

ಆರ್ವವಿ ಕಾಲೇಜ್ ಆಫ್ ಇಂಜನಿಯರಿಂದ್

Undergraduate Programs

Bachelor of Engineering (B.E) in

Civil Engineering

Scheme And Syllabus Of V & VI Semester (2022 Scheme)

B.E. Programs: AS, BT, CH, CS, CS - AI, CS - CD, CS - CY, CV, EC, EE, EI, ET, IM, IS, ME. M. Tech (13) MCA, M.Sc. (Engg.) Ph.D. Programs: All Departments are recognized as Research Centres by VTU Except AI & AS

2021

HUMINI

	Thes higher education world university Rankings-2023	CURR	RICULUM	CURRICULUM STRUCTURE				
99 NIRF RANKING IN ENGINEERING (2024)	ISUIT TIMES HIGHER EDUCATION WORLD UNIVERSITY RANKINGS-2023 LASIA 501-600	61 CREE PROFESSIO CORES (PC)	61 CREDITS PROFESSIONAL CORES (PC) BAS		3 CREDITS			
	BEST PRIVATE ENGINEERING UNIVERSITY (SOUTH) BY ZEE DIGITAL	222 ENGINEERING SCIENCE	18 PROJECT INTERNS	REDITS I WORK / HIP	12 OTHER ELECTIVES			
1001+ SUBJECT RANKING (ENGINEERING)	801+ SUBJECT RANKING (COMPUTER SCIENCE)	12 PROFESSIONAL ELECTIVES	12 HUMANITIE SOCIAL SC	DITS IS & IENCE	160			
IIRF 2023 ENGINEERING RANKING INDIA NATIONAL RANK-10 STATE RANK - 2 ZONE RANK - 5	QS-IGUAGE DIAMOND UNIVERSITY RATING (2021-2024)	*ABILITY ENHANCEN UNIVERSAL HUMAN INDIAN KNOWLEDG	*ABILITY ENHANCEMENT COURSES (AEC), UNIVERSAL HUMAN VALUES (UHV), INDIAN KNOWLEDGE SYSTEM (IKS), YOGA.		CREDITS TOTAL			
17 Centers of Excellence	Centers of Competence	MOUS: 90 INSDUSTF INSTITUTI	+WITH RIES / AG ONS IN	CADEN INDIA	1IC & ABROAD			
Publications On Web Of Science	669 Publications Scopus (2023 - 24)							
1093 Citations	70 Patents Filed	EXECU RS.40 (SPONS RESEA	TED N CRORI ORED RCH P	IORE ES W ROJ	THAN ORTH ECTS &			
Skill Based Laboratories Across Four Semesters	Patents Granted 61 Published Patents	CONSULTANCY WORKS SINCE 3 YEARS						

ಆರ್ವವಿ ಕಾಲೇಜ್ ಆಫ್ ಇಂಜನಿಯರಿಂದ್

Undergraduate Programs

Bachelor of Engineering (B.E) in

Civil Engineering

Scheme And Syllabus Of V & VI Semester (2022 Scheme)

B.E. Programs: AS, BT, CH, CS, CS - AI, CS - CD, CS - CY, CV, EC, EE, EI, ET, IM, IS, ME. M. Tech (13) MCA, M.Sc. (Engg.) Ph.D. Programs: All Departments are recognized as Research Centres by VTU Except AI & AS

2021

HUMINI

Vision

Excel in Education, Research and Consultancy in Civil Engineering with emphasis on Sustainable Development

Mission

- 1. Disseminating and integrating the knowledge of civil Engineering and allied fields
- 2. Enhancing industry-institute interaction leading to interdisciplinary research.
- 3. Imbibing wide-range of skills in cutting-edge technology for sustainable development.
- 4. Motivate entrepreneurship and professional ethics to serve the society.

Program Educational Objectives

After successful completion of the program, the graduates will be able to

PEO1: Successfully address technological and managerial challenges.

PEO2: Professionally design and execute Civil Engineering projects.

PEO3: Pursue advanced education, research and continue life-long learning process to remain active professionals.

PEO4: Play key roles in addressing societal needs through interdisciplinary approach.

Program Specific Outcomes

1. Apply knowledge of fundamental aspects to analyze and design civil engineering structures.

2. Provide sustainable solutions to civil engineering problems.

3. Employ codal provisions to arrive at comprehensive solutions to address societal needs

4. Exhibit communication and teamwork skills.

ABBREVIATIONS

Sl.	Abbreviation	Meaning
No.		
1	VTH	Visvesvarava Technological University
2		Pagia Salangaa
2.	D3	Dasic Sciences
3.	CIE	Continuous Internal Evaluation
4.	SEE	Semester End Examination
5.	PE	Professional Core Elective
6.	GE	Global Elective
7.	HSS	Humanities and Social Sciences
8.	PY	Physics
9.	CY	Chemistry
10.	MA	Mathematics
11.	AS	Aerospace Engineering
12.	AI & ML	Artificial Intelligence & Machine Learning
13.	BT	Biotechnology
14.	СН	Chemical Engineering
15.	CS	Computer Science & Engineering
16.	CV	Civil Engineering
17.	EC	Electronics & Communication Engineering
18.	EE	Electrical & Electronics Engineering
19.	EI	Electronics & Instrumentation Engineering
20.	ET	Electronics & Telecommunication Engineering
21.	IM	Industrial Engineering & Management
22.	IS	Information Science & Engineering
23.	ME	Mechanical Engineering

Go, change the world

INDEX

	THIRD YEAR COURSES						
Sl. No.	Course Code	Name of the Course	Page No.				
1.	HS351TA	Entrepreneurship and Intellectual Property Rights	4-6				
2.	CV352IA	Design And Drawing of RCC Structures	7-8				
3.	CV353IA	Highway Engineering	9-10				
4.	CV354TA	Hydrology And Irrigation	11-12				
5.	CV255TBA	Geoinformatics	13-14				
6.	CV255TBB	Traffic Engineering	15-16				
7.	CV255TBC	Alternate Building Materials And Technologies	17-18				
8.	CV255TBD	Bridge Engineering	19-20				
9.	CV255TBE	Air Pollution And Control	21-22				
10.	HS261TA	Principles of Management and Economics	27-29				
11.	CV362IA	Water And Waste Water Engineering	30-32				
12.	CV363IA	Geotechnical Engineering	33-35				
13.	CV364TA	Design And Drawing of Steel Structures	36-37				
14.	CV365TDA	Advanced Concrete Technology	38-39				
15.	CV365TDB	Transportation Engineering	40-41				
16.	CV365TDC	Structural Masonry	42-43				
17.	CV365TDD	Disaster Management	44-45				
18.	CV365TDE	Integrated Watershed Management	46-47				
19.	AS266TEA	Fundamentals Of Aerospace Engineering	48-49				
20.	BT266TEB	Bioinformatics	50-51				
21.	CH266TEC	Industrial Safety Engineering	52-53				
22.	CS266TED	Robotics Process Automation	54-55				
23.	CV266TEE	Intelligent Transport Systems	56-59				
24.	CV266TEF	Integrated Health Monitoring of Structures	58-59				

Go, change the world

25.	CM266TEG	Advanced Energy Storage for E-Mobility	60-61
26.	EC266TEH	Human Machine Interface (HMI)	62-63
27.	EE266TEJ	Energy Auditing & Standards	64-65
28.	EI266TEK	Biomedical Instrumentation	66-67
29.	ET266TEM	Telecommunication Systems	68-69
30.	ET266TEN	Mobile Communication Networks And Standards	70-71
31.	IS266TEO	Mobile Application Development	72-73
32.	IM266TEQ	Elements of Financial Management	74-75
33.	IM266TER	Optimization Techniques	76-77
34.	ME266TES	Automotive Mechatronics	78-79
35.	MA266TEU	Mathematical Modelling	80-81
36.	MA266TEV	Mathematics of Quantum Computing	82-84
37.	HS266TEW	Applied Psychology for Engineers	85-86
38	HS266TEY	Universal Human Values	87-88

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

2022 Scheme Credit Structure: V Semester

V SEMESTER								
SI No	o. Course Code	Course Title	Credit Allocation				PoS	Cotogowy
51. 110.			L	Т	Р	Total		Category
1	HS351TA	Entrepreneurship and Intellectual Property Rights	3	0	0	3	HSS	Theory
2	CV352IA	Design & Drawing of RCC Structures	3	0	1	4	CV	Theory + Practice
3	CV353IA	Highway Engineering	3	0	1	4	CV	Theory + Practice
4	CV354TA	Hydrology and Irrigation	3	1	0	4	CV	Theory
5	CV255TBX	Professional Core Elective-I (Group-B)	3	0	0	3	CV	Theory
6	CV256TCX	Professional Core Elective-II (Group C)	2	0	0	2	CV	NPTEL
		Total				20		

GROUP-B: Professional Core Electives

	GROUP-B					
Sl. No.	Course Code	Course Title				
1	CV255TBA	Geo-Informatics				
2	CV255TBB	Traffic Engineering				
3	CV255TBC	Alternate Building Materials and Technologies				
4	CV255TBD	Bridge Engineering				
5	CV255TBE	Air Pollution & Control				

GROUP-C: V Sem: Professional Core Electives (NPTEL)

GROUP-C					
Sl. No.	Course Code	Course Title			
1	CV256TCA	Earthquake Resistant Design of Foundations			
2	CV256TCB	Expansive Soil			
3	CV256TCC	Introduction to Accounting and Finance for Civil Engineers			
4	CV256TCD	Laboratory Practices in Earth Sciences: Landscape Mapping			
5	CV256TCE	निर्माण प्रबंधि (Construction Management) कनिद्मंत[Nirman prabandhan (Construction Management) ke Siddhant]			

		S	Semester:V			
ENTR	EPREN	EURSHIP & IN	NTELLECTUAL PROPI (Theory)	ERTY RIG	HTS	
Course Code	:	HS351TA	CIE	:	100 M	arks
Credits: L: T:P	:	3:0:0	SEE	:	100 M	arks
Total Hours	:	42 L	SEE Duration	:	3 Hou	rs
		I Init	т			0911w
Entrepreneurs: Innovative	, Imitative	, Fabian, Characte	eristics and Traits of Success	ful Entrepre	neurs.	.h.i.e
Entrepreneurs: Innovative Role in economic develop characteristics of Entrepre Teams Activities: Case study on I	, Imitative pment- En neur, Mytl Entreprene	, Fabian, Characte nerging Trends in hs about Entreprer eurship in Indian S	eristics and Traits of Success Entrepreneurship, Entrepren neurship, Entrepreneur vs Int Scenario, Ideation Workshop	ful Entrepre neur and Ent trapreneur, I s and Hacka	neurs. trepreneurs Role of Ent thons.	ship, trepreneurial
Entrepreneurs: Innovative Role in economic develop characteristics of Entrepre Teams Activities: Case study on I	, Imitative pment- En neur, Mytl Entreprene	, Fabian, Characte nerging Trends in hs about Entrepren eurship in Indian S Unit –	eristics and Traits of Success Entrepreneurship, Entrepren neurship, Entrepreneur vs Int Scenario, Ideation Workshop - II	ful Entrepre neur and Ent trapreneur, I s and Hacka	neurs. trepreneurs Role of Ent thons.	ship, trepreneurial
Entrepreneurs: Innovative Role in economic develog characteristics of Entrepre Teams Activities: Case study on I Entrepreneurial Opport Principles in Ideation Proc Feasibility and Demand A Financial Feasibility Analy Business Planning and S Description, Market Analy Mission, Goals, Objectives Leadership, Focus Strateg Activities: Writing a Busin Generated Ideas	, Imitative pment- Er neur, Mytl Entreprene unity Eval :ess, Cross nalysis, Ev ysis: Cost trategy Do /sis, writin s, SWOC A y, Growth ness Plan o	, Fabian, Character nerging Trends in hs about Entreprene eurship in Indian S <u>Unit –</u> luation: Identifyi s-Disciplinary Col valuating Technic Estimation, Reven evelopment: Eler ng a Business Plan Analysis, Compet Strategies: Organ on given templates	eristics and Traits of Success Entrepreneurship, Entrepren neurship, Entrepreneur vs Int Scenario, Ideation Workshop - II ing Market Opportunities and llaboration for Technologica cal Feasibility: Prototype Dev nue Projection, Break-Even ments of a Business Plan, Ex a: Structure and Components itive Strategy: Porter's Gener nic Growth, Mergers and Acc s, Developing Business Mod	ful Entrepre neur and Ent rapreneur, I s and Hacka d Trends, Ind l Innovation velopment, I Analysis. eccutive Sun , Strategic P ric Strategie quisitions, S els and Prot	neurs. trepreneurs Role of Ent thons. tegration o , Assessing Proof of Co nmary, Co Planning: V s, Differen trategic Al otypes Bas	ship, trepreneurial 08 Hrs f Engineering g Market oncept, mpany fision, tiation, Cost liances sed on

Entrepreneurial Marketing and Sales: Basics of Marketing: Product, Price, Place, Promotion (4Ps), Market Segmentation, Targeting, and Positioning (STP), Branding and Product Development Strategies, Creating a Unique Value Proposition (UVP) Digital Marketing: Social Media Marketing, Content Marketing, SEO, SEM, Sales Techniques and Customer Relationship Management (CRM).

Entrepreneurial Finance and Resource Management: Sources of Financing: Equity Financing, Debt Financing, Venture Capital, Angel Investors, Crowdfunding, Financial Management: Budgeting, Cash Flow Management, Financial Statements Analysis, Risk Management and Insurance, Human Resource Management: Recruitment, Training, Performance Evaluation, Legal and Ethical Issues in Entrepreneurship: Intellectual Property Rights, Contracts, Corporate Governance Activities:Case

Studies and Practical Applications

Unit-IV	
Introduction to IP : Types of Intellectual Property	09Hrs
Patents: Introduction, Scope and salient features of patent; patentable and non-patentable inventions,	
Patent Procedure - Overview, Transfer of Patent Rights; protection of traditional knowledge,	
Infringement of patents and remedy, Case studies, Patent Search and Patent Drafting,	
Commercialization and Valuation of IP.	
Trade Marks: Concept, function and different kinds and forms of Trade marks, Registrable and non-	
registrable marks. Registration of Trade Mark; Deceptive similarity;	

RV College of Engineering[®] Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Trans	fer of Trade Mark, ECO Label, Passing off, Infringement of Trade Mark with Case studies and	
Reme	dies.	
	Unit –V	09 Hrs
Trad	e Secrets: Definition, Significance, Tools to protect Trade secrets in India.	
Indus	strial Design: Introduction of Industrial Designs Features of Industrial, Design. Procedure for obtain	ning Design
Protec	ction, Revocation, Infringement and Remedies, Case studies.	
Сору	Right: Introduction, Nature and scope, Rights conferred by copy right, Copy right protection, tran	sfer of copy
rights	, right of broad casting organizations and performer's rights, Exceptions of Copy	
Right	, Infringement of Copy Right with case studies.	
Course	e Outcomes:	
After g	oing through this course, the student will be able to	
CO1	Understand the concepts of entrepreneurship and cultivate essential attributes to become an entre	epreneur
	or Intrapreneur and demonstrate skills such as problem solving, team building, creativity and leader	rship.
CO2	Comprehend the process of opportunity identification of market potential and customers while dev	eloning a
02	compelling value proposition solutions.	cioping a
CO3	Analyse and refine business models to ensure sustainability and profitability and build a validated I	MVP of their
	practice venture idea and prepare business plan, conduct financial analysis and	
	feasibility analysis to assess the financial viability of a venture.	
CO4	Apply insights into the strategies and methods employed to attain a range of benefits from these IPs	s and deliver
	an investible pitch deck of their practice venture to attract stakeholders	
CO5		
	Knowledge and competence related exposure to the various Legal issues pertaining to	
	Intellectual Property Rights with the utility in engineering perspectives.	_

Reference Books

1.	Donald F. Kuratko,"Entrepreneurship: Theory, Process, and Practice", South-Western Pub publishers, 10th edition, 2016,978-ISBN-13: 1305576247
2.	Eric Ries, "The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses", Crown Currency Publishers,1 st Edition, 2011, ISBN-13: 978-
	0307887894.
3.	Dr B L Wadehra, Law Relating to Intellectual Property, universa Law publishers 05th edition, ISBN :
	9789350350300.
4	Intellectual Property Rights: Unleashing Knowledge Economy, Prabuddha Ganguly, 1st Edition,
	2001, Tata McGraw Hill Publishing Company Ltd., New Delhi, ISBN: 0074638602.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)

#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	. TESTS: Students will be evaluated in test, descriptive questions with different Complexity levels (Revised Bloom's Taxonomy Levels:Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40

3. **EXPERIENTIAL LEARNING:** Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar / presentation / demonstration (20) **ADDING UPTO 40 MARKS**.

100

40

MAXIMUM MARKS FOR THE CIE

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)	
Q. NO.	MARKS	
	PART A	
1	Objective type questions covering entire syllabus	20
	(Maximum PART B (Maximum of TWO Sub-divisions only) * (Small case lets and case example in one subdivision)	
2	Unit 1: (Compulsory)	16
3&4	Unit 2: Question 3 or 4	16
5&6	Unit 3: Question 5 or 6	16
7&8	Unit 4: Question 7 or 8	16
9&10	Unit 5: Question 9 or 10	16

			Semester: V				
	DESIGN AND DRAWING OF RCC STRUCTURES						
	Category: Professional Core Course						
	•		(Theory and La	b)			
Course Code	:	CV352IA		CIE	:	100+50 Marks	
Credits: L:T:P	:	3:0:1		SEE	:	100+50 Marks	
Total Hours	:	40L+26P		SEE Duration	:	3+3 Hours	
	<u> </u>		Unit-I			08 Hrs	
Principles of Lim	it S	State Design and U	Iltimate Strength	of RC Sections			
Philosophy of lim	it s	tate design, Princi	ple of limit states,	Factor of safety,	Ch	aracteristic and design	
loads, Characterist	ic a	and design strengt	h, General aspects	of ultimate strength	ı, S	tress block parameters	
for limit state of co	olla	pse, Ultimate flexu	ral strength of recta	angular sections-sir	igly	reinforced and doubly	
reinforced, Ultima	te	flexural strength o	of flanged sections,	Ultimate torsional	l sti	rength of RC sections,	
Concept of develo	pm	ent length and and	horage, Analysis pi	coblems using IS 45	56:2	2000	
			Unit – II			08 Hrs	
Design of beams							
Practical requirem	ent	s of RCC beam; si	ze, cover and spaci	ng of bars, Design	of 1	ectangular and	
flanged RCC beam	ns f	or flexure, shear, d	leflection, Anchora	ge, etc. (Simply sup	эро	rted and Cantilever	
beams only) using	IS	456:2000 and SP1	6				
			Unit –III			08 Hrs	
Design of Slabs							
General considerat	ior	ns for design of slal	bs, Rectangular slal	os spanning in one	dire	ection, Rectangular	
slabs spanning in t	WO	directions for vari	ous boundary cond	itions, Torsion reir	for	cement design for	
two way slabs, De	sig	n of simply suppor	ted and cantilever	slabs as per IS 456:	200)0.	
			Unit –IV			08 Hrs	
Design of columns							
General aspects, e	effe	ective length of c	olumn, loads on c	olumns, slenderne	SS 1	ratio, slender column,	
Minimum eccentri	cit	y, Design of short	axially loaded col	umns, Design of c	olu	mns subjected to axial	
load and uni-axial	mc	oment. Using IS 45	6:2000 and SP16.				
Design of stains	Unit –V 08 Hrs						
Design of stairs	Design of stairs						
Loading on stairs, Design of doglegged stairs, design of open-well stairs as per 18 456:2000.							
Design of rootings							
uni axial moment as per IS 456.2000							
uni-axiai moment as per 15 450:2000.							
Laboratory							
r reparation of safety drawings and schedule of bars adopting the given data:							
2 T- Beam and slab arrangement							
2. 1- Dealli and stad arrangement. 3 One-way slab two-way slab with and without torsion reinforcement.							

- 4. Dog legged and Open well staircase.
- 5. Square, rectangular and Circular Isolated column with footing.

Refer	ence Books
1	Reinforced Concrete Design (IS: 456-2000 Principles and Practice), R.N. Pranesh, N. Krishna
1.	Raju, New Age International (P) Limited, New Delhi, 1st Edition, 2014, ISBN13:9788122414608
2	Limit State Design of Reinforced Concrete, Varghese P.C, Eastern Economy Edition, Prentice –
۷.	Hall of India Pvt Ltd, New Delhi, 2nd Edition, 2004, ISBN 9788120320390
2	Design of Reinforced Concrete Structures, Unnikrishnan and DevadasMenon, PHI, New Delhi,
5.	4th Edition, 2003, ISBN 978-0070495043
	RCC Designs (Reinforced Concrete Structures), Punmia B.C., Ashok Kumar Jain, Arun Kumar
4.	Jain, Laxmi Publications (P) Ltd, New Delhi, 10th Edition, 2011, ISBN 978-81-318-0942-6
IS Co	des
1.	IS 456: 2000, Indian Standard, Plain and Reinforced Concrete – Code of Practice (Fourth Revision),
	BIS, New Delhi, 2000
2.	SP-16, Design Aids for Reinforced Concrete to IS: 456-1978, BIS, New Delhi, 1997

Cours	Course Outcomes: After completing the course, the students will be able to:-					
CO1	Apply the philosophy and principles of limit state method and analyze RC sections					
CO2	Analyze and design RC beams and slabs by limit state method as per codal provisions					
CO3	Analyze and design RC columns, stairs and footings by limit state method as per codal provisions					
CO4	Sketch rebar details and calculate the quantity of steel for RC sections as per codal provisions					

F	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)					
#	COMPONENTS	MA RKS				
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20				
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity leve (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzir Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	els ng, for 40				
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome ADDING UPTO 40 MARKS.	ic 40				
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (30 Marks),lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50MARKS	50				
MAXIM	UM MARKS FOR THE CIE	150				

Semester: V							
		HIC	GHWAY ENGINE	CERING			
	Category: Professional Core Course						
	(Theory and Lab)						
Course Code	:	CV353IA		CIE	:	100+50 N	Aarks
Credits: L:T:P	:	3:0:1		SEE	:	100+50 N	Aarks
Total Hours	:	40L+26P		SEE Duration	:	3+3 Hou	rs
			Unit-I				08 Hrs
Principles of Trans	pol	rtation Engineering	g: Overview of basi	c characteristics of	Tra	ansportatio	n systems,
social factors and s	stra	tegic consideration	n, Salient features o	of ongoing major r	oad	l projects in	n the
country, Classifica	atio	ons of Urban and	rural roads. Engin	eering surveys for	ali	ignment, o	bjectives,
conventional and r	noc	dern methods.					
			Unit – II				08 Hrs
Highway Geomet	ric	Design: Design	factors; Cross-secti	on elements, Sigh	t d	istances-Ty	ypes,
Factorsaffecting an	nd 1	measurements. Des	sign of Horizontal a	alignment and verti	cal	alignment	. (Note:
Derivation not req	uire	ed)					1
			Unit –III				08 Hrs
Pavement Design:	Fa	ctors affecting de	sign; Traffic volun	ne and Axle load	sur	vey, Laye	rs,
designrequirement	s, I	Flexible pavement	design as per IRC:	37 – 2018. Design	of	rigid paver	ment as
per IRC:58 – 2015)(E	excluding design of	t joints)				00 11
III - hannen Daus in eine	C-		Unit –IV	Currente and and Curle and	f.	aa duainaa	08 Hrs
Highway Drainage	Highway Drainage System: Importance and requirements, Surface and Subsurface drainage system -						
Bituminous concre		course Paying au	lity concrete cours	, Granulai Sub Da	se,		Tacauaiii,
Dituinitious concie		course, I aving que	$\frac{\text{Unit}-V}{\text{Unit}-V}$				08 Hrs
Highway Maintena	nce	and Economics. I	mportance of highy	vav maintenance. T	Dist	resses and	remedial
measures for Flex	ibl	e and Rigid pave	ments. Importance	of Highway Econ	om	ics. user h	penefits
andcosts. Economi	ic a	nalysis. Highway	financing in India.				
			Laboratory				
Tests on Soil			•				
1. California bearing Ratio							
Tests on aggregates							
2. Crushing Test							
3. Impact Test							
4. Shape of aggregates							
5. Ten percent fines							
6. Los Angeles abrasion							
Tests on Bitumen							
7.Kinematic Visco	7.Kinematic Viscosity						
8.Softening Point	3.Softening Point						
9.Ductility							

Refere	ence Books
1.	Khanna, S.K. and Justo, C.E.G, Veeraragavan A, 'Highway Engineering', Nemechand and Bros.Roorkee, 10th Edition, 2014 ISBN: 9788185240633, 8185240639
2.	R Srinivasa Kumar, "Highway Engineering", Universities Press (India) Private Limited, Reprinted2018, ISBN:978 81 7371 681 2
3.	L. R. Kadiyali, N.B. Lal, Principles And Practices Of Highway Engineering, Khanna Publishers, 2004, ISBN-13: 978-8174091659
4.	Khanna, Justo and Veeraragavan - 'Highway Material Testing' Nemechand Bros, Roorkee, V Edition, 2009,ISBN 9788185240213
5	Khanna, S.K. and Justo, C.E.G, Veeraragavan A, 'Highway Engineering', Nemechand and Bros, Roorkee, 10th Edition, 2014 ISBN: 9788185240633, 8185240639

I	RUBRICFOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (30 Marks),lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50MARKS	50
MAXIM	UM MARKS FOR THE CIE	150

			Semester: V				
	HYDROLOGY AND IRRIGATION						
		Catego	ory: Professional C	Core Course			
		C	(Theory)				
Course Code	:	CV354TA		CIE	:	100 Marks	
Credits: L:T:P	:	3:1:0		SEE	:	100 Marks	
Total Hours	:	42L:28T		SEE Duration	••	3Hours	
			Unit-I				09 Hrs
Hydrology: Introdu	icti	on, Hydrologic cyc	le (Horton's represe	ntation and Enginee	ring	g Representation	n), water
budget equation, Ap	pli	cations in engineerir	ng, sources of Data, n	umerical problems.			
Precipitation: Form	ıs a	nd types of precipita	ation, Measurement o	f rainfall using Symo	n's	and Syphon typ	be of rain
gauges, Optimum r	num	ber of rain gauge	stations, Consistency	v of rainfall data (de	oub	le mass curve	method),
Computation of mea	n ra	ainfall, Estimation of	f missing data, preser	tation of precipitatio	n da	ata, numerical pr	roblems.
			Unit – II				09 Hrs
Losses: Evaporatio	n:	Introduction, Proces	s, factors affecting ev	vaporation, measuren	nen	t using IS class-	A Pan,
estimation using em	piri	cal formulae (Meye	r's and Rohwer's equ	ations) Reservoir eva	apo	ration and control	ol.
Evapo-transpiratio	n:	Introduction, Consul	mptive use, AET, PÊ	Γ, Factors affecting, N	Леа	surement, Estim	ation by
Blaney-Criddle equa	atio	n.	-	-			
Infiltration: Introd	ucti	on, factors affectin	g infiltration, infiltra	ation capacity, meas	ure	ment by double	e ring
infiltrometer, Horton's infiltration equation, infiltration indices, numerical problems.							
	Unit –III 08 Hrs						
Runoff: Factors affe	ecti	ng runoff, runoff me	asurement, Estimation	n of runoff using ratio	onal	and empirical m	nethods,
numerical problems	•						
Hydrographs: Com	npo	nents of hydrograph	s, unit hydrograph an	d its derivation from	sin	ple storm hydro	ograph,
base flow separation	ı, pı	reparation of unit hy	drographs – from isol	ated storms, method	of s	superposition, nu	umerical
problems.			T T •4 TT 7				00 11
	Unit –IV 08 Hrs					08 Hrs	
Irrigation: Definition, Benefits and ill effects of irrigation, System of irrigation: surface and ground water, flow							
irrigation, lift irrigation, Bandhara irrigation.							
water Requirements of Crops: Duty, delta and base period, relationship between them, factors affecting duty							
Unit V							
Canals: Types of canals. Alignment of canals. Definition of gross command area, cultural command area, intensity							
Kennedy's method	CLOI	r, crop factor. Unline	eu anu fineu canals. St	anuard sections. Desi	gn	of canals by Lac	ey s and
ixeniicuy s inculou.							

Course	e Outcomes: After completing the course, the students will be able to:-
CO1	Describe various hydrological parameters and irrigation practices in use for design of water resources
	projects.
CO2	Understand the hydrological aspects of surface water and concepts of irrigation water management
CO3	Determine various hydrological parameters over a catchment, crop water requirement and storage capacity
	of a reservoir.

CO4 Analyse the hydrological data, stream flow data for design of conveyance system, canal works hydraulic structures.

Refere	ence Books
1.	Engineering Hydrology, Subramanya K., Tata McGraw Hill, New Delhi, 4 th Edition, 2013, ISBN-10: 1259029972, ISBN-13: 978-1259029974.
2.	Applied Hydrology, VenTe Chow, Tata McGraw Hill Edition, 2010, ISBN-13:9780070702424, ISBN-10:007070242X.
3.	Irrigation Engineering and Hydraulic Structures, S.K.Garg, Khanna publications, New Delhi.2006, ISBN-10: 8174090479, ISBN-13: 978-8174090478.
4.	Irrigation water resources and water Power Engineering, P.N.Modi, Standard book house, 9th edition, 2008, ISBN 8189401297, ISBN-13: 978-8189401290
5	Irrigation Engineering, R.K. Sharma, S Chand & company; Revised edition 2007, ISBN-10: 8121921287, ISBN-13: 978-8121921282.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40	
MAXI	MUM MARKS FOR THE CIE THEORY	100	

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)								
Q. NO.	Q. NO. CONTENTS							
	PART A							
1	Objective type questions covering entire syllabus	20						
	PART B (Maximum of TWO Sub-divisions only)							
2	Unit 1 : (Compulsory)	16						
3 & 4	Unit 2 : Question 3 or 4	16						
5&6	Unit 3: Question 5 or 6	16						
7 & 8 Unit 4 : Question 7 or 8								
9 & 10	Unit 5: Question 9 or 10	16						
	TOTAL	100						

Semester: V								
	GEOINFORMATICS							
	Category: Professional Core Elective - I							
(Group - B)								
			(Theory)					
Course Code	Course Code : CV255TBA CIE : 100 Marks							
Credits: L:T:P	:	3:0:0		SEE	:	100 Mark	S	
Total Hours	:	40L		SEE Duration	:	3Hours		
			Unit-I				08 Hrs	
Remote Sensing:								
Basic concept of F	Rem	ote sensing, Data	and Information, Re	emote sensing data	col	lection, Rer	note sensing	
advantages & Lim	itat	ions, Remote Sens	ing process. Electro	omagnetic Spectrum	, E	nergy inter	actions with	
atmosphere and wit	h e	earth surface feature	es (soil, water, and v	vegetation). Sensors,	sei	nsor resoluti	ions (spatial,	
spectral, radiometric	e, ai	nd temporal). Image	registration and Ima	ge and False color co	omp	oosite, eleme	ents of visual	
interpretation techni	que	es.						
			Unit – II				08 Hrs	
Remote Sensing Pla	atfo	orms and Sensors:						
Indian Satellites and	Se	nsors characteristics	, Remote Sensing Pla	tforms, Sensors and I	Prop	perties of Di	gital Data,	
Data Formats: Introd	luc	tion, platforms - IRS	, Landsat, SPOT, Ca	rtosat, Ikonos, Envisa	at e	tc. Basics of	digital	
image processing- in	ntro	duction to digital da	ta, systematic errors ((Scan Skew, Mirror-S	Scar	n Velocity, I	Panoramic	
Distortion, Platform	Ve	locity, Earth Rotatio	on) and non-systemati	ic [random] errors (A	ltitı	ude, Attitude	e), Image	
enhancements (Gray	' Le	evel Thresholding, le	evel slicing, contrast s	stretching), image filt	erir	ng.		
			Unit –III				08 Hrs	
Geographic Inform	ati	on System:						
Introduction to GIS;	co	mponents of a GIS;	Geographically Refe	renced Data, Spatial	Dat	a- Attribute	data-Joining	
Spatial and attribute	dat	a, GIS Operations: S	patial Data Input – A	ttribute data Manager	mer	nt, Geograph	ic coordinate	
System, Datum; Ma	p P	rojections: Types of	Map Projections, Pro	jected coordinate Sy	ster	ns. UTM Zo	ones.	
			Unit IV				08 Urs	
Data Madals:							001115	
Vector data model:	Pe	presentation of sim	nla fasturas Tono	logy and its imports	noc	· coverage	and its data	
structure Shape file		lational Database R	lpie Teatures – Topo laster Data Model: El	amonts of the Paster	date	, coverage model Tyr	and its uata	
Data Raster Data St	rue	ture and Data conve	rsion	ements of the Raster (uata	i model, i y _i	les of Raster	
Data, Rastel Data Structure, and Data conversion.								
Unit – v VO HIS								
Applications in land use land cover analysis change detection water resources urban planning environmental								
planning, Natural resource management and Traffic management. Location Based Services And Its Applications								
planning, reaction based betwees And its Applications.								
Course Outcomes: After completing the course the students will be able to: -								
CO1 Describe the various principles of Remote sensing energy interactions and visual interpretation								
techniques		anous principies	or remote sensing,	energy interactions	al	ia visual II		
CO2 Explain dist	tort	ion properties associ	ated with platforms	sensors and canturing	r of	remotely ser	nsed data	
CO2 Explain distortion properties associated with platorins, sensors and capturing of remotery sensed data CO3 Explain the data models, coordinate systems and attribute data management with respect to GIS								

CO4 Apply the principles and techniques of Remote Sensing and GIS in the analysis of land use land cover, change detection, water resources management and planning, urban planning, natural resource management and traffic management.

Refere	nce Books
1.	Lillesand T, Kiefer R W, Chipman J, "Remote Sensing and Image Interpretation", 7 th Edition, <i>Wiley</i> <i>Publishers</i> (2015), ISBN: 9781118919453
2.	Jensen R John, "Remote Sensing of the Environment: An Earth Resource Perspective", 2 nd Edition, <i>Pearson Education India</i> (2013), ISBN:9789332518940
3.	Chang K T, "Introduction to Geographic Information Systems", 4 th Edition, <i>Mc Graw Hill Eduction</i> (2017), ISBN: 0070658986
4.	Bhatta B, "Remote Sensing and GIS", 3 rd Edition, Oxford University Press, India (2021), ISBN: 0199496641

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40	
	MAXIMUM MARKS FOR THE CIE THEORY	100	

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO. CONTENTS						
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B (Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7&8	Unit 4 : Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

			Semester: V				
TRAFFIC ENGINEERING							
		Catego	ry: Professional C	ore Elective			
			(Theory)				
Course Code	:	CV255TBB		CIE	:	100 Marks	
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks	
Total Hours	:	40L		SEE Duration	:	3Hours	
			Unit-I				08 Hrs
Introduction to trai	ffic	Engineering : Traff	ic engineering as a pr	ofession, elements, n	nod	ern problems.	
Traffic Componen	ts a	nd their characteri	stics: road user and	vehicle characteris	stic	s, roadways a	and their
geometriccharacter	rist	ics, introduction to	o road safety.				
			Unit – II				08 Hrs
Traffic studies: Sta	atist	ical applications in	traffic engineering,	objectives, method	olog	gies, analysis	and
interpretation of tra	ffic	studies - volume s	studies, speed, travel	time and delay stuc	lies	, origin and d	estination
studies, accident stud	dies	and parking studies					
			Unit –III				08 Hrs
Traffic flow and ro	adv	vay capacity: Traff	ic stream parameters	– headway, occupan	cy,	density and ca	apacity.
volume.	nsh	ips between traffic f	low parameters, Leve	el of service, Equival	enc	y factors, desig	gn service
			Unit –IV				08 Hrs
Intersections design and control: Classification, factors considered in design, design principles, conflict points at intersection, signal timings for different color indications. Introduction to control devices – markings, signs, signals, special controls.							
Unit –V 08 Hrs							
Traffic control and management: Objectives, benefits, Low cost techniques – one way street, turn restrictions,							
tidal flow. Advanced methods - Computer controlled coordinated signal control system, ITS- design, Technology							
used in ITS, ITS architecture, subsystems of ITS.							
Traffic and Environment: Detrimental effects of Traffic on Environment; Air pollution; Noise							
Pollution; Measure	es to	o curtail environm	ental degradation d	ue to traffic.			

Course (Course Outcomes: After completing the course, the students will be able to: -					
CO 1	Understand the various traffic characteristics and fundamental of traffic flow					
CO 2	Understand traffic surveys and evaluate traffic data					
CO 3	Analyze various traffic control measures and design traffic engineering facilities					
CO 4	Evaluate the methods of traffic management and understand the role of Intelligent Transportation System					

Referer	nce Books									
1.	Roess, Roger P., Elena S. Prassas, and William R. McShane. Traffic engineering. Pearson/Prentice									
	Hall,2019, ISBN 97	Hall,2019, ISBN 978-93-325-0936-8.								
2.	Garber N.J., and Ho	el L.A., Traffic and Highw	ay Engineering, 4t	h Edition, Cengag	e Learn	ing, 2009,				
3.	Kadiyali, L.R.,	Engineering', Khanna	Publishers, VII	Edition, 2001,	ISBN	8174091653,				
	'Traffic									
	97881740916.									

RV College of Engineering[®] Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

- R Srinivasa Kumar., Introduction to traffic Engineering, University press(India) private Limited 2018, ISBN 978-93-86235-47-3.
- 5. Chandra, Satish, S. Gangopadhyay, S. Velmurugan, and Kayitha Ravinder. "Indian highway capacity manual (Indo-HCM)." (2017).

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
MAXIN	MUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)								
Q. NO.	Q. NO. CONTENTS							
	PART A							
1	Objective type questions covering entire syllabus	20						
	PART B (Maximum of TWO Sub-divisions only)							
2	Unit 1 : (Compulsory)	16						
3 & 4	Unit 2 : Question 3 or 4	16						
5&6	Unit 3 : Question 5 or 6	16						
7 & 8 Unit 4 : Question 7 or 8								
9 & 10	Unit 5: Question 9 or 10	16						
	TOTAL	100						

				Semester: V				
	Alternate Building materials and Technologies							
-				(Theory)		1		
Course	e Code	:	CV255TBC		CIE	:	100 Mark	S
Credit	s: L:T:P	:	3:0:0		SEE	:	100 Mark	S
Total I	Iours	:	40 Hrs		SEE Duration	:	3.00 Hour	S
				Unit-I				8 Hrs
Introd	uction to En	erg	y in building mater	ials and buildings				
Energy	in building	g n	naterials, Environm	ental issues concern	ned to building ma	ater	ials, Globa	l warming,
Enviro	nmental friei	ndl f bi	y and cost effectiv	ve building technolo	ogies, Buildings in	d11	ferent clin	natic region.
Lifergy	evaluation	1 00	inding materials.	Unit _ II				8 Hrs
Introd	uction to alte	rn	ative to cement and	I mortars Masonry	units			01115
Alterna	tives to Ceme	ente	and aggregates Mo	rtars Types Prenarat	tion Properties Mase	onry	v materials (lassification
and pro	operties of mo	orta	rs. selection of mort	ars. Polymer mortars		· · · ·		
Manufa	acturing proce	ess	and Characteristics	of alternative masonr	y units – Properties, S	Spe	cification ar	d selection –
Stabiliz	zed mud, Geo	pc	lymer, FaL- G Bloc	ks, Aerated concrete	blocks etc	•		
			*	Unit –III				8 Hrs
Altern	ative Buildin	ıg T	Technologies					
Alterna	tive Technol	ogy	for wall constructio	n, Ferro cement, com	ponents, Materials an	nd s	pecification	s, Properties,
Constru	uction method	ds,	Applications,	~				
Alterna	ite form work	S. 1	Alternative roofing s	ystems-Concepts, Fil	ller slabs, Composite	bea	am panel ro	ofs, Masonry
vaults a	and domes. B	am	boo application in h	Unit IV	construction			Q Ung
Fibro I	Doinforced of	0 m	nacitas (annontatio	Ullit –IV				<u>о піз</u>
Types a	and Propertie	s of	constituent materia	ls for Fibre Reinforce	ed composites Prope	rtie	s of Fibre R	einforced
compos	sites, and Apr	olic	ations		ed composites, i tope	nne		ennoreed
r	,			Unit –V				8 Hrs
Cost E	ffective Build	din	g Design:					
Concep	ot of appropri	iate	Cost Effective bui	ldings and Cost sav	ing techniques adopt	ted	in planning	, design and
constru	ction							
Course Outcomes: After completing the course, the students will be able to:-								
CO1	CO1 To study process that is environmental appropriate and resource-efficient throughout a building's life-							
cycle								
CO2	To study inr	lov	ative solutions using	state-of-the-art tech	nologies and building	g ma	aterials	
CO3	To study ho	w t	o minimize environi	nental impact by fact	ilitating to use local a	and	recycled ma	aterials to
	iessen energ	gy 1	n buildings					
CO4	CO4 To study the behaviour of masonry materials and structures							

Reference Books					
1	Alternative building Materials and Technologies, K.S.Jagadish, B.V.Venkatarama Reddy and K.S.NanjundaRao, New Age International Private Limited; Second Edition (1 January 2017);ISBN 978-9385923876				
2	K.S. Jagadish, Building Alternatives for housing. Lecture notes on Alternative Building, Dept of Civil Engg, Indian Institute of Science ,1997				

RV College of Engineering[®] Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

3	Paul Graham McHenry, Adobe and Rammed Earth Buildings: Design and Construction, University of Arizona Press; New edition (15 September 1989), ISBN-10: 0816511241, ISBN-13:978-0816511242
4	Ferrocement & Laminated Cementitious Composites, Antoine E. Naaman, Techno Press 3000 (1January 2000), ISBN-13 : 978-0967493909
5	Sustainable Building Technology, K.S. Jagadish, I K International Publishing House Pvt. Ltd (30 March 2019) ISBN-13: 978-9386768209.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40		
MAXIN	NUM MARKS FOR THE CIE THEORY	100		

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B (Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7 & 8 Unit 4 : Question 7 or 8					
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

			Semester: V				
BRIDGE ENGINEERING							
Category: Professional Core Elective							
		_	(Theory)				
Course Code	:	CV255TBD		CIE	:	100 Mark	S
Credits: L:T:P	:	3:0:0		SEE	:	100 Mark	S
Total Hours	:	40L		SEE Duration	:	3Hours	
			Unit-I				08 Hrs
Introduction: His	tor	ical Development	of Bridges, Site Sel	lection for Bridges	, Ne	ecessary In	vestigations
& collection of es	sser	ntial bridge design	n data, Different sta	ages of planning,	Cla	ssification	of Bridges,
Requirements of a	n ic	leal bridge.					
Hydraulic Design	: M	lethods of finding	design discharge, N	atural artificial and	llin	ear water w	vays, afflux,
economic span of	bric	dge, Scour depth					
			Unit – II				08 Hrs
Bridge substruct	ure	es: General, Desig	gn and construction	of Bridge piers,	Ab	utments, V	Ving walls,
Approaches, Beari	ngs	s for bridges, Type	s of bearings.				-
Superstructures	&	Design Aspects: (Components - Para	pets and Railings	fo	r Highway	Bridges,
Classification of H	ligł	way Bridge parap	ets, Cross barriers a	and its Details.			-
Unit –III 08 Hrs							
Loading for road bridges: Dead load, Live load, Impact factor, Centrifugal force, wind loads, hydraulic							
forces, longitudin	al	forces, Seismic f	forces; Earth press	ure. Buoyancy; L	Lane	e concept,	Equivalent
loads,traffic load;	Wi	dth of Roadway an	nd Footway.				
Bridge Loading: S	Stai	ndard Specification	ns for Roads and Ra	ilways Bridges, Ra	uilw	ay Loading	g standards.,
IRC standard live	loa	ds.				-	_
			Unit –IV				08 Hrs
Low-cost bridges	- In	troduction, types of	of low-cost bridges,	Cause-ways, susp	ens	ion bridges	s, Culverts.
Box Culvert: Diffe	erei	nt Loading Cases I	RC Class AA Track	ed, Wheeled and C	lass	A Loading	g, Structural
Design of Slab Cu	lve	rt.					_
Unit –V 08 Hrs							
Introduction to structural health monitoring in integration with AI: Simulation study and							
incorporation of different types of sensors. Inspection & Maintenance of bridges.							
RCC deck Slab Bridge: Introduction to RCC deck slab bridge, Loading calculations and analysis,							
Calculation of BM	[&	SF, Structural des	ign of deck slab bri	dge for class AA lo	bad	ing and cla	lss A
Loading.	Loading.						

Course	Course Outcomes: After completing the course, the students will be able to:-				
CO1	Describe the principle of bridge site investigation, bridge hydrology and standards.				
CO2	Apply the Codal provisions of IRC 6 and IRC 21 in the design of Bridges.				
CO3	Analysis of bridges subjected to various loads.				
CO4	Design of RCC Deck slab bridge for Class AA tracked vehicle loading.				

Reference Books

RV College of Engineering[®] Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

1.	S. P. Bindra — Principles & Practices of Bridge Engineering ^{II} , Dhanpat Rai & sons publication, New Delhi, 2012, ISBN 978-8189928841.
2.	M. A. Jayaram —Design of Bridge Structure, PHI Pvt Ltd., 2 nd Edition, 2012, ISBN 9788120338524.
3.	D. Johnson and Victor —Essentials of Bridge Engineering, Oxford and IBH publications, 6 th Edition, 2019, ISBN 978-8120417175.
4.	Krishnaraju N — Design of Bridge, Oxford & IBH Publications, 5 th Edition, 2019 ISBN: 978- 8120417984.
5	S. Ponnuswamy- Bridge Engineering, McGraw Hill Education, 3 rd Edition, 2017, ISBN: 978-9339221072.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40		
MAXIN	MUM MARKS FOR THE CIE THEORY	100		

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
PART B (Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7&8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

	Semester: V							
	Air pollu	tion and Cont	rol Professional Core El	lectiv	ve (Theory)			
		(Group)-В)					
Course C	Code :	CV255TBE	CIE	:	100 Marl	arks		
Credits:	L:T:P	3:0:0	SEE	:	100 Marl	KS		
Total Ho	urs :	40L	SEE Duration	:	3.00 Hou	rs		
		Unit.	T			08 Hrs		
Introduc	tion. Air Pollutio	n Level in d	ifferent cities Sources	and	1 classifica	tion of Air Pollutants		
Photoche	mical smog Effec	ts of air pollu	ition on health vegetat	tion	& material	s Global effects of air		
nollution	linear sinog, Linee	ts of all polit	ition on nearth, vegeta	uon		s, Global effects of all		
ponution.		T] : 4	TT			00 11-10		
Motooro	Logy Tomporatura	Unit –	II d Stability Wind value	vity o	nd turbular	Uo IIIS		
Monsurar	nogy: Temperature	Tapse rates an	Windroso diagram Ai	ir po	llution onio	edes		
Measurer	nent of ambient air	cuplity paran	w murose utagram. Al	n po	nution epis	Jues.		
Wiedsulei						08 Hrs		
Modeline	g of Dispersion of	Air Pollutant	ts. Dispersion of Air po	ollute	ants Theori	es on		
modeling	of Air pollutant	s. Gaussian	dispersion model. Eq	uatio	ons for est	imation of pollutant		
concentra	ations. Plume Rise	e – Equations	for estimation. Effec	tive	stack heig	nt and mixing depths.		
Numerica	al problems.	1			0	8 - F		
Unit –IV 08 Hrs								
Sampling	g and Particulate	Pollution Cor	ntrol Methods: Atmos	pher	ic sampling	and stack		
sampling	methods. Air qua	lity standards	s. Types of particulate	pol	lution cont	rol methods – Settling		
chambers	s, Cyclone separate	ors, Scrubber	s, Filters and Electros	tatic	precipitato	rs, design aspects and		
principle	of these air pollution	on control uni	ts					
Measurer	nent of Automobile	e exhaust emis	ssion. Field visit					
		Unit –	-V			08 Hrs		
Gaseous	pollution control	methods: T	ypes of gaseous pollut	tion	control me	thods – absorption,		
adsorptio	n and combustion j	processes. Em	ission standards for aut	tomo	bile polluti	on.		
Noise Po	llution: Causes, Ef	fects and cont	trol. Noise standards					
Course (Outcomes: After co	ompleting the	e course, the students	will	be able to			
CO1:	Identify the major	or sources of	air pollution and und	lersta	and their ef	fects on environment,		
	economics and he	ealth.						
CO2:	Evaluate the disp	CO2: Evaluate the dispersion of air pollutants in the atmosphere and to develop air quality models.						
	CO3: Ascertain and evaluate sampling techniques for atmospheric and stack pollutants.							
CO3:	Ascertain and eva	aluate samplin	g techniques for atmos	pher	ic and stack	pollutants.		
CO3: CO4:	Ascertain and eva Choose and desig	aluate samplin in control tech	g techniques for atmos iniques for particulate a	pher and g	ic and stack gaseous emi	ssions.		

REV MARTINIONS

RV College of Engineering[®] Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

1	M. N. Rao and H V N Rao. Air Pollution, Tata Mc-Graw Hill Publication, ISBN 10-0074518712,
	13-9780074518717, 2001, reprint 2013.
2	H. C. Perkins, Air Pollution. Tata McGraw Hill, ISBN 10- 0070493022, 13- 978-0070493025,
	1974, Reprint 2013.
3	Noel De Nevers, Air Pollution Control Engineering, Waveland Pr Inc, ISBN 10-1577666747,
	13-978-1577666745, 2010.
4	Anjaneyulu Y, Text book of Air Pollution and Control Technologies, Allied Publishers, ISBN
4	13-9788177641844, 2002.
5	https://onlinecourses.nptel.ac.in/noc23_ce14/preview - NPTEL course Air Pollution and
	Control By Prof. Bhola Ram Gurjar IIT Roorkee

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40		
MAXIM	IUM MARKS FOR THE CIE THEORY	100		

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B (Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3: Question 5 or 6	16			
7&8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

2022 Scheme	Credit Structure:	VI Semester
-------------	--------------------------	--------------------

	VI SEMESTER							
SI.	~ ~ .		Credit Allocation					
No.	Course Code	Course Title	L	Т	Р	Total	-R02	Category
1	HS261TA	Principles of Management and Economics	3	0	0	3	HSS	Theory
2	CV362IA	Water & Waste water Engineering	3	0	1	4	CV	Theory + Practice
3	CV363IA	Geotechnical Engineering	3	0	1	4	CV	Theory + Practice
4	CV364TA	Design & Drawing of Steel Structures	3	0	1	4	CV	Theory
5	CV365TDX	Professional Core Elective-IV (Group- D)	3	0	0	3	CV	Theory
6	XX366TEX	Institutional Electives – I (Group F)	3	0	0	3	XX	Theory
7	CV367P	Extensive Survey Project	0	0	3	3	CV	Project
		Total				24		

VI Sem: Professional Elective Group-D

GROUP-D				
Sl. No.	Course Code	Course Title		
1	CV365TDA	Advanced Concrete Technology		
2	CV365TDB	Transportation Engineering		
3	CV365TDC	Structural Masonry		
4	CV365TDD	Disaster Management		
5	CV365TDE	Integrated Watershed Management		

VI Sem: Institutional Electives Group-E

	GROUP-E (3 Credit Courses without prerequisites)						
Sl. No.	Course Code	BoS	Course Title				
1	AS266TEA	AS	Fundamentals of Aerospace Engineering				
2	BT266TEB	BT	Bioinformatics				
3	CH266TEC	СН	Industrial Safety Engineering				
4	CS266TED	CS	Robotics Process Automation				
5	CV266TEE	CV	Intelligent Transport Systems				
6	CV266TEF	CV	Integrated Health Monitoring of Structures				
7	CM266TEG	СМ	Advanced Energy Storage for E-Mobility				
8	EC266TEH	EC	Human Machine Interface(HMI)				
9	EE266TEJ	EE	Energy Auditing and Standards				
10	EI266TEK	EI	Biomedical Instrumentation				

VI Sem: Institutional Electives- GROUP-F

GROUP-F (3 Credit Courses without prerequisites)

Sl. No.	Course Code	BoS	Course Title
11	ET266TEM	ET	Telecommunication Systems
12	ET266TEN	ET	Mobile Communication Networks and Standards
13	IS266TEO	IS	Mobile Application Development
14	IM266TEQ	IM	Elements of Financial Management
15	IM266TER	IM	Optimization Techniques
16	ME266TES	ME	Automotive Mechatronics
17	MA266TEU	MA	Mathematical Modelling
18	MA266TEV	MA	Mathematics of Quantum Computing
19	HS266TEW	HS	Applied Psychology for Engineers
20	HS266TEY	HS	Universal Human Values

2022 scheme						
	PRIN	CIPLES OF MANA	GE	MENT & ECONOM	ICS	
		(T)	neor	y)		T
Course Code	:	HS261TA		CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	45 Hrs		SEE Duration	:	3.00 Hours
		Unit-I				06 Hrs
Introduction to Mana	geme	ent: Management Fun	ctio	ns – POSDCORB – ar	n overvi	ew, Management
levels & Skills, Manag	emen	t History - Classical A	1pp	roach: Scientific Man	agemen	t, Administrative
Theory, Quantitative A	Appr	oach: Operations Res	earc	h, Behavioral Appro	ach: Ha	wthorne Studies,
Contemporary Appro	ach:	Systems Theory, Con	ting	ency Theory. Caselets	s / Case	studies
		Unit – II				10 Hrs
Foundations of Plann	ng: 🛛	Types of Goals & Plan	ns, A	pproaches to Setting (Goals &	Plans, Strategic
Management Process, G	Corpo	rate strategies – types	of	corporate strategies, B	CG mat	rix, Competitive
Strategies – Porters Fiv	e for	ce Model, types of Co	mpe	etitive Strategies. Case	elets / C	ase studies
Organizational Struct	ure &	& Design: Overview of	of D	esigning Organization	al Struc	ture - Work
Specialization, Departm	nenta	lization, Chain of Cor	nma	nd, Span of Control, C	Centraliz	ation &
Decentralization, Form	alizat	ion, Mechanistic & O	rgai	nic Structures. Caselet	s / Case	studies
		Unit –III				10 Hrs
Motivation: Early The	ories	of Motivation - Maslo	w's	Hierarchy of Needs T	heory, N	AcGregor's
Theory X & Theory Y,	Herz	berg's Two Factor Th	eor	y. Contemporary Theo	ries of N	Motivation:
Adam's Equitytheory,	Vrooi	n's Expectancy Theor	ry. (Caselets / Case studie	S	
Leadership: Behaviora	l The	ories: Blake & Mouto	on's	Managerial Grid, Con	tingency	y Theories of
Leadership: Hersey & I	Blanc	hard's Situational Lea	ader	ship, Contemporary V	iews of	Leadership:
Transactional & Transf	orma	tional Leadership. Ca	sele	ts / Case studies		-
Unit –IV 10 Hrs						
Introduction to Economics: Microeconomics and Macroeconomics, Circular flow model of						
economics, An Overvie	w of	Economic Systems.				
Essentials of Microeco	Essentials of Microeconomics: Demand, Supply, and Equilibrium in Markets for Goods and Services,					
Price Elasticity of Demand and Price Elasticity of Supply, Elasticity and Pricing, Numericals on						
determining price elasticity of demand and supply. Changes in Income and Prices Affecting						
Consumption Choices, Monopolistic Competition, Oligopoly.						
Unit –V 09 Hrs						
Macroeconomic Indicators: Prices and inflation, Consumer Price Index, Exchange rate, Labor						
Market, Money and banks, Interest rate. Gross Domestic product (GDP) - components of GDP,						
Measures of GDP: Outcome Method, Income method and Expenditure method, Numericals on GDP						
Calculations, ESG an overview.						
Macroeconomic models- The classical growth theory, Keynesian cross model, IS-LM-model, The						
AS-AD model, The complete Keynesian model, The neo-classical synthesis. National Budgeting						
process in India						

Cou	Course Outcomes: After completing the course, the students will be able to: -				
CO1	Elucidate the principles of management theory & recognize the characteristics of an				
	organization.				
CO2	Demonstrate the importance of key performance areas in strategic management and design				
	appropriate organizational structures and possess an ability to conceive various organizational				
	dynamics.				
CO3	Compare and contrast early and contemporary theories of motivation and select and implement				
	the right leadership practices in organizations that would enable systems orientation.				
CO4	Demonstrate an understanding on the usage and application of basic economic principles.				
CO5	Appreciate the various measures of macro-economic performance and interpret the prevailing				
	economic health of the nation.				

Reference	e Books:
1.	Management, Stephen Robbins, Mary Coulter & NeharikaVohra, 15 th Edition, 2021,
	Pearson Education Publications, ISBN: 13: 978-0-13-558185-8
2.	Management, James Stoner, Edward Freeman & Daniel Gilbert Jr, 6 th Edition, 2009, PHI,
	ISBN: 81-203-0981-2.
3	Principles of Microeconomics, Steven A. Greenlaw, David Shapiro, 2 nd Edition, 2017,
5.	ISBN:978-1-947172-34-0
4.	Macroeconomics: Theory and Policy, Dwivedi D.N, 5 th Edition, 2021, McGraw Hill
	Education; ISBN : 9789353163334

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding up to 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Some of the Experiential learning topics may include Reading Leadership books and summarizing, Analysis and interpretation of various economic reports, Visit to various organizations to understand organizational mechanics. Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40		
MAXIN	IUM MARKS FOR THE CIE THEORY	100		

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q.NO.	CONTENTS	MARKS				
PART A	PART A					
1	Objective type questions covering entire syllabus	20				
PART B (Maximum of '	TWO Sub-divisions only; wherein one sub division will be a casel	et in the related topics)				
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5 & 6	5 & 6 Unit 3 : Question 5 or 6 16					
7 & 8	Unit 4 : Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
TOTAL	· · · ·	100				

Semester: VI

Water and Waste water Engineering (Theory & Practical)

Course Code	:	CV362IA	CIE	:	100 Marks+ 50Marks
Credits: L:T:P		3:0:1	SEE	:	100 Marks + 50Marks
Total Hours	:	40L+26P	SEE Duration	:	3.00 Hours + 3.00 Hours

Unit-I	08 Hrs		
Demand of water : Conservation of water resources. Need of protected water supply. Types of water demands - domestic demand, industrial, institutional and commercial, public uses, fire demand			
Percapita consumption -factors affecting, population forecasting, different method	ls with merits and demerits,		
Problems, Variations in demand of water, Peak factor, Design periods and factors g	overning the design period.		
Problems			
Sources: Various sources with their quality and quantity comparison. Need for protec	eted water supply.		
Collection and Conveyance of water: Types of pumps with working principles. diameter for the rising main.	Design of the economical		
Unit – II	08 Hrs		
Pipe appurtenances: Valves and different Pipe materials with their advantages affecting the selection of pipe material. CPHEEO Guidelines	and disadvantages. Factors		
Intake structures - Types. Factors to be considered in the selection of sites for intake s reservoir, Over Head tanks, Intermediate pump stations and their designs.	structures. Master balancing		
Examination of water of Physical, Chemical and Microbiological Examinations, usir techniques. Drinking water standards BIS, ICMR & WHO standards.	ng analytical & Instrumental		
Unit –III	08 Hrs		
Water treatment: Objectives, Treatment flow chart, Screening – types			
Plain Sedimentation – Theory of sedimentation, Types of settling, Sedimentation tar	nk Types, design problems		
Coagulant Aided sedimentation - Common coagulants used with reaction, advantages and disadvantages.			
operation cleaning Design excluding under drainage system			
Distribution system : Methods- gravity, pumping, combined, Lavouts- Dead end, Radial, Grid Iron, Circular			
system. Network analysis- Hardy cross method, Hazen Williams formula, Numerica WATERGEMS	al problems, EPANET and		
Unit –IV	08 Hrs		
Types of sewerage system and their suitability.			
Construction of sewers: Types of sewers, self cleansing and non scouring velocity, p	lanning of sewerage system,		
layout and construction of sewer line, testing of sewer line, cleaning and maintenance	of sewer line, ventilation of		
Sewers annurtanganges inlate eatch begins clean outs manholes drop manholes	lamp holes flushing tanks		
grease and oil trans inverted sinhons storm regulators	Tamp noies, nushing tanks,		
Waste water characteristics - Physical chemical and biological characteristics ROD and COD Determination			
Problems.			
Unit –V	08 Hrs		
Methods of treatment for waste water: preliminary, Primary, Secondary, tertiary			
Unit operations/processes and treatment systems used to remove major contaminants trickling filter, ASP.	of waste water. Design of		

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Methods of waste water disposal - Dilution method – conditions favouring the method, Self-purification of natural stream, Zones of pollution in stream, Oxygen sag analysis, problems. Sewage sickness, Disposal by land treatment: condition favourable, methods.

Introduction to Artificial Intelligence in WWT: Types and application of AI in water and waste water treatment.

Laboratory Experiments

1. Determination of Solids in sewage: Total Solids, Suspended Solids, Dissolved Solids, Volatile Solids, Fixed Solids, Settable Solids.

- 2. Determination of Chloride and Sulphate.
- 3. Determination of Calcium, Magnesium and Total Hardness
- 4. Determination of Dissolved Oxygen.
- 5. Determination of BOD and COD
- 6. Determination of Iron, Phenanthroline method
- 7. Determination of Fluorides.
- 8. Total Count test and MPN Determination
- 9. Determination of Nitrates and phosphates.
- 10. Jar Test for optimum Dosage of Alum. Turbidity Determination by Nephelometer
- 11. Examination of different water and waste water samples and report.

Course (Course Outcomes: After completing the course, the students will be able to		
CO1:	Understand quality, quantity of various sources of water and compare with water quality standards,		
	make appropriate choice for a community.		
CO2:	Analyze water and Design different water treatment units to purify available raw water to the require		
	standards.		
CO3:	Evaluate collection and transportation system for water and sewage.		
CO4:	Evaluate waste water quality and environmental significance of various parameters and Select suitable		
	waste water treatment and disposal method		

Referen	Reference Books		
1	Environmental Engineering vol-I, S.K.Garg; M/s Khanna Publishers; 33 rd edition, New Delhi 2010,		
	ISBN 978-8174091208		
2	Environmental Engineering Vol II, S.K.Garg; M/s Khanna Publishers; New Delhi 2013, ISBN 978-		
	8174092304		
•	Environmental Engineering I, B.C. Punmia and Ashok Jain Laxmi Publications (P)Ltd., New Delhi		
3	2018, ISBN 81-7008-825-9		
4	Environmental Engineering II, B.C. Punmia and Ashok Jain Laxmi Publications (P)Ltd., New Delhi		
	2010, ISBN: 9788131805961, 9788131805961		
5	Water & Waste Water Technology, Mark.J Hammer, John Wiley & Sons Inc., New York, 2008.		
	Howard S. Peavy, Donald R. Rowe, George T, Environmental Engineering - McGraw Hill		
	International Edition. New York, 2000.ISBN 9780070191342ISBN 9780131745421		

(Chemistry for Environment Engineering, Sawyer and McCarthy, Tata Mc Graw Hill Publications
0	(2003 Edition). ISBN 0070549788, 9780070549784
	$\mathbf{ODUEEOM} = 1 \mathbf{OUV} \mathbf{O} \mathbf{I} $

CPHEEO Manual of Water Supply and treatment 1999 & sewerage and sewage treatment 2013 7

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)		
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
MAXIM	UM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)			
Q. NO.	CONTENTS	MARKS	
	PART A		
1	Objective type questions covering entire syllabus	20	
	PART B (Maximum of TWO Sub-divisions only)		
2	Unit 1 : (Compulsory)	16	
3 & 4	Unit 2 : Question 3 or 4	16	
5&6	Unit 3 : Question 5 or 6	16	
7 & 8	Unit 4 : Question 7 or 8	16	
9 & 10	Unit 5: Question 9 or 10	16	
	TOTAL	100	

Semester: VI					
GEOTECHNICAL ENGINEERING					
Category: Professional Core Course					
Stream: Theory & Practice					
Course Code:CV363IACIE:100+50 Marks	S				
Credits: L:T:P : 3:0:1 SEE : 100+50 Marks	S				
Total Hours:40L+28PSEE Duration:3.0 Hours + 3I	Hours				
Unit-I	07 Hrs				
Index Properties:					
Definition, Basic Terminology, Soil as a Three phase system, Soil Mass, Void ratio, Porosity, Degree of sat	turation,				
Air content, Percentage Air Voids, Water content, Unit weight, Specific gravity.					
Interrelations and related problems, Tests for water content and specific gravity, Particle Size Distribution	n (Sieve				
analysis and Hydrometer analysis), Consistency of Soils- Atterberg Limits, Field Density and Density Ind	dex.				
Unit – II	09 Hrs				
Classification Of Soil:					
Soil Classification Purpose, Unified Soil Classification System and Indian Standard Soil Classification S	ystem,				
Field identification of soils.					
Soil Structure and Clay Mineralogy:					
Soil structure types, Common clay minerals in soil and their structures- Kaolinite, Montmorillonite and II	llite.				
Permeability:					
Darcy's Law and its Limitations, Discharge Velocity and Seepage Velocity, Factors affecting Perm	neability,				
Aquifers and flow through aquifers, Determination of Coefficient of Permeability, Permeability of Strati	ified Soil				
Deposits, related problems.					
Unit –III	08 Hrs				
Compaction:					
Introduction, Compressibility, Compaction, Standard Proctor Test, Modified Proctor Test, Zero air voids	s line,				
Field Compaction Method, Placement Water Content, Field Compaction Control, Factors affecting Comp	Field Compaction Method, Placement Water Content, Field Compaction Control, Factors affecting Compaction,				
Effect of Compaction on Soil Properties, Compaction equipment s.	paction,				
Unit –IV	paction,				
Consolidation :	08 Hrs				
Introduction, Piston-Spring Analogy, Primary and Secondary Consolidation, Terzaghi's Theory of One					
Dimensional Consolidation Normally consolidated under consolidated and over consolidated co	of One				
Dimensional Consolidation, Normally consolidated, under consolidated and over consolidated so	of One olidation				
Dimensional Consolidation, Normally consolidated, under consolidated and over consolidated so consolidation pressure and its determination by Casagrande's method, Laboratory one dimensional conso test. Determination of Compression index and co officient of consolidation. Determination of co	of One olidation				
Dimensional Consolidation, Normally consolidated, under consolidated and over consolidated so consolidation pressure and its determination by Casagrande's method, Laboratory one dimensional consolidation pressure and its determination by Casagrande's method, Laboratory one dimensional consolidation, Determination of Compression index and co-efficient of consolidation, Determination of co-efficient of consolidation by square root of time fitting method and logarithmic time fitting method.	of One bils, Pre- olidation icient of				
Dimensional Consolidation, Normally consolidated, under consolidated and over consolidated so consolidation pressure and its determination by Casagrande's method, Laboratory one dimensional conso test– Determination of Compression index and co-efficient of consolidation, Determination of co-effi consolidation by square root of time fitting method and logarithmic time fitting method.	of One of One oils, Pre- olidation icient of				
Dimensional Consolidation, Normally consolidated, under consolidated and over consolidated so consolidation pressure and its determination by Casagrande's method, Laboratory one dimensional conso test– Determination of Compression index and co-efficient of consolidation, Determination of co-effi consolidation by square root of time fitting method and logarithmic time fitting method. Unit –V Shear Strength of Soils :	of One of One oils, Pre- olidation icient of 08 Hrs				
Dimensional Consolidation, Normally consolidated, under consolidated and over consolidated so consolidation pressure and its determination by Casagrande's method, Laboratory one dimensional conso test– Determination of Compression index and co-efficient of consolidation, Determination of co-effi consolidation by square root of time fitting method and logarithmic time fitting method. Unit –V Shear Strength of Soils : Introduction Mohr Circle for Two Dimensional Stress System Mohr-coulomb failure theory. Total and	of One ils, Pre- olidation icient of 08 Hrs				
Dimensional Consolidation, Normally consolidated, under consolidated and over consolidated so consolidation pressure and its determination by Casagrande's method, Laboratory one dimensional conso test– Determination of Compression index and co-efficient of consolidation, Determination of co-effi consolidation by square root of time fitting method and logarithmic time fitting method. Unit –V Shear Strength of Soils : Introduction, Mohr Circle for Two Dimensional Stress System, Mohr-coulomb failure theory, Total and of shear strength parameters. Determination of Shear Parameters-Direct Shear Test. Triaxial Compressi	of One bils, Pre- olidation icient of 08 Hrs effective				

Strength of sands and Clays, Sensitivity and Thixotropy.

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Laboratory

- List of Experiments
- 1. Specific Gravity determination
- 2. Moisture Content determination
- 3. Sieve Analysis for Coarse-grained Soils
- 4. Hydrometer Analysis for Fine-grained Soils
- 5. Atterberg Limits and Indices
 - a) Liquid limit
 - b) Plastic limit
 - c) Shrinkage limit
- 6. Standard Proctor Compaction Test
- 7. Field Density Test
 - a) Core Cutter Method
 - b) Sand Replacement Method
- 8. Determination of Permeability of soils
 - a) Constant Head Method
 - b) Variable Head Method
- 9. Determination of Shear Strength of soils
 - a) Direct Shear Test
 - b) Triaxial Shear Test (UU only)
 - c) Unconfined Compression Test

Course Outcomes: After completing the course, the students will be able to: -		
CO 1	Describe the Index and Engineering properties of Soils and soil structure.	
CO 2	Determine the permeability, compaction characteristics and shear parameters of soil.	
CO 3	Evaluate index and Engineering properties of soils, analyze and interpret the experimental data	
CO 4	Predict the Suitability of soil for a particular project based on its Engineering properties.	

Referen	Reference Books			
1	Soil Mechanics and Foundations, B.C. Punmia, 17th Edition, Laxmi Publishing Co. N	ewDelhi,		
1.	ISBN-10: 8170087910.			
	Soil Engineering in Theory and Practice, Alam Singh and Chowdhary G.R, 2001, CBS Pu	ıblishers		
Ζ.	and Distributors ltd., New Delhi, ISBN 9788123900391.			
2	Foundation Analysis and Designs, Bowles JE, 5th Edition, 2017, McGraw Hill Publishing of	co., New		
3.	York, ISBN-10: 9781259061035.			
4	Soil Mechanics and Foundation Engineering, VNS Murthy, 1st Edition, 2015, UBS Publis	hers and		
4.	Distributors, New Delhi, ISBN-10: 8123913621.			
_	Basic and Applied Soil Mechanics, Gopal Ranjan and Rao ASR, 2016, New Age Internation	onal (P)		
Э.	ltd, New Delhi, ISBN-10: 8122440398.			
RUBRICFOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		

1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50MARKS	50
MAXIN	IUM MARKS FOR THE CIE THEORY & LABORATORY	150

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)		
Q.NO.	CONTENTS	MARKS
	PART A	
1	Objective type of questions covering entire syllabus	20
PART B (Maximum of THREE Sub-divisions only)		
2	Unit 1 : (Compulsory)	16
3 & 4	Unit 2 : Question 3 or 4	16
5&6	Unit 3 : Question 5 or 6	16
7&8	Unit 4 : Question 7 or 8	16
9 & 10	Unit 5: Question 9 or 10	16
	TOTAL	100

RUBRIC FOR SEMESTER END EXAMINATION (LAB)					
Q.NO.	CONTENTS	MARKS			
1	Write Up	10			
2	Conduction of the Experiments	30			
3	Viva	10			
	TOTAL	50			

			Semester: VI			
	DESIGN AND DRAWING OF STEEL STRUCTURES					
		Categ	ory: Professional C	ore Course		
	-	S	tream: Theory& P	ractice		1
Course Code	:	CV363TA		CIE	:	100
Credits: L:T:P	:	3:1:0		SEE	:	100
Total Hours	:	40L+28T		SEE Duration	:	3.0 Hours
			Unit-I			08 Hrs
Introduction: Adva	inta	ges and disadvantag	es of steel structures,	, load and load comb	inat	ions, design
philosophies, structu	ıral	forms.				
Bolted connection	s : <i>I</i>	Advantages, Types,	Modes of failures,	Introduction to sim	ple	, semi rigid and rigid
connections, Eccent	tric	connections(plane	of connection parall	el and perpendicula	r to	the plane of moment).
Detailing of Simple	e b	eam to beam and b	beam to column con	nections: Framed, s	tiffe	ened, unstiffened seated
connections.						
Unit – II 08 Hrs						
Welded connections: Advantages, disadvantages. Types of joints, weld symbols, Design of simple joints,						
eccentric connections, (plane of connection parallel and perpendicular to the plane of moment). Detailing of						
Simple beam to beam and beam to column connections, Framed, stiffened, unstiffened seated connections using						
welds.						
					1	07 Hrs
Design of tension n	nen	ibers: Modes of fail	ures, Analysis and de	esign of tension mem	ber	s- angles.
	Unit –IV 09 Hrs					
Design of compress	sior	members: Failure	modes, section used	for compression men	nbe	r, member classification,
analysis and design of simple axially loaded members. Design of lacing, battens.						
Unit –V 08 Hrs						
Plastic Analysis: Introduction to plastic hinge, Plastic section modulus, shape factor for rectangle, circle,						
square, I section, T section and hollow rectangular, circular sections, Concept of collapse load and Plastic						
moment(No numericals)						
Design of beams: E	sear	n types, section clas	sification, design of I	aterally supported be	eam	S.

rence Books
Subramanian N, _Design of Steel structures', Oxford University press, 2nd Edition, 2016, ISBN
9780199460915
S K Duggal, Limit state design of steel structures', Tata McGraw Hill Education Private Limited,
2017, 2 nd edition, ISBN-13 978-9351343493
Bhavikatti S S, _Design of Steel structures', I K International Publications, 2016, 3rd edition
ISBN9789382332091
Shiyekar, M. R., Limit state design in Structural Steel, PHI Learning pvt ltd, 3rd Edition, ISBN :
9788120353503
BIS Codes:
i) IS-800-2007, General construction in steel-code of practice.
ii) IS 875-1987, Code of practice for design loads,
iii) SP6(6)- 1972, IS handbook for structural engineers-application of plastic theory in design of steel
structures.
iv) SP6(1)-1964, Reaffirmed in 2003 Handbook for structural engineers- Structural steel sections

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
	COMPONENTS	MARKS		
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will			
	be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO	20		
	QUIZZES WILL BE THE FINAL QUIZ MARKS.			
2	TESTS: Students will be evaluated in test, descriptive questions with different			
	complexity levels (Revised Bloom's Taxonomy Levels: Remembering,			
	Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will	40		
	be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks.			
	FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.			
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and			
	practical implementation of the problem. Case study-based teaching learning	40		
	(10), Program specific requirements (10), Video based	40		
	seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS.			
	MAXIMUM MARKS FOR THE CIE THEORY	100		

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q.NO.	CONTENTS MARKS					
	PART A					
1	Objective type of questions covering entire syllabus	20				
	PART B (Maximum of THREE Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7&8	Unit 4 : Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

Bengaluru - 560059, Karnataka, India

	Semester: VI							
	ADVANCED CONCRETE TECHNOLOGY							
			Category	: Professional Co	re Elective-III			
				(Group - D)				
				(Theory)				
Cours	e Code	:	CV365TDA		CIE	:	100 Mark	S
Credit	ts: L:T:P	:	3:0:0		SEE	:	100 Mark	S
Total l	Hours	:	40L		SEE Duration	:	3Hours	
				Unit-I				08 Hrs
Hydra	tion: Importa	nce	, Hydrated Cement I	Paste, porosity of past	te and concrete, transi	itioı	n Zone, Elas	tic Modulus,
factors	affecting stre	engt	h and elasticity of c	oncrete.	,		,	,
		_	-	Unit – II				08 Hrs
Admix	stures- Mech	anis	m of chemical admi	xture Plasticizers an	d super plasticizers	dos	age and thei	r effect on
concre	te properties i	n fr	resh and hardened sta	ate, mineral admixtur	es-Fly ash. Silica fun	ne. (GGBES, me	takaolin and
rice hu	sk ash. Typic	al c	ase studies	,		,	,	
	Unit –III 08 Hrs							
Durability of concrete – Introduction, impermeability of concrete, acid attack, efflorescence, Corrosion-Factors								
influencing corrosion, pH, carbonation, Freezing and thawing, Alkali Aggregate Reaction, IS456-2000								
require	requirement for durability. Remedial measures. Shrinkage, creep, and thermal effects. Typical case studies.							
Unit –IV 08 Hrs								
Mix P	roportioning	: C	oncrete Mix proport	ioning by ACI and ot	ther methods – Nume	erica	al examples.	Differences
betwee	en ACI and IS	me	ethods of proportion	ing using IS-10262-2	2019. Nano materials	in (construction	
Geopo	olymer - Prop	pert	ies and applications	s Geopolymer concr	rete, Self-compacting	g co	oncrete Prop	berties and
applica	ations of self-	con	ipacting concrete.	TT:4 X7				00 11
G	1	F :1	·····	Unit –v	1 Dalare	•	f EDC in	U8 Hrs
Specia	a concretes:	F1D	er reinforced concre	ete – Fibers types ar	nd properties, Behav	10U1	of FRC in	flexure and
and tyr	n, Application	ns. aht	veight concrete mix	High density concre	crele, Light weight c	onc	rete-materia	is properties
	bes. Typical ing	gin	weight concrete mix	, mgn density concre	ie, Reactive powder of	com	Jele, Daelei	lai concrete.
Cours	e Outcomes:	Af	er completing the a	course, the students	will be able to:-			
CO1	Understand	l di	mensional stability	w microstructure ar	nd properties of cen	nen	t naste and	concrete
$\frac{cor}{cor}$	A sease the	n ul	thods of determini	ng the suitable adm	nivture and ingredia	ante	for makin	a concrete
	and design	the	miv	ing the suitable auti	instale and ingreat	-1113		geometrice
CO2	Outling the	in	montance of the du	mability of convent	ional and other oon	-	-	

- Outline the importance of the durability of conventional and other concrete CO3
- **CO4** Describe properties and applications of concretes

Refere	Reference Books					
1.	Santhakumar.A. R, Concrete technology, Oxford University Press; Second edition (1 April 2018), ISBN-10:0199458529, ISBN-13: 978-0199458523.					
2.	Shetty. M.S., Concrete Technology Theory and Practice, S. Chand& Co Ltd., New Delhi, 2007 ISBN-10 : 9788121900034, ISBN-13 : 978-8121900034					
3.	Kumar Mehtha.P and Paulo J M Monteiro., Concrete Microstructre, Properties and Materials, Indian Edition, Indian Concrete Institute, Chennai, SBN-10 : 933920476X, ISBN-13 : 978-93392047611, Publisher: McGraw Hill Education; 4th edition ,2017.					
4.	Neville. A.M, Properties of Concrete V Edition, (2012) Peaerson Education, Inc, and Dorling Kindersley Publishing Inc. ISBN-10: 8131791076, ISBN-13 : 978-8131791073.					

5 Gambhir M L., Concrete Technology theory and Practice, Fifth Edition, Tata McGraw Hill Education Private Ltd, New Delhi. 2017, ISBN-10 : 1259062554, ISBN-13 : 978-1259062551.

Codes	
1	IS: 10262-2019, Code of practice for concrete mix proportioning.
2	ACI Committee 211, 1-81, Standard Practice for selecting proportions for Normal, Heavyweight, and
	Mass Concrete Part I, ACI Manual Concrete Practice 1994.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)					
#	COMPONENTS	MARKS				
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20				
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40				
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40				
MAXIN	NUM MARKS FOR THE CIE THEORY	100				

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)	
Q. NO.	CONTENTS	MARKS
	PART A	
1	Objective type questions covering entire syllabus	20
	PART B (Maximum of TWO Sub-divisions only)	
2	Unit 1 : (Compulsory)	16
3 & 4	Unit 2 : Question 3 or 4	16
5&6	Unit 3 : Question 5 or 6	16
7&8	Unit 4 : Question 7 or 8	16
9 & 10	Unit 5: Question 9 or 10	16
	TOTAL	100

Semester: VI							
		Т	RANSPORTATION ENG	GINEERING			
			Category: Departmen	t Elective			
			(Theory)				
Course Code	:	CV365TDB		CIE	:	100 Marl	KS
Credits: L:T:P	:	3:0:0		SEE	:	100 Marl	KS
Total Hours	:	40L		SEE Duration	:	3Hours	1
			Unit-I				08 Hrs
Introduction: Role	of	railways in tra	nsportation- selection of ro	utes			
Permanent wav: R	eau	irements for a	n ideal permanent way, typ	ical Cross sections of	of si	ngle and do	uble line B.G.
tracks – in cutting,	em	oankment. Ga	uges and types of gauges v	vith dimensions. Co	ning	of wheels	and tilting of
rails. Rails function	s, re	equirements, t	ypes of rail sections, length	of rails, defects in r	ails.		C
			Unit – II				08 Hrs
Ballast and sleeper	rs: l	Functions and	requirements, calculation of	of quantity of materi	als 1	needed for l	aying a track,
traction and Tractiv	ve r	esistances, tra	ctive power, Hauling capa	city, Problems on a	abov	e. Geomet	ric design of
track: Necessity of	Ge	ometric Desig	n of railway track, gradien	t and types of gradie	ent.	Speed of tr	ain, transition
curve, super elevati	on,	cant deficienc	y, negative cant- speed cal	culation based on In	diar	n Railways	Formulae for
High speed tracks o	nly	problems on a	above.				
			Unit –III				08 Hrs
Tunnels and Mass transit systems: Tunnels-Benefits from tunneling, Notations in tunneling, Cross sections of							
the tunnels for the re	pads	and rails, alig	nments of the tunnels, Metl	nods of tunneling, M	lass	transportati	on- planning,
Mass transit, definit	ion	s and classific	ations, capacity and level of	f service of urban tra	insit	•	00 T
Unit –IV 08 Hrs							
Harbors: Harbors	-La	youts and com	ponents, classification of ha	arbors, Effect of win	d, w	ave, tides, l	Break waters-
Purpose, different t	ype	s of break wat	ters, wharfs, quays, jetties	and pies, Dry dock	and	wet docks,	navigational
aids. Container han	dlin	g and manage	ment. Concepts of Ferry an	d Inland waterways.			00 11
Unit –V 08 Hrs							
Airways – Introduc	tior	, Layout of an	airport with component pa	rts and functions of	each	i, Aircraft C	characteristics
– Airport Classifica	t101	is, - Site selec	tion- regional Planning. Or	rientation of runway	by	using wind	rose diagram
with examples.	,1	6.4	<i>,</i> • <i>,</i> •	, 1.1.		CC /	.1 1
kunway: Basic len	gth	of the runway	assumptions –corrections	to runway length- F	acto	rs affecting	the layout of
the taxiway-geomet	rics	the taxiway-geometrics of taxiway- design of Exit taxiways- ICAO Specifications. Problems on above.			iems on abo		
Vigno Aida Aima	ent an-	antring light	ngo hoten monto lor din o o	rotomo			

Course	Course Outcomes: After completing the course, the students will be able to:-					
CO1	Recognize and choose the scope and objectives of railway Engineering					
CO2	Identify and interpret the importance of tunnel construction.					
CO3	Explain and illustrate the necessity, components, types and application of harbors.					
CO4	Categorize, design and construct the various features of airport.					

Reference Books			
1.	Railway Engineering, Saxena and Arora, 13th Edition, 2013, Dhanpat Rai and Sons, New Delhi, ISBN:13: 978-8189928834.		
2.	Tunnel Engineering, Srinivasan R, Harbour, Dock C, 27th Edition, 2015, Charotar Publishing House, ISBN: 978-81-928692-6-1.		

3.	Airport Planning and Design, Khanna, Arora and Jain, 6th Edition, 1999, Nemchand, Roorkee ISBN:9788185240688.
4.	Docks and Harbor Engineering", Oza H.P. and OzaG.H, 7th Edition, 2013, Charotar Publishing House, ISBN:978-93-80358-78-9.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
MAXIMUM MARKS FOR THE CIE THEORY		

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.). CONTENTS N					
	PART A					
1 Objective type questions covering entire syllabus						
PART B (Maximum of TWO Sub-divisions only)						
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7&8	Unit 4 : Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

Structural Masonry (Theory) Course Code : CV365TDC CIE : 100 Marks Credits: L: T: P : 3:0:0 SEE : 100 Marks Total Hours : 40 Hrs SEE Duration : 3.00 Hours Introduction: Masonry units, materials and types: History of masonry, historical buildings, Masonry arches, domes and vaults: Components, classification and construction procedure 8 Hrs Unit – II 8 Hrs Characteristics of masonry constituents: Types of masonry units such as stone, bricks, concrete, clay and stabilized mud etc. Properties of masonry units like strength, modulus of elasticity and water absorption etc. Masonry mortars – Classification and properties of mortars, selection of mortars		
(Theory) Course Code : CV365TDC CIE : 100 Marks Credits: L: T: P : 3:0:0 SEE : 100 Marks Total Hours : 40 Hrs SEE Duration : 3.00 Hours Unit-I 6 Hrs Introduction: Masonry units, materials and types: History of masonry, historical buildings, Masonry arches, domes and vaults: Components, classification and construction procedure 8 Hrs Unit – II 8 Hrs Characteristics of masonry constituents: Types of masonry units such as stone, bricks, concrete, clay and stabilized mud etc. Properties of masonry units like strength, modulus of elasticity and water absorption etc. Masonry mortars – Classification and properties of mortars, selection of mortars		
Course Code : CV365TDC CIE : 100 Marks Credits: L: T: P : 3:0:0 SEE : 100 Marks Total Hours : 40 Hrs SEE Duration : 3.00 Hours Introduction: Masonry units, materials and types: History of masonry, historical buildings, Masonry arches, domes and vaults: Components, classification and construction procedure 6 Hrs Unit - II 8 Hrs Characteristics of masonry constituents: 8 Hrs Types of masonry units such as stone, bricks, concrete, clay and stabilized mud etc. Properties of masonry units like strength, modulus of elasticity and water absorption etc. Masonry mortars – Classification and properties of mortars, selection of mortars		
Credits: L: T: P : 3:0:0 SEE : 100 Marks Total Hours : 40 Hrs SEE Duration : 3.00 Hours Unit-I 6 Hrs Introduction: 6 Hrs Masonry units, materials and types: History of masonry, historical buildings, Masonry arches, domes and vaults: Components, classification and construction procedure 8 Hrs Unit – II 8 Hrs Characteristics of masonry constituents: 7 ypes of masonry units such as stone, bricks, concrete, clay and stabilized mud etc. Properties of masonry units like strength, modulus of elasticity and water absorption etc. Masonry mortars – Classification and properties of mortars, selection of mortars		
Total Hours : 40 Hrs SEE Duration : 3.00 Hours Unit-I 6 Hrs Introduction: Masonry units, materials and types: History of masonry, historical buildings, Masonry arches, domes and vaults: Components, classification and construction procedure Unit – II 8 Hrs Characteristics of masonry constituents: Types of masonry units such as stone, bricks, concrete, clay and stabilized mud etc. Properties of masonry units like strength, modulus of elasticity and water absorption etc. Masonry mortars – Classification and properties of mortars, selection of mortars		
Unit-I 6 Hrs Introduction: Masonry units, materials and types: History of masonry, historical buildings, Masonry arches, domes and vaults: Components, classification and construction procedure Masonry units, materials and types: History of masonry, historical buildings, Masonry arches, domes and vaults: Components, classification and construction procedure Unit – II 8 Hrs Characteristics of masonry constituents: Types of masonry units such as stone, bricks, concrete, clay and stabilized mud etc. Properties of masonry units like strength, modulus of elasticity and water absorption etc. Masonry mortars – Classification and properties of mortars, selection of mortars		
Introduction: Masonry units, materials and types: History of masonry, historical buildings, Masonry arches, domes and vaults: Components, classification and construction procedure Unit – II 8 Hrs Characteristics of masonry constituents: Types of masonry units such as stone, bricks, concrete, clay and stabilized mud etc. Properties of masonry units like strength, modulus of elasticity and water absorption etc. Masonry mortars – Classification and properties of mortars, selection of mortars		
Masonry units, materials and types: History of masonry, historical buildings, Masonry arches, domes and vaults: Components, classification and construction procedure Unit – II 8 Hrs Characteristics of masonry constituents: Types of masonry units such as stone, bricks, concrete, clay and stabilized mud etc. Properties of masonry units like strength, modulus of elasticity and water absorption etc. Masonry mortars – Classification and properties of mortars, selection of mortars		
vaults: Components, classification and construction procedure Unit – II 8 Hrs Characteristics of masonry constituents: Types of masonry units such as stone, bricks, concrete, clay and stabilized mud etc. Properties of masonry units like strength, modulus of elasticity and water absorption etc. Masonry mortars – Classification and properties of mortars, selection of mortars		
Unit – II 8 Hrs Characteristics of masonry constituents: Types of masonry units such as stone, bricks, concrete, clay and stabilized mud etc. Properties of masonry units like strength, modulus of elasticity and water absorption etc. Masonry mortars – Classification and properties of mortars, selection of mortars		
Characteristics of masonry constituents: Types of masonry units such as stone, bricks, concrete, clay and stabilized mud etc. Properties of masonry units like strength, modulus of elasticity and water absorption etc. Masonry mortars – Classification and properties of mortars, selection of mortars		
Types of masonry units such as stone, bricks, concrete, clay and stabilized mud etc. Properties of masonry units like strength, modulus of elasticity and water absorption etc. Masonry mortars – Classification and properties of mortars, selection of mortars		
like strength, modulus of elasticity and water absorption etc. Masonry mortars – Classification and properties of mortars, selection of mortars		
mortars, selection of mortars		
Unit –III 8 Hrs		
Strength of Masonry in Compression:		
Behaviour of Masonry under compression, strength and elastic properties, factors influencing of compressive		
strength masonry.		
Effects of slenderness and eccentricity, water absorption, curing, ageing and workmanship on compressive		
strength. Prediction of strength of masonry in Indian context		
Unit –IV 8 Hrs		
Shear and Flexure Behavior of Masonry:		
Importance of Shear and Flexure properties of masonry, Factors affecting bond strength, Bond between masonry		
unit and mortar, Effect of Bond strength on Compressive strength, Flexure and Shear strength of Masonry. Test		
methods for determining flexural and shear bond strengths, lest procedures for evaluating flexural and shear		
Unit V		
Ullit – V 10 HIS		
Design of load bearing masonry buildings:		
Concept of basic compressive stress, Permissible compressive stress, reduction factors. Increase in permissible		
stresses for eccentric vertical and lateral loads, Permissible tensile and shear stresses, Effective height of walls		
and columns, opening in walls, effective length, effective informers, sienderness ratio, eccentricity, load		
uispersion, arching action, niners, wan carrying axial load, eccentric load with different eccentricity ratios, wan		
codal provisions		
Course Outcomes: After completing the course, the students will be able to:		
CO1 Choose appropriate masonry unit and mortar mixes for masonry construction		
CO2 Distinguish wide range of materials for their suitability to arrive at feasible and optimal		
solutions for masonry constructions		
CO3 Appraise knowledge of structural masonry for advanced research and construction procedures		
CO4 Design masonry buildings for sustainable development		

Reference Books				
1	Structural Masonry, Hendry A.W, 2nd edition, Palgrave Macmillan, Macmillan Education Ltd., ISBN 10: 0333733096 ISBN 13:9780333733097			
2	Masonry structures- Behavior and Design, Robert G Drysdale, Ahmad A Hamid, 3rd edition ,2008 Boulder, CO : Masonry Society, , ISBN 1929081332 9781929081332			

3	Structural Masonry, Jagadish K S, 2015, I K International Publishing House Pvt Ltd, ISBN - 10:
	9384588660, ISBN 13: 978-9384588663
4	Code Books: IS 1905: 1987, Indian standard Specification for Code of Practice for Structural Use of
	Unreinforced

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40	
MAXIMUM MARKS FOR THE CIE THEORY			

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	IO. CONTENTS N					
	PART A					
1 Objective type questions covering entire syllabus						
PART B						
	(Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7&8	Unit 4 : Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

RV College of Engineering [®]
Mysore Road, RV Vidyaniketan Post,
Bengaluru - 560059. Karnataka, India

Semester: VI								
Disaster Management								
Category: Professional Core Elective-IV (Group-D)								
(Theory)								
Course	e Code	:	CV365TDD	-	CIE	:	100 Mark	S
Credit	s: L:T:P	:	3:0:0		SEE	:	100 Mark	(S
Total I	Hours	:	40L		SEE Duration	:	3Hours	
				Unit-I				08 Hrs
Natura	al disasters a	nd	Disaster manageme	ent				
Introdu	ction to natu	ral	and Industrial Haza	rds- floods, landslid	es, earthquakes, vo	lcano	bes, avalanc	he, cyclones,
drough	it, fire, release	e of	effluents, harmful	gases, Blast etc. Pred	liction and perception	on. E	nvironment	al risk due to
project	activities. Pro	epa	ration of on-site and	off-site disaster man	agement plans - Pre	disa	ster, actual of	disaster, Post
disaste	r plans. Relie	f ca	mp organization. Ro	ble of voluntary organ	nization and armed	force	s during dis	asters.
				Unit – II				08 Hrs
Risk a	nalysis and a	isse	ssment					
Basic of	concept. Purp	pose	e of risk analysis.	Analytical technique	s and tools of risk	asse	essment. To	oxicology.
Signifi	cance of risk.	Ri	sk characterization.	Risk communication	and Management, A	AI in	emergency	responses.
~ •	<u> </u>			Unit –III				08 Hrs
Geo-in	formatics in	Di	saster Management			-		.
Remote	e sensing, Ge	eog	raphical Information	n System, Global Po	ositioning System,	Dro	ne technolo	gy, Indian
Region Mobile	ial Navigation		itellite System (IRIN)	55), Indian I sunami	Early warning Syste	em (I	1EWS), US	e of ICT and
WIODIIC	e technology i	01 1	Disaster Managemen	Unit N	one rechnology.			08 Hrs
Dicoct	or Managam	ont	Act					00 111 5
Institu	tional frame y	vor	AU k under Disaster Ma	nagement Act 2005	Pole of National Div	acto	r Managama	nt Authority
(NDM	A) Disaster F	w0i ≷esi	nonse nlan Search a	nd Rescue operation	s Evacuation and I	ogie	tic Managerite	nent
Demor	stration of E	arth	pulse plan, bearen a	rill Demonstration of	s, Evacuation and E f Fire Drill	0513	lie Manager	nent,
Demon	istration of La							
				Unit –V				08 Hrs
Disast	er Mitigation	ı ar	d Management					
Introdu	iction, types,	mc	des of disaster man	agement, tools and t	echniques, primary	and	secondary	data. Natural
disaste	rs its causes a	nd	remedies-Earthquak	e hazards-Causes and	l remedies, Flood an	d Dr	ought assess	sment, causes
and rer	nedies, Lands	slid	es-causes and remed	ies. Fire hazards in b	uildings, Fire hazar	d ma	nagement, (Cyclones and
hurrica	ines, inter dep	artı	ment cooperation. Re	egional and global di	saster mitigation.		-	-
Course	e Outcomes:	Af	ter completing the o	course, the students	will be able to:-			
CO1	Study the en	nvir	onmental impact of	natural and manmade	e calamities			
CO2	Learn to ana	alyz	e and assess risk inv	volved due to disaster	S.			
CO3	Understand	the	role of public partic	ipation.				
CO4	Learn the m	ana	gement tools and m	itigation techniques.				

Reference Books				
1	Environmental Impact Analysis Hand Book, John G Rau and David C Wooten, Edition: 2013, ISBN: 978-			
1.	0070512177.			
n	Introduction to environmental Impact assessment, John Glasson, Riki Therivel, Andrew Chadwick,			
Ζ.	Edition: 2012, Research Press, ISBN:000-0415664705.2005, Reliance Publishing House, New Delhi.			
3.	Natural Disaster Reduction, Girish K Mishrta, G C Mathew (eds), Edition, 2005, Reliance Publishing			
	House, New Delhi,			

4. Remote Sensing and Image Interpretation, Thomas M. Lillisand and R.W. Keifer, 6 th Edition, 2002, John Wiley, ISBN: 9780470052457.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
MAXIN	MUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	NO. CONTENTS				
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B (Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7&8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

			Semester: VI				
	INTEGRATED WATERSHED MANAGEMENT						
		Category	y: Professional Con	re Elective III			
			Group D				
			(Theory)				
Course Code	:	CV365TDE		CIE	:	100 Marks	
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks	
Total Hours	:	40L		SEE Duration	:	3Hours	
			Unit-I			0	8 Hrs
Introduction: Wate	ersh	ed – Definition and	Classification – Co	mponents – Basic fa	cto	s influencing wat	ershed
development – Cod	ifica	ation – Watershed d	lelineation – Charact	eristics of watershed	: si	ze, shape, physiog	raphy.
slope, climate, drain	age	, land use, vegetatio	n, geology and soils,	hydrology and hydro	geo	logy – Socio - eco	onomic
characteristics.	U				U	0.	
Unit – II 08 Hrs							
Soil Conservation Measures: Types of Erosion – Water and Wind Erosion: Causes Eactors Effects and Control							
– Estimation of Soil Erosion – Soil Loss Models – Sedimentation – Soil Conservation Practices: Vegetative and							
Mechanical.						0	
			Unit –III			0	8 Hrs
Water Harvesting	and	I Conservation: Ty	pes of storage Struct	tures –Water yield fr	om	Catchments - Lo	sses of
stored water - Water	r Co	onservations Method	ls – Water harvesting	methods and Technic	que	s – Rainwater Harv	vesting
- Catchment, Harv	esti	ng structures, Roof	water harvesting -	Soil Moisture Cons	erv	ation - Check Da	ams –
Artificial Recharge	– Fa	arm Ponds – Percola	tion tanks.				
			Unit –IV			0	8 Hrs
Watershed Manag	eme	ent: Project Proposa	al Formulation – Wat	tershed Development	t Pla	in Entry Point Ac	tivities
– Estimation – Wa	ters	hed Economics – A	Agroforestry – Grass	sland Management -	- W	asteland Manager	nent –
Watershed Approach	h in	Government Progra	mmes – Developing	Collaborative know h	low	- People's Particip	pation
– Evaluation of Wat	ersł	ned Management.					
			Unit –V			0	8 Hrs
Watershed Organi	izat	ion: Methodology of	of planning a waters	shed management -	Ide	ntification of wate	ershed
problems, Socio – E	lcon	omic issues – Appli	cation of Remote Ser	nsing and GIS in wat	ersl	ned management.	

Course	Course Outcomes: After completing the course, the students will be able to:-			
CO1	Cognize the concepts of watershed management and its effect on land, water and ecosystem resources.			
CO2	Evaluate the impact of watershed planning through watershed characterization, runoff and soil loss			
	estimation.			
CO3	Analyse the public policies and practices of watershed planning.			
CO4	Integrate the control and mitigation techniques for watershed problems.			

Refere	Reference Books				
1.	"Watershed Management"- V. V. Dhruva Narayana, G. Sastry, U. S. Patnaik, Central Soil & Water				
	Conservation Research & Training Institute, Indian Council of Agricultural Research, 1990.				
2.	Glenn O. Schwab, "Soil and Water Conservation Engineering", John Wiley and Sons, New York, 1981.				
3.	Ghanashyam Das, "Hydrology and Soil Conservation Engineering", Prentice Hall of India Private				
	Limited, New Delhi, 2000				

4.	"Watershed Management – Guidelines for Indian Conditions", Tideman E.M, 1st Edition, Omega Publishers, New Delhi,2011, ISBN-9788185399348
5	"Remote Sensing in Hydrology" Edwin T. Engman, R.J. Gurney, Springer Netherlands, 2013, ISBN 9401066701, 9789401066709

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
MAXIN	MUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)	
Q. NO.	CONTENTS	MARKS
	PART A	
1	Objective type questions covering entire syllabus	20
	PART B	
	(Maximum of TWO Sub-divisions only)	
2	Unit 1 : (Compulsory)	16
3 & 4	Unit 2 : Question 3 or 4	16
5&6	Unit 3 : Question 5 or 6	16
7&8	Unit 4 : Question 7 or 8	16
9 & 10	Unit 5: Question 9 or 10	16
	TOTAL	100

		Semester: VI			
	FUNDAMENTALS OF AEROSPACE ENGINEERING				
		Category: Institutional Electives	-I		
		(Theory)			
Course Code	:	AS266TEA	CIE	:	100 Marks
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks
Total Hours	:	45L	SEE Duration	:	3.00 Hours

Unit-I	09 Hrs
Basics of Flight Vehicles: History of aviation, International Standard atmosphere (ISA), Tem	perature,
pressure and altitude relationships, Simple Problems on Standard Atmospheric Properties,	_
Classification of aircrafts, Anatomy of an aircraft & Helicopters, Basic components and their	functions.
Unit – II	10 Hrs
Aircraft Aerodynamics: Bernoulli's theorem, Centre of Pressure, Lift and Drag, Types of D	rag,
Aerodynamic Coefficients, Aerodynamic Centre, Wing Planform Geometry, Airfoil Nomencl	ature,
Basic Aerodynamic characteristics of Airfoil, Simple Numericals on Lift and Drag.	
Unit –III	12 Hrs
Aerospace Propulsion: Introduction, Turbine Engines: Brayton Cycle, Operation of Turbojet,	
Turboprop, Turbofan, Turboshaft, RAMJET and SCRAMJET Engines, Rocket Engines: Prince	ciples of
operation of Solid, Liquid, Hybrid, Nuclear and Electric Rockets.	•
Introduction to Space Mechanics: Basic Orbital Mechanics-Types of Trajectories, Escape a	nd
Orbital Velocities, Kepler's Laws of Planetary Motion, Simple Numericals.	
Unit –IV	06 Hrs
Aerospace Structures and Materials: General types of construction-Monocoque, Semi-Mor	nocoque
& Geodesic, Structure of Wing and Fuselage, Metallic and Composite Materials.	
Unit –V	08 Hrs
Aircraft Systems & Instruments: Instrument Displays, Basic Air data systems & Pitot Prob	es- Mach
meter, Air speed indicator, Vertical speed indicator, Altimeter.	
Basics of Aircraft Systems: Hydraulic and pneumatic systems, Electrical System, Aircraft Fu	lel
System, Environmental Control System.	

Course	e Outcomes: At the end of this course the student will be able to :
CO1:	Identify the fundamental nuances of Aerospace Engineering and appreciate their significance
	on the Flight Vehicles design and performance
CO2:	Interpret the design parameters that influence the design of the Aerospace Vehicles systems
	and its sub-systems
CO3:	Evaluate critically the design strategy involved in the development of Aerospace vehicles
COA	Categorically appraise the operation of the Aerospace Vehicles for different operating
CO4:	conditions

Re	eference Books
1	Introduction to Flight, John D. Anderson, 7 th Edition, 2011, McGraw-Hill Education, ISBN 9780071086059.
2	Fundamentals of Aerodynamics, Anderson J.D, 5 th Edition, 2011, McGraw-Hill International Edition, New York ISBN: <u>9780073398105</u> .
3	Rocket Propulsion Elements, Sutton G.P., 8 th Edition, 2011, John Wiley, New York, ISBN: 1118174208, 9781118174203.

RV College of Engineering®

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

- 4 Aircraft structural Analysis, T.H.G Megson, 2010, Butterworth-Heinemann Publications, ISBN: 978-1-85617-932-4
- 5 Ian Moir, Allan Seabridge, "Aircraft Systems: Mechanical, Electrical and Avionics Subsystems
- ⁵ Integration", John Wiley & Sons, 3rd edition, 2011, ISBN: 9781119965206

RUB	RIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20) ADDING UPTO 40 MARKS .	40
MAX	IMUM MARKS FOR THE CIE THEORY	100
RUB	RIC FOR SEMESTER END EXAMINATION (THEORY)	1
Q.	CONTENTS	MARKS
NO		
1	Objective type questions covering entire syllabus	20
PAR (Max	T B imum of THREE Sub-divisions only)	
2	Unit 1: (Compulsory)	16
3 & 4	Unit 2: Question 3 or 4	16
5 & 6	Unit 3: Question 5 or 6	16
7 & 8	Unit 4: Question 7 or 8	16
9 & 10	Unit 5: Question 9 or 10	16
TOT	AL	100

		Semester	r: VI		
		Bioinforn	natics		
		(Category: Institutio	onal Electives -I)		
		(Theor	ry)		
Course Code	:	BT266TEB	CIE	:	100 Marks
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks
Total Hours	:	45 Hrs	SEE Duration	:	3Hours
		Unit-I			09 Hrs
Introduction to tools and	d	atabases: Introduction to]	Bioinformatics, Goals, Scor	pe,	Applications,
Sequence databases, Struct	ur	e databases, Special datab	ases – genome and microar	ray	, Applications of
these databases, examples,	D	atabase similarity search:	Unique requirements of dat	ab	ase searching,
Heuristic Database Searchi	ng	g, Basic Local Alignment S	Search Tool (BLAST), FAS	T/	A, Comparison of
FASTA and BLAST, Data	ba	se Searching with Smith-W	Vaterman Method		-
		Unit – II			09 Hrs
Sequence Analysis: Types	3 0	of Sequence alignment -Pai	irwise and Multiple sequend	ce	alignment,
Alignment algorithms, Sco	riı	ng matrices, Statistical sig	nificance of sequence align	me	ent. Multiple
Sequence Alignment: Scor	in	g function, Exhaustive alg	orithms, Heuristic algorithm	ıs.	Profiles and Hidden
Markov Models: Position-	Sp	ecific scoring matrices. Pr	ofiles. Markov Model and I	Hic	lden Markov Model.
Scoring matrices – BLOSS	Û	M and PAM	,		,
Molecular Phylogenetics:	Ir	ntroduction, Terminology,	Forms of Tree Representati	ior	h. Phylogenetic Tree
Construction Methods - Di	sta	ance-Based, Character-Bas	sed Methods and Phylogene	etio	c Tree evaluation.
		Unit –III			09 Hrs
Introduction to Next-Gen	er	ation Sequencing (NGS)	analysis. Sanger sequencir	ŋø	principles - history
and landmarks of Sequence	in	g Technology Platforms	A survey of next-generation	i Sé	equencing
technologies A review of	ייי	VA enrichment technologi	es Base calling algorithms	B	ase quality phred
values Reads quality check	ks	Interpretations from qual	ity checks Adapter and priv	me	er contamination
Processing reads using clin	mi	ng of reads-Advantages ar	id disadvantages of process	ing	of reads
automation in NGS analysi	P- IS	and advantages (shell scrit	nting)		5 01 100005,
		Unit –IV	(ing)		09 Hrs
Structural analysis & Sys	to	ms Biology: Gene predict	ion programs – ab initio an	41	omology_based
approaches OREs for gene	n n	rediction Detection of fur	non programs – ao muo an	u i	n the DNA
Predicting RNA secondary	∕₽ `¢t	ructure Protein structure 1	pasies structure visualization	o I. m	comparison and
classification Protein struc	otu	re predictive methods usir	a protein sequence. Proteir	, i,	dentity based on
composition Structure pre	di.	repredictive methods using	dary structure tertiary struc	1 10 >f11	re prediction
matheds Scope Applicativ	un an	Concepts implementation	on of systems biology Mas	λu nu	ne prediction
Systems biology Flux Bal	лі ən	s. Concepts, implementation	on of systems biology, was	33	pecuomeny and
Systems biology, Plux Bai	1110				00 11
			1	1.	
Drug Screening: Introduc	110	in to Computer-aided drug	discovery, target selection,	11	gand preparation and
enumeration, molecular do	ck	ing, post-docking process	ing, molecular dynamics sii	nu	ilations, applications
and test cases, AI/ML in D	ru	g discovery			
Course Outcomes: After	03	mpleting the course, the	students will be able to:-		
CO1 Gain proficiency in u	tili	zing a range of bioinformation	atics tools and databases for	c	omprehensive
sequence and structur	al	analysis.			

CO2 Investigate and apply innovative sequencing technologies and analytical methods to solve complex biological questions and advance research in genomics and molecular biology.

CO3 Demonstrate expertise in NGS technologies, including performing data quality assessments, read processing, and managing large-scale data.

CO4 Apply bioinformatics tools for modeling and simulating biological processes, with a focus on gene prediction using both ab initio and homology-based approaches.

Reference Books

Xiong J. Essential bioinformatics. Cambridge University Press; 2006 Mar 13.

Buehler LK, Rashidi HH, editors. Bioinformatics basics: applications in biological science and medicine. CRC Press; 2005 Jun 23.

3. Ghosh Z, Mallick BM. Bioinformatics principles and Applications. Oxford University Press; 2018 Jun 13.

Low L, Tammi MT. Introduction to next generation sequencing technologies. Bioinformatics. WORLD SCIENTIFIC. 2017 Jul 26:1-21.

5. Bioinformatics: Sequence and Genome Analysis; D W Mount; 2014; CSHL Press; 2nd edn; ISBN: 9780879697129.

Computational Systems Biology; A Kriete and R Eils; 2006; Academic Press; Illustrated edn; ISBN: 978-01-208-87866.

RU	JBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
MA	AXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS			
PART A					
1	Objective type questions covering entire syllabus	20			
PART B (Maximum of 7	TWO Sub-divisions only; wherein one sub division will be a ca	selet in the related topics)			
2	Unit 1: (Compulsory)	16			
3 & 4	Unit 2: Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7&8	Unit 4: Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
TOTAL		100			

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

			Seme	ester: VI			
		IND	USTRIAL SAF Category: Inst (TI	ETY ENGINEERI itutional Elective neory)	NG		
Cour	se Code	: CH266T	EC	CIE		:	100 Marks
Cred	lits: L:T:P	: 3:0:0		SEE		:	100 Marks
Tota	l Hours	: 40L		SEE Duration		:	3Hours
			Unit-I				08 Hrs
Intro Intro conce Caus	duction Safety: duction to industrepts and terminol- al factors, problem	rial safety en ogies, Hazar ms on OSHA	gineering, majo rd theory, Hazar A	r industrial accidents d triangle, Hazard ac	, safety and tuation, Act	l h tu	ealth issues, key ation transition,
			Unit – II				08 Hrs
prese Haza Haza event	assessment and ent value, internal ard Identification rd Analysis (PHA t tree for high pres	rate of retur n Methods: A), Fault tree ssure reactor	rn, payback period Preliminary Haz and Event tree system.	analysis. Design and	g real life e ksheets, cas developme	pr xa se en	study. Preliminary t of fault tree and
			Unit –III				08 Hrs
Haza HAZ Anal	ord analysis: Haz OP studies on rea ysis (FMEA) con	zard and Ope actors, heat e cept, methoo	erability Study (l exchanger, desig lology, problem	HAZOP): Guide wor n of HAZOP table, F s of FMEA, example	ds, HAZOF Failure Mod s.	Pr les	natrix, Procedure, s and Effects
			Unit –IV				08 Hrs
Risk equiv parar	analysis on capi valent approach, s neters and associa	tal budgetin cenario anal ated problem	ng: Risk adjuste ysis, probability 18.	d discount rate (RAE distribution, quantif	DAR) methorication of ri	od isł	l, certainty k using statistical
-		•	Unit –V				08 Hrs
Safe t glass PPE, fire.	ty in process ind es, face shields, v types of body PP	ustries and velding heln 'E. Bhopal g	case studies: Penets, absorptive as tragedy, Cher	ersonnel Protection lenses, hard hats, typ nobyl nuclear disaste	Equipmen es of hand l er, Chemica	t PF 1	(PPE): Safety PE, types of foot plant explosion and
Cours	e Outcomes: Af	ter completi	ing the course,	the students will be	able to:-		
CO1	Understand the r	isk assessme	ent techniques us	ed in process industr			
CO2	Interpret the vari	ous risk asse	essment tools.	*	•		
CO3	Use hazard ident	ification too	ls for safety mar	agement.			
CO4	Analyze tools and	d safety proc	cedures for prote	ection in process indu	istries.		
Fun Fun I.IEC ISB	ctional Safety in t 61511 and ANSL N:1291187235.	the Process 1 /ISA-84, Kin	Industry: A Han kcaldy K.J.D C	dbook of practical G hauhan, 2012, North	uidance in t corolina,Lu	he ılı	e application of 1 publication,

2. Safety Instrumented Systems Verification Practical probabilistic calculations, Goble and William M., 2005, Pensulvania ISA publication, ISBN:155617909X.

3. Industrial safety and risk Management, Laird Wilson and Doug Mc Cutche, 1st Edition, 2003, The University of alberta press, Canada, ISBN: 0888643942.

4

RV College of Engineering[®] Mysore Road, RV Vidyaniketan Post,

Bengaluru - 560059, Karnataka, India

ndustrial Safety, Health and Environment Management Systems, R K Jain, Sunil S Rao, 4th Edition, 2005, Khanna Publishers, New Delhi, ISBN: 8174092102.

RU	JBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
M	AXIMUM MARKS FOR THE CIE THEORY	100

RUBR	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS				
PART	Α					
1	Objective type questions covering entire syllabus	20				
PART (Maxim	B num of TWO Sub-divisions only)					
2	Unit 1: (Compulsory)	16				
3 & 4	Unit 2: Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7&8	Unit 4: Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
TOTA	L	100				

7 Um

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

			Semester: VI			
		ROBOT	OC PROCESS AU	ГОМ	ATION	
		(INS	TITUTIONAL ELF	ECTI	VE)	
			(THEORY)			
Course Code	:	CS266TED	CIE	:	100	
Credits: L:T:P	:	3:0:0	SEE	:	100	
Total Duration	:	36	SEE Duration	:	3 Hrs	
			Unit – I			8 Hrs

RPA Concepts: RPA Basics, History of Automation, what is RPA? RPA vs Automation, Processes & Flowcharts, Programming Constructs in RPA, What Processes can be Automated? Types of Bots, Workloads that can be automated.

RPA Advanced Concepts: Standardization of processes, Setting up the Centre of Excellence, RPA Development methodologies, Difference from SDLC, RPA journey, RPA business case, RPA Team, Process Design Document/Solution Design Document, Industries best suited for RPA, Risks & Challenges with RPA, RPA and emerging ecosystem.

IInit

Chit – II	/ 1115
RPA Tool Introduction: Introduction to UiPath - the User Interface, Types of Variables, V	ariables in
UiPath, Managing Arguments, The Arguments Panel, Namespaces; Control flow statements	in UiPath,
Sequences and Flowcharts, Control Flow Activities	

Data Manipulation Introduction, Data Manipulation Operations, Types of data storing variables, Text Manipulation, main string methods.

UiPath Recording: Basic, Desktop and Web Recording, Image and Native Citrix Recording, Input/output methods, Types of OCR, Data Scraping, Advanced Scraping techniques.

input output motious, Types of O ert, Dua Seruping, Havaneed Seruping teeninques.	
Unit – III	7 Hrs
Advanced Automation Concepts: Selectors, Types of Selectors (Full, partial, dynamic), Det	fining and
Assessing Selectors, Customization, Debugging.	_
Image, Text & Advanced Citrix Automation – Introduction, Keyboard based automation, Info	ormation
Retrieval, Best Practices	
Excel Data Tables & PDF, Data Tables in RPA, Excel and Data Table, Extracting Data from Data	
Table, Anchors, Using anchors in PDF	
Unit – IV	7 Hrs
Unit – IV Email Automation, Exceptions and Deploying Bots: Introduction to Email Automation, Ke	7 Hrs
Unit – IV Email Automation, Exceptions and Deploying Bots: Introduction to Email Automation, Ke concepts of email, email protocols, email automation in UiPath, email as input and output.	7 Hrs ey
Unit – IV Email Automation, Exceptions and Deploying Bots: Introduction to Email Automation, Ke concepts of email, email protocols, email automation in UiPath, email as input and output. Debugging and Exception Handling, Types of exception, Debugging Tools, Strategies for sol	7 Hrs ey ving
Unit – IV Email Automation, Exceptions and Deploying Bots: Introduction to Email Automation, Ke concepts of email, email protocols, email automation in UiPath, email as input and output. Debugging and Exception Handling, Types of exception, Debugging Tools, Strategies for sol issues, Catching errors.	7 Hrs ey ving
Unit – IV Email Automation, Exceptions and Deploying Bots: Introduction to Email Automation, Ke concepts of email, email protocols, email automation in UiPath, email as input and output. Debugging and Exception Handling, Types of exception, Debugging Tools, Strategies for sol issues, Catching errors. Overview of orchestration Server, orchestrator functionalities, Connecting Bot to orchestrator	7 Hrs ey ving
Unit – IV Email Automation, Exceptions and Deploying Bots: Introduction to Email Automation, Ke concepts of email, email protocols, email automation in UiPath, email as input and output. Debugging and Exception Handling, Types of exception, Debugging Tools, Strategies for sol issues, Catching errors. Overview of orchestration Server, orchestrator functionalities, Connecting Bot to orchestrator Unit – V	7 Hrs ey ving 7 Hrs

Hyperautomation: Components and application of Hyperautomation, Automation versus hyperautomation, Benefits and challenges of hyperautomation, use cases, Phases (Integration, Discover, Orchestration and Governance), Trends in Hyperautomation (low-code/no-code platform, HaaS)

	Course Outcomes: After completing the course, the students will be able to
CO1	Understand RPA principles, its features and applications

CO2	Demonstrate proficiency in handling variables and decision making inside a workflow and data manipulation techniques
CO3	Gain insights into recording, Email Automation and exception handling and orchestrator.
CO4	Analyze the trends in automation and chose business strategy to design a real-world automation workflow.

F	Reference Books:				
1	Alok Mani Tripathi, "Learning Robotic Process Automation, Publisher: Packt Publishing, Release Date: March 2018 ISBN: 9781788470940				
2	PASCAL BORNET, Intelligent automation: Welcome to the world of hyperautomation, World Scientific Publishing Company, ISBN-13: 978-9811235481 December 2020				
3	UiPath pdf manuals				
4	https://www.uipath.com/rpa/robotic-process-automation				
5	https://www.ibm.com/topics/hyperautomation				
6	https://www.pega.com/hyperautomation				

Bengaluru - 560059, Karnataka, India

Semester: VI INTELLIGENT TRANSPORTATION SYSTEMS **Category: Institution Elective-I** (Theory) **Course Code CV266TEE** CIE 100 Marks : : Credits: L:T:P 100 Marks 3:0:0 SEE : : **Total Hours** 40L **SEE Duration 3Hours** : : Unit-I **08 Hrs** Introduction to Intelligent Transportation Systems (ITS): Historical background, Urbanisation, Motorisation, Transport system characteristics, Transport problems and issues, Challenges and opportunities in ITS: ITS-Today and tomorrow, ITS training and education needs, Role and importance of ITS in context of Indian Transport system and opportunity for sector growth of ITS. Unit – II 08 Hrs ITS Architecture: introduction, Functionalities required for User service, Logical architecture, Physical architecture, Equipment and Market packages, Need of ITS Architecture to solve problems in Urban area. Technology building blocks for ITS: Introduction, Data acquisition, Communication tools, Data analysis and Traveller information. Various detection, Identification and collection methods for ITS. Unit –III 08 Hrs Traffic management system components and ITS: Introduction, objectives, traffic management measures, ITS for traffic management, Development of traffic management system, Traffic Management Centre, Advance Traffic Management System, Advanced Traveller Information System, Advance Vehicle Control Systems, Advance Public Transport System, Commercial Vehicle Operations, ITS For Intermodal Freight Transport. Unit –IV 08 Hrs ITS Evaluation - Project selection at the planning level, Deployment Tracking, Impact Assessment, Benefits by ITS components, Evaluation Guidelines. ITS for Law Enforcement: Introduction, Enhance and support the enforcement traffic rules and regulations, ITS Funding options. Unit –V 08 Hrs ITS Standards-Standard development process, National ITS architecture and standards, ITS standards

application areas, National Transportation Communications for ITS Protocol, Standards testing. ITS for smart cities and Case studies.

Course Outcomes: After completing the course, the students will be able to:-			
CO1	Identify and apply ITS applications at different levels		
CO2	Illustrate ITS architecture for planning process		
CO3	Examine the significance of ITS for various levels		
CO4	Compose the importance of ITS in implementations		

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		

2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
MAXIMUM MARKS FOR THE CIE THEORY		

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)			
Q. NO. CONTENTS				
	PART A			
1	Objective type questions covering entire syllabus	20		
	PART B (Maximum of TWO Sub-divisions only)			
2	Unit 1 : (Compulsory)	16		
3 & 4	Unit 2 : Question 3 or 4	16		
5&6	Unit 3 : Question 5 or 6	16		
7&8	Unit 4 : Question 7 or 8	16		
9 & 10	Unit 5: Question 9 or 10	16		
	TOTAL	100		

Semester: VI						
INTEGRATED HEALTH MONITORING OF STRUCTURES						
		Category: Instit	utior	al Electives - I		
		(Common to	o all 1	Programs)		
	1	(Th	ieory)		
Course Code	:	CV266TEF		CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	42L		SEE Duration	:	3 Hours
		Unit-I				08 Hrs
Structural Health: Fa	actors a	affecting Health of Str	uctur	es, Causes of Distress,	Regula	r Maintenance,
Importance of mainter	nance					
Structural Health Me	onitor	ing: Concepts, Variou	s Me	asures, Analysis of beh	avior o	f structures using
remote structural healt	h mon	itoring, Structural Saf	ety in	n Alteration.		•
		Unit – II				08 Hrs
Materials: Piezo-elec	tric m	aterials and other smar	rt ma	terials, electro-mechan	ical im	pedance (EMI)
technique, adaptations	of EN	II technique, Sensor te	echno	ologies used in SHM		
Structural Audit: Ass	sessme	ent of Health of Struct	ure, C	Collapse and Investigation	on, Inv	estigation
Management, SHM Procedures, SHM using Artificial Intelligence						
Unit –III 08 Hrs						
Static Field Testing:	Types	of Static Tests, Simul	ation	and Loading Methods,	sensor	systems and
hardware requirements	s, Stati	ic Response Measuren	nent.			
	Unit –IV 08 Hrs					
Dynamic Field Testir	ng: Ty	pes of Dynamic Field	Test,	Stress History Data, D	ynamic	c Response
Methods, Hardware fo	r Rem	ote Data Acquisition S	Syste	ms, Remote Structural	Health	Monitoring.
		Unit –V				08 Hrs
Remote Structural H	ealth	Monitoring: Introduc	tion,	Hardware for Remote I	Data Ao	equisition
Systems, Advantages,	Systems, Advantages, Case studies on conventional and Remote structural health monitoring					
Case studies: Structur	al Hea	alth Monitoring of Brid	dges,	Buildings, Dams, Appl	ication	s of SHM in
offshore						
Structures- Methods used for non-destructive evaluation (NDE) and health monitoring of structural						
components						
Course Outcomes: A	fter co	ompleting the course,	, the s	students will be able to):-	

Cours	e Outcomes: After completing the course, the students will be able to:-
CO1	Diagnose the distress in the structure understanding the causes and factors.
CO2	Understand safety aspects, components and materials used in Structural Health Monitoring.
CO3	Assess the health of structure using static field methods and dynamic field tests.
CO4	Analyse behavior of structures using remote structural health monitoring

Re	Reference Books				
1	Structural Health Monitoring, Daniel Balageas, Claus Peter Fritzen, Alfredo Güemes, 2006, John				
	Wiley and Sons, ISBN: 978-1905209019				
2	Health Monitoring of Structural Materials and Components Methods with Applications, Douglas E				
	Adams, 2007, John Wiley and Sons, ISBN:9780470033135				
3	Structural Health Monitoring and Intelligent Infrastructure, J. P. Ou, H. Li and Z. D. Duan,				
	Vol1,2006,Taylor and Francis Group, London, UK. ISBN: 978-0415396523				
4	Structural Health Monitoring with Wafer Active Sensors, Victor Giurglutiu, 2007, Academic Press				
	Inc, ISBN: 9780128101612				

RU	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS			
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20			
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40			
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40			
MA	XIMUM MARKS FOR THE CIE THEORY	100			

RUBRI	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)			
Q. NO.	CONTENTS	MARKS		
PART A	PARTA			
1	Objective type questions covering entire syllabus	20		
PART I (Maxim	B um of TWO Sub-divisions only)			
2	Unit 1 : (Compulsory)	16		
3&4	Unit 2 : Question 3 or 4	16		
5&6	Unit 3 : Question 5 or 6	16		
7&8	Unit 4 : Question 7 or 8	16		
9 & 10	Unit 5: Question 9 or 10	16		
TOTAI	1	100		

Semester: VI						
ADVANCED ENERGY STORAGE FOR E-MOBILITY (Theory)						
Course Code	:	CM266TEG	CIE	:	100 Marks	
Credits:	•	3:0:0	SEE	•	100 Marks	
L:T:P	•	5.0.0		•	100 10101185	
Total Hours	:	42L	SEE Duration	:	3.00 Hours	
Course Learnin	ng Ob	jectives: The students will be able	to			
1	Und	lerstand the fundamentals and tech	nologies of energy storag	ge in el	ectric vehicles	
2	Ana	lyze and compare advanced batter	y technologies for e-mob	oility		
3	Imp vehi	art the principles of electrochemis cles.	try for analyzing issues in	n electi	ric/hybrid	
4	Dev	elop solutions for battery manager	nent systems and recyclin	ng of a	dvanced	
	stor	age devices.			1	
		Unit-I			07 Hrs	
Energy storage	e in ele	ectric vehicles				
Introduction to	E-mot	ollity, background of alternative en	ergy sources and sustain	ability	Types of	
electric vehicles	s and t	heir salient features along with the	ar energy requirement. F	undam	for a mobility	
advanced batter	y tech	Indigy. Battery characteristics. Sp		battery		
Advanced lithi	um_io	n hattarias			00 111 5	
Basic concepts	of lith	ium batteries. Types of advanced (eathode and anode mater	ials em	inloved in	
lithium batteries	s Con	struction working and future appl	ications of lithium cohal	t oxide	lithium iron	
phosphate Lith	ium ai	r lithium sulfur and lithium polyn	er batteries with their ad	vance	nent in vehicle	
electrification.	iuiii ui	r, nunum sunur and nunum poryn	for butteries with their do	vancei	nent in veniere	
Unit –III 09 Hrs						
Non lithium batteries for e mobility						
Limitations of 1	ithium	batteries. Overview of non-lithiu	n battery technology. Co	onstruc	tion and	
working of adva	anced	non-Lithium batteries such as Lea	d acid, Nickel Metal Hyd	lride, I	Redox flow,	
Zebra, Sodium	and M	agnesium batteries. Electrode mat	erials and electrolyte cor	sidera	tions in non	
lithium batteries	s. Perf	ormance comparison with lithium-	ion batteries. Battery req	uirem	ent in charging	
infrastructure.						
		Unit –IV			09 Hrs	
Chemistry of a	lterna	tive storage devices	1 11 1 0			
Introduction to	super	capacitor. Construction, working	and applications of super	capaci	tors along with	
the materials us	$ed \ln e$	electrodes. Types of advanced sup	ercapacitors. Application	of sup	bercapacitors in	
regenerative bra	iking.	Advancement in battery-supercap	acitor hybrid, Battery-Iu	el cell	hybrid, and	
Dattery-solar ce	Battery-solar cell hybrid electric vehicles with their advantages and limitations.					
Unit – v 09 Hrs						
Battery manage	ment «	visitems (BMS): Fundamentals of t	aftery management evet	-me an	d controls	
State-of-charge (SoC) state-of-health (SoH) and Cell balancing techniques						
Battery Thermal Management: Passive and active cooling systems. Safety mechanisms, thermal						
runaway and thermal management						
Battery recyclin	Battery recycling: Economic aspects, environmental safety and process of recycling of advanced					
batteries.	batteries.					
Course Outcon	nes: A	fter completing the course, the s	tudents will be able to			
CO1:	Imp devi	lement the fundamentals of chemi	stry in advanced energy s	storage	and conversion	
	401					

CO2:	Apply the chemistry knowledge used for hybridization of various energy storage and conversion devices.
CO3:	Analyze the different battery system for achieving maximum energy storage for vehicle electrification
CO4:	Evaluation of efficiency of a battery with respect to cost, environmental safety, material, energy consumption and recycling.

Reference Books

1	Battery reference book, T. R. Crompton., 3rd edition, NEWNES Reed Educational and Professional Publishing Ltd 2000, ISBN: 07506 4625 X.
2	Batteries for Electric Vehicles, D. A. J. Rand, R. Woods, and R. M. Dell, Society of Automotive Engineers, Warrendale PA, 2003. ISBN 10: 0768001277.
3	• Lithium Batteries, Science and Technology, GA. Nazri and G. Pistoa, Kluwer Academic Publisher, 2003, ISBN 978-0-387-92675-9.
4	Battery Technology Handbook, H. A. Kiehne, Marcel Dekker, NYC, 2003. ISBN: 0824742494 9780824742492.
5	Electric Vehicle Technology Explained, James Larminie and John Lowry. 2nd Edition, Wiley, ISBN-13: 978-1118505429.
6	Electric Vehicle Technology and Design, Antoni Gandia. CRC Press, ISBN-13: 978-1138551912.
7	Sustainable Transportation: Problems and Solutions. William R. Black, The Guilford Press, ISBN-13: 978-1462532072.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	3	-	-	-	-	-	-	1	1	-	1
CO3	2	2	-	-	1	-	-	-	-	1	-	1
CO4	3	3	-	-	1	1	1	-	-	1	-	1

High-3: Medium-2: Low

		Semest	ter: VI				
HUMAN MACHINE INTERFACE (HMI)							
Institutional Elective Industry Assisted Elective-BOSCH							
Course Code : EC266TEH CIE : 100 Marks							
Credits: L:T:P	:	3:0:0	SEE		:	100 Marks	
Total Hours	:	45L	SEE Duration		:	03 Hrs	
		Unit-I			<u> </u>	09 Hrs	
Foundations of HMI: The	e Hı	uman: History of User I	Interface Designing,	I/O cha	nne	ls, Hardware,	
Software and Operating en	vire	onments, The Psychopa	thology of everyday	Things	, Ps	sychology of	
everyday actions, Reasonir	ng a	nd problem solving. Th	ne computer: Device	s, Mem	ory	, Processing and	
networks. Interaction: Mod	lels	, frameworks, Ergonom	nics, styles, elements	, interac	ctiv	ity, Paradigms.	
Introduction to HMI and	Do	mains: Automotive, In	dustrial, CE, Medica	l, ECU	s wi	thin car and their	
functionalities. Interaction	bet	ween ECUs. Communi	cation protocols for	ECUs (CA	N, LIN, Most,	
FlexRay,Ethernet etc)							
		Unit – II				09 Hrs	
Automotive Human-Mac	hin	e Interfaces: Automot	ive infotainment syst	tem - Ev	volu	tion road map.	
Feature sets, System archit	ecti	ire, Trends, Human fac	tors and ergonomics	in auto	mo	tive design,	
Automotive User Experien	ce (UX) Design Principles	, In-Vehicle Informa	ation Sy	ster	ms (IVIS), Driver-	
Assistance Systems (DAS)	Int	erfaces, HMI design fo	r adaptive cruise cor	ntrol, Vo	oice	and Gesture	
Recognition in Automotive	e Hl	MIs, Touchscreen Inter	faces and Controls, U	Usabilit	yТ	esting and	
Evaluation in Automotive	HM	Is, Safety Consideratio	ns and Regulations in	n Autor	noti	ive HMIs, Emerging	
Technologies in Automotiv	ve H	MIs, Human-Machine	Interfaces for Auton	omous	Veł	nicles	
		Unit –III				09 Hrs	
UX and Guidelines: Introd	duc	tion to UX design - stag	ges, theory, Design tl	hinking	, U2	X Study, Interaction	
concepts, Graphic design to	ools	s - Adobe Photoshop, A	dobe XD, Blender,	GIMP, J	Ass	et Design -	
Overview, Guidelines and	nor	ms, 2D/3D rendering, (OpenGL, OSG.				
		Unit –IV				09 Hrs	
HMI User Interface:	Us	er-centered HMI deve	lopment process, Ba	sics of `	We	bserver. Web-based	
HMI: Basics of TwinCAT	and	HTML,CSS,JavaScrip	ot.				
HMI on Mobile: Four Prir	ncip	les of Mobile UI Desig	n, Benefits of Mobil	e HMIs	, M	obile HMI	
Development Suites.							
		Unit –V				09 Hrs	
HMI Control Systems: In	tro	duction to Voice-Based	HMI, Gesture-Base	d HMI	Se	nsor-Based UI	
controls. Haptics in Autor	not	ive HMI: Kinesthetic I	Feedback Systems, T	actile F	leec	lback Systems,	
Haptics in Multimodal HMI, Automotive Use-Cases							
HMI Testing: Limitations of Traditional Test Solutions, Case - Study: Bosch's HMI validation tool -							
Graphics Test Systems (GTS).							
UI analytics: Usage patterns, Debugging, Performance Profiling, Use Cases.							
Course Outcomes: After	con	pleting the course, th	e students will be al	ble to:-			
CO1 Understanding the au	opli	cation of HMIs in vario	ous domain.				

CO2 Comparison of various communication protocols used in HMI development.

CO3 Apply and analyse the car multimedia system free software and hardware evolution.

CO4 Design and evaluate the graphic tools and advanced techniques for creating car dashboard multimedia systems.

Reference Books

1. Touch based HMI; Principles and Applications, Shuo gao, Shuo Yan, Hang Zhao, Arokia Nathan, Springer

Nature Switzerland AG, 1st Edition.

- 2. Unity 2020 by Example: A Project based guide to building 2D, 3D augmented reality and Virtual reality games from sratch, Robert Wells, Packt Publishing ltd, 2020.
- 3. GUI Design and Android Apps, Ryan Cohen, Tao Wang, Apress, Berkley, CA,2014.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)

#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	 EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS. 	40
Μ	IAXIMUM MARKS FOR THE CIE	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	CONTENTS	MARKS				
PART A	·	•				
1	Objective type questions covering entire syllabu	s 20				
PART B (Maximum of TWO Sub-di ^v	visions only)					
2	Unit 1: (Compulsory)	16				
3 & 4	Unit 2: Question 3 or 4	16				
5&6	Unit 3: Question 5 or 6	16				
7 & 8	Unit 4: Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
TOTAL	·	100				

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Semester: VI								
ENERGY AUDITING & STANDARDS								
		Category: Institut	tional Elective					
		(Theorem	ry)					
Course Code	:	EE266TEJ	CIE	:	50 Marks			
Credits: L:T:P	:	3:0:0	SEE	:	50 Marks			
Total Hours	:	45 L	SEE Duration	:	2 Hours			
Unit-I 06 Hrs								
Types of Energy Audit and Energy-Audit Methodology: Definition of Energy Audit, Place of								

 Types of Energy Audit and Energy-Audit Methodology: Definition of Energy Audit, Place of

 Audit, Energy – Audit Methodology, Financial Analysis, Sensitivity Analysis, Project Financing

 Options, Energy Monitoring and Training.

 Survey Instrumentation: Electrical Measurement, Thermal Measurement, Light Measurement, Speed

 Measurement, Data Logger and Data Acquisition System,

Energy Audit of a Power Plant: Indian Power Plant Scenario, Benefit of Audit, Types of Power Plants, Energy Audit of Power Plant.

Unit – II	10 Hrs
Electrical-Load Management: Electrical Basics, Electrical Load Management, VariableF	requency
Drives, Harmonics and its Effects, Electricity Tariff, Power Factor, Transmission and Dist	ribution
Losses.	
	C

Energy Audit of Motors: Classification of Motors, Parameters related to Motors, Efficiency of a Motor, Energy Conservation in Motors, BEE Star Rating and Labelling.

Energy Audit of Pumps, Blowers and Cooling Towers: Pumps, Fans and Blowers, Cooling Towers
Unit –III
09 Hrs

Communication & Standards:

Wireless technologies: WPANs, LAN, Wireless metropolitan area network, cellular network, satellite communication, Zigbee, Bluetooth, LAN, NAN

Wireline communication: Phone line technology, powerline technology, coaxial cable technology; Optical communication, TCP/IP networks

Optical communication, TCP/IP networks	
Unit –IV	09 Hrs
Energy Audit of Boilers: Classification of Boilers, Parts of Boiler, Efficiency of a Boiler,	Role of
excess Air in Boiler Efficiency, Energy Saving Methods.	
Energy Audit of Furnaces: Parts of a Furnace, classification of Furnaces, Energy saving I	Measures in
Furnaces, Furnace Efficiency	
Energy Audit of Steam-Distribution Systems : S team as Heating Fluid, Steam Basics, R	equirement
of Steam, Pressure, Piping, Losses in Steam Distribution Systems, Energy Conservation M	lethods

Energy Audit of Lighting Systems: Fundamentals of Lighting, Different Lighting Systems, Ballasts, Fixtures (Luminaries), Reflectors, Lenses and Louvres, Lighting Control Systems, Lighting System Audit, Energy Saving Opportunities.

Unit-V

Energy Audit Applied to Buildings: Energy – Saving Measures in New Buildings, Water Audit, Method of Audit, General Energy – Savings Tips Applicable to New as well as Existing Buildings.

Course	Course Outcomes: After completing the course, the students will be able to: -								
CO 1	D1 Explain the need for energy audit, prepare a flow for audit and identify the instruments								
	needed.								
CO 2	Design and perform the energy audit process for electrical systems.								
CO 3	Design and perform the energy audit process for mechanical systems								

09 Hrs

RV College of Engineering[®] Mysore Road, RV Vidyaniketan Post,

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

CO 4 Propose energy management scheme for a building

Reference Books

- Handbook of energy audit, Sonal Desai, Kindle Edition, 2015, McGraw Hill Education, ISBN: 9339221346, 9789339221348.
- 2 Energy management handbook, Wayne C Turner and Steve Doty, 6th Edition, 2015, CRC Press, ISBN: 0-88173-542-6.
- ³ Energy management, Sanjeev Singh and Umesh Rathore, 1st Edition, 2016, Katson Books, ISBN 10: 9350141019, ISBN 13: 9789350141014.
- 4 Energy audit of building systems, Moncef Krarti, 2nd Edition, 2010, CRC Press ISBN: 9781439828717

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)

#	COMPONENTS	MARKS					
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20					
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40					
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40					
MA	AXIMUM MARKS FOR THE CIE THEORY	100					

RUBRIC FOR SEMESTER END EXAMINATION (THEORY) Q. NO. CONTENTS MARKS PART A Objective type questions covering entire syllabus 20 PART B (Maximum of TWO Sub-divisions only) Unit 1 : (Compulsory) 16 3&4 Unit 2 : Question 3 or 4 16 5&6 Unit 3 : Question 5 or 6 16 Unit 4 : Question 7 or 8 16 7 & 8 9 & 10 Unit 5: Question 9 or 10 16 TOTAL 100

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

		5	Semester: VI		
		BIOMEDICA Category:	L INSTRUMENTATIO Institutional Elective (Theory)	N	
Course Code	:	EI266TEK	CIE	•	100 Marks
Credits: L:T:P	:	03:00:00	SEE	:	100 Marks
Total Hours	:	45L	SEE Duration	:	03 Hrs
		Unit-I			09 Hrs
Fundamentals: Sources of constraints in design of me Bioelectric Signals and El Recording electrodes, Elec chloride electrodes, Electro	f Bi dica lect troc odes	omedical signals al instrumentatio rodes : Origin of le-tissue interface s for ECG, EEG,	, Basic medical instrumer n systems. bioelectric signals, Type e, Polarization, Skin conta EMG, Microelectrodes.	ntation system s of bioelectri act impedance	n, General c signals, e, Silver-silver
		Unit – I	I		09 Hrs
Electrocardiograph: Elec (ECG), Block diagram dese machine. Electroencephalograph: (system, Computerized anal	tric crip Gen lysi	al activity of hea tion of an Electro esis of EEG, Blo s of EEG.	rt, Genesis and characteri ocardiograph, ECG lead s ock diagram description o	stics of Elect ystems, Mult f an EEG, 10-	rocardiograph i-channel ECG 20 Electrode
		Unit –II	I		09 Hrs
Heart Rate meter, Instantar measurement, Direct and in Korotkoff's method. Oximeters: Oximetry, ear oximeter.	neou ndir oxi	us heart rate mete ect method, Auto meter, pulse oxir	er, Measurement of pulse omatic blood pressure me neter, skin reflectance oxi	rate, Blood P asuring appar imeter and int	ressure atus using ravascular
		Unit –IV	V		09 Hrs
Blood Flow Meters: Elect Ultrasonic blood flow mete Cardiac Pacemakers and Implantable Pacemaker, Ty and Programmable Pacemaker. Need for a defi synchronizer.	ron ers, De ypes	hagnetic blood flo NMR blood flov fibrillators: Nee s of Implantable l lator, DC defibri	ow meter, Types of electro v meters, Laser Doppler b ed for Cardiac pacemaker Pacemaker, Ventricular S Illator, Defibrillator electr	omagnetic blo blood flow me , External Pao ynchronous I rodes, DC def	bod flow meters, eters. cemaker, Demand Pacemaker ibrillator with
		Unit –V	7		09 Hrs
Advances in Radiological Fluoroscopy, Angiography of computed tomography, 1	l In , Di mag	aging: X-rays-p gital radiograph gnetic resonance	rinciples of generation, C y, Digital subtraction ang imaging system and Ultra	Conventional iography (DS asonic imagin	X-ray radiography, A). Basic principle g system.
Course Outcomes: After	con	pleting the cou	rse, the students will be	able to: -	
CO1 Understand the source	ces	of biomedical sig	gnals and basic biomedica	al instruments	
CO2 Apply concepts for t	he o	lesign of biomed	ical devices		

CO3 Analyze the methods of acquisition and signal conditioning to be applied to the physiological parameters.

CO4 Develop instrumentation for measuring and monitoring biomedical parameters.

Reference Books

- 1. Handbook of Biomedical Instrumentation, R. S. Khandpur, 3rd Edition, Reprint 2016, Tata McGraw-Hill, ISBN: 9780070473553.
- 2. Biomedical Instrumentation and Measurements, Leslie Cromwell & others, 2nd Edition, Reprint 2015, ISBN: 9780130771315.
- 3. Medical instrumentation: Application and Design, J. G. Webster, 3rd Edition, Reprint 2015, Wiley Publications, ISBN: 9788126511068.
- Principles of Medical Imaging, K.Kirk Shung, Michael B. Smith and Banjamin Tsui, Academic Press, 2016, ISBN: 978-0126409703.

R	UBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted . Each test will be evaluated for 50 Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20). Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS .	40
Μ	IAXIMUM MARKS FOR THE CIE THEORY	100

RUBRI	C FOR SEMESTER END EXAMINATION (THEORY)	
Q. NO.	CONTENTS	MARKS
PART A		
1	Objective type questions covering entire syllabus	20
PART E (Maxim	B um of TWO Sub-divisions only)	
2	Unit 1: (Compulsory)	16
3&4	Unit 2: Question 3 or 4	16
5&6	Unit 3: Question 5 or 6	16
7&8	Unit 4: Question 7 or 8	16
9 & 10	Unit 5: Question 9 or 10	16
TOTAL		100

				Semester: VI			
TELECOMMUNICATION SYSTEMS							
		Categor	y:	Institutional Elect	ive (Course	
	Stream: Electronics & Telecommunication Engineering						
~ ~ ~	r —			(Theory)	1		
Course Code	:	ET266TEM		CIE	:	100 Marks	
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks	
Total Hours	:	45 L		SEE Duration	:	3 Hours	
							- 1
			U	nit-I			8 Hrs
Introduction to E	lect	ronic Communic	cat	tion: The Significar	nce o	f Human Communic	ation,
Communication S	yster	ns, Types of Elec	tro	onic Communicatio	n, M	odulation and Multip	lexing,
Electromagnetic S	pecti	rum, Bandwidth,	A	Survey of Commun	nicat	ion Applications.	
The Fundamenta	ls of	Electronics: Gai	in,	Attenuation, and D	Decib	els.	
Radio Receivers:	Supe	er heterodyne rec	eiv	ver.			
		τ	Jn	it – II			10 Hrs
Modulation Sche	mes:	Analog Modula	nti	on: AM, FM and P	M- b	rief review.	
Digital Modulation	Digital Modulation: PCM, Line Codes, ASK, FSK, PSK & QAM (Architecture).						
Wideband Modu	Wideband Modulation: Spread spectrum, FHSS, DSSS.						
Multiple Access:	FDN	IA, TDMA, CDN	1A	λ.			
		I	Jn	it –III			10 Hrs
Satellite Commun	nicat	ion: Satellite Orl	oit	s, Satellite Commu	nicat	ion Systems, Satellite	Subsystems,
Ground Stations, S	Satell	lite Applications,	G	lobal Positioning S	yster	n.	-
		τ	Jn	it –IV			9 Hrs
Optical Commun	icati	on: Optical Princ	cip	oles, Optical Comm	unica	tion Systems, Fiber-0	Optic Cables,
Optical Transmitte	ers ai	nd Receivers, Wa	ve	elength-Division M	ultip	exing, Passive Optic	al Networks.
		I	Ur	nit –V			8 Hrs
Cell Phone Techr	nolog	gies: Cellular con	ce	pts, Frequency allo	catio	n, Frequency reuse, In	nternet
Telephony.	c	-				A -	
Wireless Technol	logie	s: Wireless LAN,	, P	ANs and Bluetooth	, Zig	Bee, Mesh Wireless	Networks,
WiMax, and Wire	less l	Metropolitan Are	a	Networks.	0		
		-					

Course	• Outcomes: After completing the course, the students will be able to :-
CO1	Describe the basics of communication systems.
CO2	Analyze the importance of modulation and multiple access schemes for communication
	systems.
CO3	Analyze the operational concept of cell phone and other wireless technologies.
CO4	Justify the use of different components and sub-system in advanced communication systems.

Reference Books

1.	Principles of Electronic Communication Systems, Louis E. Frenzel, 4 th Edition, 2016, Tata McGraw Hill, ISBN: 978-0-07-337385-0.
2.	Electronic Communication Systems, George Kennedy,3 rd Edition, 2008, Tata McGraw Hill, ISBN: 0-02-800592-9.
3.	Introduction to Telecommunications, Anu A. Gokhale, 2 nd Edition, 2008, Cengage Learning ISBN: 981-240-081-8

RU	BRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
MA	AXIMUM MARKS FOR THE CIE THEORY	100

RUBRI	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS				
PART A	PART A					
1	Objective type questions covering entire syllabus	20				
PART E (Maxim	3 um of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7&8	Unit 4 : Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
TOTAL	1	100				

		Semester	:: V	Ι		
Category: Institutional	Mobi l Elect	le Communication Ne ive Course Stream: E (Theor	etwo lect y)	orks and Standards cronics & Telecommunic	cation	Engineering
~ ~ ~				~~~~	1	
Course Code	:	ET266TEN		CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	45 L		SEE Duration	:	3 Hours
		Unit-I				9 Hrs
Principle of Cellular Co	mmui	nication: Cellular Tern	nine	ology, Cell Structure and	Cluster	, Frequency
Reuse Concept, Cluster s	ize and	d System Capacity, Me	tho	d of Locating Co-channel	cells,	Frequency
Reuse distance, Co-chani	nel Inte	erference and Signal Q	uali	ty, Co-channel interferen	ce Red	luction
Methods.						
		Unit – II				9 Hrs
Basia Collular system: (Tonsid	oration of components	of	allular system A basic	collul	> IIIS
connected to PSTN Mair	2011SIU	of a basic collular syst	on a	Operation of a Cellular s	vetom	Derformance
criteria- Voice quality T	i parts runkin	g and Grade of Service	S1	operation of a Centular s	ystem, IΔ and	
systems	unkin		, D]			
5yberns						
		Unit –III				9 Hrs
Second generation Cellu	ılar T	echnology: GSM: GSI	M N	Network Architecture, Ide	ntifiers	s used in
GSM System, GSM chan	nels, A	Authentication and Secu	urit	y in GSM, GSM Call Pro	cedure	, GSM Hand-
off Procedures.						
		Unit –IV				9 Hrs
3G Digital Cellular Tec	hnolog	y: GPRS: GPRS tech	nol	ogy, GPRS NetworkArch	itectur	e. GPRS
signalling. Mobility Man	ageme	nt in GPRS. UMTS: U	M	S Network Architecture.	UMTS	S Interfaces.
UMTS Air Interface Spec	cificati	ons. UMTS Channels.				,
		,				
		Unit –V				9 Hrs
Wireless Personal Area	Netwo	orks: Network archited	ctur	e, components, Bluetooth	, Zigbe	ee,
Applications. Wireless L	ocal A	rea networks: Netwo	rk A	Architecture, Standards, A	pplica	tions.
Wireless Metropolitan An	rea Ne	tworks: IEEE 802.16 s	tano	lards, advantages, WMA	N Netv	vork
architecture, Protocol stat	ck					

Course	Course Outcomes: After completing the course, the students will be able to :-				
CO1	Describe the concepts and terminologies for Cellular Communication.				
CO2	Analyze the Architecture, Hand-off and Security aspects in 2G and 3G Networks.				
CO3	Compare the performance features of 2G and 3G Cellular Technologies.				
CO4	Analyze and Compare the architectures of various Wireless technologies and standards.				

Ref	ference Books
1.	Wireless Communications, T.L. Singal, 2nd Reprint 2011, Tata McGraw Hill Education Private Limited, ISBN: 978-0-07-068178-1
2.	Wireless and Mobile Networks Concepts and Protocols, Dr.Sunil Kumar SManvi, 2010, Willey India Pvt. Ltd., ISBN: 978-81-265-2069-5.

3.	Wireless Communication, Upena Dalal, 1st Edition, 2009, Oxford higher Education, ISBN-13:978-0-19-806066-6.
4	Wireless Communications Principles and practice, Theodore S Rappaport, 2nd Edition,

4 Pearson, ISBN 97881-317-3186-4

RU	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)					
#	# COMPONENTS					
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20				
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40				
3.	 3. EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS. 					
MAXIMUM MARKS FOR THE CIE THEORY						

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)								
Q.NO.	NO. CONTENTS MARKS							
PART A	PARTA							
1	Objective type questions covering entire syllabus	20						
PART I (Maxim	PART B (Maximum of TWO Sub-divisions only)							
2	Unit 1 : (Compulsory)	16						
3 & 4	Unit 2 : Question 3 or 4	16						
5&6	Unit 3 : Question 5 or 6	16						
7&8	7 & 8 Unit 4 : Question 7 or 8 16							
9 & 10	0 & 10 Unit 5: Question 9 or 10 16							
TOTAI	OTAL 100							

Semester: VI							
	MOBILE APPLICATION DEVELOPMENT						
		С	ategory: INSTI	Т	JTIONAL ELECTIVE		
			G	R	OUP E		
Course Code	Course Code : IS266TEO CIE : 100 Marks						
Credits: L:T:P : 3:0:0 SEE : 100 Marks							
CotalHours : 45L SEE Duration : 03 Hours							

Prerequisite: - Programming in Java.

Unit-I	09 Hrs
Introduction:	
Smart phone operating systems and smart phones applications. Introduction to Android, Insta	alling
Android Studio, creating an Android app project, deploying the app to the emulator and a de	vice. UI
Design: Building a layout with UI elements, Layouts, Views and Resources, Text and Scrolli	ng Views.
Activities and Intents, The Activity Lifecycle, Managing State, Activities and Implicit Intent	s, The
Android Studio Debugger, Testing the Android app, The Android Support Library.	
Unit–II	09 Hrs
User experience:	
User interaction, User Input Controls, Menus, Screen Navigation, Recycler View, Delightful	user
experience, Drawables, Styles, and Themes, Material Design, Testing app UI, Testing the Us	er Interface
Unit–III	09 Hrs
Working in the background:	
Async Task and Async Task Loader, Connect to the Internet, Broadcast Receivers and Servi	ices.
Scheduling and optimizing background tasks - Notifications, Scheduling Alarms, and Transf	erring Data
Efficiently	
Unit–IV	09 Hrs
All about data:	
Preferences and Settings, Storing Data, Shared Preferences. Storing data using SQLite, SQLi	te Database.
Sharing data with content providers.	
Advanced Android Programming: Internet, Entertainment and Services. Displaying web pag	es and
maps, communicating with SMS and emails, Sensors.	
Unit–V	09 Hrs
Hardware Support & devices:	

Permissions and Libraries, Performance and Security. Fire base and AdMob, Publish and Polish, Multiple Form Factors, Using Google Services.

Cours	Course Outcomes: After completing the course, the students will be able to						
CO1:	Comprehend the basic features of android platform and the application development process. Acquire familiarity with basic building blocks of Android application and its architecture.						
CO2:	Apply and explore the basic framework, usage of SDK to build Android applications incorporating Android features in developing mobile applications.						
CO3:	Demonstrate proficiency in coding on a mobile programming platform using advanced Android technologies, handle security issues, rich graphics interfaces, using debugging and troubleshooting tools.						

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

CO4: Create innovative applications, understand the economics and features of the app marketplace by offering the applications for download.

Reference Books

- **1** Android Programming, Phillips, Stewart, Hardyand Marsicano, Big Nerd Ranch Guide, 2ndEdition, 2015, ISBN-13 978-0134171494
- 2 AndroidStudioDevelopmentEssentials-Android6, NeilSmyth,2015, Create space Independent Publishing Platform, ISBN:9781519722089
- ³ Android Programming–Pushing the limits, EricHellman,2013, Wiley, ISBN-13:978-1118717370
- 4 Professional Android2ApplicationDevelopment, RetoMeier, Wiley India Pvt. Ltd, 1stEdition, 2012, ISBN-13:9788126525898
- 5 BeginningAndroid3, Mark Murphy, A press Springer India Pvt Ltd,1stEdition,2011, ISBN-13:978-1-4302-3297-1
- 6 <u>AndroidDeveloperTraining-https://developers.google.com/training/android/</u>
 - AndroidTestingSupportLibrary-https://google.github.io/android-testing-support-library/

RU	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)					
#	COMPONENTS	MARKS				
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20				
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50 Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40				
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) ADDING UPTO 40 MARKS.	40				
MAXIMUM MARKS FOR THE CIE THEORY						

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)							
Q. NO.	CONTENTS	MARKS					
PART A	PART A						
1	Objective type questions covering entire syllabus	20					
PART I	3						
(Maxim	um of TWO Sub-divisions only)						
2	Unit 1 : (Compulsory)	16					
3 & 4	Unit 2 : Question 3 or 4	16					
5&6	Unit 3 : Question 5 or 6	16					
7 & 8 Unit 4 : Question 7 or 8 16							
9 & 10	Unit 5: Question 9 or 10	16					
TOTAI		100					

Semester: VI						
ELEMENTS OF FINANCIAL MANAGEMENT						
(Institutional Elective)						
<u> </u>		(Th	eory)		400 35 3
Course Code	:	IM266TEQ		CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	45L		SEE Duration	:	3.00 Hours
		Unit-I				06 Hrs
Financial Managen	nent-Ar	overview: Financial I	Decis	ions in a firm, Goals	of a firm	n, Fundamental
principle of finance,	Organi	zation of finance function	ion a	nd its relation to othe	r functi	ons, Regulatory
framework.	Б			1., T ., 1		1.
The financial Syste	m: Fund	ctions, Assets, Markets	, Ma	ket returns, Intermed	liaries, r	regulatory
Iramework, Growth	and trer	as in Indian financial s	syste	n.		10 11-10
TI I I I I I I I I I				1	<u> </u>	
Financial statement	ts, Taxe	es and cash flow: Bala	nce s	heet, statement of pro	ofit and	loss, items in
annual report, manip	oulation	of bottom line, Profits	vs C	ash flows, Taxes. (Co	onceptu	ai treatment
only) Time Velse - f M		una malue of a simel		fortune		
i me value of Mon	ey: Fut	ure value of a single an	iouni	, inture value of an a	muity, j	present value of a
Voluction of scourie	tiog. Po	s or all allights.	ndw	Justion aquity value	tion dir	vidand
capitalization approx	ues: Da	other approaches	nu v	inuation, equity valua	uon-un	luciiu
Capitalization apploa		<u>Init _III</u>				10 Hrs
Dick and Datume	ick and	Daturn of single assots	and	portfoliog massurem	ont of m	orkot rick
relationship between	usk and rick an	d return implications	and	portronos, measurem	ent of fi	laiket 118k,
Techniques of Coni	i i isk all ital Rud	lacting. Capital budget	ing r	rocess project classi	fication	investment
criteria Net present	value F	Benefit-Cost ratio Inter	nal R	ate of return Pavbac	k period	Accounting rate
of return	varue, L		nai N	are of return, 1 ayude	x perioe	, recounting rate
(Conceptual and N	umerica	al treatment)				
× · · · · · · · · · · · · · · · · · · ·		Unit –IV				10 Hrs
Long term finance:	Source	s- Equity capital. Interr	nal ad	cruals, preference ca	pital. te	rm loans.
debentures. Raising	long ter	m finance- Venture car	ital.	Initial Public Offer. F	Follow of	n Public Offer.
Rights Issue. Private Placement. Term Loans. Investment Banking						
Securities Market: Primary market vs Secondary market, Trading and Settlements, Stock market						
quotations and Indices, Govt. securities market, Corporate debt market.						
Unit –V 09 Hrs						
Working Capital – Policy and Financing: Factors influencing working capital requirements. Current						
assets financing policy, operating cycle and cash cycle. Accruals, trade credit, banks, public deposits,						
inter-corporate depo	sits, sho	ort term loans, right deb	entu	es, commercial pape	r, Facto	ring
(Conceptual treatm	ent onl	y)				-
Course Outcomes:	After c	ompleting the course.	the s	tudents will be able	to:-	

Course Outcomes: After completing the course, the students will be able to:-				
CO1	Explain the features and elements of a financial system.			
CO2	Recognize the relevance basic principles of financial management in decision making.			
CO3	Describe the processes and techniques of capital budgeting and working capital financing by			
	organizations.			
CO4	Demonstrate an understanding of various sources of finance.			

Reference Books:

1.	Fundamentals of Financial Management, Prasanna Chandra, 6th Edition, 2018, McGraw Hill Education (India) Pvt. Ltd, ISBN: 978-93-392-0313-9, 93-392-0313-5
2.	Financial Management, I M Pandey, 12 th edn, 2021, Pearson, ISBN-939057725X, 978- 9390577255

3.	Financial Management-Text, Problems and Cases, Khan M Y & Jain P K, 8th Edition, 2018, McGraw Hill Education (India) Pvt. Ltd, ISBN: 9353162181, 9789353162184
4.	Fundamentals of Financial Management, Eugene F Brigham, Joel F Houston, 8 th Edition, 2014, Cengage Learning, ISBN: 9781285065137, 1285065131.

Semester: VI							
OPTIMIZATION TECHNIQUES							
(Institutional Elective)							
(Theory)							
Course Course i IN12001EK CIE i IOU Marks Credits: I ·T·P · 3.0.0 SFF · 100 Marks							
Total Hours	•	42L	SEE Duration	•	03 Hours		
	•	UNIT – I		•	08 Hrs		
Introduction: OR Me	thodo	logy Definition of OR	Application of OR to Er	ngineering	and Managerial		
problems, Features of	OR m	odels, Limitations of OI	R.	191110011112	S and manuferrar		
Linear Programming	g: Def	inition, Mathematical Fo	rmulation, Standard For	rm, Soluti	ion Space, Types		
of solution – Feasible,	Basic	Feasible, Degenerate, S	olution through Graphi	cal Metho	od. Problems on		
Product Mix, Blending	g, Mai	keting, Finance, Agricu	lture and Personnel.				
Simplex methods: V	ariant	s of Simplex Algorithm -	 Use of Artificial Varia 	bles.			
		UNIT – II			09 Hrs		
Simplex Algorithm:	How t	o Convert an LP to Stan	dard Form, Preview of t	the Simpl	ex Algorithm,		
Direction of Unbound	ednes	s, Why Does an LP Have	e an Optimal basic feasi	ble soluti	on, The Simplex		
Algorithm, Using the	Simpl	ex Algorithm to Solve M	finimization Problems,	Alternativ	ve Optimal		
Solutions, Degeneracy	$\frac{1}{2}$ and t	he Convergence of the S	implex Algorithm, The	Big M M	lethod, The Two-		
Phase Simplex Method	a.				00 11		
				11 0 1			
Transportation Prob	et Va	Formulation of Transpor	tation Model, Basic Fea	sible Soli	ution using North-		
Transportation Broble	m Do	gen s Approximation Mo	on Problems Variants	in Transr			
Problems	III, De	generacy in Transportan	on Frodienis, variants	in mansp	Jonation		
Assignment Problem	• For	nulation of the Assignm	ent problem solution m	ethod of s	assignment		
problem-Hungarian M	lethod	. Variants in assignment	problem. Travelling Sal	lesman Pi	roblem (TSP).		
proceeding and an		UNIT – IV	proceeding, 114, 611118, 544		08 Hrs		
Project Management	Usin	g Network Analysis: Network	etwork construction. CP	M & PEF	RT. Determination		
of critical path and du	ration	floats. Crashing of Net	work. Usage of software	e tools to	demonstrate N/W		
flow problems							
UNIT – V 08 Hrs							
Game Theory: Introduction, Two person Zero Sum game, Pure strategies, Games without saddle							
point - Arithmetic method, Graphical Method, The rules of dominance							
Course Outcomes: A	Course Outcomes: After going through this course the student will be able to						
CO1 Understand the characteristics of different types of decision – making environments and the							
appropriate dec	appropriate decision making approaches and tools to be used in each type.						

- **CO2** Build and solve Transportation Models and Assignment Models.
- CO3 Design new simple models, like: CPM, PERT to improve decision –making and develop critical thinking and objective analysis of decision problems.
- CO4 Implement practical cases, by using TORA, WinQSB, Excel, GAMS.

Reference Books:

 Operation Research An Introduction, Taha H A, 10th Global Edition, 2017, Pearson Education Limited, ISBN 13: 978-1-292-16554-7

Principles of Operations Research – Theory and Practice, Philips, Ravindran and Solberg, 2nd
 Edition, 2007, John Wiley & Sons (Asia) Pvt Ltd, ISBN 13: 978-8126512560

3	Introduction to Operation Research, Hiller, Liberman, Nag, Basu, 10th Edition, 2017, McGraw Hill
	Education, ISBN 13: 978-9339221850

4 Operations Research Theory and Application, J K Sharma, 6th Edition, 2009, Trinity Press, ISBN : 978-93-85935-14-5

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Semester: V							
AUTOMOTIVE MECHATRONICS							
	Category: Institutional Elective						
			(Theory)				
Course Code	:	ME266TES	CIE	:	100 Marks		
Credits: L:T:P : 3:0:0 SEE : 100 Marks							
Total Hours	:	45 L	SEE Duration	:	03 Hours		

Unit-I 09 Hrs

Automobile Engines

Classifications of Internal Combustion Engines. Engine nomenclature and mechanics. Mixture formation – External, internal, quality and quantity control – homogeneous and stratified injection. Thermodynamic principles of Otto and Diesel cycle. Characteristics – pressure curve and energy yield, engine speed, torque, and power

Unit-II 10 Hrs

Engine Auxiliary Systems:

Turbocharger, Intercooler, Exhaust manifold, 3-way catalytic convertor, Exhaust Gas Recirculation system.

Common Rail Fuel Injection system- Low pressure and high pressure fuel systems, Return line, Quantity control valve and Injectors.

Unit-III 10 Hrs

Vehicular Auxiliary Systems:

Vehicle frame and body classification- Hatchback, Sedan, SUV, Coupe, Roadster. Adaptive Brakes - Disc and drum brakes, Antilock Braking Systems, ESP, TCS. Wheels and Tyres- Toe-In, Toe-Out, Caster and Camber angle. Classification of tyres, Radial, Tubeless.

Supplemental Restraint System: Active and passive safety, Vehicle structure, Gas generator and air bags, Belt Tensioner, Acceleration sensor, Rollover sensor, Seat occupancy recognition.

Unit-IV 09 Hrs

EV Technology: Types of EV's, ICE vs EV torque output, Architecture and Working of EV's. Battery Thermal Management System, Regenerative braking, Safety system and Impacts of EV on the environment.

Unit-V 07 Hrs

Telematics in vehicles – Radio Transmission, Exchange of information, signal path & properties, Concept of radio waves.

Sensors: Oxygen sensors, Crankshaft/Cam shaft Sensor, Boost Pressure Sensor, Coolant Temperature Sensor, Hot Film Air Mass flow Sensor, Throttle Position Sensor, Rain/Light sensor

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Describe the functions of Mechatronic systems in a modern automobile							
CO2:	Evaluate the performance of an engine by its parameters							
CO3:	Analyse the automotive exhaust pollutants as per emission norms							
CO4:	Demonstrate communication of control modules using a On-Board Diagnostic kit							

Reference Books

- 1. Automotive Technology A systems approach, Jack Erjavec, 5th Edition, Delamr Cengage Learning, ISBN-13: 978-1428311497
- **2.** Automotive Engineering Fundamentals, Richard Stone and Jeffrey K. Ball, 2004, SAE International, ISBN: 0768009871
- **3.** Bosch Automotive Handbook, Robert Bosch, 9th Edition, 2004, ISBN: 9780768081527
- 4. Understanding Automotive Electronics, William B Ribbens, 5th Edition, Butterworth–Heinemann, ISBN 0-7506-7008-8

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY) COMPONENTS MARKS 1. QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Ouiz will be evaluated for 10 Marks. THE SUM OF TWO 20 **QUIZZES WILL BE THE FINAL QUIZ MARKS.** 2. **TESTS:** Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be 40 conducted. Each test will be evaluated for 50 Marks, adding up to 150 Marks. FINAL **TEST MARKS WILL BE REDUCED TO 40 MARKS.** 3. EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), 40 Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS. MAXIMUM MARKS FOR THE CIE THEORY 100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)

Q. NO.	CONTENTS	MARKS				
PARTA						
1	Objective type questions covering entire syllabus	20				
PART B	PART B					
(Maximu	Im of TWO Sub-divisions only)					
2	Unit 1: (Compulsory)	16				
3&4	Unit 2: (Internal Choice)	16				
5&6	Unit 3: (Internal Choice)	16				
7&8	Unit 4: (Internal Choice)	16				
9 & 10	Unit 5: (Internal Choice)	16				
TOTAL		100				

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Semester: VI								
MATHEMATICAL MODELLING								
	(Theory)							
		Category: INSTITUTIONA	L ELECTIVE					
		(Elective F)						
Course	:	MA266TEU	CIE	:	100 Marks			
Code								
Credits:	:	3:0:0	SEE	:	100 Marks			
L:T:P								
Total	al : 45L SEE Duration : 3.00 He							
Hours								
Course L	ear	ning Objectives: The students will be able to						
1	U	nderstand the basic procedure of mathematica	l modeling.					
2	U	se the concepts of continuous and discrete pro	cess models to the proble	ms aris	sing in			
	va	rious fields.						
3	A	pply the concepts of Markov modelling to stoe	chastic problems.					
4	D	emonstrate demonstrate the practical importar	ice of graph theoretic mod	dels, va	ariational			
	pr	oblem and dynamic programming.						
Unit-I 09 Hrs								
Introduct	Introduction to Mathematical Modelling:							
Basic con	cep	ts, steps involved in modelling, classification	of models, assorted simp	le mat	hematical			
models fr	om	diverse fields.	_					
		Unit – II			09 Hrs			
Mathema	tic	ally Modelling Discrete Processes:						
D:00			D'00 / T	. 1				

Difference equations - first and second order, Introduction to Difference equations, Introduction to discrete models-simple examples, Mathematical modelling through difference equations in economics, finance, population dynamics, genetics and other real world problems.

Unit –III	09 Hrs
Markov modelling:	
Mathematical foundations of Markov chains, application of Markov Modelling to problems.	
Unit –IV	09 Hrs
Modelling through graphs:	
Graph theory concepts, Modelling situations through different types of graphs.	
Unit –V	09 Hrs
Variational Problem and Dynamic Programming.	

Optimization principles and techniques, Mathematical models of variational problem and dynamic programming, Problems with applications.

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Explore the fundamental concepts of mathematical models arising in various fields						
	engineering.						
CO2: Apply the knowledge and skills of discrete and continuous models to understand various typ							
	of analysis.						
CO3:	Analyze the appropriate mathematical model to solve the real world problem and to optimize						
	the solution.						
CO4:	Distinguish the overall knowledge gained to demonstrate the problems arising in many						
	practical situations.						
Refere	ence Books						

RV College of Engineering[®]

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

- 1Mathematical Modeling, J. N. Kapur, 1st Edition, 1998, New Age International, New Delhi, ISBN:
81-224-0006-X.
- 2 Mathematical Modeling: Models, Analysis and Applications, Sandip Banerjee, 2014, Chapman and Hall/CRC Textbook, ISBN 9781439854518.
- **3** Case studies in mathematical modeling, D. J. G. James and J. J. Mcdonald, 1981, Stanly Thames, Cheltonham, ISBN: 0470271779, 9780470271773.
- **4** Modeling with difference equations, D. N. Burghes, M. S. Borrie, Ellis Harwood, 1981, ISBN 13: 9780853122869.

RU	JBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
M	AXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)							
Q. NO.	CONTENTS	MARKS						
PART A								
1	Objective type questions covering entire syllabus							
PART B (Maximum	n of TWO Sub-divisions only; wherein one sub division will be a d	caselet in the related topics)						
2	Unit 1 : (Compulsory)	16						
3 & 4	Unit 2 : Question 3 or 4	16						
5&6	Unit 3 : Question 5 or 6	16						
7&8	Unit 4 : Question 7 or 8	16						
9 & 10 Unit 5: Question 9 or 10 1								
TOTAL		100						

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

High-3: Medium-2: Low-1

MA Course Code Credits: L: T:P Total Hours Course Learning Objectiv	ATI C : :	HEMATICS Category: INS MA266TEV 3:0:0	FOR (T) STITU (Ele C)	QUANTUM C heory) UTIONAL ELF ective F) IE	OM ECT	PUTING IVE 100 Marks	
Course Code Credits: L: T:P Total Hours Course Learning Objectiv	: : :	Category: INS MA266TEV 3:0:0	(T) STITU (Ele C)	heory) UTIONAL ELF ective F) IE	ECT	IVE	
Course Code Credits: L: T:P Total Hours Course Learning Objectiv	: : :	Category: INS MA266TEV 3:0:0	STITI (Ele	UTIONAL ELF ective F) IE	ECT	IVE	
Course CodeCredits: L: T:PTotal HoursCourse Learning Objective	:	MA266TEV 3:0:0	(Ele	ective F) IE	•	100 Marks	
Course Code Credits: L: T:P Total Hours Course Learning Objectiv	:	MA266TEV 3:0:0		IE	•	100 Marks	
Credits: L: T:P Total Hours Course Learning Objectiv	:	3:0:0	6.1		•		
Total Hours Course Learning Objectiv	:		51	EE	:	100 Marks	
Course Learning Objectiv		45L	SI	EE Duration	:	3.00 Hours	
	ves:	The students	will t	be able to			
1	Un	derstand the b	asic p	principles of Qua	antui	n Computing.	
2	Us	e the concepts	of Q	uantum gates to	buil	d quantum algorithms	
3	Ap fiel	ply the Quant lds.	um al	lgorithms to solv	ve the	e problems arising in v	various
4	De	monstrate the	pract	ical importance	of Q	uantum computing.	
		U	nit-I				09 Hrs
Introduction to Quantum	Co	mputing:					
Quantum superposition, Qu	ibits	s, Linear algeb	ora foi	r quantum comp	uting	g, Inner products and	Fensor
products of vector spaces, (Qua	ntum states in	Hilb	ert space, The B	loch	sphere, Generalized	
measurements, No-cioning theorem.							
Organitaria Catago	Ouentum Cetes:						
Universal set of getes, quer		a airauita Dir	o for	malian aunam	ogitic	n of states antenglam	ant Dita
and Oubits Oubit operation		Jadamard Cat	ac 101	Mansin, superpo) Got	$\mathbf{z} = \mathbf{z} \mathbf{z}$	Ouentum
Circuit Composition Basic	18, 1 Ou	antum circuits	c, Cr	NOT Gale, Fliase	Gai	e, Z-1 decomposition	, Quantum
, Dusie	ד	Uni	t –III	[09 Hrs
Ouantum Algorithm - I:							1
Deutsch Algorithm, Deutsc	h-J	ozsa Algorith	m, Be	ernstein-Vazarar	ni Al	gorithm, Simon perio	dicity
algorithm, Phase estimation	n alg	gorithm, Quar	ntum 1	Fourier transform	m.		-
Unit –IV 09 Hrs							
Quantum Algorithm - II:							
Grover search algorithm, Shor quantum factoring algorithm, Harrow-Hassidim-Lloyd (HHL) algorithm							
for solving linear system problems.							
		Un	it –V				09 Hrs
Applications of Quantum Computing: Application to: order-finding, discrete logarithm, quantum counting, Boolean satisfiability problems(SAT), graph theory problems.							
· - · · ·							

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Explore the fundamental concepts of quantum computing.						
CO2:	Apply the knowledge and skills of quantum computing to understand various types of problems arising in various fields engineering						
CO3:	Analyze the appropriate quantum algorithm to solve the real-world problem and to optimize the solution.						

CO4: Distinguish the overall knowledge gained to demonstrate the problems arising in many practical situations.

Re	Reference Books					
1	An introduction to Quantum Computing, Phillip Kaye, Raymond Laflamme, 2007, Oxford					
Ŧ	University press.					
2	Quantum Computing for Everyone, Chris Bernhardt, 2020, The MIT Press, Cambridge.					
2	Quantum Computation and Quantum Information, M. A. Nielsen & I. Chuang, 2013, Cambridge					
3	University Press.					
4	Quantum Computing for the quantum curious, Cirian Hughes et. al., 2021, Springer, ISBN 978-3-					
4	030-61600-7.					
L	Concise guide to quantum computing, Sergei Kurgalin, Sergei Borzunov, 2021, Springer, ISBN					
5	978-3-030-65051-3, ISBN 978-3-030-65052-0 (eBook).					

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)						
	COMPONENTS	MARKS				
1.	1. QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.					
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40				
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40				
MA	AXIMUM MARKS FOR THE CIE THEORY	100				

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)

nebine							
Q. NO.	CONTENTS	MARKS					
PART A							
1	20						
PART B							
(Maximun	n of TWO Sub-divisions only; wherein one sub division will be a c	caselet in the related topics)					
2	Unit 1: (Compulsory)	16					
3 & 4	Unit 2: Question 3 or 4	16					
5&6	Unit 3: Question 5 or 6	16					
7 & 8	Unit 4: Question 7 or 8	16					
9 & 10	Unit 5: Question 9 or 10	16					
TOTAL		100					

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2

CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	1	-	-	3

High-3: Medium-2: Low-1

Semester: VI							
		Applied Psy	chol	ogy for Engineers			
		(Theory - Inst	ituti	onal Electives – I))			
Course Code	:	HS266TEW		CIE	:	100 Marks	
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks	
Total Hours	:	45 Hrs		SEE Duration	:	3 Hours	
		Unit-I				08 Hrs	
Introduction to Psychol	logy: 1	Definition and g	oals	of Psychology: Role of a	Psycho	logist in the	
Society: Today's Perspe	ctives	(Branches of ps	ycho	logy- Clinical, Industrial)	. Psych	odynamic,	
Behavioristic, Cognitive	, Huma	anistic, Psycholo	ogica	al Research and Methods t	o study	Human Behavior:	
Experimental, Observati	on, Qu	estionnaire and	Clin	ical Method.			
		Unit – II				08 Hrs	
Intelligence and Aptitu	de: Co	ncept and defin	ition	of Intelligence and Aptitu	ude, Na	ture of	
Intelligence. Theories of	Intelli	gence – Spearm	an, '	Thurston, Guilford Vernor	n. Char	acteristics	
of Intelligence tests, Ty	pes of	tests. Measurem	ent	of Intelligence and Aptitud	le, Con	cept of IQ,	
Measurement of Multiple	Measurement of Multiple Intelligence – Fluid and Crystallized Intelligence.						
Unit –III 10 Hrs							
Personality: Concept and definition of personality, Approaches of personality- psychoanalytical,							
Socio- Cultural, Interper	sonal a	and developmen	tal, I	Humanistic, Behaviorist, T	'rait and	d type approaches.	
Assessment of Personali	ty: Sel	f- report measur	es o	f Personality, Questionnai	res, Ra	ting Scales and	
Projective techniques, its	s Chara	cteristics, advar	itage	es & limitations, examples	. Behav	vioral Assessment.	
		Unit –IV				10 Hrs	
Learning: Definition, C	onditio	oning – Classica	l Co	nditioning, Basics of Clas	sical C	onditioning	
(Pavlov), the process of I	Extinct	tion, Discrimina	tion	and Generalization. Operation	ant Con	ditioning (Skinner	
expt). The basics of oper	ant co	nditioning, Sche	dule	es of reinforcement. Cogni	tive – S	Social approaches	
to learning – Latent Lear	ming, (Observational Lo	earni	ng, Trial and Error Metho	d, Insig	ghtful Learning.	
		Unit –V				09 Hrs	
Application of Psychology	ogy in	Working Envi	ronn	nent: The present scenario	o of info	ormation	
technology, the role of p	sychol	ogist in the orga	niza	tion, Selection and Training	ng of P	sychology	
Professionals to work in	the fie	ld of Informatic	n Te	echnology. Psychological	Stress	a. Stress-	
Definition, Symptoms of Stress, Extreme products of stress v s Burnout, Work Place Trauma. Causes							
of Stress – Job related causes of stress.Sources of Frustration, Stress and Job Performance, Stress							
Vulnerability-Stress threshold, perceived control. Type A and Type B.Psychological Counseling -							
Need for Counseling, Ty	pes – I	Directed, Non- I	Direc	ted, Participative Counsel	ing.		
Course Outcomes: Afte	er com	pleting the cou	rse,	the students will be able	to:-		
CO1 Describe the heat	- 41	mine muineimles	and.	anneaute of emplied mercels	a1a are /	a there we lote to	

CO1	Describe the basic theories, principles, and concepts of applied psychology as they relate to
	behaviors and mental processes.
CO2	Define learning and compare and contrast the factors that cognitive, behavioral,
	and Humanistic theorists believe influence the learning process.
CO3	Develop understanding of psychological attributes such as intelligence, aptitude, creativity,
	resulting in their enhancement and apply effective strategies for self-management and self-
	improvement.
CO4	Apply the theories into their own and others' lives in order to better understand their
	personalities and experiences.
CO5	Understand the application of psychology in engineering and technology and develop a route
	to accomplish goals in their work environment.

Reference Books

1.	Understanding Psychology Feldman R. S, IV edition, (1996) McGraw Hill India
2.	Psychology Robert A. Baron, III edition (1995) Prentice Hall India.
3.	Organizational Behaviour , Stephen P Robbins Pearson Education Publications, 13th Edition, ISBN $- 81-317 - 1132 - 3$
4.	Organisational Behaviour : Human Behaviour at Work ,John W.Newstrem and Keith Davis. Tata McGraw Hill India, 10th Edition, ISBN 0-07-046504-5
5	Psychology-themes and variations, Wayne Weiten, IV edition, Brooks / Cole Publishing Co.

RU	JBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
MA	AXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	CONTENTS	MARKS				
PART A						
1	Objective type questions covering entire syllabus	20				
PART B (Maximum	of TWO Sub-divisions only; wherein one sub division will be a ca	aselet in the related topics)				
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5&6	Unit 3 : Question 5 or 6	16				
7&8	Unit 4 : Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
TOTAL		100				

Semester: VI						
Universal Human Values - II						
(Institutional Electives – I)						
: HS266TEY	CIE	•	100 Ma			

Course Code	:	HS266TEY	CIE	:	100 Marks
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks
Total Hours	:	42L	SEE Duration	:	3.00 Hours

Unit-I	10 Hrs				
Introduction-Basic Human Aspiration, its fulfillment through All-encompassing Resolution.	The basic				
human aspirations and their fulfillment through Right understanding and Resolution, Right					
understanding and Resolution are the activities of the Self, Self is central to Human Existenc	e; All-				
encompassing Resolution for a Human Being, its details and solution of problems in the light	of				
Resolution.					
Unit – II	10 Hrs				
Right Understanding (Knowing)- Knower, Known & the Process. The domain of right under	standing				
starts from understanding the human being (the knower, the experiencer and the doer); and ex	tends up				
to understanding nature/existence - its interconnectedness and co-existence; and finally under	rstanding				
the role of human being in existence (human conduct).					
Unit –III	08 Hrs				
Understanding Existence (including Nature). A comprehensive understanding (knowledge) about the					
existence, which certainly includes the Nature. The need and the process of inner evolution (through					
self-exploration, self-awareness and self-evaluation)- particularly awakening to activities of the Self:					
Realization, Understanding and Contemplation in the Self (Realization of Co-Existence, Understanding					
of Harmony in Nature and Contemplation of Participation of Human in this harmony/ order leading to					
comprehensive knowledge about the existence).					
Unit –IV	08 Hrs				
Understanding Human Being. Understanding the human being comprehensively is the first st	ep and the				
core theme of this course; human being as co-existence of the self and the body, the activities and					
potentialities of the self, Reasons for harmony/contradiction in the self.					
Unit –V	08 Hrs				
Understanding Human Conduct, All-encompassing Resolution & Holistic Way of Living.					
Understanding Human Conduct, Understanding different aspects of All-encompassing Resolution					
(understanding, wisdom, science etc.), Holistic way of living for Human Being with All-encompassing					
Resolution covering all four dimensions of human endeavour viz., realization, thought, behavior and					
work (participation in the larger order) leading to harmony at all levels from self to Nature an	d entire				
Existence.					

Course	Course Outcomes: After completion of the course the students will be able to			
CO1	Understand the basic human aspiration with program of its fulfilment and meaning of resolution in the complete expanse of human living.			
CO2	Understand human being in depth and see how self is central to human being			
CO3	Understand existence in depth and see how coexistence is central to existence			
CO4	Understand human conduct and the holistic way of living leading to human tradition			

Reference Books			
1	A foundation course in human values and professional ethics, R. R. Gaur, R Asthana, G P		
1	Bagaria, 2nd revised Edition, excel books, New Delhi – 2019, ISN 978-93-87034-47-1		

2	Avartansheel Arthshastra, A Nagraj, Divya Path Sansthan, Amarkantak, India, ISBN 978-8-174-46781-2
3	Economy of Performance- a quest for social order based on non – violence, J C Kumarappa, 2010, Sarva-Seva-Sangh-Prakashan, Varanasi, India
4	Energy and Equity, Ivan Illich, 1974, The Trinity Press, Worcester & Harper Collins, USA, ISBN, 0060803274, 9780060803278

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)

Q. NO.	CONTENTS	MARKS			
PART A	PART A				
1	Objective type questions covering entire syllabus	20			
PART B (Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5&6	Unit 3 : Question 5 or 6	16			
7&8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
TOTAL		100			

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40		
MA	AXIMUM MARKS FOR THE CIE THEORY	100		

	Semester: VII					
	EXTENSIVE SURVEY PROJECT					
Category: Professional Core Course						
	Stream: Practice					
Course Code	:	CV367P		CIE	:	50
Credits: L:T:P	:	0:0:2		SEE		50
Total Hours	:	39L		SEE Duration	:	3.0 Hours

New Tank Project;

- 1. Survey and preparation of drawing for longitudinal and Cross section of bund
- 2. Survey and preparation of drawing for Block levels at waste Weir Site.
- 3. Survey and preparation of drawing for Capacity Contours.
- 4. Survey and preparation of drawing for Initial Alignment of Channel.
- 5. Survey and preparation of drawing for Final Alignment of Channel.

Water Supply & Sanitary Project - conduction of survey, preparation of drawings;

1. Water Supply Project. a. Survey and preparation of maps for water supply to the village b. Longitudinal and cross sections along the alignment of pipeline c. Calculation of cutting and filling along the alignment of pipeline

2. Sanitary Project.

Village survey & preparation of drawings for waste water drainage

Highway Project;

1. Initial Alignment of Highway.

2. Final Alignment of Highway.

Preparation of finalized drawings and related calculations of cutting and filling for the following projects

- 1. New Tank Project
- 2. Water Supply & Sanitary Project

3.Highway Project

Course Outcomes: After completing the course, the students will be able to: -				
CO 1	Understand the different surveys required for various Civil Engineering projects			
CO 2	Apply the various equipments and methods of survey for different civil engineering projects			
CO 3	Analyze the field data and prepare the drawings based on the survey field work			
CO 4	Evaluate and calculate the bill of quantities for various works based on the survey and			
	drawings prepared			

ASSESSMENT AND EVALUATION PATTERN			
	CIE	SEE	
WEIGHTAGE	50%	50%	
PRACTICALS	50	50	
TOTAL MARKS FOR THE COURSE	50	50	

.....

-

Curriculum Design Process

Academic Planning and Implementation

Process for Course Outcome Attainment

Final CO Attainment Process

Go, change the world

Program Outcomes Attainment Process

Knowledge and Attitude Profile (WK)

- **WK1:** A systematic, theory-based understanding of the natural sciences applicable to the discipline and awareness of relevant social sciences.
- WK2: Conceptually-based mathematics, numerical analysis, data analysis, statistics and formal aspects of computer and information science to support detailed analysis and modelling applicable to the discipline.
- **WK3:** A systematic, theory-based formulation of engineering fundamentals required in the engineering discipline.
- **WK4:** Engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for the accepted practice areas in the engineering discipline; much is at the forefront of the discipline.
- WK5: Knowledge, including efficient resource use, environmental impacts, whole-life cost, re-use of resources, net zero carbon, and similar concepts, that supports engineering design and operations in a practice area.
- WK6: Knowledge of engineering practice (technology) in the practice areas in the engineering discipline.
- WK7: Knowledge of the role of engineering in society and identified issues in engineering practice in the discipline, such as the professional responsibility of an engineer to public safety and sustainable development.
- **WK8:** Engagement with selected knowledge in the current research literature of the discipline, awareness of the power of critical thinking and creative approaches to evaluate emerging issues.
- **WK9:** Ethics, inclusive behaviour and conduct. Knowledge of professional ethics, responsibilities, and norms of engineering practice. Awareness of the need for diversity by reason of ethnicity, gender, age, physical ability etc. with mutual understanding and respect, and of inclusive attitudes.

INNER BACK COVER PAGE

New Program Outcomes(PO)

- PO1: Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization as specified in WK1 to WK4 respectively to develop to the solution of complex engineering problems.
- ➢ PO2: Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development. (WK1 to WK4)
- PO3: Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required. (WK5)
- PO4: Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions. (WK8).
- PO5: Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems. (WK2 and WK6)
- PO6: The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment. (WK1, WK5, and WK7).
- PO7: Ethics: Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)
- PO8: Individual and Collaborative Team work: Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.
- PO9: Communication: Communicate effectively and inclusively within the community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences
- PO10: Project Management and Finance: Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.
- PO11: Life-Long Learning: Recognize the need for, and have the preparation and ability for i) independent and life-long learning ii) adaptability to new and emerging technologies and iii) critical thinking in the broadest context of technological change. (WK8)

INNOVATIVE TEAMS OF RVCE

Ashwa Mobility Foundation (AMF): Designs and fabricates Formula-themed race cars and mobility solutions to address urban transportation issues.

Astra Robotics Team: Focuses on designing and building application-specific robots.

Coding Club: Helps students gain coding skills and succeed in competitions like GSoC and ACM-ICPC.

Entrepreneurship Development Cell (E-Cell): Promotes entrepreneurship through workshops, speaker sessions, and mentoring for startups.

Frequency Club Team: Works on software and hardware, emphasizing AI and Machine Learning.

Team Garuda: Develops a supermileage urban concept electric car and E-mobility products.

Team Jatayu: Builds low-cost UAVs with autonomous capabilities for various tasks.

Solar Car Team: Aims to create a solar electric vehicle for sustainable transportation.

Team Antariksh: Focuses on space technology and the development of operational rockets.

Team Chimera: Builds a Formula Electric Car through R&D in E-Mobility.

Helios Racing Team: Designs and tests All-Terrain Vehicles, participating in SAE's BAJA competitions.

Team Hydra: Develops autonomous underwater vehicles for tasks like water purification.

Team Krushi: Creates low-cost farming equipment to assist farmers in cultivation and harvesting.

Team Vyoma: Designs and tests radio-controlled aircraft and UAVs.

Team Dhruva: Engages in astronomy-related activities and collaborates on projects with organizations like ICTS and IIA.

Ham Club: Promotes Amateur Radio and explores technical innovations in communications, especially for disaster response.

Cultural Activity Teams

- AALAP (Music club)
- DEBSOC (Debating society)
- CARV (Dramatics club)
- FOOTPRINTS (Dance club)
- QUIZCORP (Quizzing society)
- ROTARACT (Social welfare club)
- RAAG (Youth club) EVOKE (Fashion team)
- f/6.3 (Photography club) 10. CARV ACCESS (Film-making

NSS of RVCE

NCC of RVCE