

Civil Engineering

Bachelor of Engineering (B.E)

Scheme And Syllabus Of III & IV Semester (2022 Scheme)

B.E. Programs: AS, BT, CH, CS, CS - AI, CS - CD, CS - CY, CV, EC, EE, ET, IM, IS, ME.

M. Tech (13) MCA, M.Sc. (Engg.)

Ph.D. Programs: All Departments are recognized as Research Centres by VTU Except

AI & AS

2024

NIRF RANKING IN ENGINEERING (2024) TIMES HIGHER EDUCATION WORLD UNIVERSITY

1501+

TIMES HIGHER EDUCATION WORLD UNIVERSITY

501-600

EDUFUTURE EXCELLENCE AWARD

BEST PRIVATE ENGINEERING UNIVERSITY (SOUTH)

BY ZEE DIGITAL

1001+

SUBJECT RANKING (ENGINEERING) 801+

SUBJECT RANKING (COMPUTER SCIENCE)

IIRF 2023 ENGINEERING RANKING INDIA

NATIONAL RANK-10 STATE RANK - 2 ZONE RANK - 5

QS-IGUAGE DIAMOND UNIVERSITY RATING (2021-2024)

Centers of Excellence

212

Publications On Web Of Science 669
Publications Scopus
(2023 - 24)

Centers of

Competence

1093

Skill Based Laboratories Across Four Semesters 70
Patents Filed

39
Patents Granted

61
Published Patents

CURRICULUM STRUCTURE

61 CREDITS
PROFESSIONAL
CORES (PC)

23 CREDITS
BASIC SCIENCE

22 CREDITS ENGINEERING SCIENCE 18 CREDITS PROJECT WORK /

12 CREDITS*
OTHER ELECTIVES

12 CREDITS PROFESSIONAL ELECTIVES 12 CREDITS HUMANITIES & SOCIAL SCIENCE

160 CREDITS TOTAL

*ABILITY ENHANCEMENT COURSES (AEC), UNIVERSAL HUMAN VALUES (UHV), INDIAN KNOWLEDGE SYSTEM (IKS), YOGA.

MOUS: 90+WITH
INSDUSTRIES / ACADEMIC
INSTITUTIONS IN INDIA & ABROAD

EXECUTED MORE THAN RS.40 CRORES WORTH SPONSORED RESEARCH PROJECTS & CONSULTANCY WORKS SINCE 3 YEARS

Civil Engineering

Bachelor of Engineering (B.E)

Scheme And Syllabus Of III & IV Semester (2022 Scheme)

B.E. Programs: AS, BT, CH, CS, CS - AI, CS - CD, CS - CY, CV, EC, EE, ET, IM, IS, ME.

M. Tech (13) MCA, M.Sc. (Engg.)

Ph.D. Programs: All Departments are recognized as Research Centres by VTU Except

AI & AS

2024

Vision

Excel in Education, Research and Consultancy in Civil Engineering with emphasis on Sustainable Development

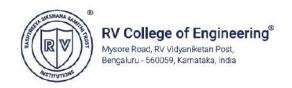
Mission

- 1. Disseminating and integrating the knowledge of civil Engineering and allied fields
- 2. Enhancing industry-institute interaction leading to interdisciplinary research.
- 3. Imbibing wide-range of skills in cutting-edge technology for sustainable development.
- 4. Motivate entrepreneurship and professional ethics to serve the society.

Program Educational Objectives

After successful completion of the program, the graduates will be able to

PEO1: Successfully address technological and managerial challenges.


PEO2: Professionally design and execute Civil Engineering projects.

PEO3: Pursue advanced education, research and continue life-long learning process to remain active professionals.

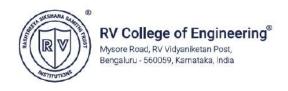
PEO4: Play key roles in addressing societal needs through interdisciplinary approach.

Program Specific Outcomes

- 1. Apply knowledge of fundamental aspects to analyze and design civil engineering structures.
- 2. Provide sustainable solutions to civil engineering problems.
- 3. Employ codal provisions to arrive at comprehensive solutions to address societal needs
- 4. Exhibit communication and teamwork skills.

ABBREVIATIONS

S1.	Abbreviation	Meaning
No.		
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	SEE	Semester End Examination
5.	PE	Professional Core Elective
6.	GE	Global Elective
7.	HSS	Humanities and Social Sciences
8.	PY	Physics
9.	CY	Chemistry
10.	MA	Mathematics
11.	AS	Aerospace Engineering
12.	AI & ML	Artificial Intelligence & Machine Learning
13.	BT	Biotechnology
14.	СН	Chemical Engineering
15.	CS	Computer Science & Engineering
16.	CV	Civil Engineering
17.	EC	Electronics & Communication Engineering
18.	EE	Electrical & Electronics Engineering
19.	EI	Electronics & Instrumentation Engineering
20.	ET	Electronics & Telecommunication Engineering
21.	IM	Industrial Engineering & Management
22.	IS	Information Science & Engineering
23.	ME	Mechanical Engineering



INDEX

		SECOND YEAR COURSES	
Sl. No.	Course Code	Name of the Course	Page No.
1.	MA231TD	Applied Mathematics for Civil Engineering	1-3
2.	CV232TA	Environment & Sustainability	4-5
3.	ME232TA	Material Science for Engineers	6-7
4.	BT232TA	Bio Safety Standards and Ethics	8-9
5.	CV233AI	Surveying	10-12
6.	CV234AI	Concrete Technology	13-15
7.	CV235AI	Mechanics of Materials	16-18
8.	HS237LA	National Service Scheme	19-20
9.	HS237LB	National Cadet Corps	21-22
10.	HS237LC	Physical Education : Sports & Athletics	23-24
11.	HS237LD	Music	25-26
12.	HS237LE	Dance	27-28
13.	HS237LF	Theater (Light Camera & Action)	29-30
14.	HS237LG	Art Work & Painting	31-32
15.	HS237LH	Photography & Film Making	33-34
16.	CS139AT	Bridge Course: C Programming	35-37
17.	MA241AT	Probability Theory and Linear Programming	38-40
18.	CV242AT	Environment & Sustainability	41-43
19.	ME242AT	Material Science for Engineers	44-45
20.	BT242AT	Bio Safety Standards and Ethics	46-47
21.	CV343AI	Mechanics of Fluids	48-50
22.	CV244AI	Building Planning and Drawing	51-53
23.	CV345AT	Structural Analysis	54-55
24.	CV246TA	Ecology and Environment	56
25.	CV246TB	Remote Sensing and GIS	57
26.	CV246TC	River Engineering	58
27.	CV246TD	Project Planning & Control	59

28.	CV246TE	Sustainable Engineering Concepts and Life Cycle Analysis	60
29.	CV246TF	Building Energy Systems and Auditing	61
30.	CV246TG	Interior Design	62-63
31.	CV247DL	Design Thinking Lab	64-65
32.	HS248AT	Universal Human Values II	66-67
33.	MAT149AT	Bridge Course: Mathematics	68-69

B.E. IN CIVIL ENGINEERING

							III SEMES	TER						
Sl. No.	l ('nurga Titla		Credit Allocatio				BoS	Category	CIE Duration (H)	Max Marks CIE		SEE Duration (H)	Max Ma	rks SEE
			L	T	P	Total				Theory	Lab		Theory	Lab
1	MA231TD	Applied Mathematics for Civil Engineering	3	1	0	4	MA	Theory	1.5	100		3	100	
2	XX232TX	Basket Courses - Group A	3	0	0	3	BT/CV/ME	Theory	1.5	100		3	100	
3	CV233AI	Surveying	3	0	1	4	(V	Theory & Lab	1.5	100	50	3	100	50
4	CV234AI	Concrete Technology	3	0	1	4	(V	Theory & Lab	1.5	100	50	3	100	50
5	CV235AI	Mechanics of Materials	3	0	1	4	L V	Theory & Lab	1.5	100	50	3	100	50
6	HS237LX	Ability Enhancement Courses - Group C	0	0	2	2	HS	Lab	1		50	2		50
7	CS139AT	Bridge Course: C Programming	2	0	0	Audit	CS	Theory (Audit Course)						
		Total				21								

Group A: Basket Courses (Students can select any ONE COURSE out of THREE COURSES in ODD Sem & ONE COURSE out of remaining courses in EVEN Sem) CVEnvironment & Sustainability 3 Theory CV232TA 0 0 3 0 3 Theory ME232TB 0 ME Material Science for Engineers 3 BT232TC 0 0 3 BTBio Safety Standards and Ethics Theory

			Ability Enhancement Course-Group	рΒ				
Sl. No.	BoS	Course Code	Course Title	L	Т	P	Credit s	Categor y
	HS	HS237LA	National Service Scheme	0	0	2	2	LAB
	HS	HS237LB	National Cadet Corps	0	0	2	2	LAB
	HS	HS237LC	Physical Education : Sports & Athletics	0	0	2	2	LAB
6	HS	HS237LD	Music	0	0	2	2	LAB
	HS	HS237LE	Dance	0	0	2	2	LAB
	HS	HS237LF	Theater (Light Camera & Action)	0	0	2	2	LAB
	HS	HS237LG	Art Work & Painting	0	0	2	2	LAB
	HS	HS237LH	Photography & Film Making	0	0	2	2	LAB

B.E. IN CIVIL ENGINEERING

							IV SEMES	TER						
Sl. No.	Course Code	Course Title	Cree	dit A	Allocation		BoS	Category	CIE Duration (H)	Max Marks CIE		SEE Duration (H)	Max Ma	rks SEE
			L	T	P	Total				Theory	Lab		Theory	Lab
1	MA241AT	Probability Theory and Linear Programming	3	0	0	3	MA	Theory	1.5	100		3	100	
2	XX242TX	Basket Courses - Group A	3	0	0	3	BT/CV/ME	Theory	1.5	100		3	100	
3	CV343AI	Mechanics of Fluids	3	0	1	4	CV	Theory & Lab	1.5	100	50	3	100	50
4	IC 1/ / / / / / A A I	Building Planning and Drawing	3	0	1	4	CV	Theory & Lab	1.5	100	50	3	100	50
5	CV345AT	Structural Analysis	3	0	0	3	CV	Theory	1.5	100		3	100	
6	CV246TX	Professional Elective Courses - Group B	2	0	0	2		Theory (NPTEL)	1	100		3	100	
7	CV247DL	Design Thinking Lab	0	0	2	2	CV	Lab			50	2		50
8	HS248AT	Universal Human Values II	2	0	0	2	HS	Theory	1	50		2	50	
9	MA149AT	Bridge Course: Mathematics		0	0	Audit	MA	Theory						
		Total				23								

Group A: Basket Courses (Students can select any ONE COURSE out of THREE COURSES in ODD Sem & ONE COURSE out of remaining courses in EVEN Sem) CV242TA 0 0 3 Theory CVEnvironment & Sustainability 3 Theory 3 3 2 ME ME242TB Material Science for Engineers 0 0 BTBT242TC Bio Safety Standards and Ethics 3 0 0 Theory

		Professiona	l Elective Courses - Group B (NPT	EL	Cou	rse))	
Sl. No.	BoS	Course Code	Course Title	L	Т	P	Total	Category
	CV	CV246TA	Ecology and Environment	2	0	0	2	NPTEL
	CV	CV246TB	Remote Sensing and GIS	2	0	0	2	NPTEL
	CV CV246TC		River Engineering	2	0	0	2	NPTEL
6	CV	CV246TD	Project Planning & Control	2	0	0	2	NPTEL
0	CV	CV246TE	Sustainable Engineering Concepts and Life Cycle Analysis	2	0	0	2	NPTEL
	CV	CV246TF	Building Energy Systems and Auditing	2	0	0	2	NPTEL
	CV	CV246TG	Interior Design	2	0	0	2	NPTEL

			Semester: III			
A	PP	LIED MATHEMA	ATICS FOR CIVII	ENGINEERING		
			(Theory)			
			(CV)			
Course Code	:	MA231TD		CIE	:	100 Marks
Credits: L: T: P	:	3:1:0		SEE	:	100 Marks
Total Hours	:	45L+30T		SEE Duration	:	3.00 Hours

Unit-I	09 Hrs

Multivariate Statistics:

Spearman rank correlation, multivariate data, multiple and partial correlation. Multiple linear regression. Analysis of variance. Implementation using MATLAB.

Unit – II 09 Hrs

Complex Analysis:

Complex function, analytic function, Cauchy-Riemann equations, harmonic functions. Construction of analytic function—Milne -Thomson method. Taylor, Maclaurin, Laurent series. Zeros and poles, Residue theorem. Implementation using MATLAB.

Unit –III 09 Hrs

Partial Differential Equations:

Formation of partial differential equations by elimination of arbitrary constants and functions, Solution of Lagrange linear equation. Solution of partial differential equations by method of separation of variables. Solution to wave and heat equations in one dimension and Laplace equation in two dimensions by the method of separation of variables. Implementation using MATLAB.

Unit –IV 09 Hrs

Numerical Methods for Partial Differential Equations:

Numerical solutions to partial differential equations – Finite difference approximation to derivatives, solution of Laplace equation in two-dimension, heat and wave equations in one dimension (explicit methods). Implementation using MATLAB.

Unit –V 09 Hrs

Calculus of Variations:

Introduction to variation of functionals, extremal of functional, Euler equation—special cases, problems. Geodesics, Hanging cable and Brachistochrone problems. Exploring geodesics graphically using MATLAB.

Cours	se Outcomes: After completing the course, the students will be able to
CO1:	Illustrate the fundamental concepts of multivariate statistics, complex analysis, partial differential equations and variational problems.
CO2:	Apply the acquired knowledge of multivariate data, complex functions, partial differential equations to solve the problems of civil engineering.
CO3:	Analyze the multilinear regression, variance, variational principles and numerical methods to the real-world problems.
CO4:	Interpret the knowledge of calculus of variation, analytic functions and numerical methods obtained to solve problems arising in many practical situations.

Refere	ence Books
1	Advanced Engineering Mathematics, Dennis G. Zill, Warren S. Wright, 6 th Edition, 2016, Jones and Bartlett publishers, ISBN: 13-978-1284105902.
2	Numerical Methods for Scientific and Engineering Computation, M.K. Jain, S.R.K. Iyenger and R.K. Jain, 6 th Edition, 2012, New Age International Publishers, ISBN: 9788122433234, 8122433235.
3	Applied Statistics and Probability for Engineers, Douglas C. Montgomery and George C. Runger, 6 th Edition, 2014, John Wiley & Sons, ISBN:13 9781118539712, ISBN (BRV):9781118645062.
4	Higher Engineering Mathematics, B.S. Grewal, 44 th Edition, 2015, Khanna Publishers, ISBN: 81-7409-195-5.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEOR	RY)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted (Two regular tests & One optional Improvement test). Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20). ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)								
Q. NO.	Q. NO. CONTENTS							
	PART A							
1	Objective type questions covering entire syllabus	20						
	PART B							
(Maximum of TWO Sub-divisions only)								

2	Unit 1: (Compulsory)	16
3 & 4	Unit 2: Question 3 or 4	16
5 & 6	Unit 3: Question 5 or 6	16
7 & 8	Unit 4: Question 7 or 8	16
9 & 10	Unit 5: Question 9 or 10	16
	TOTAL	100

Semester: III

ENVIRONMENT & SUSTAINABILITY

Category: Basket Courses - Group A Stream: (Common to all Programs)

(Theory)

Course Code	:	CV232TA	CIE	:	100 Marks
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks
Total Hours	:	42L	SEE Duration	:	3.0 Hours

Unit-I 10 Hrs

ENVIRONMENT AND BIODIVERSITY

Definition, scope and importance of environment – need for public awareness. Eco-system and Energy flow–ecological succession. Types of biodiversity: genetic, species and ecosystem diversity– values of biodiversity, threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – conservation of biodiversity.

ENVIRONMENTAL POLLUTION

Causes, Effects and Preventive measures of Water, Soil, Air and Noise Pollutions. Solid, Hazardous and E-Waste management.

Occupational Health and Safety Management system (OHASMS). Environmental protection, Environmental protection acts.

Unit – II 8 Hrs

RENEWABLE SOURCES OF ENERGY

Energy management and conservation, New Energy Sources: Need of new sources. Different types of new energy sources.

Energy Cycles, carbon cycle, emission and sequestration, Green Engineering: Sustainable urbanization-Socioeconomical and technological change.

Applications of - Hydrogen energy, Ocean energy resources, Tidal energy conversion. Concept, origin and power plants of geothermal energy.

Unit –III 8 Hrs

SUSTAINABILITY AND MANAGEMENT

Introduction to Environmental Economics, Environmental Audit, Development, GDP, Sustainability - concept, needs and challenges-economic, social and aspects of sustainability - from unsustainability to sustainability-millennium development goals and protocols.

Linear vs. cyclical resource management systems, need for systems thinking and design of cyclical systems, circular economy, industrial ecology, green technology. Specifically apply these concepts to: Water Resources, Energy Resources, Food Resources, Land & Forests, Waste management.

Unit –IV 8 Hrs

Sustainable Development Goals - targets, indicators and intervention areas Climate change - Global, Regional and local environmental issues and possible solutions. Concept of Carbon Credit, Carbon Footprint. Environmental management in industry.

SUSTAINABILITY PRACTICES

Zero waste and R concept, Circular economy, ISO 14000 Series, Material Life cycle assessment.

Environmental Impact Assessment. Sustainable habitat: Green buildings, Green materials, Energy efficiency, Sustainable transports.

Unit –V 8 Hrs

Corporate Social Responsibility (CSR) - Meaning & Definition of CSR, History & evolution of CSR. Concept of Charity, Corporate philanthropy, Corporate Citizenship, CSR-an overlapping concept. Concept of sustainability & Stakeholder Management. Relation between CSR and Corporate governance; environmental aspect of CSR; Chronological evolution of CSR in India.

Sustainability Reporting: Flavor of GRI, Dow Jones Sustainability Index, CEPI. Investor interest in Sustainability.

CO 1	Understand the basic elements of Environment and its Biodiversity.
CO 2	Explain the various types of pollution and requirement for sustainable strategy for present scenario.
CO 3	Evaluate the different concepts of sustainability and its significance for welfare of all life forms.
CO 4	Recognize the role of Corporate social responsibility in conserving the Environment.

Refere	Reference Books				
1.	'Environmental Science and Engineering', Benny Joseph, Tata McGraw-Hill, New Delhi, 2016. ISBN-13 - 978-9387432352				
2.	'Introduction to Environmental Engineering and Science', Gilbert M. Masters, Wendell P Ela, 3 rd Edition, Pearson Education, 2006. ISBN-13 - 978-0132339346.				
3.	Environment Impact Assessment Guidelines, Notification of Government of India, 2006.				
4.	A Handbook of Corporate Governance and Social Responsibility (Corporate Social Responsibility), David Crowther and Guler Aras, Gower Publishing Ltd, ISBN - 13 - 978-0566088179.				

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	CONTENTS					
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B (Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2: Question 3 or 4	16				
5 & 6	Unit 3: Question 5 or 6	16				
7 & 8	Unit 4: Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

Semester: III

MATERIAL SCIENCE FOR ENGINEERS

Category: Basket Courses - Group A Stream: (Common to all Programs)

(Theory)

Course Code	:	ME232TB	CIE	:	100 Marks
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks
Total Hours	:	40L	SEE Dura	tion :	3.0 Hours

Unit-I 06 Hrs

The Fundamentals of Materials

The electronic structure of atoms, types of atomic and molecular bonds: ionic bond, covalent bond, metallic bond, secondary bonds, mixed bonding, hybridization. Energy bands in metals, insulators, and semiconductors. Basic crystallography. Defects and dislocations. Types of materials: polymers, metals and alloys, ceramics, semiconductors, composites.

Unit – II 10 Hrs

Material behaviour Thermal properties

Thermal conductivity, thermoelectric effects, heat capacity, thermal expansion coefficient, thermal shock, thermocouple. Electrical Properties: dielectric behaviours and temperature dependence of the dielectric constant, insulating materials, ferroelectricity, piezoelectricity, super conductor. Optical properties: luminescence, optical fibers, Mechanical Properties: Stress-strain diagram, elastic deformation, plastic deformation, hardness, viscoelastic deformation, impact energy, fracture toughness, fatigue.

Unit –III 10 Hrs

Materials and their Applications

Semiconductors, dielectrics, optoelectronics, structural materials, ferrous alloys, nonferrous alloys, cement, concrete, ceramic, and glasses. Polymers: thermosets and thermoplastics, composites: fibrereinforced, aggregated composites, electronic packaging materials, biomaterials, processing of structural materials.

Unit –IV 07 Hrs

Heat Treatment

Post processing heat treatment of electronic devices: thermal oxidation, diffusion, rapid thermal processing. Heat treatment of ferrous materials: annealing, spheroidizing, normalizing, hardening, tempering. formation of austenite, construction of Time Temperature Transformation (TTT) curves. Special heat treatment processes: carburizing, nitriding, cyaniding, flame, and induction hardening. Defects in heat treatment.

Unit –V 07 Hrs

Nanomaterials Synthesis of nanomaterials

Ball milling, sol-gel, vapour deposition growth, pulse laser, magnetron sputtering, lithography. Nano porous materials: zeolites, mesoporous materials, carbon nanotubes, graphene, nano FRPs, nano fabrics, bioresorbable and bio-erodable materials, nano ceramic, nano glasses, nano biomaterials, nano implant associated materials. Characterisation of nano structures, spectroscopic techniques, automatic force microscopy.

Cours	Course Outcomes: After completing the course, the students will be able to: -					
CO1	Understand behaviour of various materials such as metals, composites and special materials					
000						
CO ₂	Analyse materials, composition, and their phase transformation					
CO3	Investigate solidification process during casting and materials degradation					
CO4	Recognize different types of Non-destructive testing methods to find subsurface defects in the					
	materials.					

Refer	rence Books					
1	Material Science and Engineering, William D Callister, 6th Edition, 1997, John Wiley and Sons, ISBN: 9812-53-052-5					
2	Introduction to Physical Metallurgy, Sydney H Avner, 1994, Mc. Graw Hill Book Company, ISBN: 0-07-Y85018-6					
3	Material Science and Engineering, William F Smith, 4 th Edition, 2008, Mc. Graw Hill Book Company, ISBN: 0-07-066717-9					
4	A.S. Edelstein and R.C. Cammarata, Nanomaterials: Synthesis, Properties and Applications, CRC Press 1996, ISBN:978-0849322749					

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40		
	MAXIMUM MARKS FOR THE CIE THEORY	100		

Semester: III

BIO SAFETY STANDARDS AND ETHICS

Category: Basket Courses - Group A Stream: (Common to all Programs)

(Theory)

	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							
Course Code	:	BT232TC	CIE	:	100 Marks			
Credits: L:T:P	:	3:0:0	SEF	E :	100 Marks			
Total Hours	:	42L	SEE	E Duration :	3.0 Hours			

Unit-I 09 Hrs

Biohazards, Bio Safety Levels and Cabinets:

Introduction to Biohazards, Biological Safety levels, Bio safety Cabinets, Study of various types of Bio safety cabinets. Various parameters for design of Biosafety cabinets (Materials used for fabrication, sensors, filters, pumps, compressors)

Unit – II 08 Hrs

Biosafety Guidelines:

Biosafety guidelines of Government of India, GMOs & LMOs, Roles of Institutional Biosafety Committee, RCGM (Review committee o Genetic manipulation), GEAC (Genetic Engg Approval Committee) for GMO applications in food and agriculture. Overview of National Regulations and relevant International Agreements including Cartagena Protocol.

Unit –III 10 Hrs

Food Safety Standards:

FSSAI (Food Safety and Standards Authority of India), Functions, License, types of FSSAI Licences and compliance rules.

Food Hygiene:

General principles of food microbiology and overview of foodborne pathogens, sources of microorganisms in the food chain (raw materials, water, air, equipment, etc.)

Quality of foods, Microbial food spoilage and Foodborne diseases, Overview of beneficial microorganisms and their role in food processing and human nutrition, Food Analysis and Testing, General principles of food safety management systems, Hazard Analysis Critical Control Point (HACCP).

Unit –IV 09 Hrs

Food Preservations, Processing, and Packaging:

Food Processing Operations, Principles, Good Manufacturing Practices HACCP, Good production, and processing practices (GMP, GAP, GHP, GLP, BAP, etc)

Overview of food preservation methods and their underlying principles including novel and emerging methods/principles

Overview of food packaging methods and principles including novel packaging materials.

Unit –V 09 Hrs

Food safety and Ethics:

Food Hazards, Food Additives, Food Allergens Drugs, Hormones, and Antibiotics in Animals. Factors That Contribute to Foodborne Illness, Consumer Lifestyles and Demand, Food Production and Economics, History of Food Safety, The Role of Food Preservation in Food Safety.

Ethics:

Clinical ethics, Health Policy, Research ethics, ethics on Animals. Biosafety and Bioethics.

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Comprehensive knowledge of Biohazards and bio safety levels				
CO2	Understanding the biosafety guidelines and their importance to the society				
CO3	Knowledge with respect to the Food standards, Hygiene, food processing and packing				
CO4	Appreciate the food safety, Ethics, biosafety, and bio ethics				

Referen	Reference Books					
1	IPR Biosafety and Bioethics, Deepa Goel, Shomini Parashar, 1st Edition, Pearson; 2013,					
	ISBN: 978-8131774700.					
2	The Food Safety, Cynthia A Roberts, Oryx Press, 1 st Edition, 2001, ISBN: 1–57356–305–6.					
3	Food Safety Management Systems, Hal King, Springer Cham, 2020, ISBN: 978-3-030-44734-2.					
4	Bioethics: The Basics, Routledge, Alastair V. Campbell, 2 nd Edition, 2017, ISBN: 978-					
	0415790314.					

#	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY) COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

Semester: III								
	SURVEYING							
		Categ	ory: Professional Co	ore Course				
	Stream: Theory & Practice							
Course Code								
Credits: L:T:P : 3:0:1 SEE : 100+50 Marks								
Total Hours : 40L+26P SEE Duration : 3.0Hours + 3.0Hours								

Unit-I 8 Hrs

Fundamentals of Maps: Maps - types; scales-types; measuring distance; finding direction and use of symbols. Map projection - Latitude, Longitude and time, Topographical survey — Toposheets and Principles of topo sheet numbering, Analysis of landforms using maps.

History of Surveying: Definition of Surveying, Uses of Surveying, Basic principles of surveying, Classification of Surveys. Introduction to Chain surveying, Compass surveying, Plane table surveying and Theodolite surveying. Booking of chain survey work - Field book entries. Calculation of land area using data collected through chain survey.

Unit – II 8 Hrs

Leveling: Principles and basic definitions, Fundamental axes and parts of a dumpy level, types of adjustments and objectives, temporary adjustments of a dumpy level, Types of leveling – Simple leveling, Profile leveling, fly leveling and cross sectioning. Booking of levels 1. Rise and fall method 2. Height of instrument method – comparison, Arithmetic checks. Numerical problems.

Unit –III 8 Hrs

Contour Survey: Contours and their characteristics, Methods of contouring – direct and indirect methods (Grid and Cross section method), Uses of contours.

Total Station: Introduction - Parts of a Total Station – Accessories – Advantages - Limitations and Applications, Complete procedure for total station survey, data transfer, preparation of maps.

Unit –IV 8 Hrs

Modern surveying:

GPS, DGPS, Drone surveying and LiDAR. **Photogrammetry:** Principles of Photogrammetry, Types – Terrestrial and Aerial Photogrammetry, Advantages over ground survey methods - geometry of vertical photographs, scales of vertical photographs. Flight planning.

Unit –V 8 Hrs

Remote Sensing and GIS: Introduction, Principles, Types and Applications of Remote Sensing. Introduction to GIS, functions and advantages, sources of data for GIS. Geographical Information System, Key Components of GIS, Functions of GIS, Data Management and Transformation. Data input methods, data analysis. Overlay operations, Network analysis and Spatial analysis.

PART B (Laboratory)

I.Chain Surveying

1. To conduct a chain survey of flat area with details including field book entry, perpendicular and oblique offsets. Survey book entry and prepare a plan by converting to an appropriate scale.

II. Levelling

- 2. To determine difference in elevation between two points using differential levelling technique, using height of the instrument method and rise and fall methods. With at least one point above the line of sight.
- 3. To perform profile levelling and to draw the longitudinal section and cross section to determine the depth of cut and height of filling for a given formation level.

III. Total station

- 4. To determine the elevation, distance and gradient between two inaccessible points using total station.
- 5. Traversing using total station: Data collection, data transfer, area calculation and map preparation.
- 6. Contour surveying using total station: Data collection, data transfer, area calculation and map preparation.

IV. Curves

- 7. To set out simple curve using Rankine's deflection angles method. (Only the directions of forward tangent and backboard tangent is provided and deflection angle needs to be measured in the field)
- 8. To set out compound curve using Rankine's deflection angles method. (Only the directions of forward tangent and backboard tangent is provided and deflection angle needs to be measured in the field)

V. GIS (Using open source software QGIS)

- 09. Geo-referencing the hard copy maps.
- 10. To generate thematic maps using GIS Software. (Including rectifying and mosaicing)

VI. Differential Global Positioning System (DGPS) - Demonstration

11. RTK (Real Time Kinematics) survey for location data gathering and establishing ground control point using DGPS.

Course	Course Outcomes: After completing the course, the students will be able to: -					
CO 1	Describe fundamental concepts of Surveying, Levelling, Total station and application of					
	Remote Sensing, GIS and DGPS.					
CO 2	Discuss components of all types of surveying.					
CO 3	Apply the concepts of measurements in engineering problems.					
CO 4	Demonstrate the applications of Remote Sensing, GIS and DGPS for solving engineering					
	problems.					

Referer	Reference Books					
1.	Punmia B.C, "Surveying" Vol.I and Vol.II, Laxmi Publications, (P) Ltd, New Delhi 2010. ISBN					
	81-7008-853-4					
2.	Chandra A.M, "Plane surveying", Newage International (P) Ltd., 2009. ISBN 81-224-1902-X					
3.	Remote Sensing and GIS by B Bhatia, Oxford University Press, New Delhi.					
4.	Duggal S.K, "Surveying", Vol.I & II, Tata Mc Graw Hill Publishing Co., 2009, ISBN 978-0-					
	07-015137-6: ISBN 0-07-015137-7.					
5.	Arora K.R, "Surveying", Vol.I & II, Standard Book House, 2009. ISBN 81-89401-23-8					
6.	Lillesand and Kiefer, "Principles of Remote sensing and Image Interpretation", (5 th Edition)					
	John Wiley Publishers, New Delhi, 2007.					

RUBRICFOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing &			

	Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (20 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (20 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50 MARKS	50
	MAXIMUM MARKS FOR THE CIE THEORY AND LABORATORY	150

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q.NO.	O.NO. CONTENTS			
	PART A			
1	Objective type of questions covering entire syllabus	20		
	PART B (Maximum of THREE Sub-divisions only)			
2	Unit 1 : (Compulsory)	16		
3 & 4	Unit 2 : Question 3 or 4	16		
5 & 6	Unit 3: Question 5 or 6	16		
7 & 8	Unit 4: Question 7 or 8	16		
9 & 10	Unit 5: Question 9 or 10	16		
	TOTAL	100		

	RUBRIC FOR SEMESTER END EXAMINATION (LAB)					
Q.NO.	Q.NO. CONTENTS					
1	Write Up	20				
2	Conduction of the Experiments	20				
3	Viva	10				
TOTAL						

Semester: III								
	CONCRETE TECHNOLOGY							
		Categ	ory: Professional Core Course					
	Stream: Theory & Practice							
Course Code	Course Code : CV234AI CIE : 100+50 Marks							
Credits: L:T:P : 3:0:1								
Total Hours : 40L+26P SEE Duration : 3.0Hours + 3.0Hours								

Unit-I	10 Hrs

Cement:

Manufacturing of cement (dry and wet process), Hydraulic Cement, Bogue's compounds, Types of cement, Hydration, product of hydration and its importance, importance of water cement ratio, Transition zone, brief description of field and laboratory testing of cement, water and its quality, Gel-space ratio (Numerical problems)

Unit – II 8 Hrs

Concrete:

Manufacturing Concrete: Mixing, Transporting, Placing, Compaction and Curing, Importance of Curing and Methods of Curing, Segregation, Bleeding. Workability: Factors affecting workability, Measurement by various tests, Recommendations of IS: 456-2000 - Sampling procedure, Acceptance criteria, Rheology- Importance, Bingham Parameters.

Unit –III 8 Hrs

Admixtures:

Chemical admixtures. Action of plasticizers, Water reducers, super plasticizers, accelerators, retarders, air entraining admixtures. Mineral admixtures: GGBS, Fly-ash, metakaolin, silica fume.

Durability:

Significance of Durability in concrete – Cracking, chemical attack, Alkali aggregate reaction, Permeability, water absorption.

Unit –IV 8 Hrs

Strength:

Compressive Strength Factors affecting, Abrams' law, Importance of Strength development with age, Maturity concept (Numerical Problems), accelerated curing, Relation between compressive and tensile strength, Flexural strength, Methods of finding the strength, Modulus of Elasticity and Acceptance Criteria.

NDT:

Importance of Non-destructive tests, Rebound hammer test, Ultra-sonic pulse velocity test, Penetration and pull-out test, Profometer, Semi Destructive tests

Unit –V 8 Hrs

Concrete mix Design:

Significance and objectives of concrete mix proportioning, General Considerations, Mix proportioning using IS 10262: 2019 method (Numerical problems on conventional concrete, concrete with Fly-ash and GGBS, Highstrength Concrete), Quality control, Frequency of testing

PART B (Laboratory)

- 1. Bulking of sand
- 2. water Absorption of fine and coarse aggregates
- 3. Specific gravity of cement
- 4. Consistency of cement, Initial and final setting of cement
- 5. Compressive strength of cement
- 6. Soundness test on cement
- 7. Mix Design and workability tests on concrete (Slump, Compaction Factor and Vee-bee Consistometer tests)
- 8. Tests on Hardened Concrete (Compressive, Split tensile and Flexural strength)
- 9. Flow Test on cement mortar
- 10. Demonstration of Non Destructive tests (Rebound Hammer, UPV and Profometer)

Course	Course Outcomes: After completing the course, the students will be able to: -		
CO 1	Comprehend the influence of ingredient properties on cement and concrete		
CO 2	Explain the requirement of engineering properties of concrete for structural and non-structural uses		
CO 3	Apply fundamental principles, procedures and various specifications for proportioning of concrete mixes		
CO 4	Estimate the strength of concrete and to identify causes of deterioration of concrete		

Referen	nce Books
1.	Concrete technology, Shanthakumar. A. R, Apr 2018, Oxford University Press, New Delhi, ISBN13: 978-0199458523
2.	Concrete Technology: Theory and Practice, M. S. Shetty A. K. Jain, 8 th Edition, 2018, S Chand Publishing, ISBN-13: 978-9352533800
3.	Concrete: Microstructure, Properties, and Materials, P. Kumar Mehta, Paulo J.M. Monteiro, 4 th Edition, Jul 2017, McGraw Hill Education; ISBN-13: 978-9339204761.
4.	Properties of concrete, Neville. A.M, 5 th Edition, 2012, Pearson Education, Inc, and Dorling Kindersley Publishing Inc., ISBN-13: 978-8131791073
5.	Concrete Technology: Theory and Practice, M.L. Gambhir, 5 th Edition, 2017, McGraw Hill Education, ISBN-13: 978-1259062551
6.	IS 10262: 2019, Concrete Mix proportioning guidelines IS 456:2000 Plain and Reinforced Concrete

RUBRICFOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)		
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (20 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (20 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50 MARKS	50
	MAXIMUM MARKS FOR THE CIE THEORY AND LABORATORY	150

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)		
Q.NO.	Q.NO. CONTENTS		
	PART A		
1	Objective type of questions covering entire syllabus	20	
PART B			
	(Maximum of THREE Sub-divisions only)		
2	Unit 1 : (Compulsory)	16	
3 & 4	Unit 2: Question 3 or 4	16	
5 & 6 Unit 3 : Question 5 or 6		16	
7 & 8 Unit 4 : Question 7 or 8		16	
9 & 10	Unit 5: Question 9 or 10	16	
	TOTAL	100	

	RUBRIC FOR SEMESTER END EXAMINATION (LAB)			
Q.NO.	Q.NO. CONTENTS			
1	Write Up	20		
2	Conduction of the Experiments	20		
3	Viva	10		
	TOTAL	50		

	Semester: III					
	MECHANICS OF MATERIALS					
	Category: Professional Core Course					
	Stream: Theory & Practice					
Course Code	:	CV235AI		CIE	:	100+50 Marks
Credits: L:T:P	:	3:0:1		SEE	:	100+50 Marks
Total Hours	:	42Hrs + 28Hrs		SEE Duration	:	3Hours + 3Hours

Unit-I 9 Hrs

Simple stresses and strain: Hooke's law, Stress Strain behavior of mild steel and concrete; Analysis of bars of uniform and varying(stepped) cross sections; Analysis of Simple and Composite bars of equal and unequal lengths; Expression of Elastic constants and interrelationship, Thermal stress in simple and compound bars, Volumetric strain. - Numerical problems.

Unit – II 9 Hrs

Bending moment and shear force in beams: Introduction, Types of beams, Loads and Reactions, Shear forces and bending moments, Rate of loading, Sign conventions, Relationship between shear force and bending moments, Shear force and bending moment diagrams subjected to concentrated loads, uniform distributed load, uniform varying load, couple and their combinations. Numerical problems

Unit –III 8 Hrs

Bending stress in beams: Introduction, Assumptions in simple bending theory, Expression for Bernoulli's equation, Modulus of rupture, Section modulus, Flexural rigidity, Bending stress distribution in beams of various sections and Numerical problems.

Shear stresses in beams: Expression for horizontal shear stress in beam, Shear stress diagram for simple rectangular, I section and T-sections only and Numerical problems

Unit –IV 8 Hrs

Deflection of determinate Beams: Introduction, Definitions of slope, Deflection, Elastic curve, Expression for equation of flexure, Sign convention, Double integration method, Slope and deflection using Macaulay's method for prismatic beams and overhanging beams subjected to point loads, UDL and couple and Numerical problems..

Unit –V 8 Hrs

Analysis of columns and struts: Introduction, Euler's theory on columns, Effective length, Slenderness ratio, Short and long columns, Radius of gyration, Buckling load, Expression for Euler's Buckling load for different end conditions, Limitations of Euler's theory, Rankine's formula. Numerical problems.

Formula book related to expressions will be provided in CIE and SEE

PART B (Laboratory)

Importance of MoM Laboratory: Types of loads, operating conditions, Load bearing capacity, ultimate stress, allowable stress, factor of safety, types of failure.

- 1. Specific Gravity of Coarse aggregate and fine aggregate
- 2. Fineness modulus of Coarse aggregate and Fine aggregate
- 3. Compressive strength tests on building blocks (brick, solid blocks and hollow blocks)
- 4. Tension test on Mild steel and HYSD bars
- 5. Compression test on HYSD bars and Cast iron
- 6. Bending Test on Wood
- 7. Shear test on Mild steel
- 8. Torsion test
- 9. Flexure test on tiles
- 10. Compression Test on paver blocks

Course	Course Outcomes: After completing the course, the students will be able to: -		
CO 1	Illustrate the behaviour of various materials used for structural elements		
CO 2	Apply the basic concepts of mechanics in determining the response of structural members subjected to forces/moments/deformations.		
CO 3	Analyse the structural members for internal forces and stresses under different loading conditions		
CO 4	Evaluate the various properties of construction materials and structural elements.		

Refere	nce Books
1.	A Textbook of Strength of Materials: Mechanics of Solids, R.K. Bansal, 2018, Laxmi Publications, 6 th Edition, ISBN-13: 978-8131808146.
2.	Theory of Structures, S. Ramamrutham, 9 th Edition ,2014, Dhanpat Rai Publishing Company Private Limited, New Delhi; ISBN-13: 978-9384378103.
3.	Basic Structural Analysis, Reddy C.S., 3rd Edition, 1 July 2017, Tata McGraw Hill Publication Company Ltd., New Delhi, ISBN-13: 978-0070702769.
4.	Mechanics of Materials, R.C.Hibbler, SI Edition, April2018, Pearson Publications, ISBN-13:978-9332584037
5.	Elements of Strength of Materials, Timoshenko and Young, Affiliated East-West Press,2011, 5th Edition, ISBN:9788176710190.
6.	Mechanics of Materials, F.P.Beerand R.Johnston, McGraw-Hill Publishers, 2007, 7 th Edition, ISBN 978-0073398235.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)		
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40	
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (20 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (20 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50 MARKS	50	
MAXIMUM MARKS FOR THE CIE THEORY AND LABORATORY		150	

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)		
Q.NO.	CONTENTS	MARKS	
	PART A	-	
1	Objective type of questions covering entire syllabus	20	
	PART B (Maximum of THREE Sub-divisions only)		
2	Unit 1 : (Compulsory)	16	
3 & 4	Unit 2: Question 3 or 4	16	
5 & 6	Unit 3: Question 5 or 6	16	
7 & 8	Unit 4: Question 7 or 8	16	
9 & 10	Unit 5: Question 9 or 10	16	
	TOTAL	100	

	RUBRIC FOR SEMESTER END EXAMINATION (LAB)			
Q.NO.	Q.NO. CONTENTS			
1	Write Up	20		
2	Conduction of the Experiments	20		
3	Viva	10		
	TOTAL	50		

Semester: III						
NATIONAL SERVICE SCHEME(NSS)						
	(Practical)					
Course Code	:	HS237LA		CIE	:	50 Marks
Credits: L: T: P	:	0:0:2		SEE	:	50 Marks
Total Hours	:	13P		SEE Duration	:	02 Hrs

Prerequisites:

- 1. Students should have service-oriented mindset and social concern.
- 2. Students should have dedication to work at any remote place, any time with available resources and proper time management for the other works.
- 3. Students should be ready to sacrifice some of the timely will and wishes to achieve service-oriented targets on time.

Content 13 Hrs

Students must take up any one activity on below mentioned topics and must prepare contents for awareness and technical contents for implementation of the projects and has to present strategies for implementation of the same. Compulsorily must attend one camp.

CIE will be evaluated based on their presentation, approach, and implementation strategies. (Any one of the below mentioned activity)

- 1. Helping local schools to achieve good result and enhance their enrolment in Higher/technical/vocational education.
- 2. Preparing an actionable business proposal for enhancing the village/ farmer income and approach for implementation.
- 3. Developing Sustainable Water management system for rural/ urban areas and implementation approaches.
- 4. Setting of the information imparting club for women leading to contribution in social and economic issues.
- 5. Spreading public awareness/ government schemes under rural outreach program. (Minimum 5 programs)
- 6. Contribution to any national level initiative of Government of India. For eg. Digital India, Skill India, Swachh Bharat, Atmanirbhar Bharath, Make in India, Mudra scheme, Skill development programs etc...
- Social connect and responsibilities
- 8. Plantation and adoption of plants. Know your plants
- 9. Organic farming, Indian Agriculture (Past, Present and Future) Connectivity for marketing
- 10. Waste management Public, Private and Govt organization, 5 R's
- 11. Water conservation techniques Role of different stakeholders Implementation
- 12. Govt. School Rejuvenation and assistance to achieve good infrastructure.
- 13. Organize National integration and social harmony events/ workshops / seminars. (Minimum 2 programs) and ONE NSS-CAMP.

(Course Outcomes: After completing the course, the students will be able to: -						
П	CO1	Understand the importance of his/her responsibilities towards society.					
(CO2	Analyze the environmental and societal problems/ issues and will be able to design solutions for thesame.					
(CO3	Evaluate the existing system and to propose practical solutions for the same for sustainabledevelopment.					

ASSESSMENT AND EVALUATION PATTERN					
WEIGHTAGE	50%				
	CIE	SEE			
Presentation 1- Selection of topic- (phase 1) Justification for Importance, need of the hour with surveyed data.	10	****			
EXPERIENTIAL LEARNING Presentation 2 (phase 2) Content development, strategies for implementation methodologies.	10	****			
Case Study-based Teaching-Learning	10	Implementation			
Sector wise study & consolidation	10	strategies of the project			
Video based seminar (4-5 minutes per student)	10	with report			
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS			

		NATIONAL CADET	CORPS(NCC)		
		(Practica	al)		
Course Code	:	HS237LB	CIE	:	50 Marks
Credits: L:T:P	:	0:0:2	SEE	:	50 Marks
Total Hours	:	15P	SEE Duration	:	02 Hrs
	•	Unit-	I		07 Hrs
			mmand, Savdhan, Vishram, Aram Se,	IVIL	iruna,
KadvarSizing, Tec	en Liı	ne Banana, Khuli Line, Nikat L Unit –	ine, Khade Khade Salute Karna II		03 Hrs
KadvarSizing, Tee	en Liı	ne Banana, Khuli Line, Nikat L Unit – : Introduction & Characteristics	ine, Khade Khade Salute Karna II s of 7.62 Self Loading rifle, Identificat		03 Hrs of rifle parts
KadvarSizing, Ted	en Lii	ne Banana, Khuli Line, Nikat L Unit – : Introduction & Characteristics Unit –	ine, Khade Khade Salute Karna II s of 7.62 Self Loading rifle, Identificat		03 Hrs
KadvarSizing, Tec	en Lii	ne Banana, Khuli Line, Nikat L Unit – : Introduction & Characteristics	ine, Khade Khade Salute Karna II s of 7.62 Self Loading rifle, Identificat III		03 Hrs of rifle parts

Course	Course Outcomes: After completing the course, the students will be able to: -						
CO1	CO1 Understand that drill as the foundation for discipline and to command a group for common goal.						
CO2	Understand the importance of a weapon its detailed safety precautions necessary for prevention of accidents and identifying the parts of weapon.						
CO3	Understand that trekking will connect human with nature and cross the obstacles to experience army way of life.						
CO4	Understand the various social issues and their impact on social life, Develop the sense of self-less social service for better social & community life.						

Reference Books					
1.	NCC Cadet Hand Book by R K Gupta, Ramesh Publishing House, New Delhi, Book code:R-1991, ISBN:				
	978-93-87918-57-3, HSN Code: 49011010				
2.	nccindia.ac.in				

ASSESSMENT AND EVALUATION PATTERN					
WEIGHTAGE	50%	50%			
	CIE	SEE			
Presentation 1- Selection of topic- (phase 1)					
Justification for Importance, need of the hour with	10	****			
surveyed data.					
EXPERIENTIAL LEARNING					
Presentation 2 (phase 2)	10	****			
Content development, strategies for implementation					
methodologies.					
Case Study-based Teaching-Learning	10	Implementation			
Sector wise study & consolidation	10	strategies of the project			
Video based seminar (4-5 minutes per student)	10	with report			
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS			

Semester: III						
	PHYSICAL EDUCATION					
		· ·	& ATHLETICS)			
		(Pr	actical)			
Course Code	:	HS237LC	CIE	:	50 Marks	
Credits: L:T:P	:	0:0:2	SEE	:	50 Marks	
Total Hours	:	30P	SEE Duration	:	2.5 Hrs	
	-	Content	·		30 Hrs	

Topics for Viva:

- 1. On rules and regulations pertaining to the games / sports
- 2. On dimensions of the court, size / weight of the ball and standards pertaining to that sports / game
- 3. Popular players and legends at state level / National level/ International level
- 4. Recent events happened and winner / runners in that sport / game
- 5. General awareness about sport / game, sports happenings in the college campus

Course Outcomes: After completing the course, the students will be able to: -					
CO1	Understand the basic principles and practices of Physical Education and Sports.				
CO2	Instruct the Physical Activities and Sports practices for Healthy Living.				
CO3	To develop professionalism among students to conduct, organize & Officiate Physical Education				
	andSports events at schools and community level.				

Refere	Reference Books					
1.	Health, Exercise and Fitness, Muller, J. P. (2000), Delhi: Sports.					
2.	Play Field Manual, Anaika ,2005, Friends Publication New Delhi.					
3.	IAAF Manual.					
4.	Track and Field Marking and Athletics Officiating Manual, M.J Vishwanath, 2002, Silver Star					
	Publication, Shimoga.					
5.	5. Steve Oldenburg (2015) Complete Conditioning for Volleyball, Human Kinestics.					
Note: S	Skills of Sports and Games (Game Specific books) may be referred					

ASSESSMENT AND EVALUATION PATTERN					
WEIGHTAGE	50%				
	CIE	SEE			
Presentation 1- Selection of topic- (phase 1) Justification for Importance, need of the hour with surveyed data.	10	****			
EXPERIENTIAL LEARNING Presentation 2 (phase 2) Content development, strategies for implementation methodologies.	10	****			
Case Study-based Teaching-Learning	10	Implementation			
Sector wise study & consolidation	10	strategies of the project			
Video based seminar (4-5 minutes per student)	10	with report			
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS			

			Semester: III				
	MUSIC						
	(Practical)						
Course Code	:	HS237LD		CIE	:	50 Marks	
Credits: L: T: P	:	0:0:2		SEE	:	50 Marks	
Total Hours	:	13P		SEE Duration	:	02 Hrs	
	•	•	Content	<u> </u>		13 Hrs	

- 1. Introduction to different genres of music
- 2. Evolution of genres in India: Inspiration from the world
- 3. Ragas, time and their moods in Indian Classical Music
- 4. Identification of ragas and application into contemporary songs
- 5. Adding your touch to a composition
- 6. Maths and Music: A demonstration
- 7. Harmonies in music
- 8. Chords: Basics and application into any song
- Music Production-I
- Music Production-II

Students have to form groups of 2-4 and present a musical performance/ a musical task which shall be given by the experts. The experts shall judge the groups and award marks for the same.

CIE will be evaluated based on their presentation, approach, and implementation strategies. Students need to submit their certificates of any event they participated or bagged prizes in. This shall also be considered for CIE evaluation.

Course Outcomes: After completing the course, the students will be able to: -	
	Understand basics of Music and improve their skills.
CO2	Appreciate the impacts on health and well-being.
CO3	Perform and present music in a presentable manner.
CO4	Develop skills like team building and collaboration.

Reference Books	
1.	Music Cognition: The Basics by Henkjan Honing.
2.	Basic Rudiments Answer Book - Ultimate Music Theory: Basic Music Theory Answer Book by Glory
	St Germain.
3.	Elements Of Hindustani Classical Music by Shruti Jauhari.
4.	Music in North India: Experiencing Music, Expressing Culture (Global Music Series) by George E.
	Ruckert.

ASSESSMENT AND EVAI	LUATION PATTERN	
WEIGHTAGE	50%	50%
	CIE	SEE
Presentation 1- Selection of topic- (phase 1) Justification for Importance, need of the hour with surveyed data.	10	****
EXPERIENTIAL LEARNING Presentation 2 (phase 2) Content development, strategies for implementation methodologies.	10	****
Case Study-based Teaching-Learning	10	Implementation
Sector wise study & consolidation	10	strategies of the project
Video based seminar (4-5 minutes per student)	10	with report
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS

			Semester: III			
			DANCE			
			(Practical)			
Course Code	:	HS237LE		CIE	:	50 Marks
Credits: L: T: P	:	0:0:2		SEE	:	50 Marks
Total Hours	:	13P		SEE Duration	:	02 Hrs
Contents 13 Hrs						

- Introduction to Dance
- Preparing the body for dancing by learning different ways to warm up.
- 2. 3. 4. 5. 6. 7. Basics of different dance forms i.e., classical, eastern, and western.
- Assessing the interest of students and dividing them into different styles based on interaction.
- Advancing more into the styles of interest.
- Understanding of music i.e., beats, rhythm, and other components.
- Expert sessions in the respective dance forms.
- 8. Activities such as cypher, showcase to gauge learning.
- 9. Components of performance through demonstration.
- 10. Introduction to choreographies and routines.
- 11. Learning to choreograph.
- 12. Choreograph and perform either solo or in groups.

Course Outcomes: After completing the course, the students will be able to: -				
CO1	Understand the fundamentals of dancing.			
CO2	Adapt to impromptu dancing.			
CO3	Ability to pick choreography and understand musicality.			
CO4	To be able to do choreographies and perform in front of a live audience.			

Refere	nce Books
1.	Dance Composition: A practical guide to creative success in dance making, Jacqueline M. Smith

ASSESSMENT AND EVAL	UATION PATTERN	
WEIGHTAGE	50%	50%
	CIE	SEE
Presentation 1- Selection of topic- (phase 1) Justification for Importance, need of the hour with surveyed data.	10	****
EXPERIENTIAL LEARNING Presentation 2 (phase 2) Content development, strategies for implementation methodologies.	10	****
Case Study-based Teaching-Learning	10	Implementation
Sector wise study & consolidation	10	strategies of the project
Video based seminar (4-5 minutes per student)	10	with report
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS

Semester: III							
	THEATER (LIGHT CAMERA & ACTION)						
			(Practical				
Course Code	:	HS237LF		CIE	:	50 Marks	
Credits: L:T:P	:	0:0:1		SEE	:	50 Marks	
Total Hours	:	13P		SEE Duration	:	02 Hrs	
			Contents	<u> </u>	1	11	13 Hrs

- . Break the ICE
- 2. Introduction to freedom Talk to each and every single person for a period of 5 complete minutes. This is aimed at to make everyone in the room comfortable with each other. This helps everyone get over socialanxiety, Shyness and Nervousness.
- 3. Ura
- 4. Rhythm Voice Projection, Voice Modulation, Weeping & Coughing Voice projection is the strength of speaking or singing whereby the voice is used powerfully and clearly. It is a technique employed to command respect and attention, as when a teacher talks to a class, or simply to be heard clearly, as used by an actor in a theatre.
- 5. It's Leviosa, Not Leviosaaa!
- 6. Speech work: Diction, Intonation, Emphasis, Pauses, Pitch and Volume Tempo Dialogues delivery. The art of dialogue delivery plays a vital role in in ensuring the efficacy of communication especially from the dramatic aspect of it, this unit discusses some tips to help the young actors improve their dialogue deliveryskills:
- 7. Elementary, My dear Watson.
- 8. Responsibilities of an actor tools of an actor character analysis Observations aspects, Stage presence, concentration, conviction, confidence, energy and directionality.
- Show time
- 10. Pick a genre: COMEDY, THRILLER, HORROR, and TRAGEDY: Showcase a performance. Stylized acting with reference to historical and mythological plays. Mime: conventional, occupational and pantomime Mono acting: different types of characters

Course	Course Outcomes: After completing the course, the students will be able to: -					
CO1	Develop a range of Theatrical Skills and apply them to create a performance.					
CO2	Work collaboratively to generate, develop, and communicate ideas.					
CO3	Develop as creative, effective, independent, and reflective students who are able to make informed					
	choices in process and performance.					
CO4	Develop an awareness and understanding of the roles and processes undertaken in contemporary					
	professional theatre practice.					

Reference Books						
1.	The Empty Space by Peter Brook.					
2.	The Viewpoints Book: A Practical Guide to Viewpoints and Composition by Anne Bogart and Tina Landau.					

ASSESSMENT AND EVALUATION PATTERN					
WEIGHTAGE	50%	50%			
	CIE	SEE			
Presentation 1- Selection of topic- (phase 1) Justification for Importance, need of the hour with surveyed data.	10	****			
EXPERIENTIAL LEARNING Presentation 2 (phase 2) Content development, strategies for implementation methodologies.	10	****			
Case Study-based Teaching-Learning	10	Implementation			
Sector wise study & consolidation	10	strategies of the project			
Video based seminar (4-5 minutes per student)	10	with report			
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS			

			Semester: III			
	ART WORK & PAINTING					
			(Practical)			
Course Code	:	HS237LG		CIE	:	50 Marks
Credits: L: T: P	:	0:0:2		SEE	:	50 Marks
Total Hours	:	13P		SEE Duration	:	02 Hrs
	Contents 13 Hrs					

- . Use points, line and curves to create various shapes and forms
- 2. Use of shapes and forms to create various objects and structures
- 3. Recognizing distinctions in objects when viewed from various perspectives and grasping basic notions of perspective
- 4. Students will be introduced to the significance of color in art, as well as the principles of color theory and application.
- 5. Applied the concepts of unity, harmony, balance, rhythm, emphasis and proportion, abstraction and stylization to create a composition.
- 6. Learn how to use which materials and for what types of art and textures.
- 7. Use of the above concepts to create art through the medium of collage, mosaic, painting, mural, batik, tie and dye.
- 8. Real world application of the above concepts in the form of book cover design and illustration, cartoon, poster, advertisements, magazine, computer graphics and animation
- 9. Familiarization with the many art forms and techniques of expression found throughout India.

AND

ONE EDUCATIONAL VISIT TO AN ART MUSEUM / INSTITUTE / GALLERY

Students must turn in assignments for each of the above said topics on a weekly basis and have to compulsorilytake part in the museum visit. CIE will be evaluated based on a still life piece, a composition using any one of the media of composition and a presentation on Indian art styles and creation of a piece pertaining to the presentedart style.

Course	Outcomes: After completing the course, the students will be able to: -
CO1	Use lines, shapes, and colors to depict the various sentiments and moods of life and nature.
CO2	Use one's creativity to develop forms and color schemes, as well as the ability to portray them effectively in drawing and painting on paper.
CO3	Develop the ability to properly use drawing and painting materials (surfaces, tools and equipment, and so on).
CO4	Improve their observation abilities by studying everyday items as well as numerous geometrical and non-geometrical (i.e., organic) shapes found in life and nature and to hone their drawing and painting talents in response to these insights.

Ī	Reference Books							
Ī	1.	Catching the Big Fish: Meditation, Consciousness, and Creativity, David Lynch						
Ī	2.	Art & Fear: Observations on the Perils (and Rewards) of Artmaking, David Bayles & Ted Orland						

ASSESSMENT AND EVALUATION PATTERN			
WEIGHTAGE	50%	50%	
	CIE	SEE	
Presentation 1- Selection of topic- (phase 1) Justification for Importance, need of the hour with surveyed data.	10	****	
EXPERIENTIAL LEARNING Presentation 2 (phase 2) Content development, strategies for implementation methodologies.	10	****	
Case Study-based Teaching-Learning	10	Implementation strategies	
Sector wise study & consolidation 10 of the proj			
Video based seminar (4-5 minutes per student)	10		
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS	

Semester: IV					
	PHOTOGRAPHY & FILM MAKING				
			(Practical)		
Course Code	:	HS237LH	CIE	:	50 Marks
Credits: L: T: P	:	0:0:2	SEE	:	50 Marks
Total Hours	:	13P	SEE Duration	:	02 Hrs
Contents 1:				13 Hrs	

- 1. Introduction to photography.
- 2. Understanding the terminologies of DSLR.
- 3. Elements of photography.
- 4. Introduction to script writing, storyboarding.
- 5. Understanding the visualization and designing a set.
- 6. Basics of film acting
- 7. Video editing using software
- 8. Introduction to cinematography.
- 9. Understanding about lighting and camera angles.
- 10. Shooting a short film.

Students must form groups of 2-4 and present a short film which shall be given by the experts. The experts shall judge the groups and award marks for the same.

CIE will be evaluated based on their presentation, approach and implementation strategies. Students need to submit their certificates of any event they participated or bagged prizes in. This shall also be considered for CIE evaluation.

Course Outcomes: After completing the course, the students will be able to: -		
CO1	Understand basics of photography and videography and improve their skills.	
CO2	Appreciate the skills acquired from photography.	
CO3	Perform and present photos and films in a presentable manner.	
CO4	Develop skills like team building and collaboration.	

Reference Books			
1.	1. Read This If You Want to Take Great Photographs – Henry Carroll		
2.	The Digital Photography Book: Part 1 – Scott Kelby		

ASSESSMENT AND EVALUATION PATTERN				
WEIGHTAGE	50%	50%		
	CIE	SEE		
Presentation 1- Selection of topic- (phase 1) Justification for Importance, need of the hour with surveyed data.	10	****		
EXPERIENTIAL LEARNING Presentation 2 (phase 2) Content development, strategies for implementation methodologies.	10	****		
Case Study-based Teaching-Learning	10	Implementation		
Sector wise study & consolidation				
Video based seminar (4-5 minutes per student)	10	project with report		
TOTAL MARKS FOR THE COURSE	50 MARKS	50 MARKS		

			Semester:	Ш		
		BRIDGI	E COURSE: C PI	ROGRAMMING		
		(Mandatory Audi	t Course)		
		(Common to all P	rograms)		
Course Code	:	CS139AT		CIE	:	50 Marks
Credits: L:T:P	:	2:0:0(Audit)		SEE	:	
Total Hours	:	30L		SEE Duration	:	

Unit-I	6 Hrs
Introduction to Programming	l
Definition of a computer. Components of computer system, Programming Languages.	
Design and implementation of efficient programs. Program Design Tools: Algorithm	ns, Flowcharts and
Pseudo codes. Types of Errors.	
Unit – II	6 Hrs

Introduction to C

Introduction, structure of a C program, Writing the first program, Files used in a C program. Compiling and executing C Programs using comments, C Tokens, Character set in C, Keywords, Identifiers, Basic Data Types in C, Variables, Constants, I/O statements in C.

Operators in C, Type conversion and type casting, scope of variables.

 	51	
	Unit –III	6 Hrs

Decision Control and Looping Statements

Introduction to decision control, conditional branching statements, iterative statements, Nested loops, Break and continue statements, goto statements

Arrays

Introduction, Declaration of Arrays, Accessing elements of an array, Storing values in arrays, Operations on Arrays- Traversing, Inserting and Deletion of element in an array. Two dimensional arrays- Operations on two dimensional arrays.

Unit –IV	6 Hrs

Strings

Introduction, Operations on strings-finding length of a string, converting characters of a string into uppercase and lowercase, Concatenating two strings, appending a string to another string, comparing two string, reversing a string. String and character Built in functions.

Functions

Introduction, Using functions, Function declaration/function prototype, Function definition, Function call, Return statement.

Unit-V	6 Hrs

Functions

Passing parameters to a function, Built-in functions. Passing arrays to functions. Recursion.

Structures and Pointers

Introduction: Structure Declaration, Typedef declaration, initialization of structures, accessing members of a structures, Introduction to pointers, declaring pointer variables.

Course	Outcomes: After completing the course, the students will be able to:-
CO 1	Analyse problems and design solution using program design tools.
CO 2	Evaluate the appropriate method/data structure required in C programming to develop solutions by investigating the problem.
CO 3	Design a sustainable solution using C programming with societal and environmental concern by engaging in lifelong learning for emerging technology
CO 4	Demonstrate programming skills to solve inter-disciplinary problems using modern tools effectively by exhibiting team work through oral presentation and written reports.

Ref	erence Books
1.	Programming in C, Reema Thareja, 2018, Oxford University Press. ISBN: 9780199492282.
2.	The C Programming Language, Kernighan B.W and Dennis M. Ritchie, 2015, 2 nd Edition, Prentice Hall, ISBN (13): 9780131103627.
3.	Turbo C: The Complete Reference, H. Schildt, 2000, 4 th Edition, Mcgraw Hill Education, ISBN-13: 9780070411838.
4.	Algorithmic Problem Solving, Roland Backhouse, 2011, Wiley, ISBN: 978-0-470-68453-5

PRACTICE PROGRAMS

Implement the following programs using cc/gcc compiler

- 1. Familiarization with programming environment: Concept of creating, naming and saving the program file in gedit/vi editor, Concept of compilation and execution, Concept of debugging in GDB environment.
- 2. Implementation and execution of simple programs to understand working of
 - Formatted input and output functions- printf() and scanf().
 - Escape sequences in C.
 - Using formula in a C program for specific computation: For example: computing area of circle, converting Celsius to Fahrenheit, area of a triangle, converting distance in centimeters to inches, etc.
 - Preprocessor directives (#include, #define).
- 3. Execution of erroneous C programs to understand debugging and correcting the errors like:
 - Syntax / compiler errors.
 - Run-time errors.
 - Linker errors.
 - Logical errors.
 - Semantical errors.
- 4. Implementation and execution of simple programs to understand working of operators like:
 - Unary.
 - Arithmetic.

- Logical.
- Relational.
- Conditional.
- Bitwise.
- 5. Develop a C program to compute the roots of the equation $ax^2 + bx + c = 0$.
- 6. Develop a C program that reads N integer numbers and arrange them in ascending or descending order using selection sort and bubble sort technique.
- 7. Develop a C program for Matrix multiplication.
- 8. Develop a C program to search an element using Binary search and linear search techniques.
- 9. Using functions develop a C program to perform the following tasks by parameter passing to read a string from the user and print appropriate message for palindrome or not palindrome.
- 10. Develop a C program to compute average marks of 'n' students (Name, Roll_No, Test Marks) and search a particular record based on 'Roll No'.
- 11. Develop a C program using pointers to function to find given two strings are equal or not.
- 12. Develop a C program using recursion, to determine GCD , LCM of two numbers and to perform binary to decimal conversion.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)		
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 05 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	10
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 25 Marks, adding upto 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 20 MARKS.	20
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (10) & Phase II (10) ADDING UPTO 20 MARKS.	20
	MAXIMUM MARKS FOR THE CIE THEORY	50

Semester: IV								
PROBABILITY THEORY AND LINEAR PROGRAMMING								
			(Theory)					
		(AS	, CH, CV, EE, EI, ET, ME)					
Course Code	Course Code : MA241AT CIE : 100 Marks							
Credits: L: T:P	Credits: L: T:P : 2:1:0							
Total Hours	:	30L+26T	SEE Duration	:	3.00 Hours			

Total Hours	:	30L+26T		SEE Duration	:	3.00	Hours
	Unit-I 06 Hrs					06 Hrs	
Random Variables	:						
Random variables-d	isc	rete and continuous	, probability mass f	unction, probability	den	sity fu	nction, cumulative
distribution function	1, 1	mean and variance.	Two or more rando	m variables - Joint p	roba	ability 1	mass function, joint
probability density fu	nct	ion, conditional distr	ibution and independ	ence, Covariance and	Co	rrelatio	n. Implementation
using MATLAB.							
		τ	J nit – II				06 Hrs
Probability Distrib	uti	ons:					
Discrete distribution	ıs -	- Binomial, Poissor	and Geometric. Co	ontinuous distributio	ons	– Expo	onential, Uniform,
Normal and Weibull	l. Iı	mplementation usin	g MATLAB.				
Unit –III				06 Hrs			
Sampling Distribut	ior	ns and Estimation:					
Population and sam	ple	e, Sampling distrib	utions - Simple rai	ndom sampling (wi	th r	eplace	ment and without
replacement). Stand	dar	d error, Sampling	distributions of r	neans (\square known),	Sa	mpling	distributions of
proportions, Sampli	ng	distribution of diff	erences and sums.	Estimation-point est	ima	tion, ir	nterval estimation.
Implementation usin	ıg l	MATLAB.					
		Ţ	nit –IV				06 Hrs
Inferential Statistic	es:						
Principles of Statis	Principles of Statistical Inference, Test of hypothesis - Null and alternative hypothesis, Procedure for						
_					-	_	
statistical testing, Type I and Type II errors, level of significance, Tests involving the normal distribution, one – tailed and two – tailed tests, P – value, Special tests for large and							
	small samples (F, Chi – square, Z, t – test). Implementation using MATLAB.						
(2, 02			Unit –V	6			06 Hrs

Linear Programming:

Mathematical formulation of linear programming problem. Solving linear programming problem using Graphical, Simplex and Big M methods. Implementation using MATLAB.

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Illustrate the fundamental concepts of random variables, distributions, sampling, inferential statistics and optimization.
CO2:	Compute the solution by applying the acquired knowledge of random variables, distributions, sampling, inferential statistics and optimization to the problems of engineering applications.
CO3:	Evaluate the solution of the problems using appropriate probability and optimization techniques to the real-world problems arising in many practical situations.

CO4: Interpret the overall knowledge of random variables, probability distributions, sampling theory, inferential statistics and optimization gained to engage in life – long learning.

Refere	ence Books
1	Probability & Statistics for Engineers & Scientists, Ronald E. Walpole & Raymond H. Myers, 9 th Edition, 2016, Pearson Education, ISBN-13: 978-0134115856.
2	Applied Statistics and Probability for Engineers, Douglas C. Montgomery and George C. Runger, 6 th Edition, 2014, John Wiley & Sons, ISBN:13 9781118539712, ISBN (BRV):9781118645062.
3	Introduction to Probability and Statistics for Engineers and Scientists, Sheldon Ross, 5 th Edition, 2014, Academic Press, ISBN: 13-978-0123948113.
4	Higher Engineering Mathematics, B.S. Grewal, 44 th Edition, 2015, Khanna Publishers, ISBN: 81-7409-195-5.

MARKS	COMPONENTS	#
20	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	1.
40	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted (Two regular tests & One optional Improvement test). Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	2.
40	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (05), Program specific requirements (05), Video based seminar/presentation/demonstration (10), MATLAB (20). ADDING UPTO 40 MARKS .	3.
100	MAXIMUM MARKS FOR THE CIE THEORY	

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS		
	PART A			
1	Objective type questions covering entire syllabus	20		
	PART B			
	(Maximum of TWO Sub-divisions only)			
2	Unit 1: (Compulsory)	16		
3 & 4	Unit 2: Question 3 or 4	16		
5 & 6	Unit 3: Question 5 or 6	16		
7 & 8	Unit 4: Question 7 or 8	16		
9 & 10	Unit 5: Question 9 or 10	16		
	TOTAL	100		

ENVIRONMENT & SUSTAINABILITY

Category: Basket Courses - Group A Stream: (Common to all Programs)

(Theory)

			· • • • • • • • • • • • • • • • • • • •			
Course Code	:	CV242TA		CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	42L		SEE Duration	:	3.0 Hours

Unit-I 10 Hrs

ENVIRONMENT AND BIODIVERSITY

Definition, scope and importance of environment – need for public awareness. Eco-system and Energy flow–ecological succession. Types of biodiversity: genetic, species and ecosystem diversity– values of biodiversity, threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – conservation of biodiversity.

ENVIRONMENTAL POLLUTION

Causes, Effects and Preventive measures of Water, Soil, Air and Noise Pollutions. Solid, Hazardous and E-Waste management.

Occupational Health and Safety Management system (OHASMS). Environmental protection, Environmental protection acts.

Unit – II 8 Hrs

RENEWABLE SOURCES OF ENERGY

Energy management and conservation, New Energy Sources: Need of new sources. Different types of new energy sources.

Energy Cycles, carbon cycle, emission and sequestration, Green Engineering: Sustainable urbanization-Socioeconomical and technological change.

Applications of - Hydrogen energy, Ocean energy resources, Tidal energy conversion. Concept, origin and power plants of geothermal energy.

Unit –III 8 Hrs

SUSTAINABILITY AND MANAGEMENT

Introduction to Environmental Economics, Environmental Audit, Development, GDP, Sustainability - concept, needs and challenges-economic, social and aspects of sustainability - from unsustainability to sustainability-millennium development goals and protocols.

Linear vs. cyclical resource management systems, need for systems thinking and design of cyclical systems, circular economy, industrial ecology, green technology. Specifically apply these concepts to: Water Resources, Energy Resources, Food Resources, Land & Forests, Waste management.

Unit –IV 8 Hrs

Sustainable Development Goals - targets, indicators and intervention areas Climate change - Global, Regional and local environmental issues and possible solutions. Concept of Carbon Credit, Carbon Footprint. Environmental management in industry.

SUSTAINABILITY PRACTICES

Zero waste and R concept, Circular economy, ISO 14000 Series, Material Life cycle assessment.

Environmental Impact Assessment. Sustainable habitat: Green buildings, Green materials, Energy efficiency, Sustainable transports.

Unit –V 8 Hrs

Corporate Social Responsibility (CSR) - Meaning & Definition of CSR, History & evolution of CSR. Concept of Charity, Corporate philanthropy, Corporate Citizenship, CSR-an overlapping concept. Concept of sustainability & Stakeholder Management. Relation between CSR and Corporate governance; environmental aspect of CSR; Chronological evolution of CSR in India.

Sustainability Reporting: Flavor of GRI, Dow Jones Sustainability Index, CEPI. Investor interest in Sustainability.

Course	Course Outcomes: After completing the course, the students will be able to: -				
CO 1	Understand the basic elements of Environment and its Biodiversity.				
CO 2	Explain the various types of pollution and requirement for sustainable strategy for present scenario.				
CO 3	Evaluate the different concepts of sustainability and its significance for welfare of all life forms.				
CO 4	Recognize the role of Corporate social responsibility in conserving the Environment.				

Refere	nce Books
2.	Anubha Kaushik and C. P. Kaushik's "Perspectives in Environmental Studies", 6 th Edition, New Age International Publishers ,2018.
2.	Benny Joseph, 'Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, 2016.
3.	Gilbert M.Masters, 'Introduction to Environmental Engineering and Science', 2 nd edition, Pearson Education, 2004.
4.	Allen, D. T. and Shonnard, D. R., Sustainability Engineering: Concepts, Design and Case Studies, Prentice Hall.
5.	Bradley. A.S; Adebayo, A.O., Maria, P. Engineering Applications in sustainable design and development, Cengage learning.
6.	Environment Impact Assessment Guidelines, Notification of Government of India, 2006.
7.	Mackenthun, K.M., Basic Concepts in Environmental Management, Lewis Publication, London, 1998.
8.	R. Rajagopalan, Environmental Studies: From Crisis to Cure. Oxford University Press, 2011, 358 pages. ISBN: 9780198072089.
9.	Daniel D. Chiras, Environmental Science. Jones & Bartlett Publishers, 01-Feb-2012, 669 pages. ISBN: 9781449645311.
10.	Corporate Social Responsibility Part I, Part II, Part III by David Crowther and Guler Aras.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	Q. NO. CONTENTS				
	PART A	-			
1	Objective type questions covering entire syllabus	20			
	PART B (Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5 & 6	Unit 3: Question 5 or 6	16			
7 & 8	Unit 4: Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

MATERIAL SCIENCE FOR ENGINEERS

Category: Basket Courses - Group A Stream: (Common to all Programs)

(Theory)

			()			
Course Code	:	ME242TB		CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	40L		SEE Duration	:	3.0 Hours

Unit-I 06 Hrs

The Fundamentals of Materials

The electronic structure of atoms, types of atomic and molecular bonds: ionic bond, covalent bond, metallic bond, secondary bonds, mixed bonding, hybridization. Energy bands in metals, insulators, and semiconductors. Basic crystallography. Defects and dislocations. Types of materials: polymers, metals and alloys, ceramics, semiconductors, composites.

Unit – II 10 Hrs

Material behaviour Thermal properties

Thermal conductivity, thermoelectric effects, heat capacity, thermal expansion coefficient, thermal shock, thermocouple. Electrical Properties: dielectric behaviours and temperature dependence of the dielectric constant, insulating materials, ferroelectricity, piezoelectricity, super conductor. Optical properties: luminescence, optical fibers, Mechanical Properties: Stress-strain diagram, elastic deformation, plastic deformation, hardness, viscoelastic deformation, impact energy, fracture toughness, fatigue.

Unit –III 10 Hrs

Materials and their Applications

Semiconductors, dielectrics, optoelectronics, structural materials, ferrous alloys, nonferrous alloys, cement, concrete, ceramic, and glasses. Polymers: thermosets and thermoplastics, composites: fibrereinforced, aggregated composites, electronic packaging materials, biomaterials, processing of structural materials.

Unit –IV 07 Hrs

Heat Treatment

Post processing heat treatment of electronic devices: thermal oxidation, diffusion, rapid thermal processing. Heat treatment of ferrous materials: annealing, spheroidizing, normalizing, hardening, tempering. formation of austenite, construction of Time Temperature Transformation (TTT) curves. Special heat treatment processes: carburizing, nitriding, cyaniding, flame, and induction hardening. Defects in heat treatment.

Unit –V 07 Hrs

Nanomaterials Synthesis of nanomaterials

Ball milling, sol-gel, vapour deposition growth, pulse laser, magnetron sputtering, lithography. Nano porous materials: zeolites, mesoporous materials, carbon nanotubes, graphene, nano FRPs, nano fabrics, bioresorbable and bio-erodable materials, nano ceramic, nano glasses, nano biomaterials, nano implant associated materials. Characterisation of nano structures, spectroscopic techniques, automatic force microscopy.

Course	Course Outcomes: After completing the course, the students will be able to: -					
CO1	Understand behaviour of various materials such as metals, composites and special materials					
CO2	Analyse materials, composition, and their phase transformation					
CO3	Investigate solidification process during casting and materials degradation					
CO4	Recognize different types of Non-destructive testing methods to find subsurface defects in the materials.					

Refere	ence Books
1	Material Science and Engineering, William D Callister, 6th Edition, 1997, John Wiley and Sons, ISBN: 9812-53-052-5
2	Introduction to Physical Metallurgy, Sydney H Avner, 1994, Mc. Graw Hill Book Company, ISBN: 0-07-Y85018-6
3	Material Science and Engineering, William F Smith, 4 th Edition, 2008, Mc. Graw Hill Book Company, ISBN: 0-07-066717-9
4	A.S. Edelstein and R.C. Cammarata, Nanomaterials: Synthesis, Properties and Applications, CRC Press 1996, ISBN:978-0849322749

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

BIO SAFETY STANDARDS AND ETHICS

Category: Basket Courses - Group A Stream: (Common to all Programs)

(Theory)

Course Code	:	BT242TC	 CIE	:	100 Marks
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks
Total Hours	:	42L	SEE Duration	:	3.0 Hours

Unit-I	09 Hrs

Biohazards, Bio Safety Levels and Cabinets:

Introduction to Biohazards, Biological Safety levels, Bio safety Cabinets, Study of various types of Bio safety cabinets. Various parameters for design of Biosafety cabinets (Materials used for fabrication, sensors, filters, pumps, compressors)

Unit – II 08 Hrs

Biosafety Guidelines:

Biosafety guidelines of Government of India, GMOs & LMOs, Roles of Institutional Biosafety Committee, RCGM (Review committee o Genetic manipulation), GEAC (Genetic Engg Approval Committee) for GMO applications in food and agriculture. Overview of National Regulations and relevant International Agreements including Cartagena Protocol.

Unit –III 10 Hrs

Food Safety Standards:

FSSAI (Food Safety and Standards Authority of India), Functions, License, types of FSSAI Licences and compliance rules.

Food Hygiene:

General principles of food microbiology and overview of foodborne pathogens, sources of microorganisms in the food chain (raw materials, water, air, equipment, etc.)

Quality of foods, Microbial food spoilage and Foodborne diseases, Overview of beneficial microorganisms and their role in food processing and human nutrition, Food Analysis and Testing, General principles of food safety management systems, Hazard Analysis Critical Control Point (HACCP).

Unit –IV 09 Hrs

Food Preservations, Processing, and Packaging:

Food Processing Operations, Principles, Good Manufacturing Practices HACCP, Good production, and processing practices (GMP, GAP, GHP, GLP, BAP, etc)

Overview of food preservation methods and their underlying principles including novel and emerging methods/principles

Overview of food packaging methods and principles including novel packaging materials.

Unit –V 09 Hrs

Food safety and Ethics:

Food Hazards, Food Additives, Food Allergens Drugs, Hormones, and Antibiotics in Animals. Factors That Contribute to Foodborne Illness, Consumer Lifestyles and Demand, Food Production and Economics, History of Food Safety, The Role of Food Preservation in Food Safety.

Ethics:

Clinical ethics, Health Policy, Research ethics, ethics on Animals. Biosafety and Bioethics.

Course (Course Outcomes: After completing the course, the students will be able to					
CO1	Comprehensive knowledge of Biohazards and bio safety levels					
CO2	Understanding the biosafety guidelines and their importance to the society					
CO3	Knowledge with respect to the Food standards, Hygiene, food processing and packing					
CO4	Appreciate the food safety, Ethics, biosafety, and bio ethics					

Referen	ce Books
1	IPR Biosafety and Bioethics, Deepa Goel, Shomini Parashar, 1st Edition, Pearson; 2013,
	ISBN: 978-8131774700.
2	The Food Safety, Cynthia A Roberts, Oryx Press, 1st Edition, 2001, ISBN: 1–57356–305–
	6.
3	Food Safety Management Systems, Hal King, Springer Cham, 2020, ISBN: 978-3-030-
	44734-2.
4	Bioethics: The Basics, Routledge, Alastair V. Campbell, 2 nd Edition, 2017, ISBN: 978-
	0415790314.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

Semester: IV						
	MECHANICS OF FLUIDS					
		Categ	ory: Professional Co	re Course		
	Stream: Theory & Practice					
Course Code	Course Code : CV343AI CIE : 100+50 Marks					
Credits: L:T:P	:	3:0:1		SEE	:	100+50 Marks
Total Hours	:	42L+28P		SEE Duration	:	3.0Hours + 3.0Hours

Unit-I 9 Hrs

Introduction: Definition of Properties and its usage for characterization of Fluid, Numerical Problems.

Fluid Pressure and its measurement: Fluid pressure at a point, Pascal's law, Variation of pressure in a fluid, Atmospheric Absolute, Gauge, and Vacuum pressures, Measurement of pressure using Simple and Differential manometers, Numerical Problems.

Unit – II 8 Hrs

Kinematics of Fluid Flow:

Classification of flows: Steady and Unsteady, Uniform and Non-uniform, Laminar and Turbulent, Rotational and Irrotational flow.

Dynamics of Fluid Flow:

Laws of Mass, Energy and Momentum, Continuity equation (One Dimensional), Euler's equation, Bernoulli's equation, Modified Bernoulli's equation - limitations and its application - Orifice Meter & Venturimeter, Numerical Problems.

Unit –III 8 Hrs

Flow through pipes:

Head losses - Major loss & Minor loss, Darcy - Weisbach Equation, Hydraulic Gradient line, Total Energy Line, Series and Parallel Network of pipes, Numerical Problems.

Notches and Weirs:

Definition of Notch and Weir, Flow through V-notch, Rectangular weir, Cippoletti weir, Corrections for Velocity of Approach, End Contractions, Numerical Problems.

Unit –IV 8 Hrs

Flow through Open Channel:

Calculation of Velocity using Chezy's and Manning's experiments, Hydraulic Efficient Channels: Rectangular and Trapezoidal channel, Numerical Problems.

Specific Energy, Critical Depth, Froude's Number, Specific Energy Diagram, Subcritical and Supercritical flows, Alternative Depths, Hydraulic Jump, Numerical Problems.

Unit –V 9 Hrs

Impact of Jet on Vanes:

Impact of jet on vanes, Force exerted by the jet on a straight & curved vane (Stationary & Moving). Velocity triangles, Numerical Problems.

PART B (Laboratory)

- 1. Calibration of 90°V-notch.
- 2. Calibration of Rectangular notch.
- 3. Calibration of Cippoletti notch.
- 4. Calibration of Ogee weir.
- 5. Calibration of Venturimeter.
- 6. Calibration of orificemeter
- 7. Verification of Bernoulli's principle.
- 8. Determination of friction factor for a given pipe.
- 9. Impact of jet on vanes.
- 10. Minor Losses in pipes (Bends in pipe, Sudden Expansion in pipe, Sudden Contraction in pipe).

Course	Course Outcomes: After completing the course, the students will be able to: -				
CO 1	Describe the different properties of fluids, for the flow characterization and measurements.				
CO 2	Explain the behavior of the fluids under static and dynamic conditions.				
CO3	Apply continuity equation and energy equation in solving problems on flow through conduits.				
CO 4	Compute hydrostatic and hydrodynamic forces, flow profiles in channel transitions and analyze				
	hydraulic transients.				

Referen	ice Books
1.	Hydraulics and Fluid Mechanics including Hydraulic Machines, P.N. Modi and S.M Seth, 21st Edition
	2017, Standard Book House, ISBN 978-81-89401-26-9.
2.	A text book of Fluid Mechanics and Hydraulics Machines, Dr. R.K.Bansal, 10 th Edition, 2018, Laxmi
	Publication (P) LTD, ISBN-10: 8131808157
3.	Fluid Mechanics, 8th Edition 2016, Frank M White TATA McGraw Hill, New Delhi,
	ISBN-10: 9385965492, ISBN-13: 978-9385965494
4.	Flow in open Channels, K. Subramanya, 5 th Edition ,20 April 2019, Tata McGraw Hill, McGraw-Hill;
	ISBN-10: 9353166292
5.	Fluid Mechanics with Engineering Applications, Daugherthy, R.L., Franzini, J.B., Finnemore, E.J., 1997,
	McGraw Hill, New York, ISBN-10: 9780070219144.
6.	Fluid Mechanics, Streeter, V. L., Wylie, E. Benjamin: 9th Edition, 2017, Tata McGraw Hill Publications.,
	ISBN-10: 0070701407

RUBRICFOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40		
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (20 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (20 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50 MARKS	50		
	MAXIMUM MARKS FOR THE CIE THEORY	150		

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q.NO.	Q.NO. CONTENTS						
	PART A	•					
1	Objective type of questions covering entire syllabus	20					
	PART B						
	(Maximum of THREE Sub-divisions only)						
2	Unit 1 : (Compulsory)	16					
3 & 4	Unit 2: Question 3 or 4	16					
5 & 6	5 & 6 Unit 3: Question 5 or 6						
7 & 8 Unit 4 : Question 7 or 8							
9 & 10	Unit 5: Question 9 or 10	16					
	TOTAL	100					

RUBRIC FOR SEMESTER END EXAMINATION (LAB)					
Q.NO. CONTENTS					
1	Write Up	20			
2	Conduction of the Experiments	20			
3	Viva	10			
	TOTAL	50			

Semester: IV								
BUILDING PLANNING AND DRAWING								
		Categ	ory: Professional Core Course					
	Stream: Theory & Practice							
Course Code	Course Code : CV244AI CIE : 100+50 Marks							
Credits: L:T:P	Credits: L:T:P : 3:0:1							
Total Hours	:	40L+28P	SEE Duration	:	3.0Hours $+ 3.0$ Hours			

10tai 110tii	SEE Duration : 3.0110dis	1 3.0110415				
	Unit-I	8 Hrs				
Building systems: Foundations, Masonry,	Walls, Floors, Stairs, Lintels and arches, Roofs, door	rs, windows,				
Ventilators – Classification and functional re	equirements.					
	Unit – II	8 Hrs				
Building Construction: Formwork and scat	folding, underpinning, Plastering, Pointing and painting	, Weather				
proofing - concepts, Pre-cast construction –	Classification and functional requirements,					
	Unit –III	8 Hrs				
Building services: Water distribution and drainage systems, principles, plans, materials, connections and services						
of connections, Air-conditioning, Acoustics,	Fire protection and Harzards, Electrical drawing - Class	ification and				
functional requirements.,	functional requirements.,					
_	Unit –IV	8 Hrs				
Building Planning: Principles of Building Planning, Classification of buildings and Building by laws as per						
National building Code (NBC). Introduction	n to Green buildings and rating systems					

Construction equipment and safety: Introduction, Factors for selecting equipment, various earth moving equipment's, Hoisting equipment's, Conveyors and rollers, Trenching machines, Fire safety-Introduction, Requirements and Procedures.

Unit -V

PART B (Laboratory)

Introduction to Building drawing –

universal signs and symbols, line types, scale, building elements; Building floor plans, elevations and sections, vocabulary based on building drawing;

Using Auto-CAD 2D/3D/REVIT/SKETCHUP 3D:

Prepare working drawing of components of building like

Substructure - types of foundation, footing layouts, marking drawings;

Development of Plan, Elevation, section and Schedule of Openings for the following.

Single Storey building, Two Storey building. (With or without line diagram)

Plumbing, sanitary layouts, electrical layouts.

Course	Course Outcomes: After completing the course, the students will be able to: -				
CO 1	CO 1 Understand the fundamental of building materials, Planning, construction & factors of				
	deterioration.				
CO 2	Elaborate and visualize the common Civil engineering structural components.				
CO 3	Familiarize with the critical aspects of various services in building				
CO 4	Understand the essence of a civil engineer in the concept of building planning & drawings.				
	orderstand the essence of a cryst engineer in the concept of banding planning & drawings.				

8 Hrs

Referen	Reference Books					
1.	Balagopal T S, Prabhu K, Vincent P and Vijayan C, Building Drawing and Detailing, Spades Publishers (1987).					
2.	Shah M G, Kale C M and Patki S Y, Building drawing with an integrated approach to built environment – 4 th Edition, Tata McGraw Hill (2002).					
3.	Building Construction, S.G. Rangwala, 33rd Edition, 2016, Charotar Publishing House Pvt. Ltd.; ISBN-10: 9385039040					
4.	Building Construction B.C. Punmia, Ashok Kumar Jain, Arun Kumar Jain, 11 th Edition, 2016, Laxmi Publications; ISBN-10: 9788131804285					
5.	Building Planning and Drawing , S. S. Bhavikatti, 30 June 2014, I K International Publishing House Pvt. Ltd, ISBN-13: 978-9382332565					
6.	Building Construction, Sushil Kumar 20 th Edition, 2017, Standard publisher dist. ISBN-10: 9788180141683					
7.	National Building Code of India 2016 (NBC 2016)					

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40		
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (20 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (20 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50 MARKS	50		
MAXIMUM MARKS FOR THE CIE THEORY				

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q.NO.	Q.NO. CONTENTS					
	PART A					
1	Objective type of questions covering entire syllabus	20				
	PART B (Maximum of THREE Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5 & 6	5 & 6 Unit 3 : Question 5 or 6					
7 & 8	Unit 4: Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

RUBRIC FOR SEMESTER END EXAMINATION (LAB)						
Q.NO.	Q.NO. CONTENTS					
1	Write Up	20				
2	Conduction of the Experiments	20				
3	Viva	10				
TOTAL						

Semester: IV							
STRUCTURAL ANALYSIS							
		Categ	ory: Professional Core Course				
Stream: Theory							
Course Code	Course Code : CV345AT CIE : 100 Marks						
Credits: L:T:P : 3:0:0							
Total Hours	:	42L	SEE Duration	:	3.0 Hours		

Unit-I	8	Hrs
Review of SFD, BMD.		
Deflection of Beams: Conjugate beam Method – Simply supported beams, Cantilever Beam, and Ov	er	
hanging beams.		

Unit – II 8 Hrs

Energy Theorems: Introduction: Strain energy in linear elastic system, expression of strain energy due to axial load, bending moment and shear force — Principle of virtual work, unit load method, Castigliano's theorems-Deflection of simple beams..

Unit –III 8 Hrs

Redundant Trusses: Introduction, Analysis of statically indeterminate structures using strain energy method, Analysis of trusses (Redundant up to second degree), Lack of fit in member & temperature stress in redundant truss.

Unit –IV 9 Hrs

Slope Deflection Method: Introduction; Derivation of Slope-Deflection equations for beams. Analysis of Continuous beam by Slope –Deflection Equations. (No portal frames)

Moment – Distribution Method: Introduction, Stiffness factor, Distribution Factor, Distribution moment and Carry-over moment; Analysis of Continuous beams with and without settlement of supports. Single bay, Single storey, Orthogonal Portal frames with and without sway.

Unit –V 9 Hrs

Arches: Introduction, Three Hinged Parabolic and circular Arches with supports at Same levels and different levels, Determination of Normal thrust, Radial Shear and bending moment - Problems.

Cables and Suspension - Bridges: Analysis of Cables at Same levels and different levels with point load and UDL- Numerical problems.

Course Outcomes: After completing the course, the students will be able to: -							
	CO 1						
	CO 2						
	CO 3						
	CO 4						

Referen	ce Books						
1.	Basic Structural Analysis, Reddy C.S., 3 rd Edition, 1 July 2017, Tata McGraw Hill Publication						
	Company Ltd., New Delhi, ISBN 13: 978-0070702769.						
2.	Theory of Structures, S. Ramamrutham, 9 th Edition ,2014, DhanpatRai Publishing Company						
	Private Limited, New Delhi; ISBN-13: 978-9384378103.						
3.	Basic Structural Analysis, K.U. Muthu, Azmi Ibrahim, M. Vijayanand, Maganti Janardhana, 3rd						
	Edition, 2017, I K International Publishing House Pvt. Ltd, ISBN-13: 978-9385909573						
4.	Structural Analysis, R C Hibbler, 8th Edition, 25 February 2011, Pearson Publications; Pearson						
	Prentice Hall, ISBN-13: 978-0132570534.						
5.	Elementary Structural Analysis, Norris C.H., Wilbur J.B., 3 rd Edition, 2016, McGraw Hill						
	International Book, ISBN 13: 9352604717						

#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)	
Q. NO.	CONTENTS	MARKS
	PART A	
1	Objective type questions covering entire syllabus	20
	PART B	
	(Maximum of TWO Sub-divisions only)	
2	Unit 1 : (Compulsory)	16
3 & 4	Unit 2 : Question 3 or 4	16
5 & 6	Unit 3: Question 5 or 6	16
7 & 8	Unit 4: Question 7 or 8	16
9 & 10	Unit 5: Question 9 or 10	16
	TOTAL	100

ECOLOGY AND ENVIRONMENT

Category: Professional Core Elective (NPTEL/MOOC)

Stream: (MOOC Course)

Course Code CV246TA **CIE** 50 Marks : Credits: L:T:P : 2:0:0 **SEE** : 50 Marks **Total Hours 30L SEE Duration** 3.0 Hours : :

Content 30 Hrs

Week 1. Sustainability, Dams, Adayar River, Urbanisation in Western Ghats and Biodiesel, Use And Throw Plastic, Nano Materials Information Technologhy

Week 2. Definition of Health Risk, Transport Of Pollutants in the Environment, Assesment of Risk, Remediation and Liability, Life Cycle Analysis

Week 3. Energy & Environment

Week 4. Energy & Environment

Week 5. Drinking Water Supply: Need and Challenges, Water Quality Standards And Philosophy of Water

Treatment, Water Treatment: Point Of Use Filters, Wastewater Management in Developing Urban Environments: Indian Scenario, Wastewater Recycling: A Sustainable Option For Water Management

Week 6. Sustainable Water Management In Urban Areas, Ground Water Contamination, Groundwater - Sanitation Nexus

Week 7. Chasing Sustainability - The Challenge, Devoloping Frame Works Of Action: Ethics , Social And sanitation, Promoting Policies For Eco-Productive Cities in the global House

Week 8. The need to study ecology, Ecosystem functions and services, Ecological footprint, Energy and Material flow in ecosystems and ecological efficiency, Energy flow, productivity and Biodiversity, Biodiversity, population and ecological principles

Semester: IV REMOTE SENSING AND GIS Category: Professional Core Elective (NPTEL/MOOC) Stream: (MOOC Course) CV246TB **Course Code** CIE 50 Marks Credits: L:T:P 50 Marks 2:0:0 **SEE** : : **Total Hours 30L SEE Duration** 3.0 Hours : :

Content	30 Hrs
Week 1: Remote Sensing Data and Corrections	
Week 2: Satellite Image Corrections	
W 12 D''-11 D ' I	

Week 3: Digital Image Processing-I Week 4: Digital Image Processing-II Week 5: Thermal and Microwaya

Week 5 : Thermal and Microwave Week 6 : Imaging Spectroscopy-I

Week 7 : Imaging Spectroscopy-II & GIS-I

Week 8: GIS-II and Application

Semester: IV RIVER ENGINEERING Category: Professional Core Elective (NPTEL/MOOC) Stream: (MOOC Course) CV246TC **Course Code** CIE 50 Marks Credits: L:T:P 50 Marks 2:0:0 SEE : : **Total Hours 30L SEE Duration** 3.0Hours

Content	30 Hrs
Week 1: Sediment Properties	
Week 2: Hydrodynamic principle	
Week 3: Hydrodynamic principle- II	
Week 4 : Sediment Transport	
W 15 DI ' IM II' I I I C	

Week 5: Physical Modeling: Introduction to Scour Week 6: Bridge Scour and River Training Work

Week 7 : Riverbank Stabilization Week 8: River Equilibrium

PROJECT PLANNING & CONTROL

Category: Professional Core Elective (NPTEL/MOOC)

Stream:

(MOOC Course)

Course Code	:	CV246TD	CIE	:	50 Marks
Credits: L:T:P	:	2:0:0	SEE	:	50 Marks
Total Hours	:	30L	SEE Duration	:	3.0 Hours

Content 30 Hrs

- Week 1. Introduction, Course Context, Construction Project Management
- Week 2. Time Management, Work Breakdown Structure (WBS), Gantt Charts
- Week 3. Duration Estimation, Network Representation & Analysis -1
- Week 4. Network Representation & Analysis -2; Two-Span Bridge: Scheduling, Network Analysis and Appl
- Week 5. Time-Cost Trade-off (Crashing)
- Week 6. Resource Scheduling
- Week 7. Precedence Diagramming Method (PDM), Project Monitoring & Control
- Week 8. Project Monitoring & Control (Earned Value Concepts), Uncertainty in Project Schedules (PERT)

Semester: IV SUSTAINABLE ENGINEERING CONCEPTS AND LIFE CYCLE ANALYSIS **Category: Professional Core Elective (NPTEL/MOOC) Stream: MOOC Course Course Code CV246TE** CIE 50 Marks Credits: L:T:P 2:0:0 SEE 50 Marks : : **Total Hours 30L SEE Duration** 3.0 Hours

Content 30 Hrs

 $Week \ 1-Life \ Cycle \ Assessment-Introduction, LCA \ and \ Sustainability, \ LCA \ and \ Environmental \ Systems, \ LCA \ and \ Water, \ Food \ and \ Energy$

Week 2 - RISK Assessment and LCA Frameworks, RISK Assessment – Toxicology, RISK Assessment Methods,

RISK Assessment Methods (Contd.), Environmental Risk Assessment

Week 3 - Environmental Data Collection and LCA Methodology

Week 4 - A Detailed Methodology, LCA Benefits and Drawbacks, History of LCA, The ISO Framework

Week 5 - Unit Process, Data and LCI Databases, Inventory Data and LCIA, LCA Interpretation

Week 6 - ISO 14040, Key Points of a Good LCA and Example LCA, Chemical Release in Environment, Green Sustainable Materials

Week 7 - Design for Sustainability

Week 8 - Summary and Case Studies

Semester: IV						
Building Energy Systems and Auditing						
			(MOOC Course)			
Course Code	:	CV246TF		CIE	:	50 Marks
Credits: L:T:P	:	2:0:0		SEE	:	50 Marks
Total Hours	:	30L		SEE	:	3.00 Hours
				Duration		

	Content	30 Hrs
ı		

Week 1: General Introduction to Building Physics

Review of Climate Responsive Design Principles, Heat conduction, convection and radiation principles, Material properties, Daylighting.

Week 2: Building Heat Transfer Mechanism

Heat admittance through building envelope, Psychometric operation, Solar Radiation and consideration for glazing design

Week 3: Building Heat Load Estimation Methods

Thermal load and ventilation. Study on building energy systems that contribute to the energy needs of the built forms, Energy calculation and modelling of building based on thermal transfer values. Concept of cooling degree days

Week 4: Energy Conservation Building Code Considerations

ECBC norms on energy efficient building in India, Building envelope trade-off method. Envelope performance factor. Daylight and lighting consideration

Week 5: Energy Conservation in Residential Building

Eco-Niwas Samhita 2018 guidelines for residential building energy conservation, Residential envelope transmittance values in various climatic conditions in India. Comfort system and controls.

Week 6: Life Cycle Analysis

Discussion on life cycle energy analysis of building. Embodied energy, operational energy. Bureau of Energy Efficiency, Govt. of India (BEE) guidelines and Building Energy Index of different building types.

Week 7: Building Energy Audits

Energy Auditing types and level. Tools for Auditing, Payback of Retrofits, Accepted Home Energy Designations. Factors Affecting Thermal Performance of Insulation.

Week 8: Passive Technologies and Green Energy

Passive low energy technologies and its application in building Earth-air tubes, radiant cooling, Passive downdraft evaporative cooling (PDEC). Green technologies for alternative sources of building operating energy:, PV Cell, wind energy, bio gas, Energy efficient buildings in India: case studies

Semester: IV							
	Interior Design						
		(1	MOOC Course)				
Course Code	:	CV246TG		CIE	:	50 Marks	
Credits: L:T:P	:	2:0:0		SEE	:	50 Marks	
Total Hours	:	30L		SEE	:	3.00 Hours	
				Duration			

Content	30 Hrs
XXX 1 4	

Week 1:

Module 1:Interior Design: Definition; Understanding; History of Interior Design; Scope

Module 2:Interior Design; Interior Decoration; and Interior Architecture

Module 3:Interior Design Projects: Overview on Costing and Career

Module 4:Interior Design: Case Studies and Examples

Module 5:Summary and Discourse

Week 2:

Module 1:Principles and Elements of Interior Design: Discussion and Examples; Understanding Composition

Module 2:Space Making Elements - wall, column, partition screen, floor, furniture, interior landscaping

Module 3:Trends, Concepts and Schemes in Lighting, Colour, Furnishing, Finishes

Module 4:Interior Design: Drawings and Representation Techniques

Module 5:Summary and Discourse

Week 3:

Module 1:Interior Design: Understanding varied spaces – Retail; Work; Living; Restorative; Public; Transient, Concepts of Place and Space

Module 2:Interior-Design – Finishes, Materials and Specifications: diverse surface treatments, finishes, materials, specifications and application techniques

Module 3:Interior-Design – Finishes, Materials and Specifications: Space-Making Crafts; Space-Surface Crafts - traditional, folk and contemporary crafts and their role in creating and enhancing interior spaces

Module 4:skills; building (space-making) crafts; building (space-making) elements; tools; techniques; technology; local resources; community participation; establishing inter-relationships

Module 5:Summary and Discourse

Week 4:

Module 1:Interior Design: Materials - Timber Module 2:Interior Design: Materials - Stone Module 3:Interior Design: Materials - Tiles Module 4:Interior Design: Materials - Paints

Module 5:Summary and Discourse

Week 5:

Module 1:Green Interiors: Introduction to Rating Systems; Examples

Module 2:Green Interiors: Attributes – IAQ, IEQ, Furniture

Module 3:Green Interiors: Physics of Light - Day Light, Artificial Light, Chemistry of Colours

Module 4:Green Interiors: Policies and Incentives; Materials and Finishes

Module 5:Summary and Discourse

Week 6:

Module 1:Interior Design Technology: Innovative trends and technologies - Tiny Houses, Origami

Module 2:Interior Design Technology: Experimental finishes and materials; Joinery

Module 3:Interior Design Technology: Visual Merchandising; Concepts of Modularity, Portability, Foldability, DIY

Module 4:Interior Design Technology: New Concepts – Installations, Decor

Module 5:Summary and Discourse

Go, change the world

Week 7:

Module 1:Professional Practice: Interior services, functional importance

Module 2:Professional Practice: bylaws, supervision

Module 3:Building Material Costing; BoQ; Market Exposure; Product Catalogues

Module 4:Important Organisations, Institutes, Firms, Designers, Avenues of Pedagogy and Practice

Module 5:Summary and Discourse

Week 8:

Module 1:Trans-Disciplinar y Interventions: Craft-Design Explorations Module 2:Trans-Disciplinar y Interventions: Craft-Design Explorations

Module 3:Creative and Cultural Industries: Focus on Visual Art and Interior Design

Module 4:Interior Design: Future Roadmap; Opportunities and Challenges

Module 5:Summary and Discourse

SEMESTER: IV							
	DESIGN THINKING LAB						
		Category: PR	OFESSIONAL COR	E COURSE			
			(Practicals)				
Course Code	:	CV247DL		CIE	:	50 Marks	
Credits: L:T:P	:	0:0:2		SEE	:	50 Marks	
Total Hours	Total Hours : 26P SEE Duration : 2.0 Hrs						
			•			26 Hrs	

Guidelines for Design Thinking Lab (DTL):

- 1. DTL is to be carried out by a team of two-three students.
- 2. Each student in a team must contribute equally in the tasks mentioned below.
- 3. Each group must select a theme that will provide solutions to the challenges of societal concern. Normally three to four themes would be identified by the by the department
- 4. Each group should follow the stages of Empathy, Design, Ideate, prototype and Test for completion of DTL.
- 5. After every stage of DTL, the committee constituted by the department along with the coordinators would evaluate for CIE. The committee shall consist of respective coordinator & two senior faculty members as examiners. The evaluation will be done for each student separately.
- 6. The team should prepare a Digital Poster and a report should be submitted after incorporation of any modifications suggested by the evaluation committee.

The Design Thinking lab tasks would involve:

- 1. Carry out the detailed questionnaire to arrive at the problem of the selected theme. The empathy report shall be prepared based on the response of the stake holders.
- 2. For the problem identified, the team needs to give solution through thinking out of the box innovatively to complete the ideation stage of DTL
- 3. Once the idea of the solution is ready, detailed design must be formulated in the Design stage considering the practical feasibility.
- 4. If the Design of the problem is approved, the team should implement the design and come out with prototype of the system.
- 5. Conduct thorough testing of all the modules in the prototype developed and carry out integrated testing.
- 6. Demonstrate the functioning of the prototype along with presentations of the same.
- 7. Prepare a Digital poster indicating all the stages of DTL separately. A Detailed project report also should be submitted covering the difficulties and challenges faced in each stage of DTL.
- 8. Methods of testing and validation should be clearly defined both in the Digital poster as well asthe report.
- 9. The students are required to submit the Poster and the report in the prescribed format provided bythe department.

Course	Course Outcomes: After completing the course, the students will be able to: -					
CO1	Interpret the process of Design Thinking to solve real world problems from the end user view point.					
CO2	Apply design thinking tools to make decisions and attain a feasible solution.					
CO3	Identify and solve a Capstone project with sustainable goals using Design Thinking.					
CO4	Develop a pretotype and optimize it further through demonstrations.					

RUBRICS FOR THE CONTINUOUS INTERNAL EVALUATION					
#	COMPONENTS	MARKS			
1.	Empathy, Ideate evaluation	10			
2.	Design evaluation	15			
3.	Prototype evaluation, Digital Poster presentation and report submission	25			
MAXIMUM MARKS FOR THE CIE					

#	COMPONENTS	MARKS
1.	Written presentation of synopsis: Write up	05
2.	Presentation/Demonstration of the project	15
3.	Demonstration of the project	20
4.	Viva	05
5.	Report	05
	MAXIMUM MARKS FOR THE SEE	50

	SEMESTER: IV						
	UNIVERSAL HUMAN VALUES II						
			Category: Common to all Programs				
			Stream: Theory				
Course Code	:	HS248AT	CIE	:	50 Marks		
Credits: L:T:P	:	2:0:0	SEE	:	50 Marks		
Total Hours	:	28L	SEE Duration	:	02 Hrs		
Unit-I 10 Hrs							

Course Introduction - Need, Basic Guidelines, Content and Process for Value Education:

Purpose and motivation for the course, recapitulation from Universal Human Values-I, Self-Exploration 'Natural Acceptance' and Experiential Validation Continuous Happiness and Prosperity- Human Aspirations, Right understanding, Relationship and Physical Facility, Understanding Happiness and Prosperity correctly.

Practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility.

Understanding Harmony in the Human Being - Harmony in Myself!:

Understanding human being as a co- existence of the sentient 'I' and the material 'Body', Understanding the needs of Self ('I') and 'Body' Understanding the Body as an instrument of Understanding the characteristics and activities of 'I' and harmony in 'I', Understanding the harmony of I with the Body: Sanyam and Health;

Practice sessions to discuss the role others have played in making material goods available to me. Identifying from one's own life.

Unit – II 10 Hrs

Understanding Harmony in the Family and Society-Harmony in Human Relationship:

Understanding values in human-human relationship; meaning of Justice and program for its fulfilment to ensure mutual happiness; Trustand Respect as the foundational values of relationship, Understanding the meaning of Trust.

Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals, Visualizing a universal harmonious order in society- Undivided Society, Universal Order- from family to world family.

Practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives.

Unit –III 08 Hrs

Understanding Harmony in the Nature and Existence - Whole existence as Coexistence:

Understanding the harmony in the Nature, Interconnectedness, and mutual fulfilment among the four orders of nature recyclability and self-regulation in nature, Understanding Existence as Co-existence of mutually interacting units in all pervasive space, Holistic perception of harmony at all levels of existence.

Practice sessions to discuss human being as cause of imbalance in nature (film "Home" can be used), pollution, depletion of resources and role of technology etc.

Course	Course Outcomes: After completing the course, the students will be able to: -						
CO1	By the end of the course, students are expected to become more aware of themselves, and their surroundings (family, society, nature); they would become more responsible in life, and in handling problems with sustainable solutions,						
CO2	While keeping human relationships and human nature in mind. They would have better critical ability.						
CO3	They would also become sensitive to their commitment towards what they have understood (human values, human relationship and human society).						
CO4	It is hoped that they would be able to apply what they have learnt to their own self in different day-to-day settings in real life, at least a beginning would be made in this direction.						

Referen	Reference Books					
1.	Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.					
2.	Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004					
3.	The Story of Stuff (Book).					
4.	The Story of My Experiments with Truth - by Mohandas Karamchand Gandhi					
5.	Small is Beautiful - E. F Schumacher.					
6.	Slow is Beautiful - Cecile Andrews.					

RUBRICS FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 5 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	10		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 25 Marks, adding up to 50 Marks. FINAL TEST MARKS WILL BE REDUCED TO 20 MARKS.	20		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (10) & Phase II (10) ADDING UPTO 20 MARKS .	20		
	MAXIMUM MARKS FOR THE CIE THEORY	50		

RUBRICS FOR SEMESTER END EXAMINATION (THEORY)			
Q.NO.	NO. CONTENTS		
	PART A	- U.	
1	Objective type questions covering entire syllabus	10	
	PART B (Maximum of THREE Sub-divisions only)		
2	Unit 1: (Compulsory)	08	
	A V		
3 & 4	Unit 2: Question 3 or 4	08	
5 & 6	Unit 3: Question 5 or 6	08	
7 & 8	Unit 4: Question 7 or 8	08	
9 &10	Unit 5: Question 9 or 10	08	
	TOTAL	50	

Semester: IV
Bridge Course: MATHEMATICS
Category: Mandatory Audit Course
Stream: (AS, BT, CH, CV, EC, EE, EI, ET, IM, ME)

Theory

Course Code	:	MAT149AT	CIE	:	50 Marks
Credits: L: T: P	:	2:0:0	SEE	:	NO SEE (AUDIT COURSE)
Total Hours	:	30L			

Unit-I			10 Hrs	
Multivariable Calculus:				
Doutiel Differentiation, Introduction	almonto municipales 5	Takal damissakissa	a a mana a sita Camatiana	Tasabiana

Partial Differentiation: Introduction, simple problems. Total derivative, composite functions. Jacobians – simple problems.

Vector Differentiation: Introduction, velocity and acceleration, gradient, divergence – solenoidal vector function, curl – irrotational vector function and Laplacian, simple problems.

Unit – II 10 Hrs

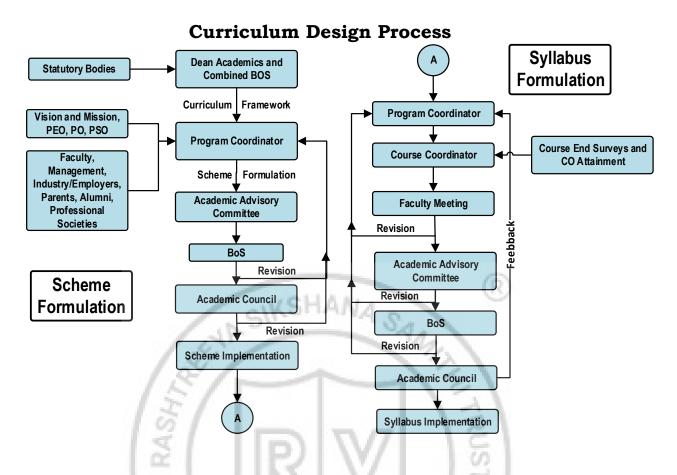
Differential Equations:

Higher order linear differential equations with constant coefficients, solution of homogeneous equations - Complementary functions. Non-homogeneous equations - Inverse differential operator method of finding particular integral based on input function (force function).

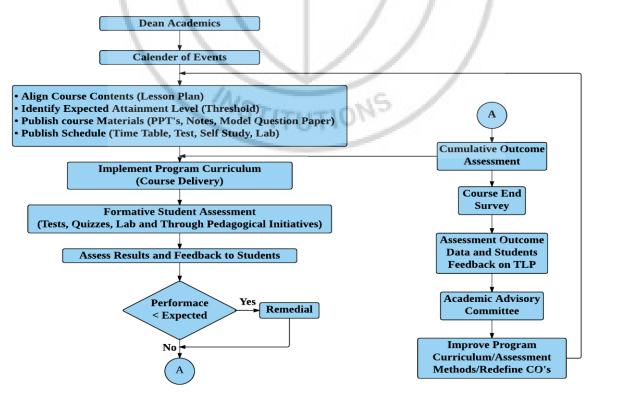
Unit –III 10 Hrs

Numerical Methods:

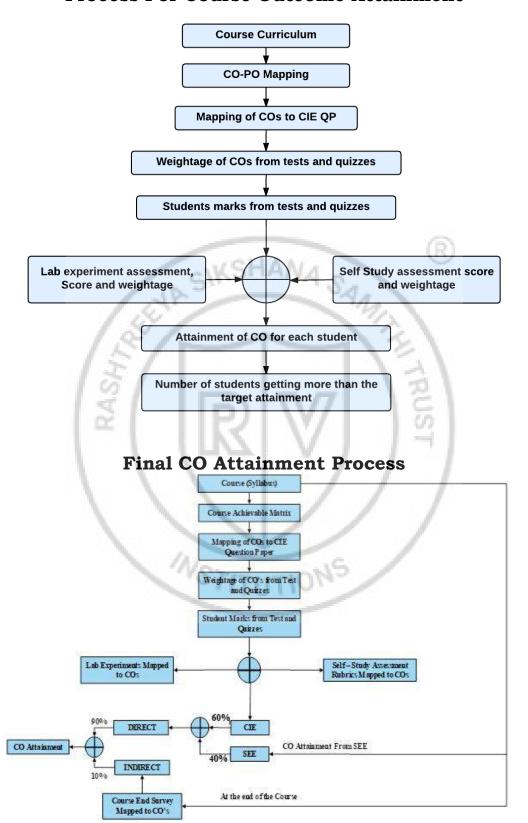
Solution of algebraic and transcendental equations – Intermediate value property, Newton-Raphson method. Solution of first order ordinary differential equations – Taylor series and 4th order Runge-Kutta methods. Numerical integration – Simpson's 1/3rd, 3/8th and Weddle's rules. (All methods without proof).


Course	Course Outcomes: After completing the course, the students will be able to				
CO1:	Illustrate the fundamental concepts of partial differentiation, vector differentiation, higher order				
	linear differential equations and numerical methods.				
CO2:	Derive the solution by applying the acquired knowledge of differential calculus, differential				
	equations, velocity, and acceleration vectors to the problems of engineering applications.				
CO3:	Evaluate the solution of the problems using appropriate techniques of differential calculus, vector				
	differentiation, differential equations, and numerical methods.				
CO4:	Compile the overall knowledge of differential calculus, vector differentiation, differential equations				
	and numerical methods gained to engage in life – long learning.				

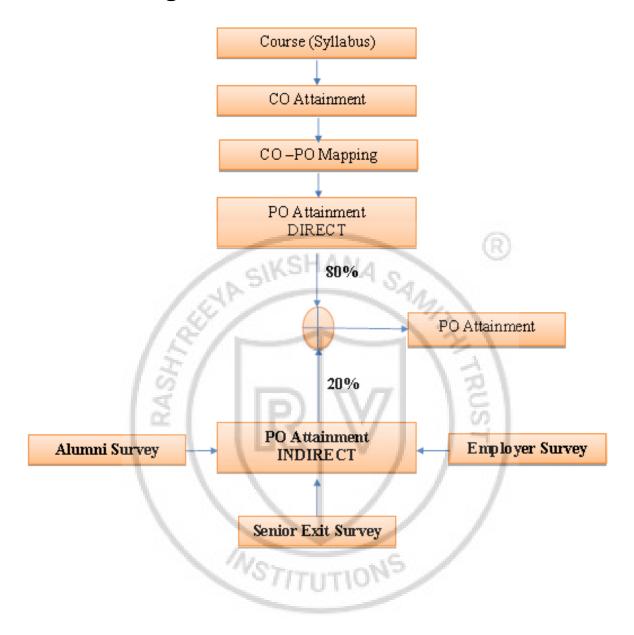
Referen	Reference Books				
1	Higher Engineering Mathematics, B.S. Grewal, 44 th Edition, 2015, Khanna Publishers, ISBN: 978-81-933284-9-1.				
2	Higher Engineering Mathematics, B.V. Ramana, 11 th Edition, 2010, Tata McGraw-Hill, ISBN: 978-0-07-063419-0.				
3	A Textbook of Engineering Mathematics, N.P. Bali & Manish Goyal, 7 th Edition, 2010, Lakshmi Publications, ISBN: 978-81-31808320.				
4	Advanced Engineering Mathematics, E. Kreyszig, 10 th Edition (Reprint), 2016. John Wiley & Sons, ISBN: 978-0470458365.				



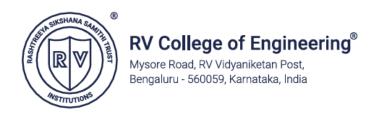
RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.			
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 30 Marks, adding upto 60 Marks. FINAL TEST MARKS WILL BE AVERAGE OF TWO TESTS.	30		
MAXIMUM MARKS FOR THE CIE THEORY				



Academic Planning and Implementation



Process For Course Outcome Attainment


Program Outcome Attainment Process

KNOWLEDGE & ATTITUDE PROFILE

- **WK1:** A systematic, theory-based understanding of the natural sciences applicable to the discipline and awareness of relevant social sciences.
- **WK2:** Conceptually-based mathematics, numerical analysis, data analysis, statistics and formal aspects of computer and information science to support detailed analysis and modelling applicable to the discipline.
- **WK3:** A systematic, theory-based formulation of engineering fundamentals required in the engineering discipline.
- **WK4:** Engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for the accepted practice areas in the engineering discipline; much is at the forefront of the discipline.
- **WK5:** Knowledge, including efficient resource use, environmental impacts, whole-life cost, re-use of resources, net zero carbon, and similar concepts, that supports engineering design and operations in a practice area.
- **WK6:** Knowledge of engineering practice (technology) in the practice areas in the engineering discipline.
- **WK7:** Knowledge of the role of engineering in society and identified issues in engineering practice in the discipline, such as the professional responsibility of an engineer to public safety and sustainable development.
- **WK8:** Engagement with selected knowledge in the current research literature of the discipline, awareness of the power of critical thinking and creative approaches to evaluate emerging issues.
- **WK9:** Ethics, inclusive behaviour and conduct. Knowledge of professional ethics, responsibilities, and norms of engineering practice. Awareness of the need for diversity by reason of ethnicity, gender, age, physical ability etc. with mutual understanding and respect, and of inclusive attitudes.

PROGRAM OUTCOMES (POs)

- * **PO1:** Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization as specified in WK1 to WK4 respectively to develop to the solution of complex engineering problems.
- ❖ **PO2:** Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development. (WK1 to WK4)
- ❖ **PO3:** Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required. (WK5)
- ❖ **PO4:** Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions. (WK8).
- * **PO5:** Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems. (WK2 and WK6)
- ❖ **PO6**: The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment. (WK1, WK5, and WK7).
- ❖ **PO7:** Ethics: Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)
- * **PO8:** Individual and Collaborative Team work: Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.
- ❖ PO9: Communication: Communicate effectively and inclusively within the community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences
- * **PO10:** Project Management and Finance: Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.
- ❖ **PO11:** Life-Long Learning: Recognize the need for, and have the preparation and ability for i) independent and life-long learning ii) adaptability to new and emerging technologies and iii) critical thinking in the broadest context of technological change. (WK8)

INNOVATIVE TEAMS OF RVCE

Ashwa Mobility Foundation (AMF): Designs and fabricates Formula-themed race cars and mobility solutions to address urban transportation issues.

Astra Robotics Team: Focuses on designing and building application-specific robots.

Coding Club: Helps students gain coding skills and succeed in competitions like GSoC and ACM-ICPC.

Entrepreneurship Development Cell (E-Cell): Promotes entrepreneurship through workshops, speaker sessions, and mentoring for startups.

Frequency Club Team: Works on software and hardware, emphasizing AI and Machine Learning.

Team Garuda: Develops a supermileage urban concept electric car and E-mobility products.

Team Jatayu: Builds low-cost UAVs with autonomous capabilities for various tasks.

Solar Car Team: Aims to create a solar electric vehicle for sustainable transportation.

Team Antariksh: Focuses on space technology and the development of operational rockets.

Team Chimera: Builds a Formula Electric Car through R&D in E-Mobility.

Helios Racing Team: Designs and tests All-Terrain Vehicles, participating in SAE's BAJA competitions.

Team Hydra: Develops autonomous underwater vehicles for tasks like water purification.

Team Krushi: Creates low-cost farming equipment to assist farmers in cultivation and harvesting.

Team Vyoma: Designs and tests radio-controlled aircraft and UAVs.

Team Dhruva: Engages in astronomy-related activities and collaborates on projects with organizations like ICTS and IIA.

Ham Club: Promotes Amateur Radio and explores technical innovations in communications, especially for disaster response.

Cultural Activity Teams

- 1. AALAP (Music club)
- 2. DEBSOC (Debating society)
- 3. CARV (Dramatics club)
- 4. FOOTPRINTS (Dance club)
- 5. QUIZCORP (Quizzing society)
- 6. ROTARACT (Social welfare club)
- 7. RAAG (Youth club)
- 8. EVOKE (Fashion team)
- f/6.3 (Photography club)
- 10. CARV ACCESS (Film-making

NCC of RVCE

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

- To deliver outcome based Quality education, emphasizing on experientiallearning with the state of the art infrastructure.
- To create a conducive environment for interdisciplinary research and innovation.
- To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

Professionalism, Commitment, Integrity, Team Work, Innovation

