Aft	oncepts, Mathem ortance of the n e Continuity equa- lels: g through graph aphs. Problems of and Dynamic Pr es and techniqu s with engineerin ter completing to adamental conce	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V rogramming: nes, Mathematica ng applications.	of nano liquids-Buongio port mechanisms. Conser equation and Energy equa ns of undirected graphs, pplications.	direct prot	Model (Two phase n equation for two 08 Hrs cted graphs, signed 09 Hrs blem and dynamic
Nan mod phas Gra Mati grap Var Opti prog Cou	 Relative in se nano liquids: ph Theoretic Mematical modules and weighte iational Problection princet gramming, Problection I: Explore the analysis. 	c co mpo The Mod elin, d gr em a ciple iem a ciple iem a ciple	oncepts, Mathem ortance of the n e Continuity equa- lels: g through graph aphs. Problems v and Dynamic Pr es and techniqu s with engineerin ter completing to idamental concep- wledge and skill	hatical modeling anoparticle transp ation, Momentum Unit –IV hs-Models in tern with engineering a Unit –V rogramming: hes, Mathematica ing applications. the course, the stup pts of mathematica is of discrete and	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equants of undirected graphs, pplications.	direct prob	Model (Two phase n equation for two 08 Hrs eted graphs, signed 09 Hrs olem and dynamic lds engineering. nd various types of

Refere	ence Books
1	Mathematical Modeling, J. N. Kapur, 1st Edition, 1998, New Age International, New Delhi, ISBN:
1	81-224-0006-X.
2	Case studies in mathematical modeling, D. J. G. James and J. J. Mcdonald, 1981, Stanly Thames,
2	Cheltonham, ISBN: 0470271779, 9780470271773.
2	Modeling with difference equations, D. N. Burghes, M. S. Borrie, Ellis Harwood, 1981, ISBN 13:
3	9780853122869.
	Mathematical Modeling: Models, Analysis and Applications, Sandip Banerjee, 2014, Chapman and
4	Hall/CRC Textbook, ISBN 9781439854518.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	-	1	-	-	-	-	-	-	-	2		
CO2	3	2	1	-	-	-	-	-	-	-	-	2		
CO3	2	3	2	2	-	-	-	-	-	-	-	1		
CO4	3	3	1	2	1	-	-	-	-	-	-	3		

		(Gl	ROUP E: GLOBAL ELECTIVE)		
			(Theory)		
Co	ourse Code	: 18G6E17	CIE Marks	:	100 Marks
Cr	edits: L:T:P	: 3:0:0	SEE Marks		100 Marks
	tal Hours	: 39L	SEE Durati	on :	3.00 Hours
Co	urse Learning O	bjectives:			
1	To make partici	pants self-discove	er their innate flow, entrepreneurial style, and ide	ntify p	roblems
	worth solving th	nereby becoming	entrepreneurs		
2	To handhold par	rticipants on lean	methodology to craft value proposition and get 1	eady v	vith lean
	canvas				
3	To create solution	on demo by cond	ucting customer interviews and finding problem-	solutic	n fit for
	building Minim	um Viable Produ	ct (MVP)		
4	To make partici	pants understand	cost structure, pricing, revenue types and import	ance of	f adopting
		ip to build good to			1 0
5	To help particip	ants build a stron	g brand and identify various sales channels for th	neir pro	ducts and
	services			1	
(To take particip	ants through basi	cs of business regulations and other legal terms a	long-v	vith
6			perty Rights		

Unit-I	08 Hrs
Self-Discovery and Opportunity Discovery	
Finding the Flow; Effectuation; Identifying the Effectuation principles used in activities; Identify	ving
Problem Worth Solving; Design Thinking; Brainstorming; Presenting the Identified problems; Id	lentifying
the Entrepreneurial Style.	
Unit – II	08 Hrs
Customer, Solution and Lean Methodology	
Customers and Markets; Segmentation and Targeting; Identifying Jobs, Pains, and Gains and Ea	rly
Adopters; Crafting Value Proposition Canvas (VPC); Presenting VPC; Basics of Business Mode	l and
Lean Approach; Sketching the Lean Canvas; Risks and Assumptions; Presenting Lean Canvas.	
Unit – III	07 Hrs
Problem-Solution Fit and Building MVP	
Blue Ocean Strategy - Plotting the Strategy Canvas; Four Action Framework: Eliminate-Reduce	-Raise-
Create Grid of Blue Ocean Strategy; Building Solution Demo and Conducting Solution Interview	vs;
Problem-Solution Fit; Building MVP; Product-Market Fit; Presenting MVP.	
Unit – IV	07 Hrs
Financial Planning & Team Building	
Cost Structure - Estimating Costs; Revenues and Pricing: Revenue Streams, Revenue Types, Ide	ntifying
Secondary Revenue Streams, Estimating Revenue and Price; Profitability Checks; Bootstrapping	and
Initial Financing; Practising Pitch; Shared Leadership; Hiring and Fitment, Team Role and	
Responsibilities.	
Unit – V	09 Hrs
Marketing, Sales, Regulations and Intellectual Property	
Positioning and Branding; Channels; Sales Planning; Project Management; Basics of Business	

Regulations; How to Get Help to Get Started; Patents, Trademark, Licensing, Contracts; Common Legal mistakes, Types of Permits, Tax Registration Documents, Compliance; Infringement and Remedies, Ownership and Transfer.

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Showcase the ability to discern distinct entrepreneurial traits				
CO2	Know the parameters to assess opportunities and constraints for new business ideas				
CO3	Understand the systematic process to select and screen a business idea				
CO4	Design strategies for successful implementation of ideas				
CO5	Create Business Model and develop Minimum Viable Product				

Reference Books:						
1	Running Lean: Iterate from Plan A to a Plan That Works. O'Reilly Media, Maurya, A., 2012.					
2	Entrepreneurship. Roy, R., 2012. Oxford University Press					
3	Intellectual Property Law in India. Gupta, T. S., 2011. Kluwer Law International					
4	Flow: The Psychology of Optimal Experience. Czikszentmihalyi, M., 2008. Harper Perennial					
	Modern Classics					
5	Effectuation: Elements of Entrepreneurial Expertise. Sarasvathy, S. D., 2009. Edward Elgar					
	Publishing Ltd.					

Continuous Internal Evaluation (CIE); Theory (100 Marks)

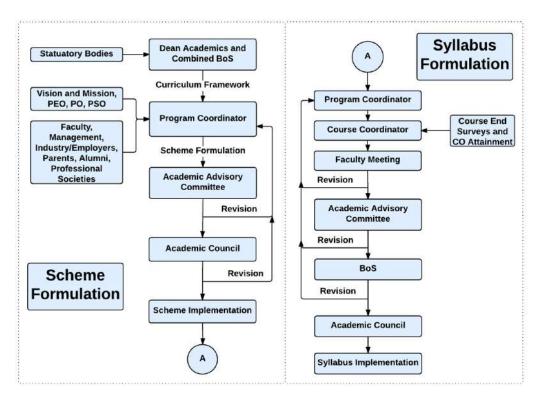
CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

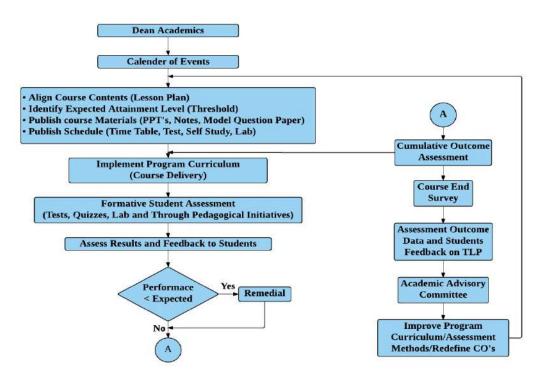
SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	2	-	1	2	2	-	1
CO2	1	1	-	-	-	3	2	3	1	2	-	1
CO3	-	1	-	-	-	2	1	3	3	3	3	3
CO4	-	1	2	2	3	-	-	-	1	-	2	1

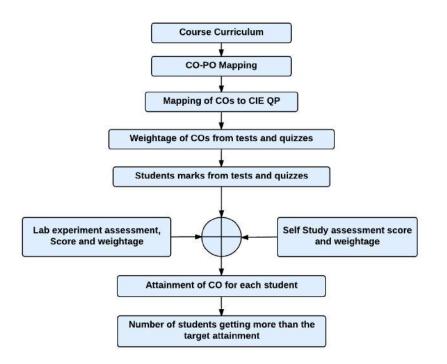
~	Em		essional Practice – II					
~	Em							
2		ployability Skills and	Employability Skills and Professional Development of Engineers					
Cou	rse Code	18HS68		CIE Marks: 50				
Credits: L:T:P		0:0:1		SEE Marks: 50				
Hours:		18 Hrs/Semester		CIE Duration: 02Hrs				
Course Learning Objectives: The students will be able to								
	1 Improve qualitative and quantitative problem solving skills.							
2 A	Apply critical and logical thinking process to specific problems.							
	Ability to verbally compare and contrast words and arrive at relationships between concepts, based on verbal reasoning.							
	Applying good mind maps that help in communicating ideas as well as in technical documentation							

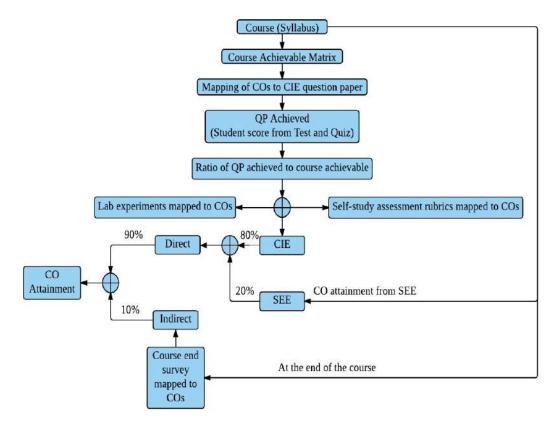

V Semester					
UNIT-I					
Aptitude Test Preparation- Importance of Aptitude tests, Key Components, Quantitative Aptitude – Problem Solving, Data Sufficiency, Data Analysis - Number Systems, Math Vocabulary, fraction decimals, digit places etc. Reasoning and Logical Aptitude, - Introduction to puzzle and games organizing information, parts of an argument, common flaws, arguments and assumptions. Analytical Reasoning, Critical Reasoning.	06 Hrs				
UNIT-II					
Verbal Analogies - What are Analogies, How to Solve Verbal Analogies & developing Higher Vocabulary, Grammar, Comprehension and Application, Written Ability. Non- Verbal Reasoning, Brain Teasers. Creativity Aptitude. Group Discussion- Theory & Evaluation : Understanding why and how is the group discussion conducted, The techniques of group discussion, Discuss the FAQs of group discussion, body language during GD.	06 Hrs				
UNIT-III.A	•				
Resume Writing- Writing Resume, how to write effective resume, Understanding the basic essentials for a resume, Resume writing tips Guidelines for better presentation of facts.	06 Hrs				
VI Semester					
UNIT-III.B					
Technical Documentation - Introduction to technical writing- Emphasis on language difference between general and technical writing, Contents in a technical document, Report design overview & format Headings, list & special notes, Writing processes, Translating technical information, Power revision techniques, Patterns & elements of sentences, Common grammar, usage & punctuation problems.	06 Hrs				
UNIT-IV	•				
Interview Skills -a) Personal Interviews , b) Group Interviews , c) Mock Interviews - Questions asked & how to handle them, Body language in interview, Etiquette, Dress code in interview, Behavioral and technical interviews, Mock interviews - Mock interviews with different Panels. Practice on stress interviews, technical interviews, General HR interviews etc.	06 Hrs				
UNIT-V					
Interpersonal Relations - Optimal Co-existence, Cultural Sensitivity, Gender sensitivity Adapting to the Corporate Culture- Capability & Maturity Model, Decision Making Analysis, Brain Storm. Adapting to the Corporate Culture.	06 Hrs				

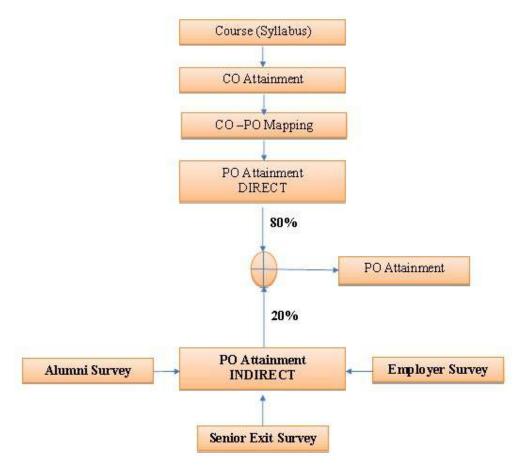
Cou	Course Outcomes: After completing the course, the students will be able to					
CO	: Inculcate employability skill to suit the industry requirement.					
CO2	: Analyze problems using quantitative and reasoning skills					
CO3	: Exhibit verbal aptitude skills with appropriate comprehension and application.					
CO4	: Focus on Personal Strengths and Competent to face interviews and answer					
Refe	Reference Books					
1.	The 7 Habits of Highly Effective People, Stephen R Covey Free Press, 2004 Edition, ISBN:					
	0743272455					
2.	How to win friends and influence people, Dale Carnegie General Press, 1 st Edition, 2016, ISBN:					
	9789380914787					
3.						
	Ron Mcmillan 2012 Edition, McGraw-Hill Publication ISBN: 9780071772204					
4.	Ethnus, Aptimithra: Best Aptitude Book ,2014 Edition, Tata McGraw Hill ISBN:					
	9781259058738					


Scheme of Continuous Internal Examination and Semester End Examination

Phase	Activity	Weightage
Phase I	CIE will be conducted during the 5 th semester and evaluated for 50 marks.	50%
V Sem	The test will have two components. The Quiz is evaluated for 15 marks and	
	second component consisting of questions requiring descriptive answers is	
	evaluated for 35 marks. The test & quiz will assess the skills acquired	
	through the training module.	
	SEE is based on the test conducted at the end of the 5 th semester The test will	
	have two components a Quiz evaluated for 15 marks and second component	
	consisting of questions requiring descriptive answers is evaluated for 35	
	marks.	
Phase II	During the 6 th semester a test will be conducted and evaluated for 50 marks.	50%
VISem	The test will have two components a Short Quiz and Questions requiring	
	descriptive answers. The test & quiz will assess the skills acquired through	
	the training module.	
	SEE is based on the test conducted at the end of the 6 th semester The test will	
	have two components. The Quiz evaluated for 15 marks and second	
	component consisting of questions requiring descriptive answers is	
	evaluated for 35 marks	
Phase III	At the end of the VI Sem Marks of CIE (5 th Sem and 6 th Sem) is consolidated	for 50 marks
At the	(Average of Test1 and Test 2 (CIE 1+CIE2)/2.	
end of	At the end of the VISem Marks of SEE (5 th Sem and 6 th Sem) is consolidated	for 50 marks
VISem	(Average of CIE 1 and CIE 2 (CIE 1+CIE2)/2.	


Curriculum Design Process


Academic Planning and Implementation


Process for Course Outcome Attainment

Final CO Attainment Process

Program Outcome Attainment Process

PROGRAM OUTCOMES (POs)

1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.

2. **Problem analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.