

Civil Engineering

Bachelor of Engineering (B.E)

Scheme And Syllabus Of V & VI Semester (2022 Scheme)

B.E. Programs: AS, BT, CH, CS, CS - AI, CS - CD, CS - CY, CV, EC, EE, ET, IM, IS, ME.

M. Tech (13) MCA, M.Sc. (Engg.)

Ph.D. Programs: All Departments are recognized as Research Centres by VTU Except

AI & AS

2024

NIRF RANKING IN ENGINEERING (2024) TIMES HIGHER EDUCATION WORLD UNIVERSITY

1501+

TIMES HIGHER EDUCATION WORLD UNIVERSITY

501-600

EDUFUTURE EXCELLENCE AWARD

BEST PRIVATE ENGINEERING UNIVERSITY (SOUTH)

BY ZEE DIGITAL

1001+

SUBJECT RANKING (ENGINEERING) 801+

SUBJECT RANKING (COMPUTER SCIENCE)

IIRF 2023 ENGINEERING RANKING INDIA

NATIONAL RANK-10 STATE RANK - 2 ZONE RANK - 5

QS-IGUAGE DIAMOND UNIVERSITY RATING (2021-2024)

Centers of Excellence

212

Publications On Web Of Science 669
Publications Scopus
(2023 - 24)

Centers of

Competence

1093

Skill Based Laboratories Across Four Semesters 70
Patents Filed

39
Patents Granted

61
Published Patents

CURRICULUM STRUCTURE

61 CREDITS
PROFESSIONAL
CORES (PC)

23 CREDITS
BASIC SCIENCE

22 CREDITS ENGINEERING SCIENCE 18 CREDITS PROJECT WORK /

12 CREDITS*
OTHER ELECTIVES

12 CREDITS PROFESSIONAL ELECTIVES 12 CREDITS HUMANITIES & SOCIAL SCIENCE

160 CREDITS TOTAL

*ABILITY ENHANCEMENT COURSES (AEC), UNIVERSAL HUMAN VALUES (UHV), INDIAN KNOWLEDGE SYSTEM (IKS), YOGA.

MOUS: 90+WITH
INSDUSTRIES / ACADEMIC
INSTITUTIONS IN INDIA & ABROAD

EXECUTED MORE THAN RS.40 CRORES WORTH SPONSORED RESEARCH PROJECTS & CONSULTANCY WORKS SINCE 3 YEARS

Civil Engineering

Bachelor of Engineering (B.E)

Scheme And Syllabus Of V & VI Semester (2022 Scheme)

B.E. Programs: AS, BT, CH, CS, CS - AI, CS - CD, CS - CY, CV, EC, EE, ET, IM, IS, ME.

M. Tech (13) MCA, M.Sc. (Engg.)

Ph.D. Programs: All Departments are recognized as Research Centres by VTU Except

AI & AS

2024

CIVIL ENGINEERING

DEPARTMENT VISION

Excel in Education, Research and Consultancy in Civil Engineering with emphasis on Sustainable Development

DEPARTMENT MISSION

- Disseminating and integrating the knowledge of civil Engineering and allied fields
- Enhancing industry-institute interaction leading to interdisciplinary research.
- Imbibing wide-range of skills in cutting-edge technology for sustainable development.
- Motivate entrepreneurship and professional ethics to serve the society.

PROGRAM EDUCATIONAL OBJECTIVES

After successful completion of the program, the graduates will be able to

PEO1: Successfully address technological and managerial challenges.

PEO2: Professionally design and execute Civil Engineering projects.

PEO3: Pursue advanced education, research and continue life-long learning process to remain active professionals.

PEO4: Play key roles in addressing societal needs through interdisciplinary approach.

PROGRAM SPECIFIC OUTCOMES

- Apply knowledge of fundamental aspects to analyze and design civil engineering structures.
- Provide sustainable solutions to civil engineering problems.
- Employ codal provisions to arrive at comprehensive solutions to address societal needs
- Exhibit communication and teamwork skills.

LEAD SOCIETY

American Society of Civil Engineers - ASCE

ABBREVIATIONS

Sl.	Abbreviation	Meaning						
No.								
1.	VTU	Visvesvaraya Technological University						
2.	BS	Basic Sciences						
	CIE	Continuous Internal Evaluation						
3.								
4.	SEE	Semester End Examination						
5.	PE	Professional Core Elective						
6.	GE	Global Elective						
7.	HSS	Humanities and Social Sciences						
8.	PY	Physics						
9.	CY	Chemistry						
10.	MA	Mathematics						
11.	AS	Aerospace Engineering						
12.	AI & ML	Artificial Intelligence and Machine Learning						
13.	BT	Biotechnology						
14.	CH	Chemical Engineering						
15.	CS	Computer Science and Engineering						
16.	CV	Civil Engineering						
17.	EC	Electronics and Communication Engineering						
18.	EE	Electrical and Electronics Engineering						
19.	EI	Electronics and Instrumentation Engineering						
20.	ET	Electronics and Telecommunication Engineering						
21.	IM	Industrial Engineering and Management						
22.	IS	Information Science and Engineering						
23.	ME	Mechanical Engineering						

INDEX

	THIRD YEAR COURSES								
S1. No.	Course Code	Name of the Course	Page No.						
1.	HS351AT	Entrepreneurship and Intellectual Property Rights	1-3						
2.	CV352AI	Design And Drawing of RCC Structures	4-5						
3.	CV353AI	Highway Engineering	6-7						
4.	CV354AT	Hydrology And Irrigation	8-9						
5.	CV255TBA	Geoinformatics	10-11						
6.	CV255TBB	Traffic Engineering	12-13						
7.	CV255TBC	Alternate Building Materials And Technologies	14-15						
8.	CV255TBD	Bridge Engineering	16-17						
9.	CV255TBE	Air Pollution And Control	18-19						
10.	HS261AT	Principles of Management and Economics	24-26						
11.	CV362AI	Water And Waste Water Engineering	27-29						
12.	CV363AI	Geotechnical Engineering	30-32						
13.	CV364AT	Design And Drawing of Steel Structures	33-34						
14.	CV365TDA	Advanced Concrete Technology	35-36						
15.	CV365TDB	Transportation Engineering	37-38						
16.	CV365TDC	Structural Masonry	39-40						
17.	CV365TDD	Disaster Management	41-42						
18.	CV365TDE	Integrated Watershed Management	43-44						
19.	AS266TEA	Fundamentals Of Aerospace Engineering	45-46						
20.	BT266TEB	Bioinformatics	47-48						
21.	CH266TEC	Industrial Safety Engineering	49-50						
22.	CS266TED	Robotics Process Automation	51-52						
23.	CV266TEE	Intelligent Transport Systems	53-54						
24.	CV266TEF	Integrated Health Monitoring of Structures	55-56						

25.	CM266TEG	Advanced Energy Storage for E-Mobility	57-58
23.	T CO C COTTY		70.50
26.	EC266TEH	Human Machine Interface (HMI)	59-60
27.	EE266TEJ	Energy Auditing and Standards	61-62
28.	EI266TEK	Biomedical Instrumentation	63-64
29.	ET266TEM	Telecommunication Systems	65-66
30.	ET266TEN	Mobile Communication Networks and Standards	67-68
31.	IS266TEO	Mobile Application Development	69-70
32.	IM266TEQ	Elements of Financial Management	71-72
33.	IM266TER	Optimization Techniques	73-74
34.	ME266TES	Automotive Mechatronics	75-76
35.	MA266TEU	Mathematical Modelling	77-78
36.	MA266TEV	Mathematics of Quantum Computing	79-80
37.	HS266TEW	Applied Psychology for Engineers	81-82
38	HS266TEY	Universal Human Values	83-84
39	CV367P	Extensive survey project	85

2022 Scheme Credit Structure: V Semester

					V	SEM	EST	ER						
Sl. No. Course		Course Title	Credi Allocat				BoS	Category	CIE Duration	Max Marks CIE		SEE Duration	Max Marks SEE	
	Code		L	T	P	Total			(H)	Theory	Lab	(H)	Theory	Lab
1	HS351TA	Entrepreneurship and Intellectual Property Rights	3	0	0	3	HSS	Theory	1.5	100	****	3	100	****
2	CV352IA	Design and Drawing of RCC Structures	3	0	1	4	CV	Theory + Lab	1.5	100	50	3	100	50
3	CV353IA	Highway Engineering	3	0	1	4	CV	Theory + Lab	1.5	100	50	3	100	50
4	CV354TA	Hydrology and Irrigation	3	1	0	4	CV	Theory	1.5	100	****	3	100	****
5	CV255TBX	Professional Core Elective-I (Group-B)	3	0	0	3	CV	Theory	1.5	100	****	3	100	****
6	CV256TCX	Professional Core Elective-II (Group C)	0	0	2	2	CV	NPTEL	****	****	****	3	50	****
						20								

GROUP-B: Professional Core Electives

	GROUP-B								
Sl. No.	Course Code	Course Title							
1	CV255TBA	Geo-Informatics							
2	CV255TBB	Traffic Engineering							
3	CV255TBC	Alternate Building Materials and Technologies							
4	CV255TBD	Bridge Engineering							
5	CV255TBE	Air Pollution and Control							

GROUP-C: V Sem: Professional Core Electives (NPTEL)

	GROUP-C								
Sl. No.	Course Code	Course Title							
1	CV256TCA	Earthquake Resistant Design of Foundations							
2	CV256TCB	Expansive Soil							
3	CV256TCC	Introduction to Accounting and Finance for Civil Engineers							
4	CV256TCD	Laboratory Practices in Earth Sciences: Landscape Mapping							
5	CV256TCE	निर्माण प्रबंधि (Construction Management) के निदांत[Nirman prabandhan (Construction Management) ke Siddhant]							
6	CV256TCF	Plastic Waste Management							
7	CV256TCG	Digital Land Surveying and Mapping							

2022 Scheme Credit Structure: VI Semester

	VI SEMESTER													
Sl. No.	Course	Course Title	Cr	Credit Alloca			BoS	Category	CIE Duration	Max Marks CIE		SEE Duration	Max Marks SEE	
	Code		L	T	P	Total			(H)	Theory	Lab	(H)	Theory	Lab
1	HS261TA	Principles of Management and Economics	3	0	0	3	HS	Theory	1.5	100	****	3	100	****
2	CV362IA	Water and Waste water Engineering	3	0	1	4	CV	Theory + Practice	1.5	100	50	3	100	50
3	CV363IA	Geotechnical Engineering	3	0	1	4	CV	Theory + Practice	1.5	100	50	3	100	50
4	CV364TA	Design and Drawing of Steel Structures	3	1	0	4	CV	Theory	1.5	100	***	3	100	****
5	CV365TDX	Professional Core Elective III (Group- D)	3	0	0	3	XX	Theory	1.5	100	***	3	100	****
6	XX366TEX	Institutional Electives – I (Group E)	3	0	0	3	XX	Theory	***	***	****	3	100	****
7	CV367P	Extensive Survey Project	0	0	3	3	CV	Project	2	***	100	3	***	100

RV College of Engineering®
Mysore Road, RV Vidyaniketan Post,
Bengaluru - 560059, Karnataka, India

	VI Sem: Professional Elective Group-D									
Sl. No.	Course Code	Course Title								
1	CV365TDA	Advanced Concrete Technology								
2	CV365TDB	Transportation Engineering								
3	CV365TDC	Structural Masonry								
4	CV365TDD	Disaster Management								
5	CV365TDE	Integrated Watershed Management								

	GROUP-E (3 Credit Courses without prerequisites)									
Sl. No.	Course Code	BoS	Course Title							
1	AS266TEA	AS	Fundamentals of Aerospace Engineering							
2	BT266TEB	BT	Healthcare Analytics							
3	CH266TEC	СН	Industrial Safety Engineering							
4	CS266TED	CS	Robotics Process Automation							
5	CV266TEE	CV	Intelligent Transport Systems							
6	CV266TEF	CV	Integrated Health Monitoring of Structures							
7	CM266TEG	CM	Advanced Energy Storage for E-Mobility							
8	EC266TEH	EC	Human Machine Interface(HMI)							
9	EE266TEJ	EE	Energy Auditing and Standards							
10	EI266TEK	EI	Biomedical Instrumentation							
11	ET266TEM	ET	Telecommunication Systems							
12	ET266TEN	ET	Mobile Communication Networks and Standards							
13	IS266TEO	IS	Mobile Application Development							
14	IM266TEQ	IM	Elements of Financial Management							
15	IM266TER	IM	Optimization Techniques							
16	ME266TES	ME	Automotive Mechatronics							
17	MA266TEU	MA	Mathematical Modelling							
18	MA266TEV	MA	Mathematics of Quantum Computing							
19	HS266TEW	HS	Applied Psychology for Engineers							
20	HS266TEY	HS	Universal Human Values III							

Semester: V									
Entrepreneurship and Intellectual Property Rights (Theory)									
Course Code	:	HS351TA		CIE	:	100 Marks			
Credits: L: T:P	:	3:0:0		SEE	:	100 Marks			
Total Hours	:	42 L		SEE Duration	:	3 Hours			

Unit-I 08Hrs

Introduction to Entrepreneurship: Definition and Scope of Entrepreneurship, Importance of Entrepreneurship in Engineering Innovation and Economic Growth, Techniques for Identifying Entrepreneurial Opportunities, Types of Entrepreneurs: Innovative, Imitative, Fabian, Characteristics and Traits of Successful Entrepreneurs.

Role in economic development- Emerging Trends in Entrepreneurship, Entrepreneur and Entrepreneurship, characteristics of Entrepreneur, Myths about Entrepreneurship, Entrepreneur vs Intrapreneur, Role of Entrepreneurial Teams

Activities: Case study on Entrepreneurship in Indian Scenario, Ideation Workshops and Hackathons.

Unit – II 08 Hrs

Entrepreneurial Opportunity Evaluation: Identifying Market Opportunities and Trends, Integration of Engineering Principles in Ideation Process, Cross-Disciplinary Collaboration for Technological Innovation, Assessing Market Feasibility and Demand Analysis, Evaluating Technical Feasibility: Prototype Development, Proof of Concept, Financial Feasibility Analysis: Cost Estimation, Revenue Projection, Break-Even Analysis.

Business Planning and Strategy Development: Elements of a Business Plan, Executive Summary, Company Description, Market Analysis, writing a Business Plan: Structure and Components, Strategic Planning: Vision, Mission, Goals, Objectives, SWOC Analysis, Competitive Strategy: Porter's Generic Strategies, Differentiation, Cost Leadership, Focus Strategy, Growth Strategies: Organic Growth, Mergers and Acquisitions, Strategic Alliances

Activities: Writing a Business Plan on given templates, Developing Business Models and Prototypes Based on Generated Ideas


Unit –III 08Hrs

Entrepreneurial Marketing and Sales: Basics of Marketing: Product, Price, Place, Promotion (4Ps), Market Segmentation, Targeting, and Positioning (STP), Branding and Product Development Strategies, Creating a Unique Value Proposition (UVP) Digital Marketing: Social Media Marketing, Content Marketing, SEO, SEM, Sales Techniques and Customer Relationship Management (CRM).

Entrepreneurial Finance and Resource Management: Sources of Financing: Equity Financing, Debt Financing, Venture Capital, Angel Investors, Crowdfunding, Financial Management: Budgeting, Cash Flow Management, Financial Statements Analysis, Risk Management and Insurance, Human Resource Management: Recruitment, Training, Performance Evaluation, Legal and Ethical Issues in Entrepreneurship: Intellectual Property Rights, Contracts, Corporate Governance Activities:Case

Studies and Practical Applications

Unit-IV	1
Introduction to IP: Types of Intellectual Property	09Hrs
Patents: Introduction, Scope and salient features of patent; patentable and non-patentable inventions,	
Patent Procedure - Overview, Transfer of Patent Rights; protection of traditional knowledge,	
Infringement of patents and remedy, Case studies, Patent Search and Patent Drafting, Commercialization	
and Valuation of IP.	
Trade Marks: Concept, function and different kinds and forms of Trade marks, Registrable and non-	
registrable marks. Registration of Trade Mark; Deceptive similarity;	

Trans	fer of Trade Mark, ECO Label, Passing off, Infringement of Trade Mark with Case studies and	
Reme	dies.	
	Unit –V	09 Hrs
Trad	e Secrets: Definition, Significance, Tools to protect Trade secrets in India.	
Indus	trial Design: Introduction of Industrial Designs Features of Industrial, Design. Procedure for obt	aining Design
Protec	ction, Revocation, Infringement and Remedies, Case studies.	
Copy	Right: Introduction, Nature and scope, Rights conferred by copy right, Copy right protection, tra	ansfer of copy
	, right of broad casting organizations and performer's rights, Exceptions of Copy	
Right,	Infringement of Copy Right with case studies.	
Course	e Outcomes:	
After g	oing through this course, the student will be able to	
	Understand the concepts of entrepreneurship and cultivate essential attributes to become an entrepred Intrapreneur and demonstrate skills such as problem solving, team building, creativity and leadersh	
	Comprehend the process of opportunity identification of market potential and customers while compelling value proposition solutions.	e developing a
	Analyse and refine business models to ensure sustainability and profitability and build a validate practice venture idea and prepare business plan, conduct financial analysis and feasibility analysis to assess the financial viability of a venture.	d MVP of their
	Apply insights into the strategies and methods employed to attain a range of benefits from these I an investible pitch deck of their practice venture to attract stakeholders	Ps and deliver
CO5		
	Knowledge and competence related exposure to the various Legal issues pertaining to	
	Intellectual Property Rights with the utility in engineering perspectives.	

Ref	erence Books					
1.	Donald F. Kuratko,"Entrepreneurship: Theory, Process, and Practice", South-Western Pub publishers, 10th edition, 2016,978-ISBN-13: 1305576247					
2.	Eric Ries, "The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation to Create Radicall Successful Businesses", Crown Currency Publishers, 1st Edition, 2011, ISBN-13: 978-0307887894.					
3.	Dr B L Wadehra, Law Relating to Intellectual Property, universa Law publishers 05th edition, ISBN: 9789350350300.					
4	Intellectual Property Rights: Unleashing Knowledge Economy, Prabuddha Ganguly, 1st Edition, 2001, Tata McGraw Hill Publishing Company Ltd., New Delhi, ISBN: 0074638602.					

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS	MARKS	
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZMARKS.	20	

2. TESTS: Students will be evaluated in test, descriptive questions with different Complexity levels (Revised Bloom's Taxonomy Levels:Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	
--	--

		EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar / presentation / demonstration (20) ADDING UPTO 40 MARKS .	
]	MA	AXIMUM MARKS FOR THE CIE	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	. MARKS				
	PART A				
1	Objective type questions covering entire syllabus 20				
	(Maximum PART B (Maximum of TWO Sub-divisions only) * (Small case lets and case example in one subdivision)				
2	Unit 1: (Compulsory)	16			
3&4	Unit 2: Question 3 or 4	16			
5&6	Unit 3: Question 5 or 6	16			
7&8	Unit 4: Question 7 or 8	16			
9&10	Unit 5: Question 9 or 10	16			

Semester: V							
	Design and Drawing of RCC Structures						
		Categ	gory: Professional (Core Course			
			(Theory and La	ab)			
Course Code	:	CV352IA		CIE	:	100+50 N	Marks
Credits: L:T:P	Credits: L:T:P : 3:0:1 SEE : 100+50 I		100+50 N	Marks			
Total Hours : 40L+26P SEE Duration : 3+3 Hours					rs		
		•	Unit-I	•		•	08 Hrs

Principles of Limit State Design and Ultimate Strength of RC Sections

Philosophy of limit state design, Principle of limit states, Factor of safety, Characteristic and design loads, Characteristic and design strength, General aspects of ultimate strength, Stress block parameters for limit state of collapse, Ultimate flexural strength of rectangular sections-singly reinforced and doubly reinforced, Ultimate flexural strength of flanged sections, Ultimate torsional strength of RC sections, Concept of development length and anchorage, Analysis problems using IS 456:2000

Unit – II 08 Hrs

Design of beams

Practical requirements of RCC beam; size, cover and spacing of bars, Design of rectangular and flanged RCC beams for flexure, shear, deflection, Anchorage, etc. (Simply supported and Cantilever beams only) using IS 456:2000 and SP16

Unit –III 08 Hrs

Design of Slabs

General considerations for design of slabs, Rectangular slabs spanning in one direction, Rectangular slabs spanning in two directions for various boundary conditions, Torsion reinforcement design for two way slabs, Design of simply supported and cantilever slabs as per IS 456:2000.

Unit –IV 08 Hrs

Design of columns

General aspects, effective length of column, loads on columns, slenderness ratio, slender column, Minimum eccentricity, Design of short axially loaded columns, Design of columns subjected to axial load and uni-axial moment. Using IS 456:2000 and SP16.

Unit –V 08 Hrs

Design of stairs

Loading on stairs, Design of doglegged stairs, design of open-well stairs as per IS 456:2000.

Design of Footings

Introduction, Load on footing, Design of square and rectangular isolated footings for axial load and uni-axial moment as per IS 456:2000.

Laboratory

Preparation of salient drawings and schedule of bars adopting the given data:

- 1. Singly and Doubly reinforced beams Simply supported and cantilever beams.
- 2. T- Beam and slab arrangement.
- 3. One-way slab, two-way slab with and without torsion reinforcement.



- 4. Dog legged and Open well staircase.
- 5. Square, rectangular and Circular Isolated column with footing.

Refer	Reference Books			
1.	Reinforced Concrete Design (IS: 456-2000 Principles and Practice), R.N. Pranesh, N. Krishna			
1.	Raju, New Age International (P) Limited, New Delhi, 1st Edition, 2014, ISBN13:9788122414608			
2.	Limit State Design of Reinforced Concrete, Varghese P.C, Eastern Economy Edition, Prentice –			
۷.	Hall of India Pvt Ltd, New Delhi, 2nd Edition, 2004, ISBN 9788120320390			
3.	Design of Reinforced Concrete Structures, Unnikrishnan and DevadasMenon, PHI, New Delhi,			
3.	4th Edition, 2003,ISBN 978-0070495043			
1,	RCC Designs (Reinforced Concrete Structures), Punmia B.C., Ashok Kumar Jain, Arun Kumar			
4.	Jain, Laxmi Publications (P) Ltd, New Delhi, 10th Edition, 2011, ISBN 978-81-318-0942-6			
IS Co	IS Codes			
1	IS 456: 2000, Indian Standard, Plain and Reinforced Concrete – Code of Practice (Fourth Revision),			
1.	BIS, New Delhi, 2000			
2.	SP-16, Design Aids for Reinforced Concrete to IS: 456-1978, BIS, New Delhi, 1997			

Cours	Course Outcomes: After completing the course, the students will be able to:-			
CO1	Apply the philosophy and principles of limit state method and analyze RC sections			
CO2	Analyze and design RC beams and slabs by limit state method as per codal provisions			
CO3	Analyze and design RC columns, stairs and footings by limit state method as per codal provisions			
CO4	Sketch rebar details and calculate the quantity of steel for RC sections as per codal provisions			

#	COMPONENTS	MA RKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	g 20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	,
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	С
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (30 Marks),lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50MARKS	50
MAXI	MUM MARKS FOR THE CIE	150

Semester: V **Highway Engineering Category: Professional Core Course** (Theory and Lab) **Course Code** CV353IA **CIE** 100+50 Marks Credits: L:T:P : 3:0:1 SEE 100+50 Marks **SEE Duration Total Hours** 40L+26P 3+3 Hours Unit-I 08 Hrs

Principles of Transportation Engineering: Overview of basic characteristics of Transportation systems, social factors and strategic consideration, Salient features of ongoing major road projects in the country, Classifications of Urban and rural roads. Engineering surveys for alignment, objectives, conventional and modern methods.

Unit – II 08 Hrs

Highway Geometric Design: Design factors; Cross-section elements, Sight distances-Types, Factors affecting and measurements. Design of Horizontal alignment and vertical alignment. (Note: Derivation not required)

Unit –III 08 Hrs

Pavement Design: Factors affecting design; Traffic volume and Axle load survey, Layers, design requirements, Flexible pavement design as per IRC: 37 - 2018. Design of rigid pavement as per IRC:58 - 2015 (Excluding design of joints)

Unit –IV 08 Hrs

Highway Drainage System: Importance and requirements, Surface and Subsurface drainage system - methods. Highway Construction: Construction of Subgrade, Granular Sub Base, Wet Mix Macadam, Bituminous concrete course, Paving quality concrete course.

Unit –V 08 Hrs

Highway Maintenance and Economics: Importance of highway maintenance, Distresses and remedial measures for Flexible and Rigid pavements. Importance of Highway Economics, user benefits and costs, Economic analysis, Highway financing in India.

Laboratory

Tests on Soil

1. California bearing Ratio

Tests on aggregates

- 2. Crushing Test
- 3. Impact Test
- 4. Shape of aggregates
- 5. Ten percent fines
- 6.Los Angeles abrasion

Tests on Bitumen

- 7. Kinematic Viscosity
- 8. Softening Point
- 9. Ductility

10.Penetration

11.Specific Gravity **Tests on mixes**

12.Proportioning of aggregates **Innovative Experiments**

Marshall method of mix design

Course	Course Outcomes: After completing the course, the students will be able to:-					
CO1	Explain suitable geometry, materials and drainage system for design and construction of					
	pavements.					
CO2	Compute the design requirements for geometry, drainage and pavements.					
CO3	Select suitable geometry, materials and drainage for design and construction of pavements.					
CO4	Evaluate and recommend geometry materials and design for pavements.					

Refere	Reference Books				
1.	Khanna, S.K. and Justo, C.E.G, Veeraragavan A, 'Highway Engineering', Nemechand and Bros.Roorkee, 10th Edition, 2014 ISBN: 9788185240633, 8185240639				
2.	R Srinivasa Kumar, "Highway Engineering", Universities Press (India) Private Limited, Reprinted2018, ISBN:978 81 7371 681 2				
3.	L. R. Kadiyali, N.B. Lal , Principles And Practices Of Highway Engineering , Khanna Publishers, 2004, ISBN-13: 978-8174091659				
4.	Khanna, Justo and Veeraragavan - 'Highway Material Testing' Nemechand Bros, Roorkee, V Edition, 2009, ISBN 9788185240213				
5	Khanna, S.K. and Justo, C.E.G, Veeraragavan A, 'Highway Engineering', Nemechand and Bros.Roorkee, 10th Edition, 2014 ISBN: 9788185240633, 8185240639				

RUBRICFOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)					
#	COMPONENTS	MARKS			
	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20			
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40			
	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40			
	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (30 Marks),lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50MARKS	50			
MAX	MAXIMUM MARKS FOR THE CIE				

			Semester: V				
	Hydrology and Irrigation						
		Categ	gory: Professional (Core Course			
			(Theory)				
Course Code	:	CV354TA		CIE	:	100 Marks	S
Credits: L:T:P	:	3:1:0		SEE	:	100 Marks	S
Total Hours	:	42L:28T		SEE Duration	:	3Hours	
			Unit-I				09 Hrs

Hydrology: Introduction, Hydrologic cycle (Horton's representation and Engineering Representation), water budget equation, Applications in engineering, sources of Data, numerical problems.

Precipitation: Forms and types of precipitation, Measurement of rainfall using Symon's and Syphon type of rain gauges, Optimum number of rain gauge stations, Consistency of rainfall data (double mass curve method), Computation of mean rainfall, Estimation of missing data, presentation of precipitation data, numerical problems.

Unit – II 09 Hrs

Losses: Evaporation: Introduction, Process, factors affecting evaporation, measurement using IS class-A Pan, estimation using empirical formulae (Meyer's and Rohwer's equations) Reservoir evaporation and control.

Evapo-transpiration: Introduction, Consumptive use, AET, PET, Factors affecting, Measurement, Estimation by Blaney-Criddle equation.

Infiltration: Introduction, factors affecting infiltration, infiltration capacity, measurement by double ring infiltrometer, Horton's infiltration equation, infiltration indices, numerical problems.

Unit –III 08 Hrs

Runoff: Factors affecting runoff, runoff measurement, Estimation of runoff using rational and empirical methods, numerical problems.

Hydrographs: Components of hydrographs, unit hydrograph and its derivation from simple storm hydrograph, base flow separation, preparation of unit hydrographs – from isolated storms, method of superposition, numerical problems.

Unit –IV 08 Hrs

Irrigation: Definition, Benefits and ill effects of irrigation, System of irrigation: surface and ground water, flow irrigation, lift irrigation, Bandhara irrigation.

Water Requirements of Crops: Duty, delta and base period, relationship between them, factors affecting duty of water, crops and crop seasons in India, irrigation efficiency, and frequency of irrigation.

Unit –V 08 Hrs

Canals: Types of canals. Alignment of canals. Definition of gross command area, cultural command area, intensity of irrigation, time factor, crop factor. Unlined and lined canals. Standard sections. Design of canals by Lacey's and Kennedy's method.

Course	e Outcomes: After completing the course, the students will be able to: -
CO1	Describe various hydrological parameters and irrigation practices in use for design of water resources
	projects.
CO2	Understand the hydrological aspects of surface water and concepts of irrigation water management
CO3	Determine various hydrological parameters over a catchment, crop water requirement and storage capacity
	of a reservoir.
CO4	Analyze the hydrological data, stream flow data for design of conveyance system, canal works hydraulic
	structures.

Refere	ence Books
1.	Engineering Hydrology, Subramanya K., Tata McGraw Hill, New Delhi, 4 th Edition, 2013, ISBN-10: 1259029972, ISBN-13: 978-1259029974.
2.	Applied Hydrology, VenTe Chow, Tata McGraw Hill Edition, 2010, ISBN-13:9780070702424, ISBN-10:007070242X.
3.	Irrigation Engineering and Hydraulic Structures, S.K.Garg, Khanna publications, New Delhi.2006, ISBN-10: 8174090479, ISBN-13: 978-8174090478.
4.	Irrigation water resources and water Power Engineering, P.N.Modi, Standard book house, 9th edition, 2008, ISBN 8189401297, ISBN-13: 978-8189401290
5	Irrigation Engineering, R.K. Sharma, S Chand & company; Revised edition 2007, ISBN-10: 8121921287, ISBN-13: 978-8121921282.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
MAXI	MUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)			
Q. NO.	CONTENTS	MARKS		
	PART A			
1	Objective type questions covering entire syllabus	20		
	PART B (Maximum of TWO Sub-divisions only)			
2	Unit 1 : (Compulsory)	16		
3 & 4	Unit 2 : Question 3 or 4	16		
5 & 6	Unit 3: Question 5 or 6	16		
7 & 8	Unit 4 : Question 7 or 8	16		
9 & 10	Unit 5: Question 9 or 10	16		
	TOTAL	100		

Semester: V

Geoinformatics

Category: Professional Core Elective - I (Group - B)

(Theory)

Course Code	:	CV255TBA	CIE	:	100 Marks
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks
Total Hours	:	40L	SEE Duration	:	3Hours

Unit-I 08 Hrs

Remote Sensing:

Basic concept of Remote sensing, Data and Information, Remote sensing data collection, Remote sensing advantages & Limitations, Remote Sensing process. Electromagnetic Spectrum, Energy interactions with atmosphere and with earth surface features (soil, water, and vegetation). Sensors, sensor resolutions (spatial, spectral, radiometric, and temporal). Image registration and Image and False color composite, elements of visual interpretation techniques.

Unit – II 08 Hrs

Remote Sensing Platforms and Sensors:

Indian Satellites and Sensors characteristics, Remote Sensing Platforms, Sensors and Properties of Digital Data, Data Formats: Introduction, platforms - IRS, Landsat, SPOT, Cartosat, Ikonos, Envisat etc. Basics of digital image processing-introduction to digital data, systematic errors (Scan Skew, Mirror-Scan Velocity, Panoramic Distortion, Platform Velocity, Earth Rotation) and non-systematic [random] errors (Altitude, Attitude), Image enhancements (Gray Level Thresholding, level slicing, contrast stretching), image filtering.

Unit –III 08 Hrs

Geographic Information System:

Introduction to GIS; components of a GIS; Geographically Referenced Data, Spatial Data- Attribute data-Joining Spatial and attribute data, GIS Operations: Spatial Data Input – Attribute data Management, Geographic coordinate System, Datum; Map Projections: Types of Map Projections, Projected coordinate Systems. UTM Zones.

Unit –IV 08 Hrs

Data Models:

Vector data model: Representation of simple features – Topology and its importance; coverage and its data structure, Shape file; Relational Database, Raster Data Model: Elements of the Raster data model, Types of Raster Data, Raster Data Structure, and Data conversion.

Unit –V 08 Hrs

Integrated Applications of Remote sensing and GIS:

Applications in land use land cover analysis, change detection, water resources, urban planning, environmental planning, Natural resource management and Traffic management. Location Based Services And Its Applications.

Course	e Outcomes: After completing the course, the students will be able to: -
CO1	Describe the various principles of Remote sensing, energy interactions and visual interpretation
	techniques
CO2	Explain distortion properties associated with platforms, sensors and capturing of remotely sensed data
CO3	Explain the data models, coordinate systems and attribute data management with respect to GIS
CO4	Apply the principles and techniques of Remote Sensing and GIS in the analysis of land use land cover,
	change detection, water resources management and planning, urban planning, natural resource
	management and traffic management.

Refere	ence Books
1.	Lillesand T, Kiefer R W, Chipman J, "Remote Sensing and Image Interpretation", 7 th Edition, Wiley Publishers (2015), ISBN: 9781118919453
2.	Jensen R John, "Remote Sensing of the Environment: An Earth Resource Perspective", 2 nd Edition, <i>Pearson Education India</i> (2013), ISBN:9789332518940
3.	Chang K T, "Introduction to Geographic Information Systems", 4 th Edition, <i>Mc Graw Hill Eduction</i> (2017), ISBN: 0070658986
4.	Bhatta B, "Remote Sensing and GIS", 3 rd Edition, Oxford University Press, India (2021), ISBN: 0199496641

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding up to 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)			
Q. NO.	CONTENTS	MARKS		
	PART A			
1	Objective type questions covering entire syllabus	20		
	PART B (Maximum of TWO Sub-divisions only)			
2	Unit 1 : (Compulsory)	16		
3 & 4	Unit 2 : Question 3 or 4	16		
5 & 6	Unit 3: Question 5 or 6	16		
7 & 8	Unit 4: Question 7 or 8	16		
9 & 10	Unit 5: Question 9 or 10	16		
	TOTAL	100		

			Semester: V			
	Traffic Engineering					
		Cate	gory: Professional Core Elective			
			(Theory)			
Course Code	:	CV255TBB	CIE	:	100 Mark	S
Credits: L:T:P	:	3:0:0	SEE	:	100 Mark	S
Total Hours	:	40L	SEE Duration	:	3Hours	
			Unit-I			08 Hrs

Introduction to traffic Engineering: Traffic engineering as a profession, elements, modern problems.

Traffic Components and their characteristics: road user and vehicle characteristics, roadways and their geometric characteristics, introduction to road safety.

Unit – II 08 Hrs

Traffic studies: Statistical applications in traffic engineering, objectives, methodologies, analysis and interpretation of traffic studies – volume studies, speed, travel time and delay studies, origin and destination studies, accident studies and parking studies.

Unit –III 08 Hrs

Traffic flow and roadway capacity: Traffic stream parameters – headway, occupancy, density and capacity. Fundamental relationships between traffic flow parameters, Level of service, Equivalency factors, design service volume.

Unit –IV 08 Hrs

Intersections design and control: Classification, factors considered in design, design principles, conflict points at intersection, signal timings for different color indications. Introduction to control devices – markings, signs, signals, special controls.

Unit –V 08 Hrs

Traffic control and management: Objectives, benefits, Low cost techniques – one way street, turn restrictions, tidal flow. Advanced methods – Computer controlled coordinated signal control system, ITS- design, Technology used in ITS, ITS architecture, subsystems of ITS.

Traffic and Environment: Detrimental effects of Traffic on Environment; Air pollution; Noise Pollution; Measures to curtail environmental degradation due to traffic.

Course (Outcomes: After completing the course, the students will be able to: -
CO 1	Understand the various traffic characteristics and fundamental of traffic flow
	Understand traffic surveys and evaluate traffic data
CO 3	Analyze various traffic control measures and design traffic engineering facilities
CO 4	Evaluate the methods of traffic management and understand the role of Intelligent Transportation
	System

Reference Books									
Ī	1.	Roess, Roger P., Elena S. Prassas, and William R. McShane. Traffic engineering. Pearson/Prentice							
		Hall,2019, ISBN 978-93-325-0936-8.							
Ī	2.	Garber N.J., and Hoel L.A., Traffic and Highway Engineering, 4th Edition, Cengage Learning, 2009,							

Kadiyali, L.R., 97881740916.	'Traffic Engineering', Khanna	Publishers, VII	Edition, 2001,	ISBN	8174091653,
7,001,10,10.	Tillumu				

RV College of Engineering®

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

R Srinivasa Kumar., Introduction to traffic Engineering, University press(India) private Limited 2018, ISBN 978-93-86235-47-3.
 Chandra, Satish, S. Gangopadhyay, S. Velmurugan, and Kayitha Ravinder. "Indian highway capacity manual (Indo-HCM)." (2017).

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
MAXII	MUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)							
Q. NO.	CONTENTS							
	PART A							
1	Objective type questions covering entire syllabus	20						
	PART B (Maximum of TWO Sub-divisions only)							
2	Unit 1 : (Compulsory)	16						
3 & 4	Unit 2: Question 3 or 4	16						
5 & 6	Unit 3: Question 5 or 6	16						
7 & 8	Unit 4: Question 7 or 8	16						
9 & 10	Unit 5: Question 9 or 10	16						
	TOTAL	100						

CO2

CO3

CO4

energy in buildings

			Semester: V				
		Alternate B	uilding materials an	d Technologies			
			(Theory)				
Course Code	:	CV255TBC		CIE	:	100 Mark	S
Credits: L:T:P	:	3:0:0		SEE	:	100 Mark	S
Total Hours	:	40 Hrs		SEE Duration	:	3.00 Hour	'S
			Unit-I				8 Hrs
Introduction to En	erg	y in building mater	rials and buildings				
			nental issues conce				
			ve building technologies	ogies, Buildings in	di	fferent clin	natic region.
Energy evaluation o	f bı	ilding materials.					
			Unit – II				8 Hrs
			l mortars, Masonry				
			ortars, Types, Prepara		son	ry materials	Classification
			ars. Polymer mortars		~		
O 1			of alternative mason	-	Sp	ecification a	and selection
Stabilized mud, Geo	pc	lymer, FaL- G Bloc	ks, Aerated concrete	blocks etc			0.11
A14 4' D '11'	п	7 1 1 *	Unit –III				8 Hrs
Alternative Buildin	_	0	Fama asmant asm		1		na Duamantia
Construction method			on, Ferro cement, cor	iiponenis, Materiais	anu	specificatio	ons, Properties
			systems-Concepts, F	iller clahe Composit	a h	aam nanal r	oofe Maconr
			ousing and building of		C	cam paner r	oois, masoiii
vauits and domes. D	am	boo application in it	Unit –IV	Construction			8 Hrs
Fibre Reinforced c	om	nosites (cementatio					0 1115
			ials for Fibre Reinfo	orced composites. Pr	one	erties of Fib	ore Reinforce
composites, and Ap				,	·		
, ,			Unit –V				8 Hrs
Cost Effective Buil	din	g Design:					
	iate	e Cost Effective bu	ildings and Cost sav	ving techniques adop	ptec	l in plannin	ng, design an
construction	A C	1 4 41	41 4 1 4	*11.1 1.1 4			
			course, the students		-	. 1 '1 1'	1 1'C 1
CO1 To study pro	oce	ss that is environmen	ntal appropriate and re	esource-efficient thro	ugh	out a buildi	ng's lite- cycl
G0.5 FD 1 :			0.1				

Refere	nce Books						
1		daRao, Nev			B.V.Venkatarama on (1 January 2017)	-	and 78-

To study how to minimize environmental impact by facilitating to use local and recycled materials to lessen

To study innovative solutions using state-of-the-art technologies and building materials

To study the behavior of masonry materials and structures

K.S .Jagadish, Building Alternatives for housing. Lecture notes on Alternative Building, Dept of Civil Engg, Indian Institute of Science ,1997

RV College of Engineering® Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

3	Paul Graham McHenry, Adobe and Rammed Earth Buildings: Design and Construction, University of Arizona Press; New edition (15 September 1989), ISBN-10: 0816511241, ISBN-13:978-0816511242
4	Ferrocement & Laminated Cementitious Composites, Antoine E. Naaman, Techno Press 3000 (1January 2000), ISBN-13: 978-0967493909
5	Sustainable Building Technology, K.S. Jagadish, I K International Publishing House Pvt. Ltd (30 March 2019) ISBN-13: 978-9386768209.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
MAXI	MUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)							
Q. NO.	CONTENTS						
	PART A						
1	Objective type questions covering entire syllabus	20					
	PART B (Maximum of TWO Sub-divisions only)						
2	Unit 1 : (Compulsory)	16					
3 & 4	Unit 2 : Question 3 or 4	16					
5 & 6	Unit 3: Question 5 or 6	16					
7 & 8	Unit 4: Question 7 or 8	16					
9 & 10	Unit 5: Question 9 or 10	16					
	TOTAL	100					

Semester: V						
			Bridge Engineering			
		Catego	ry: Professional Core Elective			
		_	(Theory)			
Course Code	:	CV255TBD	CIE	:	100 Marks	
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks	
Total Hours	:	40L	SEE Duration	:	3Hours	
Unit-I 08 Hrs						

Introduction: Historical Development of Bridges, Site Selection for Bridges, Necessary Investigations & collection of essential bridge design data, Different stages of planning, Classification of Bridges, Requirements of an ideal bridge.

Hydraulic Design: Methods of finding design discharge, Natural artificial and linear water ways, afflux, economic span of bridge, Scour depth

Unit – II 08 Hrs

Bridge substructures: General, Design and construction of Bridge piers, Abutments, Wing walls, Approaches, Bearings for bridges, Types of bearings.

Superstructures & Design Aspects: Components - Parapets and Railings for Highway Bridges, Classification of Highway Bridge parapets, Cross barriers and its Details.

Unit –III 08 Hrs

Loading for road bridges: Dead load, Live load, Impact factor, Centrifugal force, wind loads, hydraulic forces, longitudinal forces, Seismic forces; Earth pressure. Buoyancy; Lane concept, Equivalent loads, traffic load; Width of Roadway and Footway.

Bridge Loading: Standard Specifications for Roads and Railways Bridges, Railway Loading standards., IRC standard live loads.

Unit –IV 08 Hrs

Low-cost bridges- Introduction, types of low-cost bridges, Cause-ways, suspension bridges, Culverts. **Box Culvert**: Different Loading Cases IRC Class AA Tracked, Wheeled and Class A Loading, Structural Design of Slab Culvert.

Unit –V 08 Hrs

Introduction to structural health monitoring in integration with AI: Simulation study and incorporation of different types of sensors. Inspection & Maintenance of bridges.

RCC deck Slab Bridge: Introduction to RCC deck slab bridge, Loading calculations and analysis, Calculation of BM & SF, Structural design of deck slab bridge for class AA loading and class A Loading.

Course	Course Outcomes: After completing the course, the students will be able to:-							
CO1	Describe the principle of bridge site investigation, bridge hydrology and standards.							
CO2	Apply the Codal provisions of IRC 6 and IRC 21 in the design of Bridges.							
CO3	Analysis of bridges subjected to various loads.							
CO4	Design of RCC Deck slab bridge for Class AA tracked vehicle loading.							

Refere	Reference Books							
1.	S. P. Bindra — Principles & Practices of Bridge Engineering , Dhanpat Rai & sons publication, New Delhi, 2012, ISBN 978-8189928841.							
2.	M. A. Jayaram —Design of Bridge Structure, PHI Pvt Ltd., 2 nd Edition, 2012, ISBN 9788120338524.							
3.	D. Johnson and Victor —Essentials of Bridge Engineering, Oxford and IBH publications, 6 th Edition, 2019, ISBN 978-8120417175.							
4.	Krishnaraju N — Design of Bridge, Oxford & IBH Publications, 5 th Edition, 2019 ISBN: 978-8120417984.							
5	S. Ponnuswamy- Bridge Engineering, McGraw Hill Education, 3 rd Edition, 2017, ISBN: 978-9339221072.							

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40		
MAXIMU	JM MARKS FOR THE CIE THEORY	100		

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)			
Q. NO.	CONTENTS	MARKS		
	PART A			
1	Objective type questions covering entire syllabus	20		
	PART B (Maximum of TWO Sub-divisions only)			
2	Unit 1 : (Compulsory)	16		
3 & 4	Unit 2: Question 3 or 4	16		
5 & 6	Unit 3: Question 5 or 6	16		
7 & 8	Unit 4: Question 7 or 8	16		
9 & 10	Unit 5: Question 9 or 10	16		
	TOTAL	100		

Semester: V						
Air pollution and Control						
	Professional Core Elective (Theory) (Group - B)				ıp - B)	
Course Code	:	CV255TBE		CIE	:	100 Marks
Credits: L:T:P 3:0:0 SEE : 100 Marks				100 Marks		
Total Hours	:	40L		SEE Duration	:	3.00 Hours

Unit-I	08 Hrs
Introduction: Air Pollution Level in different cities, Sources and classification	tion of Air Pollutants,
Photochemical smog, Effects of air pollution on health, vegetation & material	s, Global effects of air
pollution.	

Unit – II 08 Hrs

Meteorology: Temperature lapse rates and Stability, Wind velocity and turbulence, plume behavior, Measurement of meteorological variables. Windrose diagram. Air pollution episodes.

Measurement of ambient air quality parameters field visit

Unit –III 08 Hrs

Modeling of Dispersion of Air Pollutants: Dispersion of Air pollutants. Theories on modeling of Air pollutants. Gaussian dispersion model. Equations for estimation of pollutant concentrations. Plume Rise – Equations for estimation. Effective stack height and mixing depths. Numerical problems.

Unit –IV 08 Hrs

Sampling and Particulate Pollution Control Methods: Atmospheric sampling and stack sampling methods. Air quality standards. Types of particulate pollution control methods – Settling chambers, Cyclone separators, Scrubbers, Filters and Electrostatic precipitators, design aspects and principle of these air pollution control units

Measurement of Automobile exhaust emission. Field visit

Unit -V 08 Hrs

Gaseous pollution control methods: Types of gaseous pollution control methods – absorption, adsorption and combustion processes. Emission standards for automobile pollution.

Noise Pollution: Causes, Effects and control. Noise standards

Course C	Course Outcomes: After completing the course, the students will be able to				
CO1:	Identify the major sources of air pollution and understand their effects on environment,				
	economics and health.				
CO2:	Evaluate the dispersion of air pollutants in the atmosphere and to develop air quality models.				
CO3:	Ascertain and evaluate sampling techniques for atmospheric and stack pollutants.				
CO4:	Choose and design control techniques for particulate and gaseous emissions.				

RV College of Engineering®

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Refere	nce Books
1	M. N. Rao and H V N Rao. Air Pollution, Tata Mc-Graw Hill Publication, ISBN 10-0074518712,
1	13- 9780074518717, 2001,reprint 2013.
2	H. C. Perkins, Air Pollution. Tata McGraw Hill, ISBN 10-0070493022, 13-978-0070493025,
2	1974, Reprint 2013.
2	Noel De Nevers, Air Pollution Control Engineering, Waveland Pr Inc, ISBN 10-1577666747,
3	13- 978 -1577666745, 2010.
4	Anjaneyulu Y, Text book of Air Pollution and Control Technologies, Allied Publishers, ISBN
4	13- 9788177641844, 2002.
5	https://onlinecourses.nptel.ac.in/noc23_ce14/preview - NPTEL course Air Pollution and
	Control By Prof. Bhola Ram Gurjar IIT Roorkee

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
MAXIN	TUM MARKS FOR THE CIE THEORY	100

RV College of Engineering®

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)	
Q. NO.	CONTENTS	MARKS
	PART A	
1	Objective type questions covering entire syllabus	20
	PART B (Maximum of TWO Sub-divisions only)	
2	Unit 1 : (Compulsory)	16
3 & 4	Unit 2 : Question 3 or 4	16
5 & 6	Unit 3: Question 5 or 6	16
7 & 8	Unit 4: Question 7 or 8	16
9 & 10	Unit 5: Question 9 or 10	16
	TOTAL	100

2022 scheme					
Principles of Management and Economics					
		(Th	neory)		
Course Code	:	HS261TA	CIE	:	100 Marks
Credits: L:T:P :		3:0:0	SEE	:	100 Marks
Total Hours : 45 Hrs SEE Duration : 3.00 Hours					3.00 Hours
Unit-I 06 Hrs					

Introduction to Management: Management Functions – POSDCORB – an overview, Management levels & Skills, Management History - Classical Approach: Scientific Management, Administrative Theory, Quantitative Approach: Operations Research, Behavioral Approach: Hawthorne Studies, Contemporary Approach: Systems Theory, Contingency Theory. Caselets / Case studies

Unit – II 10 Hrs

Foundations of Planning: Types of Goals & Plans, Approaches to Setting Goals & Plans, Strategic Management Process, Corporate strategies – types of corporate strategies, BCG matrix, Competitive Strategies – Porters Five force Model, types of Competitive Strategies. Caselets / Case studies Organizational Structure & Design: Overview of Designing Organizational Structure - Work Specialization, Departmentalization, Chain of Command, Span of Control, Centralization & Decentralization, Formalization, Mechanistic & Organic Structures. Caselets / Case studies

Unit –III 10 Hrs

Motivation: Early Theories of Motivation - Maslow's Hierarchy of Needs Theory, McGregor's Theory X & Theory Y, Herzberg's Two Factor Theory. Contemporary Theories of Motivation: Adam's Equitytheory, Vroom's Expectancy Theory. **Caselets / Case studies**

Leadership: Behavioral Theories: Blake & Mouton's Managerial Grid, Contingency Theories of Leadership: Hersey & Blanchard's Situational Leadership, Contemporary Views of Leadership: Transactional & Transformational Leadership. **Caselets / Case studies**

Unit –IV 10 Hrs

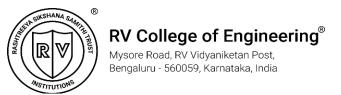
Introduction to Economics: Microeconomics and Macroeconomics, Circular flow model of economics, An Overview of Economic Systems.

Essentials of Microeconomics: Demand, Supply, and Equilibrium in Markets for Goods and Services, Price Elasticity of Demand and Price Elasticity of Supply, Elasticity and Pricing, Numericals on determining price elasticity of demand and supply. Changes in Income and Prices Affecting Consumption Choices, Monopolistic Competition, Oligopoly.

Unit –V 09 Hrs

Macroeconomic Indicators: Prices and inflation, Consumer Price Index, Exchange rate, Labor Market, Money and banks, Interest rate. Gross Domestic product (GDP) - components of GDP, Measures of GDP: Outcome Method, Income method and Expenditure method, Numericals on GDP Calculations, ESG an overview.

Macroeconomic models- The classical growth theory, Keynesian cross model, IS-LM-model, The AS-AD model, The complete Keynesian model, The neo-classical synthesis. National Budgeting process in India


Course Outcomes: After completing the course, the students will be able to: -				
CO1	Elucidate the principles of management theory & recognize the characteristics of an			
	organization.			

CO2	Demonstrate the importance of key performance areas in strategic management and design appropriate organizational structures and possess an ability to conceive various organizational dynamics.
CO3	Compare and contrast early and contemporary theories of motivation and select and implement the right leadership practices in organizations that would enable systems orientation.
CO4	Demonstrate an understanding on the usage and application of basic economic principles.
CO5	Appreciate the various measures of macro-economic performance and interpret the prevailing economic health of the nation.

Reference	Reference Books:					
1.	Management, Stephen Robbins, Mary Coulter & Neharika Vohra, 15th Edition, 2021,					
1.	Pearson Education Publications, ISBN: 13: 978-0-13-558185-8					
2	Management, James Stoner, Edward Freeman & Daniel Gilbert Jr, 6 th Edition, 2009, PHI,					
2.	ISBN: 81-203-0981-2.					
2	Principles of Microeconomics, Steven A. Greenlaw, David Shapiro, 2 nd Edition, 2017,					
3.	ISBN:978-1-947172-34-0					
1	Macroeconomics: Theory and Policy, Dwivedi D.N, 5 th Edition, 2021, McGraw Hill					
4.	Education; ISBN: 9789353163334					

RUBRIC	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)						
#	COMPONENTS	MARKS					
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20					
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding up to 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40					
3.	EXPERIENTIAL LEARNING: Some of the Experiential learning topics may include Reading Leadership books and summarizing, Analysis and interpretation of various economic reports, Visit to various organizations to understand organizational mechanics. Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40					
MAXIN	100						

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q.NO.	CONTENTS	MARKS				
PART A	•					
1	Objective type questions covering entire syllabus	20				
PART B (Maximum of	TWO Sub-divisions only; wherein one sub division will be a case	elet in the related topics)				
3 & 4	Unit 1 : (Compulsory)					
	Unit 2 : Question 3 or 4	16 16				
5 & 6	6 Unit 3: Question 5 or 6					
7 & 8	& 8 Unit 4 : Question 7 or 8					
9 & 10	Unit 5: Question 9 or 10	16				
TOTAL	100					

Semester: VI									
Water and Waste water Engineering (Theory & Practical)									
Course Code	:	CV362IA		CIE	:	100 Marks+ 50Marks			
Credits: L:T:P		3:0:1		SEE	:	100 Marks + 50Marks			
Total Hours	:	40L+26P		SEE Duration	:	3.00 Hours + 3.00 Hours			

Unit-I 08 Hrs

Demand of water: Conservation of water resources. Need of protected water supply. Types of water demands -domestic demand, industrial, institutional and commercial, public uses, fire demand

Percapita consumption -factors affecting, population forecasting, different methods with merits and demerits, Problems, Variations in demand of water, Peak factor, Design periods and factors governing the design period. Problems

Sources: Various sources with their quality and quantity comparison. Need for protected water supply.

Collection and Conveyance of water: Types of pumps with working principles. Design of the economical diameter for the rising main.

Unit – II 08 Hrs

Pipe appurtenances: Valves and different Pipe materials with their advantages and disadvantages. Factors affecting the selection of pipe material. CPHEEO Guidelines

Intake structures - Types. Factors to be considered in the selection of sites for intake structures. Master balancing reservoir, Over Head tanks, Intermediate pump stations and their designs.

Examination of water of Physical, Chemical and Microbiological Examinations, using analytical & Instrumental techniques. Drinking water standards BIS, ICMR & WHO standards.

Unit –III 08 Hrs

Water treatment: Objectives, Treatment flow chart, Screening – types

Plain Sedimentation – Theory of sedimentation, Types of settling, Sedimentation tank Types, design problems **Coagulant Aided sedimentation**- Common coagulants used with reaction, advantages and disadvantages. **Filtration:** theory of filtration, types of filters, slow sand, rapid sand and pressure filters including construction, operation, cleaning. Design excluding under drainage system.

Distribution system: Methods- gravity, pumping, combined, Layouts- Dead end, Radial, Grid Iron, Circular system. Network analysis- Hardy cross method, Hazen Williams formula, Numerical problems, EPANET and WATERGEMS

Unit –IV 08 Hrs

Types of sewerage system and their suitability.

Construction of sewers: Types of sewers, self cleansing and non scouring velocity, planning of sewerage system, layout and construction of sewer line, testing of sewer line, cleaning and maintenance of sewer line, ventilation of sewers

Sewer appurtenances – inlets, catch basins, clean outs, manholes, drop manholes, lamp holes, flushing tanks, grease and oil traps, inverted siphons, storm regulators.

Waste water characteristics - Physical, chemical and biological characteristics. BOD and COD Determination. Problems.

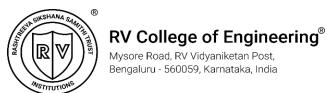
Unit –V 08 Hrs

Methods of treatment for waste water: preliminary, Primary, Secondary, tertiary

Unit operations/processes and treatment systems used to remove major contaminants of waste water. Design of trickling filter, ASP.

Methods of waste water disposal - Dilution method – conditions favouring the method, Self-purification of natural stream, Zones of pollution in stream, Oxygen sag analysis, problems.

Sewage sickness, Disposal by land treatment: condition favourable, methods.


Introduction to Artificial Intelligence in WWT: Types and application of AI in water and waste water treatment.

Laboratory Experiments

- 1. Determination of Solids in sewage: Total Solids, Suspended Solids, Dissolved Solids, Volatile Solids, Fixed Solids, Settable Solids.
- 2. Determination of Chloride and Sulphate.
- 3. Determination of Calcium, Magnesium and Total Hardness
- 4. Determination of Dissolved Oxygen.
- 5. Determination of BOD and COD
- 6. Determination of Iron, Phenanthroline method
- 7. Determination of Fluorides.
- 8. Total Count test and MPN Determination
- 9. Determination of Nitrates and phosphates.
- 10. Jar Test for optimum Dosage of Alum. Turbidity Determination by Nephelometer
- 11. Examination of different water and waste water samples and report.

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Understand quality, quantity of various sources of water and compare with water quality standards, make						
	appropriate choice for a community.						
CO2:	Analyze water and Design different water treatment units to purify available raw water to the require						
	standards.						
CO3:	Evaluate collection and transportation system for water and sewage.						
CO4:	Evaluate waste water quality and environmental significance of various parameters and Select suitable						
	waste water treatment and disposal method						

Referen	Reference Books					
1	Environmental Engineering vol-I, S.K.Garg; M/s Khanna Publishers; 33 rd edition, New Delhi 2010,					
	ISBN 978-8174091208					
_	Environmental Engineering Vol II, S.K.Garg; M/s Khanna Publishers; New Delhi 2013, ISBN 978-					
Z	8174092304					
2	Environmental Engineering I, B.C. Punmia and Ashok Jain Laxmi Publications (P)Ltd., New Delhi					
3	2018, ISBN 81-7008-825-9					
4	Environmental Engineering II, B.C. Punmia and Ashok Jain Laxmi Publications (P)Ltd., New Delhi					
4	2010, ISBN: 9788131805961, 9788131805961					
5	Water & Waste Water Technology, Mark.J Hammer, John Wiley & Sons Inc., New York, 2008. Howard					
	S. Peavy, Donald R. Rowe, George T, Environmental Engineering - McGraw Hill					
	International Edition. New York, 2000.ISBN 9780070191342ISBN 9780131745421					

6	Chemistry for Environment Engineering, Sawyer and McCarthy, Tata Mc Graw Hill Publications (2003 Edition). ISBN 0070549788, 9780070549784
7	CPHEEO Manual of Water Supply and treatment 1999 & sewerage and sewage treatment 2013

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40		
MAXIM	IUM MARKS FOR THE CIE THEORY	100		

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	Q. NO. CONTENTS					
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B (Maximum of TWO Sub-divisions only)	1.6				
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5 & 6	Unit 3: Question 5 or 6	16				
7 & 8	Unit 4: Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

Semester: VI							
	Geotechnical Engineering						
		Cate	gory: Professional (Core Course			
		S	tream: Theory &	Practice			
Course Code	:	CV363IA		CIE	:	100+50 M	larks
Credits: L:T:P	Credits: L:T:P : 3:0:1						
Total Hours : 40L+28P SEE Duration : 3.0 Hours + 3Hours							
Unit-I 07 Hrs							

Index Properties:

Definition, Basic Terminology, Soil as a Three phase system, Soil Mass, Void ratio, Porosity, Degree of saturation, Air content, Percentage Air Voids, Water content, Unit weight, Specific gravity.

Interrelations and related problems, Tests for water content and specific gravity, Particle Size Distribution (Sieve analysis and Hydrometer analysis), Consistency of Soils- Atterberg Limits, Field Density and Density Index.

Unit – II 09 Hrs

Classification Of Soil:

Soil Classification Purpose, Unified Soil Classification System and Indian Standard Soil Classification System, Field identification of soils.

Soil Structure and Clay Mineralogy:

Soil structure types, Common clay minerals in soil and their structures- Kaolinite, Montmorillonite and Illite.

Permeability:

Darcy's Law and its Limitations, Discharge Velocity and Seepage Velocity, Factors affecting Permeability, Aquifers and flow through aquifers, Determination of Coefficient of Permeability, Permeability of Stratified Soil Deposits, related problems.

Unit –III 08 Hrs

Compaction:

Introduction, Compressibility, Compaction, Standard Proctor Test, Modified Proctor Test, Zero air voids line, Field Compaction Method, Placement Water Content, Field Compaction Control, Factors affecting Compaction, Effect of Compaction on Soil Properties, Compaction equipment's.

Unit –IV 08 Hrs

Consolidation:

Introduction, Piston-Spring Analogy, Primary and Secondary Consolidation, Terzaghi's Theory of One-Dimensional Consolidation, Normally consolidated, under consolidated and over consolidated soils, Preconsolidation pressure and its determination by Casagrande's method, Laboratory one dimensional consolidation test—Determination of Compression index and co-efficient of consolidation, Determination of co-efficient of consolidation by square root of time fitting method and logarithmic time fitting method.

Unit –V 08 Hrs

Shear Strength of Soils:

Introduction, Mohr Circle for Two Dimensional Stress System, Mohr-coulomb failure theory, Total and effective shear strength parameters, Determination of Shear Parameters-Direct Shear Test, Triaxial Compression Test, Unconfined Compression Test based on Drainage Conditions, Skempton's Pore Pressure Parameters, Shear Strength of sands and Clays, Sensitivity and Thixotropy.

Laboratory

List of Experiments

- 1. Specific Gravity determination
- 2. Moisture Content determination
- 3. Sieve Analysis for Coarse-grained Soils
- 4. Hydrometer Analysis for Fine-grained Soils
- 5. Atterberg Limits and Indices
 - a) Liquid limit
 - b) Plastic limit
 - c) Shrinkage limit
- 6. Standard Proctor Compaction Test
- 7. Field Density Test
 - a) Core Cutter Method
 - b) Sand Replacement Method
- 8. Determination of Permeability of soils
 - a) Constant Head Method
 - b) Variable Head Method
- 9. Determination of Shear Strength of soils
 - a) Direct Shear Test
 - b) Triaxial Shear Test (UU only)
 - c) Unconfined Compression Test

Course	Course Outcomes: After completing the course, the students will be able to: -				
CO 1	CO 1 Describe the Index and Engineering properties of Soils and soil structure.				
CO 2	Determine the permeability, compaction characteristics and shear parameters of soil.				
CO 3	Evaluate index and Engineering properties of soils, analyze and interpret the experimental data				
CO 4	Predict the Suitability of soil for a particular project based on its Engineering properties.				

Referen	Reference Books					
1.	Soil Mechanics and Foundations, B.C. Punmia, 17th Edition, Laxmi Publishing Co. NewDelhi,					
1.	ISBN-10: 8170087910.					
2	Soil Engineering in Theory and Practice, Alam Singh and Chowdhary G.R, 2001, CBS Publishers					
2.	and Distributors ltd., New Delhi, ISBN 9788123900391.					
2	Foundation Analysis and Designs, Bowles JE, 5th Edition, 2017, McGraw Hill Publishing co., New					
3.	York, ISBN-10: 9781259061035.					
4	Soil Mechanics and Foundation Engineering, VNS Murthy, 1st Edition, 2015, UBS Publishers and					
4.	Distributors, New Delhi, ISBN-10: 8123913621.					
5	Basic and Applied Soil Mechanics, Gopal Ranjan and Rao ASR, 2016, New Age International (P)					
5.	ltd, New Delhi, ISBN-10: 8122440398.					

#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50 MARKS	
IAXI	MUM MARKS FOR THE CIE THEORY & LABORATORY	150

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q.NO.	Q.NO. CONTENTS					
	PART A					
1	Objective type of questions covering entire syllabus	20				
	PART B (Maximum of THREE Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2: Question 3 or 4	16				
5 & 6	5 & 6 Unit 3 : Question 5 or 6					
7 & 8 Unit 4 : Question 7 or 8						
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

RUBRIC FOR SEMESTER END EXAMINATION (LAB)						
Q.NO.	Q.NO. CONTENTS					
1	Write Up	10				
2	Conduction of the Experiments	30				
3	Viva	10				
	TOTAL	50				

Semester: VI								
Design And Drawing of Steel Structures								
	Category: Professional Core Course							
		S	tream: Theory& Practice					
Course Code	:	CV363TA	CIE	:	100			
Credits: L:T:P	:	3:1:0	SEE	:	100			
Total Hours	otal Hours : 40L+28T SEE Duration : 3.0 Hours					3		
			Unit-I			08 Hrs		
Introduction: Advantages and disadvantages of steel structures, load and load combinations, design								
philosophies, structural forms.								
Bolted connections: Advantages, Types, Modes of failures, Introduction to simple, semi rigid and rigid								

Bolted connections: Advantages, Types, Modes of failures, Introduction to simple, semi rigid and rigid connections, Eccentric connections(plane of connection parallel and perpendicular to the plane of moment). Detailing of Simple beam to beam and beam to column connections: Framed, stiffened, unstiffened seated connections.

Unit – II 08 Hrs

Welded connections: Advantages, disadvantages. Types of joints, weld symbols, Design of simple joints, eccentric connections, (plane of connection parallel and perpendicular to the plane of moment). Detailing of Simple beam to beam and beam to column connections, Framed, stiffened, unstiffened seated connections using welds.

Unit –III 07 Hrs

Design of tension members: Modes of failures, Analysis and design of tension members- angles.

Unit –IV 09 Hrs

Design of compression members: Failure modes, section used for compression member, member classification, analysis and design of simple axially loaded members. Design of lacing, battens.

Unit –V 08 Hrs

Plastic Analysis: Introduction to plastic hinge, Plastic section modulus, shape factor for rectangle, circle, square, I section, T section and hollow rectangular, circular sections, Concept of collapse load and Plastic moment (No numericals)

Design of beams: Beam types, section classification, design of laterally supported beams.

Ref	Reference Books			
1.	Subramanian N, _Design of Steel structures', Oxford University press, 2nd Edition, 2016, ISBN 9780199460915			
2.	S K Duggal, _Limit state design of steel structures', Tata McGraw Hill Education Private Limited, 2017, 2 nd edition, ISBN-13 978-9351343493			
3.	Bhavikatti S S, _Design of Steel structures', I K International Publications, 2016, 3 rd edition ISBN 9789382332091			
4.	Shiyekar, M. R., Limit state design in Structural Steel, PHI Learning pvt ltd, 3 rd Edition, ISBN: 9788120353503			
5	BIS Codes: i) IS-800-2007, General construction in steel-code of practice. ii) IS 875-1987, Code of practice for design loads, iii) SP6(6)- 1972, IS handbook for structural engineers-application of plastic theory in design of steel structures. iv) SP6(1)-1964,Reaffirmed in 2003 Handbook for structural engineers- Structural steel sections			

	ORY)	
	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will	
	be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO	20
	QUIZZES WILL BE THE FINAL QUIZ MARKS.	
2	TESTS: Students will be evaluated in test, descriptive questions with different	
	complexity levels (Revised Bloom's Taxonomy Levels: Remembering,	
	Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be	40
	conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL	
	TEST MARKS WILL BE REDUCED TO 40 MARKS.	
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and	
	practical implementation of the problem. Case study-based teaching learning	40
	(10), Program specific requirements (10), Video based	→ U
	seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS.	
	MAXIMUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)		
Q.NO.	CONTENTS	MARKS	
	PART A		
1	Objective type of questions covering entire syllabus	20	
	PART B (Maximum of THREE Sub-divisions only)		
2	Unit 1 : (Compulsory)	16	
3 & 4	Unit 2: Question 3 or 4	16	
5 & 6	Unit 3: Question 5 or 6	16	
7 & 8	Unit 4: Question 7 or 8	16	
9 & 10	Unit 5: Question 9 or 10	16	
	TOTAL	100	

Semester: VI **Advanced Concrete Technology Category: Professional Core Elective-III** (Group - D) (Theory) Course Code CV365TDA CIE 100 Marks Credits: L:T:P 100 Marks 3:0:0 **SEE** 40L **Total Hours SEE Duration** 3Hours : Unit-I 08 Hrs

Hydration: Importance, Hydrated Cement Paste, porosity of paste and concrete, transition Zone, Elastic Modulus, factors affecting strength and elasticity of concrete.

Unit – II 08 Hrs

Admixtures- Mechanism of chemical admixture, Plasticizers and super plasticizers, dosage and their effect on concrete properties in fresh and hardened state, mineral admixtures-Fly ash, Silica fume, GGBFS, metakaolin and rice husk ash. Typical case studies

Unit –III 08 Hrs

Durability of concrete – Introduction, impermeability of concrete, acid attack, efflorescence, Corrosion- Factors influencing corrosion, pH, carbonation, Freezing and thawing, Alkali Aggregate Reaction, IS456-2000 requirement for durability. Remedial measures. Shrinkage, creep, and thermal effects. Typical case studies.

Unit –IV 08 Hrs

Mix Proportioning: Concrete Mix proportioning by ACI and other methods – Numerical examples. Differences between ACI and IS methods of proportioning using IS-10262-2019. Nano materials in construction.

Geopolymer - Properties and applications Geopolymer concrete, Self-compacting concrete Properties and applications of self-compacting concrete.

Unit –V 08 Hrs

Special concretes: Fiber reinforced concrete – Fibers types and properties, Behaviour of FRC in flexure and Tension, Applications. Concept of Hybrid Fibre Reinforced Concrete, Light weight concrete-materials properties and types. Typical light weight concrete mix, High density concrete, Reactive powder concrete, Bacterial concrete.

Cours	Course Outcomes: After completing the course, the students will be able to:-	
CO1	Understand dimensional stability, microstructure and properties of cement paste and concrete	
CO2	Assess the methods of determining the suitable admixture and ingredients for making concrete and design the mix	
CO3	Outline the importance of the durability of conventional and other concrete	
CO4	Describe properties and applications of concretes	

Refere	Reference Books			
1.	Santhakumar.A. R, Concrete technology, Oxford University Press; Second edition (1 April 2018), ISBN-10:0199458529, ISBN-13: 978-0199458523.			
2.	Shetty. M.S., Concrete Technology Theory and Practice, S. Chand& Co Ltd., New Delhi, 2007 ISBN-10: 9788121900034, ISBN-13: 978-8121900034			
3.	Kumar Mehtha.P and Paulo J M Monteiro., Concrete Microstructre, Properties and Materials, Indian Edition, Indian Concrete Institute, Chennai, SBN-10: 933920476X, ISBN-13: 978-93392047611, Publisher: McGraw Hill Education; 4th edition, 2017.			
4.	Neville. A.M, Properties of Concrete V Edition, (2012) Peaerson Education, Inc, and Dorling Kindersley Publishing Inc. ISBN-10: 8131791076, ISBN-13: 978-8131791073.			

Gambhir M L., Concrete Technology theory and Practice, Fifth Edition, Tata McGraw Hill Education Private Ltd, New Delhi. 2017, ISBN-10: 1259062554, ISBN-13: 978-1259062551.

Codes	
1	IS: 10262-2019, Code of practice for concrete mix proportioning.
2	ACI Committee 211, 1-81, Standard Practice for selecting proportions for Normal, Heavyweight, and Mass Concrete Part I, ACI Manual Concrete Practice 1994.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)		
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
лахт	MUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)		
Q. NO.	CONTENTS	MARKS	
	PART A		
1	Objective type questions covering entire syllabus	20	
	PART B (Maximum of TWO Sub-divisions only)		
2	Unit 1 : (Compulsory)	16	
3 & 4	Unit 2: Question 3 or 4	16	
5 & 6	Unit 3: Question 5 or 6	16	
7 & 8	Unit 4: Question 7 or 8	16	
9 & 10	Unit 5: Question 9 or 10	16	
	TOTAL	100	

Semester: VI **Transportation Engineering Category: Department Elective** (Theory) **Course Code** CV365TDB **CIE** 100 Marks Credits: L:T:P : 3:0:0 SEE 100 Marks **Total Hours 40L SEE Duration** 3Hours **Unit-I** 08 Hrs

Introduction: Role of railways in transportation- selection of routes

Permanent way: Requirements for an ideal permanent way, typical Cross sections of single and double line B.G. tracks – in cutting, embankment. Gauges and types of gauges with dimensions. Coning of wheels and tilting of rails. Rails functions, requirements, types of rail sections, length of rails, defects in rails.

Unit – II 08 Hrs

Ballast and sleepers: Functions and requirements, calculation of quantity of materials needed for laying a track, traction and Tractive resistances, tractive power, Hauling capacity, Problems on above. **Geometric design of track:** Necessity of Geometric Design of railway track, gradient and types of gradient. Speed of train, transition curve, super elevation, cant deficiency, negative cant-speed calculation based on Indian Railways Formulae for High speed tracks only-problems on above.

Unit –III 08 Hrs

Tunnels and Mass transit systems: Tunnels-Benefits from tunneling, Notations in tunneling, Cross sections of the tunnels for the roads and rails, alignments of the tunnels, Methods of tunneling, Mass transportation-planning, Mass transit, definitions and classifications, capacity and level of service of urban transit.

Unit –IV 08 Hrs

Harbors: Harbors-Layouts and components, classification of harbors, Effect of wind, wave, tides, Break waters-Purpose, different types of break waters, wharfs, quays, jetties and pies, Dry dock and wet docks, navigational aids. Container handling and management. Concepts of Ferry and Inland waterways.

Unit –V 08 Hrs

Airways – Introduction, Layout of an airport with component parts and functions of each, Aircraft Characteristics – Airport Classifications, - Site selection- regional Planning. Orientation of runway by using wind rose diagram with examples.

Runway: Basic length of the runway assumptions –corrections to runway length- Factors affecting the layout of the taxiway-geometrics of taxiway- design of Exit taxiways- ICAO Specifications. Problems on above.

Visual Aids: Airport marking – lightings-Instrumental landing systems.

Course	Course Outcomes: After completing the course, the students will be able to: -	
CO1	Recognize and choose the scope and objectives of railway Engineering	
CO2	Identify and interpret the importance of tunnel construction.	
CO3	Explain and illustrate the necessity, components, types and application of harbors.	
CO4	Categorize, design and construct the various features of airport.	

Referen	Reference Books		
1.	Railway Engineering, Saxena and Arora, 13th Edition, 2013, Dhanpat Rai and Sons, New Delhi, ISBN:13: 978-8189928834.		
2.	Tunnel Engineering, Srinivasan R, Harbour, Dock C, 27th Edition, 2015, Charotar Publishing House, ISBN: 978-81-928692-6-1.		

RV College of Engineering® Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

3.	Airport Planning and Design, Khanna, Arora and Jain, 6th Edition, 1999, Nemchand, Roorked ISBN:9788185240688.
4.	Docks and Harbor Engineering", Oza H.P. and OzaG.H, 7th Edition, 2013, Charotar Publishing House, ISBN:978-93-80358-78-9.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)		
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
MAXI	MUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	CONTENTS	MARKS				
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B (Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2: Question 3 or 4	16				
5 & 6	5 & 6 Unit 3 : Question 5 or 6					
7 & 8 Unit 4 : Question 7 or 8						
9 & 10	Unit 5: Question 9 or 10	16				
	TOTAL	100				

			Semester: VI				
			Structural Masoni	y			
			(Theory)				
Course Code	:	CV365TDC		CIE	:	100 Marks	
Credits: L: T: P	:	3:0:0		SEE	:	100 Marks	
Total Hours	:	40 Hrs		SEE Duration	:	3.00 Hours	3
			I Init_I				6 Hrs

Introduction:

Masonry units, materials and types: History of masonry, historical buildings, Masonry arches, domes and vaults: Components, classification and construction procedure

Unit – II 8 Hrs

Characteristics of masonry constituents:

Types of masonry units such as stone, bricks, concrete, clay and stabilized mud etc. Properties of masonry units like strength, modulus of elasticity and water absorption etc. Masonry mortars – Classification and properties of mortars, selection of mortars

Unit –III 8 Hrs

Strength of Masonry in Compression:

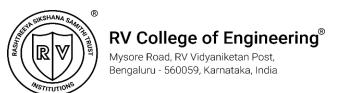
Behaviour of Masonry under compression, strength and elastic properties, factors influencing of compressive strength masonry.

Effects of slenderness and eccentricity, water absorption, curing, ageing and workmanship on compressive strength. Prediction of strength of masonry in Indian context

Unit –IV 8 Hrs

Shear and Flexure Behavior of Masonry:

Importance of Shear and Flexure properties of masonry, Factors affecting bond strength, Bond between masonry unit and mortar, Effect of Bond strength on Compressive strength, Flexure and Shear strength of Masonry. Test methods for determining flexural and shear bond strengths, Test procedures for evaluating flexural and shear strength. Concept of Earthquake resistant masonry buildings


Unit –V 10 Hrs

Design of load bearing masonry buildings:

Concept of basic compressive stress, Permissible compressive stress, reduction factors. Increase in permissible stresses for eccentric vertical and lateral loads, Permissible tensile and shear stresses, Effective height of walls and columns, opening in walls, effective length, effective thickness, slenderness ratio, eccentricity, load dispersion, arching action, lintels; Wall carrying axial load, eccentric load with different eccentricity ratios, wall with openings, freestanding wall. Design of load bearing masonry for buildings up to 3 to 8 storeys using BIS codal provisions

	*					
Course	Course Outcomes: After completing the course, the students will be able to:-					
CO1	Choose appropriate masonry unit and mortar mixes for masonry construction					
CO2	Distinguish wide range of materials for their suitability to arrive at feasible and optimal solutions					
	for masonry constructions					
CO3	Appraise knowledge of structural masonry for advanced research and construction procedures					
CO4	Design masonry buildings for sustainable development					

R	Refere	ence Books
1		Structural Masonry, Hendry A.W, 2nd edition, Palgrave Macmillan, Macmillan Education Ltd., ISBN 10: 0333733096 ISBN 13:9780333733097
2		Masonry structures- Behavior and Design, Robert G Drysdale, Ahmad A Hamid, 3rd edition ,2008 Boulder, CO: Masonry Society, , ISBN 1929081332 9781929081332

3	Structural Masonry, Jagadish K S, 2015, I K International Publishing House Pvt Ltd, ISBN – 10: 9384588660, ISBN 13: 978-9384588663
4	Code Books: IS 1905: 1987, Indian standard Specification for Code of Practice for Structural Use of Unreinforced

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40	
MAXI	MUM MARKS FOR THE CIE THEORY	100	

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS		
	PART A			
1	Objective type questions covering entire syllabus	20		
	PART B (Maximum of TWO Sub-divisions only)			
2	Unit 1 : (Compulsory)	16		
3 & 4	Unit 2 : Question 3 or 4	16		
5 & 6	Unit 3: Question 5 or 6	16		
7 & 8	Unit 4: Question 7 or 8	16		
9 & 10	Unit 5: Question 9 or 10	16		
	TOTAL	100		

Semester: VI							
	Disaster Management						
		Category: Pro	fessional Core Ele	ctive-IV (Group-	D)		
			(Theory)				
Course Code	:	CV365TDD		CIE	:	100 Marks	
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks	
Total Hours : 40L SEE Duration : 3Hours							
Unit-I 08 Hi							08 Hrs

Natural disasters and Disaster management

Introduction to natural and Industrial Hazards- floods, landslides, earthquakes, volcanoes, avalanche, cyclones, drought, fire, release of effluents, harmful gases, Blast etc. Prediction and perception. Environmental risk due to project activities. Preparation of on-site and off-site disaster management plans - Pre disaster, actual disaster, Post disaster plans. Relief camp organization. Role of voluntary organization and armed forces during disasters.

Unit – II 08 Hrs

Risk analysis and assessment

Basic concept. Purpose of risk analysis. Analytical techniques and tools of risk assessment. Toxicology. Significance of risk. Risk characterization. Risk communication and Management, AI in emergency responses.

Unit –III 08 Hrs

Geo-informatics in Disaster Management

Remote sensing, Geographical Information System, Global Positioning System, Drone technology, Indian Regional Navigation Satellite System (IRNSS), Indian Tsunami Early Warning System (ITEWS), Use of ICT and Mobile technology for Disaster Management, Application of Drone Technology.

Unit –IV 08 Hrs

Disaster Management Act

Institutional frame work under Disaster Management Act 2005, Role of National Disaster Management Authority (NDMA), Disaster Response plan, Search and Rescue operations, Evacuation and Logistic Management, Demonstration of Earthquake evacuation Drill, Demonstration of Fire Drill.

Unit –V 08 Hrs

Disaster Mitigation and Management

Introduction, types, modes of disaster management, tools and techniques, primary and secondary data. Natural disasters its causes and remedies-Earthquake hazards-Causes and remedies, Flood and Drought assessment, causes and remedies, Landslides-causes and remedies. Fire hazards in buildings, Fire hazard management, Cyclones and hurricanes, inter department cooperation. Regional and global disaster mitigation.

Course	Course Outcomes: After completing the course, the students will be able to:-				
CO1	Study the environmental impact of natural and manmade calamities				
CO2	Learn to analyze and assess risk involved due to disasters.				
CO3	Understand the role of public participation.				
CO4	4 Learn the management tools and mitigation techniques.				

Refere	nce Books
1.	Environmental Impact Analysis Hand Book, John G Rau and David C Wooten, Edition: 2013,ISBN: 978-0070512177.
2.	Introduction to environmental Impact assessment, John Glasson, Riki Therivel, Andrew Chadwick, Edition: 2012, Research Press, ISBN:000-0415664705.2005, Reliance Publishing House, New Delhi.
3.	Natural Disaster Reduction, Girish K Mishrta, G C Mathew (eds), Edition, 2005, Reliance Publishing House, New Delhi,

4. Remote Sensing and Image Interpretation, Thomas M. Lillisand and R.W. Keifer, 6 th Edition, 2002, John Wiley, ISBN: 9780470052457.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40		
MAXII	MUM MARKS FOR THE CIE THEORY	100		

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS			
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B (Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5 & 6 Unit 3 : Question 5 or 6					
7 & 8 Unit 4 : Question 7 or 8					
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

Semester: VI **Integrated Watershed Management Category: Professional Core Elective III** Group D (Theory) CV365TDE 100 Marks **Course Code** CIE Credits: L:T:P 100 Marks : **SEE** 3:0:0 **Total Hours SEE Duration** : **40L** 3Hours 08 Hrs **Unit-I**

Introduction: Watershed – Definition and Classification – Components – Basic factors influencing watershed development – Codification – Watershed delineation – Characteristics of watershed: size, shape, physiography, slope, climate, drainage, land use, vegetation, geology and soils, hydrology and hydrogeology – Socio - economic characteristics.

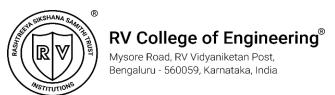
Unit – II 08 Hrs

Soil Conservation Measures: Types of Erosion – Water and Wind Erosion: Causes, Factors, Effects and Control – Estimation of Soil Erosion – Soil Loss Models – Sedimentation – Soil Conservation Practices: Vegetative and Mechanical.

Unit –III 08 Hrs

Water Harvesting and Conservation: Types of storage Structures –Water yield from Catchments – Losses of stored water – Water Conservations Methods – Water harvesting methods and Techniques – Rainwater Harvesting – Catchment, Harvesting structures, Roof water harvesting – Soil Moisture Conservation – Check Dams – Artificial Recharge – Farm Ponds – Percolation tanks.

Unit –IV 08 Hrs


Watershed Management: Project Proposal Formulation – Watershed Development Plan Entry Point Activities – Estimation – Watershed Economics – Agroforestry – Grassland Management – Wasteland Management – Watershed Approach in Government Programmes – Developing Collaborative know how – People's Participation – Evaluation of Watershed Management.

Unit –V 08 Hrs

Watershed Organization: Methodology of planning a watershed management – Identification of watershed problems, Socio – Economic issues – Application of Remote Sensing and GIS in watershed management.

Cours	Course Outcomes: After completing the course, the students will be able to:-					
CO1	Cognize the concepts of watershed management and its effect on land, water and ecosystem resources.					
CO2	Evaluate the impact of watershed planning through watershed characterization, runoff and soil loss estimation.					
CO3	Analyse the public policies and practices of watershed planning.					
CO4	Integrate the control and mitigation techniques for watershed problems.					

Refer	Reference Books				
1.	"Watershed Management" - V. V. Dhruva Narayana, G. Sastry, U. S. Patnaik, Central Soil & Water				
	Conservation Research & Training Institute, Indian Council of Agricultural Research, 1990.				
2.	Glenn O. Schwab, "Soil and Water Conservation Engineering", John Wiley and Sons, New York, 1981.				
3.	Ghanashyam Das, "Hydrology and Soil Conservation Engineering", Prentice Hall of India Private				
	Limited, New Delhi, 2000				

4.	"Watershed Management – Guidelines for Indian Conditions", Tideman E.M, 1st Edition, Omeg Publishers, New Delhi,2011, ISBN-9788185399348
5	"Remote Sensing in Hydrology" Edwin T. Engman, R.J. Gurney, Springer Netherlands, 2013, ISBN 9401066701, 9789401066709

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
MAXI	MUM MARKS FOR THE CIE THEORY	100

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	Q. NO. CONTENTS				
	PART A				
1	Objective type questions covering entire syllabus	20			
	PART B (Maximum of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5 & 6	Unit 3: Question 5 or 6	16			
7 & 8	Unit 4: Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
	TOTAL	100			

Semester: VI					
	Fundamentals of Aerospace Engineering				
		Category: Institutional Electives	-I		
	(Theory)				
Course Code	:	AS266TEA	CIE	:	100 Marks
Credits: L:T:P : 3:0:0 SEE : 100 Marks					
Total Hours	:	45L	SEE Duration	:	3.00 Hours

Unit-I	09 Hrs		
Basics of Flight Vehicles: History of aviation, International Standard atmosphere (ISA), Temperature, pressure and altitude relationships, Simple Problems on Standard Atmospheric Properties,			
Classification of aircrafts, Anatomy of an aircraft & Helicopters, Basic components and their functions.			
Unit – II	10 Hrs		
Aircraft Aerodynamics: Bernoulli's theorem, Centre of Pressure, Lift and Drag, Types of Drag Aerodynamic Coefficients, Aerodynamic Centre, Wing Planform Geometry, Airfoil Nomenclature, Basic Aerodynamic characteristics of Airfoil, Simple Numericals on Lift and Drag.			
Unit –III	12 Hrs		
Aerospace Propulsion: Introduction, Turbine Engines: Brayton Cycle, Operation of	3		

Turboprop, Turbofan, Turboshaft, RAMJET and SCRAMJET Engines, Rocket Engines: Principles of operation of Solid, Liquid, Hybrid, Nuclear and Electric Rockets.

Introduction to Space Mechanics: Basic Orbital Mechanics-Types of Trajectories, Escape and Orbital Velocities, Kepler's Laws of Planetary Motion, Simple Numericals.

Unit –IV 06 Hrs

Aerospace Structures and Materials: General types of construction-Monocoque, Semi-Monocoque & Geodesic, Structure of Wing and Fuselage, Metallic and Composite Materials.

Unit –V 08 Hrs

Aircraft Systems & Instruments: Instrument Displays, Basic Air data systems & Pitot Probes- Mach meter, Air speed indicator, Vertical speed indicator, Altimeter.

Basics of Aircraft Systems: Hydraulic and pneumatic systems, Electrical System, Aircraft Fuel System, Environmental Control System.

Course	Course Outcomes: At the end of this course the student will be able to:				
CO1:	Identify the fundamental nuances of Aerospace Engineering and appreciate their significance				
COI	on the Flight Vehicles design and performance				
CO2:	Interpret the design parameters that influence the design of the Aerospace Vehicles systems and				
COZ	its sub-systems				
CO3:	Evaluate critically the design strategy involved in the development of Aerospace vehicles				
CO4:	Categorically appraise the operation of the Aerospace Vehicles for different operating				
CO4:	conditions				

Re	Reference Books				
1	Introduction to Flight, John D. Anderson, 7 th Edition, 2011, McGraw-Hill Education, ISBN 9780071086059.				
2	Fundamentals of Aerodynamics, Anderson J.D, 5 th Edition, 2011, McGraw-Hill International Edition, New York ISBN:9780073398105.				
3	Rocket Propulsion Elements, Sutton G.P., 8 th Edition, 2011, John Wiley, New York, ISBN: 1118174208, 9781118174203.				

RV College of Engineering®

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Aircraft structural Analysis, T.H.G Megson, 2010, Butterworth-Heinemann Publications, ISBN: 978-1-85617-932-4

Ian Moir, Allan Seabridge, "Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration", John Wiley & Sons, 3rd edition, 2011, ISBN: 9781119965206

	C FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS			
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS FINAL QUIZ MARKS.			
2.	TESTS: Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20) ADDING UPTO 40 MARKS .			
MAXIN	IUM MARKS FOR THE CIE THEORY	100		
RUBRI	C FOR SEMESTER END EXAMINATION (THEORY)			
Q. NO	CONTENTS	MARKS		
PART A	<u> </u>			
1	Objective type questions covering entire syllabus	20		
PART I	B um of THREE Sub-divisions only)			
2	Unit 1: (Compulsory)	16		
3 & 4	Unit 2: Question 3 or 4	16		
5 & 6	Unit 3: Question 5 or 6	16		
7 & 8	Unit 4: Question 7 or 8	16		
9 & 10	Unit 5: Question 9 or 10	16		
TOTAL		100		

Semester: VI						
	Healthcare Analytics					
			titutional Electives -l	()		
		(Theory)			
Course Code	:	BT266TEB	CIE	:	100 Marks	
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks	
Total Hours : 45 Hrs SEE Duration : 3Hours						
	Unit-I 09 Hrs					

Introduction to tools and databases: Introduction to Bioinformatics, Goals, Scope, Applications, Sequence databases, Structure databases, Special databases – genome and microarray, Applications of these databases, examples, Database similarity search: Unique requirements of database searching, Heuristic Database Searching, Basic Local Alignment Search Tool (BLAST), FASTA, Comparison of FASTA and BLAST, Database Searching with Smith-Waterman Method

Unit – II 09 Hrs

Sequence Analysis: Types of Sequence alignment -Pairwise and Multiple sequence alignment, Alignment algorithms, Scoring matrices, Statistical significance of sequence alignment. Multiple Sequence Alignment: Scoring function, Exhaustive algorithms, Heuristic algorithms, Profiles and Hidden Markov Models: Position-Specific scoring matrices, Profiles, Markov Model and Hidden Markov Model, Scoring matrices – BLOSSUM and PAM

Molecular Phylogenetics: Introduction, Terminology, Forms of Tree Representation. Phylogenetic Tree Construction Methods - Distance-Based, Character-Based Methods and Phylogenetic Tree evaluation.

Unit –III 09 Hrs

Introduction to Next-Generation Sequencing (NGS) analysis: Sanger sequencing principles - history and landmarks, of Sequencing Technology Platforms, A survey of next-generation sequencing technologies, A review of DNA enrichment technologies, Base calling algorithms, Base quality, phred values, Reads quality checks, Interpretations from quality checks. Adapter and primer contamination. Processing reads using clipping of reads-Advantages and disadvantages of processing of reads, automation in NGS analysis and advantages (shell scripting)

Unit –IV 09 Hrs

Structural analysis & Systems Biology: Gene prediction programs – ab initio and homology-based approaches. ORFs for gene prediction. Detection of functional sites and codon bias in the DNA. Predicting RNA secondary structure, Protein structure basics, structure visualization, comparison and classification. Protein structure predictive methods using protein sequence, Protein identity based on composition. Structure prediction - Prediction of secondary structure, tertiary structure prediction methods, Scope, Applications. Concepts, implementation of systems biology, Mass spectrometry and Systems biology, Flux Balance analysis.

Unit –V 09 Hrs

Drug Screening: Introduction to Computer-aided drug discovery, target selection, ligand preparation and enumeration, molecular docking, post-docking processing, molecular dynamics simulations, applications and test cases, AI/ML in Drug discovery

Course Outcomes: After completing the course, the students will be able to:-

- Gain proficiency in utilizing a range of bioinformatics tools and databases for comprehensive sequence and structural analysis.
- CO2 Investigate and apply innovative sequencing technologies and analytical methods to solve complex biological questions and advance research in genomics and molecular biology.

RV College of Engineering®

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

CO3 Demonstrate expertise in NGS technologies, including performing data quality assessments, read processing, and managing large-scale data.

Apply bioinformatics tools for modeling and simulating biological processes, with a focus on gene prediction using both ab initio and homology-based approaches.

R	Reference Books				
	Xiong J. Essential bioinformatics. Cambridge University Press; 2006 Mar 13.				
۷.	Buehler LK, Rashidi HH, editors. Bioinformatics basics: applications in biological science and medicine. CRC Press; 2005 Jun 23.				
3.	Ghosh Z, Mallick BM. Bioinformatics principles and Applications. Oxford University Press; 2018 Jun 13.				
-	Low L, Tammi MT. Introduction to next generation sequencing technologies. Bioinformatics. WORLD SCIENTIFIC. 2017 Jul 26:1-21.				
5	Bioinformatics: Sequence and Genome Analysis; D W Mount; 2014; CSHL Press; 2nd edn; ISBN: 9780879697129.				
	Computational Systems Biology; A Kriete and R Eils; 2006; Academic Press; Illustrated edn; ISBN: 978-01-208-87866.				

RU	UBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	
MA	AXIMUM MARKS FOR THE CIE THEORY	100

Q. NO.	MARKS	
PART A	•	
1	Objective type questions covering entire syllabus	20
(Maximum of '	TWO Sub-divisions only; wherein one sub division will be a ca Unit 1: (Compulsory)	selet in the related topics)
(Maximum of		<u> </u>
3 & 4	Unit 2: Question 3 or 4	16
5 & 6	Unit 3: Question 5 or 6	16
7 & 8	Unit 4: Question 7 or 8	16
9 & 10	Unit 5: Question 9 or 10	16

RV College of Engineering®

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Semester: VI							
	Industrial Safety Engineering Category: Institutional Elective (Theory)						
Course Code	Course Code : CH266TEC CIE : 100 Marks						
Credits: L:T:P	Credits: L:T:P : 3:0:0 SEE :			100 Marks			
Total Hours	Cotal Hours : 40L SEE Duration : 3Hours						
	Unit-I 08 Hrs						

Introduction Safety:

Introduction to industrial safety engineering, major industrial accidents, safety and health issues, key concepts and terminologies, Hazard theory, Hazard triangle, Hazard actuation, Actuation transition, Causal factors, problems on OSHA

Unit – II 08 Hrs

Risk assessment and control: Risk assessment, Risk perception, acceptable risk, problems on net present value, internal rate of return, payback period concepts including real life examples.

Hazard Identification Methods: Preliminary Hazard List (PHL), worksheets, case study. Preliminary Hazard Analysis (PHA), Fault tree and Event tree analysis. Design and development of fault tree and event tree for high pressure reactor system.

Unit –III 08 Hrs

Hazard analysis: Hazard and Operability Study (HAZOP): Guide words, HAZOP matrix, Procedure, HAZOP studies on reactors, heat exchanger, design of HAZOP table, Failure Modes and Effects Analysis (FMEA) concept, methodology, problems of FMEA, examples.

Unit –IV 08 Hrs

Risk analysis on capital budgeting: Risk adjusted discount rate (RADAR) method, certainty equivalent approach, scenario analysis, probability distribution, quantification of risk using statistical parameters and associated problems.

Unit –V 08 Hrs

Safety in process industries and case studies: Personnel Protection Equipment (PPE): Safety glasses, face shields, welding helmets, absorptive lenses, hard hats, types of hand PPE, types of foot PPE, types of body PPE. Bhopal gas tragedy, Chernobyl nuclear disaster, Chemical plant explosion and fire.

Cours	Course Outcomes: After completing the course, the students will be able to:-				
CO1	Understand the risk assessment techniques used in process industry				
CO2	Interpret the various risk assessment tools.				
CO3	Use hazard identification tools for safety management.				
CO4	Analyze tools and safety procedures for protection in process industries.				

Reference Books

- Functional Safety in the Process Industry: A Handbook of practical Guidance in the application of 1. IEC61511 and ANSI/ISA-84, Kirkcaldy K.J.D Chauhan, 2012, North corolina, Lulu publication, ISBN:1291187235.
- Safety Instrumented Systems Verification Practical probabilistic calculations, Goble and William M., 2005, Pensulvania ISA publication, ISBN:155617909X.
- 3. Industrial safety and risk Management, Laird Wilson and Doug Mc Cutche, 1st Edition, 2003, The University of alberta press, Canada, ISBN: 0888643942.

4. Industrial Safety, Health and Environment Management Systems, R K Jain, Sunil S Rao, 4th Edition, 2005, Khanna Publishers, New Delhi, ISBN: 8174092102.

RU	UBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)					
#	COMPONENTS	MARKS				
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.					
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40				
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .					
MA	MAXIMUM MARKS FOR THE CIE THEORY					

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	CONTENTS	MARKS				
PART	Ā					
1	Objective type questions covering entire syllabus	20				
PART (Maxin	B num of TWO Sub-divisions only)					
2	Unit 1: (Compulsory)	16				
3 & 4	Unit 2: Question 3 or 4	16				
5 & 6	Unit 3 : Question 5 or 6	16				
7 & 8	Unit 4: Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
TOTA	L	100				

Semester: VI							
	Robotic Process Automation						
			(Institutional Electi	ve)			
			(Theory)				
Course Code	:	CS266TED	CIE	:	100		
Credits: L:T:P : 3:0:0 SEE : 100							
Total Duration	:	36	SEE Duration	:	3 Hrs		

Unit – I 8 Hrs

RPA Concepts: RPA Basics, History of Automation, what is RPA? RPA vs Automation, Processes & Flowcharts, Programming Constructs in RPA, What Processes can be Automated? Types of Bots, Workloads that can be automated.

RPA Advanced Concepts: Standardization of processes, Setting up the Centre of Excellence, RPA Development methodologies, Difference from SDLC, RPA journey, RPA business case, RPA Team, Process Design Document/Solution Design Document, Industries best suited for RPA, Risks & Challenges with RPA, RPA and emerging ecosystem.

Unit – II 7 Hrs

RPA Tool Introduction: Introduction to UiPath - the User Interface, Types of Variables, Variables in UiPath, Managing Arguments, The Arguments Panel, Namespaces; Control flow statements in UiPath, Sequences and Flowcharts, Control Flow Activities

Data Manipulation Introduction, Data Manipulation Operations, Types of data storing variables, Text Manipulation, main string methods.

UiPath Recording: Basic, Desktop and Web Recording, Image and Native Citrix Recording, Input/output methods, Types of OCR, Data Scraping, Advanced Scraping techniques.

Unit – III 7 Hrs

Advanced Automation Concepts: Selectors, Types of Selectors (Full, partial, dynamic), Defining and Assessing Selectors, Customization, Debugging.

Image, Text & Advanced Citrix Automation – Introduction, Keyboard based automation, Information Retrieval, Best Practices

Excel Data Tables & PDF, Data Tables in RPA, Excel and Data Table, Extracting Data from Data Table, Anchors, Using anchors in PDF

Unit – IV 7 Hrs

Email Automation, Exceptions and Deploying Bots: Introduction to Email Automation, Key concepts of email, email protocols, email automation in UiPath, email as input and output.

Debugging and Exception Handling, Types of exception, Debugging Tools, Strategies for solving issues, Catching errors.

Overview of orchestration Server, orchestrator functionalities, Connecting Bot to orchestrator

Unit – V 7 Hrs

Hyperautomation: Components and application of Hyperautomation, Automation versus hyperautomation, Benefits and challenges of hyperautomation, use cases, Phases (Integration, Discover, Orchestration and Governance), Trends in Hyperautomation (low-code/no-code platform, HaaS)

Course Outcomes: After completing the course, the students will be able to

RV College of Engineering® Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

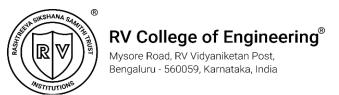
CO1	Understand RPA principles, its features and applications
CO2	Demonstrate proficiency in handling variables and decision making inside a workflow and data manipulation techniques
CO3	Gain insights into recording, Email Automation and exception handling and orchestrator.
CO4	Analyze the trends in automation and chose business strategy to design a real-world automation workflow.

R	Reference Books:
1	Alok Mani Tripathi, "Learning Robotic Process Automation, Publisher: Packt Publishing, Release Date: March 2018 ISBN: 9781788470940
2	PASCAL BORNET, Intelligent automation: Welcome to the world of hyperautomation, World Scientific Publishing Company, ISBN-13: 978-9811235481 December 2020
3	UiPath pdf manuals
4	https://www.uipath.com/rpa/robotic-process-automation
5	https://www.ibm.com/topics/hyperautomation
6	https://www.pega.com/hyperautomation

	Semester: VI							
Intelligent Transport Systems								
Category: Institution Elective-I								
	(Theory)							
Course Code	:	CV266TEE		CIE	:	100 Marks	3	
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks	3	
Total Hours	:	40L		SEE Duration	:	3Hours		
	Unit-I 08 Hrs							
Introduction to I	nte	elligent Transport	ation Systems (I	ΓS): Historical ba	ck	ground, Ur	banisation,	
Motorisation, Tra	nsı	ort system chara	acteristics, Transp	ort problems and	is	sues, Chall	lenges and	
opportunities in IT	S:	ITS-Today and tor	norrow, ITS trainir	ng and education ne	eds	Role and i	importance	
1 1 1		-	•	ity for sector growth		*	1	
		<u> </u>	Unit – II	•			08 Hrs	
ITS Architecture:	ITS Architecture: introduction, Functionalities required for User service, Logical architecture, Physical							
architecture, Equipment and Market packages, Need of ITS Architecture to solve problems in Urban area.								
Technology building	Technology building blocks for ITS: Introduction, Data acquisition, Communication tools, Data analysis and							
Traveller informatio	n. `	Various detection, Id	lentification and coll	ection methods for IT	S.		•	
	Unit –III 08 Hrs							

Traffic management system components and ITS: Introduction, objectives, traffic management measures, ITS for traffic management, Development of traffic management system, Traffic Management Centre, Advance Traffic Management System, Advanced Traveller Information System, Advance Vehicle Control Systems, Advance Public Transport System, Commercial Vehicle Operations, ITS For Intermodal Freight Transport.

Unit –IV 08 Hrs


ITS Evaluation – Project selection at the planning level, Deployment Tracking, Impact Assessment, Benefits by ITS components, Evaluation Guidelines. ITS for Law Enforcement: Introduction, Enhance and support the enforcement traffic rules and regulations, ITS Funding options.

Unit –V 08 Hrs

ITS Standards-Standard development process, National ITS architecture and standards, ITS standards application areas, National Transportation Communications for ITS Protocol, Standards testing. ITS for smart cities and Case studies.

Course	Course Outcomes: After completing the course, the students will be able to:-				
CO1	Identify and apply ITS applications at different levels				
CO2	Illustrate ITS architecture for planning process				
CO3	Examine the significance of ITS for various levels				
CO4	Compose the importance of ITS in implementations				

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)					
#	COMPONENTS	MARKS			
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20			

2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40		
MAXIMUM MARKS FOR THE CIE THEORY				

	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	Q. NO. CONTENTS						
	PART A						
1	Objective type questions covering entire syllabus	20					
	PART B (Maximum of TWO Sub-divisions only)						
2	Unit 1 : (Compulsory)	16					
3 & 4	Unit 2 : Question 3 or 4	16					
5 & 6	5 & 6 Unit 3 : Question 5 or 6						
7 & 8 Unit 4 : Question 7 or 8							
9 & 10	Unit 5: Question 9 or 10	16					
	TOTAL	100					

Semester: VI **Integrated Health Monitoring of Structures Category: Institutional Electives - I** (Common to all Programs) (Theory) **Course Code** CV266TEF CIE 100 Marks Credits: L:T:P SEE 100 Marks 3:0:0 : : **Total Hours** : 42L **SEE Duration** 3 Hours Unit-I 08 Hrs

Structural Health: Factors affecting Health of Structures, Causes of Distress, Regular Maintenance, Importance of maintenance

Structural Health Monitoring: Concepts, Various Measures, Analysis of behavior of structures using remote structural health monitoring, Structural Safety in Alteration.

Unit – II 08 Hrs

Materials: Piezo-electric materials and other smart materials, electro-mechanical impedance (EMI) technique, adaptations of EMI technique, Sensor technologies used in SHM

Structural Audit: Assessment of Health of Structure, Collapse and Investigation, Investigation Management, SHM Procedures, SHM using Artificial Intelligence

Unit –III 08 Hrs

Static Field Testing: Types of Static Tests, Simulation and Loading Methods, sensor systems and hardware requirements, Static Response Measurement.

Unit –IV 08 Hrs

Dynamic Field Testing: Types of Dynamic Field Test, Stress History Data, Dynamic Response Methods, Hardware for Remote Data Acquisition Systems, Remote Structural Health Monitoring.

Unit –V 08 Hrs

Remote Structural Health Monitoring: Introduction, Hardware for Remote Data Acquisition Systems, Advantages, Case studies on conventional and Remote structural health monitoring

Case studies: Structural Health Monitoring of Bridges, Buildings, Dams, Applications of SHM in offshore Structures- Methods used for non-destructive evaluation (NDE) and health monitoring of structural components

Course Outcomes: After completing the course, the students will be able to:-						
CO1	Diagnose the distress in the structure understanding the causes and factors.					
CO2	Understand safety aspects, components and materials used in Structural Health Monitoring.					
CO3	Assess the health of structure using static field methods and dynamic field tests.					
CO4	Analyse behavior of structures using remote structural health monitoring					

Re	Reference Books							
1	Structural Health Monitoring, Daniel Balageas, Claus Peter Fritzen, Alfredo Güemes, 2006, John Wiley and Sons, ISBN: 978-1905209019							
2	Health Monitoring of Structural Materials and Components Methods with Applications, Douglas E Adams, 2007, John Wiley and Sons, ISBN:9780470033135							
3	Structural Health Monitoring and Intelligent Infrastructure, J. P. Ou, H. Li and Z. D. Duan, Vol1,2006, Taylor and Francis Group, London, UK. ISBN: 978-0415396523							
4	Structural Health Monitoring with Wafer Active Sensors, Victor Giurglutiu, 2007, Academic Press Inc, ISBN: 9780128101612							

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .			
MA	AXIMUM MARKS FOR THE CIE THEORY	100		

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS			
PART A	A				
1	Objective type questions covering entire syllabus	20			
PART 1 (Maxim	B um of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5 & 6	Unit 3: Question 5 or 6	16			
7 & 8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
TOTAI		100			

Semester: VI								
Advanced Energy Storage for E-Mobility (Theory)								
					_			
Course Code	:	CM266TEG	CIE	:	100 Marks			
Credits:	:	3:0:0	SEE	:	100 Marks			
L:T:P								
Total Hours	:	42L	SEE Duration	:	3.00 Hours			
Course Learnin	ng Ob	jectives: The students will be able t	0					
1	Uno	lerstand the fundamentals and technic	ologies of energy storag	ge in el	ectric vehicles			
2	Ana	alyze and compare advanced battery	technologies for e-mob	ility				
3	Imp	art the principles of electrochemistr	y for analyzing issues ir	n electr	ric/hybrid			
	vehicles.							
4	4 Develop solutions for battery management systems and recycling of advanced storage							
devices.								
Unit-I 07 Hrs								
Energy storage in electric vehicles								

Energy storage in electric vehicles

Introduction to E-mobility, background of alternative energy sources and sustainability. Types of electric vehicles and their salient features along with their energy requirement. Fundamentals of advanced battery technology. Battery characteristics. Specification of advanced battery for e mobility.

> Unit – II 08 Hrs

Advanced lithium-ion batteries

Basic concepts of lithium batteries. Types of advanced cathode and anode materials employed in lithium batteries, Construction, working and future applications of lithium cobalt oxide, lithium iron phosphate, Lithium air, lithium sulfur and lithium polymer batteries with their advancement in vehicle electrification.

> Unit –III **09 Hrs**

Non lithium batteries for e mobility

Limitations of lithium batteries. Overview of non-lithium battery technology. Construction and working of advanced non-Lithium batteries such as Lead acid, Nickel Metal Hydride, Redox flow, Zebra, Sodium and Magnesium batteries. Electrode materials and electrolyte considerations in non-lithium batteries. Performance comparison with lithium-ion batteries. Battery requirement in charging infrastructure.

> Unit –IV 09 Hrs

Chemistry of alternative storage devices

Introduction to super capacitor. Construction, working and applications of supercapacitors along with the materials used in electrodes. Types of advanced supercapacitors. Application of supercapacitors in regenerative braking. Advancement in battery-supercapacitor hybrid, Battery-fuel cell hybrid, and Battery-solar cell hybrid electric vehicles with their advantages and limitations.

> Unit -V 09 Hrs

Battery management and recycling:

Battery management systems (BMS): Fundamentals of battery management systems and controls, State-of-charge (SoC), state-of-health (SoH) and Cell balancing techniques.

Battery Thermal Management: Passive and active cooling systems. Safety mechanisms, thermal runaway and thermal management.

Battery recycling: Economic aspects, environmental safety and process of recycling of advanced batteries.

Course Outcomes: After completing the course, the students will be able to

CO1:	Implement the fundamentals of chemistry in advanced energy storage and conversion
	devices.

CO2:	Apply the chemistry knowledge used for hybridization of various energy storage and conversion devices.
CO3:	Analyze the different battery system for achieving maximum energy storage for vehicle electrification
CO4:	Evaluation of efficiency of a battery with respect to cost, environmental safety, material, energy consumption and recycling.

Re	ference Books
1	Battery reference book, T. R. Crompton., 3rd edition, NEWNES Reed Educational and Professional
1	Publishing Ltd 2000, ISBN: 07506 4625 X.
2	Batteries for Electric Vehicles, D. A. J. Rand, R. Woods, and R. M. Dell, Society of Automotive
	Engineers, Warrendale PA, 2003. ISBN 10: 0768001277.
3	• Lithium Batteries, Science and Technology, GA. Nazri and G. Pistoa, Kluwer Academic
3	Publisher, 2003, ISBN 978-0-387-92675-9.
4	Battery Technology Handbook, H. A. Kiehne, Marcel Dekker, NYC, 2003. ISBN: 0824742494
4	9780824742492.
5	Electric Vehicle Technology Explained, James Larminie and John Lowry. 2nd Edition, Wiley,
3	ISBN-13: 978-1118505429.
6	Electric Vehicle Technology and Design, Antoni Gandia. CRC Press, ISBN-13: 978-1138551912.
7	Sustainable Transportation: Problems and Solutions. William R. Black, The Guilford Press,
/	ISBN-13: 978-1462532072.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	3	-	-	-	-	-	-	1	1	-	1
CO3	2	2	-	-	1	-	-	-	-	1	-	1
CO4	3	3	-	-	1	1	1	-	-	1	-	1

High-3: Medium-2: Low

Semester: VI										
Human Machine Interface (HMI)										
	Institu	itional Elective In	dustry Assisted Elective-I	BOSCH						
Course Code	:	EC266TEH	CIE	:	100 Marks					
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks					
Total Hours	Total Hours : 45L SEE Duration : 03 Hrs									
Unit-I 09 Hrs										

Foundations of HMI: The Human: History of User Interface Designing, I/O channels, Hardware, Software and Operating environments, The Psychopathology of everyday Things, Psychology of everyday actions, Reasoning and problem solving. The computer: Devices, Memory, Processing and networks. Interaction: Models, frameworks, Ergonomics, styles, elements, interactivity, Paradigms. **Introduction to HMI and Domains**: Automotive, Industrial, CE, Medical, ECUs within car and their functionalities. Interaction between ECUs. Communication protocols for ECUs (CAN, LIN, Most, FlexRay, Ethernet etc)

Unit – II 09 Hrs

Automotive Human-Machine Interfaces: Automotive infotainment system - Evolution road map, Feature sets, System architecture, Trends, Human factors and ergonomics in automotive design, Automotive User Experience (UX) Design Principles, In-Vehicle Information Systems (IVIS), Driver-Assistance Systems (DAS) Interfaces, HMI design for adaptive cruise control, Voice and Gesture Recognition in Automotive HMIs, Touchscreen Interfaces and Controls, Usability Testing and Evaluation in Automotive HMIs, Safety Considerations and Regulations in Automotive HMIs, Emerging Technologies in Automotive HMIs, Human-Machine Interfaces for Autonomous Vehicles

Unit –III 09 Hrs

UX and Guidelines: Introduction to UX design - stages, theory, Design thinking, UX Study, Interaction concepts, Graphic design tools - Adobe Photoshop, Adobe XD, Blender, GIMP, Asset Design - Overview, Guidelines and norms, 2D/3D rendering, OpenGL, OSG.

Unit –IV 09 Hrs

HMI User Interface: User-centered HMI development process, Basics of Webserver. Web-based HMI: Basics of Twin CAT and HTML, CSS, JavaScript.

HMI on Mobile: Four Principles of Mobile UI Design, Benefits of Mobile HMIs, Mobile HMI Development Suites.

Unit –V 09 Hrs

HMI Control Systems: Introduction to Voice-Based HMI, Gesture-Based HMI, Sensor-Based UI controls. **Haptics in Automotive HMI**: Kinesthetic Feedback Systems, Tactile Feedback Systems, Haptics in Multimodal HMI, Automotive Use-Cases

HMI Testing: Limitations of Traditional Test Solutions, Case - Study: Bosch's HMI validation tool - Graphics Test Systems (GTS).

UI analytics: Usage patterns, Debugging, Performance Profiling, Use Cases.

Course Outcomes: After completing the course, the students will be able to:-				
CO1	Understanding the application of HMIs in various domain.			
CO2	Comparison of various communication protocols used in HMI development.			
CO3	Apply and analyse the car multimedia system free software and hardware evolution.			

RV College of Engineering®

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

CO4 Design and evaluate the graphic tools and advanced techniques for creating car dashboard multimedia systems.

	Reference Books						
Ī	1.	Touch based HMI; Principles and Applications, Shuo gao, Shuo Yan, Hang Zhao, Arokia Nathan,					
	l	Springer					
	l	Nature Switzerland AG, 1st Edition.					

- 2. Unity 2020 by Example: A Project based guide to building 2D, 3D augmented reality and Virtual reality games from sratch, Robert Wells, Packt Publishing ltd, 2020.
- 3. GUI Design and Android Apps, Ryan Cohen, Tao Wang, Apress, Berkley, CA,2014.

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS	MARKS	
	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40	
	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS .	40	
Μ	IAXIMUM MARKS FOR THE CIE	100	

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS			
PART A	PART A				
1	Objective type questions covering entire syllabus	20			
PART B (Maximum of TWO Sub-division	PART B (Maximum of TWO Sub-divisions only)				
2	Unit 1: (Compulsory)	16			
3 & 4	Unit 2: Question 3 or 4	16			
5 & 6	Unit 3: Question 5 or 6	16			
7 & 8	Unit 4: Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
TOTAL		100			

Semester: VI						
Energy Auditing and Standards						
	Category: Institutional Elective					
(Theory)						
Course Code	:	EE266TEJ		CIE	:	50 Marks
Credits: L:T:P : 3:0:0				SEE	:	50 Marks
Total Hours	:	45 L		SEE Duration	:	2 Hours

Unit-I 06 Hrs

Types of Energy Audit and Energy-Audit Methodology: Definition of Energy Audit, Place of Audit, Energy – Audit Methodology, Financial Analysis, Sensitivity Analysis, Project Financing Options, Energy Monitoring and Training.

Survey Instrumentation: Electrical Measurement, Thermal Measurement, Light Measurement, Speed Measurement, Data Logger and Data Acquisition System,

Energy Audit of a Power Plant: Indian Power Plant Scenario, Benefit of Audit, Types of Power Plants, Energy Audit of Power Plant.

Unit $-\Pi$ 10 Hrs

Electrical-Load Management: Electrical Basics, Electrical Load Management, VariableFrequency Drives, Harmonics and its Effects, Electricity Tariff, Power Factor, Transmission and Distribution Losses. **Energy Audit of Motors:** Classification of Motors, Parameters related to Motors, Efficiency of a Motor, Energy Conservation in Motors, BEE Star Rating and Labelling.

Energy Audit of Pumps, Blowers and Cooling Towers: Pumps, Fans and Blowers, Cooling Towers

Unit –III 09 Hrs

Communication & Standards:

Wireless technologies: WPANs, LAN, Wireless metropolitan area network, cellular network, satellite communication, Zigbee, Bluetooth, LAN, NAN

Wireline communication: Phone line technology, powerline technology, coaxial cable technology; Optical communication, TCP/IP networks

Unit –IV 09 Hrs

Energy Audit of Boilers: Classification of Boilers, Parts of Boiler, Efficiency of a Boiler, Role of excess Air in Boiler Efficiency, Energy Saving Methods.

Energy Audit of Furnaces: Parts of a Furnace, classification of Furnaces, Energy saving Measures in Furnaces, Furnace Efficiency


Energy Audit of Steam-Distribution Systems : S team as Heating Fluid, Steam Basics, Requirement of Steam, Pressure, Piping, Losses in Steam Distribution Systems, Energy Conservation Methods

Unit-V 09 Hrs

Energy Audit of Lighting Systems: Fundamentals of Lighting, Different Lighting Systems, Ballasts, Fixtures (Luminaries), Reflectors, Lenses and Louvres, Lighting Control Systems, Lighting System Audit, Energy Saving Opportunities.

Energy Audit Applied to Buildings: Energy – Saving Measures in New Buildings, Water Audit, Method of Audit, General Energy – Savings Tips Applicable to New as well as Existing Buildings.

Course Outcomes: After completing the course, the students will be able to: -				
CO 1				
	needed.			
CO 2	Design and perform the energy audit process for electrical systems.			
CO 3	Design and perform the energy audit process for mechanical systems			

CO 4 Propose energy management scheme for a building

Reference Books						
1	Handbook of energy audit, Sonal Desai, Kindle Edition, 2015, McGraw Hill Education, ISBN: 9339221346, 9789339221348.					
2	Energy management handbook, Wayne C Turner and Steve Doty, 6th Edition, 2015, CRC Press, ISBN: 0-88173-542-6.					
3	Energy management, Sanjeev Singh and Umesh Rathore, 1st Edition, 2016, Katson Books, ISBN 10: 9350141019, ISBN 13: 9789350141014.					
4	Energy audit of building systems, Moncef Krarti, 2nd Edition, 2010, CRC Press ISBN: 9781439828717					

RU	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .			
MAXIMUM MARKS FOR THE CIE THEORY				

RUBRI	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS				
PART A	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B (Maximum of TWO Sub-divisions only)					
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5 & 6	Unit 3: Question 5 or 6	16				
7 & 8	Unit 4: Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
TOTAL		100				

	Semester: VI				
		Category: In	al Instrumentation Institutional Elective (Theory)		
Course Code	:	EI266TEK	CIE	:	100 Marks
Credits: L:T:P	redits: L:T:P : 03:00:00				
Total Hours	otal Hours : 45L SEE Duration : 03 Hrs				
Unit-I 09 Hrs					

Fundamentals: Sources of Biomedical signals, Basic medical instrumentation system, General constraints in design of medical instrumentation systems.

Bioelectric Signals and Electrodes: Origin of bioelectric signals, Types of bioelectric signals, Recording electrodes, Electrode-tissue interface, Polarization, Skin contact impedance, Silver-silver chloride electrodes, Electrodes for ECG, EEG, EMG, Microelectrodes.

Unit – II 09 Hrs

Electrocardiograph: Electrical activity of heart, Genesis and characteristics of Electrocardiograph (ECG), Block diagram description of an Electrocardiograph, ECG lead systems, Multi-channel ECG machine. **Electroencephalograph:** Genesis of EEG, Block diagram description of an EEG, 10-20 Electrode system, Computerized analysis of EEG.

Unit –III 09 Hrs

Patient Monitoring System: Bedside monitors, Central Monitors, Measurement of Heart Rate, Average Heart Rate meter, Instantaneous heart rate meter, Measurement of pulse rate, Blood Pressure measurement, Direct and indirect method, Automatic blood pressure measuring apparatus using Korotkoff's method.

Oximeters: Oximetry, ear oximeter, pulse oximeter, skin reflectance oximeter and intravascular oximeter.

Unit –IV 09 Hrs

Blood Flow Meters: Electromagnetic blood flow meter, Types of electromagnetic blood flow meters, Ultrasonic blood flow meters, NMR blood flow meters, Laser Doppler blood flow meters.

Cardiac Pacemakers and Defibrillators: Need for Cardiac pacemaker, External Pacemaker, Implantable Pacemaker, Types of Implantable Pacemaker, Ventricular Synchronous Demand Pacemaker and Programmable

Pacemaker. Need for a defibrillator, DC defibrillator, Defibrillator electrodes, DC defibrillator with synchronizer.

Unit –V 09 Hrs

Advances in Radiological Imaging: X-rays-principles of generation, Conventional X-ray radiography, Fluoroscopy, Angiography, Digital radiography, Digital subtraction angiography (DSA). Basic principle of computed tomography, magnetic resonance imaging system and Ultrasonic imaging system.

Cours	Course Outcomes: After completing the course, the students will be able to: -				
CO1	Understand the sources of biomedical signals and basic biomedical instruments.				
CO2	Apply concepts for the design of biomedical devices				
CO3	Analyze the methods of acquisition and signal conditioning to be applied to the physiological				
	parameters.				
CO ₄	Develop instrumentation for measuring and monitoring biomedical parameters.				

RV College of Engineering®

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Ref	eren	ce B	800	ks

- 1. Handbook of Biomedical Instrumentation, R. S. Khandpur,3rd Edition, Reprint 2016, Tata McGraw-Hill, ISBN: 9780070473553.
- Biomedical Instrumentation and Measurements, Leslie Cromwell & others, 2nd Edition, Reprint 2015, ISBN: 9780130771315.
- 3. Medical instrumentation: Application and Design, J. G. Webster, 3rd Edition, Reprint 2015, Wiley Publications, ISBN: 9788126511068.
- 4. Principles of Medical Imaging, K.Kirk Shung, Michael B. Smith and Banjamin Tsui, Academic Press, 2016, ISBN: 978-0126409703.

R	UBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
#	COMPONENTS	MARKS
	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted . Each test will be evaluated for 50 Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20). Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.	40
V	IAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS		
PART .	A			
1	Objective type questions covering entire syllabus	20		
PART I (Maxim	B num of TWO Sub-divisions only)			
2	Unit 1: (Compulsory)	16		
3 & 4	Unit 2: Question 3 or 4	16		
5 & 6	Unit 3: Question 5 or 6	16		
7 & 8	Unit 4: Question 7 or 8	16		
9 & 10	Unit 5: Question 9 or 10	16		
TOTAI	TOTAL 100			

Semester: VI **Telecommunication Systems Category: Institutional Elective Course** Stream: Electronics & Telecommunication Engineering (Theory) **Course Code** ET266TEM CIE 100 Marks Credits: L:T:P 100 Marks 3:0:0 SEE : **Total Hours** 45 L **SEE Duration** 3 Hours

Introduction to Electronic Communication: The Significance of Human Communication, Communication Systems, Types of Electronic Communication, Modulation and Multiplexing, Electromagnetic Spectrum, Bandwidth, A Survey of Communication Applications.

The Fundamentals of Electronics: Gain, Attenuation, and Decibels.

Radio Receivers: Super heterodyne receiver.

Unit – II 10 Hrs

Modulation Schemes: Analog Modulation: AM, FM and PM- brief review. Digital Modulation: PCM, Line Codes, ASK, FSK, PSK & QAM (Architecture). Wideband

Modulation: Spread spectrum, FHSS, DSSS. **Multiple Access:** FDMA, TDMA, CDMA.

Unit –III 10 Hrs

Satellite Communication: Satellite Orbits, Satellite Communication Systems, Satellite Subsystems, Ground Stations, Satellite Applications, Global Positioning System.

Unit –IV 9 Hrs

Optical Communication: Optical Principles, Optical Communication Systems, Fiber-Optic Cables, Optical Transmitters and Receivers, Wavelength-Division Multiplexing, Passive Optical Networks.

Unit –V 8 Hrs

Cell Phone Technologies: Cellular concepts, Frequency allocation, Frequency reuse, Internet Telephony.

Wireless Technologies: Wireless LAN, PANs and Bluetooth, Zig Bee, Mesh Wireless Networks, WiMax, and Wireless Metropolitan Area Networks.

Course	Course Outcomes: After completing the course, the students will be able to :-				
CO1	Describe the basics of communication systems.				
CO2	Analyze the importance of modulation and multiple access schemes for communication systems.				
CO3	Analyze the operational concept of cell phone and other wireless technologies.				
CO4	Justify the use of different components and sub-system in advanced communication systems.				

Ref	erence Books
1.	Principles of Electronic Communication Systems, Louis E. Frenzel, 4 th Edition, 2016, Tata McGraw Hill, ISBN: 978-0-07-337385-0.
2.	Electronic Communication Systems, George Kennedy,3 rd Edition, 2008, Tata McGraw Hill, ISBN: 0-02-800592-9.
3.	Introduction to Telecommunications, Anu A. Gokhale, 2 nd Edition, 2008, Cengage Learning ISBN: 981-240-081-8

RU	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)		
#	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .		
MA	AXIMUM MARKS FOR THE CIE THEORY	100	

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS			
PART A					
1	Objective type questions covering entire syllabus	20			
PART E (Maximi	um of TWO Sub-divisions only)				
2	Unit 1 : (Compulsory)	16			
3 & 4	Unit 2 : Question 3 or 4	16			
5 & 6	Unit 3: Question 5 or 6	16			
7 & 8	Unit 4 : Question 7 or 8	16			
9 & 10	Unit 5: Question 9 or 10	16			
TOTAL		100			

Semester: VI

Mobile Communication Networks and Standards

Category: Institutional Elective Course Stream: Electronics & Telecommunication Engineering (Theory)

Course Code	:	ET266TEN	CIE	:	100 Marks
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks
Total Hours	:	45 L	SEE Duration	:	3 Hours
		Unit-I			9 Hrs

Principle of Cellular Communication: Cellular Terminology, Cell Structure and Cluster, Frequency Reuse Concept, Cluster size and System Capacity, Method of Locating Co-channel cells, Frequency Reuse distance, Co-channel Interference and Signal Quality, Co-channel interference Reduction Methods.

Unit – II 9 Hrs

Basic Cellular system: Consideration of components of a cellular system. A basic cellular system connected to PSTN, Main parts of a basic cellular system, Operation of a Cellular system, Performance criteria- Voice quality, Trunking and Grade of Service, Spectral Efficiency of FDMA and TDMA systems

Unit –III 9 Hrs

Second generation Cellular Technology: GSM: GSM Network Architecture, Identifiers used in GSM System, GSM channels, Authentication and Security in GSM, GSM Call Procedure, GSM Hand- off Procedures.

Unit –IV 9 Hrs

3G Digital Cellular Technology: GPRS: GPRS technology, GPRS Network Architecture, GPRS signalling, Mobility Management in GPRS. **UMTS:** UMTS Network Architecture, UMTS Interfaces, UMTS Air Interface Specifications, UMTS Channels.

Unit –V 9 Hrs

Wireless Personal Area Networks: Network architecture, components, Bluetooth, Zigbee, Applications. **Wireless Local Area networks:** Network Architecture, Standards, Applications. Wireless Metropolitan Area Networks: IEEE 802.16 standards, advantages, WMAN Network architecture, Protocol stack

Course Outcomes: After completing the course, the students will be able to :-				
CO1	Describe the concepts and terminologies for Cellular Communication.			
CO2	Analyze the Architecture, Hand-off and Security aspects in 2G and 3G Networks.			
CO3	Compare the performance features of 2G and 3G Cellular Technologies.			
CO4	Analyze and Compare the architectures of various Wireless technologies and standards.			

Ref	Reference Books				
1.	Wireless Communications, T.L. Singal, 2nd Reprint 2011, Tata McGraw Hill Education Private Limited, ISBN: 978-0-07-068178-1				
2.	Wireless and Mobile Networks Concepts and Protocols, Dr.Sunil Kumar SManvi, 2010, Willey India Pvt. Ltd., ISBN: 978-81-265-2069-5.				

RV College of Engineering® Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

3.	Wireless Communication, Upena Dalal, 1st Edition, 2009, Oxford higher Education, ISBN-13:978-0-19-806066-6.			
4	Wireless Communications Principles and practice, Theodore S Rappaport, 2nd Edition, Pearson, ISBN 97881-317-3186-4			

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .			
MA	AXIMUM MARKS FOR THE CIE THEORY	100		

RUBRI	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)							
Q.NO.	Q.NO. CONTENTS MARKS							
PART A	A							
1	Objective type questions covering entire syllabus	20						
PART I	3							
(Maxim	um of TWO Sub-divisions only)							
2	Unit 1 : (Compulsory)	16						
3 & 4	Unit 2 : Question 3 or 4	16						
5 & 6	Unit 3: Question 5 or 6	16						
7 & 8	Unit 4 : Question 7 or 8	16						
9 & 10	0 & 10 Unit 5: Question 9 or 10 16							
TOTAL		100						

	Semester: VI							
	Mobile Application Development Category: Institutional Elective Group E							
Course Code	Course Code : IS266TEO CIE : 100 Marks							
Credits: L:T:P	Credits: L:T:P : 3:0:0							
TotalHours	otalHours : 45L SEE Duration : 03 Hours							

Prerequisite: - Programming in Java.

Unit-I	09 Hrs

Introduction:

Smart phone operating systems and smart phones applications. Introduction to Android, Installing Android Studio, creating an Android app project, deploying the app to the emulator and a device. UI Design: Building a layout with UI elements, Layouts, Views and Resources, Text and Scrolling Views. Activities and Intents, The Activity Lifecycle, Managing State, Activities and Implicit Intents, The Android Studio Debugger, Testing the Android app, The Android Support Library.

Unit-II 09 Hrs

User experience:

User interaction, User Input Controls, Menus, Screen Navigation, Recycler View, Delightful user experience, Drawables, Styles, and Themes, Material Design, Testing app UI, Testing the User Interface

Unit-III 09 Hrs

Working in the background:

Async Task and Async Task Loader, Connect to the Internet, Broadcast Receivers and Services. Scheduling and optimizing background tasks – Notifications, Scheduling Alarms, and Transferring Data Efficiently

Unit-IV 09 Hrs

All about data:

Preferences and Settings, Storing Data, Shared Preferences. Storing data using SQLite, SQLite Database. Sharing data with content providers.

Advanced Android Programming: Internet, Entertainment and Services. Displaying web pages and maps, communicating with SMS and emails, Sensors.

Unit-V 09 Hrs

Hardware Support & devices:

Permissions and Libraries, Performance and Security. Fire base and AdMob, Publish and Polish, Multiple Form Factors, Using Google Services.

Course Outcomes: After completing the course, the students will be able to

- CO1: Comprehend the basic features of android platform and the application development process. Acquire familiarity with basic building blocks of Android application and its architecture.
- **CO2:** Apply and explore the basic framework, usage of SDK to build Android applications incorporating Android features in developing mobile applications.
- CO3: Demonstrate proficiency in coding on a mobile programming platform using advanced Android technologies, handle security issues, rich graphics interfaces, using debugging and troubleshooting tools.

RV College of Engineering®
Mysore Road, RV Vidyaniketan Post,
Bengaluru - 560059, Karnataka, India

CO4: Create innovative applications, understand the economics and features of the app marketplace by offering the applications for download.

F	Reference Books							
1	Android Programming, Phillips, Stewart, Hardyand Marsicano, Big Nerd Ranch Guide, 2 nd Edition, 2015, ISBN-13 978-0134171494							
2	AndroidStudioDevelopmentEssentials-Android6, NeilSmyth,2015, Create space Independent Publishing Platform, ISBN:9781519722089							
3	Android Programming—Pushing the limits, EricHellman, 2013, Wiley, ISBN-13:978-1118717370							
4	Professional Android2ApplicationDevelopment, RetoMeier, Wiley India Pvt. Ltd, 1stEdition, 2012, ISBN-13:9788126525898							
5	BeginningAndroid3, Mark Murphy, A press Springer India Pvt Ltd,1stEdition,2011, ISBN-13:978-1-4302-3297-1							
6	AndroidDeveloperTraining-https://developers.google.com/training/android/ AndroidTestingSupportLibrary-https://google.github.io/android-testing-support-library/							

RU	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS			
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS	20			
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted . Each test will be evaluated for 50 Marks , adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS .	40			
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) ADDING UPTO 40 MARKS .				
MA	MAXIMUM MARKS FOR THE CIE THEORY 100				

RUBRI	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)					
Q. NO.	CONTENTS	MARKS				
PART A		•				
1	Objective type questions covering entire syllabus	20				
PART B (Maximum of TWO Sub-divisions only)						
2	Unit 1 : (Compulsory)	16				
3 & 4	Unit 2 : Question 3 or 4	16				
5 & 6	Unit 3: Question 5 or 6	16				
7 & 8	Unit 4: Question 7 or 8	16				
9 & 10	Unit 5: Question 9 or 10	16				
TOTAL	OTAL 100					

Semester: VI							
	Elements of Financial Management						
		(Institut	tional E	lective)			
		(Theory)				
Course Code	:	IM266TEQ		CIE	:	100 Marks	
Credits: L:T:P	Credits: L:T:P : 3:0:0						
Total Hours	Total Hours : 45L SEE Duration : 3.00 Hours						
Unit-I 06 Hrs							

Financial Management-An overview: Financial Decisions in a firm, Goals of a firm, Fundamental principle of finance, Organization of finance function and its relation to other functions, Regulatory framework.

The financial System: Functions, Assets, Markets, Market returns, Intermediaries, regulatory framework, Growth and trends in Indian financial system.

Unit – II 10 Hrs

Financial statements, Taxes and cash flow: Balance sheet, statement of profit and loss, items in annual report, manipulation of bottom line, Profits vs Cash flows, Taxes. (**Conceptual treatment only**)

Time Value of Money: Future value of a single amount, future value of an annuity, present value of a single amount, present value of an annuity.

Valuation of securities: Basic valuation model, bond valuation, equity valuation-dividend capitalization approach and other approaches.

Unit –III 10 Hrs

Risk and Return: Risk and Return of single assets and portfolios, measurement of market risk, relationship between risk and return, implications.

Techniques of Capital Budgeting: Capital budgeting process, project classification, investment criteria, Net present value, Benefit-Cost ratio, Internal Rate of return, Payback period, Accounting rate of return.

(Conceptual and Numerical treatment)

Unit –IV 10 Hrs

Long term finance: Sources- Equity capital, Internal accruals, preference capital, term loans, debentures. Raising long term finance- Venture capital, Initial Public Offer, Follow on Public Offer, Rights Issue, Private Placement, Term Loans, Investment Banking

Securities Market: Primary market vs Secondary market, Trading and Settlements, Stock market quotations and Indices, Govt. securities market, Corporate debt market.

Unit –V 09 Hrs

Working Capital – Policy and Financing: Factors influencing working capital requirements, Current assets financing policy, operating cycle and cash cycle. Accruals, trade credit, banks, public deposits, inter-corporate deposits, short term loans, right debentures, commercial paper, Factoring (Conceptual treatment only)

Course	Course Outcomes: After completing the course, the students will be able to:-					
CO1	21 Explain the features and elements of a financial system.					
CO2	Recognize the relevance basic principles of financial management in decision making.					
CO3	Describe the processes and techniques of capital budgeting and working capital financing by organizations.					
CO4	Demonstrate an understanding of various sources of finance.					

Ref	erence Books:
1.	Fundamentals of Financial Management, Prasanna Chandra, 6th Edition, 2018, McGraw Hill Education (India) Pvt. Ltd, ISBN: 978-93-392-0313-9, 93-392-0313-5
2.	Financial Management, I M Pandey, 12th edn, 2021, Pearson, ISBN-939057725X, 978-9390577255

RV College of Engineering®

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

- 3. Financial Management-Text, Problems and Cases, Khan M Y & Jain P K, 8th Edition, 2018, McGraw Hill Education (India) Pvt. Ltd, ISBN: 9353162181, 9789353162184
- 4. Fundamentals of Financial Management, Eugene F Brigham, Joel F Houston, 8th Edition, 2014, Cengage Learning, ISBN: 9781285065137, 1285065131.

Semester: VI								
	Optimization Techniques							
		(Institut	tional E	lective)				
		(Theory?)				
Course Code	:	IM266TER		CIE	:	100 Marks		
Credits: L:T:P	Credits: L:T:P : 3:0:0							
Total Hours	Total Hours : 42L SEE Duration : 03 Hours							
	UNIT – I 08 Hrs							

Introduction: OR Methodology, Definition of OR, Application of OR to Engineering and Managerial problems, Features of OR models, Limitations of OR.

Linear Programming: Definition, Mathematical Formulation, Standard Form, Solution Space, Types of solution – Feasible, Basic Feasible, Degenerate, Solution through Graphical Method. Problems on Product Mix, Blending, Marketing, Finance, Agriculture and Personnel.

Simplex methods: Variants of Simplex Algorithm – Use of Artificial Variables.

UNIT – II 09 Hrs

Simplex Algorithm: How to Convert an LP to Standard Form, Preview of the Simplex Algorithm, Direction of Unboundedness, Why Does an LP Have an Optimal basic feasible solution, The Simplex Algorithm, Using the Simplex Algorithm to Solve Minimization Problems, Alternative Optimal Solutions, Degeneracy and the Convergence of the Simplex Algorithm, The Big M Method, The Two-Phase Simplex Method.

UNIT – III 09 Hrs

Transportation Problem: Formulation of Transportation Model, Basic Feasible Solution using North-West corner, Least Cost, Vogel's Approximation Method, Optimality Methods, Unbalanced Transportation Problem, Degeneracy in Transportation Problems, Variants in Transportation Problems. **Assignment Problem:** Formulation of the Assignment problem, solution method of assignment problem-Hungarian Method, Variants in assignment problem, Travelling Salesman Problem (TSP).

UNIT – IV 08 Hrs

Project Management Using Network Analysis: Network construction, CPM & PERT, Determination of critical path and duration, floats. Crashing of Network. Usage of software tools to demonstrate N/W flow problems

UNIT – V 08 Hrs

Game Theory: Introduction, Two person Zero Sum game, Pure strategies, Games without saddle point - Arithmetic method, Graphical Method, The rules of dominance

Cours	Course Outcomes: After going through this course the student will be able to		
CO1	Understand the characteristics of different types of decision - making environments and the		
	appropriate decision making approaches and tools to be used in each type.		
CO2	Build and solve Transportation Models and Assignment Models.		
CO3	Design new simple models, like: CPM, PERT to improve decision -making and develop critical		
	thinking and objective analysis of decision problems.		
CO4	Implement practical cases, by using TORA, WinQSB, Excel, GAMS.		

Reference Books:

- 1 Operation Research An Introduction, Taha H A, 10th Global Edition, 2017, Pearson Education Limited, ISBN 13: 978-1-292-16554-7
- Principles of Operations Research Theory and Practice, Philips, Ravindran and Solberg, 2nd Edition, 2007, John Wiley & Sons (Asia) Pvt Ltd, ISBN 13: 978-8126512560

- Introduction to Operation Research, Hiller, Liberman, Nag, Basu, 10th Edition, 2017, McGraw Hill Education, ISBN 13: 978-9339221850
- 4 Operations Research Theory and Application, J K Sharma, 6th Edition, 2009, Trinity Press, ISBN: 978-93-85935-14-5

	Semester: V				
	Automotive Mechatronics				ics
		Ca	tegory: Institutiona	ıl Ele	ective
			(Theory)		
Course Code	Course Code : ME266TES CIE : 100 Marks				
Credits: L:T:P : 3:0:0				100 Marks	
Total Hours	:	45 L	SEE Duration	:	03 Hours

Unit-I	09 Hrs
--------	--------

Automobile Engines

Classifications of Internal Combustion Engines. Engine nomenclature and mechanics. Mixture formation – External, internal, quality and quantity control – homogeneous and stratified injection. Thermodynamic principles of Otto and Diesel cycle. Characteristics – pressure curve and energy yield, engine speed, torque, and power

Unit-II 10 Hrs

Engine Auxiliary Systems:

Turbocharger, Intercooler, Exhaust manifold, 3-way catalytic convertor, Exhaust Gas Recirculation system.

Common Rail Fuel Injection system- Low pressure and high pressure fuel systems, Return line, Quantity control valve and Injectors.

Unit-III 10 Hrs

Vehicular Auxiliary Systems:

Vehicle frame and body classification- Hatchback, Sedan, SUV, Coupe, Roadster. Adaptive Brakes - Disc and drum brakes, Antilock Braking Systems, ESP, TCS. Wheels and Tyres- Toe-In, Toe-Out, Caster and Camber angle. Classification of tyres, Radial, Tubeless.

Supplemental Restraint System: Active and passive safety, Vehicle structure, Gas generator and air bags, Belt Tensioner, Acceleration sensor, Rollover sensor, Seat occupancy recognition.

Unit-IV 09 Hrs

EV Technology: Types of EV's, ICE vs EV torque output, Architecture and Working of EV's. Battery Thermal Management System, Regenerative braking, Safety system and Impacts of EV on the environment.

Unit-V 07 Hrs

Telematics in vehicles – Radio Transmission, Exchange of information, signal path & properties, Concept of radio waves.

Sensors: Oxygen sensors, Crankshaft/Cam shaft Sensor, Boost Pressure Sensor, Coolant Temperature Sensor, Hot Film Air Mass flow Sensor, Throttle Position Sensor, Rain/Light sensor

Course Outcomes: After completing the course, the students will be able to				
CO1:	CO1: Describe the functions of Mechatronic systems in a modern automobile			
CO2:	CO2: Evaluate the performance of an engine by its parameters			
CO3:	CO3: Analyse the automotive exhaust pollutants as per emission norms			
CO4:	CO4: Demonstrate communication of control modules using a On-Board Diagnostic kit			

RV College of Engineering® Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Re	Reference Books		
1.	Automotive Technology – A systems approach, Jack Erjavec, 5th Edition, Delamr Cengage Learning, ISBN-13: 978-1428311497		
2.	Automotive Engineering Fundamentals, Richard Stone and Jeffrey K. Ball, 2004, SAE International, ISBN: 0768009871		
3.	Bosch Automotive Handbook, Robert Bosch, 9th Edition, 2004, ISBN: 9780768081527		
4.	Understanding Automotive Electronics, William B Ribbens, 5 th Edition, Butterworth–Heinemann, ISBN 0-7506-7008-8		

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)		
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding up to 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	
MA	AXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC	RUBRIC FOR SEMESTER END EXAMINATION (THEORY)		
Q. NO.	CONTENTS	MARKS	
PART A	L		
1	Objective type questions covering entire syllabus	20	
PART B			
(Maximu	ım of TWO Sub-divisions only)		
2	Unit 1: (Compulsory)	16	
3 & 4	Unit 2: (Internal Choice)	16	
5 & 6	Unit 3: (Internal Choice)	16	
7 & 8	Unit 4: (Internal Choice)	16	
9 & 10	Unit 5: (Internal Choice)	16	
TOTAL		100	

Semester: VI MATHEMATICAL MODELLING (Theory) Category: INSTITUTIONAL ELECTIVE (Elective F) MA266TEU CIE **Course Code** 100 Marks Credits: L:T:P 3:0:0 SEE 100 Marks •• **Total Hours** : 45L **SEE Duration 3.00 Hours**

Unit-I	09 Hrs
Introduction to Mathematical Modelling:	
Basic concepts, steps involved in modelling, classification of models, assorted simple mathe from diverse fields.	matical models
Unit – II	09 Hrs
Mathematically Modelling Discrete Processes:	
Difference equations - first and second order, Introduction to Difference equations, Introduc	tion to discrete
models-simple examples, Mathematical modelling through difference equations in econo	omics, finance,
population dynamics, genetics and other real world problems.	
Unit –III	09 Hrs
Markov modelling:	
Mathematical foundations of Markov chains, application of Markov Modelling to problems.	
Unit –IV	09 Hrs
Modelling through graphs:	
Graph theory concepts, Modelling situations through different types of graphs.	
Unit –V	09 Hrs
Variational Problem and Dynamic Programming:	
Optimization principles and techniques, Mathematical models of variational problem programming, Problems with applications.	and dynamic

Course	Course Outcomes: After completing the course, the students will be able to				
CO1:	CO1: Explore the fundamental concepts of mathematical models arising in various fields engineering.				
CO2:	Apply the knowledge and skills of discrete and continuous models to understand various types of				
	analysis.				
CO3:	Analyze the appropriate mathematical model to solve the real-world problem and to optimize the				
	solution.				
CO4:	Distinguish the overall knowledge gained to demonstrate the problems arising in many practical				
	situations.				

Refere	Reference Books				
1	Mathematical Modeling, J. N. Kapur, 1st Edition, 1998, New Age International, New Delhi, ISBN: 81-224-0006-X.				
2	Mathematical Modeling: Models, Analysis and Applications, Sandip Banerjee, 2014, Chapman and Hall/CRC Textbook, ISBN 9781439854518.				
2	Case studies in mathematical modeling, D. J. G. James and J. J. Mcdonald, 1981, Stanly Thames,				
3	Cheltonham, ISBN: 0470271779, 9780470271773.				
4	Modeling with difference equations, D. N. Burghes, M. S. Borrie, Ellis Harwood, 1981, ISBN 13:				
-	9780853122869.				

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)			
Q. NO.	CONTENTS	MARKS	
	PART A		
1	Objective type questions covering entire syllabus	20	
	PART B		
(Maximum of TWO Sub-divisions only; wherein one sub division will be a caselet in the related topics)			
2	Unit 1 : (Compulsory)	16	
3 & 4	Unit 2 : Question 3 or 4	16	
5 & 6	5 & 6 Unit 3: Question 5 or 6		
7 & 8 Unit 4 : Question 7 or 8		16	
9 & 10	Unit 5: Question 9 or 10	16	
TOTAL			

RV College of Engineering®

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Semester: VI

MATHEMATICS OF QUANTUM COMPUTING (Theory)

Category: INSTITUTIONAL ELECTIVE

(Elective F)

Course Code	:	MA266TEV	CIE	:	100 Marks
Credits: L: T:P	:	3:0:0	SEE	:	100 Marks
Total Hours	:	45L	SEE Duration	:	3.00 Hours

Unit-I 09 Hrs

Introduction to Quantum Computing:

Quantum superposition, Qubits, Linear algebra for quantum computing, Inner products and Tensor products of vector spaces, Quantum states in Hilbert space, The Bloch sphere, Generalized measurements, No-cloning theorem.

Unit – II 09 Hrs

Quantum Gates:

Universal set of gates, quantum circuits, Dirac formalism, superposition of states, entanglement Bits and Qubits. Qubit operations, Hadamard Gate, CNOT Gate, Phase Gate, Z-Y decomposition, Quantum Circuit Composition, Basic Quantum circuits.

Unit –III 09 Hrs

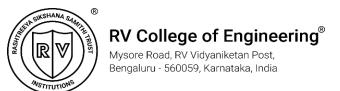
Quantum Algorithm - I:

Deutsch Algorithm, Deutsch-Jozsa Algorithm, Bernstein-Vazarani Algorithm, Simon periodicity algorithm, Phase estimation algorithm, Quantum Fourier transform.

Unit –IV 09 Hrs

Quantum Algorithm - II:

Grover search algorithm, Shor's quantum factoring algorithm, Harrow-Hassidim-Lloyd (HHL) algorithm for solving linear system problems.


Unit –V 09 Hrs

Applications of Quantum Computing:

Application to: order-finding, discrete logarithm, quantum counting, Boolean satisfiability problem (SAT), graph theory problems.

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Explore the fundamental concepts of quantum computing.					
CO2:	Apply the knowledge and skills of quantum computing to understand various types of problems					
	arising in various fields engineering.					
CO3:	Analyze the appropriate quantum algorithm to solve the real-world problem and to optimize the					
	solution.					
CO4:	Distinguish the overall knowledge gained to demonstrate the problems arising in many practical					
	situations.					

Refere	Reference Books						
1	An introduction to Quantum Computing, Phillip Kaye, Raymond Laflamme, 2007, Oxford						
1	University press.						
2	Quantum Computing for Everyone, Chris Bernhardt, 2020, The MIT Press, Cambridge.						
2	Quantum Computation and Quantum Information, M. A. Nielsen & I. Chuang, 2013, Cambridge						
3	University Press.						
4	Quantum Computing for the quantum curious, Cirian Hughes et. al., 2021, Springer, ISBN 978-3-						

	030-61600-7.
5	Concise guide to quantum computing, Sergei Kurgalin, Sergei Borzunov, 2021, Springer, ISBN 978-
3	3-030-65051-3, ISBN 978-3-030-65052-0 (eBook).

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)			
	COMPONENTS	MARKS	
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20	
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40	
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40	
	MAXIMUM MARKS FOR THE CIE THEORY	100	

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)						
Q. NO.	O. CONTENTS					
	PART A					
1	Objective type questions covering entire syllabus	20				
	PART B					
(Maximum of TWO Sub-divisions only; wherein one sub division will be a caselet in the related topi						
2	Unit 1 : (Compulsory)	16				
3 & 4 Unit 2 : Question 3 or 4						
5 & 6	5 & 6 Unit 3 : Question 5 or 6					
7 & 8 Unit 4 : Question 7 or 8		16				
9 & 10	9 & 10 Unit 5: Question 9 or 10					
TOTAL						

Semester: VI							
Applied Psychology for Engineers (Theory - Institutional Electives $-$ I))							
Course Code	:	HS266TEW	CIE	:	100 Marks		
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks		
Total Hours	:	45 Hrs	SEE Duration	:	3 Hours		
Unit-I 08 Hrs							

Introduction to Psychology: Definition and goals of Psychology: Role of a Psychologist in the Society: Today's Perspectives (Branches of psychology- Clinical, Industrial). Psychodynamic, Behavioristic, Cognitive, Humanistic, Psychological Research and Methods to study Human Behavior: Experimental, Observation, Questionnaire and Clinical Method.

Unit – II 08 Hrs

Intelligence and Aptitude: Concept and definition of Intelligence and Aptitude, Nature of Intelligence. Theories of Intelligence – Spearman, Thurston, Guilford Vernon. Characteristics of Intelligence tests, Types of tests. Measurement of Intelligence and Aptitude, Concept of IQ, Measurement of Multiple Intelligence – Fluid and Crystallized Intelligence.

Unit –III 10 Hrs

Personality: Concept and definition of personality, Approaches of personality- psychoanalytical, Socio- Cultural, Interpersonal and developmental, Humanistic, Behaviorist, Trait and type approaches. Assessment of Personality: Self- report measures of Personality, Questionnaires, Rating Scales and Projective techniques, its Characteristics, advantages & limitations, examples. Behavioral Assessment.

Unit –IV 10 Hrs

Learning: Definition, Conditioning – Classical Conditioning, Basics of Classical Conditioning (Pavlov), the process of Extinction, Discrimination and Generalization. Operant Conditioning (Skinner expt). The basics of operant conditioning, Schedules of reinforcement. Cognitive – Social approaches to learning – Latent Learning, Observational Learning, Trial and Error Method, Insightful Learning.

Unit –V 09 Hrs

Application of Psychology in Working Environment: The present scenario of information technology, the role of psychologist in the organization, Selection and Training of Psychology Professionals to work in the field of Information Technology. **Psychological Stress:** a. Stress-Definition, Symptoms of Stress, Extreme products of stress v s Burnout, Work Place Trauma. Causes of Stress – Job related causes of stress. Sources of Frustration, Stress and Job Performance, Stress Vulnerability-Stress threshold, perceived control. Type A and Type B. **Psychological Counseling** - Need for Counseling, Types – Directed, Non- Directed, Participative Counseling.

Cours	Course Outcomes: After completing the course, the students will be able to:-					
CO1	Describe the basic theories, principles, and concepts of applied psychology as they relate to					
	behaviors and mental processes.					
CO2	Define learning and compare and contrast the factors that cognitive, behavioral,					
	and Humanistic theorists believe influence the learning process.					
CO3	Develop understanding of psychological attributes such as intelligence, aptitude, creativity,					
	resulting in their enhancement and apply effective strategies for self-management and self-					
	improvement.					
CO4	Apply the theories into their own and others' lives in order to better understand their personalities					
	and experiences.					
CO5	Understand the application of psychology in engineering and technology and develop a route					
	to accomplish goals in their work environment.					

RV College of Engineering® Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

Ref	Reference Books				
1.	Understanding Psychology Feldman R. S, IV edition, (1996) McGraw Hill India				
2.	Psychology Robert A. Baron, III edition (1995) Prentice Hall India.				
3.	Organizational Behaviour, Stephen P Robbins Pearson Education Publications, 13th Edition, ISBN - 81-317 - 1132 - 3				
4.	Organisational Behaviour : Human Behaviour at Work ,John W.Newstrem and Keith Davis. Tata McGraw Hill India, 10th Edition, ISBN 0-07-046504-5				
5	Psychology-themes and variations, Wayne Weiten, IV edition, Brooks / Cole Publishing Co.				

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)				
#	COMPONENTS	MARKS		
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20		
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40		
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .			
MAXIMUM MARKS FOR THE CIE THEORY				

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)							
Q. NO.	CONTENTS						
PART A	PART A						
1	Objective type questions covering entire syllabus	20					
PART B (Maximum	of TWO Sub-divisions only; wherein one sub division will be a	caselet in the related topics)					
2	Unit 1 : (Compulsory)	16					
3 & 4	Unit 2 : Question 3 or 4	16					
5 & 6	Unit 3: Question 5 or 6	16					
7 & 8	Unit 4 : Question 7 or 8	16					
9 & 10	Unit 5: Question 9 or 10	16					
TOTAL	TOTAL 100						

Semester: VI								
	Universal Human Values – III							
	(Institutional Electives – I)							
Course Code	Course Code : HS266TEY CIE : 100 Marks							
Credits: L:T:P	Credits: L:T:P : 3:0:0 SEE : 100 Marks							
Total Hours	:	42L		SEE Duration	:	3.00 Hours		

Unit-I 10 Hrs

Introduction-Basic Human Aspiration, its fulfillment through All-encompassing Resolution. The basic human aspirations and their fulfillment through Right understanding and Resolution, Right understanding and Resolution are the activities of the Self, Self is central to Human Existence; All-encompassing Resolution for a Human Being, its details and solution of problems in the light of Resolution.

Unit – II

Right Understanding (Knowing)- Knower, Known & the Process. The domain of right understanding starts from understanding the human being (the knower, the experiencer and the doer); and extends upto understanding nature/existence – its interconnectedness and co-existence; and finally understanding the role of human being in existence (human conduct).

Unit –III 08 Hrs

Understanding Existence (including Nature). A comprehensive understanding (knowledge) about the existence, which certainly includes the Nature. The need and the process of inner evolution (through self-exploration, self-awareness and self-evaluation)- particularly awakening to activities of the Self: Realization, Understanding and Contemplation in the Self (Realization of Co-Existence, Understanding of Harmony in Nature and Contemplation of Participation of Human in this harmony/ order leading to comprehensive knowledge about the existence).

Unit –IV 08 Hrs

Understanding Human Being. Understanding the human being comprehensively is the first step and the core theme of this course; human being as co-existence of the self and the body, the activities and potentialities of the self, Reasons for harmony/contradiction in the self.

Unit –V 08 Hrs

Understanding Human Conduct, All-encompassing Resolution & Holistic Way of Living. Understanding Human Conduct, Understanding different aspects of All-encompassing Resolution (understanding, wisdom, science etc.), Holistic way of living for Human Being with All-encompassing Resolution covering all four dimensions of human endeavour viz., realization, thought, behavior and work (participation in the larger order) leading to harmony at all levels from self to Nature and entire Existence.

Course	Course Outcomes: After completion of the course the students will be able to			
CO1	Understand the basic human aspiration with program of its fulfilment and meaning of			
	resolution in the complete expanse of human living.			
CO2	Understand human being in depth and see how self is central to human being			
CO3	Understand existence in depth and see how coexistence is central to existence			
CO4	O4 Understand human conduct and the holistic way of living leading to human tradition			

Reference Books

A foundation course in human values and professional ethics, R. R. Gaur, R Asthana, G P Bagaria, 2nd revised Edition, excel books, New Delhi – 2019, ISN 978-93-87034-47-1

RV College of Engineering® Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

2	Avartansheel Arthshastra, A Nagraj, Divya Path Sansthan, Amarkantak, India, ISBN 978-8-174-46781-2
3	Economy of Performance- a quest for social order based on non – violence, J C Kumarappa, 2010, Sarva-Seva-Sangh-Prakashan, Varanasi, India
4	Energy and Equity, Ivan Illich, 1974, The Trinity Press, Worcester & Harper Collins, USA, ISBN, 0060803274, 9780060803278

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	CONTENTS	MARKS		
PART A				
1	Objective type questions covering entire syllabus	20		
PART B	<u> </u>			
(Maximu	um of TWO Sub-divisions only)			
2	Unit 1 : (Compulsory)	16		
3 & 4	Unit 2 : Question 3 or 4	16		
5 & 6	Unit 3: Question 5 or 6	16		
7 & 8	Unit 4: Question 7 or 8	16		
9 & 10	Unit 5: Question 9 or 10	16		
TOTAL		100		

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)					
#	COMPONENTS	MARKS			
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20			
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 150 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40			
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .				
MAXIMUM MARKS FOR THE CIE THEORY					

Semester: VI						
Extensive Survey Project						
	Category: Professional Core Course					
Stream: Practice						
Course Code	:	CV367P		CIE	:	100
Credits: L:T:P	:	0:0:2		SEE	:	100
Total Hours	:	39L		SEE Duration	:	3.0 Hours

New Tank Project;

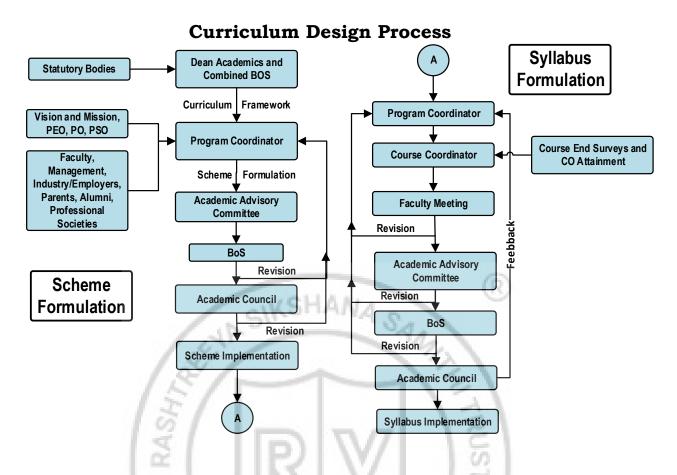
- 1. Survey and preparation of drawing for longitudinal and Cross section of bund
- 2. Survey and preparation of drawing for Block levels at waste Weir Site.
- 3. Survey and preparation of drawing for Capacity Contours.
- 4. Survey and preparation of drawing for Initial Alignment of Channel.
- 5. Survey and preparation of drawing for Final Alignment of Channel.

Water Supply & Sanitary Project - conduction of survey, preparation of drawings;

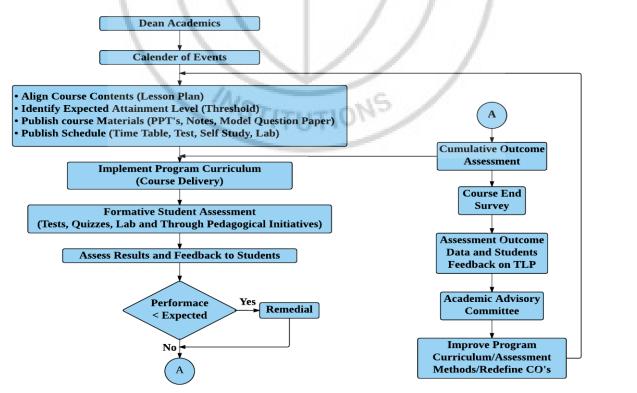
- 1. Water Supply Project. a. Survey and preparation of maps for water supply to the village b. Longitudinal and cross sections along the alignment of pipeline c. Calculation of cutting and filling along the alignment of pipeline 2. Sanitary Project.
- Village survey & preparation of drawings for waste water drainage

Highway Project;

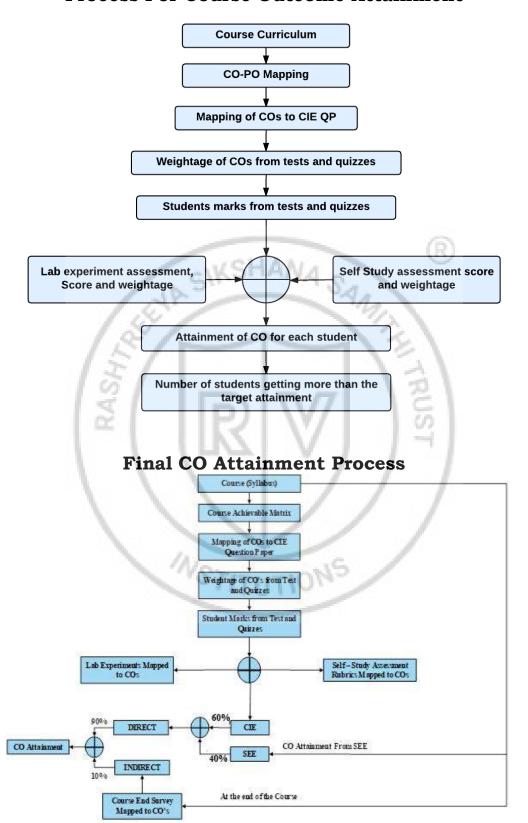
- 1. Initial Alignment of Highway.
- 2. Final Alignment of Highway.


Preparation of finalized drawings and related calculations of cutting and filling for the following projects

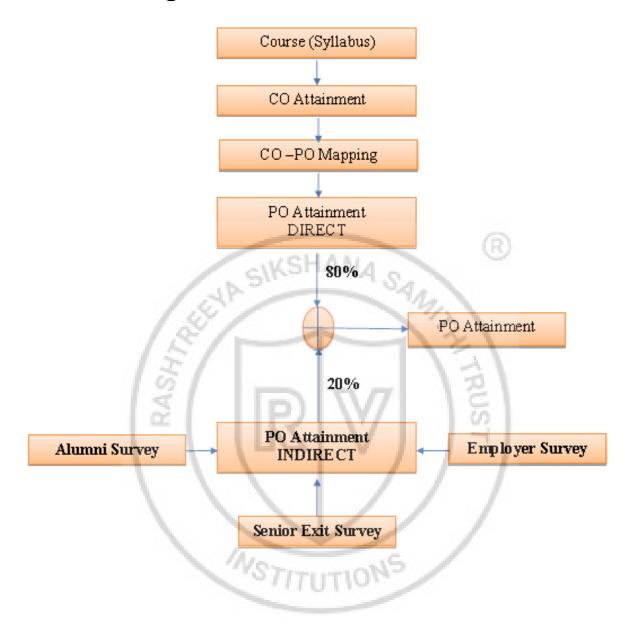
- 1. New Tank Project
- 2. Water Supply & Sanitary Project
- 3. Highway Project


Course	Course Outcomes: After completing the course, the students will be able to: -			
CO 1	Understand the different surveys required for various Civil Engineering projects			
CO 2	Apply the various equipments and methods of survey for different civil engineering projects			
CO 3	Analyze the field data and prepare the drawings based on the survey field work			
CO 4	Evaluate and calculate the bill of quantities for various works based on the survey and drawings			
	prepared			

ASSESSMENT AND EVALUATION PATTERN				
	CIE	SEE		
WEIGHTAGE	50%	50%		
PRACTICALS	50	50		
TOTAL MARKS FOR THE COURSE	50	50		



Academic Planning and Implementation



Process For Course Outcome Attainment


Program Outcome Attainment Process

KNOWLEDGE & ATTITUDE PROFILE

- **WK1:** A systematic, theory-based understanding of the natural sciences applicable to the discipline and awareness of relevant social sciences.
- **WK2:** Conceptually-based mathematics, numerical analysis, data analysis, statistics and formal aspects of computer and information science to support detailed analysis and modelling applicable to the discipline.
- **WK3:** A systematic, theory-based formulation of engineering fundamentals required in the engineering discipline.
- **WK4:** Engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for the accepted practice areas in the engineering discipline; much is at the forefront of the discipline.
- **WK5:** Knowledge, including efficient resource use, environmental impacts, whole-life cost, re-use of resources, net zero carbon, and similar concepts, that supports engineering design and operations in a practice area.
- **WK6:** Knowledge of engineering practice (technology) in the practice areas in the engineering discipline.
- **WK7:** Knowledge of the role of engineering in society and identified issues in engineering practice in the discipline, such as the professional responsibility of an engineer to public safety and sustainable development.
- **WK8:** Engagement with selected knowledge in the current research literature of the discipline, awareness of the power of critical thinking and creative approaches to evaluate emerging issues.
- **WK9:** Ethics, inclusive behaviour and conduct. Knowledge of professional ethics, responsibilities, and norms of engineering practice. Awareness of the need for diversity by reason of ethnicity, gender, age, physical ability etc. with mutual understanding and respect, and of inclusive attitudes.

PROGRAM OUTCOMES (POs)

- * **PO1:** Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization as specified in WK1 to WK4 respectively to develop to the solution of complex engineering problems.
- ❖ **PO2:** Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development. (WK1 to WK4)
- ❖ **PO3:** Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required. (WK5)
- ❖ **PO4:** Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions. (WK8).
- * **PO5:** Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems. (WK2 and WK6)
- ❖ **PO6**: The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment. (WK1, WK5, and WK7).
- ❖ **PO7:** Ethics: Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)
- * **PO8:** Individual and Collaborative Team work: Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.
- ❖ PO9: Communication: Communicate effectively and inclusively within the community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences
- * **PO10:** Project Management and Finance: Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.
- ❖ **PO11:** Life-Long Learning: Recognize the need for, and have the preparation and ability for i) independent and life-long learning ii) adaptability to new and emerging technologies and iii) critical thinking in the broadest context of technological change. (WK8)

INNOVATIVE TEAMS OF RVCE

Ashwa Mobility Foundation (AMF): Designs and fabricates Formula-themed race cars and mobility solutions to address urban transportation issues.

Astra Robotics Team: Focuses on designing and building application-specific robots.

Coding Club: Helps students gain coding skills and succeed in competitions like GSoC and ACM-ICPC.

Entrepreneurship Development Cell (E-Cell): Promotes entrepreneurship through workshops, speaker sessions, and mentoring for startups.

Frequency Club Team: Works on software and hardware, emphasizing AI and Machine Learning.

Team Garuda: Develops a supermileage urban concept electric car and E-mobility products.

Team Jatayu: Builds low-cost UAVs with autonomous capabilities for various tasks.

Solar Car Team: Aims to create a solar electric vehicle for sustainable transportation.

Team Antariksh: Focuses on space technology and the development of operational rockets.

Team Chimera: Builds a Formula Electric Car through R&D in E-Mobility.

Helios Racing Team: Designs and tests All-Terrain Vehicles, participating in SAE's BAJA competitions.

Team Hydra: Develops autonomous underwater vehicles for tasks like water purification.

Team Krushi: Creates low-cost farming equipment to assist farmers in cultivation and harvesting.

Team Vyoma: Designs and tests radio-controlled aircraft and UAVs.

Team Dhruva: Engages in astronomy-related activities and collaborates on projects with organizations like ICTS and IIA.

Ham Club: Promotes Amateur Radio and explores technical innovations in communications, especially for disaster response.

Cultural Activity Teams

- AALAP (Music club)
- 2. DEBSOC (Debating society)
- 3. CARV (Dramatics club)
- 4. FOOTPRINTS (Dance club)
- QUIZCORP (Quizzing society)
- 6. ROTARACT (Social welfare club)
- 7. RAAG (Youth club)
- 8. EVOKE (Fashion team)
- f/6.3 (Photography club)
- 10. CARV ACCESS (Film-making

NSS of RVCE NCC of RVCE

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

- To deliver outcome based Quality education, emphasizing on experientiallearning with the state of the art infrastructure.
- To create a conducive environment for interdisciplinary research and innovation.
- To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

Professionalism, Commitment, Integrity, Team Work, Innovation

