

RV COLLEGE OF ENGINEERING[®]

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Scheme and Syllabus of I & II Semesters (Autonomous System of 2018 Scheme)

Master of Technology (M.Tech) in COMMUNICATION SYSTEMS

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

INNER FRONT COVER PAGE

College Vision & Mission (To be included from our side)

RV COLLEGE OF ENGINEERING® (Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Scheme and Syllabus of I & II Semesters (Autonomous System of 2018 Scheme)

Master of Technology (M.Tech) in COMMUNICATION SYSTEMS

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Department Vision & Mission

VISION

Imparting quality technical education through interdisciplinary research, innovation and teamwork for developing inclusive & sustainable technology in the area of Electronics and Communication Engineering

MISSION

- To impart quality technical education to produce industry-ready engineers with a research outlook.
- To train the Electronics & Communication Engineering graduates to meet future global challenges by inculcating a quest for modern technologies in the emerging areas.
- To create centers of excellence in the field of Electronics & Communication Engineering with industrial and university collaborations.
- To develop entrepreneurial skills among the graduates to create new employment opportunities

ABBREVIATIONS

Sl. No.	Abbreviation	Meaning
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	SEE	Semester End Examination
5.	CE	Professional Core Elective
6.	GE	Global Elective
7.	HSS	Humanities and Social Sciences
8.	CV	Civil Engineering
9.	ME	Mechanical Engineering
10.	EE	Electrical & Electronics Engineering
11.	EC	Electronics & Communication Engineering
12.	IM	Industrial Engineering & Management
13.	EI	Electronics & Instrumentation Engineering
14.	СН	Chemical Engineering
15.	CS	Computer Science & Engineering
16.	TE	Telecommunication Engineering
17.	IS	Information Science & Engineering
18.	BT	Biotechnology
19.	AS	Aerospace Engineering
20.	PHY	Physics
21.	CHY	Chemistry
22.	MAT	Mathematics

INDEX

I Semester					
Sl. No.	Course Code	Course Title	Page No.		
1.	18 MAT11B	Probability Theory & Linear Algebra	9		
2.	18MCS12	Advanced Communications Systems -1	11		
3.	18MCS13	Advanced Communication Networks & Protocols	13		
4.	18HSS14	Professional Skill Development	15		
5.	18MCS1AX	Elective – A	17 - 22		
6.	18MCS1BX	Elective – B	23 - 28		
	GROUP A: CORE ELECTIVES				
1.	18MCS1A1	Advanced Embedded Systems	17		
2.	18MCS1A2	Advanced Digital Signal Processing	19		
3.	18MCS1A3	RF and Microwave Circuits	21		
	GROUP B: CORE ELECTIVES				
1.	18MVE1B1	MEMS and Smart Systems	23		
2.	18MCS1B2	Digital Image Processing	25		
3.	18MCS1B3	Cryptography and Network Security	27		

II Semester				
Sl. No.	Course Code	Course Title	Page No.	
1.	18MCS21	Advanced Communications Systems -2	29	
2.	18MCS22	Error Control and Coding	31	
3.	18IM23	Research Methodology	33	
4.	18MCS24	Minor Project	35	
5.	18MCS2CX	Elective – C	36 - 41	
6.	18MCS2DX	Elective – D	42 - 47	
7.	18XX2GX	Global Elective	48 - 67	
		GROUP C: CORE ELECTIVES		
1.	18MCS2C1	Antenna Theory	36	
2.	18MCS2C2	Machine Learning	38	
3.	18MCS2C3	Optical Communication Networks	40	
GROUP D: CORE ELECTIVES				
1.	18MCS2D1	Wireless Sensor Networks and IOT	42	
2.	18MCE2D2	Deep Learning	44	
3.	18MVE2D3	VLSI Digital Signal Processing Systems	46	
		GROUP G: GLOBAL ELECTIVES		
1.	18CS2G01	Business Analytics	48	
2.	18CV2G02	Industrial & Occupational Health and Safety	50	
3.	18IM2G03	Modeling using Linear Programming	52	
4.	18IM2G04	Project Management	54	
5.	18CH2G05	Energy Management	56	
6.	18ME2G06	Industry 4.0	58	
7.	18ME2G07	Advanced Materials	60	
8.	18CHY2G08	Composite Materials Science and Engineering	62	
9.	18PHY2G09	Physics of Materials	64	
10.	18MAT2G10	Advanced Statistical Methods	66	

R V COLLEGE OF ENGINEERNG, BENGALURU-560 059 (Autonomous Institution Affiliated to VTU, Belagavi) DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING M.Tech in COMMUNICATION SYSTEMS

	FIRST SEMESTER CREDIT SCHEME						
SI.	~ ~ .			Credit Allocation			
No.	Course Code	Course Title	BoS	L	Т	Р	Total Credits
1	18 MAT11B	Probability Theory & Linear Algebra	MAT	4	0	0	4
2	18MCS12	Advanced Communications Systems -1	EC	3	1	1	5
3	18MCS13	Advanced Communication Networks & Protocols	EC	3	1	1	5
4	18HSS14	Professional Skill Development	HSS	0	0	0	0
5	18MCS1AX	Elective – A	EC	4	0	0	4
6	18MCS1BX	Elective – B	EC	4	0	0	4
	Total number of Credits			18	2	2	22
	Total Number of Hours / Week				4	6	28

		SECOND SEME	STER CRED	IT SCHEN	ME			
SL	Course Code	Course Title		Credit Allocation				
No.			BoS	L	Т	Р	Total Credits	
1	18MCS21	Advanced Communications Systems -2	EC	3	1	1	5	
2	18MCS22	Error Control and Coding	EC	3	1	0	4	
3	18IM23	Research Methodology	IM	3	0	0	3	
4	18MCS24	Minor Project	EC	0	0	2	2	
5	18MCS2CX	Elective – C	EC	4	0	0	4	
6	18MCS2DX	Elective – D	EC	4	0	0	4	
7	18XX2GX	Global Elective	Respectiv e boards	3	0	0	3	
	Total number of Credits			20	2	3	25	
	Total Number of Hours / Week				4	9	33	

I Semester				
		GROUP A: CORE ELECTIVES		
Sl. No.	Course Code	Course Title		
1.	18MCS1A1	Advanced Embedded Systems		
2.	18MCS1A2	Advanced Digital Signal Processing		
3.	18MCS1A3	RF and Microwave Circuits		
	GROUP B: CORE ELECTIVES			
1.	18MVE1B1	MEMS and Smart Systems		
2.	18MCS1B2	Digital Image Processing		
3.	18MCS1B3	Cryptography and Network Security		
		II Semester		
		GROUP C: CORE ELECTIVES		
1.	18MCS2C1	Antenna Theory		
2.	18MCS2C2	Machine Learning		
3.	18MCS2C3	Optical Communication Networks		
	GROUP D: CORE ELECTIVES			
1.	18MCS2D1	Wireless Sensor Networks and IOT		
2.	18MCE2D2	Deep Learning		
3.	18MVE2D3	VLSI Digital Signal Processing Systems		

	GROUP E: GLOBAL ELECTIVES				
Sl. No.	Host Dept	Course Code	Course Title	Credits	
1.	CS	18CS2G01	Business Analytics	3	
2.	CV	18CV2G02	Industrial & Occupational Health and Safety	3	
3.	IM	18IM2G03	Modelling using Linear Programming	3	
4.	IM	18IM2G04	Project Management	3	
5.	СН	18CH2G05	Energy Management	3	
6.	ME	18ME2G06	Industry 4.0	3	
7.	ME	18ME2G07	Advanced Materials	3	
8.	CHY	18CHY2G08	Composite Materials Science and Engineering	3	
9.	PHY	18PHY2G09	Physics of Materials	3	
10.	MAT	18MAT2G10	Advanced Statistical Methods	3	

			Semester I			
		PROBABILITY TH	HEORY & LINEA	AR ALGEBRA		
Course Code	•	(Common to MCN, MC	CS, MDC, MCE,	MRM, MIT, MSE)	•	100
Cradits	•	10MA111D 4.0.0		SEE Morks	•	100
	•	4:0:0	r		·	100
Hrs	:	48L		SEE Duration	:	3 Hrs
		Uı	nit – I			9 Hrs
Matrices and V	<i>'ect</i>	or spaces :				
Geometry of sy	ster	n of linear equations, vec	ctor spaces and su	bspaces, linear indep	ende	ence, basis and
dimension, four	fun	damental subspaces, Rank-	Nullity theorem (w	ithout proof), linear tra	nsfo	ormations.
		Un	uit — II			9 Hrs
Orthogonality a	nd	Projections of vectors:				
Orthogonal Vect	ors	and subspaces, projection	ns and least square	es, orthogonal bases a	nd	Gram- Schmidt
orthogonalization	n, C	Computation of Eigen value	es and Eigen vector	rs, diagonalization of t	he r	natrix, Singular
Value Decompos	sitic	on.				10 11
Dandam Variak	log	Un:	1 t – 111			10 Hrs
Definition of r	nes	: om variables continuous	and discrete ran	dom variables. Cum	ulati	ve distribution
Function, probab	oilit	v density and mass function	ons, properties, E	xpectation. Moments	. Ce	entral moments.
Characteristic fu	ncti	ions.	o, properties, 2	, ········, ··········	,	
		Un	it – IV			10 Hrs
Discrete and Co	nti	nuous Distributions:				
Binomial, Poisso	n, l	Exponential, Gaussian distr	ibutions.			
Multiple Rando	י m סכ	variables:		11		1.0
Joint PMFs and functions Transf	PL	ors, Marginal density lunc	Central limit theor	ependence, Correlau	on a	and Covariance
	011	nation of random variables,		(statement only).		
		Un	$\mathbf{u}\mathbf{t} - \mathbf{V}$			9 Hrs
Random Proces	ses	:				
Introduction, Cla	ssit	fication of Random Process	es, Stationary and	Independence, Auto c	orre	lation function
and properties, C	ros in N	s correlation, Cross covaria	ince functions. Mar	kov processes, Calcula	ating	g transition and
Expected Cours	n r e C	Jutcomes:				
After completion	After completion of the course, the students should have acquired the ability to:					
CO1: Demonstra	ate	the understanding of fundat	mentals of matrix t	theory, probability the	ory	
and rando	m p	process.				
CO2: Analyze a	nd	solve problems on matrix a	analysis, probability	y distributions and mul	tiple	2
Random v	ari	ables.	f	· · · · · 1'		
verify Rat	pr vk -	Nullity theorem and mome	runction, rank, dia	igonalization of matrix	.,	
CO4: Estimate (n - Drth	ogonality of vector spaces	Cumulative distr	ibution function and		
Characteristic function. Recognize problems which involve these concepts in						
Engineeri	ng a	applications.		L.		
Reference Book	s:					
1. Probability	, S	tatistics and Random Pro	ocesses, T. Veera	rajan, 3 rd Edition, 20	08,	Tata McGraw
Hill Educa	tio	n Private Limited, ISBN:	978-0-07-066925	5-3.		
2. Probability	/ ar	nd Random Processes Wi	th Applications to	o Signal Processing a	ınd	
Communio	cati	ons, Scott. L. Miller and	Donald. G. Child	ders, 2 nd Edition, 201	2, 1	Elsevier
Academic	Pre	ess, ISBN 978012172651	5.			

3.	Linear Algebra and its Applications, Gilbert Strang, 4 th Edition, 2006, Cengage Learning, ISBN 97809802327.
4.	Schaum's Outline of Linear Algebra, Seymour Lipschutz and Marc Lipson, 5th Edition,
	2012, McGraw Hill Education, ISBN-9780071794565.

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. Total CIE is 20+50+30=100 Marks.

Semester End Evaluation (SEE): Total marks: 100

Scheme of Semester End Examination (SEE) for 100 marks:

Semester I						
		ADVANCED COM	IMUNICATIONS	SYSTEMS -1		
Course Code	:	18MCS12		CIE Marks	:	100+50
Credits	:	3:1:1	<u> </u>	SEE Marks	:	100+50
Hrs	:	48L +36P		SEE Duration	:	3 Hrs
		Uı	nit — I			10 Hrs
Signal Represent bandpass random Modulation: Mo MPSK, MQAM, memory (Basics of	ntat pro odu and of C	tion – Low pass represe occess. Multiplexing and De lation Schemes without of d Power Limited Schemes CPFSK and CPM – Full Tre	ntation of bandpa e-multiplexing of Si memory (Band Li – FSK, MFSK, DI eatment of MSK), 7	ss signals, Low pass ignals. mited Schemes - PA PSK, DQPSK), modul Fransmit PSD for Mod	M, atio ulat	presentation of BPSK, QPSK, n schemes with ion Schemes.
		Un	it — II			10 Hrs
Demodulation - Vector Channel, Vector Channel +AWGN, Performance parameters, Optimum Coherent Detection for power limited and Bandlimited schemes, Optimal Coherent detection for schemes with memory, Optimal Non – Coherent detection for schemes without and with memory (FSK, DPSK, DQPSK), Comparison of detection schemes						
		Uni	it – III			10 Hrs
channels, Sinc, RC, Duobinary and Modified Duobinary signaling schemes, Optimum receiver for channel with ISI and AWGN. Linear Equalizers: Zero forcing Equalizer, MSE and MMSE, Baseband and Passband Linear Equalizers. Performance of ZFE and MSE. Unit – IV 9 Hrs Non-Linear Equalizers: Decision - feedback equalization, Predictive DFE, Performance of DFE. Adaptive equalization: Adaptive linear equalizer, adaptive decision feedback equalizer, Adaptive Fractionally spaced Equalizer (Tap Leakage Algorithm), Adaptive equalization of Trellis - coded signals.						
Crowso d' arr a structure		Ull angle for digital commun	ut – v ization. Madal of a			9 HIS
Spread spectrum signals for digital communication : Model of spread spectrum digital communication system, Direct sequence spread spectrum signals, Frequency hopped spread spectrum signals, CDMA, Time hopping SS, Synchronization of SS systems.						
Expected Course Outcomes: After going through this course the student will be able to: CO1:Explain the concept of low pass and Bandpass signals representations at the Transmitter, the process of Detection and Estimation at the receiver in the presence of AWGN only. CO2: Evaluate Receiver performance for various types of single carrier symbol modulations through ideal and AWGN Non-band limited and band limited channels. CO3: Design single carrier equalizers for various symbol modulation schemes and detection methods for defined channel models, and compute parameters to meet desired rate and performance requirements. CO4: Design and Evaluate Non band limited and Non power limited spread spectrum systems for communications in a Jamming environment, multiuser situation and low power intercept environment. LAB EXPERIMENTS						
 Generation and Pulse Amplitudi ASK Modulati Binary Phase S Frequency Shift OPSK Modulati 	l stu de N on a Shif t Ka ion	udy the properties of Line of Modulation and Demodulat and Demodulation t Keying Modulation and I eying Generation and detect and Demodulation	codes. ion. Demodulation tion			

- 7. QAM Modulation and Demodulation
- 8. Minimum Shift Keying Modulation
- 9. Generation of PN Sequence and Gold sequence
- 10. Design of Linear Equalizers
- 11. Simulation of direct sequence Spread Spectrum and Frequency Hopped Spread Spectrum

Ref	erence Books
1.	John G. Proakis, MasoudSalehi, "Digital Communications ",5e,Pearson Education(2014), ISBN:978-
	9332535893
2.	Bernard Sklar,"Digital Communications: Fundamentals and Applications: Fundamentals
	&Applications",2e,Pearson Education(2009),ISBN:978-8131720929
3.	Simon Haykin ,"Digital Communications Systems",1e,Wiley(2014),ISBN:978-8126542314

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. Total CIE is 20+50+30=100 Marks.

Scheme of Continuous Internal Evaluation (CIE) for Practicals: (50 Marks)

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150 Theory (100 Marks) + Practical (50 Marks) = Total Marks (150)

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Scheme of Semester End Examination (SEE); Practical (50 Marks)

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester I						
	ADVANCED COMMUNICATION NETWORKS & PROTOCOL (Theory and Practice)					
Course Code	:	18MCS13		CIE Marks	:	100+50
Credits	:	3:1:1		SEE Marks	:	100+50
Hrs	:	48L +36P		SEE Duration	:	3 Hrs
		Uı	nit – I	I		10 Hrs
Foundation: B Resource shari Bandwidth and Reliable Transm	uildi ng, Lat issio	ing a Network, Requireme Support for Common S ency, Delay X Bandwidt on, Stop-and-Wait, Sliding	ents, Perspectives, Services, Managea h Product, Perspec g Window, Concurr	Scalable Connectivi bility, Protocol layo ctives on Connecting ent Logical Channels	ty, - ering g, Cl	Cost Effective , Performance, asses of Links,
		Un	nit – II			10 Hrs
Internetworkin Bridges and LA Addresses, Data Host Configurat	g I: N S Igrai ion(: Switching and Bridging witches, Basic Internetwor m Forwarding in IP, Subn DHCP), Error Reporting(IC	, Datagram's, Vir king (IP), What is etting and classless CMP), Virtual Netv	tual Circuit Switchir an Internetwork?, Se s addressing, Address vorks and Tunnels	ng, S rvice s Tra	ource Routing, Model, Global anslation (ARP)
		Un	it – III			10 Hrs
Internetworking- II: Network as a Graph, Distance Vector(RIP), Link State(OSPF), Metrics, The Global Internet, Routing Areas, Routing among Autonomous systems(BGP), IP Version 6(IPv6), Mobility and Mobile IP Unit – IV 9 Hrs End-to-End Protocols: Simple Demultiplexer (UDP), Reliable Byte Stream(TCP), End-to-End Issues, Segment Format, Connecting Establishment and Termination, Sliding Window Revisited, Triggering Transmission, Adaptive Retransmission, Record Boundaries, TCP Extensions, Queuing Disciplines, FIFO, Eair Queuing, TCP, Congestion Control, Additive Increase/ Multiplicative Decrease, Slow Start, East						
Retransmit and	Fast	Recovery	.:4 17			0 IIma
Commention Com			$\frac{\mathbf{u}\mathbf{t} - \mathbf{v}}{\mathbf{v}}$	1		9 Hrs
Congestion Control and Resource Allocation: Congestion-Avoidance Mechanisms, DEC bit, Random Early Detection (RED), Source-Based Congestion Avoidance. The Domain Name System(DNS),Electronic Mail(SMTP,POP,IMAP,MIME),World Wide Web(HTTP),Network Management(SNMP)						
CO1 ·Explain th	se U e ne	vulcomes: erformance of various multi	nle access protocol	S		
CO2: Design the	e net	twork protocol for given sp	ecifications of appl	ications.		
CO3: Design &	dev	elop the scheduling algorith	nms for various per	formance metrics.		
CO4: Develop v	ario	us network traffic manager	ment and control teo	chniques for given spe	ecific	cation
		LAB	EXPERIMENTS			
Part –I: Experi 1. Bit stuffing & 2. Cyclic Redun 3. Implement lea 4. Minimum spa	mer cha dano aky l nnii	nts Using C/C++ program aracter stuffing. cy check. bucket congestion control ang tree.	ming. llgorithm			
Part-II: The fo 5. Cable a netwo tracer by using p 6. Configuring V 7 Configuring	 4. Minimum spanning tree. Part-II: The following experiments are to be conducted using CISCO Packet Tracer 5. Cable a network according to the given network topology and test and verify configurations using packet tracer by using ping commands. 6. Configuring Wireless LAN Access and test and verify configurations using packet tracer. 7. Configuring Traditional Inter-VLAN Routing and test and verify configurations using packet tracer. 					

Par	t-III: Experiments that may be carried out using QUALNET						
8. S	8. Study the performance of CSMA/CA protocols.						
9.St	udy the performance of network with CSMA/CA protocol and compare CSMA/CD protocols.						
Ref	erence Books						
1.	Larry Peterson and Bruce S Davis "Computer Networks : A System Approach" 5 th Edition,						
	Elsevier -2014						
2.	Douglas E Comer, "Internetworking with TCP/IP, Principles, Protocols and Architecture" 6th						
	Edition, PHI - 2014						
3.	Uyless Black "Computer Networks, Protocols, Standards and Interfaces" 2nd Edition – PHI						
4.	Behrouz A Forouzan "TCP /IP Protocol Suite" 4 th Edition – Tata McGraw-Hill						

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. Total CIE is 20+50+30=100 Marks.

Scheme of Continuous Internal Evaluation (CIE) for Practicals: (50 Marks)

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150 Theory (100 Marks) + Practical (50 Marks) = Total Marks (150)

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Scheme of Semester End Examination (SEE); Practical (50 Marks)

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

		Semester I			
		Professional Skill Development			
Course Code:	18HSS14	CIE Marks: 50	E Marks: 50		
Credits: L: T:P	3:0:0	SEE Marks: Audit (SEE Marks: Audit Course		
Hours: 18L		CIE Duration: 02 H	rs		
	•				
Communication S	kills: Basics	of Communication, Personal Skills & Presentation Skills -	03 Hrs		
Introduction, Appl	ication, Simu	lation, Attitudinal Development, Self Confidence, SWOC			
analysis.					
Resume Writing:	Understandin	g the basic essentials for a resume, Resume writing tips			
Guidelines for bett	er presentatio	n of facts. Theory and Applications.			
Quantitative Apti	tude and Da	ita Analysis: Number Systems, Math Vocabulary, fraction	08 Hrs		
decimals, digit pl	aces etc. Sin	nple equations – Linear equations, Elimination Method,			
Substitution Metho	a, inequalitie	8.			
h Non-Verbal real	oning - Visu	al Sequence. Visual analogy and classification			
Analytical Reasoni	ng - Single &	Multiple comparisons. Linear Sequencing			
Logical Aptitude	- Syllogisi	m Venn-diagram method Three statement syllogism			
Deductive and in	ductive reas	soning. Introduction to puzzle and games organizing			
information, parts	of an argume	nt, common flaws, arguments and assumptions.			
Verbal Analogies/	Verbal Analogies/Aptitude – introduction to different question types – analogies. Grammar				
review, sentence	completions,	, sentence corrections, antonyms/synonyms, vocabulary			
building etc. Readi	ng Comprehe	ension, Problem Solving,			
Interview Skills: (Questions ask	ed & how to handle them, Body language in interview, and	03 Hrs		
Etiquette – Conve	rsational and	Professional, Dress code in interview, Professional attire			
and Grooming, Be	havioral and	technical interviews, Mock interviews - Mock interviews			
with different Pane	els. Practice o	on Stress Interviews, Technical Interviews, and General HR			
interviews					
	1.54				
Interpersonal a	nd Manage	rial Skills: Optimal co-existence, cultural sensitivity,	02 Hrs		
gender sensitivit	y; capability	y and maturity model, decision making ability and			
analysis for brai	n storming;	Group discussion (Assertiveness) and presentation			
skills;					
Matimation 0.10		num motivation Debouring Menser (Institution 1)	02 11		
motivational space	houvation, gr	oup mouvation, Benavioral Management, Inspirational and	02 Hrs		
I endershin Skiller	Fithics and L	ntegrity Goal Setting leadership ability			
Note: The respecti	ve department	ats should discuss case studies and standards pertaining to			
rote. The respect	ve uepartitie	ins should discuss case studies and standards pertaining to			

their domain

	Course Outcomes: After completing the course, the students will be able to					
CO1:	Develop professional skill to suit the industry requirement.					
CO2:	Analyze problems using quantitative and reasoning skills					
CO3:	Develop leadership and interpersonal working skills.					
CO4:	Demonstrate verbal communication skills with appropriate body language.					

Refe	erence Books
1.	The 7 Habits of Highly Effective People, Stephen R Covey Free Press, 2004 Edition, ISBN:
	0743272455
2.	How to win friends and influence people, Dale Carnegie General Press, 1st Edition, 2016, ISBN:
	9789380914787
3.	Crucial Conversation: Tools for Talking When Stakes are High, Kerry Patterson, Joseph Grenny,
	Ron Mcmillan 2012 Edition, McGraw-Hill Publication ISBN: 9780071772204
4.	Ethnus, Aptimithra: Best Aptitude Book ,2014 Edition, Tata McGraw Hill ISBN:
	9781259058738

Evaluation of CIE will be carried out in TWO Phases.

Phase	Activity
Ι	After 9 hours of training program, students are required to undergo a test set for a total of 50 marks. The structure of the test will have two parts. Part A will be quiz based evaluated for 15 marks and Part B will be of descriptive type, set for 50 Marks and reduced to 35 marks. The total marks for this phase will be 50 ($15 + 35$).
п	Similarly students will have to take up another test after the completion 18 hours of training. The structure of the test will have two parts. Part A will be quiz based evaluated for 15 marks and Part B will be of descriptive type, set for 50 Marks and reduced to 35 marks. The total marks for this phase will be $50 (15 + 35)$.
	FINAL CIE COMPUTATION
Continuo	bus Internal Evaluation for this course will be based on the average of the score attained through
the two t must be g	ests. The CIE score in this course, which is a mandatory requirement for the award of degree, greater than 50%. Needless to say the attendance requirement will be the same as in any other

			Semester I				
ADVANCED EMBEDDED SYSTEM DESIGN (Group A : Core Elective)							
Course Code	:	18MCS1A1		CIE Marks	:	100	
Credits	:	4:0:0		SEE Marks	:	100	
Hrs	:	48L		SEE Duration	:	3 Hrs	
		Ur	nit — I				10 Hrs
Introduction to Embedded System Design Introduction, Characteristics of Embedding Computing Applications, Concept of Real time Systems, Challenges in Embedded System Design, Design Process: Requirements, Specifications, Hardware Software Partitioning, Architecture Design, Designing of Components, System Integration Embedded System Architecture							
caches, Virtual M I/O, Co-Processo Execution, Mult MMACS, Corem	Mer or & i C ark	nory, Memory Manageme Hardware Accelerators, P Fore CPUs, CPU Power (nt, I/O sub sys rocessor perfor Consumption, I	stem: Busy wait I/O mance Enhancement Benchmarking Stand	,DN : Pi lard	A, Interruj pelining, Su ls: MIPS, M	ot Driven perscalar IFLOPS,
		Un	it – II				10 Hrs
Designing Embe CPU Bus: Bus EEPROM, Flash Controllers, DM	edd Pro n M A C	ed System Hardware –I tocols, Bus Organisation, Iemory, DRAM; I/O Dev controllers, A/D and D/A C	Memory Devi vices: Timers a onverters, Disp	ces and their Chara and Counters, Watc lays, Keyboards, Infr	cte hdc are	ristics: og Timers, d devices	RAM, Interrupt,
		Uni	it – III				9 Hrs
Designing Embedded System Hardware –II Component Interfacing: Memory interfacing with case study; I/O Device Interfacing with case Study: Programmed IO, Memory Mapped IO, Interfacing Protocols: SPI, I2C, CAN, USB, Reset Circuits, Designing with Processors: System Architecture, FPGA based Design, Processor Selection Criteria Unit – IV 9 Hrs Designing Embedded System Software –I							
Integrated Development Debugger, Board Energy & Power, Standards: MISR	opn Su Pr A (nent Environment tools: Ed pport Library, Chip Suppor ogram Size; Program Valid C 2012/CERT, Standards ir	itor, Compiler, rt Library, Anal lation & Verific Automobiles,	Linker, Automatic C ysis and Optimizatio ation, Embedded Sys Aerospace &Biomed	ode n: E ster ical	e Generators Execution Ti n Coding I Application	, me, ns.
		Un	uit – V	•		11	10 Hrs
Designing Embedded System Software –II OS based Design, Real Time Kernel, Process& Thread, Inter Process Communications, Synchronization, Case Study: RTX-ARM, Evaluating and Optimising Operating System Performance: Response time Calculation, Interrupt Latency, Time Loading, Memory Loading, Case Study: Embedded Control Applications-Software Coding of a PID Controller, PID Tuning, IoT based Resource Monitoring Expected Course Outcomes:							
After going throu	ıgh	this course the student will	be able to:				
CO1: Descri processor arc CO2: Design engineering t CO3: Demon engineering p CO4: Design through assi	 After going through this course the student will be able to: CO1: Describe hardware & software of an embedded systems for real time applications with suitable processor architecture, memory and communication interface. CO2: Design embedded software & hardware to meet given constraints with the help of modern engineering tools. CO3: Demonstrate compliance of prescribed safety norms through implementation of the identified engineering problems pertaining to automobiles, aerospace & biomedical applications. CO4: Design, implement and demonstrate open ended problem to access their capabilities 						

Ref	erence Books:
1.	James K Peckol, "Embedded Systems – A contemporary Design Tool", John Weily, 2008, ISBN: 0-444-51616-6
2.	Shibu K V, "Introduction to Embedded Systems", Tata McGraw Hill Education Private Limited, 2009, ISBN: 10: 0070678790
3.	David E.Simon, "Embedded Software Primer", Addison Wesley, ISBN-13: 978-0201615692
4.	Barry B.Brey, "The Intel Micro-processors, Architecture, Programming and Interfacing", 6 th Edition, Pearson Education.
5.	Steve Heath, "Embedded System Design", Elsevier, 2 nd Edition, 2004.
6.	Reference Manuals: RTX-ARM, MISRA C 2012, CERT, IS26262, DO-178B, IEC 62304

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. Total CIE is 20+50+30=100 Marks.

Semester End Evaluation (SEE): Total marks: 100

Scheme of Semester End Examination (SEE) for 100 marks:

			Semester I			
	ADVANCED DIGITAL SIGNAL PROCESSING					
Course Code	:	18MCS1A2		CIE Marks	:	100
Credits	:	4:0:0		SEE Marks	:	100
Hrs	:	48L		SEE Duration	:	3 Hrs
		Un	it – I			10 Hrs
Review of Digita Allpass Filters, II	d F i R Fi	Iters Introduction, Filter I Iters Based on two Allpass	Design specificatio Filters.	ns, FIR Filter Design	, IIF	R Filter Design,
		Uni	it – II			10 Hrs
Fundamentals of Sampling Rate C Polyphase Filter S	f M Conv Strue	ultirate Systems Introduc ersion by a Rational Fact ctures, Interchange of Filte	tion, Decimation b tor I/D. Implemen rs and down sampl	by a factor D, Interpol ntation of Sampling ers/Up samplers.	atio Rat	n by a factor I, te Conversion:
		Uni	t – III			10 Hrs
Implementation Comb Filters, Po Sampling Rate C Conversion, Samp	of olypl Conv pling	Sampling Rate Conversionase Structures for Decimi Version.Multistage Implei g Rate Conversion by an A Uni	sionSampling Rate ation and Interpol mentation of Sam <u>rbitrary Factor, Dig</u> t – IV	e Conversion with C ation filters and Stru pling Rate Conversion gital Filter Banks.	ctur on,	aded Integrator es for Rational Sampling Rate 9 Hrs
Two Channel	Qua	drature Mirror Filter	Bank Eliminatio	on of Aliasing, Con	ditio	on for perfect
Reconstruction, F	oly	phase form of the QMF B	ank, IIR QMF Bar	nk, Perfect Reconstru	ctio	n Two-Channel
FIR QMF Banks	in S	ub band Coding, M-channe	el QMF Bank			0.11
Th - W1-4 T	f		lt – V	-l Indue de die en The	-1	9 Hrs
transform, The w	vave	let transform, Discrete-Ti	me orthonormal w	vavelets, Continuous-	Tin	ne orthonormal
Expected Course Outcomes: After going through this course the student will be able to: CO1: Design & analyze the practical aspects of sampling and reconstruction and select a suitable sampling rate for a given signal processing problem.						
CO2: Design & development of tree-structured maximally decimated filter bank through the concept of discrete-time wavelets. CO3: Design and analyze multi-rate filters for a given specification.						
Reference Books:						
1. Proakis, an 013187374	d M 1, 9	anolakis, "Digital signal p 780131873742	rocessing", 3rd edit	tion, Prentice Hall, 19	96.]	ISBN
2. Robert. O.	Cri	sti, "Modern Digital signal	processing", Ceng	gage Publishers, India,	200	3. ISBN:978-
3. Vaidyanat 7758-942-3	<u>8, 1</u> han, 3S.	P.P., "Multirate Systems a	nd Filter Banks", F	Pearson Publication 20	06,	ISBN: 81-
4. K. Mitra, " 2007.ISBN	Dig 978	ital signal processing: A co 80070667563	omputer based appr	oach", 3rd edition, TM	1H,	India,

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt

innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. Total CIE is 20+50+30=100 Marks.

Semester End Evaluation (SEE): Total marks: 100 Scheme of Semester End Examination (SEE) for 100 marks:

			Semester I			
		RF AND MI	CROWAVE CIR	CUITS		
Course Code	•	(Grou) 18MCS1A3	DA: Core Electivo	e) CIF Marks	•	100
Credits	•	4:0:0		SEE Marks	•	100
Hrs	•	481		SFF Duration	•	3 Hrs
1115	•	HOL	nit — I	SEE Duration	•	10 Hrs
Introduction	Pag	sons for using PE/ Microw	aves Applications	PE and Microwaya (Circuit Design
RF Electronics	s Co	Solis for using R1 wherewa	Components basic	s Analysis of a Sin	nnle	Circuit Phasor
Domain, RF Im	peda	ance Matching	components cusie	i, i maryons of a on	ipie	
		Un	it – II			10 Hrs
Fundamentals	of V	Vave Propagation: Propert	ies of Waves, Tran	smission Media		I
Circuit Repres	enta	tions of Two-Port RF/MV	V Networks - Low	-Frequency Paramete	rs, H	ligh-Frequency
parameters, For	mula	ation of S-parameters, Prop	erties, Transmission	n Matrix, Generalized	S-pa	arameters,
Signal Flow Gra	aphs	Tin	4 TTT			10 II.
D · · · · ·	1.					10 HIS
Passive circuit	desi hing	gn: Introduction, Smith cha	art and Applications	s a Matchina usina lun	mad	and distributed
elements	111115			g, Matching using full	ipeu	and distributed
		TT	· · · · · · · · · · · · · · · · · · ·			0.11
Dogio congidore	4	Uni . in active naturalize Stabi	II – IV	in Asting Matricella	.	9 Hrs
in Amplifiers N	Joise	Considerations in Active N	Setworks	in Active Networks,	Jain	Considerations
m / mpinters, r	10150		letworks			
		Un	it – V			9 Hrs
Active Networ	ks:	Linear and Non-Linear	Design: Introduct	ion, Types of Ampli	ifiers	s, Small Signal
Amplifiers, Des	ign	of different types of Amplif	iers			
Oscillators: Int	trod	uction, Oscillator vs Ampl	ifier Design, Osci	llation Conditions, D	esig	n of Transistor
Oscillators		Jutaamagi				
After going three	se C	this course the student will	be able to:			
1. Describe RF Circuits, impedance matching & working of small & large signal microwave amplifier						
2. Calculate th	e R	F circuits parameters like S	-Parameter, SNR a	and VSWR and imped	ance	e transformation
and also imp	peda	nce matching				
3. Analyze the	3. Analyze the performance of RF Circuits in terms of Gain, Stability and Noise					
4. Design vari	ous	active and passive networks	s with linear and no	n-linear design consid	lerat	ions
Reference Bool	KS:					
1. Matthew N	И. R	admanesh, "RF and Microv	wave Electronics II	lustrated", Pearson Ed	luca	tion 1 st edition,
2004.		via and Daval Drotahles "D	E airauit dasian tha	ony and annliastic	Dat	mon Education
2. Reinfold I edition 20	_uav 04	vig, and Pavel Breichko, "K	r circuit design the	ory and applications	, rea	arson Education
3 Inder Bahl	and	Prakash Bhartia. "Microwa	ave Solid State Cir	cuit Design". Wilev I	ndia	edition. Second
edition.				,		, 200014
4. Ali A. Be	hagi	i, "RF and Microwave Cir	rcuit Design: A D	esign Approach Usir	ng (A	ADS)", Techno
Search Pul	blish	ers, 2015.			<u> </u>	

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt

innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. Total CIE is 20+50+30=100 Marks.

Semester End Evaluation (SEE): Total marks: 100 Scheme of Semester End Examination (SEE) for 100 marks:

			Semester I			
	MEMS AND SMART SYSTEMS					
		Grou	p B : Core Elective	9		
		(Comm	on to VLSI and C	S)		100
Course Code	:	18MVEIBI		CIE Marks	•	100
Credits	:	4:0:0		SEE Marks	:	100
Hrs	:	48L		SEE Duration	:	3 Hrs
		Uı	nit – I			10 Hrs
Introduction to	MF	EMS and principle of oper	ration.			
Introduction, His	tor	y of evolution, Definition o	of MEMS in a broad	der sense. Components	s of	a smart system.
Commercial pro	duc	cts. Microsystems and M	iniaturization. Evo	olution of micro-man	ufac	cturing. Design
Aspects. Applica	t101	n and future scope of MEM	S devices, Market f	trends.		••••
Definitions and	 	salient features of sens	sors, actuators a	nd systems. worki	ng	principles of
conductometric of	1150	sensor Actuators silicor	micro-mirror arra	vs piezo-electric base	or, ad in	nkiet printhead
electrostatic com	sas h-d	rive and micromotor magn	etic micro relav	ys, piezo-electric base	Jun	inkjet printhead,
cicculostatic com	U U	Un	it – II			10 Hrs
Micro and Smai	t D	Devices and Systems: Mat	erials and Processi	ing		
Materials				-8		
Introduction, Sul	ostr	ates and Wafers, Active su	ubstrate materials, S	Si as a substrate mater	rial,	Si compounds,
Si Piezoresistors,	Ga	allium Arsenide, Quartz, Pi	ezoelectric Crystals	and Polymers.		_
Processing						
Silicon wafer pr	oce	essing, lithography, thin-fi	lm deposition, etcl	hing (wet and dry), y	wafe	er-bonding, and
metallization, Si	lice	on micromachining: surfa	ice and bulk, bor	nding based process	flo	ws. Thick-film
processing: Smar	processing: Smart material processing, Emerging trends.					
				11.		10 118
Mechanical modelling and Scaling laws in Microsystems Modelling						
simplest deforma		formulation Deconont V	ibration Design t	hent: a beam, Bimorph	tora	and domning
coefficients Bas	ai ics	of fluid mechanics in ma	orro and mesoscale	S Capillary effect e	lect	ro-phoresis and
Dielectrophoresis	105	of fidid fileenames in file	lero and mesosearc	es, capinary effect, c	iccu	to-photesis and
Scaling laws in I	Mir	niaturization				
Importance of s	cal	ing in MEMS- Scaling i	n geometry, Scali	ng in rigid body dy	nam	ics, scaling in
electrostatic forc	es,	scaling in electromagneti	c forces, scaling i	n electricity, scaling	in f	fluid dynamics.
scaling effects in	the	e optical domain, scaling in	biochemical pheno	omena.		
		Un	it – IV			9 Hrs
RF MEMS	_					
Introduction to I	RF	MEMS, Static Analysis of	of RF MEMS devi	ices: Spring Constant	of	Low-k Beams,
Spring Constant	OÍ EL	Cantilever Beams, Spring	Constant of Circul	ar Diaphragms, Bear	n C	urvature due to
Hold Down Volt		e of MEMS Beams and (Cantilevers Force	s on MEMS Beams	tatic So	If Actuation of
MFMS Canacitia	MEMS Capacitive Switches RE Hold Down Voltage of MEMS Capacitive Switches					
		Un	$\frac{1}{10000000000000000000000000000000000$	capacitive 5 witches.		9 Hrs
Case study of d	evi	ces: Pressure sensors acce	lerometers micro r	ump micro heater Ir	tro	luction to CAD
tool for simulation	n o	of devices.	ferometers, miero p	Jump, miero neuter. n	mot	
Packaging : Inte	egra	ation of Microsystems and	l microelectronics.	Packaging Introducti	on.	Micro Systems
Packaging, Obje	cti	ves, Issues in packaging,	Special issues	in micro system pa	ckag	ging, Types of
Microsystem Pac	kag	ges, Packaging Technologi	es.			
Expected Cours	e Ō	Jutcomes:				
After going throu	ıgh	this course the student will	be able to:			
CO1 :Explain the	te	chnology to fabricate advar	iced micro- and sm	art systems		

CO2	2: Analyse different methods to fabricate MEMS devices.
CO3	3: Apply the basics of implementation of MEMS into products.
CO ²	4: Evaluate the principles and processes involved in the implementation of MEMS devices
Ref	erence Books:
1.	Dr. A.K.Aatre, Ananth Suresh, K.J.Vinoy, S. Gopala krishna, K.N.Bhat., "Micro and Smart Systems", John Wiley Publications, 2002, ISBN: 1118213904, 9781118213902
2.	Tai-Ran Tsu, "MEMS & Microsystems: Design and Manufacture", Tata Mc-Graw-Hill.2002.8th reprint, ISBN-13:978-0-07-048709-3. ISBN-10:0-07-048709-X
3.	RF MEMS Theory, Design and Technology GABRIEL M. REBEIZ. 2003A JOHN WILEY & SONS PUBLICATION. ISBN: 978-0-471-20169-4
4.	S. D. Senturia, "Microsystems Design", Kluwer Academic Publishers, Boston, USA, 2001, ISBN 0-7923-7246-8

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. Total CIE is 20+50+30=100 Marks.

Semester End Evaluation (SEE): Total marks: 100

Scheme of Semester End Examination (SEE) for 100 marks:

			Semester I				
		DIGITAL	IMAGE PROCES	SING			
Course Code		Grou 18MCS1B2	p B : Core Electiv	e CIE Morks		100	
Course Coue	•				•	100	
Credits	:	4:0:0		SEE Marks	:	100	
Hrs	:	48 L		SEE Duration	:	3 Hrs	5
		U	nit – I				10 Hrs
Digital Image F Steps in Digital Acquisition, Ima RGB, HSI mode	Digital Image Fundamentals: Steps in Digital Image Processing, Components, Elements of Visual Perception, Image Sensing and Acquisition, Image Sampling and Quantization, Relationships between pixels, Colour image fundamentals, RGB HSI models. Two-dimensional mathematical preliminaries. 2D transforms. DET. DCT						
		Ur	nit — II				10 Hrs
 Image Enhancement: Spatial Domain: Gray level transformations, Histogram processing, Basics of Spatial Filtering, Smoothing and Sharpening Spatial Filtering Frequency Domain: Introduction to Fourier Transform, Smoothing and Sharpening frequency domain filters, Ideal, Butterworth and Gaussian filters, Homomorphic filtering, Color image enhancement. 							
Unit – III 10 Hrs							
Image Restoration: Image Restoration, degradation model, Properties, Noise models, Mean Filters, Order Statistics, Adaptive filters, Band reject Filters, Band pass Filters, Notch Filters, Optimum Notch Filtering, Inverse Filtering, Wiener filtering							
Unit – 1 v 9 HTS Image Segmentation & Mornhological Processing:							
Edge detection, Edge linking via Hough transform, Tresholding, Region based segmentation, Region growing, Region splitting and merging, Morphological processing, erosion and dilation, Segmentation by morphological watersheds, Basic concepts, Dam construction, Watershed segmentation algorithm.							
I	•						71115
Image Compression: Need for data compression, Redundancy in Images and Classification of Redundancy in Images, Classification of Image Compression Schemes, Run Length Coding, Shanon-Fano Coding, Huffman Coding, Arithmetic coding, Dictionary based Compression, JPEG &MPEG standards							
Expected Cours	se C	Dutcomes:					
After going throu CO1: Know and sampling, quanti	ugh 1 ur zati	this course the student will inderstand the basics and fu ion, and 2D-transforms.	l be able to: ndamentals of digi	tal image processing, s	such	as digi	itization,
CO2: Operate o	n ir	nages using the techniques	of smoothing, shar	pening and enhanceme	ent.		
CO3: Understar	ld tl	ne restoration concepts and	filtering technique	s.			
CO4: Learn the	bas	ics of segmentation, feature	es extraction, comp	ression for images.			

Ref	erence Books:
1.	Rafael C. Gonzalez & Richard E. Woods, "Digital Image Processing", 3rd edition, Pearson Education , 2016, ISBN-10: 9332570329,978-9332570320
2.	A.K. Jain, "Fundamental of Digital Image Processing", PHI publications, 2015. ISBN: 978-933255191
3.	Jähne, Bernd," Digital Image Processing", Springer, 2005, ISBN: 9783540275633
4.	Chris Solomon, Toby Breckon, "Fundamentals of Digital Image Processing: A Practical Approach with Examples in Matlab", Wiley, 2011, ISBN: 978-0-470-84472-4

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. Total CIE is 20+50+30=100 Marks.

Semester End Evaluation (SEE): Total marks: 100

Scheme of Semester End Examination (SEE) for 100 marks:

Semester I								
CRYPTOGRAPHY & NETWORK SECURITY Group B : Core Elective								
Course Code	:	18MCS1B3		CIE Marks	:	100		
Credits	:	4:0:0	1	SEE Marks	:	100		
Hrs	:	48L		SEE Duration	:	3 Hrs		
Unit – I 10 Hrs								
Introduction – Principles of Security, Basic Cryptographic techniques, Symmetric cipher model, substitution and transportation ciphers, DES, Triple DES, Block cipher design principles. Symmetric Ciphers: AES structure, transformation function and key expansion, RC2, RC4, RC5, RC6.								
		Ur	nit — II			10 Hrs		
Finite Fields: C Form GF(p), Pol	brou ync	ps, Rings and Fields, Mod mial Arithmetic, Finite Fie	ulo Arithmetic, Eucled Arithmetic, Eucled Strategies of The Form Gl	clidean Algorithm, Fin F(2n).	ite l	Fields of The		
		Un	it – III			10 Hrs		
Asymmetric Ciphers: Principles of public key cryptosystems, RSA algorithm, attacks over RSA algorithm, Elgamal crypto system, Elliptic curve cryptography, Message authentication and Hash Functions, pseudorandom number generation. Unit – IV 9 Hrs								
Cloud Security: Cloud Identity m	: Cl nana	oud Computing Concepts, agement, Securing IaaS.	Moving to the Clo	oud, Cloud security too	ols a	ind Techniques,		
		U	nit V			9 Hrs		
Strategic Defenses: Cryptogrphy in Network Security, Firewalls, Intrusion Detection and prevention systems, Network management. Privacy: Privacy on the Web, Email Security, Privacy impacts of emerging Technologies.								
 Expected Course Outcomes: After going through this course the student will be able to: 1. Implement the security policies like authentication, integrity and confidentiality in the form of message exchange. 2. Implement cryptographic principles to various threats. 3. Learn about security issues when moving to cloud. 4. Analyze web and network security threats. 								
Keference Book	S	"O		inter an 1 Decediar "	и. т	1:4: D		
 William Stalli education, 2014. Charles P.Pf Edition, Prentice Atul Kabata * 	lngs leeg Ha	, "Cryptography and Netw ger, Shari Lawrence P.Pf Il, 2015.	leeger, Jonathan M	Aargulies, "Security i	$\frac{1}{2013}$	Computing'', 5 th		

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. Total CIE is 20+50+30=100 Marks.

Semester End Evaluation (SEE): Total marks: 100

Scheme of Semester End Examination (SEE) for 100 marks:

Semester II								
ADVANCED COMMUNICATIONS SYSTEMS -2 (Theory and Practice)								
Course Code	:	18MCS21		CIE Marks	:	100+50		
Credits	:	3:1:1		SEE Marks	:	100+50		
Hrs	:	48L+36P		SEE Duration	:	3 Hrs		
	Unit – I 10 Hrs							
Synchronization – Signal	Р	arameter estimat	ion. Carrier Phase	Estimation. Symbo	1 Tir	ning Recovery.		
Performance of ML estimat Fading – Large scale, sma spread, classification of n selective Rayleigh fading cl	ors 11 s nul har	s. scale; Statistical sipath channels, nel.	characterization of scattering function	multipath channels - n; Binary signaling	- Del over	ay and Doppler frequency non		
		Un	nit — II			10 Hrs		
Fading Contd: - Diversity	tec	hniques for perfo	ormance improvem	ent with binary signa	ling	over FNS, Slow		
fading channels – power combining and Maximal ratio combining; Frequency selective channels – Rake receivers, Performance, Tap weight Synchronization, Application to CDMA. Capacity of wireless channel : AWGN channel capacity, Resources of AWGN channel, Linear time invariant Gaussian channel, Capacity of Fading Channels.								
Unit – III 10 Hrs								
Multicarrier Communications in AWGN channel- Single carrier vs Multicarrier, OFDM, FFT Implementation, Spectral Characteristics, Power and bit allocation, Capacity of Multicarrier Channel, Peak to Average Power Ratio, Channel Coding Considerations								
	•		$\frac{it - IV}{V}$	1.11.	1 .	9 Hrs		
channels, Physical modelin	ing g o	f MIMO channel	s, Modeling: Multiple	MO fading channels.	leteri	ministic MIMO		
Unit – V 9 Hrs								
MIMO capacity and multiplexing architectures: The V-BLAST architecture, Fast fading MIMO channel, Capacity with CSI at receiver, Performance gains, Full CSI, Performance gains in a MIMO channel, Receiver architectures – (Linear decorrelator, Successive cancellation, Linear MMSE receiver), Information theoretic optimality, Connections with CDMA multiuser detection and ISI equalization, Slow fading MIMO channel, D-BLAST: an outage-optimal architecture, Sub optimality of V-BLAST, Coding across transmit antennas: D-BLAST								
1 Radiation character	ict	La La Contraction	Detch and Printed I	Dinole Antenna				
 Radiation characteristics of Microstrip Patch and Printed Dipole Antenna Measurement of S-parameters of a power divider, printed directional coupler and resonant antennas (Patch and Dipole antennas) using network analyser. Design and Simulation of Waveguide Magic-Tee and Horn antenna. 								
2. Design and Simulation of a Printed Hybrid Ring and Power divider								
 Characterization of Analog and Digital Study of Propagatio Matched filter & Li 	M co on ine	ncrowave Waveg mmunication lin loss, Bending los ar equalizer simu	uide Tee's, Direction k using optical fibers s and Measurement lation in Matlab	onal Coupler, Circula r t of Numerical Apertu	tor ai ire in	nd Isolator 1 OFC		
9. Students will be pro	9. Students will be provided open ended problem to access their capabilities							

Expected Course Outcomes:							
After going through this course the student will be able to:							
CO1: Explain the concepts of multi-channel signaling scheme and synchronization for carrier and							
symbol timing recovery at receiver.							
CO2: Evaluate the degradation in performance of various symbol signaling schemes in a multipath							
fading environment.							
CO3: Develop & analyze schemes to improve performance in a multipath fading environment							
including diversity, maximal ratio combining and RAKE receivers.							
CO4: Develop and evaluate the performance of a MIMO scheme to meet specified rate in a give	n						
multipath environment.							
Reference Books							
1. John G. Proakis, MasoudSalehi, "Digital Communications ",5e,Pearson Education(2014), ISBN:978-							
9332535893							
2. David Tse, PramodViswanath, "Fundamentals of Wireless Communication", 1e, Cambridge University	y						
Press(2005), ISBN:0521845270							
3. Bernard Sklar,"Digital Communications: Fundamentals and Applications: Fundamentals							
&Applications",2e,Pearson Education(2009),ISBN:978-8131720929							
4. Simon Haykin, "Digital Communications Systems", Wiley(2014), ISBN:978-0-471-64735-5							

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. Total CIE is 20+50+30=100 Marks.

Scheme of Continuous Internal Evaluation (CIE) for Practicals: (50 Marks)

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150

Theory (100 Marks) + Practical (50 Marks) = Total Marks (150)

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Scheme of Semester End Examination (SEE); Practical (50 Marks)

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester II								
ERROR CONTROL AND CODING								
Course Code	:	18MCS22		CIE Marks	:	100		
Credits	:	3:1:0		SEE Marks	:	100		
Hrs	:	48L		SEE Duration	:	3 Hrs		
		Uı	nit — I			10 Hrs		
 Information theory Review: Coding for a discrete memoryless channel, Coding for the binary symmetric channel. Introduction to algebra: Groups, Fields, binary field arithmetic, Construction of Galois Field GF (2^m) and its properties, Computation using Galois filed GF (2^m) arithmetic, Vectors and Matrices. Linear block codes: Generator and parity check matrices, Encoding circuits, Syndrome and error 								
detection, Minir	num	decoding Single Parity Ch	Error detecting and	l error correcting cap patition and a Salf du	pabi	lities, Standard		
	me	Un Un	it – II	petition codes, sen u	uar	10 Hrs		
Linear block o	ode	s Applications contd: H	Iamming codes. Si	ngle error and doub	le e	error correcting		
Hamming code, Cyclic codes: In computing and Shortened cyclic	Hamming codes, Reed-Muller codes, and interleaved codes. Cyclic codes: Introduction, Generator and parity check polynomials, Encoding of cyclic codes, Syndrome computing and error detection, Decoding of cyclic codes, Cyclic hamming codes, (23,12) Golay Code, Shortened cyclic codes							
		Uni	it – III			10 Hrs		
Implementation of error correction. Non-binary BCH codes: q-ary linear block codes, Primitive BCH codes over GF(q), Reed -Solomon codes, decoding of non-binary BCH and RS codes: The Berlekamp - Massey Algorithm. Unit – IV 9 Hrs Majority Logic decodable codes: One -step majority logic decoding, Class of One-step majority logic decoding (Algorithm only). 9 Hrs Convolution codes: Encoding of convolutional codes, Transfer Function of convolution codes, Structural properties, Distance properties, Viterbi search decoding algorithm – soft decision and hard decision based, ZJ Stack Sequential decoding algorithm, Probability of error in convolution decoding for hard and soft decision cases. Punctured and Tail biting Convolution codes.								
Unit – V 9 Hrs								
 Concatenated Codes: Single level Concatenated Codes, Multilevel Concatenated Codes (Formulation only), Soft decision Multistage Decoding (Formulation only). Turbo Codes: Introduction, Distance Properties for an example PCBC and one PCCC, Performance Analysis Formulation and one example only. Low Density parity-Check Codes: Introduction, Tanner Graphs, Geometric Construction of LDPC Codes, Decoding of LDPC Codes – Majority Logic, Bit Flipping, Weighted Majority Logic + Bit Flipping. Expected Course Outcomes: 								
After going through this course the student will be able to:								
CO1: Explain their use in Stor CO2: Perform CO3: Test and CO4: Construc Transmission sy Reference Book	the j age a de eva ct an <u>ster</u>	principles and theory in the and Communication system ecoding procedure for Bloc aluate Block and Convolution and Decode Concatenated com.	e construction of Blo ms. k and Convolution c on Codes schemes fo odes to perform close	ock Codes and Convol codes. for performance. e to Shannon Limit in	lutic a da	on Codes and		
1. Shu Lin and	d Da	aniel J. Costello. Jr, "Error	control coding", Pea	arson, 2^{nd} edition, $2\overline{01}$	1.			

	ISBN 978-81-317-3440-7
2.	Salvatore Gravano, "Introduction to Error control coding", Oxford university press, 2007. ISBN 0-19- 856231-4
3.	Blahut. R. E, "Theory and practice of error control codes", Addison Wesley, 1984. ISBN 0201101025, 9780201101027

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. Total CIE is 20+50+30=100 Marks.

Semester End Evaluation (SEE): Total marks: 100 Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II							
	RESEARCH METHODOLOGY						
(Common to all programs)							
Course Code	:	18IM23	CIE	E Marks	:	100	
Credits: L:T:P	:	3:0:0	SEF	E Marks	:	100	
Hours	:	36L	SEF	E Duration	:	3 hours	

Unit – I	
Overview of Research: Research and its types, identifying and defining research problem	07 Hrs
and introduction to different research designs. Essential constituents of Literature Review.	
Basic principles of experimental design, completely randomized, randomized block, Latin	
Square, Factorial.	
Unit – II	
Data and data collection: Overview of probability and data types	08 Hrs
Primary data and Secondary Data, methods of primary data collection, classification of	
secondary data, designing questionnaires and schedules.	
Sampling Methods: Probability sampling and Non-probability sampling	
Unit – III	
Processing and analysis of Data: Statistical measures of location, spread and shape,	07 Hrs
Correlation and regression, Hypothesis Testing and ANOVA. Interpretation of output from	
statistical software tools	
Unit – IV	
Advanced statistical analyses: Non parametric tests, Introduction to multiple regression,	07 Hrs
factor analysis, cluster analysis, principal component analysis. Usage and interpretation of	
output from statistical analysis software tools.	
Unit-V	
Essentials of Report writing and Ethical issues: Significance of Report Writing ,	07 Hrs
Different Steps in Writing Report, Layout of the Research Report, Ethical issues related to	
Research, Publishing, Plagiarism	

Case studies: Discussion of case studies specific to the domain area of specialization

Course Outcomes: After going through this course the student will be able to

CO1	Explain the principles and concepts of research types, data types and analysis procedures.
CO2	Apply appropriate method for data collection and analyze the data using statistical principles.
CO3	Present research output in a structured report as per the technical and ethical standards.
CO4	Create research design for a given engineering and management problem situation.

R	eference Books:
1	Kothari C.R., Research Methodology Methods and techniques by, New Age International
	Publishers, 4th edition, ISBN: 978-93-86649-22-5
2	Krishnaswami, K.N., Sivakumar, A. I. and Mathirajan, M., Management Research Methodology,
	Pearson Education: New Delhi, 2006. ISBN: 978-81-77585-63-6
3	William M. K. Trochim, James P. Donnelly, The Research Methods Knowledge Base, 3rd Edition,
	Atomic Dog Publishing, 2006. ISBN: 978-1592602919
4	Levin, R.I. and Rubin, D.S., Statistics for Management, 7th Edition, Pearson Education: New Delhi.

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II							
MINOR PROJECT							
Course Code	:	18MCS24		CIE Marks	:	100	
Credits L: T: P	:	0:0:4		SEE Marks	:	100	
Credits	:	02		SEE Duration	:	3 hrs	

GUIDELINES

- 1. Each project group will consist of maximum of two students.
- 2. Each student / group has to select a contemporary topic that will use the technical knowledge of their program of study after intensive literature survey.
- 3. Allocation of the guides preferably in accordance with the expertise of the faculty.
- 4. The number of projects that a faculty can guide would be limited to four.
- 5. The minor project would be performed in-house.
- 6. The implementation of the project must be preferably carried out using the resources available in the department/college.

	Course Outcomes: After completing the course, the students will be able to
CO1	Conceptualize, design and implement solutions for specific problems.
CO2	Communicate the solutions through presentations and technical reports.
CO3	Apply resource managements skills for projects.
CO4	Synthesize self-learning, team work and ethics.

Scheme of Continuous Internal Examination

Evaluation will be carried out in 3 phases. The evaluation committee will comprise of 4 members: Guide, Two Senior Faculty Members and Head of the Department.

Phase	Activity	Weightage
Ι	Synopsys submission, Preliminary seminar for the approval of selected topic and	20%
	objectives formulation	
II	Mid term seminar to review the progress of the work and documentation	40%
III	Oral presentation, demonstration and submission of project report	40%
deale 701		

** Phase wise rubrics to be prepared by the respective departments

CIE Evaluation shall be done with weightage / distribution as follows:

•	Selection of the topic & formulation of objectives	10%
•	Design and simulation/ algorithm development/ experimental setup	25%
•	Conducting experiments/ implementation / testing	25%
•	Demonstration & Presentation	15%
٠	Report writing	25%

Scheme of Semester End Examination (SEE):

The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.

٠	Brief write up about the project	05%
٠	Presentation / Demonstration of the Project	20%
٠	Methodology and Experimental results & Discussion	25%
•	Report	20%
•	Viva Voce	30%

			Semester II				
		ANT (Grou	TENNA THEORY p C : Core Electiv	e)			
Course Code	:	18MCS2C1		CIE Marks	:	100	
Credits: L:T:P	:	4:0:0		SEE Marks	:	100	
Hrs	:	48L		SEE Duration	:	3 Hr	s
		Uı	nit – I				10 Hrs
Antenna Fundar Radiation Mecha Problems, Ideal I Antenna polariza Array factor for l	me anis Dip tion	ntals and Arrays sms, Overview, EM Fund ole, Radiation patterns, Dir n. ar arrays, Uniformly excite	lamentals, Solution rectivity and Gain, ed equally spaced li	n of Maxwell's Equ Antenna impedance, near arrays, Pattern	ation Radia nultip	s for lation ef	Radiation fficiency,
Directivity of line	ear	arrays, Non-uniformly exc	ited equally spaced	l linear arrays, Mutua	al cou	pling.	10 II.ma
			111 – 11	1 / 201			10 Hrs
Broadband ante and Principles of	nn fre	as: Traveling wave antenna equency independent antenn	as Helical antennas nas, Spiral antennas	a antennas, Micro-s , Biconical antennas s, and Log - periodic	, Sleev anten	ve ante nas.	nnas,
		Un	it – III				10 Hrs
array shaped beam synthesis, Fourier series, Woodward - Lawson sampling method, Comparison of shaped beam synthesis methods, low side lobe narrow main beam synthesis methods, Dolph Chebyshev linear array, Taylor line source method. Unit – IV 9 Hrs Radiation and Scattering Solutions to the inhomogeneous vector potential wave equation, Far field radiation, Radiation and scattering equations in rectangular coordinates (Far field). Infinite line source cylindrical wave radiation (Electrical line source and magnetic line source), plane wave							
cvlinder (TE or T	str M	plane wave scattering fr polarization).	om a flat rectangul	ar plate and scatterin	ig by a	a circul	ar
		Ur	nit – V				9 Hrs
Integral equation Pocklington integ Geometrical option reflection from a Geometrical the edge, diffraction by a paraboloidal Course Outcom CO1: Demonst structure CO2: Design a CO3: Describe CO4: Evaluate sphere us	on gral tics con ory by by rate s. nte dif an sing	and Moment Method: E equation and Hallen's inte : Amplitude relation, phase inducting sphere and reflect of diffraction: Amplitude a wedge with a straight edge flector. e analytical skills in app innas like Yagi-Uda, Helica Efferent antenna synthesis m id design scattering in gui g numerical EM solver that	lectrostatic charge egral equation. e and polarization ion from a line sou e, phase and polariz ge, diffraction by a olying electromagn al antennas and othe ethods. ided and radiative employ the concept	distribution (finite relation, reflection fi rce above a finite wi zation relation, diffra pyramidal horn ante netics concepts to o er broad band antenn structures like strip ots studied	wire rom a dth str ction nna ar design as o, plat	and be curvec ip. by a cu ad diffr basic e, cyli	ent wire), I surface, arved faction antenna nder and
1. Constant 1989, ISI	ine BN	A Balanis, "Advanced eng : 0-471-62194-3.	gineering electrom	agnetics", John Wile	y & S	ons, 1	st edition,

- 2. Roger F Harrington, "Time harmonic electromagnetic fields", John Wiley & Sons, IEEE press classic reissue, 2001, ISBN: 0-471-20806-X.
- 3. C. A. Balanis, "Antenna Theory Analysis and Design", John Wiley, 2nd Edition, 2007.

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. Total CIE is 20+50+30=100 Marks.

Semester End Evaluation (SEE): Total marks: 100

Scheme of Semester End Examination (SEE) for 100 marks:

			Semester II					
			MACHINE LEARNIN	١G	l F			
			(Group C: Core Elect	iv	e)			
0			(Common to VLSI & ES, CS, CNE,	D	CE, BMI, SE)		100	
Cou	irse Code	:	18MCS2C2		CIE Marks	:	100	
Cre	dits :L:T:P	:	4:0:0		SEE Marks	:	100	
Hrs		:	48L		SEE Duration	:	3 Hrs	
			Unit – I					9 Hrs
Intr Line Stoc regr	oduction: Overvi ear Regression – hastic gradient D ession, logistic reg	ew Bas Jesc gres	of Probability Theory, Model Selection sis Function models, Bias Variance De cent, Discriminant Functions, Bayesian sion	ı, I eco n I	ntroduction to Mach omposition, Bayesia Logistic regression.	iine le in lin Exai	earning. ear Reg mples or	ression; n linear
			Unit – II					10 Hrs
Sup Kerr Proc Spar Exa	ervised Learning nel Methods: Dual cess, Tree Based n rse Kernel Machin mples on spam, m	re neth es: ixe	presentations, Construction of a kernel, nods . Maximum margin classifiers (SVM), R r and k nearest neighbour	R	adial Basis Function M.	Netv	works, G	laussian
	-1 , , , , , , , , , , , , , , , , , , ,		Unit – III					10 Hrs
Mix mix Mar	ture Models: K- tures, The EM Al ket booklet analys	me gor	ans Clustering, Mixtures of Gaussians ithm in General, Principal Component	s, 1 Ai	Maximum likelihoo nalysis, Probabilistio	d, El c PC	M for G A. Exam	aussian ples on
			Unit – IV					10 Hrs
Ran Intro Imp	dom Forests: oduction, Definiti ortance, Proximity De-Correlation Eff	on 7 Pl	of Random Forests, Details of Ra ots, Random Forests and Over-fitting, Bias Adaptive Nearest Neighbors	ano A	dom ,Out of Bag nalysis of Random I	Samj Fores	ples , V ts, Varia	Variable nce and
the			Unit – V					9Hrs
Ens Intro Reg Ense	emble Learning: oduction, Boosting ularization Paths, embles ected Course Ou	g a Ov	nd Regularization Paths, Penalized Re ver-fitting and Margins, Learning Ense	gre mt	ession, The "Bet on bles, Learning a Go	Spa bod E	rsity" Pr Ensemble	rinciple, e, Rule
Afte	r going through th	nis o	course the student will be able to:					
CO1	CO1: Explore the basics of Probability, data distributions and neural networks Algorithms.							
CO3 CO4	Application. CO3: Analyze the different types of supervised and unsupervised learning models. CO4: Evaluate the classification and regression algorithms for given data set.							
Ref	erence Books:							
1.	Pattern Recognit Springer, ISBN-	ion 13:	and Machine Learning, Christopher M 978-0387-31073-2.	Bi	ishop, 2 nd Edition, F	ebrua	ary 2006,	,
2.	The Elements of Edition, 2008, Sp	Sta orir	tistical Learning, Trevor Hastie, Robert ger, ISBN 978-0-387-84858-7	t T	ibshirani, and Jerom	ne Fri	edman, 2	2 nd
3.	Data Mining – C Edition, 2006,Els	ono	cepts and Techniques, Jiawei Han and Mier, ISBN 1-55860-901-6	Ліс	cheline Kamber, Mo	rgan	Kaufma	nn, 3 rd
4.	Practical data sci ISBN 978161729	enc 915	ee with R, Zumel, N., & Mount, J, 2014 62	, N	Aanning Publication	S		

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. Total CIE is 20+50+30=100 Marks.

Semester End Evaluation (SEE): Total marks: 100

Scheme of Semester End Examination (SEE) for 100 marks:

			Semester I	I		
		Optical Co (Grout	mmunicatio	ons Networks Elective)		
Course Code	:	18MCS2C3		CIE Marks	:	100
Credits: L:T:P	:	4:0:0		SEE Marks	:	100
Hrs	:	48L		SEE Duration	:	3 Hrs
		Uı	nit — I			10 Hrs
Introduction						
Overview of opti	cal	fiber communications, Bas	sic principle	s of light propagation, Ray-M	lode	l, Wave-Model,
Optical fiber mo	les	, single and multi-mode fib	ers, single a	nd multi-core fibers.		
Signal degradat	ion	in optical fibers	Dismonsion	Chromotic Disponsion	Dread	tical icanos in
Implementation	of f	iber Link	Dispersion	i, Chiomatic Dispersion,	Flac	lical issues ill
	<i>/</i> 11	Un	it – II	•		10 Hrs
Optical Compo	nen	ts				
Couplers, Isolate	ors	and Circulators, amplifie	r Multiplex	ers and filters, Fiber Grati	ngs,	Mach-Zehnder
Interferometers.			•			
Non-linear effect	ts i	n optical fiber				
Non-Linear Sch	rod	inger Equation, Group vel	ocity disper	sion, Stimulated Brillouin se	catte	ring, stimulated
Raman scattering	5, S	elf -Phase Modulation, Cro	ss-Phase Mo	odulation, Four-wave Mixing	, So	litons.
		Un	it – 111			10 Hrs
Modulation and	De	emodulation	1			
Modulation, Sig	nal	formats, Subcarrier Modu	lation and	Multiplexing, Spectral efficiency	ency	, Optical Duo-
binary Modulati	on,	Capacity Limits of Optic	al Fiber, A	n Ideal receiver, Practical of	letec	tion Receivers,
Noise considerat	ion	s, Bit error rates, coherent o	letection.			
Transmission S	yste	em Engineering	· D:00			
System Model, P	'OW	er penalty, Transmitter, Re	ceiver, Diffe	erent optical amplifiers - SOA	А, ЕІ	DFA.
Intensity Modul	ote	Ull of Ontic Fiber Sensors	ll – I V			9 118
Introduction. Ge	ner	al features-Intensity modu	lation throu	gh through light interruption	n. sh	utter/schlineren
multimode fiber	op	tic sensors, Reflective fibe	er optic sen	sor, Evanescent-wave fiber	sens	or, Micro bend
optical fiber sens	ors	, Fiber optic refractometers	,Intensity m	odulated optic fiber thermon	neter	s
		Un	nit – V			9 Hrs
Optical Networl	ΧS					_
WDM network	eler	nents: Optical line termina	al, Optical I	ine amplifiers, Optical cross	s coi	nnectors, Dense
Client layers of c	lW(ork design, cal laver SONET/SDH Or	tical switch	es Multipleving lavers Fran	ne St	ructure ATM
functions. Adapt	atic	on Lavers. OoS and Flow co	ontrol. ESCO	N. HIPPI		iucture, i i i i i
Expected Cours	e C	Outcomes:	,	,		
After going throu	ıgh	this course the student will	be able to:			
1. Select th	e	proper Optical spectral	band and	incorporate the standards	for	optical fiber
communi	cati	on.	c·	1 (1 (1 1	1	
2. Analyze t index Fib	he er S	Optical Fiber Modes and C Structure	onfiguration	is and express the Single-m	lode	Fibers, Graded-
3. Express v and topole	ari Ogio	ous WDM Concepts and (es and design WDM Netwo	Components ork	and Apply different Optica	l Ne	etwork concepts
4. Prepare an	n O	ptical Link Power Budget.				
Reference Book	s:					

1.	John M. Senior, "Optical Fiber Communications", Pearson edition, 2000.
2.	Rajiv Ramswami, N Sivaranjan, "Optical Networks- A Practical Perspective", M. Kauffman publishers, 2000
3.	Gerd Keiser, "Optical Fiber Communication", MGH, 1991.
4.	G. P. Agarwal, "Fiber Optics communication", John Wiley, New york, 1997
5.	P. E. Green, "Optical Networks", Prentice Hall, 1994

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. Total CIE is 20+50+30=100 Marks.

Semester End Evaluation (SEE): Total marks: 100

Scheme of Semester End Examination (SEE) for 100 marks:

			Semester II				
		WIRELESS SEN	SOR NETWORK	KS AND IOT			
Course Code	:	18MCS2D1		CIE Marks	:	100	
Hrs/Week	:	L:T:P	4:0:0	SEE Marks	:	100	
Credits	:	4		SEE Duration	:	3 Hrs	
		Uı	nit – I			10	0 Hrs
Motivation for Sensing and S Applications:	a N enso Struc	etwork of Wireless Sensor ors, Wireless Sensor Netwo ctural Health Monitoring, T	r Nodes orks, Challenges an Fraffic Control, He	d Constraints alth Care, Pipeline M	onite	oring, Prec	cision
righteutere.		Un	nit — II			10	0 Hrs
Sensing Node A Interfaces, Prote Medium Access Access, Wireles IEEE 802.15.4 Hybrid MAC P	Arch otype is Co ss M and Z rotoc	itecture: The Sensing Sub- es. ontrol :Overview - Content AC Protocols – CSMA, MA ZigBee , Characteristics of cols.	system ,The Procest ion-Free Medium A ACA and MACAW MAC Protocols; C	ssor subsystem Comm Access, Contention-Ba /, MACA By Invitatio ontention-Free, Contes	unica ased n, IE ntior	ation Medium EE 802.11 I-Based and	l, d
		Un	it – III			10) Hrs
Demand Rout Networking pr Introduction, Io Protocols, 6Lov	ing, rotoc T Da WPA	Location-Based Routing, C Un ols and standards for inte ata Link Protocols, Network N and RPL, Session Layer	QoS-Based Routing it – IV ernet of things k Layer Routing Pr Protocols, IoT Ma	g Protocols. Power man otocols, Network Laye nagement Protocols, Io	nage er Er oT C	ment in W	SN. 9 Hrs
		Un	nit – V			9	9 Hrs
Architectural A Architecture, I Suitable Case S	ppro Data a tudie	aches for IoT, Business Ma and Analytics Architecture, es / Assignment	arkitecture, Functio Technology Archi	nal Architecture, App tecture, Security and	olicat Gov	ion ernance,	
Course Outcon	nes:	After studying this course	e, students will be	able to:	onen	nission	
CO1: Explain CO2: Evaluate transmission en CO3: Analyze s through IoT gat CO4: Understa Reference Boo	the c viron scher ewa nd th ks	apacity and degradation in nment. nes to transport sensor data y. ne IoT architecture through	to a server in a po	wer efficient and time	effic	ols in a	er
1 Walter	0000	Dargie and Christian Po	ellahauer "Fundar	nentals of Wireless Sa	nsor	Networks	
2. Hwaaiy ISBN 9 3. Ian F. ISBN 9 Case Study	and yu G 78-1 Akyi 78-0 y Ref	Practice", John Wiley & So Geng, "Internet of Things -119-17364-9 (H/B), 2017. Idiz and Mehmet Can Vu 0-470-03601-3 (H/B), 2010. Gerences	and Data Analytic ran "Wireless Sens	o-470-99765-9, 2010. cs Handbook",John V sor Networks",John W	Viley	& Sons &	Ltd. .d.

- 4. M. T. Lazarescu, "Design of a WSN Platform for Long-Term Environmental Monitoring for IoT Applications," in *IEEE Journal on Emerging and Selected Topics in Circuits and Systems*, vol. 3, no. 1, pp. 45-54, March 2013.doi: 10.1109/JETCAS.2013.2243032
- 5. I. S. H. Martínez, I. P. O. J. Salcedo and I. B. S. R. Daza, "IoT application of WSN on 5G infrastructure," 2017 International Symposium on Networks, Computers and Communications (ISNCC), Marrakech, 2017, pp. 1-6. doi: 10.1109/ISNCC.2017.8071989.
- J. Cabra, D. Castro, J. Colorado, D. Mendez and L. Trujillo, "An IoT Approach for Wireless Sensor Networks Applied to e-Health Environmental Monitoring," 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Exeter, 2017, pp. 578-583.doi: 10.1109/iThings-GreenCom-CPSCom-SmartData.2017.91
- N. Khalil, M. R. Abid, D. Benhaddou and M. Gerndt, "Wireless sensors networks for Internet of Things," 2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), Singapore, 2014, pp. 1-6. doi: 10.1109/ISSNIP.2014.6827681

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. Total CIE is 20+50+30=100 Marks.

Semester End Evaluation (SEE): Total marks: 100

Scheme of Semester End Examination (SEE) for 100 marks:

			Semester: II		
	DEEP LEARNING				
		(0	Group-D: Core Elective)		
		(Common to CSE, CS)		
Course Code	:	18MCE2D2	CIE Marks	:	100
Credits L: T: P	:	4:0:0	SEE Marks	:	100
Hours	:	46L	SEE Duration	:	3 hrs

Unit – I	
Deep Feedforward Networks: Multilayer Perceptron, Example: Learning XOR, Gradient-	08 Hrs
Based Learning, Hidden Units, Architecture Design, Back-Propagation Algorithm	
Unit – II	
Convolutional Networks: Convolution Operation, Motivation, Pooling, Convolution and	10 Hrs
Pooling as an Infinitely Strong Prior, Variants of the basic convolution function, Structured	
Outputs, Data types, Efficient Convolution Algorithms, Random or Unsupervised features,	
The Neuroscientific basis for convolutional networks	
Unit – III	
Sequence Modeling: Recurrent and Recursive Nets: Unfolding Computational Graphs,	10 Hrs
Recurrent Neural Networks, Bidirectional RNNs, Encoder-Decoder Sequence-to-Sequence	
Architectures, Deep Recurrent Networks, Recursive Neural Networks, Echo State	
Networks, The Long Short-Term Memory and Other Gated RNNs	
Unit – IV	
Autoencoders: Undercomplete Autoencoders, Regularized Autoencoders, Representational	08 Hrs
Power, Layer Size and Depth, Stochastic Encoders and Decoders, Denoising Autoencoders,	
Contractive Autoencoders, Applications of Autoencoders	
Unit –V	
Structured Probabilistic Models For Deep Learning: The challenge of unstructured modelling, Using graphs to describe model structure: Directed, Undirected, Partition function, Energy-based models, Factor graphs; Sampling from graphical models, Advantages of structured modelling, learning about dependencies, Inference and approximate inference. The deep learning approach to structured probabilistic models.	10 Hrs

Course	Course Outcomes: After going through this course the student will be able to:				
CO1	Describe basic concepts of neural network, its applications and various learning models				
CO2	Acquire the knowledge on Recurrent, Recursive Nets and Auto-encoder models				
CO3	Analyze different Network Architectures, learning tasks, Convolutional networks				
CO4	Evaluate and compare the solutions by various Neural Network approaches for a given problem				

Reference Books

1.	<u>Ian Good Fellow</u> , <u>YoshuaBengio</u> and <u>Aaron Courville</u> , Deep Learning (Adaptive Computation
	and Machine Learning Series), MIT Press (3 January 2017), ISBN-13: 978-0262035613.
2.	Simon Haykin, Neural Networks – A Comprehensive Foundation, Second Edition, PHI, 2005.
3.	Gunjan Goswami, Introduction to Artificial Neural Networks, S.K. Kataria & Sons; 2012
	Edition, ISBN-13: 978-9350142967.
4.	Nikhil Buduma, Fundamentals of Deep Learning: Designing Next-Generation Machine
	Intelligence Algorithms, by O'Reilly Publications, 2016 Edition, ISBN-13: 978-1491925614.

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each

and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

			Semester II				
		VLSI DIGITAL SIO	GNAL PROCESS	ING SYSTEMS			
		(Common	to VLSI & ES an	d CS)			
Course Code	:	18MVE2D3		CIE Marks	:	100	
Credits: L:T:P	:	4:0:0		SEE Marks	:	100	
Hrs	:	48L		SEE Duration	:	3 Hrs	5
		Uı	nit – I				10Hrs
Introduction to Introduction, Ty Representations	dig vpic of I	ital Signal Processing sys t al DSP algorithms, DSF DSP algorithms.	tems Application den	nands and scaled C	MOS	S tech	nologies,
		Un	nit — II				10Hrs
Pipelining and p Introduction, Pip power.	oar: elir	allel processing hing of FIR Digital filters, p	parallel processing,	pipelining and paralle	el pro	ocessing	g for low
		Un	it – III				10Hrs
Algorithmic stro Introduction, par Rank-Order Filte	e ng alle ers.	th reduction in filters and I FIR filters, Discrete Cosin	l transforms ne transform and in	werse DCT, Parallel a	rchit	ectures	for
		Un	it – IV				9Hrs
Introduction, Pip higher order IIR processing for III Pipelined Adapti	elir Dig R fi ve l	ne interleaving in digital Fil gital filters, parallel process lters, low power IIR digital Digital Filters.	ters, pipelining in ing for IIR filters, o Filter Design usin	1 st order IIR digital fil combined pipelining a g Pipelining and paral	ters, nd pa lel p	Pipelin arallel rocessi	ing in ng,
		Un	nit — V				9Hrs
Programmable Introduction, evo DSP Processors	dig olut for 1	ital Signal Processor ion of programmable Digi Mobile and wirelesses com	tal Signal processo munication, Proces	ors, Important feature ssor for multimedia si	of I gnal	OSP pro Process	ocessors, sing.
Expected Cours	e O	Outcomes:					
After going throu	ıgh	this course the student will	be able to:				
CO1: Develop CO2: Understa VLSI digital CO3: Evaluate CO4: Design s digital signal	a si ind sig and uita	trong grounding in the func DSP architectures and CM nal processing. d test the modern VLSI dig able algorithm for specific pocessors	lamentals of VLSI OS technologies to ital signal processi applications & De	digital signal processi o describe, analyze, an ng systems using simu evelop applications us	ng , nd so ilatic ing §	lve pro on tool. general	blems in purpose
Keierence Book	s:						
1 Keshab K. 1 1999.ISBN	Part 81	thi , "VLSI Digital Signal p -265-1098-6.	processing systems	:Design and implement	ntatio	on" Wi	iley
2 Rulph chase 2005.	sein	ng, "Digital Signal Processi	ng and applications	s " with C6713 and C6	6416	DSK, V	Wiley
3. Nasser Keh programmin	tarr 1g,A	havaz, " digital Signal Proc Academic press 2008.	essing System Desi	ign: Lab view based h	ybric	1	

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. Total CIE is 20+50+30=100 Marks.

Semester End Evaluation (SEE): Total marks: 100

Scheme of Semester End Examination (SEE) for 100 marks:

			Semester: II			
		BU	SINESS ANALYTICS			
		(Gr	oup G: Global Elective)		
Course Code	:	18CS2G01		CIE Marks	:	100
Credits L: T: P	:	3:0:0		SEE Marks	:	100
Hours	:	36L		SEE Duration	:	3 hrs

Course Learning Objectives:

Graduates shall be able to

- 1. Formulate and solve business problems to support managerial decision making.
- 2. Explore the concepts, processes needed to develop, report, and analyze business data.
- 3. Use data mining techniques concepts to identify specific patterns in the data
- 4. Interpret data appropriately and solve problems from various sectors such as manufacturing, service, retail, software, banking and finance.

Unit – I	
Business analytics: Overview of Business analytics, Scope of Business analytics, Business	07 Hrs
Analytics Process, Relationship of Business Analytics Process and organization,	
competitive advantages of Business Analytics.	
Statistical Tools: Statistical Notation, Descriptive Statistical methods, Review of probability	
distribution and data modelling.	
Unit – II	
Trendiness and Regression Analysis: Modelling Relationships and Trends in Data, simple	07 Hrs
Linear Regression. Important Resources, Business Analytics Personnel, Data and models	
for	
Business analytics, problem solving, Visualizing and Exploring Data, Business Analytics	
Technology.	
Unit – III	
Organization Structures of Business analytics, Team management, Management Issues,	07 Hrs
Designing Information Policy, Outsourcing, Ensuring Data Quality, Measuring	
contribution of Business analytics, Managing Changes. Descriptive Analytics, Predictive	
Analytics, Predicative Modelling, Predictive analytics analysis.	
Unit – IV	
Forecasting Techniques: Qualitative and Judgmental Forecasting, Statistical Forecasting	08 Hrs
Models, Forecasting Models for Stationary Time Series, Forecasting Models for Time	
Series with a Linear Trend, Forecasting Time Series with Seasonality, Regression	
Forecasting with Casual Variables, Selecting Appropriate Forecasting Models.	
Unit –V	
Decision Analysis: Formulating Decision Problems, Decision Strategies with and without	07 Hrs
Outcome, Probabilities, Decision Trees, The Value of Information, Utility and Decision	
Making.	

Course	Course Outcomes: After going through this course the student will be able to:				
CO1	Explore the concepts, data and models for Business Analytics.				
CO2	Analyze various techniques for modelling and prediction.				
CO3	Design the clear and actionable insights by translating data.				
CO4	Formulate decision problems to solve business applications				

Refe	rence Books:
1	Marc J. Schniederjans, Dara G. Schniederjans, Christopher M. Starkey, Business analytics Principles, Concepts, and Applications FT Press Analytics, 1 st Edition, 2014, ISBN-13: 978-0133989403, ISBN-10: 0133989402
2	Evan Stubs , The Value of Business Analytics: Identifying the Path to Profitability, John Wiley & Sons, ISBN:9781118983881 DOI:10.1002/9781118983881,1 st edition 2014
3	James Evans, Business Analytics, Pearsons Education 2 nd edition, ISBN-13: 978-0321997821 ISBN-10: 0321997824
4	Gary Cokins and Lawrence Maisel, Predictive Business Analytics Forward Looking Capabilities to Improve Business, Wiley; 1 st edition, 2013.

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

	Semester: II	
INDUSTR	IAL AND OCCUPATIONAL HEALTH AND SAFE	TY
	(Group G :Global Elective)	
Course Code: 18CV 2G 02		CIE Marks:100
Credits : L: T: P : 3:0:0		SEE Marks :100
Hours: 36L		SEE Duration:3Hrs
Course Learning Objectives	:	
1 To understand the Indu	strial and Occupational health and safety and its importa	ance.
2 To understand the diffe	rent materials, occupations to which the employee can e	exposed to.
3 To know the characteris	stics of materials and effect on health.	1 .1 .
4 To evaluate the differen	t processes and maintenance required in the industries t	to avoid accidents.
	UNII – I	/HIS
Industrial safety: Accident,	causes, types, results and control, mechanical and ele	ctrical hazards, types,
causes and preventive steps/p	rocedure, describe salient points of factories act 1948	for health and safety,
codes Fire prevention and fire	fighting equipment and methods	ssels, etc, safety color
codes. The prevention and me	UNIT – II	7Hrs
Occupational health and saf	ate: Introduction Health Occupational health: definition	n Interaction between
work and health Health haza	rds workplace economy and sustainable developmen	t Work as a factor in
health promotion. Health pro-	tection and promotion Activities in the workplace: 1	National governments.
Management, Workers, Wo	orkers' representatives and unions, Communities,	Occupational health
professionals. Potential health	hazards: Air contaminants, Chemical hazards, Biolog	gical hazards, Physical
hazards, Ergonomic hazards,	Psychosocial factors, Evaluation of health hazards: E	Exposure measurement
techniques, Interpretation of	findings recommended exposure limits. Controlling	hazards: Engineering
controls, Work practice control	ols, Administrative controls. Occupational diseases: Def	inition, Characteristics
of occupational diseases, Preve	ention of occupational diseases.	
	UNIT – III	8Hrs
Hazardous Materials chara	cteristics and effects on health: Introduction, Chen	nical Agents, Organic
Liquids, Gases, Metals and	d Metallic Compounds, Particulates and Fibers, A	Ikalies and Oxidizers,
General Manufacturing Mater	tals, Chemical Substitutes, Allergens, Carcinogens, M	utagens, Reproductive
and Vibration Tomporature	atogens, Recommended Chemical Exposure Limits. P	togonicity Ergonomic
Stresses: Stress-Related Healt	h Incidents Evestrain Repetitive Motion Lower Bac	k Pain Video Display
Terminals.	in meldents, Eyestidin, Repetitive Motion, Lower Bac	k I alli, Video Display
	UNIT – IV	7Hrs
Wear and Corrosion and	their prevention: Wear- types, causes, effects, wea	ar reduction methods,
lubricants-types and application	ons, Lubrication methods, general sketch, working and	applications, i. Screw
down grease cup, ii. Pressure	e grease gun, iii. Splash lubrication, iv. Gravity lubr	rication, v. Wick feed
lubrication vi. Side feed lubr	ication, vii. Ring lubrication, Definition, principle and	d factors affecting the
corrosion. Types of corrosion,	corrosion prevention methods.	
	UNIT – V	7Hrs
Periodic and preventive ma	intenance: Periodic inspection-concept and need, deg	greasing, cleaning and
repairing schemes, overhaulin	g of mechanical components,	
over hauling of electrical mot	or, common troubles and remedies of electric motor, re-	epair complexities and
ns use, definition, need, steps	and advantages of preventive maintenance. Steps/proc	equire for periodic and
iii Air compressors iv Diese	el generating (DG) sets Program and schedule of prev	ventive maintenance of
mechanical and electrical equ	upment. advantages of preventive maintenance. Ren	air cycle concept and
		eyere concept und

impor	tance.
Expe	cted Course Outcomes:
After	successful completion of this course the student will be able to:
CO1	Explain the Industrial and Occupational health and safety and its importance.
CO2	Demonstrate the exposure of different materials, occupational environment to which the employee can expose in the industries.
CO3	Characterize the different type materials, with respect to safety and health hazards of it.
CO4	Analyze the different processes with regards to safety and health and the maintenance required in the industries to avoid accidents.
Refer	ence Books:
1.	Maintenance Engineering Handbook, Higgins & Morrow, SBN 10: 0070432015 / ISBN 13: 9780070432017, Published by McGraw-Hill Education. Da Information Services.
2.	H. P. Garg, Maintenance Engineering Principles, Practices & Management, 2009, S. Chand and Company, New Delhi, ISBN:9788121926447
3.	Fundamental Principles of Occupational Health and Safety, Benjamin O. ALLI, Second edition,2008 International Labour Office – Geneva: ILO, ISBN 978-92-2-120454-1
4.	Foundation Engineering Handbook, 2008, Winterkorn, Hans, Chapman & Hall London.
	ISBN:8/88111925428.

Continuous Internal Evaluation (CIE): Total marks: 100 Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks.A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Semester End Evaluation (SEE): Total marks: 100

Scheme of Semester End Examination (SEE) for 100 marks:

			Semester: II			
	MODELING USING LINEAR PROGRAMMING					
			(Group G: Global Elective)			
Course Code	:	18IM2G03		CIE Marks	:	100
Credits L: T: P	:	3:0:0		SEE Marks	:	100
Hours	:	36L		SEE Duration	:	3 hrs

Unit – I	
Linear Programming: Introduction to Linear Programming problem	07 Hrs
Simplex methods: Variants of Simplex Algorithm – Use of Artificial Variables	
Unit – II	
Advanced Linear Programming : Two Phase simplex techniques, Revised simplex method	07 Hrs
Duality: Primal-Dual relationships, Economic interpretation of duality	
Unit – III	
Sensitivity Analysis: Graphical sensitivity analysis, Algebraic sensitivity analysis - changes	07 Hrs
in RHS, Changes in objectives, Post optimal analysis - changes affecting feasibility and	
optimality	
Unit – IV	
Transportation Problem: Formulation of Transportation Model, Basic Feasible Solution	08 Hrs
using North-West corner, Least Cost, Vogel's Approximation Method, Optimality Methods,	
Unbalanced Transportation Problem, Degeneracy in Transportation Problems, Variants in	
Transportation Problems.	
Unit –V	
Assignment Problem: Formulation of the Assignment problem, solution method of	07 Hrs
assignment problem-Hungarian Method, Variants in assignment problem, Travelling	
Salesman Problem (TSP).	

Course Outcomes: After going through this course the student will be able to:			
CO1	Explain the various Linear Programming models and their areas of application.		
CO2	Formulate and solve problems using Linear Programming methods.		
CO3	Develop models for real life problems using Linear Programming techniques.		
CO4	Analyze solutions obtained through Linear Programming techniques.		

Reference Books:

1	Taha H A, Operation Research An Introduction, PHI, 8th Edition, 2009, ISBN: 0130488089.
2	Philips, Ravindran and Solberg - Principles of Operations Research - Theory and Practice, John
	Wiley & Sons (Asia) Pvt Ltd, 2 nd Edition, 2000, ISBN 13: 978-81-265-1256-0
	Hiller, Liberman, Nag, Basu, Introduction to Operation Research, Tata McGraw Hill 9th Edition,
3	2012, ISBN 13: 978-0-07-133346-7
4	J K Sharma, Operations Research Theory and Application, Pearson Education Pvt Ltd, 4th Edition,
	2009, ISBN 13: 978-0-23-063885-3.

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A

minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II						
PROJECT MANAGEMENT						
			(Group G: Global Elective)			
Course Code	:	18IM2G04	CIE Marks	:	100	
Credits L: T: P	:	3:0:0	SEE Marks	:	100	
Hours	:	36L	SEE Duration	:	3 hrs	

Unit – I				
Introduction: Project Planning, Need of Project Planning, Project Life Cycle, Roles,	07 Hrs			
Responsibility and Team Work, Project Planning Process, Work Breakdown Structure				
(WBS), Introduction to Agile Methodology.				
Unit – II				
Capital Budgeting: Capital Investments: Importance and Difficulties, phases of capital	07 Hrs			
budgeting, levels of decision making, facets of project analysis, feasibility study - a				
schematic diagram, objectives of capital budgeting				
Unit – III				
Project Costing: Cost of Project, Means of Finance, Cost of Production, Working Capital	08 Hrs			
Requirement and its Financing, Profitability Projections, Projected Cash Flow Statement,				
Projected Balance Sheet, Multi-year Projections, Financial Modeling, Social Cost Benefit				
Analysis				
Unit – IV				
Tools & Techniques of Project Management: Bar (GANTT) chart, bar chart for combined	07Hrs			
activities, logic diagrams and networks, Project evaluation and review Techniques (PERT)				
Critical Path Method (CPM), Computerized project management				
Unit-V				
Project Management and Certification: An introduction to SEI, CMMI and project	07 Hrs			
management institute USA – importance of the same for the industry and practitioners.				
PMBOK 6 - Introduction to Agile Methodology, Themes / Epics / Stories, Implementing				
Agile.				
Domain Specific Case Studies on Project Management: Case studies covering project				
planning, scheduling, use of tools & techniques, performance measurement.				
	<u>.</u>			

Course Outcomes: After going through this course the student will be able to:					
CO1	Explain project planning activities that accurately forecast project costs, timelines, and quality.				
CO2	Evaluate the budget and cost analysis of project feasibility.				
CO3	Analyze the concepts, tools and techniques for managing projects.				
CO4	Illustrate project management practices to meet the needs of Domain specific stakeholders from multiple sectors of the economy (i.e. consulting, government, arts, media, and charity organizations).				

Ref	Reference Books:					
1	Prasanna Chandra, Project Planning Analysis Selection Financing Implementation & Review, Tata					
	McGraw Hill Publication, 8th Edition, 2010, ISBN 0-07-007793-2.					
2	Project Management Institute, A Guide to the Project Management Body of Knowledge (PMBOK Guide), 5 th Edition, 2013, ISBN: 978-1-935589-67-9					
3	Harold Kerzner, Project Management A System approach to Planning Scheduling & Controlling, John Wiley & Sons Inc., 11 th Edition, 2013, ISBN 978-1-118-02227-6.					

4 Rory Burke, Project Management – Planning and Controlling Techniques, John Wiley & Sons, 4th Edition, 2004, ISBN: 9812-53-121-1

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks**.

Scheme of Semester End Examination (SEE) for 100 marks:

II Semester					
ENERGY MANAGEMENT					
(Group G: Global Elective)					
Course Code: 18CH2G05	CIE Marks: 100				
Credits: L:T:P: 3:0:0	SEE Marks: 100				
Hours: 36L	SEE Hrs: 3				

Course Learning Objectives(CLO):

Students are able to:

- 1. Explain the importance of energy conservation and energy audit.
- 2. Understand basic principles of renewable sources of energy and technologies.
- 3. Outline utilization of renewable energy sources for both domestics and industrial application.
- 4. Analyse the environmental aspects of renewable energy resources.

Unit-I	08 Hrs			
Energy conservation:				
Principles of energy conservation, Energy audit and types of energy audit,	Energy			
conservation approaches, Cogeneration and types of cogeneration, Heat Exchange	gers and			
classification.	-			
Unit-II	07 Hrs			
Wet Biomass Gasifiers:				
Introduction, Classification of feedstock for biogas generation, Biomass co	nversion			
technologies: Wet and dry processes, Photosynthesis, Biogas generation, Factors	affecting			
bio-digestion, Classification of biogas plants, Floating drum plant and fixed dome pl	ant their			
advantages and disadvantages.				
Unit -III	07 Hrs			
Dry Biomass Gasifiers :				
Biomass energy conversion routes, Thermal gasification of biomass, Classific	ation of			
gasifiers, Fixed bed systems: Construction and operation of up draught and down	draught			
gasifiers.				
Unit -IV	07 Hrs			
Solar Photovoltaic:				
Principle of photovoltaic conversion of solar energy, Types of solar cells and fabricat	ion.			
Wind Energy:				
Classification, Factors influencing wind, WECS & classification.				
Unit -V	07 Hrs			
Alternative liquid fuels:				
Introduction, Ethanol production: Raw materials, Pre-treatment, Conversion processes with				
detailed flow sheet. Gasification of wood: Detailed process, Gas purification and shift				
conversion, Biofuel from water hyacinth.				
Course outcomes (CO):				

M Tech Communication Systems

On completion of the course, the student should have acquired the ability to CO1: Understand the use alternate fuels for energy conversion CO2: Develop a scheme for energy audit CO3: Evaluate the factors affecting biomass energy conversion CO4: Design a biogas plant for wet and dry feed **Reference Books:** Nonconventional energy, Ashok V Desai, 5th Edition, 2011, New Age International (P) 1 Limited, ISBN 13: 9788122402070. 2 Biogas Technology - A Practical Hand Book, Khandelwal K C and Mahdi S S, Vol. I & II, 1986, McGraw-Hill Education, ISBN-13: 978-0074517239. Biomass Conversion and Technology, Charles Y Wereko-Brobby and Essel B Hagan, 1st 3 Edition, 1996, John Wiley & Sons, ISBN-13: 978-0471962465. Solar Photovoltaics: Fundamental Applications and Technologies, C. S. Solanki, 2nd 4 Edition, 2009, Prentice Hall of India, ISBN:9788120343863.

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks):

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/ field work 4) mini project.

Total CIE is 20+50+30 = 100 marks.

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II						
INDUSTRY 4.0						
		()	Froup G: Global Electiv	/e)		
Course Code	:	18ME2G06		CIE Marks	:	100
Credits L: T: P	:	3:0:0		SEE Marks	:	100
Hours	:	36L		SEE Duration	:	3 hrs

Unit – I				
Introduction: Industrial, Internet, Case studies, Cloud and Fog, M2M Learning and	07 Hrs			
Artificial Intelligence, AR, Industrial Internet Architecture Framework (IIAF), Data				
Management.				
Unit – II				
The Concept of the IIoT: Modern Communication Protocols, Wireless Communication	07 Hrs			
Technologies, Proximity Network Communication Protocols, TCP/IP, API: A Technical				
Perspective, Middleware Architecture.				
Unit – III				
Data Analytics in Manufacturing: Introduction, Power Consumption in manufacturing,	08 Hrs			
Anomaly Detection in Air Conditioning, Smart Remote Machinery Maintenance Systems				
with Komatsu, Quality Prediction in Steel Manufacturing.				
Internet of Things and New Value Proposition, Introduction, Internet of Things Examples,				
IoTs Value Creation Barriers: Standards, Security and Privacy Concerns.				
Advances in Robotics in the Era of Industry 4.0, Introduction, Recent Technological				
Components of Robots, Advanced Sensor Technologies, Artificial Intelligence, Internet of				
Robotic Things, Cloud Robotics.				
Unit – IV				
Additive Manufacturing Technologies and Applications: Introduction, Additive	07 Hrs			
Manufacturing (AM) Technologies, Stereo lithography, 3DP, Fused Deposition Modeling,				
Selective Laser Sintering, Laminated Object Manufacturing, Laser Engineered Net				
Shaping, Advantages of Additive Manufacturing, Disadvantages of Additive				
Manufacturing.				
Advances in Virtual Factory Research and Applications, The State of Art, The Virtual				
Factory Software, Limitations of the Commercial Software				
Unit –V				
Augmented Reality: The Role of Augmented Reality in the Age of Industry 4.0,	07 Hrs			
Introduction, AR Hardware and Software Technology, Industrial Applications of AR,				
Maintenance, Assembly, Collaborative Operations, Training.				
Smart Factories: Introduction, Smart factories in action, Importance, Real world smart				
factories, The way forward.				
A Roadmap: Digital Transformation, Transforming Operational Processes, Business				
Models, Increase Operational Efficiency, Develop New Business Models.				

Course Outcomes: After going through this course the student will be able to:					
CO1	Understand the opportunities, challenges brought about by Industry 4.0 for benefits of				
	organizations and individuals				
CO2	Analyze the effectiveness of Smart Factories, Smart cities, Smart products and Smart services				
CO3	Apply the Industrial 4.0 concepts in a manufacturing plant to improve productivity and profits				
CO4	Evaluate the effectiveness of Cloud Computing in a networked economy				

R	Reference Books:						
1	Alasdair Gilchrist, INDUSTRY 4.0 THE INDUSTRIAL INTERNET OF THINGS, Apress						
	Publisher, ISBN-13 (pbk): 978-1-4842-2046-7						
2	Alp Ustundag, Emre Cevikcan, Industry 4.0: Managing The Digital Transformation, Springer, 2018 ISBN 978-3-319-57869-9.						
	Ovidiu Vermesan and Peer Friess, Designing the industry - Internet of things connecting the						
3	physical, digital and virtual worlds, Rivers Publishers, 2016 ISBN 978-87-93379-81-7						
4	Christoph Jan Bartodziej, The concept Industry 4.0- An Empirical Analysis of Technologies and						
	Applications in Production Logistics, Springer Gabler, 2017 ISBN 978-3-6581-6502-4.						

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks**.

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II						
ADVANCED MATERIALS						
	-	<u> </u>	Froup G: Global Electiv	/e)	1	
Course Code	:	18ME2G07		CIE Marks	:	100
Credits L: T: P	:	3:0:0		SEE Marks	:	100
Hours	:	36L		SEE Duration	:	3 hrs

Unit – I				
Classification and Selection of Materials: Classification of materials. Properties required	07 Hrs			
in Engineering materials, Criteria of selection of materials. Requirements / needs of				
advance materials.				
Unit – II				
Non Metallic Materials: Classification of n on metallic materials, Rubber : Properties,	07 Hrs			
processing and applications. Plastics : Thermosetting and Thermoplastics, Applications and				
properties. Ceramics : Properties and applications. Adhesives: Properties and applications.				
Optical fibers : Properties and applications. Composites : Properties and applications.				
Unit – III				
High Strength Materials: Methods of strengthening of alloys, Materials available for	08 Hrs			
high strength applications, Properties required for high strength materials, Applications of				
high strength materials				
Unit – IV				
Low & High Temperature Materials	07 Hrs			
Properties required for low temperature applications, Materials available for low				
temperature applications, Requirements of materials for high temperature applications,				
Materials available for high temperature applications, Applications of low and high				
temperature materials.				
Unit –V				
Nanomaterials: Definition, Types of nanomaterials including carbon nanotubes and	07 Hrs			
nanocomposites, Physical and mechanical properties, Applications of nanomaterials				

Course Outcomes: After going through this course the student will be able to:		
CO1	Describe metallic and non metallic materials	
CO2	Explain preparation of high strength Materials	
CO3	Integrate knowledge of different types of advanced engineering Materials	
CO4	Analyse problem and find appropriate solution for use of materials.	

R	Reference Books:		
1	Donald R. Askeland, and Pradeep P. Fulay, The Science & Engineering of Materials, 5th Edition, Thomson, 2006, ISBN 12,078,0524552068		
	1 IIOIIISOII, 2000, ISBN-15-978-0534555908		
2	Gregory L. Timp, Nanotechnologym 1999th Editionmm Springer, 1999 ISBN-13: 978-0387983349		
	Dr. VD Kodgire and Dr. S V Kodgire, Material Science and Metallurgym 42nd Edition 2018,		
3	Everest Publishing House ISBN NO: 81 86314 00 8		
4	N Bhatnagar, T S Srivatsan, Processing and Fabrication of Advanced Materials, 2008, IK		
	International, ISBN: 978819077702		

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks**.

Scheme of Semester End Examination (SEE) for 100 marks:

		Semester: II		
COMPOSITE MATERIALS SCIENCE AND ENGINEERING				
(Common to AS, B1, CH, CV, IM, ME)				
Credits: L :T:D:S: 3:1:0:0 CIE Marks: 100 SEE Marks: 100 SEE Marks: 100				
Uleu	IIIS: L: I:F:S: 3.1.0.0		SEE Marks: 100	
Hou	$\mathbf{FS: 30L + 121}$		SEE Duration: SHI'S	
	rse Learning Objectives:			
	Understand the properties of	composite materials.		. 1
2	Apply the basic concepts of	Chemistry to develop futuristic	composite materials for high	n-tech
2	applications in the area of En	gineering.	. 1	1
3	Impart knowledge in the diff	erent fields of material chemistry	y so as to apply it to the pro-	blems
4	In engineering field.	in of students on that they are	ale and a staring the second and an	d waa
4	Develop analytical capability	ies of students so that they can	i characterize, transform an	d use
	materials in engineering and	Unit I	ing related engineering proble	ins.
Intre	duction to composite motori			07
Fund	amentals of composites	need for composites Enha	incoment of properties	U/ Hrs
Class	refication based on matrix Po	lymer matrix composites (PMC)	Metal matrix composites	1115
(MM	[C) Ceramic matrix composi	(CMC) = Constituents of (composites Interfaces and	
Inter	phases Distribution of con-	stituents Types of Reinforcer	nents Particle reinforced	
com	posites Fibre reinforced com	posites Fiber production technic	ques for glass carbon and	
cerat	nic fibers Applications of vario	bus types of composites.	ques foi gluss, europh und	
		Unit – II		
Polv	mer matrix composites (PM	C)		08
Polv	mer resins – Thermosetting res	ins. Thermoplastic resins & Elas	stomers.	Hrs
Rein	forcement fibres-Types. Roy	vings, Woven fabrics. PMC t	processes – Hand Lavup	~
Proc	esses, Spray up processes – Co	ompression Moulding – Injection	Moulding – Resin Transfer	
Mou	lding – Pultrusion – Filament	winding – Injection moulding. C	Glass fibre and carbon fibre	
reinf	orced composites (GFRP &	c CFRP). Laminates- Balance	ed Laminates, Symmetric	
Lam	inates, Angle Ply Laminates, (Cross Ply Laminates. Mechanica	al Testing of PMC- Tensile	
Strer	igth, Flexural Strength, ILSS,	Impact Strength- As per ASTM	I Standard. Applications of	
PMC	c in aerospace, automotive indu	istries.		
		Unit -III		
Cera	mic matrix composites and s	pecial composites		07
Engi	neering ceramic materials – pr	operties – advantages – limitatio	ons – monolithic ceramics –	Hrs
need	for CMC – ceramic matrix – y	various types of ceramic matrix of	composites- oxide ceramics	
-not	n oxide ceramics – Aluminium	n oxide – silicon nitride – reinfor	cements – particles- fibres-	
whis	kers. Sintering – Hot pressing	– Cold Isostatic Pressing (CIPir	ng) – Hot isostatic pressing	
(HIPing). Applications of CMC in aerospace, automotive industries- Carbon /carbon				
composites – advantages of carbon matrix – limitations of carbon matrix carbon fibre –				
chen	ical vapour deposition of cart	bon on carbon fibre perform. So	I-gel technique- Processing	
OI CO	eramic Matrix composites.	TT:4 TT7		
Unit –IV				
Chor	a matrix composites	mag of motol matrix compositor	allow va MMC advantagea	U/ Uma
of MMC limitations of MMC Painforcements particles fibres Effect of rainforcement			1115	
volume fraction – rule of mixtures Processing of MMC – nowder metallurgy process –				
diffusion bonding – stir casting – squeeze casting a spray process Liquid infiltration In-situ				
reactions-Interface-measurement of interface properties- applications of MMC in aerospace				
automotive industries.				
Unit –V				
Polv	mer nano composites			07
Introduction and Significance of polymer Nano composites. Intercalated And Exfoliated Hrs				
Nano	ocomposites. Classification	of Nano fillers- nanolayers,	nanotubes, nanoparticles.	

Preparation of Polymer Nano composites by Solution, In-situ Polymerization and melt mixing techniques. Characterization Of polymer nanocomposites- XRD, TEM, SEM and AFM. Mechanical and Rheological properties of Polymer Nano composites. Gas barrier, Chemical-Resistance, Thermal and Flame retardant properties of polymer nanocomposites. Optical properties and Biodegradability studies of Polymer nanocomposites, Applications of polymer nano-composites.

Course Outcomes: After completing the course, the students will be able to		
CO1:	Understand the purpose and the ways to develop new materials upon proper	
	combination of known materials.	
CO2:	Identify the basic constituents of a composite materials and list the choice of materials	
	available	
CO3:	Will be capable of comparing/evaluating the relative merits of using alternatives for	
	important engineering and other applications.	
CO4:	Get insight to the possibility of replacing the existing macro materials with nano-	
	materials.	

Reference Books

Activitie Doords			
1	Composite Materials Science and Engineering, Krishan K Chawla, 3 rd Edition Springer-verlag Gmbh, , ISBN: 9780387743646, 0387743642		
2	The Science and Engineering of Materials, K Balani, Donald R Askeland,6 th Edition-Cengage, Publishers, ISBN: 9788131516416		
3	Polymer Science and Technology, Joel R Fried, 2 nd Edition, Prentice Hall, ISBN: 9780137039555		
4	Nanomaterials and nanocomposites, Rajendra Kumar Goyal, 2 nd Edition, CRC Press-Taylor & Francis, ISBN: 9781498761666, 1498761666		

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project.

Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

Semester : II		
PHYSICS OF MATERIALS		
	(Group G: Global Elective)	
Course Code: 18PHY2G09		CIE Marks: 100
Credits: L:T:P:: 3:0:0		SEE Marks: 100
Hours: 36		SEE Duration: 3Hrs

Course Learning Objectives (CLO):

Student are able to

1. Classify the crystals based on lattice parameters.

2.Explain the behavior of Dielectrics with change in frequency.

3.Classify the magnetic materials based on Quantum theory as well understand superconductors.

4.Explain direct and indirect bandgap semiconductors, polymer semiconductors and Photoconductive polymers.

5.Describe the behavior of Smart materials and its phases and apply to Engineering applications.

Unit-I	07 Hrs
Crystal Structure :	
Symmetry elements-seven crystals systems-Reciprocal lattice-Packing fraction,	Lattice
Vibration-Brillouin zones, Analysis of Crystal structure using XRD, Thermal property	ies.
Unit-II	07 Hrs
Dielectric Materials:	
Basic concepts-Langevin's Theory of Polarisation-Clausius-Mossotti Relation	on-Ferro
electricity-Piezoelectricity-Properties of Dielectric in alternating fields-The	complex
Dielectric Constant and Dielectric Loss, Polarizability as a function of frequency-	Complex
dielectric constant of non-polar solids-Dipolar relaxation, Applications.	
Unit -III	07Hrs
Magnetic Materials :	
Dia and Paramagnetic materials-Quantum theory of paramagnetic materials-Parar	nagnetic
susceptibility of conduction electrons-Ferro-anti ferromagnetic materials-Superco	nductors
and Applications	
Unit -IV	07 Hrs
Semiconducting Materials	
Semiconductor-Direct and Indirect bonding characteristics-Importance of (Quantum
confinement-quantum wires and dots-Ferro electric semiconductors-applications-	Polymer
semiconductors-Photo conductive polymers, Applications.	
Unit -V	08 Hrs
Novel Materials	
Smart materials-shape memory alloys-shape memory effects-Martensitia Transfe	ormation
functional properties-processing-texture and its nature.	

Re	Reference Books:		
1.	Solid State Physics, S O Pillai, 6 th Edition, New Age International Publishers, ISBN 10-		
	8122436978.		
2.	Introduction to Solid State Physics, C.Kittel, 7 th Edition, 2003, John Wiley & Sons, ISBN		
	9971-51-180.		
3.	Material Science, Rajendran V and Marikani, 1st Edition, Tata McGraw Hill, ISBN 10-		
	0071328971.		
4.	The Science and Engineering of Materials, Askeland, Fulay, Wright, Balanai, 6 th Edition,		
	Cengage Learning, ISBN-13:978-0-495-66802-2.		

Course Outcomes (CO's): CO1: Analyse crystals using XRD technique. CO2: Explain Dielectric and magnetic materials. CO3:Integrate knowledge of various types of advanced engineering Materials. CO4: Use materials for novel applications.

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks):

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/ field work 4) mini project.

Total CIE is 20+50+30 = 100 marks.

Scheme of Semester End Examination (SEE) for 100 marks:

II Semester		
ADVANCED STATISTICAL METHODS		
(Global Elective)		
Course Code: 18MAT2G10	CIE Marks: 100	
Credits: L:T:P:: 3:0:0	SEE Marks: 100	
Hours: 36	SEE Duration: 3Hrs	

Course Learning Objectives (CLO):

Students are able to:

1. Adequate exposure to learn sampling techniques, random phenomena for analyzing data for solving real world problems.

2. To learn fundamentals of estimation and problems used in various fields of engineering and science.

3. Explore the fundamental principles of statistical inference and tests of hypothesis.

4. Apply the concepts of regression and statistical models to solve the problems of engineering applications.

Unit-I	07 Hrs
Sampling Techniques:	
Random numbers, Concepts of random sampling from finite and infinite populations	, Simple
random sampling (with replacement and without replacement). Expectation and	standard
error of sample mean and proportion.	
Unit-II	07 Hrs
Estimation:	
Point estimation, Estimator and estimate, Criteria for good estimates - unbiasedness, consistency, efficiency and sufficiency, Method of moment's estimation and maximum	
likelihood estimation, Properties of maximum likelihood estimator (no proofs), Co	nfidence
intervals-population mean (large sample), population proportion.	
Unit -III	07Hrs
Tests of Hypothesis:	
Principles of Statistical Inference, Formulation of the problems with examples, Simple and	
composite hypothesis, Null and alternative hypothesis, Tests - type I and type II error,	
Testing of mean and variance of normal population (one sample and two samples), Chi	
squared test for goodness of fit.	
Unit -IV	07 Hrs
Linear Statistical Models:	
Definition of linear model and types, One way ANOVA and two way ANOVA models-one	
observation per cell, multiple but equal number of observation per cell.	
Unit -V	08 Hrs
Linear Regression:	
Simple linear regression, Estimation of parameters, Properties of least square estimators,	
Estimation of error variance, Multivariate data, Multiple linear regressions, Multiple and	
partial correlation, Autocorrelation-introduction and plausibility of serial dep	endence,

sources of autocorrelation, Durbin-Watson test for auto correlated variables.

Ref	Reference Books:		
1	Fundamentals of Statistics (Vol. I and Vol. II), A. M. Goon, M. K. Gupta and B.		
	Dasgupta, 3 rd Edition, 1968, World Press Private Limited, ISBN-13: 978-8187567806.		
2	Applied Statistics and Probability for Engineers, John Wiley & Sons, Inc., 3 rd Edition,		
	2003, ISBN 0-471-20454-4.		
3	S.C. Gupta, V.K. Kapoor, Fundamentals of Mathematical Statistic, D. C. Montgomery		
	and G. C. Runger, 10 th Edition, 2000, A Modern Approach, S Chand Publications,		
	ISBN 81-7014-791-3.		
4	Regression Analysis: Concepts and Applications , F. A. Graybill and H. K. Iyer,		
	Belmont, Calif, 1994, Duxbury Press, ISBN-13: 978-0534198695.		

Course outcomes (CO's):

On completion of the course, the student should have acquired the ability to

CO1: Identify and interpret the fundamental concepts of sampling techniques, estimates and types, hypothesis, linear statistical models and linear regression arising in various fields engineering.

CO2: Apply the knowledge and skills of simple random sampling, estimation, null and alternative hypotheses, errors, one way ANOVA, linear and multiple linear regressions.

CO3: Analyze the physical problem to establish statistical/mathematical model and use appropriate statistical methods to solve and optimize the solution.

CO4: Distinguish the overall mathematical knowledge gained to demonstrate the problems of sampling techniques, estimation, tests of hypothesis, regression and statistical model arising in many practical situations.

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks):

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/ field work 4) mini project.

Total CIE is 20+50+30 = 100 marks.

Scheme of Semester End Examination (SEE) for 100 marks:

Curriculum Design Process

Academic Planning And Implementation

Process For Course Outcome Attainment

Final CO Attainment Process

Program Outcome Attainment Process

PROGRAM OUTCOMES (PO)

- M. Tech. Communication Systems graduates will be able to:
- PO1: Independently carry out research /investigation and development work to solve practical problems related to Communication Systems.
- PO2: Write and present a substantial technical report/document in the field of Communication Systems
- PO3: Demonstrate a degree of mastery over the area of Communication Systems. The mastery should be at a level higher than the requirements in the bachelor's in Electronics & Communication Engineering program
- PO4: Design and develop communication system modules with good economics and business practices in order to meet the global challenges.
- PO5: Abstract the requirements of an application to interface with communication modules.
- PO6: Acquire professional and intellectual integrity, ethics of research and execute projects efficiently.