

RV COLLEGE OF ENGINEERING

(An Autonomous Institution Affiliated to VTU, Belagavi)
Approved by AICTE, New Dehi, Accredited By NBA, New Dehi

RV Vidyaniketan Post, 8th Mile, Mysuru Road, Bengaluru--560 059.

Bachelor of Engineering (B.E)

ELECTRONICS & INSTRUMENTATION ENGINEERING

(2018 Scheme)

III & IV Semester

ACADEMIC YEAR 2020-2021

RV COLLEGE OF ENGINEERING

(An Autonomous Institution Affiliated to VTU, Belagavi) RV Vidyaniketan Post, 8th Mile, Mysuru Road, Bengaluru- -560 059.

2020 Ranked 70th in Engineering Category

One of the most preferred Technical Institutions

PROGRAMS OFFERED

B.E. Programs AS, BT, CH, CS, CV, EC, EE, EI, ET, IM, IS, ME.

M. Tech (16), MCA, M.Sc. (Engg.)

Ph.D. Programs: All Departments are recognized as

Research Centres by VTU

Best NCC Institution for Karnataka & Goa Directorate for the year 2017-19

Five RVCE Alumni cleared civil Services Exam in 2019-20

Ranked in top 10 Pvt. College in the country by various magazines

Ranked 3rd in Sports & **Cultural Activities** under VTU (2018-19)

Accredited

by

NBA

Use of ICT in Teaching Learning Process QEE e-Journals

(55 Course) e-Books NPTEL 9.300-Enral led 68th place in the country

(Jul-Oct-2019)

Wikispace

MODES

SWAYAM

MOODLE

Patents Conference **Publications** Filed Publications 936 1275 **Patents Patents** Published Granted

Holistic development of students through NCC, NSS Cultural activities, Community service & Sports.

Established Centre of Excellence in Macroelectronics & Internet of things

MoUs: 96+with Industries / Academic Institutions in India & abroad

Executed more than Rs. 40 crores worth sponsored research projects & consultancy works since 3 Years

UPSC Results (2019): RVCE - Alumni

Rahul Sharanappa Shankanur Name

Rank 17 Branch: ECE Batch 2012

Raghavendra Name

Rank 739 Branch : 2012 Batch

Harshavardhana B.J. Name

Rank 352 Branch: **CSE** 2015 Batch

Human Resource

Faculty with Industrial

Visiting Adjunct Faculty 07

Total Number of

Faculty with

Faculty Pursuing Ph.D. 122

Technical & Admin Staff 225

RVCE - Greaves Cotton Ltd Centre of excellence in e-mobility

RV COLLEGE OF ENGINEERING®

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus of III & IV Semesters

2018 SCHEME

DEPARTMENT OF

ELECTRONICS AND INSTRUMENTATION ENGINEERING

DEPARTMENT VISION

Achieving academic excellence in Instrumentation Technology by adopting interdisciplinary research with a focus on sustainable and inclusive technologies.

DEPARTMENT MISSION

- To create an environment for students to excel in domain areas and get motivated to involve in interdisciplinary research byutilizing state of the art infrastructure.
- To impart technical knowledge, encourage experiential learning and develop future professional leaders.
- To establish industry-academia networking and develop industry-ready students and future entrepreneurs, to meet societal & industrial challenges.
- To motivate lifelong learning and research in sustainable technologies to find improved solutions for the betterment of society

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **PEO1.** Apply Instrumentation, Electronics, Controls and Automation concepts to develop technical solutions for industrial problems
- **PEO2.** Exhibit competency in adapting to various industrial challenges and work in interdisciplinary projects with team spirit and professional ethics for achieving organizational goals.
- **PEO3.** Pursue higher education in technology or management and achieve professional excellence by imbibing leadership qualities and communication skills.
- **PEO4.** Become entrepreneurs with a focus on sustainable technologies and develop innovative solutions to meet industrial and societal needs

PROGRAM SPECIFIC OUTCOMES (PSOS)

PSO	Description			
PSO1	Design, analyze and practice the instrumentation, controls and automation concepts and techniques required for industrial and/or research pursuits resulting in product development, publications or patents.			
PSO2	Demonstrate the knowledge of basic science, mathematics, electronic system design and programming for real-time applications, towards developing industrial solutions and become technology leaders of future.			

Lead Society: International Society of Automation (ISA)

ABBREVIATIONS

Sl. No.	Abbreviation	Meaning
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	SEE	Semester End Examination
5.	PE	Professional Core Elective
6.	GE	Global Elective
7.	HSS	Humanities and Social Sciences
8.	CV	Civil Engineering
9.	ME	Mechanical Engineering
10.	EE	Electrical & Electronics Engineering
11.	EC	Electronics & Communication Engineering
12.	IM	Industrial Engineering & Management
13.	EI	Electronics & Instrumentation Engineering
14.	СН	Chemical Engineering
15.	CS	Computer Science & Engineering
16.	ET	Electronics & Telecommunication Engineering
17.	IS	Information Science & Engineering
18.	BT	Biotechnology
19.	AS	Aerospace Engineering
20.	PY	Physics
21.	CY	Chemistry
22.	MA	Mathematics

INDEX

III Semester				
Sl. No.	Course Code	Course Title	Page No.	
1.	18MA31B	Discrete and Integral Transforms	1	
2.	18BT32A	Environmental Technology	3	
3.	18EE33	Analog Electronic Circuits	5	
4.	18EC34	Analysis & Design of Digital Circuits	8	
5.	18EI35	Data Structures using C	11	
6.	18EI36	Measurement& Process Instrumentation	14	
7.	18DMA37	Bridge Course: Mathematics	16	
8.	18HS38	Kannada Course	-	

	IVSemester				
Sl. No.	Course Code	Course Title	Page No.		
1.	18MA41B	Linear Algebra, Statistics and Probability Theory	18		
2.	18EC42	Engineering Materials	20		
3.	18EI43	Sensors and Actuators	22		
4.	18EI44	Microprocessor & Microcontroller	25		
5.	18ET45	Signals and Systems	28		
6.	18EE46	Control Systems	30		
7.	18EI47	Design thinking Lab	-		
8.	18DCS48	Bridge Course: C Programming	32		
9.	18HS49	Professional Practice-I Communication Skills	36		

RV COLLEGE OF ENGINEERING®

(Autonomous Institution Affiliated to VTU, Belagavi)

ELECTRONICS AND INSTRUMENTATION ENGINEERING

	THIRD SEMESTER CREDIT SCHEME						
Sl.	Course Code			Credit Allocation			Total
No.	Course Code	Course Title	BoS	L	T	P	Credits
1.	18MA31B*	Discrete and Integral Transforms	MA	4	1	0	5
2.	18BT32A**	Environmental Technology	BT	2	0	0	2
3.	18EE33	Analog Electronic Circuits (Common to EE, EI, & ET)	EE	4	0	1	5
4.	18EC34	Analysis & Design of Digital Circuits (Common to EC,EE, EI& ET)	EC	4	0	1	5
5.	18EI35	Data Structures using C	EI	2	0	1	3
6.	18EI36	Measurement & Process Instrumentation	EI	3	0	0	3
7.	18DMA37***	Bridge Course: Mathematics	MA	2	0	0	0
8.	18HS38V	Kannada Course: AADALITHA KANNADA (18HS38A) / VYAVAHARIKA KANNADA (18HS38V)	HSS	1	0	0	1
	Total Number of Credits			19	1	3	24
	Total number of Hours/Week			19+3*	2	7.5	

^{*}Engineering Mathematics - III

Sl.No	COURSE TITLE	COURSE CODE	PROGRAMMES
1.	Linear Algebra, Laplace Transform and	18MA31A	CS, & IS
	Combinatorics		
2.	Discrete and Integral Transforms	18MA31B	EC, EE, EI, &ET
3.	Engineering Mathematics -III	18MA31C	AS, BT,CH,CV,IM, &ME

**

Sl.No	COURSE TITLE	COURSE CODE	PROGRAMMES
1.	Environmental Technology	18BT32A	EE, EC, EI, CS, ET,& IS
2.	Biology for Engineers	18BT32B	BT & AS
3.	Engineering Materials	18ME32	ME, CH &IM

*** Bridge Course: Audit course for lateral entry diploma students

Sl.No	COURSE TITLE	COURSE CODE	PROGRAMMES
1	Bridge Course Mathematics	18DMA37	AS, BT, CH, CV, EC, EE, EI,
			IM, ME, & ET
2	Bridge Course C Programming	18DCS37	CS & IS

#Mandatory audit course for all students

#There are two text books prescribed by VTU for the Kannada Course:

- 1. Samskruthika Kannada (AADALITHA KANNADA-18HS38A);
- 2. Balake Kannada (VYAVAHARIKA KANNADA-18HS38V);

The first text book is prescribed for the students who know Kannada to speak, read and write (KARNATAKA STUDENTS). The second text book is for students who do not understand the Kannada language (NON-KARNATAKA STUDENTS)

RV COLLEGE OF ENGINEERING®

(Autonomous Institution Affiliated to VTU, Belagavi)

ELECTRONICS AND INSTRUMENTATION ENGINEERING

	FOURTH SEMESTER CREDIT SCHEME						
CL No. Comm	Comman Codo	Common TPAL	DOG	Credit Allocation			Total
SI. NO	Course Code	Course Title	BOS	L	T	P	Credits
1.	18MA41B*	Linear Algebra, Statistics and Probability Theory	MA	4	1	0	5
2.	18EC42**	Engineering Materials	EC	2	0	0	2
3.	18EI43	Sensors and Actuators	EI	3	0	1	4
4.	18EI44	Microprocessor & Microcontroller (Common to EC,EI,EE,& ET)	EI	3	0	1	4
5.	18ET45	Signals and Systems (Common to EC,EE, EI & ET)	ET	3	1	0	4
6.	18EE46	Control Systems (Common to EE& EI)	EE	3	0	0	3
7.	18EI47	Design Thinking lab	EI	0	0	2	2
8.	18DCS48 ***	Bridge Course: C Programming	CS	2	0	0	0
9.	18HS49	Professional Practice-I Communication Skills	HSS	0	0	1	1
	T	otal Number of Credits		18	2	5	25
	Tota	al number of Hours/Week		18+2*	4	10+1	

*ENGINEERING MATHEMATICS – IV

Sl.No	COURSE TITLE	COURSE CODE	PROGRAMMES
1.	Graph Theory, Statistics and Probability Theory	18MA41A	CS&IS
2.	Linear Algebra, Statistics and Probability Theory	18MA41B	EC, EE, EI, & ET
3.	Engineering Mathematics -IV	18MA41C	AS, CH, CV, & ME

**

Sl.No	COURSE TITLE	COURSE CODE	PROGRAMMES
1.	Engineering Materials	18EC42	EC, EE, EI, &ET
2.	Biology for Engineers	18BT42B	CS & IS
3.	Environmental Technology	18BT42A	CV, ME, IM, CH, BT &AS

^{***} Bridge Course: Audit course for lateral entry diploma students

Sl.No	COURSE TITLE	COURSE CODE	PROGRAMMES
1	Bridge Course Mathematics	18DMA48	CS&IS
2	Bridge Course C Programming	18DCS48	AS, BT, CH, CV, EC, EE, EI, IM, ME, & ET

Note: Internship to be taken up during the vacation period after the 4th semester

	Semester: III							
	DISCRETE AND INTEGRAL TRANSFORMS							
				(Theory)				
			(Commo	on to EC, EE, EI &F	ET)			
Cour	rse Code	:	18MA31B		CIE		100 Marks	
Credits: L:T:P		:	4:1:0		SEE	:	100 Marks	
Total Hours		:	52L+13T		SEE Duration	:	3.00 Hours	
Cou	rse Learning C)bj	ectives: The student	ts will be able to				
1	Understand th	e e	xistence and basic c	oncepts of Laplace, F	Fourier and z - transf	orn	ns.	
2	2 Demonstrate the concepts of Laplace transform to solve ordinary differential equations.							
3	3 Analyze the concept of periodic phenomena and develop Fourier series.							
4 Solve difference equations; interpret the physical significance of solutions.								
5								

Unit-I	10 Hrs

Laplace Transform:

Existence and uniqueness of Laplace transform (LT), transform of elementary functions, region of convergence. Properties - linearity, scaling, s - domain shift, differentiation in the s - domain, division by t, differentiation and integration in the time domain. LT of special functions - Periodic functions (square wave, saw-tooth wave, triangular wave, full & half wave rectifier), Heaviside unit step function, unit impulse function, t - shift property. Relevant MATLAB commands to develop additional insight into the concepts.

Unit – II 11 Hrs

Inverse Laplace Transform:

Definition, properties, evaluation using different methods. Convolution theorem (without proof), problems. Application to solve ordinary linear differential equations. Relevant MATLAB commands to develop additional insight into the concepts.

Unit –III 11Hrs

Fourier Series:

Introduction, periodic function, even and odd functions. Dirichlet's conditions, Euler's formulae for Fourier series, complex Fourier series, problems on time periodic signals (square wave, half wave rectifier, saw-tooth wave and triangular wave), Fourier sine series, Fourier cosine series. Relevant MATLAB commands to develop Fourie's series of functions.

Unit –IV 10Hrs

Fourier Transform:

Fourier integral theorem, complex Fourier transform, Fourier sine transform, Fourier cosine transform, properties - linearity, scaling, time-shift and modulation. Convolution theorem (without proof), problems. Parseval's identity. Relevant MATLAB commands to develop additional insight into the concepts.

Unit –V 10Hrs

Z-Transform:

Introduction, z - transform of standard functions, Region of convergence, properties - linearity, scaling, shifting theorem, initial and final value theorems. Inverse z - transform using power series and partial fraction expansions, convolution theorem (without proof), problems. Application to solve difference equations arising in communication and control systems. Relevant MATLAB commands to develop additional insight into the concepts.

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Understand the significance of fundamental concepts of transforms, inverse transforms and						
	periodic phenomena.						
CO2:	Demonstrate the properties of transforms and inverse transforms, graphical representation of						
	various wave forms.						
CO3:	Evaluate transforms of special functions, develop Fourier series of various type of functions.						
CO4:	Apply transform techniques to solve differential equations and difference equations occurring						
	in engineering problems.						

Refere	Reference Books						
1	Higher Engineering Mathematics, B.S. Grewal, 44 th Edition, 2015, Khanna Publishers, ISBN: 978-81-933284-9-1.						
2	A Text Book of Engineering Mathematics, N.P. Bali & Manish Goyal, 7 th Edition, 2010, Lakshmi Publications, ISBN: 978-81-7008-992-6.						
3	Advanced Engineering Mathematics, Erwin Kreyszig, 9 th Edition, 2007, John Wiley & Sons, ISBN: 978-81-265-3135-6.						
4	Signals and systems, Simon Haykins and Barry Van Veen, 2 nd Edition, 2003, John Wiley & Sons, ISBN: 9971-51-239-4.						

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	=	-	-	-	-	1	-	1
CO2	3	2	2	1	=	-	-	-	-	1	-	1
CO3	3	3	2	2	2	-	-	-	-	1	-	1
CO4	3	3	3	3	2	-	-	-	-	1	-	1

High-3: Medium-2: Low-1

Semester: III								
	ENVIRONMENTAL TECHNOLOGY							
	(Theory)							
			(Common to	EC,EE,ET&EI)				
Cou	rse Code	:	18BT32A	CIE	:	50 Marks		
Cre	dits: L:T:P	:	2:0:0	SEE	:	50 Marks		
Total Hours			26L	SEE Duration	:	02 Hours		
Cou	rse Learning	Obj	ectives:					
1	Understand to	he v	arious components of env	rironment and the significance of the	he su	ıstainability of		
	healthy envir	onn	ient.					
2	Recognize th	e in	plications of different typ	es of the wastes produced by natu	ral a	nd		
	anthropogeni	c ac	tivity.					
3 Learn the strategies to recover the energy from the waste.								
4	4 Design the models that help mitigate or prevent the negative impact of proposed activity on the							
environment.								

Unit-I 05 Hrs

Introduction: Environment - Components of environment, Ecosystem. Impact of anthropogenic activities on environment (agriculture, mining and transportation), Environmental education, Environmental acts & regulations, role of non-governmental organizations (NGOs), EMS: ISO 14000, Environmental Impact Assessment. Environmental auditing.

Unit – II 06 Hrs

Environmental pollution: Air pollution – point and non point sources of air pollution and their controlling measures (particulate and gaseous contaminants). Noise pollution, Land pollution (sources, impacts and remedial measures).

Water management: Water conservation techniques, water borne diseases & water induced diseases, arsenic & fluoride problems in drinking water and ground water contamination, advanced waste water treatment techniques.

Unit -III 06 Hrs

Waste management, Solid waste management, e waste management & biomedical waste management – sources, characteristics & disposal methods. Concepts of Reduce, Reuse and Recycling of the wastes.

Energy – Different types of energy, conventional sources & non-conventional sources of energy, solar energy, hydro electric energy, wind energy, Nuclear energy, Biomass & Biogas Fossil Fuels, Hydrogen as an alternative energy.

Unit –IV 05 Hrs

Environmental design: Principles of Environmental design, Green buildings, green materials, Leadership in Energy and Environmental Design (LEED), soilless cultivation (hydroponics), organic farming, use of biofuels, carbon credits, carbon foot prints, Opportunities for green technology markets, carbon sequestration.

Unit –V 04 Hrs

Resource recovery system: Processing techniques, materials recovery systems, biological conversion (composting and anaerobic digestion). Thermal conversion products (combustion, incineration, gasification, pyrolysis, use of Refuse Derived Fuels). Case studies of Biomass conversion, e waste.

Course	Course outcomes: On completion of the course, the student should have acquired the ability to						
CO1:	Identify the components of environment and exemplify the detrimental impact of						
	anthropogenic activities on the environment.						
CO2:	Differentiate the various types of wastes and suggest appropriate safe technological methods						
	to manage the waste.						
CO3:	Aware of different renewable energy resources and can analyse the nature of waste and						
	propose methods to extract clean energy.						

CO4:	Adopt the appropriate recovering methods to recover the essential resources from the wastes
	for reuse or recycling.

Refer	Reference Books						
1	Introduction to environmental engineering and science, Gilbert, M.M, Pearson Education. India, 3 rd Edition, 2015, ISBN: 9332549761, ISBN-13: 978-9332549760.						
2	Environmental Engineering, Howard S. Peavy, Donald R. Rowe and George Tchobanoglous, McGraw Hill Education, 1stEdition, July 2017,ISBN-10: 9351340260, ISBN-13: 978-9351340263						
3	Environmental Science, G. Tyler Miller, Scott Spoolman, Brooks Cole,15 th Edition, 2012, ISBN-13: 978-1305090446 ISBN-10: 130509044						
4	Environment Management, Vijay Kulkarni and T. V. Ramachandra, TERI Press, 2009, ISBN: 8179931846, 9788179931844						

Continuous Internal Evaluation (CIE); Theory (50 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks which will be reduced to 15marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 25 marks each and the sum of the marks scored from three tests is reduced to 30. The marks component for assignment is 05.

The total CIE for theory is 15(Q) + 30(T) + 05(A) = 50 marks

Semester End Evaluation (SEE); Theory (50 Marks)

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 10 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 08marks adding up to 40 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2
CO1	3	2	-	-	-	-	-	-	-	-	-	1
CO2	3	2	-	-	-	-	-	-	-	-	-	1
CO3	1	2	2	-	-	-	-	-	-	-	-	1
CO4	-	1	1	3	-	-	_	-	-	-	-	1

High-3: Medium-2: Low-1

	Semester: III							
	ANALOG ELECTRONIC CIRCUITS							
				(Theory &Prac				
				(Common EE, El	(& ET)			
Cou	rse Code	:	18EE33		CIE	:	100 + 50 Marks	
Cred	lits: L:T:P	:	4:0:1		SEE	:	100 + 50 Marks	
Tota	l Hours	:	50L+33P		SEE Duration	:	3.00+3.00Hours	
Cou	rse Learning	Ob	ectives:					
1	To study an	d un	derstand the v	various biasing metho	ods and ac models	for t	ransistors	
2	2 To study different parameters and basic circuits of op-amps							
3	3 To design signal generation circuits, wave shaping circuits and active filters using Op-amps.							
4	To familiari	ze v	arious analog	ICs and their applica	ations			

Unit-I 09 Hrs

Transistors Biasing: fixed bias and voltage divider bias. Bias stabilization, stability factor, Thermal runaway

BJT AC Analysis: Amplification in AC Domain, BJT Modelling- r_e model and Hybrid Equivalent Model for CE and CC configurations

MOSFET-Structure and characteristics, voltage divider bias for depletion and enhancement type MOSFETs

Unit – II 11 Hrs

Frequency response of BJT Amplifiers: General frequency considerations, Normalization process, low frequency analysis, high frequency response

Power Amplifiers: Series fed and Transformer coupled class A, class B and class AB amplifiers, IC TS472 power amplifier, heat sink for power amplifiers

Feedback Amplifiers: Characteristics of Feedback, Feedback Topologies, Analysis of series-series and series-shunt Feedback Amplifiers

Unit -III 11 Hrs

Operational amplifier: Internal Structure of Op-Amps, Parameters and Characteristics of Practical Op-Amps.

OP-AMPS Applications: Basic applications, Instrumentation amplifier, AC amplifier, V to I & I to V converters, Opamp circuits using diode, Sample & Hold

Schmitt trigger - regenerative comparator, Astable & mono - stable multi- vibrators.

Wave form generator: Square wave generator, Triangular wave generator and saw tooth-wave generator.

Unit –IV 10 Hrs

Active Filters

Comparison of Active and Passive filters. Butterworth filters(Butterworth function for n=2 and n=3), First order low and high pass filter, Second order Low and high pass filters, Butterworth second order low pass filters. Band pass filter (wide-band and narrow band), Band reject filters (wide-band and narrow band) and All-pass filter.

Oscillators: Principles of oscillators, Phase shift oscillator, Quadrature Oscillator, Three phase oscillator, Wein Bridge Oscillator

Unit –V 09 Hrs

Analog IC's And Applications: Voltage controlled oscillators-NE/SE-566, 555 Timer-functional block diagram, monostable and astable multivibrators and its applications, Digital to analog converters-R-2R ladder, weighted resistor D/A converters, IC D/A converters, Analog to digital converters-successive approximation A/D converter and IC A/D converter.

Voltage Regulators: Discrete Voltage Regulator, IC Voltage Regulators (IC 78XX, 79XX, LM317)

Lab Experiments:

- 1. RC coupled amplifier.
- 2. MOSFET Characteristics
 - a. Design of inverting amplifier, non-inverting amplifier, integrator using IC 741
 b. Basics of PSPICE
 - 4. Study the working of half wave and full wave Precision Rectifiers using operational amplifier IC741.
 - 5. Design and implementation of peak detector and clamming circuit
 - 6. Design and implement a Schmitt trigger circuit for given UTP & LTP using op-amp.
 - 7. Design and implementation square and ramp wave generators for given frequency using operational amplifier IC 741
 - 8. Design and simulation of First order High pass filter, Low pass filter, wide Band Pass filter And wide Band reject filter for the given pass band gain and cut-off frequency and plot thefrequency response.
 - 9. Design and implement a Astable multivibrator for a given frequency and duty cycle using NE555 Timer.
 - Design of Monostable multivibrator for a given frequency using NE555 timer
 - Realization of 4 bit DAC using R-2R ladder network and asynchronous decade Counter IC 7490.
 - 11. Design of Voltage Regulator using IC 7900

Design of analog circuits using PSPICE

- 12. Schmitt trigger circuit for given UTP & LTP
- 13. First order High pass filter, Low pass filter, wind Band Pass filter and wide Band reject filter for the given pass band gain and cut-off to plot the frequency response.
- 14. Generation of ramp wave for a given frequency using NE555 timer.
- 15. Implement FSK modulator using IC 555.

Course	Course outcomes: On completion of the course, the student should have acquired the ability to						
CO1:	Understand and Remember the basic fundamentals of transistor biasing and operational amplifiers						
CO2:	Analyze the performance of Op-amp and build simple circuits using op-amps						
CO3:	Apply the concepts to design various applications of op-amps						
CO4:	Design a complete analog electronic system using various analog IC's for a specific application.						

Refere	ence Books									
1	Electronic Devices and Circuits theory, Robert L. Boylestead, Louis Nashelsky, 11 th Edition, 2009, Pearson. ISBN-10: 0-495-66772-2									
2	Microelectronics circuits Analysis and Design, M.H Rashid, 2 nd Edition, 2011, Thomson, ISBN:0-534-95174-0									
3	Microelectronics circuits, Sedra & Smith, Oxford University Press 5 th Edition, 2004, <i>ISBN</i> -13: 978-0195338836									
4	Microelectronics, Millman & Grabel: 2 nd Edition, 2011, Mcgraw HillPublication, ISBN13:9780074637364.									

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) + 10(T) + 10(IE) = 50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

	CO-PO Mapping													
CO/PO	PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO1	3	1	1	-	1	-	1	1	-	1	1	1		
CO2	2	1	2	1	1	1	-	2	1	2	-	2		
CO3	1	1	1	2	2	-	-	-	1	2	-	1		
CO4	2	2	3	2	3	1	2	-	2	3	2	1		

High-3: Medium-2: Low-1

	Semester: III									
	ANALYSIS & DESIGN OF DIGITAL CIRCUITS									
				heory & Practice)						
			(Commo	on to EC, EE, EI &	kET)					
Cou	rse Code	:	18EC34		CIE	:	100+50 Marks			
Cred	lits: L:T:P	:	4:0:1		SEE	:	100+50 Marks			
Tota	l Hours	:	52L+33P		SEE Duration	:	03+03 Hours			
Cou	rse Learning (Obj	ectives: The student	s will be able to						
1	Understand v	aric	ous types of logic far	milies, explain the	concept logic func	tior	s, SOP, POS and			
	canonical exp	res	sions, simplification	techniques.						
2	Design and u	se s	tandard combination	nal circuit building	blocks: multiplexe	ers,	demultiplexers,			
	binary decode	ers a	and encoders, decod	ers, Arithmetic Cir	cuits, code conver	ters	1			
3			ent sequential circui	its using various fli	p flops to realize s	tate	e machines for			
	given timing	beh	avior.							
4	Analyze proc	esso	or organization and	design arithmetic &	t logic unit by usir	ng c	ombinational &			
	sequential circuits.									
5	Understand v	ario	ous types of logic far	milies; explain the	concept logic func	tion	is, SOP, POS and			
	canonical exp	res	sions, simplification	techniques.						

Unit-I 10 Hrs

Digital Integrated Circuits: Digital IC Logic Families: Transistor-Transistor Logic (Totem pole TTL), Emitter Coupled Logic (ECL), Complementary MOS (CMOS) Logic.

Characteristics and Performance Parameters of CMOS Inverter: Introduction, Propagation delay, Sourcing, Sinking, Fan-in, Fan-out, V_{IH}, V_{OH}, V_{IL}, V_{OL} and corresponding currents, Noise margin, Power dissipation, power consumption, power-delay product as a figure of merit. Simplification Techniques:5-variable K-Map, Quine-McClusky Minimization, Numerical Examples.

Unit – II 11 Hrs

Combinational Circuits Design and Analysis:

Parallel Adder/Subtractor using IC 7483, Decoders, Encoders, Multiplexers and De-Multiplexers, Priority encoder and Magnitude comparator, Arithmetic circuits and code converters using Multiplexers and Decoders, Concepts of ripple carry and carry look ahead adders, BCD adder

Unit –III 11 Hrs

Sequential Circuits Design and Analysis-I: Introduction, Latches and Flip Flops, Triggering of Flip Flops, Flip Flop Excitation Tables, Flip-Flop conversions, Registers, Shift Registers and Various Operations, Ring counters, Johnson counters, Ripple Counters.

Unit –IV 10 Hrs

Sequential Circuits Design and Analysis II: Introduction, FSM (Melay and Moore), Analysis of Clocked Sequential Circuits, State table and Reduction, Design of synchronous Counters, Programmable counters. Design with State Equations, Sequence generators (PRBS).

Unit –V 10 Hrs

Design of a Processor Unit:

Introduction, Processor Organization, Arithmetic Logic Unit, Design of Arithmetic Unit, Design of Logic unit, Design of Arithmetic and Logic unit, Status Register, Design of Shifter, The Complete Processor unit and op-code generation.

Practical's:

Note:

- a. Out of ten experiments, for seven experiments manual will be provided. Each of these would also include practice experiments. Last three experiments are case studies and are compulsory.
- b. Practice questions: Students should design the experiment in advance and practice the lab.
- a. Realization of Binary Adder and Subtractor using universal gates and IC-7483.
 - b. Practice Question: Design a parallel binary subtractor to get actual difference based on

- the value of C_{out} (correction circuit).
- 2. a. Arithmetic circuits- Realize the given Boolean expressions using MUX/DEMUX using IC-74153, IC-74139.
 - b. Practice Question: Realize FA/FS using MUX/DEMUX.
- 3. a. Code convertors i) Binary to Gray ii) BCD to Excess-3 using Decoder/Demux.
 - b. Practice Question i) Binary to excess-3 using IC-7483 ii) Gray to Binary using Decoder
- 4. a. Design a two-bit magnitude comparator using logic gates.
 - b. Drive the LED Display using IC-7447.
 - c. Practice Question: Design an n-bit comparator using IC-7485(make use of cascading facility)
- 5. a. Design a Master JK-FF using NAND gates. Also design D-FF and T-FF using same. Observe the waveform using CRO.
 - b. Practice Question: Design Master Slave JK-FF using P-Spice simulation software and observe the waveforms.
- 6. a. Realization of asynchronous mod-n counter using IC-7490, IC-7493.
 - b. Using IC-7495 perform SISO, SIPO, PISO, PIPO, Shift left operations.
 - c. Design ring and Johnson counter using IC-7495
 - d. Practice Question: Design mod-99 counter using IC-7490.
- 7. a. Design of synchronous 3-bit up/down counter using IC-7476/IC-74112
 - b. Design a synchronous counter to count given sequence.
 - c. Using presettable counters IC-74192/193 perform mod-n counts.
 - d. Practice Question: Design a synchronous 4-bit up/down counter using P-Spice simulation software and observe the waveforms.
- 8. Design a sequence generator using a shift register to obtain a sequence Y=1000100110101111
- 9. Using IC-74192/193, drive the LED display and generate a given sequence
- 10. Design a 2-bit ALU operation using P-Spice simulation software and observe the waveforms

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Apply the knowledge of digital electronics to construct combinational and sequential sub-
	systems useful for digital system designs.
CO2:	Develop a solution to real-life problems based on the knowledge of digital electronics.
CO3:	Implement the engineering solutions with the help of modern engineering tools, hardware
	design and practices.
CO4:	Analyze and update the knowledge for obtaining sustainable solutions for technological
	enhancements in the field of digital electronics.

Refere	ence Books
1	Digital Logic and Computer Design, M. Morris Mano, Pearson Education Inc., 13 th Impression, 2011, ISBN: 978-81-7758-409-7.
2	Fundamentals of Logic Design, Charles H. Roth (Jr.), West publications, 4th Edition, 1992, ISBN-13: 978-0-314-92218-2.
3	Digital Fundamentals, Thomas Floyd, 11 th Edition, Pearson Education India, ISBN 13: 978-1-292-07598-3, 2015.
4	Digital Principle and Design, Donald D. Givone, Mc Graw-Hill, ISBN: 0-07-119520-3 (ISE), 2003.
5	Digital Principles and Applications, Albert Paul Malvino and Donald P Leach, 7Th Edition, Tata McGraw Hill Education Private Limited, 2011, ISBN (13 digit): 978-0-07-014170-4 and ISBN (10 digit): 0-07-014170-3

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) + 10(T) + 10(IE) = 50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE): Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

	CO-PO Mapping												
CO/PO	PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
CO1	3	2	1	1	1	-	-	-	-	2	1	3	
CO2	3	2	3	2	3	3	2	2	2	2	1	2	
CO3	3	3	3	3	3	3	3	3	3	2	3	3	
CO4	3	3	3	3	1	3	-	-	-	1	1	3	

High-3: Medium-2: Low-1

					Semester: I	I					
			DA		RUCTURE						
				(Th	neory & Prac	ctice)					
Cou	Course Code : 18EI35 CIE : 100+50 Marks										
Cred	lits: L:T:P	:	2:0:1				SEE		:	100+50 M	arks
Tota	l Hours	:	27L+33P				SEE D	uration	:	03+03 Ho	urs
Cou	rse Learning C)bj	ectives: The	student	s will be able	to					
1	1		mentals of		structures	and	their	applicat	ions	essential	for
	programming/	/pro	oblem solving	ŗ							
2	Understand th	e b	asic operation	ns and i	mplementati	on of	differen	data stru	cture	s – Stacks,	
	queues, linked	l lis	st and binary	trees.							
3	Demonstrate s	ort	ing and searc	hing al	gorithms						
4	Find suitable	data	a structure du	ring ap	plication dev	elopn	nent/Prol	olem Solv	ing		

Unit-I 04 Hrs

Introduction to Structures and Pointers

Introduction: Types of Data Structures: Linear & non-linear Data Structures

Stacks: Stack definitions & concepts, Representing stacks in C, Operations on stacks, Applications of Stacks: Infix to Postfix, Postfix expression evaluation

Unit – II 07 Hrs

Recursion: Introduction to Recursion, Factorial function, Binary search, Towers of Hanoi problem, GCD of 2 numbers.

Queues : The Queue and Its Sequential Representation: C implementation of Queues, Insertion, Deletion and Display operations, Circular Queue,

Dynamic Memory allocation: malloc(), calloc(),free(), realloc()

Unit –III 07 Hrs

Linked Lists: Inserting and removing nodes from a list, getnode and freenode operations, Implementation (insertion, deletion and display) of singly Linked list, Doubly linked list, Circular singly linked list.

Unit –IV 05Hrs

Trees: Basic definition, C Representations of Binary Trees, Binary search trees (BST) operations: Insertion, Tree Traversals: Infix, Postfix and Prefix traversals, General Expressions as Trees

Unit –V 04 Hrs

Sorting: Bubble sort, Merge sort, Insertion sort.

Practical:

1. Write program to create an array of structures with atleast 5 records, each record having the structure shown below:

Usn Name Marks1 Marks2 Marks3

Write necessary functions

To display all the records in the file.

To search for a specific record based on the Usn.

In case the record is not found, suitable message should be displayed. Both the options in this case must be demonstrated.

2. Write a C program to construct a stack of integers and to perform the following operations on it:

Push

Pop

Display

The program should print appropriate messages for stack overflow and stack underflow

3. Write a C program to convert and print a given valid parenthesized infix arithmetic expression to postfix expression. The expression consists of single character operands and the

- binary operators +, -, *, & /
- 4. Write a C program to evaluate a valid suffix/postfix using stack. Assuming that the suffix/postfix expression is read as a single line consisting of non-negative single digit operands and binary arithmetic operators. The arithmetic operators are +(add), -(subtract), *(multiply), and /(divide).
- 5. Write recursive C program to
 - i. Perform binary search
 - ii. Find GCD of 2 numbers
- 6. Write a C program to simulate the working of a queue of integers using an array. Provide the following operations:
 - i. Insert
 - ii. Delete
 - iii. Display
- 7. Write a C program to simulate the working of circular queue of integers using an array. Provide the following operations:
 - i. Insert
 - ii. Delete
 - iii. Display
- 8. Write a C program using dynamic variables and pointers, to construct a singly linked list of integers
 - i. The operations to be supported are:
 - ii. The insertion operation
 - a. At the front of the list
 - b. At the back of the list
 - iii. Deleting a node based on the info fieldid
 - iv. Displaying all the nodes in the list
- 9. Write a C program to support the following operations on a doubly linked list where each node consists of integers :
 - i. Create a doubly linked list by adding a node at front
 - ii. Delete the node of a given data
 - iii. Display the contents of the list.
- 10. Write a C program
 - i. To construct a binary search tree of integers
 - ii. To traverse the tree using all the methods i.e preoreder, inorder, postorder
- 11. Write a C program to implement merge sort
- 12. Write a C program to implement insertion sort.

Course	e Outcomes: After completing the course, the students will be able to							
CO1:	CO1: Understand and explore the fundamental concepts of various data structures.							
CO2:	Analyze and represent various data structures.							
CO3:	Design algorithms on different data structures like Stack, Queue, List, Tree and sorting.							
CO4:	Implement programs with suitable data structure based on the requirements of the							
	application.							

Refere	ence Books
1	Data structures using C and C++, YedidyahLangsam, Moshe J. Augenstein, Aaron M. Tenenbaum, 2 nd Edition, PHI/Pearson, 2016,ISBN-13: 978-0130369970
2	Fundamentals of Data Structures in C, Ellis Horowitz and Sartaj Sahni, 2 nd Edition, Universities Press, 2014, ISBN-13: 978-0716782506.
3	Data Structures Schaum's Outlines, Seymour Lipschutz, Revised 1 st Edition, McGraw Hill, 2014,ISBN-13: 978-0070701984.
4	An Introduction to Data Structures with Applications, Jean-Paul Tremblay & Paul G. Sorenson, 2 nd Edition, McGraw Hill, 2017, ISBN-13: 978-0074624715.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) + 10(T) + 10(IE) = 50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	1	1	1	-	-	-	-	2	1	3	
CO2	3	2	3	2	3	3	1	1	2	2	1	2	
CO3	3	3	3	3	3	3	3	3	3	2	3	3	
CO4	3	3	3	3	1	3	-	-	-	1	1	3	

High-3: Medium-2: Low-1

				Semester: III				
		M	EASUREMENT	& PROCESS INSTI	RUMENTATION			
				(Theory)				
Cou	rse Code	:	18EI36		CIE	:	100 Marks	
Cree	dits: L:T:P	:	3:0:0		SEE	:	100 Marks	
Tota	al Hours	:	39L		SEE Duration	:	3.00 Hours	
Cou	rse Learning (Obj	ectives: The stude	nts will be able to	•		•	
1	Understand t	he u	se of various elect	rical & electronic ins	truments, principles	of o	peration,	
	analysis, and	cali	bration of instrum	ents				
2	Analyse& ap	ply	DC/AC bridges ar	nd indicating instrume	ents for unknown par	rame	ters	
	measurement							
3	Develop DAS	S an	d learn computer	controlled instrument	systems for inter-in	strun	nent	
	communicati	on t	hrough IEEE488 l	ous.				
4	Apply the dif	fere	nt calibration tech	niques for various ty	pes of electrical and	elect	ronic	
	measuring in	stru	ments.	-	-			

Measurement and Measurement systems

Significance of measurements, Methods of measurements, classification, Functions, Applications, Elements of Generalized measurement system with an example.

Quality of measurement systems

Static and Dynamic Characteristics of Instruments: Definitions and comparisons, Static Characteristics: static error, static correction, scale range and scale span, reproducibility and drift, repeatability, Signal to noise ratio, sources of noise, accuracy, precision, linearity, hysteresis, threshold, dead time, Dynamic Characteristics: Fidelity, frequency response, dynamic error, etc., problems

Unit – II 09 Hrs

DC Bridges: Measurement of low and medium Resistance:

Wheatstone bridge, Kelvin double bridge, Problems.

AC bridges:

Measurement of inductance, capacitance, Q of coil, Maxwell's Bridge, Wein bridge, Schering bridge, Applications, Limitations and Problems.

Digital Instruments: Digital Voltmeter, ramp-type DVM, dual slope integrating DVM, Range changing, Digital multimeters, digital frequency meter, range changing, Digital Tachometer and Digital pH meter

Unit –III 09 Hrs

Flow, pressure, vibration measurement techniques:

Measurement of flow: Turbine meter, Electromagnetic flow meter, Hot wire anemometer, Flow meter using thermistor, Ultrasonic flow transducer

Measurement of vibration: Accelerometers, Potentiometric type, LVDT, Piezoelectric, Seismic Transducer.

Measurement of pressure: Element of pressure sensing element, Diaphragm, Borden Tube, Bellows, Load cell

Unit –IV 07 Hrs

Instrument Calibration methods:

Introduction, Comparison methods: DC voltmeter calibration, Deflection instrument calibration, DC Ammeter calibration. AC instrument calibration. Ohmmeter calibration. Digital multimeters as standard instruments. Calibration instruments: precision DC voltage source, voltage calibrator. Potentiometer calibration methods for DC ammeter and voltmeter calibration.

Unit –V 07 Hrs

Data Acquisition system:

Introduction, generalized DAS, objective of DAS, uses of DAS, Single channel DAS, Multichannel DAS, Computer based DAS, Its Applications

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand the basic concepts of measurement, characteristics of instruments and techniques							
	of inter- instrument communication and unknown variable measurements.							
CO2:								
	488 bus protocols for designing measuring instruments.							
CO3:	Analyze and evaluate the performance of various electrical and electronic instruments and							
	data acquisition systems.							
CO4:	Develop mathematical models, analyze and design various instrument systems and their							
	calibration, through course activities							

Refere	ence Books								
1	Electronic Instrumentation and Measurements, David A Bell, 2 nd Edition , PHI/ Pearson Education, 2013, ISBN: 978-0195696141								
2	Electronic Instrumentation, H S Kalsi, TMH, 3 nd Edition, 2017, ISBN: 978-0070702066								
3	Modern electronic instrumentation and measurement techniques, Albert D Helfrick, William D Cooper, PHI, 3 rd Edition, 2007, ISBN: 978-0132507219								
4	Electrical and electronic Measurements and Instrumentation ,A.K. Sawhney, DhanpatRai&sons, 18th Edition, 2015, ISBN: 978-8177001006								

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1
O	1	2	3	4	5	6	7	8	9	0	1	2
CO1	3	2	1	1	1	-	-	-	-	2	1	3
CO2	3	2	3	2	3	3	1	1	2	2	1	2
CO3	3	3	3	3	3	3	3	3	3	2	3	3
CO4	3	3	3	3	1	3	-	-	-	1	1	3

High-3: Medium-2: Low-1

	Semester: III									
	MATHEMATICS									
	Bridge Course									
(Common to all branches)										
Cou	Course Code : 18DMA37/48 CIE : 50 Marks									
Cre	dits: L:T:P	:	2:0:0		SEE	:	50 Marks			
Aud	lit Course				SEE Duration	:	2.00 Hours			
Cou	rse Learning	Obj	ectives: The studer	its will be able to						
1	Understand t	he c	oncept of functions	of several variables,	types of derivatives	inv	olved with			
	these function	ns a	nd its applications,	approximate a function	on of single variable	in t	erms of			
	infinite series	s.								
2	Acquire cond	epts	s of vector function	s, scalar fields and dit	fferential calculus of	vec	ctor functions			
	in Cartesian	coor	dinates.							
3	Explore the p	oss	ibility of finding ap	proximate solutions u	sing numerical meth	ods	s in the			
	absence of analytical solutions of various systems of equations.									
4	Recognize lii	near	differential equation	ons, apply analytical to	echniques to comput	e so	olutions.			
5		_	of multiple integral	s and their application	ns&Use mathematic	al I	T tools to			

Unit-I	05 Hrs
Differential Calculus:	
Taylor and Maclaurin series for function of single variable. Partial derivatives – Introductio	n, simple
problems. Total derivative, composite functions. Jacobians – simple problems.	
Unit – II	05 Hrs
Vector Differentiation:	

Introduction, simple problems in terms of velocity and acceleration. Concepts of gradient, divergence - solenoidal vector function, curl - irrotational vector function and Laplacian, simple problems.

> Unit –III 06 Hrs

Differential Equations:

Higher order linear differential equations with constant coefficients, solution of homogeneous equations - Complementary functions. Non homogeneous equations - Inverse differential operator method of finding particular integral based on input function (force function).

> Unit -IV 05 Hrs

Numerical Methods:

Solution of algebraic and transcendental equations – Intermediate value property, Newton-Raphson method. Solution of first order ordinary differential equations - Taylor series and 4th order Runge-Kutta methods. Numerical integration – Simpson's 1/3rd, 3/8th and Weddle's rules. (All methods without proof).

> Unit -V 05 Hrs

Multiple Integrals:

Evaluation of double integrals, change of order of integration. Evaluation of triple integrals. Applications – Area, volume and mass – simple problems.

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand the concept of partial differentiation, double integrals, vector differentiation, solutions of higher order linear differential equations and requirement of numerical methods.							
CO2:	Solve problems on total derivatives of implicit functions, Jacobians, homogeneous linear differential equations, velocity and acceleration vectors.							
CO3:	I II J II I							
	homogeneous linear differential equations and numerical solution of equations.							
CO4:	Evaluate triple integrals, area, volume and mass, different operations using del operator on							
	scalar and vector point functions, numerical solution of differential equations and numerical							
	integration.							

Refere	eference Books								
1	B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 44 th Edition, 2015, ISBN: 978-81-933284-9-1.								
2	Higher Engineering Mathematics, B.V. Ramana, 11 th Edition, 2010, Tata McGraw-Hill, ISBN: 978-0-07-063419-0.								
3	A Text Book of Engineering Mathematics, N.P. Bali & Manish Goyal, Lakshmi Publications, 7 th Edition, 2010, ISBN: 978-81-31808320.								
4	Advanced Engineering Mathematics, Erwin Kreyszig, John Wiley & Sons, 10 th Edition, 2016, ISBN: 978-0470458365.								

Continuous Internal Evaluation (CIE); Theory (50 Marks)

CIE is executed by way of quizzes (Q) and tests (T). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. The two tests are conducted for 30 marks each and the sum of the marks scored from two tests is reduced to 30.

Total CIE is 20(Q) + 30(T) = 50 Marks.

Semester End Evaluation (SEE); Theory (50 Marks)

SEE for 50 marksis executed by means of an examination. The Question paper for the course consists of five main questions, one from each unit for 10 marks adding up to 50 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Semester: III VYAVAHARIKA KANNADA (Common to all branches) **Course Code** 18HS38V CIE 50 Marks Credits: L:T:P : 1:0:0 SEE : 50 Marks Total Hours CIE Duration 16Hrs 90 Minutes Course Learning Objectives of Vyavaharika Kannada: The students will be able to Motivate students to learn Kannada language with active involvement. Learn basic communication skills in Kannada language (Vyavaharika Kannada). 2 Importance of learning local language Kannada. 3 VYAVAHARIKA KANNADA (BALAKE Kannada) (to those students who does not know Kannada) Unit-I 4Hrs **Parichaya(Introduction):** Necessity of learning local language, Tips to learn the language with easy methods, Hints for correct and polite conversation, History of kannada language. Unit - II 4Hrs Kannada alphabtets and Pronunciation: Kannada aksharmale, Kannada stress letters (vattakshara), Kannada Khagunitha, Pronunciation, memorisation and usage of the Kannada letters. Unit – III 4Hrs Kannada vocabulary for communication: Singular and Plural nouns, Genders, Interrogative words, Antonyms, Inappropriate pronunciation, Number system, List of vegetables, Fractions, Menu of food items, Names of the food items, words relating to time, words relating to directions, words relating to human's feelings and emotion, Parts of the human body, words relating to relationship. Unit -IV 4Hrs **Kannada Grammar in Conversations:** Nouns, Pronouns, Use of pronouns in Kannada sentences, Adjectives and its usage, Verbs, Adverbs, Conjunctions, Prepositions, Questions constructing words, Simple communicative sentences in kannada. Activities in Kannada, Vocabulory, Conversation. Course Outcomes: After completing the course, the students will be able to Usage of local language in day today affairs. Construction of simple sentences according to the situation. Usage of honorific words with elderly people. Easy communication with everyone. **Reference Books:** Vyavaharika Kannada patyapusthaka, L. Thimmesh, and V. Keshavamurthy, Visveshvaraya University, Belgaum. Kannada Kali, K. N. Subramanya, S. Narahari, H. G. Srinivasa Prasad, S. Ramamurthy and S. Sathyanarayana, 5th Edition, 2019, RV College of Engineering Bengaluru.

Spoken Kannada, Kannada Sahithya Parishat, Bengaluru.

ವ್ಯಾವಹಾರಿಕ ಕನ್ನಡ (Kannada Version)							
ಅಧ್ಯಾಯ $-\mathbf{I}$							
ಸ್ಥಳೀಯ ಅಥವಾ ಪ್ರಾದೇಶಿಕ ಭಾಷಾ ಕಲಿಕೆಯ ಅವಶ್ಯಕತೆ, ಭಾಷಾ ಕಲಿಕೆಯ ಸುಲಭ ವಿಧಾನಗಳು, ಸಂಭಾಷಣೆಗಾಗಿ ಸುಲಾ ಕನ್ನಡ ಭಾಷೆಯ ಇತಿಹಾಸ.	ನ ಸೂಚ್ಯಗಳು						
ಅಧ್ಯಾಯ – II	4Hrs						
ಕನ್ನಡ ಅಕ್ಷರಮಾಲೆ ಹಾಗೂ ಉಚ್ಛಾರಣೆ:							
ಕನ್ನಡ ಅಕ್ಷರಮಾಲೆ, ಒತ್ತಕ್ಷರ, ಕಾಗುಣಿತ, ಉಚ್ಚಾರಣೆ, ಸ್ವರಗಳು ಉಚ್ಚಾರಣೆ, ವ್ಯಂಜನಗಳ ಉಚ್ಚಾರಣೆ.							
ಅಧ್ಯಾಯ $-\mathbf{III}$	4Hrs						

ಸಂಭಾಷಣೆಗಾಗಿ ಕನ್ನಡ ಪದಗಳು:

ಏಕವಚನ, ಬಹುವಚನ, ಲಿಂಗಗಳು (ಸ್ತ್ರೀಲಿಂಗ, ಪುಲ್ಲಿಂಗ) ಪ್ರಶ್ನಾರ್ಥಕ ಪದಗಳು, ವಿರುದ್ಧಾರ್ಥಕ ಪದಗಳು, ಅಸಮಂಜಸ ಉಚ್ಚಾರಣೆ, ಸಂಖ್ಯಾ ವ್ಯವಸ್ಥೆ, ಗಣಿತದ ಚಿಹ್ನೆಗಳು, ಭಿನ್ನಾಂಶಗಳು.

ತರಕಾರಿಗಳ ಹೆಸರುಗಳು, ತಿಂಡಿಗಳ ಹೆಸರುಗಳು, ಆಹಾರಕ್ಕೆ ಸಂಬಂಧಿಸಿದ ಪದಗಳು, ಕಾಲ/ಸಮಯಕ್ಕೆ ಸಂಬಂಧಿಸಿದ ಪದಗಳು, ದಿಕ್ಕುಗಳ ಹೆಸರುಗಳು, ಭಾವನೆಗೆ ಸಂಬಂಧಿಸಿದ ಪದಗಳು, ಮಾನವ ಶರೀರದ ಭಾಗಗಳು, ಸಂಬಂಧದ ಪದಗಳು, ಸಾಮಾನ್ಯ ಸಂಭಾಷಣೆಯಲ್ಲಿ ಬಳಸುವಂತಹ ಪದಗಳು.

4Hrs

ಅಧ್ಯಾಯ -IV

ಸಂಭಾಷಣಯಲ್ಲ	ಕನ್ನಡ ಬಳಕ:					
ನಾಮಪದಗಳು,	ಸರ್ವನಾಮಗಳು,	ನಾಮವಿಶೇಷಣಗಳು,	ಕ್ರಿಯಾಪದಗಳು,	ಕ್ರಿಯಾವಿಶೇಷಣಗಳು,	ಕನ್ನಡದಲ್ಲಿ	ಸಂಯೋಜನೆಗಳು,
ಉಪಸರ್ಗಗಳು,	ಪ್ರಶ್ನಾರ್ಥಕ ಪದಗಳು	, ವಿಚಾರಣೆಯ / ವಿಚಾ	ರಿಸುವ / ಬೇಡಿಕೆಂ	ಯ ವಾಕ್ಯಗಳು. ಕನ್ನಡದಲ್ಲ	ಲ್ಲಿ ಚಟುವಟಿಕೆ	ಗಳು,
ಶಬ್ಧಕೋಶ, ಸಂ	ುಭಾಷಣೆ.					

ವ್ಯವಹಾರಿಕ ಕನ್ನಡದ ಕಲಿಕಾ ಫಲಿತಾಂಶಗಳು : CO1: ನಿತ್ಯ ಜೀವನದಲ್ಲಿ ಆಡುಭಾಷೆಯ ಬಳಕೆ. CO2: ಸಂದರ್ಭ, ಸನ್ನಿವೇಶಕ್ಕನುಗುಣವಾಗಿ ಸರಳ ಕನ್ನಡ ವಾಕ್ಯಗಳ ಬಳಕೆ. CO3: ಗೌರವ ಸಂಬೋಧನೆಯ ಬಳಕೆ. CO4: ಇತರರೊಡನೆ ಸುಲಭ ಸಂವಹನ.

ಆಧಾರ	ಪುಸ್ತಕಗಳು :
1	ವ್ಯವಹಾರಿಕ ಕನ್ನಡ ಪಠ್ಯಪುಸ್ತಕ, ಎಲ್.ತಿಮ್ಮೇಶ್ ಮತ್ತು ವಿ.ಕೇಶವಮೂರ್ತಿ, ಪ್ರಸಾರಾಂಗ, ವಿಶ್ವೇಶ್ವರಯ್ಯ ತಾಂತ್ರಿಕ ವಿದ್ಯಾಲಯ, ಬೆಳಗಾಂ.
2	ಕನ್ನಡ ಕಲಿ, ಕೆ.ಎನ್.ಸುಬ್ರಹ್ಮಣ್ಯಂ, ಎನ್.ಎಸ್.ನರಹರಿ, ಎಚ್.ಜಿ.ಶ್ರೀನಿವಾಸ 'ಪ್ರಸಾದ್, ಎಸ್.ರಾಮಮೂರ್ತಿ ಮತ್ತು ಎಸ್.ಸತ್ಯನಾರಾಯಣ, 2ನೇ ಮುದ್ರಣ 2019, ರಾ.ವಿ.ತಾಂತ್ರಿಕ ಮಹಾವಿದ್ಯಾಲಯ, ಬೆಂಗಳೂರು.
3	ಮಾತನಾಡುವ ಕನ್ನಡ, ಕನ್ನಡ ಸಾಹಿತ್ಯ ಪರಿಷತ್, ಬೆಂಗಳೂರು.

Continuous Internal Evaluation (CIE); (50 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Activity. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks and the sum of the marks scored from two quizzes is reduced to 10. The two tests are conducted for 50 marks each and the sum of the marks scored from two tests is reduced to 30. The marks component for Activity is 10. Total CIE is 10(Q) + 30(T) + 10(A) = 50 Marks.

Semester End Evaluation (SEE); Theory (50 Marks)

SEE for 50 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of only objective type questions for 40 marks covering the complete syllabus. Part – B consists of essay type questions for 10 marks.

				Semester: III			
				AADALITHA KANNA	ADA		
				(Common to all branc	hes)		
Cours	se Code	:	18HS38A	,	CIE	:	50 Marks
Credi	ts: L:T:P	:	1:0:0		SEE	:	50 Marks
Total	Hours	:	16Hrs		CIE Duration	:	90 Minutes
				ಆಡಳಿತ ಕನ್ನಡ (ಕನ್ನಡಿಗರಿಗಾ	ስ ስ)		
ಆಡಳಿತ	ಭಾಷಾ ಕಲಿಕೆಯ	ಉ	ದ್ದೇಶಗಳು: ವಿದ್ಯಾ	_{ತಿ} ರ್ಥಿಗಳಲ್ಲಿ			
1	ಆಡಳಿತ ಕನ್ನಡದ	<u>ಪ</u>	ರಿಚಯ ಮಾಡಿಕೆ	ೂಡುವುದು.			
2	ಕನ್ನಡ ಭಾಷೆಯ	ವಾ	್ಯಕರಣದ ಬಗ್ಗೆ ಆ	ಶಿರವು ಮೂಡಿಸುವುದು.			
3	ಕನ್ನಡ ಭಾಷಾ	ಒ	- ುರಹದಲ್ಲಿ ಕಂಡ	ಶುಬರುವ ದೋಷಗಳು ಹಾಗೂ ಅಾ	ವುಗಳ ನಿವಾರಣೆ ಮತ್ತು	ಲೇ	ಖನ ಚಿಹ್ನೆಗಳನ
	್ನ ಪರಿಚಯಿಸುವುದ				ے		٩
4	ಸಾಮಾನ್ಯ ಅರ್ಜಿ	-ಗಳು	, ಸರ್ಕಾರಿ ಮತ	ು __ ಅರೆಸರ್ಕಾರಿ ಪತ್ರ ವ್ಯವಹಾರದ ಬಗ್ಗೆ	ಅರಿವು ಮೂಡಿಸುವುದು.		
5	ಭಾಷಾಂತರ, ಪ್ರ	ಬಂದ	್ಸ'ರಚನೆ, ಕನ್ನಡ	ಭಾಷಾಭ್ಯಾಸ ಮತ್ತುಆಡಳಿತ ಕನ್ನಡದ	ಪದಗಳ ಪರಿಚಯ ಮಾಡಿಕೆ	ಾಡು	ವುದು.
			~				
				 ಅಧ್ಯಾಯ –I			4Hrs
,, ,,	<u></u>	<u>~</u> →					71115
~	ರಾಷೆ – ಸಂಕ್ಷಿಪ್ತ				·		
				ದ.ರಾ.ಬೇಂದ್ರೆ (ಕವಿ), ಬೆಲ್ಜಿಯ ಹಾಡು (ಣಗಳು, ಆಡಳಿತ ಭಾಷೆಯ ಪ್ರಯೋಜನ	ω δ	رد)	
	ಧಾಷಾನ್ನಡ, ಆ		e weadon of	•	J1190.		4 Hrs
	<u> ಕನ್ನೊಸವಾಸ</u>	<u>, , , , , , , , , , , , , , , , , , , </u>	ನೆ ೧೩ ವನೆ ೧೩ ವನ್ನ	ಅಧ್ಯಾಯ –II ಕು ಮತ್ತು ಅವುಗಳ ನಿವಾರಣೆ:			4 1118
	• (•,			ನ ಮತ್ತು ಅವುಗಳ ನವಾರಣ. ಗುವ ಲೋಪದೋಷಗಳು ಅಥವಾ ಸಾಧ	ನುರೂಪಗಳ ಬಳಕೆ ಅಲಾ ಪಾ	nca =	かる
				ಗಿರಿದ ಲೋಪದುಣಿಷಗಳು, ಲೇಖನ ಚಿಕ ಗುವ ಲೋಪದೋಷಗಳು, ಲೇಖನ ಚಿಕ			
				ಲ್ಲಿ ಅನುಸರಿಸಬೇಕಾದ ಇನ್ನಿತರಕ್ರಮ, ಲೇ			
				non ed. III			411
				ಅಧ್ಯಾಯ –III			4Hrs
ಪತ್ರ ವ್ಯ ಪತ್ರಾವಕ		₹ 云	ವಹಾರ ಆಡಲಿತ	ಪತ್ರಗಳು, ಅರ್ಜಿಯ ವಿವಿಧ ಬಗೆಗಳು	ನುತ್ತು ನಾದಗಿಸಲು		
<u>ವ</u> ಿಸ್ತಾಹೀ	<u> </u>	, w	<u> </u>	ಅಧ್ಯಾಯ –IV	ചാല് ബാധാന്യം.		4Hrs
ಪಬಂದ	ಸಂಕಿಪ ಪಬಂ	ನರಬ	ಕನೆ ಮತ್ತು ಭಾಷಾ	•			71115
_	w, –		_	೦೦೦. ಏಕರಣಾವ್ಯಯಗಳು, ಸಮಾನಾರ್ಥಕ ಪ	ದಗಳು. ನಾನಾರ್ಹಗಳು. ವಿ	ರುದ	ಪದಗಳು. ತತಮ
	Ψ			್ದಸಮೂಹಕ್ಕೆ ಒಂದು ಶಬ್ದ, ಅನ್ಯದೇಶೀಯ		4	~
4	ಕನ್ನಡದ ಕಲಿಕಾ		•••	φ + - φ, - (₈ (8	.,		
	~		ವ್ಯಾಕರಣದ ಬಳ	ਝਰੇ.			
	ಕನ್ನಡದಲ್ಲಿ ಪ		-				
	-			ು ಬಗ್ಗೆ ಆಸಕ್ತಿ ಮೂಡುವುದು.			
	 ಪುಸ್ತಕಗಳು :	-	<u> </u>				
• -	_	್ಷಡ	ಪಠ್ಯಪುಸಕ, ಎಲ	್.ತಿಮ್ಮೇಶ್ ಮತ್ತು ವಿ.ಕೇಶವಮೂರ್ತಿ,	ಪ್ರಸಾರಾಂಗ, ವಿಶೇಶರಯ್ಯ	ತಾ	ಂತ್ರಿಕ ವಿದ್ಯಾಲಯ
1	ಬೆಳಗಾಂ.	ξ	- ₅ - <u>5</u> -5,	e			<u></u>
	1						

ಎಸ್.ಸತ್ಯನಾರಾಯಣ, 2ನೇ ಮುದ್ರಣ 2019, ರಾ.ವಿ.ತಾಂತ್ರಿಕ ಮಹಾವಿದ್ಯಾಲಯ, ಬೆಂಗಳೂರು.

ಕನ್ನಡ ಅನುಭವ, ಕೆ.ಎನ್.ಸುಬ್ರಹ್ಮಣ್ಯಂ, ಎನ್.ಎಸ್.ನರಹರಿ, ಎಚ್.ಜಿ.ಶ್ರೀನಿವಾಸಪ್ರಸಾದ್, ಎಸ್.ರಾಮಮೂರ್ತಿ ಮತ್ತು

2

Continuous Internal Evaluation (CIE); (50 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Activity. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks and the sum of the marks scored from two quizzes is reduced to 10. The two tests are conducted for 50 marks each and the sum of the marks scored from two tests is reduced to 30. The marks component for Activity is 10. Total CIE is 10(Q) + 30(T) + 10(A) = 50 Marks.

Semester End Evaluation (SEE); Theory (50 Marks)

SEE for 50 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 10 marks covering the complete syllabus. Part - B is for 40 marks. It consists of simple grammar and essay type questions.

	Semester: IV									
	LINEAR ALGEBRA, STATISTICS AND PROBABILITY THEORY									
	(Theory)									
			(Comm	on to EC, EE, EI&	kET)					
Cou	rse Code	:	18MA41B		CIE	:	100 Marks			
Cred	Credits: L:T:P		4:1:0		SEE	:	100 Marks			
Tota	Total Hours : 52L+13T SEE Duration : 3.00 Hours									
Cou	rse Learning ()bj	ectives: The student	ts will be able to						
1	Understand th	ie b	asics of Linear Alge	ebra and Probabilit	y theory.					
2	Demonstrate	the	concepts of linear tr	ansformation, orth	ogonality and factor	rizati	on of matrices.			
3	Apply the kno	owl	edge of the statistica	al analysis and theo	ory of probability in	the	study of			
	uncertainties.									
4	Use probabili	ty a	nd sampling theory	to solve random p	hysical phenomena	and	implement			
	appropriate distribution models.									
5	Use mathema	tica	l IT tools to analyze	and visualize the	above concepts.					

Unit-I	10 Hrs
--------	--------

Linear Algebra - I:

Vector spaces, subspaces, linear dependence, basis, dimension, four fundamental subspaces. Rank and nullity theorem (without proof). Linear transformations- projection, rotation and reflection matrices, matrix representation, kernel and image of a linear transformation.

Unit – II 11 Hrs

Linear Algebra - II:

Orthogonal and orthonormal bases, Gram-Schmidt process, QR- factorization, Eigen values and Eigen vectors (recapitulation). Diagonalization of a matrix (symmetric matrices), singular value decomposition. SVD applied to digital image processing (using MATLAB).

Unit –III 11 Hrs

Statistics:

Central moments, mean, variance, coefficients of skewness and kurtosis in terms of moments. Curve fitting by method of least squares, fitting of curves – Polynomial, exponential and power functions. Correlation and linear regression analysis –problems. Simulation using MATLAB.

Unit –IV 10 Hrs

Probability:

Basic concepts and Baye's rule. Random variables - Discrete and continuous, probability mass function, probability density function, cumulative density function, mean, variance - problems. Joint probability distribution function - Discrete and continuous, covariance, correlation and problems related to applications. Simulation using MATLAB.

Unit –V 10 Hrs

Probability Distributions:

Discrete and continuous distributions - Binomial, Poisson, Exponential and Normal. Sampling theory - Sampling, sampling distributions, standard errors, student's t-distribution, chi-square distribution as a test of goodness of fit, problems. Simulation using MATLAB.

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understand the fundamental concepts of linear algebra, probability and sampling theory.
CO2:	Solve the problems of vector spaces, linear transformation, measures of statistical data, curve
	fitting and functions of random variables.
CO3:	Apply the acquired knowledge to solve the problems on factorization of a matrix, correlation,
	regression, probability and sampling distributions.
CO4:	Evaluate decomposition of a matrix and estimate goodness of fit of problems occurring in
	engineering applications.

Refere	ence Books
1	Linear Algebra and Its Applications, Gilbert Strang, 4 th Edition, 2006, Cengage Learning
	India Edition, ISBN: 81-315-0172-8.
	Higher Engineering Mathematics, B.S. Grewal, 44 th Edition, 2015, Khanna Publishers,
2	ISBN: 978- 81-933284-9-1.
_	Schaum's Outline of Linear Algebra, Seymour Lipschutz and Marc Lipson, 5th Edition, 2012,
3	McGraw Hill Education, ISBN-978-0-07179456-5.
	Introduction to Probability and Statistics, S. Lipschutz and Schiller (Schaum's outline series),
4	ISBN: 978-0-07-176249-6.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	=	-	-	-	-	=.	-	1
CO2	3	2	-	-	=	-	-	-	-	=.	-	1
CO3	1	2	2	-	=	-	-	-	-	=.	-	1
CO4	-	1	1	3	-	-	-	-	-	-	-	1

High-3: Medium-2: Low-1

	Semester: IV						
			ENGINE	ERING MATERIALS			
				(Theory)			
			(Commo	n to EC, EE, EI & ET)			
Cour	se Code	:	18EC42	CIE	:	50 Marks	
Credits: L:T:P		:	2:0:0	SEE	:	50 Marks	
Tota	Total Hours		27L	SEE Du	ration :	02 Hours	
Cour	se Learning C)bj	ectives: The student	s will be able to			
1	Understand th	ie n	naterial classification	n and categorizes material rela	ted to various	electronic	
	properties						
2	2 Understand fabrication & characterization techniques and nanomaterial growth						
3	3 Understand the material electronics transport and applications in electronics industry						
4							

4 Understand to the extend electronic devices based on novel and emerging materials	
Unit-I	05 Hrs
Introduction: Classification and Properties of Materials, Materials Used in Electrical and E	lectronic
Industries, Requirements and Future Developments of Electronic Materials	
Unit – II	07 Hrs
Classical Theory of Electrical Conduction and Conducting Materials: Resistivi	ty, TCR
(Temperature Coefficient of Resistivity) and Matthiessen's Rule, Traditional Classification of	f Metals,
Insulators and Semiconductors, Drude's Free Electron Theory, Hall Effect, Wiedemann-Fra	ınz Law,
Resistivity of Alloys, Nordheim's Rule, Resistivity of Alloys and Multiphase Solids	
Unit –III	05 Hrs
Thin Film Electronic Materials: Techniques for Preparation of Thin Films, Thin Film Con	ducting
Materials, Thin Film Resistors, Transparent and Conductive Thin Films, Thin Film Magneti	c
Materials	
Unit –IV	05 Hrs
Organic Electronic Materials: Conducting Polymers, Charge carriers, Synthesis of Conduc	cting
Polymers, Semiconducting Organic Materials, Organic Light Emitting Diode, Organic FET	
Unit –V	05 Hrs
Nanomaterials for Electronic Device Applications: Techniques for Preparation of Nanom	aterials
(Quantum Dots & CNT only), Micro-/Nano-devices Using Nanostructured Materials: CNT	transistor,
Single electron transistor	

Course	Outcomes: After completing the course, the students will be able to
CO1:	Explain electronics material classification, different physical properties and to the extend
	device applications.
CO2:	Define the transport mechanism (in solid state & organic), working principle of electronic
	material and assess material parameters for practical requirement.
CO3:	Summarize various fabrication, characterization and synthesis techniques for the electronic
	nanomaterials and thin film growth.
CO4:	Identify and calculate material parameters including electrical conductivity, resistivity,
	magnetic and optical properties for real-time electronic applications.

Refere	Reference Books							
1	Introduction to Electronic Materials for Engineers, Wei Gao &Zhengwei Li, Nigel Sammes, 2 nd Edition, World Scientific Publishing Co. Pvt. Ltd, ISBN:9789814293693							
2	Principles of Electronic Materials and Devices, S O Kasap, 3 rd Edition, 2017, McGraw Hill Education, ISBN-13: 978-0070648203							
3	Electronic Properties of Materials, Rolf E. Hummel, 4th edition, 2011, Springer, ISBN-13: 978-1489998415							

Continuous Internal Evaluation (CIE); Theory (50 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 15 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 30 marks each and the sum of the marks scored from three tests is reduced to 25. The marks component for experiential learning is 20.

Total CIE is 15(Q) + 25(T) + 10(EL) = 50 Marks.

Semester End Evaluation (SEE); Theory (50 Marks)

SEE for 50 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 10 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 8 marks adding up to 40 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomylevel.

					CO-l	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	1	2	-	-	-	-	2
CO2	3	2	-	-	-	1	2	-	-	-	-	2
CO3	3	3	2	-	-	1	2	-	-	-	-	2
CO4	3	3	2	2	-	2	2	-	-	-	-	2

High-3: Medium-2: Low-1

	Semester: IV						
			SE	ENSORS AND ACTU	ATORS		
				(Theory & Practic	ce)		
Cou	rse Code	:	18EI43		CIE	:	100+50 Marks
Credits: L:T:P :			3:0:1		SEE	:	100+50 Marks
Total Hours :			39L+33P		SEE Duration	:	03+03 Hours
Cou	rse Learning C)bj	ectives: The	students will be able to)		
1	1 Understand the fundamentals of transducers and sensors.						
2	2 Demonstrate the working principles of different transducers and sensors.						
3							
4	Design of sign	nal	conditioning	circuits using op-amp	and other analog	ICs.	

Unit-I 07 Hrs

Introduction: Definition of a transducer, Block Diagram, Active and Passive Transducers,

Advantages of Electrical transducers.

Resistive Transducers:

Potentiometers: Characteristics, Loading effect, and problems.

Strain gauge: Theory, Types, applications and problems.

Thermistor, RTD: Theory, applications and problems.

Thermocouple: Measurement of thermocouple output, compensating circuits, lead compensation, advantages and disadvantages of thermocouple.

Unit – II 09 Hrs

Inductive Transducers: Principle, Characteristics, Practical applications of LVDT and problems. **Capacitive Transducers:** Capacitive transducers using change in area of plates, distance between plates and change of dielectric constants, Applications of Capacitive Transducers and problems. **Piezo-electric Transducers:** Principle of operation, expression for output voltage, piezo-electric materials, equivalent circuit, loading effect, Frequency response and problems.

Photo sensors: Photo resistor, Photodiode, Phototransistor, Photocell, Photo-FET, Charge coupled device.

Unit –III 09 Hrs

Chemical sensors: pH value sensor, dissolved oxygen sensor, oxidation-reduction potential sensor, Zirconium probe Sensors, Chem FET sensors

Tactile sensors: Construction and operation, types.

Special Transducers: Hall effect transducers, Thin film sensors and smart transducers: Principles and applications.

Fabrication Techniques for Thin film Sensors: Photo Lithography; Types of photoresists, application of photoresists on substrate. **LIGA process**; General Description, Material for Substrate and Photoresists and Electroplating.

Unit –IV 07 Hrs

Humidity Sensors and Moisture Sensors: Concept of humidity, Electrical Conductivity Sensors, Thermal Conductivity Sensors, Optical Hygrometer, Oscillating Hygrometer.

IR Sensors: Golay cells, Thermopile, pyroelectric sensor, bolometers, Active Far-Infrared Sensors, Gas flame detectors

Unit –V 07Hrs

Actuators: Introduction to Actuators, Types of Actuators: Thermal Actuators, Electromagnetic actuators, Hydraulic and Pneumatic Actuators, Smart Material Actuators.

Practical:

Lab Experiments:

- 1. Characteristics of potentiometer resistance transducer and Measurement of strain using half and full bridge.
- 2. Characteristics of capacitance transducer & LVDT.

- 3. Characteristics of thermistor & RTD.
- 4. Characteristics of thermocouple & AD590.
- 5. Characteristics of LDR and photo transistor.
- 6. Characteristics of Piezoelectric transducer and load cell.
- 7. To verify the operation of a unipolar /bipolar analog multiplexer IC.
- 8. Design and rig up a sample and hold circuit using Basic circuit and IC and determine its Hold time for various sampling frequencies.
- 9. To test PGA using MUX
- 10. To drive a 12 V/300 Ω relay circuit using LDR.
- 11. To measure the DC current transfer ratio (CTR) of an opto-coupler by plotting its input/output characteristics, and to design and study the opto-coupler (MCT2E) driven relay circuit.
- 12. Open ended experiments.

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understand the basic principles of different transducers and sensors.
CO2:	Apply the knowledge of transducers and sensors to comprehend digital instrumentation
	systems.
CO3:	Analyze and evaluate the performance of different transducers and sensors for various
	applications.
CO4:	Create a system using appropriate transducers and sensors. for a particular application.

Refer	Reference Books								
1	Jacob Fraden, Handbook of Modern Sensors: Physics, Designs, and Applications, PHI								
1	Publication, 4th Edition 2008, ISBN: 978-1-4419-6465-6.								
2	Clarence W.de Silva, Sensors and Actuators: Control systems Instrumentation, CRC Press,								
4	2013 Edition, ISBN: 978-1-4200-4483-6.								
2	A.K. Sawhney, Electrical and Electronic Measurements and Instrumentation, DhanpatRai and								
3	Sons, 18th Edition, 2008, ISBN: 81-7700-016-0.								
4	Ganesh S Hegde, Mechatronics, PHI 3 rd Edition, 2010, ISBN: 9781934015292.								

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) + 10(T) + 10(IE) = 50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	3	2	2	-	-	-	-	1	-	1
CO4	3	3	3	3	2	1	1	2	1	2	1	3

High-3: Medium-2: Low-1

	Semester: IV								
	MICROPROCESSOR & MICROCONTROLLER								
	(Theory & Practice)								
(Common to EI, EC, EE& ET)									
Course Code		:	18EI44		CIE		100+50 Marks		
Credits: L:T:P		:	3:0:1		SEE	:	100+50 Marks		
Total Hours		:	39L+33P		SEE Duration	:	03+03 Hours		
Course Learning Objectives: The students will be able to									
1	Specify, design, implement, and debug simple microprocessor-based applications using the								
	Intel 8086 architecture.								
2	Understand & Analyze the architecture of 8051 microcontroller								
3	Use software development tools to assemble, test and debug the programs by using breakpoints,								
	single-stepping, monitoring the changes in register/memory contents, on a hardware platform or								
	on an emulator.								
4	4 Apply assembly directives and assembly language to implement flow control (sequential,								
	conditional and iterative).								
5	Design and interface the external components of microprocessor and microcontroller								

Unit-I 07 Hrs

MPU Organization: Instruction set Architectures, Harvard & Von-Neuman Architectures, Micro programmed & Hardwired Control unit, Floating Point & Fixed-Point Processor, Endianness, **Intel's 8086 architecture**, Pin groups, Functioning, Segmentation, Address generation, Stack, Interrupts.

Unit – II 09 Hrs

8086 Assembly Language Programming: Addressing Modes of 8086, Instruction Format, Program Development Tools, Assembler Directives, Instruction Set of 8086: Data Transfer Instructions, Arithmetic Instructions, Bit Manipulation Instructions, Branching Instructions, Processor Control Instructions, String Instructions, Macros, Procedures, Assembly Language Programming Examples

Unit –III 09 Hrs

Hardware of 8051 Microcontrollers: Introduction to Embedded system, Microcontroller, Comparison of Microprocessor and Microcontroller, Intel MCS 51 family, Architecture and Pin Functions of 8051 Microcontroller, CPU Organization, Program Counter, Timing and Machine Cycles, Internal Memory Organization, Registers, Stack, Input/ Output Ports, Counters and Timers, Interrupts, Power Saving modes.

Unit –IV 07 Hrs

8051 Microcontroller Based System Design: I/O Port Programming, Programming timers, Asynchronous Serial Data Communication, Interrupt Service Routines. Programming in C, Inline Assembly, Interfacing DAC, Interfacing Matrix Keyboard and Seven Segment Displays, Interfacing ADC in polled mode & Interrupt Mode, Interfacing LCD.

Unit –V 07 Hrs

Peripheral Based Systems: Clock generator(8284), Memory Devices, Address Decoding, Interfacing Memory, I/O sub System: Busy wait, DMA, Interrupt Driven, Memory Maps, I/O Port address decoding, Introduction to 8255, Interfacing 8255 with 8086, Interrupt Based IO Design.

Practical: Processor & Controller Lab:

Experiments with 8086 Assembly using MASM

- 1. Data Transfer Programs: Block Moves & Exchange (With & Without Overlap) with &without String Instructions.
- 2. Arithmetic Operations: Addition, Multiplication & Division on 32-Bit Data.

- 3. a) Code Conversions: Use XLAT Instruction to Convert Binary to BCD, Input from Keyboard & Display Result on the Console.
 - b) ASCII Operations: Addition, Subtraction, Multiplication
- 4. a) Search for a Key in an Array of Elements using Linear Search, Binary Search. Find Efficiency in each case.
 - b) Sort an Array Using Bubble Sort & Selection Sort. Find Efficiency in each case.

Interfacing experiments with 8051 C using Keil software

- 5. Illustrate the interfacing of LCD and LED with variant of 8051 Microcontroller using C language.
- 6. Implement the interfacing of stepper motor and DC Motor with variant of 8051 Microcontroller using C programming language.
- 7. Implement the interfacing of ADC with variant of 8051 Microcontroller using C language.
- 8. Write a C program to interface 4 x 4 keypad with variant of 8051 Microcontroller.
- 9. Write a C program to interface DAC and Elevator with variant of 8051 Microcontroller
- 10. Design 8051 based system to measure the frequency of TTL waveform. Design 8051 based system for automatic controlling of light.

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Interpret the architecture, instruction set, memory organization and addressing modes of the									
	microprocessors and microcontrollers.									
CO2:	Analyze pin functions / ports for implementing peripheral interfaces with microprocessors									
	and microcontrollers.									
CO3:	Apply the knowledge of microprocessor and microcontroller for implementing assembly									
	language/C programming.									
CO4:	Engage in assignment to understand, formulate, design and analyze problems to be realized									
	on embedded processors.									

Refere	ence Books
1	Douglas Hall, Micro-Processors and Interfacing-Programming & Hardware, TMH, 2 nd
1	Edition, 2002, ISBN-10- 0070601674
2	Barry B. Brey, The Intel Micro-processors, Architecture, Programming and Interfacing,
2	Pearson Education, 6 th Edition, 2008, ISBN-10: 0135026458
2	Kenneth J. Ayala, The 8051 Microcontroller Architecture, Programming & Applications,
3	Thomson Learning, 2 nd Edition, 2004.
4	Muhammad A Mazidi, The 8051 Microcontroller and Embedded Systems, Pearson
4	Education, 2 nd Edition, 2009.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) + 10(T) + 10(IE) = 50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

	CO-PO Mapping												
CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	
O	1	2	3	4	5	6	7	8	9	0	1	2	
CO1	3	2	2	2	-	-	-	-	-	1	-	1	
CO2	3	2	2	1	-	-	-	-	-	1	-	1	
CO3	3	3	3	2	2	-	-	-	-	1	-	1	
CO4	3	3	3	3	2	1	1	2	1	2	1	3	

Low-1 Medium-2 High-3

				Semester: IV								
	SIGNALS AND SYSTEMS											
	(Theory)											
			(Com	nmon to ET, EC, EE &EI)								
Cou	Course Code : 18ET45 CIE : 100 Marks											
Cre	dits: L:T:P	:	3:1:0	SEE	:	100 Marks						
Hrs	/Week	: 39L+26T		SEE Duration	:	3.00 Hrs						
Cou	rse Learning (Object	ives: The stu	dents will be able to								
1	Express a sig	nal and	l a system in l	both time and frequency domains and devel	op	a mathematical						
	process to mi	grate b	etween the tw	vo representations of the same entity.								
2	Analyze a con	mplex	signal in term	s of basic signals in continuous and discrete	e ti	me flavours.						
3	Define discre	te-time	e signals and s	systems, and express the differences with th	eir	continuous-						
	time analogy.											
4	Understand tl	he com	putation of Fl	FT algorithm in linear filtering & correlatio	ns.							

Unit-I 8Hrs

Introduction to Signals and System: Definition of Signals, Classification of Signals, Basic Operations on Signals: Operations Performed on the Independent and Dependent Variable, Precedence Rule, Elementary Signals. Definition of Systems, System Viewed as Interconnection of Operations, Properties of Systems.

Unit – II 8 Hrs

Time domain representations of Linear Time Invariant Systems : Convolution Sum, Convolution Sum Evaluation Procedure, Convolution Integrals, Convolution Integrals Evaluation Procedure, Interconnections of LTI System, Relations between LTI System Properties and the Impulse Response, step response, Difference Equation Representation of LTI System and Solving Difference Equations.

Unit –III 8 Hrs

Applications of Fourier Representations to Mixed Signal classes: Review of Fourier representation of signals, Introduction to DTFS and DTFT, Introduction, Fourier Transform Representations of periodic signals, Convolution and multiplication with Mixtures of periodic and Non-Periodic signals, Fourier Transform representation of discrete time signals, sampling Concept.

Unit –IV 8 Hrs

The Discrete Fourier transforms - Its properties and Applications: Frequency domain Sampling and Reconstruction of Discrete time signals, DFT, DFT as a linear Transformation, Relationship of DFT to other transforms. Properties of DFT: Periodicity, Linearity and Symmetry properties, Multiplication of two DFTs and circular convolution, additional DFT properties. Linear filtering methods based on the DFT: Use of DFT in linear filtering, Filtering of long data sequences.

Unit –V 7 Hrs

Efficient computation of DFT - FFT Algorithms: Direct computation of DFT, Radix-2 FFT Algorithms and Implementation of FFT Algorithms, Applications of FFT algorithms, Efficient computation of DFT of two real sequences, Efficient computation of DFT of a 2N – point real sequence.

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Analyze the fundamental concepts of the both continuous and discrete signals and systems,
	Representation of both periodic & aperiodic signals in frequency domain.
CO2:	Apply the properties of signals and analyze both continuous and discrete systems commonly
	found in communication, signal processing and control systems.
CO3:	Analyze continuous & discrete systems both in time & frequency domain.
CO4:	Apply efficient methods/algorithms for the computation of frequency domain representation
	& vice-versa.

Refere	ence Books
1	Signals and Systems, Simon Haykin and Barry Van Veen, John Wiley & Sons, 2 nd Edition, 2008.
2	Digital Signal Processing, Proakis G & Dimitris G. Manolakis, PHI, 3 rd Edition, 2007.
3	Signals and Systems, V. Oppenheim, Alan Willsky and A. Hamid Nawab, Pearson Education Asia/PHI, 2 nd Edition, 2006.
4	Digital Signal Processing A Practical Approach, Emmanuel C. Ifeachar, Barrie E. Jervis, Pearson Education, 2 nd Edition, 2003.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	-	2	-	-	-		-	-	
CO2	3	2	3	-	2	-	-	-	2	-	-	
CO3	3	3	-	2	2	-	-	-	2	-	-	3
CO4	3	2	2	-	2	-	-	-	2	-	-	3

High-3: Medium-2: Low-1

Semester: IV												
	CONTROL SYSTEMS											
	(Theory)											
			(Co	mmon to EE,&EI)								
Cou	rse Code	:	18EE46		CIE	:	100 Marks					
Credits: L:T:P:S			3:0:0		SEE	:	100 Marks					
Tota	l Hours	:	40L		SEE Duration	:	3.00 Hours					
Cou	rse Learning C)bj	ectives:									
1	Acquire the k	nov	vledge of classical c	ontrol system analys	is techniques, systen	ı re	sponse and					
	performance of	cha	racteristics									
2	Develop math	em	atical model and sir	nulate single-input si	ngle-output linear sy	ste	ms					
3	Design a syste	em	to analyze and evalu	uate stability of feedb	oack control systems	usi	ng both time					
	and frequency	do	main methods to me	eet desired needs	•							
4	Express the ef	fec	ts of PID controller	s and compensators of	on the system perform	nan	ce					

Unit-I	08 Hrs

Introduction:

Definitions, Classification of control systems open loop and closed loop, linear and nonlinear, time variant and time invariant, continuous and discrete time systems. Block diagram of a typical closed loop control system showing the basic structure and different terminologies.

Modelling and Representation Of Control System:

The transfer function concept, transfer function of simple electrical networks, different forms of transfer functions, transfer function of a closed loop system, block diagrams and signal flow graphs. Masons gain formula. Modelling of mechanical translational and rotational systems and their electrical analog, gear trains, modeling of a.c &d.c servomotors.

Unit – II 09 Hrs

Time Response of Feedback Control Systems:

Standard test signals, step response of first and second order systems, time domain specifications. Type and order of the system, Steady state error and static error constants. Effect of feedback on sensitivity.

Stability Analysis:

Concept of stability, types of stability, Routh Hurwitz criterion, relative stability analysis.

Unit -III 09 Hrs

Root Locus:

Introduction, concept of magnitude and angle criterion, construction of root loci, root contours. Effect of adding a pole/zero to the system.

Introduction to frequency domain:

Frequency domain specifications, concept of phase margin and gain margin, correlation between time and frequency response.

Unit –IV 07 Hrs

Frequency Domain Analysis:

Introduction to frequency domain plots. Polar plots, Principle of argument, Nyquist plots and Nyquist stability criterion. Bode plots, stability analysis using Bode diagrams.

Unit –V 07 Hrs

Controllers and Compensators:

Basic control actions P, PI, PD and PID controllers and their effects on the dynamic and static behavior of the system. Lag, lead and lead-lag compensators, realization using RC networks. Design of controllers (PID) using Root locus and compensators (lag-lead) using bode plots.

Course	e outcomes: On completion of the course, the student should have acquired the ability to								
CO1:	CO1: Comprehend the different types of control systems and their building blocks								
CO2:	Analyze the different systems by means of their transfer function								
CO3:	Evaluate the performance of systems and assess their stability								
CO4:	Design the system or compensator for the desired performance parameters								

Refere	ence Books
1	Control System Engineering, J Nagarath and I.J.Nagarath and M Gopal, 5 th edition, 2007, New age international publishers, ISBN: 81-224-1775-2M.Gopal, "Control systems - Principles and design", TMH,2 nd edition, 2006, ISBN: 0071231277, 9780071231275
2	K.Ogata, "Modern control engineering", Pearson education, 2004, 4 th edition. ISBN: 1-317-1887-2
3	Modern Control Systems, R.C. Dorf and R.H.Bishop, 12 th Edition,2010, Addison Wesley, ISBN 13: 978-0136024583
4	Automatic Control Systems, Kuo B.C 9 th Edition, 2014, ., Prentice Hall of India Ltd., New Delhi, ISBN-13: 978-8126552337

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	2	1	1	1	1	1	=	2	2	-	1		
CO2	2	2	2	2	1	1	1	-	2	1	-	1		
CO3	3	3	2	2	2	1	1	-	2	2	-	1		
CO4	3	3	2	1	1	1	1	-	2	1	-	1		

High-3: Medium-2: Low-1

	Semester: IV										
Design Thinking Lab											
Course Code : 18EI47 CIE : 50 Mar											
Cred	lits: L:T:P	:	0:0:2		SEE	:	50 Marks				
Hou	rs	:	26P		SEE Duration	:	02 Hours				
Cou	rse Learning O	bje	ectives: To ena	ble the students to:							
	Knowledge A	Ap _l	olication: Ac	quire the ability to mak	e links across	dif	ferent areas of				
1	knowledge a	nd	to generate,	develop and evaluate idea	as and informat	ion	so as to apply				
	these skills to	pı	rovide solution	ns of societal concern							
2	Communicat	tion	: Acquire the	skills to communicate ef	fectively and to	pre	esent ideas				
4	clearly and co	ohe	erently to a sp	ecific audience in both the	e written and ora	al fe	orms.				
3	Collaboratio	n:	Acquire colla	borative skills through wo	orking in a team	to	achieve				
3	common goa	ls.									
4	Independent	Le	earning: Lear	n on their own, reflect on	their learning ar	nd t	ake				
4	appropriate action to improve it.										

Guidelines for Design Thinking Lab:

- 1. The Design Thinking Lab (DTL) is to be carried out by a team of two-three students.
- 2. Each student in a team must contribute equally in the tasks mentioned below.
- 3. Each group has to select a theme that will provide solutions to the challenges of societal concern. Normally three to four themes would be identified by the by the department
- 4. Each group should follow the stages of Empathy, Design, Ideate, prototype and Test for completion of DTL.
- 5. After every stage of DTL, the committee constituted by the department along with the coordinators would evaluate for CIE. The committee shall consist of respective coordinator & two senior faculty members as examiners. The evaluation will be done for each student separately.
- 6. The team should prepare a Digital Poster and a report should be submitted after incorporation of any modifications suggested by the evaluation committee.

The Design Thinking lab tasks would involve:

- 1. Carry out the detailed questionnaire to arrive at the problem of the selected theme. The empathy report shall be prepared based on the response of the stake holders.
- 2. For the problem identified, the team needs to give solution through thinking out of the box innovatively to complete the ideation stage of DTL
- 3. Once the idea of the solution is ready, detailed design has to be formulated in the Design stage considering the practical feasibility.
- 4. If the Design of the problem is approved, the team should implement the design and come out with prototype of the system.
- 5. Conduct thorough testing of all the modules in the prototype developed and carry out integrated testing.
- 6. Demonstrate the functioning of the prototype along with presentations of the same.
- 7. Prepare a Digital poster indicating all the stages of DTL separately. A Detailed project report also should be submitted covering the difficulties and challenges faced in each stage of DTL.
- 8. Methods of testing and validation should be clearly defined both in the Digital poster as well as the report.

The students are required to submit the Poster and the report in the prescribed format provided by the department.

Course	Course Outcomes: After completing the course, the students will be able to									
CO 1:	Interpreting and implementing the empathy, ideate and design should be implemented by									
	applying the concepts learnt.									
CO 2:	The course will facilitate effective participation by the student in team work and									
	development of communication and presentation skills essential for being part of any of									
	the domains in his / her future career.									
CO 3:	Appling project life cycle effectively to develop an efficient prototype.									
CO 4:	Produce students who would be equipped to pursue higher studies in a specialized area									
	or carry out research work in an industrial environment.									

Scheme of Evaluation for CIE Marks:

Evaluation will be carried out in three phases:

Phase	Activity	Weightage
Ι	Empathy, Ideate evaluation	10M
II	Design evaluation	15M
III	Prototype evaluation, Digital Poster presentation and report submission	25M
	Total	50M

Scheme of Evaluation for SEE Marks:

Sl. No.	Evaluation Component							
1.	Written presentation of synopsis: Write up	5M						
2.	Presentation/Demonstration of the project	15M						
3.	Demonstration of the project	20M						
4.	Viva	05M						
5.	Report	05M						
	Total	50M						

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	H	H	H	H	M	M	L	M	M	M	M	M	
CO2	Н	Н	Н	Н	M	M	L	M	M	M	M	M	
CO3	H	H	Н	Н	M	M	L	M	M	M	M	M	
CO4	L	L	L	L	L	L	L	M	L	M	L	L	

	Semester: IV										
	BRIDGE COURSE C PROGRAMMING										
	(Theory)										
			(Common	to All Diploma Student	ts)						
Course Code		:	18DCS48	CI	IE	:	100 Marks				
Credits: L:T:P		:	2:0:0	SE	EE	:	100 Marks				
Tota	l Hours	Iours : 27L		SE	EE Duration	:	3.00 Hours				
Cou	rse Learning C)bj	ectives:								
1	Develop arith	met	ic reasoning and an	alytical skills to apply kn	nowledge of basic	co	oncepts of				
	programming	in	C.								
2	Learn basic pr	inc	iples of problem sol	lving through programmi	ing.						
3	Write C progr	am	s using appropriate	programming constructs	adopted in progra	amı	ming.				
4	Solve complex	х р	roblems using C pro	gramming.							

Introduction to Reasoning, Algorithms and Flowcharts:

Skill development – Examples related to Arithmetical Reasoning and Analytical Reasoning. Fundamentals of algorithms and flowcharts

Introduction to C programming:

Basic structure of C program, Features of C language, Character set, C tokens, Keywords and Identifiers, Constants, Variables, Data types.

Unit – II 04 Hrs

Handling Input and Output Operations

Formatted input/output functions, Unformatted input/output functions with programming examples using different input/output functions.

Operators and Expressions

Arithmetic operators, Relational operators, Logical Operators, Assignment operators, Increment and decrement operators, Conditional operators, Bit-wise operators, Arithmetic expressions. Evaluation of expressions, Precedence of arithmetic operators, Type conversion in expressions, Operator precedence and associativity.

Unit -III 06 Hrs

Programming Constructs

Decision Making and Branching

Decision making with 'if' statement, Simple 'if' statement, the 'if...else' statement, nesting of 'if...else' statements, The 'else if' ladder, The 'switch' statement, The '?:' operator, The 'goto' statement.

Decision making and looping The while statement, The do while statement, The 'for' statement, Jumps in loops.

Unit –IV 06 Hrs

Arrays

One dimensional array, Declaration of one-dimensional arrays. Initialization of one-dimensional arrays, two dimensional arrays, Initializing two dimensional arrays.

Character Arrays and Strings

Declaring and Initializing String Variables, Reading Strings from Terminal, Writing strings to screen, String handling functions.

Unit –V 08 Hrs

User-defined functions

Need for User Defined Functions, Definition of functions, Return values and their types, Function calls, Function declaration. Examples.

Introduction to Pointers: Introduction, Declaration and initialization of pointers. Examples **Structures and Unions:** Introduction, Structure and union definition, Declaring structure and union variables, Accessing structure members. Example programs.

			La	borato	ry Con	ponen	t				
1.	Familiarizatio	on with pr						ning the	program files,		
	storing, comp	ilation, ex	xecution a	ınd debi	igging.	Taking	any sim	ple C- c	ode.(Example		
	programs hav	ing the de	elimeters,	format	specifi	ers in p	rintf and	l scanf)	•		
2.	Debug the err	ors and u	nderstand	the wo	orking o	f input	stateme	nts in a	program by compiling		
	the C-code.										
3.	Implement C Program to demonstrate the working of operators and analyze the output.										
4.	Simple computational problems using arithmetic expressions and use of each										
	operator (+,-,/,%) leading to implementation of a Commercial calculator with										
	appropriate message:										
	a) Read the v										
	b) Perform a										
	c) Handle th										
5.									re-decimal places. The		
									e. If the discriminate is		
	negative, ther	the roots	are comp	plex co	njugate	−b /2a =	$\pm \sqrt{-\text{Di}/2}$	a.			
	a)	-	-		-				n the keyboard.		
	b)	No sol	ution ifbo	otha and	lb are z	ero. The	e progra	m termii	nates with appropriate		
	messa	-									
	c)								The program prints		
			th approp								
	d) Calculate the discriminant D and determines the corresponding roots. e) Display all possible roots of a quadratic equation with appropriate message.										
									e message.		
6a.	Write a progr	_		_					1.0		
	$\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$	3		5	6	7	8	9	10		
	2 4	6		10	12	14	16	18	20		
	3 6	9		15	18	21	24	27	30		
	4 8 5 10	12 15		20 25	24 30	28 35	32 40	36 45	40 50		
	3 10	13	20	23	30	33	40	43	30		
	Write a C pro	oram to c	enerateth	e natter	nencin	r for lo	nne.				
6b.	Example: (to					3 101 100	Jps.				
	1	P	10 15 0 7 011		,						
	**										
	333										

	55555										
7a.	Write a C pro	gram to f	ind the G	reatest	commo	n diviso	or(GCD)	and Lea	ast common multiplier(
	LCM)										
7b.			_						s palindrome or not.		
8.									hat reads N integer		
									ble sort technique.		
9.	Develop and		-	_			-		14111		
	a) Read the					-			-		
	· ·		e messag	e if the	conditio	on 18 no	ı satisfie	u and as	k user to re-enter		
	the size of ma		•								
	c) Read the is d) Perform m			n and r	rint the	regult a	long wit	h tha in	nut matriv		
10.									put matrix. parameter passing		
10.	concept:	113 00 1010	p a C prog	gramito	periori	11 tile 10	nowing	tasks by	parameter passing		
	-	d a strino	from the	user							
	Print appropri	_			ne or no	ot palin	drome				
11a.	Write a C pro							ı librarv	function.		
		D to 1		5 01		-0 .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		y			

11b.	Write a program to enter a sentence and print total number of vowels.									
12.	Design a structure 'Complex' and write a C program to perform the following operations:									
	i.Reading a complex number.									
	ii.Addition of two complex numbers.									
	iii.Print the result									
13.	Create a structure called student with the following members student name, rollno, and a									
	structure with marks details in three tests. Write a C program to create N records and									
	a) Search on roll no and display all the records.									
	b) Average marks in each test.									
	c) Highest marks in each test									

Course	Course outcomes: On completion of the course, the student should have acquired the ability to							
CO1:	Understand and explore the fundamental computer concepts and basic programming							
	principles like data types, input/output functions, operators, programming constructs and user							
	defined functions.							
CO2:	Analyze and Develop algorithmic solutions to problems.							
CO3:	Implement and Demonstrate capabilities of writing 'C' programs in optimized, robust and							
	reusable code.							
CO4:	Apply appropriate concepts of data structures like arrays, structures implement programs for							
	various applications.							

Refere	Reference Books									
1	Programming in C, P. Dey, M. Ghosh, First Edition, 2007, Oxford University press, ISBN (13): 9780195687910.									
2	The C Programming Language, Kernighan B.W and Dennis M. Ritchie, Second Edition, 2005, Prentice Hall, ISBN (13): 9780131101630.									
3	H. Schildt, Turbo C: The Complete Reference, Mcgraw Hill Education, 4th Edition, 2000, ISBN-13: 9780070411838.									
4	Understanding Pointers in C, Yashavant P. Kanetkar, 4 th edition,2003, BPB publications,ISBN-13: 978-8176563581.									
5	C IN DEPTH, S.K Srivastava, Deepali Srivastava, 3 rd Edition,2013,BPB publication,ISBN9788183330480									

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	2	-	1	-	-	-	1	-	-	1	
CO2	3	3	3	2	2	-	-	-	1	-	-	1	
CO3	3	3	3	-	-	-	-	-	2	2	1	2	
CO4	3	3	3	-	-	-	1	-	2	2	1	2	

High-3: Medium-2: Low-1

Semester: IV PROFESSIONAL PRACTICE – I COMMUNICATION SKILLS (Common to all Programmes)							
Course Code		:	18HS49		CIE	:	50
Credits: L:T:P		:	0:0:1		SEE	:	50
Total Hours		:	18 hrs /Semester		SEE Duration	:	2 Hours
Course Learning Objectives: The students will be able to							
1	1 Understand their own communication style, the essentials of good communication and develop						
	their confidence to communicate effectively.						
2	Manage stress by applying stress management skills.						
3	Ability to give contribution to the planning and coordinate Team work.						
4	Ability to make problem solving decisions related to ethics.						

III Semester 6 Hrs

Communication Skills: Basics, Method, Means, Process and Purpose, Basics of Business Communication, Written & Oral Communication, Listening.

Communication with Confidence & Clarity- Interaction with people, the need the uses and the methods, Getting phonetically correct, using politically correct language, Debate & Extempore.

6 Hrs

Assertive Communication- Concept of Assertive communication, Importance and applicability of Assertive communication, Assertive Words, being assertive.

Presentation Skills- Discussing the basic concepts of presentation skills, Articulation Skills, IQ & GK, How to make effective presentations, body language & Dress code in presentation, media of presentation.

6 Hrs

Team Work-Team Work and its important elements Clarifying the advantages and challenges of team work Understanding bargains in team building Defining behaviour to sync with team work Stages of Team Building Features of successful teams.

IV Semester 6 Hrs

Body Language & Proxemics - Rapport Building - Gestures, postures, facial expression and body movements in different situations, Importance of Proxemics, Right personal space to maintain with different people.

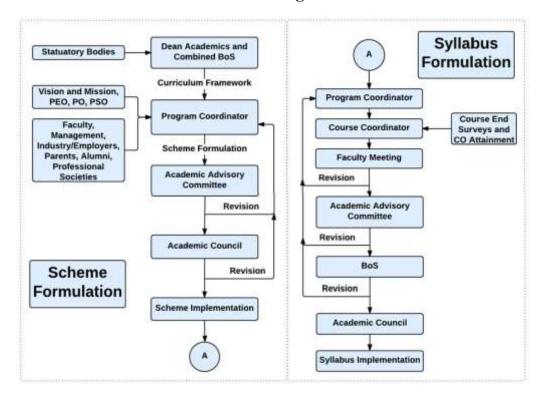
6Hrs

Motivation and Stress Management: Self-motivation, group motivation, leadership abilities, Stress clauses and stress busters to handle stress and de-stress; Understanding stress - Concept of sound body and mind, Dealing with anxiety, tension, and relaxation techniques. Individual Counselling& Guidance, Career Orientation. Balancing Personal & Professional Life-

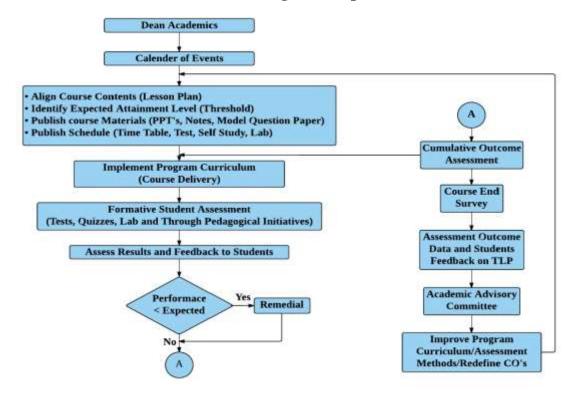
6 Hrs

Professional Practice - Professional Dress Code, Time Sense, Respecting People & their Space, Relevant Behaviour at different Hierarchical Levels. Positive Attitude, Self Analysis and Self-Management.

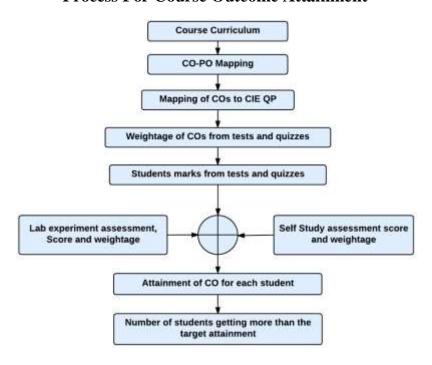
Professional Ethics - values to be practiced, standards and codes to be adopted as professional engineers in the society for various projects. Balancing Personal & Professional Life

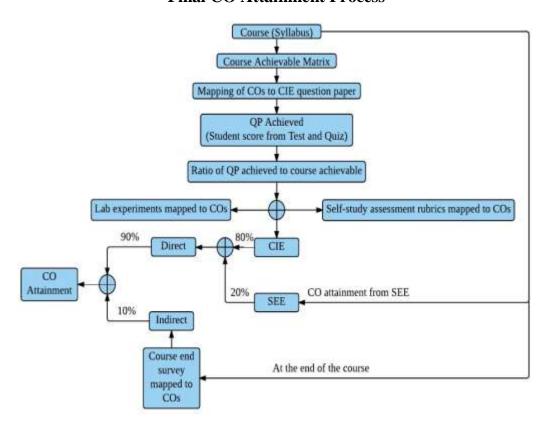

Course Outcomes: After completing the course, the students will be able to				
CO1:	Inculcate skills for life, such as problem solving, decision making, stress management			
CO2:	Develop leadership and interpersonal working skills and professional ethics.			
CO3:	Apply verbal communication skills with appropriate body language.			
CO4:	Develop their potential and become self-confident to acquire a high degree of self			

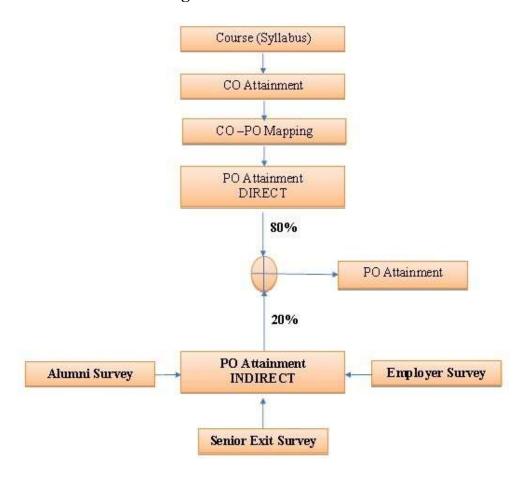
Reference Books		
1.	The 7 Habits of Highly Effective People, Stephen R Covey, Free Press, 2004 Edition, ISBN: 0743272455	
	0.1.00	
2.	How to win friends and influence people, Dale Carnegie, General Press, 1 st Edition, 2016, ISBN: 9789380914787	
3.	Crucial Conversation: Tools for Talking When Stakes are High, Kerry Patterson, Joseph Grenny,	
	Ron Mcmillan, McGraw-Hill Publication, 2012 Edition, ISBN: 9780071772204	
4.	Aptimithra: Best Aptitude Book, Ethnus, Tata McGraw Hill, 2014 Edition, ISBN: 9781259058738	


Scheme of Continuous Internal Examination and Semester End Examination:

Phase	Activity	Weightage
Phase I	CIE will be conducted during the 3 rd semester and evaluated for 50 marks.	50%
III Sem	The test will have two components. The Quiz is evaluated for 15 marks and	
	second component consisting of questions requiring descriptive answers is	
	evaluated for 35 marks. The test & quiz will assess the skills acquired	
	through the training module.	
	SEE is based on the test conducted at the end of the 3 rd semester The test	
	will have two components a Quiz evaluated for 15 marks and second	
	component consisting of questions requiring descriptive answers is	
	evaluated for 35 marks.	
Phase II	During the 4 th semester a test will be conducted and evaluated for 50 marks.	50%
IV Sem	The test will have two components a Short Quiz and Questions requiring	
	descriptive answers. The test & quiz will assess the skills acquired through	
	the training module.	
	SEE is based on the test conducted at the end of the 4 th semester The test	
	will have two components. The Quiz evaluated for 15 marks and second	
	component consisting of questions requiring descriptive answers is	
	evaluated for 35 marks	
Phase III	At the end of the IV Sem Marks of CIE (3 rd Sem and 4 th Sem) is consolidated	for 50 marks
At the	(Average of Test1 and Test 2 (CIE 1+CIE2)/2.	
end of IV	At the end of the IV Sem Marks of SEE (3 rd Sem and 4 th Sem) is consolidated	l for 50 marks
Sem	(Average of CIE 1 and CIE 2 (CIE 1+CIE2)/2.	


Curriculum Design Process


Academic Planning And Implementation


Process For Course Outcome Attainment

Final CO Attainment Process

Program Outcome Attainment Process

PROGRAM OUTCOMES (POs)

- 1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.
- 2. **Problem analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.
- 6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. **Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. **Life-long learning:** Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Innovative Clubs of RVCE

1	Ashwa Racing	Ashwa Mobility Foundation (AMF) is a student R&D platform that designs and fabricates Formula theme race cars and future mobility solutions to tackle urban transportation problems.
2	Astra Robites	Team involved in the design, fabrication and building application specific robots.
3	Coding Club	To facilitate students the skills, confidence, and opportunity to change their world using coding and help them become successful in GSoC, ACM-ICPC, and other recognized coding competitions.
4	Entrepreneurship Development Cell	E-Cell is a student run body that aims to promote entrepreneurship by conducting workshops, speaker sessions and discussions on business and its aspects. We possess a mentor board to help startups grow.
5	Frequency Club	Team aims at contributing in both software and hardware domains mainly focusing on Artificial Intelligence, Machine Learning and it's advances.
6	Garuda	Design and development of supermileage urban concept electric car. Indigenous development of E-mobility products.
7	Jatayu	Build a low cost Unmanned Aerial Vehicle capable of Autonomous Navigation, Obstacle Avoidance, Object Detection, Localization, Classification and Air Drop of a package of optimum weight.
8	Solar Car	Build a roadworthy solar electric vehicle in order to build a green and sustainable environment.
9	Team Antariksh	Team Antariksh is a Space Technology Student Club whose goal is to understand, disseminate and apply the engineering skills for innovation in the field of Space technology. designing Nano-Satellite payload for ISRO PS4 Orbital platform, RVSAT-1 along with developing experimental rockets of various altitude.
10	Team Chimera	Building a Formula Electric Car through Research and Development in E-Mobility. Electrifying Formula Racing.
11	Helios Racing	Team involved in design, manufacturing and testing of All-Terrain Vehicles and other supportive tasks for the functioning of the team. Participating in BAJA competitions organized by SAE in India and the USA.
12	Team Hydra	Developing autonomous underwater vehicles and use it for various real world applications such as water purification, solid waste detection and disposal etc.
13	Team Krushi	Develop low cost equipments, which help farmers in cultivating and harvesting the crops. Use new technology applications to reduce the labour time hand cost for farmers. Aims at developing implants for Tractors.
14	Team vyoma	Design, fabrication and testing of radio controlled aircrafts and research on various types of unmanned aerial vehicles.
15	Team Dhruva	Organizing activities like quizzes based on astronomy. Stargazing and telescope handling sessions. Construction of a standard observatory. working on small projects with organizations like ICTS, IIA, ARIES etc.
16	Ham club	To popularize Amateur Radio as a hobby among students, alongside exploring technical innovations in the communications domain. Intended to provide human capital for service to the nation at times of natural calamities.

NCC

NSS

"Not me but you"

"Education through

Community Service &

Community Service through education"

Cultural Activity Teams

- 1. AALAP (Music club)
- 2. DEBSOC (Debating society)
- 3. CARV (Dramatics club)
- 4. FOOTPRINTS (Dance club)
- 5. QUIZCORP (Quizzing society)
- 6. ROTARACT (Social welfare club)
- 7. RAAG (Youth club)
- 8. EVOKE (Fashion team)
- 9. f/6.3 (Photography club)
- 10. CARV ACCESS (Film-making club)

Leadership in Technical Education, Interdisciplinary Research & Innovation, with a Focus on sustainable and Inclusive Technologies.

MISSION

- To deliver outcome based Quality Education, emphasizing on experiential learning with state of the art infrastructure.
- To create a conducive environment for interdisciplinary research and innovation.
- To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- To focus on technologies that are sustainable and inclusive, benefitting all sections of the society.

