

RV COLLEGE OF ENGINEERING®

(Autonomous Institution Affiliated to VTU, Belagavi)

R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus of V & VI Semesters

2018 SCHEME

ELECTRONICS & COMMUNICATION ENGINEERING

VISION

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

MISSION

- 1. To deliver outcome based Quality education, emphasizing on experiential learning with the state of the art infrastructure.
- 2. To create a conducive environment for interdisciplinary research and innovation.
- 3. To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- 4. To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- 5. To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

QUALITY POLICY

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

CORE VALUES

Professionalism, Commitment, Integrity, Team Work, Innovation

RV COLLEGE OF ENGINEERING[®]

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus of V & VI Semesters

2018 SCHEME

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

DEPARTMENT VISION

Imparting quality technical education through interdisciplinary research, innovation and teamwork for developing inclusive & sustainable technology in the area of Electronics and Communication Engineering.

DEPARTMENT MISSION

- To impart quality technical education to produce industry-ready engineers with a research outlook.
- To train the Electronics & Communication Engineering graduates to meet future global challenges by inculcating a quest for modern technologies in the emerging areas.
- To create centres of excellence in the field of Electronics & Communication Engineering with industrial and university collaborations.
- To develop entrepreneurial skills among the graduates to create new employment opportunities.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **PEO1.** To apply concepts of mathematics, science and computing to Electronics and Communication Engineering
- **PEO2.** To design and develop interdisciplinary and innovative systems.
- **PEO3.** To inculcate effective communication skills, team work, ethics, leadership in preparation for a successful career in industry and R & D organizations.

PROGRAM SPECIFIC OUTCOMES (PSOS)

PSO	Description
PSO1	Should be able to clearly understand the concepts and applications in the field of Communication/networking, signal processing, embedded systems and semiconductor technology.
PSO2	Should be able to associate the learning from the courses related to Microelectronics, Signal processing, Microcomputers, Embedded and Communication Systems to arrive at solutions to real world problems.
PSO3	Should have the capability to comprehend the technological advancements in the usage of modern design tools to analyze and design subsystems/processes for a variety of applications.
PSO4	Should possess the skills to communicate in both oral and written forms, the work already done and the future plans with necessary road maps, demonstrating the practice of professional ethics and the concerns for societal and environmental wellbeing.

Lead Society: Institute of Electrical and Electronics Engineers (IEEE)

ABBREVIATIONS

Sl. No.	Abbreviation	Meaning		
1.	VTU	Visvesvaraya Technological University		
2.	BS	Basic Sciences		
3.	CIE	Continuous Internal Evaluation		
4.	SEE	Semester End Examination		
5.	PE	Professional Core Elective		
6.	GE	Global Elective		
7.	HSS	Humanities and Social Sciences		
8.	CV	Civil Engineering		
9.	ME	Mechanical Engineering		
10.	EE	Electrical & Electronics Engineering		
11.	EC	Electronics & Communication Engineering		
12.	IM	Industrial Engineering & Management		
13.	EI	Electronics & Instrumentation Engineering		
14.	СН	Chemical Engineering		
15.	CS	Computer Science & Engineering		
16.	TE	Telecommunication Engineering		
17.	IS	Information Science & Engineering		
18.	BT	Biotechnology		
19.	AS	Aerospace Engineering		
20.	РҮ	Physics		
21.	СҮ	Chemistry		
22.	MA	Mathematics		

INDEX

	V Semester					
Sl. No.	Sl. No. Course Code Course Title					
1.	18HSI51	Intellectual Property Rights & Entrepreneurship	1			
2.	18EC52	Embedded System Design	3			
3.	18EC53	Communication Systems – 1 (Theory & Practice)	5			
4.	18EC54	Digital VLSI Design (Theory & Practice)	8			
5.	18EC55	Digital Signal Processing and Machine Learning	11			
6.	18EC5AX	Group A: Professional Electives (MOOC Courses)	13-22			
7.	18EC5BXX	Group B: Global Electives	GE-B1-B38			

	VI Semester					
Sl. No.	Course Code	Course Title	Page No.			
1.	18HEM61	Introduction to Management and Economics	59			
2.	18EC62	Computer Networks and Protocols (Theory & Practice)	61			
3.	18EC63	Communication Systems – 2 (Theory & Practice)	64			
4.	18EC64	Minor Project**	67			
5.	18EC6CX	Elective C: Professional Electives	69-80			
6.	18EC6DX	Elective D: Professional Electives	81-92			
7.	18G6EXX	Elective E: Global Electives	GE-E1-E35			
8.	18HSE68	Professional Practice-II	127			

RV COLLEGE OF ENGINEERING®

(Autonomous Institution Affiliated to VTU, Belagavi)

ELECTRONICS AND COMMUNICATION ENGINEERING

		FIFTH SEMESTER CREDIT S	SCHE	ME			
Sl. No Course	Course	Course Course Title	BoS	Credit Allocation			Total
51. 140	Code	Course Thie	DUS	L	Т	Р	Credits
1.	18HSI51	Intellectual Property Rights & Entrepreneurship	HSS	3	0	0	3
2.	18EC52	Embedded System Design	EC	3	0	0	3
3.	18EC53	Communication Systems – 1(Theory & Practice)	EC	3	0	1	4
4.	18EC54	Digital VLSI Design (Theory & Practice)	EC	3	0	1	4
5.	18EC55	Digital Signal Processing and Machine Learning	EC	3	1	0	4
6.	18EC5AX	Group A: Professional Electives (MOOC Courses)	EC	3	0	0	3
7.	18EC5BXX	Group B: Global Elective	EC	3	0	0	3
		Total Number of Credits		21	1	2	24
		Total number of Hours/Week		21	1	5	

	GROUP A: PROFESSIONAL ELECTIVES (MOOC COURSES)					
Sl. No.	Course Code	Course Title				
1.	18EC5A1	Programming in JAVA				
2.	18EC5A2	Probability Foundations for Electrical Engineers				
3.	18EC5A3	OP-AMP Practical Applications: Design Simulation and Implementation				
4.	18EC5A4	Fiber Optic Communication Technology				
5.	18CS5A5	The Joy of Computing Using Python				

	GROUP B: GLOBAL ELECTIVES					
Sl. No.	Dept.	Course Code	Course Title	Credits		
			Courses offered by the Departments			
1.	AS	18G5B01	Fundamentals of Aerospace Engineering	03		
2.	BT	18G5B02	Nanotechnology	03		
3.	CH	18G5B03	Fuel Cell Technology	03		
4.	CS	18G5B04	Intelligent Systems	03		
5.	CV	18G5B05	Remote Sensing and Geographic Information System	03		
6.	EC	18G5B06	Automotive Electronics	03		
7.	EE	18G5B07	E-Mobility	03		
8.	EI	18G5B08	Smart Sensors & Instrumentation	03		
9.	IM	18G5B09	Operations Research	03		
10.	IS	18G5B10	Management Information Systems	03		
11.	ME	18G5B11	Automotive Mechatronics	03		
12.	TE	18G5B12	Telecommunication systems	03		
		Course	es offered by Science Departments & HSS Board			
13.	PY	18G5B13	Quantum Mechanics of Hetero/Nano Structures	03		
14.	PY	18G5B14	Thin Films and Nanotechnology	03		
15.	CY	18G5B15	Advances in corrosion science and technology	03		
16.	MA	18G5B16	Computational Advanced Numerical Methods	03		
17.	MA	18G5B17	Mathematics for Machine Learning	03		
18.	HSS	18G5B18	Engineering Economics	03		

RV COLLEGE OF ENGINEERING[®]

(Autonomous Institution Affiliated to VTU, Belagavi) ELECTRONICS AND COMMUNICATION ENGINEERING

	SIXTH SEMESTER CREDIT SCHEME							
SI.	Course Code Course Title P			Cre	Credit Allocation			
No.	Course Code	Course Title	BoS	L	Т	Р	Credits	
1.	18HEM61	Introduction to Management and Economics	HSS	3	0	0	3	
2.	18EC62	Computer Networks and Protocols (Theory & Practice)	EC	3	0	1	4	
3.	18EC63	Communication Systems – 2 (Theory & Practice)	EC	3	1	1	5	
4.	18EC64	Minor Project**	EC	0	0	2	2	
5.	18EC6CX	Elective C: Professional Electives	EC	3	0	0	3	
6.	18EC6DX	Elective D: Professional Electives	EC	3	0	0	3	
7.	7.18G6EXXElective E: Global Elective Wearable ElectronicsEC				0	0	3	
8.	18HSE68	Professional Practice-II	HSS	0	0	1	1	
	Total Number of Credits					5	24	
	Total number of Hours/Week					7+1		

	GROUP C: PROFESSIONAL ELECTIVES					
Sl. No.	Sl. No. Course Code Course Title					
1.	18CS6C1	Internet of Things	03			
2.	18EC6C2	Real Time Systems	03			
3.	18EC6C3	Low power VLSI Design	03			
4.	18EC6C4	Database Management Systems (DBMS)	03			
5.	18EC6C5	Control Engineering	03			
6.	18EC6C6	Cryptography and Network Security	03			

GROUP D: PROFESSIONAL ELECTIVES					
Sl. No.	Course Code	Course Title	Credits		
1.	18EC6D1	Digital Signal Processing using ARM Cortex M Devices	03		
2.	18EC6D2	Computer Vision	03		
3.	18EC6D3	Data Structures and Algorithms (Common EC & TE)	03		
4.	18EC6D4	Radio Frequency & Millimetre Wave IC Design	03		
5.	18EC6D5	Deep Learning	03		
6.	18EC6D6	Algorithms for VLSI Design and Automation	03		

GROUP E: GLOBAL ELECTIVES					
Sl. No.	Dept.	Course Code	Course Title	Credits	
		0	Courses offered by the Departments		
1.	AS	18G6E01	Aircraft Systems	03	
2.	BT	18G6E02	Bioinspired Engineering	03	
3.	СН	18G6E03	Sustainable Technology	03	
4.	CS	18G6E04	Graph Theory	03	
5.	CV	18G6E05	Disaster Management	03	
6.	EC	18G6E06	Wearable Electronics	03	
7.	EE	18G6E07	Energy Auditing and Management	03	
8.	EI	18G6E08	Virtual Instrumentation & Applications	03	
9.	IM	18G6E09	Systems Engineering	03	
10.	IS	18G6E10	Introduction to Mobile Application Development	03	
11.	ME	18G6E11	Industrial Automation	03	
12.	TE	18G6E12	Mobile Network System and Standards	03	
		Courses of	fered by Science Departments & HSS Board		
13.	PY	18G6E13	Thin film nanodevice fabrication technology	03	
14.	СҮ	18G6E14	Chemistry of advanced energy storage devices for E- mobility	03	
15.	MA	18G6E15	Advanced Statistical Methods	03	
16.	MA	18G6E16	Mathematical Modeling	03	
17.	HSS	18G6E17	Foundational Course on Entrepreneurship	03	

		Semester: V			
INT	TELLECTUAL PR		AND ENTREPR	EN	EURSHIP
Course Code	: 18HSI51	(Theory)	CIE		100 Marks
Course Coue	: 18HS151 : 3:0:0		SEE	•	100 Marks
Total Hours	: 36L		SEE Duration	:	3.00 Hours
	Objectives: The stu	dents will be able to			
1 To build aware	eness on the various	forms of IPR and to	build the perspecti	ves	on the concepts and to
	kages in technology				
and reward inn	novativeness				chnology and to recognize
	owards entrepreneu rowing a viable as w			ons	skills to enable starting,
4 Develop an en	trepreneurial outloo	k and mind set alor	nule. og with critical ski	116 9	nd knowledge to manage
	d with entrepreneurs		ig with efficient ski	115 u	nd knowledge to manage
		·			
		Unit-I			07 Hrs
Introduction: Typ	es of Intellectual Pro	operty, WIPO			
Patent Procedure - knowledge, Infring	- Overview, Transfe gement of patents and	r of Patent Rights; d remedy, Case studi	Biotechnology pates	ents	on-patentable inventions, , protection of traditional
Trade Secrets: De	efinition, Significanc	Unit – II	rade secrets in Ind	la.	04 Hrs
Trade Marks: Con	ncept, function and o		orms of Trade marl	cs R	
registrable marks. I		mark; Deceptive sir	nilarity; Transfer o		ade Mark, ECO Label,
		Unit –III			09 Hrs Ubesign. Procedure for
Copy Right: Intro transfer of copy ri Right, Infringemen Intellectual prope		nd scope, Rights coll casting organization n case studies : Emergence of cybe	onferred by copy ons and performer [*] er-crime; Meaning	right s rig and	t, Copy right protection, ghts, Exceptions of Copy different types of
		Unit –IV			08 Hrs
entrepreneurial my Listen to Some S global entrepreneu people from their of Characteristics of concept of differe personality traits, s styles in the model assumptions and lin barriers which caus how to overcome th Communication I	ths and uncover the success Stories: - C rs, their journeys, the own countries have be f a Successful En- ent entrepreneurial strengths, and weaking l, and how they different miting our opinions se communication be hem. Best Practices. Und	Learn how entreprint true facts. Explore E flobal legends Under heir challenges, and ecome successful en trepreneur Underst styles. Identify you hesses. Learn about er from each other. O about people can ne preakdown, such as p	cells on Campus rstand how ordina their success stor and the entreprene r own entreprene the 5M Model, ea Communicate Eff gatively impact ou niscommunication	euria euria eursh ch o ectiv r con and	d the world. Identify six beople become successful Understand how ordinary al journey and learn the hip style based on your of the five entrepreneurial vely: Learn how incorrect mmunication. Identify the poor listening, and learn nmunication and learn to
listen actively. Learn a few body languages cues such as eye contact and handshakes to strengthen communication. (Practical Application)					
communication. (P					08 Hrs
Unit -V08 HrsDesign Thinking for Customer Delight: - Understand Design Thinking as a problem-solving process.Describe the principles of Design Thinking. Describe the Design Thinking process.Sales Skills to Become an Effective Entrepreneur: - Understand what is customer focus and how all					

selling effort should be customer-centric. Use the skills/techniques of personal selling, Show and Tell, and Elevator Pitch to sell effectively.

Managing Risks and Learning from Failures: - Identify risk-taking and resilience traits. Understand that risk-taking is a positive trait. Learn to cultivate risk-taking traits. (Practical Application) Appreciate the role of failure on the road to success, and understand when to give up. Learn about some entrepreneurs/risk-takers. (Practical Application).

Are You Ready to be an Entrepreneur: - Let's ask "WHY" Give participants a real picture of the benefits and challenges of being an entrepreneur. Identify the reasons why people want to become entrepreneurs. Help participants identify why they would want to become entrepreneurs.

Course Outcomes: After completing the course, the students will be able to

- **CO1:** Comprehend the applicable source, scope and limitations of Intellectual Property within the purview of engineering domain.
- CO2: Knowledge and competence related exposure to the various Legal issues pertaining to Intellectual Property Rights with the utility in engineering perspectives.
- **CO3:** Enable the students to have a direct experience of venture creation through a facilitated learning environment.
- **CO4:** It allows students to learn and apply the latest methodology, frameworks and tools that entrepreneurs use to succeed in real life.

Reference Books

1.	Law Relating to Intellectual Property, Wadehra B L,5 th Edition, 2012, Universal Law Pub Co. Ltd
	Delhi, ISBN: 9789350350300
2.	Intellectual Property Rights: Unleashing Knowledge Economy, Prabuddha Ganguly, 1st Edition, 2001,
	Tata McGraw Hill Publishing Company Ltd., New Delhi, ISBN: 0074638602.
3.	Intellectual Property and the Internet, Rodney Ryder, 2002, Lexis Nexis U.K., ISBN: 8180380025,
	9788180380020.
4.	Entrepreneurship, Rajeev Roy, 1st Edition, 2012, Oxford University Press, New Delhi, ISBN:
	9780198072638.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	3	3	-	3	1	2	-	3
CO2	1				3	3	3	3	1	2	-	3
CO3	-	3	2	-	-	2	2	3	3	3	3	3
CO4	-	3	2	-	-	3	3	3	3	3	3	3

High-3 : Medium-2 : Low-1

				Semester: V						
			E	MBEDDED SYSTE	M DESIGN					
				(Theory)						
Co	urse Code	:	18EC52		CIE	:	100 Marks			
	edits: L:T:P	:	3:0:0		SEE	:	100 Marks			
	tal Hours	:	39L		SEE Duration	: 3.00 Hours				
Co				idents will be able to						
1						ves o	on the concepts and to)		
				y innovation and IPR						
2	-			on and investment and	d disclosure of new	Tecl	nnology and to recog	niz		
	and reward inno									
3						ons	skills to enable star	ting		
				vell as sustainable ve			11 1 1			
4					ng with critical ski	lls ar	nd knowledge to man	nag		
	risks associated	wit	h entrepreneurs	S.						
				TT •4 T			0.0 **			
_		_		Unit-I Design: Introduction,	~		08 Hr	S		
Re	quirements, Spec	ific	ations, Hardwa	re Software Partition	ing, Architecture D	esig	ign, Design Process: n. Embedded System nancement: Pipelinin	n		
Re Ar Su	quirements, Spec chitecture: Co-P perscalar Executi	ific Proc on,	ations, Hardwa essor & Hardw Multi Core CP	re Software Partition are Accelerators, Pro Us. Unit – II	ing, Architecture D performance	esig e Enl	n. Embedded System nancement: Pipelinin 0 8Hr	n g, s		
Re Ar Su De con Ha	quirements, Spec chitecture: Co-P perscalar Executi signing Embedd recting, memory rvard caches, Cac	ific roc on, led	ations, Hardwa essor & Hardw Multi Core CP System Hardw cess times, DR	re Software Partition are Accelerators, Pro Us. Unit – II vare –I: Memory sys AM interfaces, DRA	ing, Architecture D ocessor performance tems: Memory orga M refresh techniqu	esign e Enh aniza es, C	n. Embedded System nancement: Pipelinin	n g, rs and		
Re Ar Su De con	quirements, Spec chitecture: Co-P perscalar Executi signing Embedd recting, memory	ific roc on, led	ations, Hardwa essor & Hardw Multi Core CP System Hardw cess times, DR	re Software Partition are Accelerators, Pro Us. Unit – II vare –I: Memory sys AM interfaces, DRA	ing, Architecture D ocessor performance tems: Memory orga M refresh techniqu	esign e Enh aniza es, C	n. Embedded System nancement: Pipelinin 0 8Hr tion, Error detecting ache, Unified versus	n g, s and		
Re Ar Su De con Ha po	quirements, Spec chitecture: Co-P perscalar Executi signing Embedd recting, memory rvard caches, Cac rt memory	ific roc on, led Ac che	ations, Hardwa essor & Hardw <u>Multi Core CP</u> System Hardw cess times, DR Organization, I	re Software Partition are Accelerators, Pro Us. Unit – II vare –I: Memory sys AM interfaces, DRA Direct mapped and S	ing, Architecture D poessor performance tems: Memory orga M refresh techniqu et associative cache	esign e Enh aniza es, C es, Ca	n. Embedded System nancement: Pipelinin 0 8Hr tion, Error detecting ache, Unified versus ache coherency, Dual 08 Hr	n g, rs and		
Re Ar Su De con Ha por	quirements, Spec chitecture: Co-P perscalar Executi signing Embedd recting, memory rvard caches, Cac rt memory signing Embedd	ific on, ed Acche	ations, Hardwa essor & Hardw Multi Core CP System Hardw cess times, DR Organization, I System Hardw	re Software Partition are Accelerators, Pro Us. Unit – II vare –I: Memory sys AM interfaces, DRA Direct mapped and S Unit –III vare –II: I/O Device Frame Formats, Wir	ing, Architecture D ocessor performance tems: Memory orga M refresh techniqu et associative cache es: Watchdog Times	esigne Enh aniza es, C es, Ca	n. Embedded System nancement: Pipelinin 0 8Hr tion, Error detecting ache, Unified versus ache coherency, Dual 08 Hr	n g, s and s		
Re Ar Su De con Ha po De Int	quirements, Spec chitecture: Co-P perscalar Executi signing Embedd recting, memory rvard caches, Cac rt memory signing Embedd erfacing Protocol	led Acche	ations, Hardwa essor & Hardw <u>Multi Core CP</u> System Hardw cess times, DR. Organization, I System Hardw PI, I2C, CAN:	re Software Partition are Accelerators, Pro Us. Unit – II vare –I: Memory sys AM interfaces, DRA Direct mapped and S Unit –III vare –II: I/O Device Frame Formats, Wir Unit –IV	ing, Architecture D ocessor performance tems: Memory orga M refresh technique et associative cache es: Watchdog Times ing Topology, Rese	esign e Enl aniza es, C es, Ca rs, In et C	n. Embedded System nancement: Pipelinin 0 8Hr tion, Error detecting ache, Unified versus ache coherency, Dual 08 Hr terrupt Controllers, ircuits, Interfacing R 08 Hr	n g, ss and ss TC		
Re Ar Su De con Ha po De Int	quirements, Spec chitecture: Co-P perscalar Executi signing Embedd recting, memory rvard caches, Cac rt memory signing Embedd erfacing Protocol signing Embedd	ific proc on, led Acche s: S	ations, Hardwa essor & Hardw Multi Core CP System Hardw cess times, DR Organization, I System Hardw PI, I2C, CAN: System Softw	re Software Partition are Accelerators, Pro Us. Unit – II vare –I: Memory sys AM interfaces, DRA Direct mapped and S Unit –III vare –II: I/O Device Frame Formats, Wir Unit –IV vare Application S	ing, Architecture D beessor performance tems: Memory orga M refresh techniqu et associative cache es: Watchdog Times ing Topology, Rese oftware, System S	esigne Enh aniza es, C es, Ca rs, In et C	n. Embedded System nancement: Pipelinin 0 8Hr tion, Error detecting ache, Unified versus ache coherency, Dual 08 Hr terrupt Controllers, ircuits, Interfacing R 08 Hr are, Use of High L	n g, s and rs TC rs .eve		
Re Ar Su De con Ha po De Int De La	quirements, Spec chitecture: Co-P perscalar Executi signing Embedd recting, memory rvard caches, Cac rt memory signing Embedd erfacing Protocol signing Embedd nguages: C, C++	ific proc on, led Act che s: S	ations, Hardwa essor & Hardw Multi Core CP System Hardw cess times, DR. Organization, I System Hardw PI, I2C, CAN: System Softw va, Programmi	re Software Partition are Accelerators, Pro Us. Unit – II vare –I: Memory sys AM interfaces, DRA Direct mapped and S Unit –III vare –II: I/O Device Frame Formats, Wir Unit –IV vare Application S ing & Integrated De	ing, Architecture D becessor performance tems: Memory orga M refresh technique et associative cache es: Watchdog Times ing Topology, Rese oftware, System S velopment Environ	esignesignesignesignesignesignesignesign	n. Embedded System nancement: Pipelinin 0 8Hr tion, Error detecting ache, Unified versus ache coherency, Dual 08 Hr terrupt Controllers, ircuits, Interfacing R 08 Hr are, Use of High L t tools, Debugger, B	n g, s and rs TC rs eve oar		
Re Ar Su De Con Ha por De Int La Su	quirements, Spec chitecture: Co-P perscalar Executi signing Embedd recting, memory rvard caches, Cac rt memory signing Embedd erfacing Protocol signing Embedd nguages: C, C++ pport Library, C	led Acche s: S led , Ja hip	ations, Hardwa essor & Hardw Multi Core CP System Hardw cess times, DR Organization, I System Hardw PI, I2C, CAN: System Softw va, Programmi Support Libra	re Software Partition are Accelerators, Pro Us. Unit – II vare –I: Memory sys AM interfaces, DRA Direct mapped and S Unit –III vare –II: I/O Device Frame Formats, Wir Unit –IV vare Application Se ing & Integrated De rry Analysis and Op	ing, Architecture D becessor performance tems: Memory orga M refresh technique et associative cache es: Watchdog Timer ing Topology, Rese oftware, System S velopment Environ otimization: Execut	esignesignesignesignesignesignesignesign	n. Embedded System nancement: Pipelinin 0 8Hr tion, Error detecting ache, Unified versus ache coherency, Dual 08 Hr terrupt Controllers, ircuits, Interfacing R 08 Hr are, Use of High L t tools, Debugger, B Fime, Energy & Po	n g, s and s TC S S eve oar we		
Re Ar Su De Con Ha por De Int La Su	quirements, Spec chitecture: Co-P perscalar Executi signing Embedd recting, memory rvard caches, Cac rt memory signing Embedd erfacing Protocol signing Embedd nguages: C, C++ pport Library, C	led Acche s: S led , Ja hip	ations, Hardwa essor & Hardw Multi Core CP System Hardw cess times, DR Organization, I System Hardw PI, I2C, CAN: System Softw va, Programmi Support Libra	re Software Partition are Accelerators, Pro Us. Unit – II vare –I: Memory sys AM interfaces, DRA Direct mapped and S Unit –III vare –II: I/O Device Frame Formats, Wir Unit –IV vare Application So ing & Integrated De ry Analysis and Op esentation, Embedd	ing, Architecture D becessor performance tems: Memory orga M refresh technique et associative cache es: Watchdog Timer ing Topology, Rese oftware, System S velopment Environ otimization: Execut	esignesignesignesignesignesignesignesign	n. Embedded System nancement: Pipelinin 0 8Hr tion, Error detecting ache, Unified versus ache coherency, Dual 08 Hr terrupt Controllers, ircuits, Interfacing R 08 Hr are, Use of High L t tools, Debugger, B Time, Energy & Po ndards: MISRA C 20	n g, s and rs TC S eve oar we 012		
Re Ar Su De cor Ha po De Int La Su Pro	quirements, Spec chitecture: Co-P perscalar Executi signing Embedd recting, memory rvard caches, Cac rt memory signing Embedd erfacing Protocol signing Embedd nguages: C, C++ pport Library, C ogram Size; Float	led Acche s: S led hip	ations, Hardwa essor & Hardw <u>Multi Core CP</u> System Hardw cess times, DR. Organization, I System Hardw PI, I2C, CAN: System Softw va, Programmi Support Libra point data repre	re Software Partition are Accelerators, Pro Us. Unit – II vare –I: Memory sys AM interfaces, DRA Direct mapped and S Unit –III vare –II: I/O Device Frame Formats, Wir Unit –IV vare Application So ing & Integrated De ry Analysis and Op esentation, Embedd Unit –V	ing, Architecture D becessor performance tems: Memory orga M refresh technique et associative cache rs: Watchdog Timer ing Topology, Rese oftware, System S velopment Environ otimization: Execut ed System Coding	esign aniza aniza aniza es, C es, C	n. Embedded System nancement: Pipelinin 0 8Hr tion, Error detecting ache, Unified versus ache coherency, Dual 08 Hr terrupt Controllers, ircuits, Interfacing R 08 Hr are, Use of High L t tools, Debugger, B Fime, Energy & Po	n g, s and s TC TC S c veve oar we)12.		

Course	Course Outcomes: After completing the course, the students will be able to										
CO1:	Analyse the architecture of embedded system, functional difference between general purpose										
	system, operational & non-operational attributes of embedded system.										
CO2:	Analyze the hardware requirements of an embedded system & design according to specifications.										
CO3:	Develop software architecture & realize optimally using suitable language.										
CO4:	Engage in self-study to formulate, design, implement, analyze and demonstrate an embedded										
	application developed to control real world operations.										

Refer	Reference Books											
1.	Introduction to Embedded Systems, Shibu K V, 2009, Tata McGraw Hill Education Private											
	Limited, ISBN: 10: 0070678790											
2.	Embedded System Design, Steve Heath, 2004, Elsevier, 2 nd Edition, ISBN 9780750655460											
3.	Embedded Systems - A contemporary Design Tool, James K Peckol, 2008, John Weily, ISBN: 0-											

	444-51616-6
4.	Real-Time Concepts for Embedded Systems, Qing Li and Carolyn Yao, 2003, CMP Books,
	ISBN:1578201241.
5.	Reference Manuals: I2C,SPI, Cache Design, MISRA C 2012, RTX-ARM

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	3	2	-	-	-	-	-	1	-	1	
CO2	3	2	2	1	2	2	-	-	-	1	-	1	
CO3	3	3	2	2	2	2	2	2	-	1	-	1	
CO4	3	3	3	3	2	3	2	3	3	3	3	3	

High-3: Medium-2 : Low-1

	Semester: V										
	COMMUNICATION SYSTEMS -I										
	(Theory & Practice)										
Cou	ırse Code	:	18EC53		CIE	:	100+50 Marks				
Cre	dits: L:T:P	:	3:0:1		SEE	:	100+50 Marks				
Tot	al Hours	:	39L+33P		SEE Duration	:	03+03 Hours				
Cou	irse Learning C)bje	ectives: The stu	idents will be able to							
1	Understand the	co	ncepts of FM, I	Low pass and bandpa	ss sampling and R	ando	m processes to compute				
	performance pa	arar	neters.								
2	•			g, quantization, encod	ling and apply then	n to v	voice conditioning for				
	communication	-									
3	Understand the	co	ncepts of inform	mation theory as a pro	erequisite for error	dete	ction and correction.				
4	Associate the c	onc	cepts of Information	ation Theory to the p	rinciple of block er	ror c	oding and decoding for				
	different comm	nuni	ication scenario).							
				UNIT-I			08 Hrs				
Ang	gle (Exponentia	al)	Modulation	Nonlinear Modulati	ons, Bandwidth	of A	angle-Modulated Waves,				

 Generating of FM Waves by direct methods, Demodulation of FM, PLL.

 Random Variables and Random Processes

 Random variables and their properties, Multiple Random Variables: Properties, Operations.

 Random Variables and their properties, Multiple Random Variables: Properties, Operations.

 Random Variables and their properties, Multiple Random Variables: Properties, Operations.

 Random Variable to Random Processes, Classification of Random Processes, properties and operations

 UNIT-II
 08 Hrs

 Sampling and Analog to Digital Conversion Low Pass Sampling Theorem (Impulse, Pulse and Flat top).

Pulse-Code Modulation (PCM) – Uniform Quantization, Non uniform Quantization – Optimal quantizer and Robust quantizer (μ-law and A-law), SNR derivations for all types. Differential Pulse Code Modulation (DPCM), Delta Modulation with SNR derivation, Adaptive DM with SNR statement only. Sigma-delta Modulation concept. Applications to Channel Vocoders and LPC Vocoders.(Conceptual treatment).

 UNIT-III
 08 Hrs

 Digital Multiplexing and demultiplexing: Framing with overheads, Types- Synchronous, Asynchronous, Quasi-Synchronous. Demultiplexing FSM, Retiming FSM with Plesiochronous buffering.

Baseband Pulse Transmission (Line Codes) (RZ and NRZ) Unipolar, Polar, Bipolar, Manchester signaling, Discrete form statement of Wiener – Khinchine Theorem – Applications to PSD derivations for these pulses. Highlights of other baseband pulses HDB3, B6ZS.

 UNIT-IV
 08 Hrs

 Introduction to Information Theory Measure of Information, Source Encoding, Error-Free Communication over a Noisy Channel, Channel Capacity of a Discrete Memory less Channel, Channel Capacity of a Continuous memory less Channel, Practical Communication Systems in Light of Shannon's Equation.
 08 Hrs

Error Correcting Codes

UNIT-V

07 Hrs

Redundancy for error correction, Linear Block Codes, Cyclic Codes, The effect of error correction, Burst-Error Detecting and Correcting Codes. A brief concept of RS Codes + Interleaving

Practical's: Communication Lab

- 1. Frequency Modulation and Demodulation for a given specification.
- 2. a. Autocorrelation and Power Spectrum of a discrete time sequence and a random processb. Generation of Samples of lowpass random process and Bandpass Random Process
- 3. Generation of Line codes, PSD and Probability of Error Calculation
- 4. Digital Multiplexing and Demultiplexing
- 5. Illustration of sampling theorem
- 6. Illustration of Uniform and Non-Uniform PCM for Quantization Error and SQNR
- 7. Illustration of Delta Modulation and Adaptive Delta Modulation
- 8. Determination of various entropies and mutual information of the Noise free and Binary

symmetric	channels.
-----------	-----------

- 9. Coding and Decoding of Linear block codes
- 10.Coding and Decoding of Cyclic codes

Cours	Course Outcomes: After completing the course, the students will be able to									
CO1:	Associate and apply the concepts of digital formatting, reconstruction to digital transmitter and									
	receivers used in cellular and other communication devices.									
CO2:	Analyze and compute performance of continuous wave modulation, digital formatting schemes.									
CO3:	Test and validate digital formatting schemes and block codes under noisy channel conditions to									
	estimate the performance in practical communication systems.									
CO4:	Design/Demonstrate by way of simulation or emulation of different functional blocks of digital									
	formatting and block error correction									

Refere	ence Books
1.	Modern Digital and Analog communication Systems, B.P.Lathi and Zhi Ding, 4 th Edition, 2010, Oxford University Press, ISBN: 9780198073802.
2.	Analog & Digital Communication Systems, Simon Haykin, 1 st Edition, 2014, John Wiley & sons, ISBN 978-0-471-64735-5.
3.	Communication Systems, Simon Haykin, 4 th Edition, 2004, John Wiley, India Pvt. Ltd, ISBN 0471178691.
4	Analog & Digital Communication: Schaum's Outline Series, Hwei Hsu, 3 rd edition,2017, McGraw Hill Education, ISBN: 978-0070151505

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

Electronics & Communication Engineering

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	-	-	2	-	-	-	1	1	-	2	
CO2	3	2	2	1	-	-	-	-	1	1	-	1	
CO3	3	3	2	2	2	-	-	-	-	1	-	1	
CO4	3	3	3	3	2	-	-	-	-	1	-	2	

Low-1 Medium-2 High-3

	Semester: V									
	DIGITAL VLSI DESIGN									
				(Theory & Practic	ce)					
Course	Code	:	18EC54		CIE	:	100+50 Marks			
Credits: L:T:P		:	3:0:1		SEE	:	100+50 Marks			
Total Hours		:	39L + 33P		SEE Duration	:	03+03 Hours			
Course	Learning	; Ot	jectives: The	udents will be able to						
1	Analyze	the	impact of fabr	ation technologies: Meth	ods for optimizing	the	area, speed, and			
	power of	cir	cuit layouts.							
2	Design a	nd i	implement con	vinational circuit.						
3	Design and implement sequential system by considering specifications.									
4	4 Analyze the impact of RC effect in post simulation.									

Unit-I	8 Hrs				
VLSI Design Flow: Specification, Design entry, Functional simulation, planning placement	1				
timing simulation. MOS Transistor: Introduction, Ideal I-V characteristics, C-V Characte					
MOS Capacitance Models, Detailed MOS Gate Capacitance Model, Non-ideal I-V Eff					
Degradation and Velocity Saturation, Channel Length Modulation, Threshold Voltage Ef					
Leakage, Body effect, Tunneling. DC Transfer Characteristics: Static CMOS					
Characteristics, Beta Ratio Effect, Noise Margin.					
Combinational Circuit Design: CMOS Logic, Inverter, NAND Gate, NOR Gate, Combin	national Logic,				
Compound Gates, Pass Transistors and Transmission Gates, Tristates, Multiplexers.	C ·				
Unit – II	9 Hrs				
Delay: Transient response, RC delay model, linear delay model					
Circuit Families: Static CMOS, Ratioed Circuits, Cascode Voltage Switch Logic, Dyn	amic Circuits,				
Complementary Pass-Transistor Logic Circuits.: Datapath Subsystem: Single-Bit Addition	, Ripple Carry				
Adder, Manchester Carry chain adder, Carry Skip adder, Carry Select Adder, Braun, Baug	gh-wooley and				
Array multipliers.					
Unit –III	8 Hrs				
Sequential MOS Logic Circuitry: Behavioral of Bistable element, SR Latch Circuitry, Clo	cked latch and				
Flip Flop Circuitry, C-MOS D-Latch and Edge Triggered Flip-Flop. Sequencing St	atic Circuits:				
Sequencing Methods, Max-Delay Constraints, Min-Delay Constraints Time Borrowing, Clock	k Skew				
Unit –IV	7 Hrs				
Array Sub system SRAM: Memory cell Read/Write operation, Decoder, Bit-line conditionit	ng and column				
circuitry and Column Circuitry, Multi-Ported SRAM. DRAM Subarray Architectures, Col	lumn Circuitry				
Read-Only Memory Programmable ROMs, NAND ROMs. Content-Addressable Memory	, PLA				
Unit –V	7 Hrs				
CMOS Processing Technology: CMOS Technologies, Wafer Formation, Photolithograp	ohy, Well and				
Channel Formation, Silicon Dioxide (SiO2), Isolation, Gate Oxide, Gate and Source/Drai	in Formations,				
Contacts and Metallization, Passivation, Metrology.					
Layout Design Rules-stick diagrams and Gate layouts, Transistor Scaling					
Introduction to finFET: Brief History, Construction, Advantages and Disadvantages, Applications.					
Practical's:					
1.a Realization of CMOS Logic-universal gates.					
.b Practice question: Realize CMOS XOR/XNOR gates					
2.a Realization of CMOS - adder circuits					
.b Practice question: Realize 4-bit adder/subtractor					

- .b Practice question: Realize 4-bit adder/subtractor
- 3.a MOS device Characterization
- .b Practice question: Plot g_m Vs V_{gs} for NMOS/PMOS
- 4.a CMOS Inverter Static Characteristics
- .b Practice question: Plot the Voltage Transfer Characteristic graph of CMOS inverter and calculate the switching voltage for the given specification
- 5.a Sequential Circuit Design using Master-Slave configuration

Electronics & Communication Engineering

- .b Practice question: Realize 4-bit Ring counter/Johnson counter
- 6.a CMOS Inverter layout and post simulation
- .b Practice question: NOR/NAND gates layout and post simulation
- 7.a Inverter design using FinFET
- .b Practice question: NOR/NAND gates using FinFET
- 8.a Analysis of Common source and differential amplifiers
- .b Practice question: Realize of Op-amp using CS and differential amplifiers
- 9.a Synthesis of Serial Adder
- .b Practice question: Perform PnR for Serial Adder.

Case study: ASIC design flow using Innovas. (Students should learn the concept and produce the relevant document)

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Analyze transistor circuits and its impact on VLSI design flow.						
CO2:	Apply & analyze the design parameters for speed, area & power optimization.						
CO3:	Evaluate the functionality of VLSI blocks using various architectures.						
CO4:	Analyze various fabrication processes for different logic families/designs.						

Reference Books

Kelele	the books
1	CMOS VLSI Design, Neil H.E. Weste, David Harris, Ayan Banerjee, 3 rd Edition, 2006, Pearson Education, ISBN: 0321149017.
2	CMOS Digital Integrated Circuits, Sung MO Kang, Yousf Leblebici, 3 rd Edition, Tata Mc
2	GrawHill, ISBN: 0-7923-7246-8.
2	Basic VLSI Design, Douglas.A.Pucknell, Kamaran Eshraghian, 3 rd Edition 2010, PHI, ISBN: 0-
3	321-26977-2.
	Fundamentals of Ultra-Thin-Body MOSFETs and FinFETs, Jerry G. Fossum, Vishal P. Trivedi,
4	1 st Edition 2013, Cambridge University Press, ISBN-13: 978-1107030411.
1	1 Eutilii 2015, Califoliuge University riess, $ISDIN-15$, $976-1107050411$.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q)) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

CO-PO	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	-	3	2	-	2	1	-	2	3
CO2	3	2	3	2	3	2	1	2	2	-	-	3
CO3	3	3	2	2	3	-	-	-	-	1	2	3
CO4	1	1	3	3	3	-	2	-	-	1	2	3

Low-1 Medium-2 High-3

	Semester: V								
	DIGITAL SIGNAL PROCESSING AND MACHINE LEARNING								
				(Theory	7)				
Cours	se Code	:	18EC55		CIE	:	100 Marks		
Credits: L:T:P		:	3:1:0		SEE		100 Marks		
Total Hours		:	39L		SEE Duration		3.00 Hours		
Co	ourse Learni	ng (Objectives: The	students will be able	e to				
1	Understa	nd c	concepts of digit	al IIR and FIR filter	theory.				
2	2 Acquire basic knowledge of machine learning algorithms or techniques.								
3	3 Design, compare and select filters for various application.								
4	Identify and apply the appropriate machine learning technique for prediction and classification								

IIR Filter Design: Structures of IIR: Direct form structure, A/D-H(z)-D/A structure Analog filter designs based on the Bilinear Transformation using analog filter. Unit – II 08 Hrs FIR Filter Design: Symmetric and anti-symmetric FIR Filters, FIR Filter structure: Direct form structure, cascade form structures, frequency sampling structures, lattice structure. Design of Linear phase FIR Filters using Windows, Design of Linear phase FIR filters by frequency Sampling method. Applications of IIR and FIR filters. Induction to adaptive filter and adaptive systems. Unit – III 08 Hrs Introduction to Machine learning: Types and applications of Machine Learning, Basic Types of Data in Machine Learning Exploring Structure of Data, Data Quality and Remediation, Data Pre-Processing, Learning Algorithms. Supervised Learning Algorithm: Linear Regression, logistic regression, Capacity, Over fitting and Under fitting, Hyper parameters and Validation Sets, Estimators, Bias and Variance, Maximum Likelihood Estimation, Bayesian Linear Regression, Stochastic Gradient Descent, Back Propagation algorithm. Supervised Learning Algorithms: Classification Model, Classification Learning Steps, Linear and logistic classifier, Support vector machines, k-Nearest Neighbour, Decision tree, Random forest model, Naïve Bayes classifier. Application of Supervised Learning, Clustering, Application of Unsupervised Learning. Or Hrs	Unit-I	08 Hrs
Unit – II08 HrsFIR Filter Design: Symmetric and anti-symmetric FIR Filters, FIR Filter structure: Direct form structure, cascade form structures, frequency sampling structures, lattice structure. Design of Linear phase FIR Filters using Windows, Design of Linear phase FIR filters by frequency Sampling method. Applications of IIR and FIR filters. Induction to adaptive filter and adaptive systems. Unit –III08 HrsIntroduction to Machine learning: Types and applications of Machine Learning, Basic Types of Data in Machine Learning, Exploring Structure of Data, Data Quality and Remediation, Data Pre-Processing, Learning Algorithms.08 HrsSupervised Learning Algorithm: Linear Regression, logistic regression, Capacity, Over fitting and Under fitting, Hyper parameters and Validation Sets, Estimators, Bias and Variance, Maximum Likelihood Estimation, Bayesian Linear Regression, Stochastic Gradient Descent, Back Propagation algorithm.Supervised Learning Algorithms: Classification Model, Classification Learning Steps, Linear and logistic classifier, Support vector machines, k-Nearest Neighbour, Decision tree, Random forest model, Naïve Bayes classifier. Application of Supervised Learning, Clustering.07 HrsUnsupervised Learning: Unsupervised VS Supervised Learning, Application of Unsupervised Learning, Clustering, K-means Clustering, Mixtures of Gaussians, EM for Gaussian mixtures, Principal Component07 Hrs	using Butterworth and Chebyshev filter. IIR Filter design by Bilinear Transformation, digita	0 0
cascade form structures, frequency sampling structures, lattice structure. Design of Linear phase FIR Filters using Windows, Design of Linear phase FIR filters by frequency Sampling method. Applications of IIR and FIR filters. Induction to adaptive filter and adaptive systems. Unit –III 08 Hrs Introduction to Machine learning: Types and applications of Machine Learning, Basic Types of Data in Machine Learning, Exploring Structure of Data, Data Quality and Remediation, Data Pre-Processing. Learning Algorithms. Supervised Learning Algorithm: Linear Regression, logistic regression, Capacity, Over fitting and Under fitting, Hyper parameters and Validation Sets, Estimators, Bias and Variance, Maximum Likelihood Estimation, Bayesian Linear Regression, Stochastic Gradient Descent, Back Propagation algorithm. 08 Hrs Supervised Learning Algorithms: Classification Model, Classification Learning Steps, Linear and logistic classifier, Support vector machines, k-Nearest Neighbour, Decision tree, Random forest model, Naïve Bayes classifier. Application of Supervised Learning, Clustering. 07 Hrs Unsupervised Learning: Unsupervised vs Supervised Learning, Application of Unsupervised Learning. Clustering, K-means Clustering, Mixtures of Gaussians, EM for Gaussian mixtures, Principal Component		08 Hrs
using Windows, Design of Linear phase FIR filters by frequency Sampling method. Applications of IIR and FIR filters. Induction to adaptive filter and adaptive systems. Unit –III 08 Hrs Introduction to Machine learning: Types and applications of Machine Learning, Basic Types of Data in Machine Learning, Exploring Structure of Data, Data Quality and Remediation, Data Pre-Processing. Learning Algorithms. Supervised Learning Algorithm: Linear Regression, logistic regression, Capacity, Over fitting and Under fitting, Hyper parameters and Validation Sets, Estimators, Bias and Variance, Maximum Likelihood Estimation, Bayesian Linear Regression, Stochastic Gradient Descent, Back Propagation algorithm. Supervised Learning Algorithms: Classification Model, Classification Learning Steps, Linear and logistic classifier, Support vector machines, k-Nearest Neighbour, Decision tree, Random forest model, Naïve Bayes classifier. Application of Supervised Learning, Clustering. O7 Hrs Unsupervised Learning: Unsupervised vs Supervised Learning, Application of Unsupervised Learning. Clustering, K-means Clustering, Mixtures of Gaussians, EM for Gaussian mixtures, Principal Component	FIR Filter Design: Symmetric and anti-symmetric FIR Filters, FIR Filter structure: Direct	form structure,
Applications of IIR and FIR filters. Induction to adaptive filter and adaptive systems. Unit –III 08 Hrs Introduction to Machine learning: Types and applications of Machine Learning, Basic Types of Data in Machine Learning, Exploring Structure of Data, Data Quality and Remediation, Data Pre-Processing. Learning Algorithms. Supervised Learning Algorithm: Linear Regression, logistic regression, Capacity, Over fitting and Under fitting, Hyper parameters and Validation Sets, Estimators, Bias and Variance, Maximum Likelihood Estimation, Bayesian Linear Regression, Stochastic Gradient Descent, Back Propagation algorithm. 08 Hrs Supervised Learning Algorithms: Classification Model, Classification Learning Steps, Linear and logistic classifier, Support vector machines, k-Nearest Neighbour, Decision tree, Random forest model, Naïve Bayes classifier. Application of Supervised Learning, Clustering. 07 Hrs Unsupervised Learning: Unsupervised vs Supervised Learning, Application of Unsupervised Learning. Clustering, K-means Clustering, Mixtures of Gaussians, EM for Gaussian mixtures, Principal Component	cascade form structures, frequency sampling structures, lattice structure. Design of Linear ph	ase FIR Filters
Unit –III08 HrsIntroduction to Machine learning: Types and applications of Machine Learning, Basic Types of Data in Machine Learning, Exploring Structure of Data, Data Quality and Remediation, Data Pre-Processing, Learning Algorithms.Pre-Processing, Learning Algorithm: Linear Regression, logistic regression, Capacity, Over fitting and Under fitting, Hyper parameters and Validation Sets, Estimators, Bias and Variance, Maximum Likelihood Estimation, Bayesian Linear Regression, Stochastic Gradient Descent, Back Propagation algorithm.Supervised Learning Algorithms: Classification Model, Classification Learning Steps, Linear and logistic classifier, Support vector machines, k-Nearest Neighbour, Decision tree, Random forest model, Naïve Bayes classifier. Application of Supervised Learning, Clustering.07 HrsUnsupervised Learning: Unsupervised vs Supervised Learning, Application of Unsupervised Learning, Clustering, K-means Clustering, Mixtures of Gaussians, EM for Gaussian mixtures, Principal Component07		
Introduction to Machine learning: Types and applications of Machine Learning, Basic Types of Data in Machine Learning, Exploring Structure of Data, Data Quality and Remediation, Data Pre-Processing. Learning Algorithms. Supervised Learning Algorithm: Linear Regression, logistic regression, Capacity, Over fitting and Under fitting, Hyper parameters and Validation Sets, Estimators, Bias and Variance, Maximum Likelihood Estimation, Bayesian Linear Regression, Stochastic Gradient Descent, Back Propagation algorithm. 08 Hrs Supervised Learning Algorithms: Classification Model, Classification Learning Steps, Linear and logistic classifier, Support vector machines, k-Nearest Neighbour, Decision tree, Random forest model, Naïve Bayes classifier. Application of Supervised Learning, Clustering. 07 Hrs Unsupervised Learning: Unsupervised vs Supervised Learning, Application of Unsupervised Learning, Clustering, K-means Clustering, Mixtures of Gaussians, EM for Gaussian mixtures, Principal Component	Applications of IIR and FIR filters. Induction to adaptive filter and adaptive systems.	
Machine Learning, Exploring Structure of Data, Data Quality and Remediation, Data Pre-Processing. Learning Algorithms. Supervised Learning Algorithm: Linear Regression, logistic regression, Capacity, Over fitting and Under fitting, Hyper parameters and Validation Sets, Estimators, Bias and Variance, Maximum Likelihood Estimation, Bayesian Linear Regression, Stochastic Gradient Descent, Back Propagation algorithm. 08 Hrs Supervised Learning Algorithms: Classification Model, Classification Learning Steps, Linear and logistic classifier, Support vector machines, k-Nearest Neighbour, Decision tree, Random forest model, Naïve Bayes classifier. Application of Supervised Learning, Clustering. 07 Hrs Unsupervised Learning: Unsupervised vs Supervised Learning, Application of Unsupervised Learning, Clustering, K-means Clustering, Mixtures of Gaussians, EM for Gaussian mixtures, Principal Component	Unit –III	08 Hrs
Learning Algorithms. Supervised Learning Algorithm: Linear Regression, logistic regression, Capacity, Over fitting and Under fitting, Hyper parameters and Validation Sets, Estimators, Bias and Variance, Maximum Likelihood Estimation, Bayesian Linear Regression, Stochastic Gradient Descent, Back Propagation algorithm. 08 Hrs Supervised Learning Algorithms: Classification Model, Classification Learning Steps, Linear and logistic classifier, Support vector machines, k-Nearest Neighbour, Decision tree, Random forest model, Naïve Bayes classifier. Application of Supervised Learning, Clustering. 07 Hrs Unsupervised Learning: Unsupervised vs Supervised Learning, Application of Unsupervised Learning, Clustering, K-means Clustering, Mixtures of Gaussians, EM for Gaussian mixtures, Principal Component	Introduction to Machine learning: Types and applications of Machine Learning, Basic Ty	ypes of Data in
Supervised Learning Algorithm: Linear Regression, logistic regression, Capacity, Over fitting and Under fitting, Hyper parameters and Validation Sets, Estimators, Bias and Variance, Maximum Likelihood Estimation, Bayesian Linear Regression, Stochastic Gradient Descent, Back Propagation algorithm. 08 Hrs Supervised Learning Algorithms: Classification Model, Classification Learning Steps, Linear and logistic classifier, Support vector machines, k-Nearest Neighbour, Decision tree, Random forest model, Naïve Bayes classifier. Application of Supervised Learning, Clustering. 07 Hrs Unsupervised Learning: Unsupervised vs Supervised Learning, Application of Unsupervised Learning, Clustering, K-means Clustering, Mixtures of Gaussians, EM for Gaussian mixtures, Principal Component	Machine Learning, Exploring Structure of Data, Data Quality and Remediation, Data	Pre-Processing.
fitting, Hyper parameters and Validation Sets, Estimators, Bias and Variance, Maximum Likelihood Estimation, Bayesian Linear Regression, Stochastic Gradient Descent, Back Propagation algorithm. 08 Hrs Supervised Learning Algorithms: Classification Model, Classification Learning Steps, Linear and logistic classifier, Support vector machines, k-Nearest Neighbour, Decision tree, Random forest model, Naïve Bayes classifier. Application of Supervised Learning, Clustering. 07 Hrs Unsupervised Learning: Unsupervised vs Supervised Learning, Application of Unsupervised Learning, Clustering, K-means Clustering, Mixtures of Gaussians, EM for Gaussian mixtures, Principal Component	Learning Algorithms.	
Estimation, Bayesian Linear Regression, Stochastic Gradient Descent, Back Propagation algorithm. 08 Hrs Supervised Learning Algorithms: Classification Model, Classification Learning Steps, Linear and logistic classifier, Support vector machines, k-Nearest Neighbour, Decision tree, Random forest model, Naïve Bayes classifier. Application of Supervised Learning, Clustering. 07 Hrs Unsupervised Learning: Unsupervised vs Supervised Learning, Application of Unsupervised Learning, Clustering, K-means Clustering, Mixtures of Gaussians, EM for Gaussian mixtures, Principal Component		
08 Hrs Supervised Learning Algorithms: Classification Model, Classification Learning Steps, Linear and logistic classifier, Support vector machines, k-Nearest Neighbour, Decision tree, Random forest model, Naïve Bayes classifier. Application of Supervised Learning, Clustering. 07 Hrs Unsupervised Learning: Unsupervised vs Supervised Learning, Application of Unsupervised Learning, Clustering, K-means Clustering, Mixtures of Gaussians, EM for Gaussian mixtures, Principal Component		
Supervised Learning Algorithms: Classification Model, Classification Learning Steps, Linear and logistic classifier, Support vector machines, k-Nearest Neighbour, Decision tree, Random forest model, Naïve Bayes classifier. Application of Supervised Learning, Clustering. 07 Hrs Unsupervised Learning: Unsupervised vs Supervised Learning, Application of Unsupervised Learning, Clustering, K-means Clustering, Mixtures of Gaussians, EM for Gaussian mixtures, Principal Component	Estimation, Bayesian Linear Regression, Stochastic Gradient Descent, Back Propagation algo	
classifier, Support vector machines, k-Nearest Neighbour, Decision tree, Random forest model, Naïve Bayes classifier. Application of Supervised Learning, Clustering. 07 Hrs Unsupervised Learning: Unsupervised vs Supervised Learning, Application of Unsupervised Learning, Clustering, K-means Clustering, Mixtures of Gaussians, EM for Gaussian mixtures, Principal Component		
Unsupervised Learning: Unsupervised vs Supervised Learning, Application of Unsupervised Learning, Clustering, K-means Clustering, Mixtures of Gaussians, EM for Gaussian mixtures, Principal Component	classifier, Support vector machines, k-Nearest Neighbour, Decision tree, Random forest	•
Clustering, K-means Clustering, Mixtures of Gaussians, EM for Gaussian mixtures, Principal Component		07 Hrs
Clustering, K-means Clustering, Mixtures of Gaussians, EM for Gaussian mixtures, Principal Component	Unsupervised Learning: Unsupervised vs Supervised Learning, Application of Unsuperv	vised Learning,
Analysis.		
	Analysis.	

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Know the characteristics and structures of IIR, FIR and adaptive systems							
CO2:	CO2: Use the concept of filter design, machine learning to analyse and acquire knowledge about							
	the system and select proper tools for further analysis.							
CO3	Design, implementation, analysis and comparison of digital filters for processing of discrete							
	time signals and also various machine learning algorithms.							
CO4:	Assess the techniques, skills, and modern engineering tools necessary for analysis of							
	different signals and filtering out noise signals in engineering practice.							

Re	eference Books
1	Proakis G, Dimitris G. Manolakis; "Digital Signal Processing"; PHI; 4th Edition; 2007; ISBN: 978-0131873742.
2	Alan .V.Oppemheim; "Discrete Time Signal Processing"; PHI; 2nd Edition; 1998; ISBN:0-13-754920-2
3	Christopher M Bishop: "Pattern Recognition and Machine Learning", Springer, 2006, ISBN-13:

	978-0387-31073-2.
4	Trevor Hastie, Robert Tibshirani, and Jerome Friedman: "The Elements of Statistical Learning", Springer, 2008, ISBN 978-0387848570
4	Learning", Springer, 2008, ISBN 978-0387848570
	Goodfellow, Y, Bengio, A. Courville, "Deep Learning", MIT Press, 2016, ISBN- 0262035618

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	2
CO2	3	2	2	1	-	-	-	-	-	1	-	2
CO3	3	3	2	1	2	-	-	-	-	1	2	2
CO4	3	3	3	1	2	-	-	1	1	1	2	2

High-3: Medium-2 : Low-1

	Semester: V								
	PROGRAMMING IN JAVA								
				(MOOC CO	URSE)				
Cours	se Code	:	18EC5A1		CIE Marks	:	100		
Credi	its: L:T:P	:	3:0:0		SEE Marks	:	100		
Total Hours : 39			39L		SEE Duration	:	Online Exam		
Co	ourse Learnin	g (Objectives: The	students will be able	e to				
1	Understand t	he	structure and m	odel of the Java prog	gramming language.				
2	Write Java a	pp	lication program	is using OOP princip	les and proper prog	ram	structuring		
3	Demonstrate	th	e concepts of po	olymorphism and inh	neritance and write	Jav	a programs to implement		
	error handling techniques using exception handling								
4	4 Learn how to design a graphical user interface (GUI) with Java Swing and networking concepts								
	with database connectivity.								
5	Understand how to design applications with threads in Java.								

Unit-I	08 Hrs
Overview of Object-Oriented Programming and Java: Introduction, Object-Oriented Prog	gramming,
Data Types, Variables, and Arrays, Type Conversion and Casting	
Java Programming Elements: Operators, Control Statements, Input-Output Handling in Java.	
Unit – II	09 Hrs
Encapsulation: Introducing Classes, Class Fundamentals, Declaring Objects, Constructors A	A Closer Look
at Methods and Classes, Overloading Methods, Introducing Nested and Inner Classes	
Inheritance: Inheritance Basics, using super to Call Superclass Constructors, creating	g a Multilevel
Hierarchy, Method Overriding, Using Abstract Classes, Using final with Inheritance	
Unit –III	07 Hrs
Exception Handling: Exception-Handling Fundamentals, Exception Types, Uncaught Exc	ceptions, Using
try and catch, Multiple catch Clauses, Nested try Statements, throw, Java's Built-in Exception	ons
Multithreaded Programming: The Java Thread Model, The Main Thread, Creating a Th	hread, Creating
Multiple Threads, Using isAlive() and join(), Thread Priorities, Interthread Communicatio	n, Suspending,
Resuming, and Stopping Threads	
	08 Hrs
Java Applets and Servlets : Applet Fundamentals, Using instanceof, The transient and vola	atile Modifiers,
Using assert.	
Java Swing and Abstract Windowing Toolkit (AWT): Introducing Swing, A Simple Swin	ng Application,
Event Handling ,Create a Swing Applet, The Swing Buttons, JTabbedPane, JList, Intro	oducing Swing
Menus	
Networking with Java: Networking Basics, The Networking Classes and Interfaces, InetA	ddress, TCP/IP
Client Sockets, URLConnection, TCP/IP Server Sockets.	
	07 Hrs

Java Object Database Connectivity (ODBC): Introduction, Sql Syntax ., Sample Code, Driver Types, Connections, Transactions ., Sqlexception Methods

Interface and Packages for Software Development: Introduction to Packages, Types of Packages, Creating a Package, Interface, Extending interfaces, Implementing interfaces, Marker Interface, Differences between Abstract class and Interface

Cou	rse Outcomes: After completing the course, the students will be able to
CO1:	Identify classes, objects, members of a class and relationships among them needed for a specific
	problem.
CO2:	Evaluate user requirements for software functionality required to decide whether the Java
	programming language can meet user requirements (analysis)
CO3:	Propose the use of certain technologies by implementing them in the Java programming language
	to solve the given problem (synthesis)
CO4:	Choose an engineering approach to solving problems, starting from the acquired knowledge of

programming and knowledge of operating systems. (evaluation)

Re	eference Books
1	Herbert Schildt, "Java the Complete Reference", Tata Mcgraw Hill Education. 8th edition
1	ISBN:978-0-07-160630-1
2	Kathy Sierra & Bert Bates, "Head First Java", O'Reilly, 2nd Edition ISBN: 9780596009205
2	E Balagurusamy, "Programming with Java A Primer", Tata Mcgraw Hill Education, 4th edition.
5	ISBN: 9780070141698
4	Patrick Naughton, "Java Handbook", Osborne McGraw-Hill ISBN: 978-0078821998

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	2	-	-	-	-	-	1	-	1
CO2	3	2	2	1	2	2	-	-	-	1	-	1
CO3	3	3	2	2	2	2	2	2	-	1	-	1
CO4	3	3	3	3	2	3	2	3	3	3	3	3

High-3: Medium-2 : Low-1

	Semester: V								
	PROBABILITY FOUNDATIONS FOR ELECTRICAL ENGINEERS								
	(MOOC COURSE)								
Cour	Course Code : 18EC5A2 CIE Marks : 100								
Cred	its: L:T:P	:	3:0:0		SEE Marks	:	100		
Total	Total Hours:39LSEE Duration:Online Exam								
Co	ourse Learni	ng (Objectives: The	students will be able	e to				
1	Develop an	intr	icate understand	ling of probability th	eory.				
2	2 Derive and prove fundamental results starting from the basic axioms.								
3	3 Understand most important random processes and analyze them in depth.								
4									
5	Interpret lin	nit tl	heorems such as	law of large number	rs and the central lin	mit t	heorem.		

Unit-I	08 Hrs
Preliminaries: Introduction, Cardinality and Countability	
Probability Measures: Probability Spaces, Properties of probability measure, Discrete Prob	bability Spaces,
Generated \sigma-algebra, Borel Sets, Caratheodory's extension theorem, Lebesgue Measu	re, The infinite
Coin Toss Model, Conditional Probability and Independence, Borel-Cantelli Lemmas.	
Unit – II	08 Hrs
Random Variables: Random Variables, Distribution function, Types of Random Vari	ables, Discrete
Random variables, Continuous random variables, Singular random variables, Several ran	dom variables,
joint distribution, independent random variables, Transformation of random variables.	
Unit –III	08 Hrs
Integration and Expectation: Properties of integrals, Monotone convergence, Dominate	d convergence,
Expectation over different spaces, Variance, Covariance and Conditional expectation.	
	08 Hrs
Transforms: Probability Generating Function, Transform techniques: moment generation	ating function,
characteristic function	-
	07 Hrs
Limit Theorems: Convergence of random variables, Laws of large numbers, Central limit th	eorem.

Course	Outcomes: After completing the course, the students will be able to
CO1:	Use and manipulate the axioms of probability theory and derive the results of other set operations.
CO2:	Differentiate between continuous, discrete and mixed types of Random variables and analyze their properties.
CO3:	Calculate the statistical quantum of probability distributions such as integrals, expectations, variances.
CO4:	Apply transform techniques of random process and the central limit theorem to approximate a sampling distribution.

Re	eference Books
1	Probability and Random Processes, Geoffrey R. Grimmett and David R. Stirzaker. Oxford
1	University Press, 2001, 3rd edition.
2	Probability with Martingales, D. Williams, Cambridge University Press, 1991.
2	A First Look at Rigorous Probability Theory, J. Rosenthal, World Scientific Publishing Co Pvt
3	Ltd., 2006 2 nd Revised edition.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	-	-	-	-	-	-	-	3
CO2	3	3	3	3	-	-	-	-	-	-	-	3
CO3	3	3	3	3	-	2	2	-	-	-	-	3
CO4	3	3	3	3	-	2	2	-	-	-	-	3

High-3: Medium-2 : Low-1

	Semester: V							
	OP-AMP PRACTICAL APPLICATIONS: DESIGN, SIMULATION AND IMPLEMENTATION							
0	A I	T -	1050540	(MOOC COURS	,			100
	urse Code	:			E Marks	:		100
	edits: L:T:P	:			EE Marks	:	_	100
	tal Hours	:	39L		EE Duration	:		Online Exam
				dents will be able to	1			
1				-				components are being
-				igurations of op-amp an			-	
2				applications of wavefor	m generators,	tım	ers	s and voltage regulators
2	based on opera			11				•.
3				applications of Tempera				
4		nalo	og multiplier a	nd automatic gain cont	roller & demo	onst	rat	te different applications
	based on it.		15/4					
5	Differentiate A	4/D	and D/A conve	rter, understand their typ	bes and analyze	the	21r	applications
				TT *4 T				00 11
Trad	nadration to O		man as Interesting of	Unit-I	Effect of	[4:	08 Hrs
		-	-	• •	-			ng and Input Impedance on to an Analog Circuit
								, Op-Amp Applications:
	1 Wave Rectifier				Tall wave Rec	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	cı,	, Op-Amp Applications.
I ui		, 0	p-mip rippilea	Unit – II				08 Hrs
Ra	sic On-Amn P	rac	tical Annlicati		using Diodes.	Cl	an	nper, Understanding the
				A A	•			Wien Bridge Oscillator,
								Comparator: Window
								Op-Amp with Positive
								ing Schmitt Trigger,Op-
								Feedback: Monostable
	-			Controlled Current Sour	-			
	· r			Unit –III				08 Hrs
Ex	periment: Desig	gn a	and Developme	nt of Temperature Co	ntrolled Circu	it u	si	ng Op-Amp as On-Off,
		,	-	-				Resistance by Constant
Cu	rrent Drive Circ	uit	Implemented u	sing Op-Amp, Design a	and Developme	nt c	of	Temperature Controlled
Cir	Circuit using Op-Amp as On-Off, Proportional and Proportional Integral Controllers: Introduction,							

as On-Off, Proportional and Proportional Integral Controllers: Introdu Implementation of Error Detector Circuit and Signal Conditioning Circuit for Temperature Control, Implementation of Plant/Heating Circuit and On-Off Controller, Implementation of P and PI Controllers, Experiment on Controlling the Temperature on the Plant using Different Controllers Unit -IV

Experiment: Design and Implementation of Op-Amp Based Signal Acquisition, Conditioning and Processing of ECG Signal for Computing BPM: Experiment: Design and Implementation of Signal Conditioning Unit for Thermocouple Cold Junction Compensation, Introduction to ECG Experiment, Design and Implementation of ECG Processing, Design and Implementation of Peak Detector and Thresholding Circuit for ECG Signal Conditioning.Op-Amp Practical Applications: Understanding Analog Multipliers using Development Board, Applications: Automatic Gain Controller using Development Board

Unit –V **07 Hrs Op-Amps in Conversion Process**:Introduction to Data Acquisition, Analog to Digital Conversion Circuits and Experiment on 2-bit Flash Type ADC, Digital to Analog Conversion Circuits and Experiment on 4-bit R-2R DAC, DAC Basics using Development Board - Introduction, Experiments on DAC and its Applications - Understanding DAC 7821 Datasheet. Other Applications of Op-Amps: Basic DAC Experiment on Variable Gain Amplifier, Understanding DAC Experiment on Variable Square and Triangular Wave Generator, Introduction to CDAQ (Compact DAQ), Case Study: Implementation of a Software Based Te`mperature Control using LabVIEW and CDAQ.

08 Hrs

Cou	Course Outcomes: After completing the course, the students will be able to								
CO1:	To expose the operation of the basic building blocks of analog system and to analyze the op-amps								
CO2:	To understand feedback techniques and its advantage and to design amplifiers using op-amps								
CO3:	Ability to analyze and design filters using op-amps and to develop the skill to build and								
	troubleshoot Analog circuits								
CO4:	To develop the skill to build complete system using analog circuits								

Re	eference Books
1	Gray, Hurst, Lewis, and Meyer, Analysis and Design of Analog Integrated Circuits, John Wiley &
	Sons, 5th edition, 2009
2	Horowitz and Hill, The Art of Electronics, Cambridge Univ. Press, 1999
3	Behzad Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001
4	Phillip E. Allen and Douglas R. Holberg, CMOS Analog Circuit Design, Oxford University Press,
4	2nd edition, 2002
5	Johan H. Huijsing, Operational Amplifiers – Theory and Design, 3rd edition, Springer
6	Carusone, Johns, and Martin, Analog Integrated Circuit Design, 2nd edition, John Wiley, 2012
7	Razavi, Fundamentals of Microelectronics, John Wiley, 2008
8	Franco Maloberti, Analog Design for CMOS VLSI Systems, Kluwer Academic Publishers, 2001
9	Willy M.C. Sansen, Analog Design Essentials, Springer, 2007

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	-	-	-	-	-	1	-	1
CO2	3	3	3	3	-	2	-	-	-	1	-	1
CO3	3	3	3	3	3	3	2	2	-	1	-	1
CO4	3	3	3	3	3	3	2	2	3	2	3	3

High-3: Medium-2 : Low-1

	Semester: V									
	FIBER OPTIC COMMUNICATION TECHNOLOGY									
	(MOOC COURSE)									
Co	ourse Code : 18EC5A4 CIE Marks : 100									
Cı	edits: L:T:P	:	3:0:0	SEE Mark	5	:	100			
Το	otal Hours	:	39L	SEE Durat	ion	:	Online Exam			
Co	ourse Learning	Ob	jectives: The	tudents will be able to						
1	Analyse Optica	al sp	pectral band an	d incorporate the standards for optical fil	er co	mmu	inication			
2	Analyse Sing	le-n	node Fibers, C	raded-index Fiber Structure, Mechanica	1 Pro	perti	es of Fibers and			
	Fiber Optic Ca	ble	8							
3	3 Demonstrate light sources using Light-Emitting Diodes (LEDs), Laser Diodes									
4	4 Develop optimum Source-to-Fiber Power Launching & Lensing Schemes for Coupling Improvement.									
5	5 Planning the Link power budget.									

Unit-I **08Hrs** Motivation for fiber optic communication, overall system description, Introduction to digital modulation. Optical transmitters- LED, Laser Diodes. Noise in transmitters - phase noise and intensity noise Unit – II **08 Hrs** External amplitude and Phase modulation, IQ modulation, Optical Fibers-Modes, Dispersion mechanism, nonlinear effects in fibers Unit –III **08 Hrs** Optical Receivers - Direct detection, Coherent Detection, Noise, BER, Optical Amplifiers, other optical components Unit –IV 08 Hrs Single channel link design : power and timing budget, WDM link design, dispersion management Unit –V 07 Hrs Digital signal processing for data in advanced modulation formats, Optical networks: Topologies, Passive Optical Networks, Front hauls

Course C	Outcomes: After completing the course, the students will be able to
CO1:	Select the proper Optical spectral band and incorporate the standards for optical fiber
	communication.
CO2:	Analyse various WDM Concepts and Apply different Optical Network concepts and topologies
	and design WDM Networks.
CO3:	Analyse the Optical Fiber Modes and Configurations of the Single-mode Fibers, Graded-index
	Fiber Structure, Mechanical Properties of Fibers and Fiber Optic Cables.
CO4:	Design the light sources using Light-Emitting Diodes (LEDs), Laser Diodes and evaluate Light
	Source Linearity, and analyse the Reliability considerations.
Referenc	e Books
1.	Optical Fiber Communication, Gerd Keiser, 2008, Tata McGraw Hill Publication,
2.	Optical Fiber Communications, John M. Senior, "", 3 rd Edition, 2007, Pearson Education, ISBN
3.	Optical Networks: A Practical Perspective, Rajiv Ramaswami, Kumar N. Sivarajan and Galen
	H. Sasaki, 3 rd Edition, 2010, The Morgan Kaufmann Series in Networking.
4.	Fiber Optics and Optoelectronics, R.P. Khare, 2007, Oxford University Press

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	1	2	-	3	-	-	2	3	1	2
CO2	1	2	3	3	-	2	-	-	3	2	1	3
CO3	3	1	2	2	-	1	-	-	3	2	3	1
CO4	2	3	1	3	-	2	-	-	2	2	1	2

High-3: Medium-2 : Low-1

	Semester: V						
			THE JC	Y OF COMPUTING	G USING PYTHO	N	
		(]	Elective-A: PR	OFESSIONAL ELE	CTIVES, MOOC (COU	(RSE)
Cou	Durse Code : 18CS5A5 CIE Marks : 100						
Credits: L:T:P : 3:0:0 SEE Marks		SEE Marks	:	100			
Tot	Fotal Hours : 39L SEE Duration : Online Exam						
Coi	ırse Learning	g Ol	bjectives: The s	tudents will be able to			
1.	Understand	why	Python is a use	ful scripting language	for developers.		
2.	Learn how to use lists, tuples, and dictionaries in Python programs.						
3.	3. Define the structure and components of a Python program.						
4.	Develop cost-effective robust applications using the latest Python trends and technologies						

Unit – I	8 Hrs					
Motivation for Computing, Welcome to Programming!!, Variables and Expressions : Design your own						
calculator, Loops and Conditionals : Hopscotch once again. Lists, Tuples and Conditionals	: Let's go on a					
trip, Abstraction Everywhere : Apps in your phone.	-					
Unit – II	8 Hrs					
Counting Candies : Crowd to the rescue, Birthday Paradox : Find your twin, Google Tran	slate : Speak in					
any Language, Currency Converter : Count your foreign trip expenses.	_					
Unit – III	8 Hrs					
Monte Hall : 3 doors and a twist, Sorting : Arrange the books, Searching : Find in secon	ds, Substitution					
Cipher : What's the secret !!, Sentiment Analysis : Analyse your Facebook dataPermutat	ions : Jumbled					
Words,Spot the similarities : Dobble game						
Unit – IV	8 Hrs					
Count the words : Hundreds, Thousands or Millions, Rock, Paper and Scissor : Cheating not	allowed !!, Lie					
detector : No lies, only TRUTH , Calculation of the Area : Don't measure, Six degrees of se	paration, Image					
Processing : Fun with images						
Unit – V	7 Hrs					
Tic tac toe : Let's play, Snakes and Ladders : Down the memory lane, Recursion : Tower	of Hanoi, Page					

Course	Course Outcomes: After completing the course, the students will be able to						
CO 1:	Explore and apply the concept of python to solve real world problems.						
CO 2:	Design Classes and establish relationships among Classes for various applications from problem definition.						
CO 3:	Develop applications using google translator and gaming application.						
CO 4:	Implement real time application such as browser automation, NLP, Image processing etc using python						

Refer	Reference Books:							
1.	Head First Python, Paul Barry, 10 th Edition, 2016, O'Reilly, ISBN 978-9352134823.							
2.	Python Cookbook: Recipes for Mastering Python 3,David Beazley, Brian K. Jones, 9 th Edition, 2017, O'Reilly, ISBN 978-1449340377.							
3.	Python: The Complete Reference, Martin C Brown, 7 th Edition, 2018, McGraw Hill Education, ISBN 978-9387572942.							

				CO-P	O Map	ping						
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	2	3	2	1	1	-	-	1	-	-	-	2
CO2	3	3	2	1	1	-	-	1	-	-	-	2
CO3	3	3	3	2	1	-	-	2	-	-	-	2
CO4	3	3	3	2	1	-	-	2	-	-	-	2

High-3: Medium-2: Low-1

	Semester: V							
	FUNDAMENTALS OF AEROSPACE ENGINEERING							
	(GROUP B: GLOBAL ELECTIVE)							
Com	(Theory) Course Code : 18G5B01 CIE : 100 Marks							
Cred	lits: L:T:P	:	3:0:0			:	100 Marks	
Hou	rs	:	39L	SI	EE Duration	:	3.00 Hours	
Cou	rse Learning	g O	bjectives: To enable	the students to:				
1	Understand	l th	e history and basic pri	inciples of aviation				
2	2 Demonstrate and explain foundation of flight, aircraft structures, material, aircraft propulsion							
3	3 Comprehend the importance of all the systems and subsystems incorporated on an air vehicle							
4 Appraise the significance of all the subsystems in achieving a successful flight								

Unit-I	08 Hrs
Introduction to Aircraft: History of aviation, International Standard atmosphere, Atmosph	ere and its
properties, Temperature, pressure and altitude relationships, Classification of aircrafts, Anat	omy of an
aircraft & Helicopters, Basic components and their functions, Simple Problems on	Standard
Atmospheric Properties.	
Unit – II	08 Hrs
Basics of Aerodynamics: Bernoulli's theorem, Centre of pressure, Lift and drag, Type	s of drag,
Aerodynamic Coefficients, Aerodynamic centre, Wing Planform Geometry, Airfoil nomenclar	ure, Basic
Aerodynamic characteristics of airfoil, NACA nomenclature, Simple problems on lift and dra	lg.
Unit -III	07 Hrs
Aircraft Propulsion: Introduction, Classification of power plants, Gas Turbine Engine: Bray	ton Cycle,
Principle of operation of turbojet, turboprop, turbofan engines, ramjet and scramjet	engines,
Comparative merits and demerits of different types Engines.	-
Unit -IV	09 Hrs
Introduction to Space Flight: The upper atmosphere, Introduction to basic orbital mechanics	, Kepler's
Laws of planetary motion, Orbit equation, and Space vehicle trajectories.	
Rocket Propulsion: Principles of operation of rocket engines, Rocket Equation, Types of rock	ets: Solid,
Liquid and Hybrid Propellant Rockets, Rocket Performance parameters: Thrust, Specific	Impulse,
Exhaust Velocity, Simple Problems on rocket performance.	•
Unit -V	07 Hrs
Aerospace Structures and Materials: Introduction, General types of construction, Monocod	jue, Semi-
Monocoque and Geodesic structures, Structure of Wing and Fuselage and its basic construction	_
Course Outcomes: At the end of this course the student will be able to:	

Course	Course Outcomes: At the end of this course the student will be able to:							
CO1:	Appreciate and apply the basic principles of aviation							
CO2:	Apply the concepts of fundaments of flight, basics of aircraft structures, aircraft propulsion and							
aircraft materials during the development of an aircraft								
CO3:	Comprehend the complexities involved during development of flight vehicles.							
CO4 :	Evaluate and criticize the design strategy involved in the development of airplanes							

]	Ref	erence Books
	-	Introduction to Flight, John D. Anderson, 7th Edition, 2011, McGraw-Hill Education, ISBN
	I	9780071086059.
		Rocket Propulsion Elements, Sutton G.P., 8th Edition, 2011, John Wiley, New York, ISBN:
	2	1118174208, 9781118174203.

	3	Fundamentals of Compressible Flow, Yahya, S.M, 5 th Edition, 2016, New Age International, ISBN: 8122440223
-		Aircraft structural Analysis, T.H.G Megson, 2010, Butterworth-Heinemann Publications, ISBN:
	4	978-1-85617-932-4

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	3	2	2	-	-	-	1
CO2	2	2	2	3	2	1	1	1	-	-	-	1
CO3	1	-	3	3	-	-	-	-	-	-	-	1
CO4	2	2	3	3	-	2	2	2	-	-	-	1

High-3: Medium-2: Low-1

Semester: V									
	NANOTECHNOLOGY								
			(GROUP B:	: GLOBAL ELEC	CTIVE)				
				(Theory)					
Cour	rse Code	:	18G5B02		CIE	:	100 Marks		
Cred	lits: L:T:P	:	3:0:0		SEE	••	100 Marks		
Tota	l Hours	:	39L		SEE Duration	••	3.00 Hours		
Cour	rse Learning ()bj	ectives: The student	ts will be able to					
1	Understand	the	basic knowledge	of nanomaterials a	and the process to	sy	inthesize and		
	characterize t	he	nanoparticles.						
2	Learn about	Na	ano sensors and th	heir applications ir	n mechanical, elect	rica	l, electronic,		
	magnetic, che	emi	cal fields.						
3	Apply the con	nce	pt of nanotechnolog	y in sensing, transdu	icing and actuating r	nec	hanism.		
4	4 Design the nanoscale products used in multidisciplinary fields.								
. <u> </u>									
	Unit-I 08 Hrs								

Omt-1	UO IIIS					
Introduction to Nanomaterials: History of Nanotechnology, structures and properties of	of carbon					
based, metal based, bio-nanomaterails and hybrids: Bucky Ball, Nanotubes, Diam	ond like					
carbon(DLC), Quantum Dots, Nano Shells, Dendrimers, Nanocarriers, Nanocrystals	s, hybrid					
biological/inorganic, protein & DNA based nanostructures. Nanosafety Issues: Toxicological/inorganic, protein & DNA based nanostructures.	gy health					
effects caused by nanoparticles.						
Unit – II	09 Hrs					
Nano Synthesis and Fabrication: Introduction & overview of Nanofabrication: Bottom up and						
Top down approaches using processes like Ball milling, Sol-gel Process, and Chemica	1 Vapour					
deposition (CVD), electrodeposition and various lithography techniques (Hard & Soft litho	ography).					

Characterization of Nanostructures: Spectroscopy - UV-Visible spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy, X-ray spectroscopy. Electron Microscopy - Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM). Scanning Probe Microscopy - Atomic Force microscopy (AFM), Scanning Tunnel Microscopy (STM).

Unit –III							
Nanosensors: Overview of nanosensors, prospects and market. Types of Nanosensors							
applications. Electromagnetic nanosensors: Electronic nose and electronic tongue,							
nanosensors. Mechanical nanosensors: Cantilever Nanosensors, Mechanics of CNTs, Biosensor							
Biosensors in modern medicine.							

 Unit –IV
 07 Hrs

 Micro & Nano-Electromechanical systems and Microfluidics: MEMS/NEMS: Magnetic,

 Chemical and Mechanical Transducers –Sensing and Actuators. Microfluidics: Laminar flow,

 Hagen-Peouiselle equation, basic fluid ideas, Special considerations of flow in small channels,

 mixing, microvalves & micropumps.

Unit –v	U/ Hrs
Applications of Nanotechnology: Molecular electronics, molecular switches, mechanica	al cutting
tools, machine components, magnets, DLC coated grinding wheels. Electrical, electron	nic, solar
cells, Batteries, fuel cells, Nanofilters. Medical nanotechnology: in Diagnostics, Therapeut	ics, Drug
delivery and Nanosurgery. Nano in Agriculture- nanopesticides, nanofertilizers etc.	

Course (Course Outcomes: After completing the course, the students will be able to									
CO1:	Understand the structures of nano materials and their properties.									
CO2:	Apply the various synthesis and fabrication methods and interpret the characterization									
	results.									
CO3:	Analyze the working mechanism of nanosensors and transducers and Apply its									
	knowledge in various fields.									
CO4:	Create and evaluate nano Design, Devices and Systems in various disciplines.									

Refere	Reference Books							
	B.S. Murty., P. Shankar., B.Raj, B.B. Rath, and J. Murday, Textbook of Nanosciences and							
1	Nanotechnology, Springer, Co-publication with University Press (India) Pvt. Ltd. VCH,							
	XII.1st Edition, 2013, ISBN- 978-3-642-28030-6.							
	V. K. Khanna, Nanosensors: Physical, Chemical and Biological, CRC press, 1st Edition,							
2	2013, ISBN 9781439827123 (Unit III).							
2	C. C. Kock., Nanostructured materials, Nanostructured materials, William Andrew							
3	Publishing, 2 nd Edition, 2007, ISBN 0-8155-1534-0.							
	M. Wilson., K. Kannangara., G.Smith., M.Simmons., B. Raguse., Nanotechnology, ,							
4	overseas Press (India) Private Ltd.,1st Edition, 2005,ISBN 81-88689-20-3.							

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	3	2	3	3	-	-	1	2	-
CO2	3	3	3	2	3	3	2	-	2	-	-	-
CO3	3	2	2	2	2	1	1	-	-	-	1	-
CO4	1	2	3	3	3	2	1	-	-	2	-	-

High-3: Medium-2: Low-1

				Se	emester: V						
]	FUEL CEL		OLOGY	•				
	(GROUP B: GLOBAL ELECTIVE)										
(Theory)											
Cour	se Code	:	18G5B03		<u> </u>		CIE	:	100 Marks		
Cred	its: L:T:P	:	3:0:0				SEE	:	100 Marks		
Total Hours:39L							SEE Duration	:	3.00 Hours		
Cour	se Learning (ill be able to	0					
1	Recall the c										
2	Distinguish		• •				es				
3	Know the ap					ains					
4	Understand	the c	haracteriza	tion of fuel	cells						
				Unit	+ T				07 Hrs		
Intro	duction – I:			Unit	-1				07 1115		
		hist	orical deve	elopments v	vorking pri	nciple of	fuel cell, compos	nen	ts of fuel cell		
	of the cell, Fu			-		—	—				
				Unit -		en prope			07 Hrs		
Туре	s of fuel cells	– II:		0					01 1115		
• •			Types of fuel cells – II:								
Classification of fuel cells, alkaline fuel cell, polymer electrolyte fuel cell, phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel cell, advantages and disadvantages of each									acid fuel cell.		
					•	•			acid fuel cell,		
					, advantage	•			acid fuel cell,		
molte		iel ce	ell, solid ox	ide fuel cell Unit -	, advantage	•					
molte	en carbonate fu iencies, losses	and	ell, solid ox kinetics– l	ide fuel cell Unit -	, advantage –III	es and disa		h	07 Hrs		
molte Effici Intrin	en carbonate fu iencies, losses usic maximum	and efficient	ell, solid ox kinetics– l ciency, vol	ide fuel cell Unit - III: Itaic efficier	, advantage -III ncy, farada	es and disa	advantages of eac	cien	07 Hrs		
molte Effici Intrin losses	en carbonate fu iencies, losses usic maximum	and efficient	kinetics– l kinetics– l ciency, vol	ide fuel cell Unit - III: Itaic efficien I current, ol	, advantage -III ncy, farada	es and disa	advantages of eac	cien	07 Hrs		
molte Effici Intrin losses activa	en carbonate fu iencies, losses isic maximum s, fuel crosso ation/electrode	and and efficience ver a	kinetics– l kinetics– l ciency, vol and internal ction kinetic	ide fuel cell Unit - III: Itaic efficien I current, ol	, advantage - III ncy, farada hmic losse	es and disa	advantages of eac	cien	07 Hrs		
molte Effici Intrin losses activa Fuel	en carbonate fu iencies, losses sisic maximum s, fuel crosso ation/electrode Cell Characte	ael ce and efficience ver a e/reac	kinetics- I ciency, vol and internation kinetic cs - IV:	ide fuel cell Unit - III: Itaic efficien I current, of cs Unit -	, advantage -III ncy, farada hmic losse -IV	ic efficie s, mass t	advantages of eac ncy, overall effic ransport/concentr	cien cien	07 Hrs cy, activation on losses, and 08 Hrs		
molte Effici Intrin losses activa Fuel In-sit	en carbonate fu iencies, losses sic maximum s, fuel crosso ation/electrode Cell Character u characteriza	ael ce and efficience ver a c/reace eristi	kinetics– l ciency, vol and internal ction kinetic cs – IV: I-V curve	ide fuel cell Unit - III: Itaic efficien I current, of cs Unit -	, advantage -III ncy, farada hmic losse -IV voltage me	es and disa ic efficie s, mass t easuremen	advantages of eac	cien cien	07 Hrs cy, activation on losses, and 08 Hrs		
molte Effici Intrin losses activa Fuel In-sit cyclic	en carbonate fu iencies, losses sic maximum s, fuel crosso ation/electrode Cell Characteriza u characteriza c voltammetry	ael ce and efficience ver ac eristi ation: , elec	kinetics– I kinetics– I ciency, vol nd internation kinetic cs– IV: I-V curve ctrochemica	ide fuel cell Unit - III: Itaic efficien I current, of cs Unit - I, current – I impedance	, advantage -III ncy, farada hmic losse -IV voltage me e spectrosce	ic efficie s, mass t easuremen	advantages of eac ncy, overall effic ransport/concentr nt, current interru	cien catic	07 Hrs cy, activation on losses, and 08 Hrs measurement,		
molte Effici Intrin losses activa Fuel In-sit cyclic Ex-si	en carbonate fu iencies, losses sic maximum s, fuel crosso ation/electrode Cell Characteriza u characteriza c voltammetry tu characteriz	ael ce and efficience eristi ation: , elec	kinetics – I ciency, vol and internation kinetic cs – IV: I-V curve trochemication	ide fuel cell Unit - III: Itaic efficien I current, of cs <u>Unit -</u> I current – I impedance s: Proton c	, advantage -III ncy, farada hmic losse -IV voltage me e spectrosco onductivity	ic efficie s, mass t easuremen	advantages of eac ncy, overall effic ransport/concentr	cien catic	07 Hrs cy, activation on losses, and 08 Hrs measurement,		
molte Effici Intrin losses activa Fuel In-sit cyclic Ex-si	en carbonate fu iencies, losses sic maximum s, fuel crosso ation/electrode Cell Characteriza u characteriza c voltammetry	ael ce and efficience eristi ation: , elec	kinetics – I ciency, vol and internation kinetic cs – IV: I-V curve trochemication	ide fuel cell Unit - III: Itaic efficien I current, of cs Unit - I current – I impedance s: Proton c ectrochemic	, advantage -III ncy, farada hmic losse -IV voltage me e spectrosco onductivity cal activity	ic efficie s, mass t easuremen	advantages of eac ncy, overall effic ransport/concentr nt, current interru	cien catic	07 Hrs cy, activation on losses, and 08 Hrs measurement conductivity.		
molte Efficient Intrin losses activa Fuel In-sit cyclic Ex-si electr	en carbonate fu iencies, losses sic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriz rochemical sur	and a efficience of the second	kinetics – I ciency, vol and internal ction kinetic cs – IV: I-V curve trochemica technique area and ele	ide fuel cell Unit - III: Itaic efficien I current, of cs <u>Unit -</u> I current – I impedance s: Proton c	, advantage -III ncy, farada hmic losse -IV voltage me e spectrosco onductivity cal activity	ic efficie s, mass t easuremen	advantages of eac ncy, overall effic ransport/concentr nt, current interru	cien catic	07 Hrs cy, activation on losses, and 08 Hrs measurement, conductivity,		
molte Effici Intrin losses activa Fuel In-sit cyclic Ex-si electr Appl	en carbonate fu iencies, losses sic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriz cochemical sur ications of fue	and a efficience eristi ation: , election face el cel	kinetics – 1 ciency, vol and internal ction kinetic cs – IV: I-V curve ctrochemica technique area and ele ls – V:	ide fuel cell Unit - III: Itaic efficien I current, of cs Unit - d impedance s: Proton c ectrochemic Unit	, advantage –III ncy, farada hmic losse –IV voltage me e spectrosco onductivity cal activity –V	es and disa cic efficie s, mass t easuremen opy y, flexura	advantages of eac ncy, overall effic ransport/concentr nt, current interru l strength, electri	h cien catic upt ical	07 Hrs cy, activation on losses, and 08 Hrs measurement, conductivity, 10 Hrs		
molte Effici Intrin losses activa Fuel In-sit cyclic Ex-si electr Appli	en carbonate fu iencies, losses isic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriza c voltammetry tu characteriza ications of fue	and a efficiency ver a eristi ation: , electric ation face el cel l cell	kinetics – I ciency, vol and internal ction kinetic cs – IV: I-V curve ctrochemica technique area and ele Is – V: s in air, roa	ide fuel cell Unit - III: Itaic efficien I current, of cs Unit - I impedance s: Proton c ectrochemic Unit d and rail tr	, advantage –III ncy, farada hmic losse –IV voltage me e spectrosco onductivity cal activity –V	es and disa cic efficie s, mass t easuremen opy y, flexura	advantages of eac ncy, overall effic ransport/concentr nt, current interru	h cien catic upt ical	07 Hrs cy, activation on losses, and 08 Hrs measurement, conductivity, 10 Hrs		
molte Effici Intrin losses activa Fuel In-sit cyclic Ex-si electr Appli	en carbonate fu iencies, losses sic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriz cochemical sur ications of fue	and a efficiency ver a eristi ation: , electric ation face el cel l cell	kinetics – I ciency, vol and internal ction kinetic cs – IV: I-V curve ctrochemica technique area and ele Is – V: s in air, roa	ide fuel cell Unit - III: Itaic efficien I current, of cs Unit - I impedance s: Proton c ectrochemic Unit d and rail tr	, advantage –III ncy, farada hmic losse –IV voltage me e spectrosco onductivity cal activity –V	es and disa cic efficie s, mass t easuremen opy y, flexura	advantages of eac ncy, overall effic ransport/concentr nt, current interru l strength, electri	h cien catic upt ical	07 Hrs cy, activation on losses, and 08 Hrs measurement conductivity. 10 Hrs		
molte Effici Intrin losses activa Fuel In-sit cyclic Ex-si electr Appli Appli Produ	en carbonate fu iencies, losses asic maximum s, fuel crosso ation/electrode Cell Characterizate u characterizate tu characterizate cochemical sur ications of fue uction and stor	and a efficience ver ac eristi ation: , elect ation face el cell cage c	ell, solid ox kinetics – I ciency, vol and internal etion kinetic cs - IV: I-V curve etrochemica technique area and ele ls - V: s in air, roa of hydroger	ide fuel cell Unit - III: Itaic efficien I current, of es <u>Unit -</u> I impedance s: Proton c ectrochemic <u>Unit</u> d and rail trai	, advantage –III ncy, farada hmic losse –IV voltage me e spectrosco onductivity cal activity –V ransport, hy	es and disa ic efficie s, mass t easuremen opy v, flexural drogen st	advantages of eac ncy, overall effic ransport/concentr nt, current interru l strength, electri orage, handling at	h cien catic upt ical	07 Hrs cy, activation on losses, and 08 Hrs measurement conductivity. 10 Hrs		
molte Effici Intrin losses activa Fuel In-sit cyclic Ex-si electr Appli Appli Produ	en carbonate fu iencies, losses sic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriza c voltammetry c v	and a efficience ver a eristication: , electrication face el cell cage c cage c	ell, solid ox kinetics – I ciency, vol and internal tion kinetic cs - IV: I-V curve trochemica technique area and ele ls - V: s in air, roa of hydroger er complet	ide fuel cell Unit - III: Itaic efficien I current, of es <u>Unit -</u> I impedance s: Proton c ectrochemic <u>Unit</u> d and rail trai	, advantage -III ncy, farada hmic losse -IV voltage ma e spectrosco onductivity cal activity -V ransport, hy rse, the stu	es and disa ic efficie s, mass t easuremen opy y, flexural drogen str udents wil	advantages of eac ncy, overall effic ransport/concentr nt, current interru l strength, electri orage, handling at	h cien catic upt ical	07 Hrs cy, activation on losses, and 08 Hrs measurement conductivity. 10 Hrs		
molte Effici Intrin losses activa Fuel In-sit cyclic Ex-si electr Appli Appli Produ	en carbonate fu iencies, losses isic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriza c voltammetry tu characteriza cochemical sur ications of fue action and stor se Outcomes	and a efficiency ver a c/reaccent eristi ation: , eleccent ation face el cell cage c cage c cage c	ell, solid ox kinetics – I ciency, vol and internal tion kinetic cs - IV: I-V curve trochemica technique area and ele ls - V: s in air, roa of hydroger er complet	ide fuel cell Unit - III: Itaic efficien I current, of CS Unit - I impedance s: Proton c ectrochemic Unit d and rail trans- ing the cour- als and char	, advantage -III ncy, farada hmic losse -IV voltage me e spectrosco conductivity cal activity -V ransport, hy rse, the sture racteristics of	es and disa ic efficie s, mass t easuremen opy v, flexural drogen sta udents wil of fuel ce	advantages of eac ncy, overall effic ransport/concentr nt, current interru l strength, electri orage, handling at	cien catic upt ical	07 Hrs cy, activation on losses, and 08 Hrs measurement conductivity 10 Hrs safety issues.		
molte Effici Intrin losses activa Fuel In-sit cyclic Ex-si electr Appli Produ Cour CO1	en carbonate fu iencies, losses isic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriza c voltammetry tu characteriza cochemical sur ications of fue action and stor se Outcomes	and a efficiency ver a c/reaccent eristi ation: , eleccent ation face el cell cage c cage c cage c	ell, solid ox kinetics – I ciency, vol and internal tion kinetic cs - IV: I-V curve trochemica technique area and ele ls - V: s in air, roa of hydroger er complet	ide fuel cell Unit - III: Itaic efficien I current, of CS Unit - I impedance s: Proton c ectrochemic Unit d and rail trans- ing the cour- als and char	, advantage -III ncy, farada hmic losse -IV voltage me e spectrosco conductivity cal activity -V ransport, hy rse, the sture racteristics of	es and disa ic efficie s, mass t easuremen opy v, flexural drogen sta udents wil of fuel ce	advantages of eac ncy, overall effic ransport/concentr nt, current interru l strength, electri orage, handling at ll be able to lls	cien catic upt ical	07 Hrs cy, activation on losses, and 08 Hrs measurement, conductivity, 10 Hrs safety issues.		
molte Effici Intrin losses activa Fuel In-sit cyclic Ex-si electr Appli Produ Cour CO1	en carbonate fu iencies, losses sic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu character	and a efficience ver a eristi ation: , elect ation face el cell age c c affte d the emica	ell, solid ox kinetics – I ciency, vol and internal etion kinetic cs - IV: I-V curve etrochemica technique area and ele ls - V: s in air, roa of hydroger er complet fundament l engineeri	ide fuel cell Unit - III: Itaic efficien I current, of CS Unit - , current – I impedance s: Proton c ectrochemic Unit d and rail trans- ing the cour als and char	, advantage -III ncy, farada hmic losse -IV voltage me e spectrosce onductivity cal activity -V ansport, hy rse, the stu- acteristics es to distir	es and disa ic efficie s, mass t easuremen opy y, flexural drogen sta drogen sta udents wil of fuel cel nguish fue	advantages of eac ncy, overall effic ransport/concentr nt, current interru l strength, electri orage, handling at ll be able to lls	cien catic upt ical nd s	07 Hrs cy, activation on losses, and 08 Hrs measurement, conductivity, 10 Hrs safety issues. ntional energy		

Reference Books							
1	Fuel Cells – Principles and Applications, Viswanathan and M Aulice Scibioh, 1 st Edition, 2009, Universities Press, ISBN – 13: 978 1420 060287						
1	2009, Universities Press, ISBN – 13: 978 1420 060287						
2	Fuel Cell Systems Explained, James Larminie and Andrew Dicks, 2 nd Edition, 2003, John						
2	Wiley & Sons, ISBN – 978 0470 848579						

3	Fuel Cell Fundamentals, O 'Hayre, R. P., S. Cha, W. Colella, F. B. Prinz, 1 st Edition, 2006, Wiley, New York, ISBN – 978 0470 258439
4	Recent Trends in Fuel Cell Science and Technology, Basu. S, 1 st Edition, 2007, Springer, ISBN – 978 0387 688152

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	-	1	-	1	-	-	-
CO2	2	-	2	-	-	-	-	-	-	-	-	-
CO3	-	3	-	-	-	-	3	-	2	-	-	-
CO4	-	2	2	-	-	-	2	-	3	-	-	2

				Semester: V							
	INTELLIGENT SYSTEMS										
	(GROUP B: GLOBAL ELECTIVE)										
	(Theory)										
Cou	rse Code	:	18G5B04		CIE Marks	:	100 Marks				
Cree	dits: L:T:P	:	3:0:0		SEE Marks	:	100 Marks				
	al Hours	:	39L		SEE Duration	:	3.00 Hours				
Cou	rse Learning	g Obj	ectives: The stu	dents will be able to							
1.	Understand	func	lamental AI con	cepts and current issues.							
2.	Understand	and	apply a range of	AI techniques including sear	ch, logic-based re	easc	oning, neural				
	networks an	nd rea	asoning with une	certain information.							
3.	Recognize	comp	outational proble	ms suited to an intelligent sys	stem solution.						
4.	Identify and	d list	the basic issues	of knowledge representation,	blind and heurist	ic s	earch.				
	1										
				Unit – I			07 Hrs				
Intr	oduction: Th	ne Fo	undations of Ar	tificial Intelligence, History of	of Artificial Intell	ige	nce, The State				
of th	ne Art, Intelli	igent	Agent: Introdu	ction, How Agents Should A	ct, Structure of I	ntel	ligent Agents,				
Prol	blem-solving	: Sol	lving Problems	by Searching Search Strate	egies, Avoiding	Re	peated States,				
Avo	iding Repeate	ed Sta	ates								
				Unit – II			08 Hrs				
Info	rmed Searc	h M	ethods: Best-F	irst Search, Heuristic Funct	tions, Memory	Bou	inded Search,				
	tive Improve		e								
				as Search Problems, Perfect			Person, Games				
Impe	erfect Decisio	ons, A	Alpha-Beta Prun	ing, Games That Include an E	lement of Chance	e					
				Unit – III			08 Hrs				
	wledge Infer										
	0 1			n based system, Frame base	•						
	-		-	ue approach, Fuzzy reasonin			s, Bayes Rule,				
Unce	ertainty Princ	iples	, Bayesian Theo	ry-Bayesian Network-Demps	ter - Shafer theor	y.					
-		~ 1		Unit – IV			08 Hrs				
	0			neral Model of Learning Age			0				
		-		heory, Learning General Log	gical Description	s, \	why Learning				
			Learning Theor	•		т					
			-	Learning in a Known Environme		L	earning in an				
Unk	Unknown Environment, Active Learning in an Unknown Environment										
F	aut Cristana	Com	nonanta Dra-1	Unit – V	ing portaints f-	otor	08 Hrs				
_			-	tion rules, Statistical reason	-						
				vledge, Introspection. Expert	•		-				
-		-	-	Knowledge Acquisition –Met DN, Expert systems shells.	ia kilowieuge, H	curi	istics. Typical				
expe	n systems - r	vi i C	Π , DAKI, AU	Jin, Expert systems shells.							

Course	Course Outcomes: After completing the course, the students will be able to									
CO 1:	Understand and explore the basic concepts and challenges of Artificial Intelligence.									
CO 2:	Analyze and explain basic intelligent system algorithms to solve problems.									
CO 3:	Apply Artificial Intelligence and various logic-based techniques in real world problems.									
CO 4:	Assess their applicability by comparing different Intelligent System techniques									

Reference Books:

AI – A Modern Approach, Stuart Russel, Peter Norvig, 3 rd Edition, 2010, Pearson Education,
ISBN-13: 978-0-13-604259-4
Artificial Intelligence (SIE), Kevin Night, Elaine Rich, Nair B., 3 rd Edition, 2008, McGraw
Hill, ISBN: 9780070087705
Introduction to AI and ES, Dan W. Patterson, Pearson Education, 3rd Edition, 2007, ISBN-
13: 978-0134771007
Introduction to Expert Systems, Peter Jackson, 4th Edition, Pearson Education, 2007, ISBN-
13: 978-8131709337

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	2	2	1	2	-	2	2
CO2	3	3	3	3	3	2	2	1	2	-	2	2
CO3	3	3	3	3	3	2	1	1	2	-	2	2
CO4	3	3	3	3	3	1	2	1	1	1	2	2

			Semester: V				
R	EMOT		ND GEOGRAPHIC II JP B: GLOBAL ELI		YSTI	EM	
			(Theory)				
Course Code : 18G5B05 CIE : 100							
Credits: L:T:P		3:0:0		SEE		100 Marks	
Total Hours		39 L		SEE Duration		3.00 Hours	
Course Learn	ng Ob	jectives: The stu	dents will be able to				
1 Understan	d conc	ept of using pho	ographic data to determ	ine relative position	s of p	ooints.	
2 Study the	nethoo	ls of collection of	land data using Terrest	rial and Aerial cam	era.		
3 Analyze th	e data	gathered from v	rious sensors and interp	oret for various appl	icatio	ons.	
4 Apply the	princip	oles of RS, GIS a	nd GPS in various scope	es of Civil Engineer	ing.		
ł							
			Unit-I			07 Hı	

Unit-I	07 Hrs
Remote Sensing- Definition, types of remote sensing, components of remote sensing, elec	tromagnetic
spectrum, Black body, Atmospheric windows, energy interaction with earth surface feature	es. Spectral
reflectance curve. Platforms and sensors. Sensor resolutions. Types of satellites- Indian	n and other
remote sensing satellites (IRS, IKONS and Landsat). Principle of visual interpretation - key	elements.
Unit – II	08 Hrs
Photogrammetry: Introduction types of Photogrammetry, Advantages Photogrammetry,	Introduction
to digital Photogrammetry.	
Aerial Photogrammetry: Advantages over ground survey methods- geometry of vertical p	hotographs,
scales of vertical photograph. Ground coordination- relief displacement, scale ground co	ordinates –
flight planning.	
Unit –III	08 Hrs
Geographic Information System- Introduction, Functions and advantages, sources of da	ata for GIS.
Database - Types, advantages and disadvantages. Data Analysisoverlay operations, netwo	ork analysis,
spatial analysis. Outputs and map generation.	
GPS- components and working principles.	
Unit –IV	08 Hrs
Applications of GIS, Remote Sensing and GPS: Water Resources engineering and r	nanagement
(prioritization of river basins, water perspective zones and its mapping), Highway and tra	ansportation
(highway alignment, Optimization of routes, accident analysis), Environmental Engine	ering (Geo-
statistical analysis of water quality, rainfall).	
Unit –V	08 Hrs
Applications of GIS, Remote Sensing and GPS: Urban Planning & Management, ur	ban sprawl,
Change detection studies, forests and urban area, agriculture, Disaster Management. La	youts: Dead
and Dedict Cristian Constant	
end, Radial, Grid iron, Circular system.	

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	1: Understand and remember the principle of Remote Sensing (RS) and Geographical Information								
	Systems (GIS) data acquisition and its applications.								
CO2:	Apply RS and GIS technologies in various fields of engineering and social needs								

CO3:	Analyze and evaluate the information obtained by applying RS and GIS technologies.
CO4:	Create a feasible solution in the different fields of application of RS and GIS

Refer	rence Books										
1	Geographic Information System-An Introduction, Tor Bernharadsen, 2009, 3rd Edition, Wiley										
	India Pvt. Ltd. New Delhi, ISBN - 9788126511389.										
2	Principles of Remote sensing and Image Interpretation, Lillesand and Kiefer, 2011, 6th Edition,										
2	John Wiley Publishers, New Delhi, ISBN – 8126532238.										
2	Higher Surveying, Chandra A.M, 2015, 3rd Edition, New age international (P) Ltd,										
3	ISBN: 8122438121										
4	Remote Sensing, Robert A. Schowengerdt, 2009, 3 rd Edition, Elsevier India Pvt Ltd, New Delhi.										
_	Remote Sensing and GIS, Bhatta B, 2011, Oxford University Press, New Delhi,										
3	ISBN - 0198072392										

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	1	-	-	-	-	-	-
CO2	2	1	-	-	1	1	-	-	-	-	-	-
CO3	2	2	1	-	2	1	1	-	-	-	-	1
CO4	2	2	1	-	3	2	2	-	-	-	1	1

	Semester: V									
	AUTOMOTIVE ELECTRONICS									
	(GROUP B: GLOBAL ELECTIVE)									
		1	100	(Theory)		100 3 5 1				
Co	ourse Code	:	18G5B06	CIE Marks	:	100 Marks				
Cr	Credits: L:T:P		3:0:0	SEE Marks	:	100 Marks				
Hours : 39L SEE Duration					ı :	3.00 Hours				
Co	ourse Learning	Ob	jectives: The s	tudents will be able to						
1	Acquire the kn	ow	ledge of autom	otive domain fundamentals, need of Electronics a	nd co	ommunication				
I	interfaces in A	utoi	motive systems							
2	Apply various	typ	es of sensors, a	ctuators and Motion Control techniques in Autom	otive	systems				
3	Understand dig	gital	engine contro	l systems and Embedded Software's and ECU's u	sed	in automotive				
3	systems.									
4	Analyse the co	nce	pts of Diagnost	ics, safety and advances in Automotive electronic	Syst	ems.				

UNIT-I

Fundamentals of Automotive: Evolution and Use of Electronics in Automotive, Automotive Systems, The Engine, Engine Control, Internal Combustion Engines, Spark Ignition Engines and Alternative Engines. Ignition System, Ignition Timing, Drivetrain, Suspensions, Brakes and Steering Systems. **Basics of electronic engine control:** Motivation for Electronic Engine Control, Concept of an Electronic Engine control system, Definition of General terms, Definition of Engine performance terms, Engine mapping, Effect of Air/Fuel ratio, spark timing and EGR on performance, Control Strategy, Electronic Fuel control system, Analysis of intake manifold pressure, Electronic Ignition.

08 Hrs

07 Hrs

08 Hrs

Automotive Sensors and Actuators:

Automotive Control System Applications of Sensors and Actuators,

Sensors: Air Flow Sensor, Engine Crankshaft Angular Position Sensor, Throttle Angle Sensor, Temperature Sensor, Sensors for Feedback Control, Sensors for Driver Assistance System: Radar, Lidar, Video Technology.

Actuators: Solenoids, Piezo Electric Force Generators, Fluid mechanical Actuators, Electric Motors and Switches.

UNIT-III

UNIT-II

Digital Engine Control Systems: Digital Engine control features, Control modes for fuel Control (Seven Modes), EGR Control, Electronic Ignition Control - Closed Loop Ignition timing, Spark Advance Correction Scheme, Integrated Engine Control System.

Vehicle Motion Control: Typical Cruise Control System, Digital Cruise Control System, Digital Speed Sensor, Throttle Actuator, Digital Cruise Control configuration, Cruise Control Electronics (Digital only), Antilock Brake System (ABS), Electronic Suspension System, Electronic Steering Control.

UNIT-IV	08 Hrs
Automotive Communication Systems:	
Automotive networking: Bus systems, Technical principles, network topology. Buses in motor	vehicles:
CAN, Flex Ray, LIN, Ethernet, IP, PSI5, MOST, D2B and DSI.	

Automotive Embedded Software Development

Fundamentals of Software and software development lifecycles. Overview of AUTOSAR methodology and principles of AUTOSAR Architecture.

Diagnostics and Safety in Automotive:

Timing Light, Engine Analyzer, Electronic Control System Diagnostics: Onboard diagnostics, Off-board diagnostics, Expert Systems, Occupant Protection Systems – Accelerometer based Air Bag systems, Case study on ON-BOARD, OFF-BOARD diagnostics.

Advances in Automotive Electronic Systems: Alternative Fuel Engines, Electric and Hybrid vehicles, Fuel cell powered cars, Collision Avoidance Radar warning Systems, Navigation: Navigation Sensors, Radio Navigation, dead reckoning navigation, Video based driver assistance systems, Night vision Systems.

Course	Outcomes: After completing the course, the students will be able to
CO1:	Acquire the knowledge of automotive domain fundamentals, need of Electronics and
	communication interfaces in Automotive systems.
CO2:	Apply various types of sensors, actuators and Motion Control techniques in Automotive
	systems
CO3:	Analyze digital engine control systems and Embedded Software's and ECU's used in
	automotive systems.
CO4:	Illustrate the concepts of Diagnostics, safety and advances in Automotive electronic Systems.

Referen	Reference Books							
1.	Understanding Automotive Electronics, Williams. B. Ribbens, 6th Edition, 2003, Elsevier							
	science, Newness publication, ISBN-9780080481494.							
2.	Automotive Electronics Handbook, Robert Bosch, 2004, John Wiley and Sons, ISBN-							
	0471288357							
3.	Automobile Electrical and Electronic Systems, Tom Denton, 3rd Edition, Elsevier Butterworth-							
	Heinemann. ISBN 0-7506-62190.							
4.	Advanced Automotive Fault Diagnosis, Tom Denton, 2 nd Edition, Elsevier Butterworth-							
	Heinemann. ISBN 0-75-066991-8.							

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	1	-	-	-	1	2	1	-	1
CO2	3	2	1	1	1	-	1	1	1	1	-	1
CO3	3	2	2	2	1	-	1	1	2	1	-	1
CO4	3	2	2	2	-	1	2	1	1	1	-	1

	Semester: V									
	e- MOBILITY									
	(GROUP B: GLOBAL ELECTIVE)									
				(Theory)						
Co	ourse Code	:	18G5B07		CIE	:	100 Marks			
Cr	edits: L:T:P	:	3:0:0		SEE	:	100 Marks			
To	otal Hours	:	39L		SEE Duration	:	3.00 Hours			
Co	Course Learning Objectives: The students will be able to									
1	Understand th	ne b	asics of electric and	hybrid electric vehi	cles, their architectur	e ar	nd modelling.			
2	Explain differ	ent	energy storage tech	nologies used for el	ectric vehicles and th	leir	management			
	system.									
3	Describe vari	ous	electric drives and	its integration with	Power electronic cire	cuit	s suitable for			
	electric vehic	les.								
4	Design EV S	imı	lator through perfo	ormance evaluation	and system optimiz	atio	n techniques			
	and need for t	the	charging infrastruct	ure.						

Unit-I	06 Hrs
Electromobility and the Environment: A Brief History of the Electric Powertrain,	Energy
Sources for Propulsion and Emissions, The Advent of Regulations, Drive Cycles, BE	EV Fuel
Consumption, Range, and mpge, Carbon Emissions for Conventional and Electric Power	ertrains,
An Overview of Conventional, Battery, Hybrid, and Fuel Cell Electric Systems, A Com	parison
of Automotive and Other Transportation Technologies.	_
Vehicle Dynamics: Vehicle Load Forces, Vehicle Acceleration, Simple Drive Cycle for	Vehicle
Comparisons	
Unit – II	09 Hrs
Batteries: Batteries Types and Battery Pack, Lifetime and Sizing Considerations,	Battery
Charging, Protection, and Management Systems, Battery Models, Determining the Co	ell/Pack
Voltage for a Given Output\Input Power, Cell Energy and Discharge Rate.	
Battery Charging: Basic Requirements for Charging System, Charger Architecture	es, Grid
Voltages, Frequencies, and Wiring, Charging Standards and Technologies, SAE J1772, W	Vireless
Charging, The Boost Converter for Power Factor Correction.	
Unit -III	10 Hrs
Battery Management System: BMS Definition, Li-Ion Cells, Li-Ion BMSs, Li-Ion B	atteries,
BMS Options: Functionality, CCCV Chargers, Regulators, Balancers, Protectors, Funct	ionality
Comparison, Technology, Topology.	
BMS Functions: Measurement: Voltage, Temperature, Current, Management: Pro	otection,
Thermal Management, Balancing, Distributed Charging, Evaluation, External Commun	ication:
Dedicated analog and digital wires.	
Unit –IV	07 Hrs
Electric Drivetrain: Overview of Electric Machines, classification of electric machines	used in
automobile drivetrains, modelling of electric machines, Power Electronics, controlling	electric
machines, electric machine and power electronics integration Constraints.	
Unit –V	07 Hrs
EV Simulation: system level simulation, EV simulator, simulator modules, perfo	ormance
evaluation, system optimization.	
EV Infrastructure: Domestic charging infrastructure, Public charging infrast	ructure,
Standardization and regulations, Impacts on power system.	

Course	e Outcomes: After completing the course, the students will be able to						
CO1:	Explain the basics of electric and hybrid electric vehicles, their architecture, technologies						
	and modelling.						
CO2:	Discuss and implement different energy storage technologies used for electric vehicles						
	and their management system.						
CO3:	Analyze various electric drives and its integration techniques with Power electronic						
	circuits suitable for electric vehicles.						
CO4 :	Design EV Simulator for performance evaluation and system optimization and						
	understand the requirement for suitable EV infrastructure.						

Refe	Reference Books						
	Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric						
1	and Fuel Cell Vehicles, John G. Hayes, G. Abas Goodarzi, 1st Edition, 2018, Wiley, ISBN						
	9781119063667.						
2	Battery Management system for large Lithium Battery Packs, Davide Andrea, 1st Edition,						
2	2010, ARTECH HOUSE, ISBN-13 978-1-60807-104-3						
3	Hybrid Vehicles from Components to System, F. BADIN, Ed, 1st Edition, 2013, Editions						
3	Technip, Paris, ISBN 978-2-7108-0994-4.						
1	Modern Electric Vehicle Technology C.C. Chan and K.T. Chau, 1st Edition, 2001, Oxford						
-	university press, ISBN 0 19 850416 0.						

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	2	2	2	3	-	2	-	-	1
CO2	3	3	3	3	3	3	3	-	2	2	1	-
CO3	2	3	3	3	3	2	3	-	2	1	1	-
CO4	3	3	3	3	3	2	3	2	2	-	1	-

	Semester: V									
	SMART SENSORS & INSTRUMENTATION									
	(GROUP B: GLOBAL ELECTIVE)									
	(Theory)									
Course Code		:	18G5B08	CIE	:	100 Marks				
Cred	lits: L:T:P	:	3:0:0	SEE	:	100 Marks				
Tota	l Hours	:	39L	SEE Dura	ation :	3.00 Hours				
Cour	rse Learning	g ()	bjectives: The	students will be able to						
1	Understand	l th	e fundamentals	of transducers and sensors.						
2	Demonstra	te t	he working prir	nciples of different transducers and sensors.						
3	Apply the	prir	nciples of differ	ent type of sensors and transducers on state	of art pr	oblems.				
4	Create a sy	ste	m using approp	riate transducers and sensors for a particula	r applica	tion.				

Unit-I	07 Hrs
Introduction: Definition of a transducer, Block Diagram, Classification of Transducers, A	dvantages
of Electrical transducers.	
Resistive Transducers:	
Potentiometers: Characteristics, Loading effect, and problems.	
Strain gauge: Theory, Types, applications and problems.	
Thermistor, RTD: Theory, applications and problems.	
Unit – II	09 Hrs
Thermocouple: Measurement of thermocouple output, compensating circuits, lead comp	pensation,
advantages and disadvantages of thermocouple.	
LVDT: Principle, Characteristics, Practical applications and problems.	
Capacitive Transducers: Capacitive transducers using change in area of plates, distance	between
plates and change of dielectric constants, Applications of Capacitive Transducers and problem	ns
Unit –III	09 Hrs
Piezo-electric Transducers: Principles of operation, expression for output voltage, Piez	o-electric
materials, equivalent circuit, loading effect, Frequency response and Problems.	
Special Transducers: Hall effect transducers, Thin film sensors, and smart transducers:	Principles
and applications, Introduction to MEMS Sensors and Nano Sensors, Schematic of the	design of
sensor, applications.	
Unit –IV	07 Hrs
Chemical sensors: pH value sensor, dissolved oxygen sensor, oxidation-reduction potenti	al sensor,
Zirconium probe Sensors, Chem FET sensors.	
Photo sensors: Photo resistor, Photodiode, Phototransistor, Photo-FET, Charge coupled devi	.ce.
Tactile sensors: Construction and operation, types.	
Unit –V	07 Hrs
Humidity Sensors and Moisture Sensors: Concept of humidity, Electrical Conductivity	Sensors,
Thermal Conductivity Sensors, Optical Hygrometer, Oscillating Hygrometer.	
IR Sensors: Golay cells, Thermopile, pyroelectric sensor, bolometers, Active Far-Infrared	l Sensors,
Gas flame detectors	

Course	e Outcomes: After completing the course, the students will be able to						
CO1:	Understand the basic principles of different transducers and sensors.						
CO2:	Apply the knowledge of transducers and sensors to comprehend digital instrumentation						
	systems.						
CO3:	Analyze and evaluate the performance of different transducers and sensors for various						
	applications.						
CO4:	Create a system using appropriate transducers and sensors for a particular application.						

Refere	ence Books
1	Jacob Fraden, Handbook of Modern Sensors: Physics, Designs, and Applications, 4th Edition
1	2008, PHI Publication, ISBN: 978-1-4419-6465-6.
2	Clarence W.de Silva, Sensors and Actuators: Control systems Instrumentation, 2013 Edition,
2	CRC Press, ISBN: 978-1-4200-4483-6.
3	A.K. Sawhney, Electrical and Electronic Measurements and Instrumentation, 18th Edition,
3	2008, Dhanpat Rai and Sons, ISBN: 81-7700-016-0.
1	Transducers and Instrumentation, D.V.S. Murthy, 2 nd Edition 2008, PHI Publication, ISBN:
-	978-81-203-3569-1.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks are executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	-	-	-	-	-	-	-	-	-
CO2	2	3	-	-	2	2	-	-	-	-	-	-
CO3	1	2	2	-	1	1	-	-	-	-	-	2
CO4	-	-	-	-	1	1	-	-	-	3	-	1

				Semester: V			
			OI	PERATIONS RESEARCH			
				UP B: GLOBAL ELECTI			
(Theory)							
Cour	rse Code	:	18G5B09	× × /	CIE	:	100 Marks
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks
Tota	l Hours	:	39 L		SEE Duration	:	3.00 Hours
Cour	rse Learning (Dbje	ectives: The stu	idents will be able to			
1	Develop the	ski	lls in the appl	cation of operations resear	rch models for	con	nplex decision-
	making situat	ions	s	-			-
2	Implement th	e m	ethodology and	tools of operations research	to assist decision	n-m	aking.
	1			1			
				UNIT-I			07 Hrs
Intro	oduction: OR	metl	hodology, Defii	ition of OR, Application of	OR to Engineeri	ng	and Managerial
probl	lems, Features	of C	OR models, Lin	itations of OR.			
Line	ar Programm	ing	Definition, Ma	thematical Formulation, Sta	ndard Form, Sol	utio	n Space, Types
	-	-		e, Solution through Graphic			
			•	ad assignments only)	e	,	
10 40		(ue	monstrations a	UNIT-II			10Hrs
Sim	olex Method &	k Se	ensitivity Anal	ysis: Simplex methods, Arti	ficial Stating So	luti	
				nalysis - Graphical sensitiv	-		
	-		-	tput from software packages	• •	-	fulle sensitivity
unury	sis. interpretat	1011	of grupineur ou	UNIT-III		01	10 Hrs
Tran	sportation P	rob	lem:Formulatio	on of transportation mode	el. Basic feasib	le	
	-			hods, Unbalanced transpo			-
	portation prob			n Transportation Problem	-		
probl		1011	is, variants	in multiportution recordin	s, rippiloutions	01	mansportation
•		em	Formulation	of the Assignment problen	n Solution meth	hod	of assignment
-	-			method of assignment problem			-
-	-		raveling Salesm			icu	iou, variants in
•	•		e				
Usag	ge of software t	0015	s to demonstrate	Transportation and Assignment	nent problems		06 11
Droi	oot Managam	mt	Liging Notwork	UNIT-IV Analysis:Network construct	ation Datarmina	tion	06 Hrs
-	-		-				-
		, CI	PM - Elements	of crashing, Usage of softw	are tools to dem	ons	strate N/W flow
probl	lems						
C	- The second Late	1		UNIT-V			06 Hrs
	=		-	son Zero Sum game, Pure st	-		-
-			ne rules of do	minance, solution method	of games with	iou	t saddle point,
Arith	metic method.						
Corre	man Autoomore	A 6	ton 00m-1-4:	the course the stordards	ll he able to		
				the course, the students wi			augh
CO1			ie basic conce	pts of different models	or operations r	ese	arch and then
	application			Models and Assignment M			

CO2:	Build and	solve Transp	portation M	odels and Assignment M	Iodels.
000	D :	. 1	1 1 1 1 1		1

CO3:	Design new simple models, like: CPM, MSPT to improve decision -making and develop
	critical thinking and objective analysis of decision problems.
CO4:	

ſ

1	Operation Research an Introduction, Taha H A, 8th Edition, 2004, PHI, ISBN:0130488089.
2	Operations Research: Principles and Practice, Ravindran, Phillips, Solberg, 2 nd Edition, 2007,
	John Wiley & Sons, ISBN: 8126512563
3	Introduction to Operation Research, Hiller and Liberman, 8th Edition, 2004, Tata McGraw Hill,
	ISBN: 0073017795.
4	Operations Research Theory and Application, J K Sharma, 2 nd Edition, 2003, Pearson Education
	Pvt Ltd, ISBN: 0333-92394-4.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-I	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	3	2	2	-	-	-	1	-	-	1
CO2	-	2	-	-	-	-	-	-	-	1	-	1
CO3	2	-	-	2	2	-	-	1	-	-	-	-
CO4												

			Semester: V				
		MANAGEN	IENT INFORMATION SYS	TEMS			
		(GROU	P B: GLOBAL ELECTIV	E)			
(Theory)							
Course Code	:	18G5B10		CIE	:	100 Marks	
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks	
Total Hours	:	39L		SEE Duration	:	3.00 Hours	
Course Learning	Obje	ectives: The stude	nts will be able to				
1 To understa	nd the	e basic principles	and working of information tec	hnology.			
2 Describe the	role	of information tec	hnology and information syste	ms in business.			
3 To contrast	and c	compare how inter	net and other information techn	ologies support bu	sine	ess processes.	
4 To give an	overa	all perspective of	he importance of application of	of internet technol	ogie	es in business	
administrati							
			Unit-I			08 Hrs	
Information system	ns in '	Global Business	Foday:				
The role of inform	nation	n systems in busi	ness today, Perspectives on	information system	ms,	Contemporar	
approaches to inform	natio	on systems, Hands	on MIS projects. Global E-Bu	siness and Collal	bor	ation: Busines	
process and information	ation	systems, Types of	business information systems	, Systems for colla	aboı	ation and tear	
work, The informati	on sy	stems function in	business. A Case study on E bu	isiness.			
			Unit – II			08 Hrs	
Information System	ns, O	Organizations and	Strategy:				
Organizations and	inforr	mation systems, H	low information systems impa	act organization a	nd	business firms	
Using information s	syster	ms to gain compe	itive advantage, management	issues, Ethical an	d S	ocial issues in	
Information System	ns: U	Understanding eth	cal and Social issues related t	o Information Sys	stem	ns, Ethics in an	
information society,	The	moral dimensions	of information society. A Case	study on business	pla	nning.	
			Unit –III			08 Hrs	
IT Infrastructure a	ınd E					08 Hrs	
		Emerging Techno		tform trends, Cont	emj		
IT infrastructure, In	frastr	Emerging Techno ructure component	logies:		-	porary softwar	
IT infrastructure, In platform trends, M	frastr Ianag	Emerging Techno ructure component gement issues. Se	l ogies: s, Contemporary hardware pla	s: System vulner	abil	porary softwar ity and abuse	
IT infrastructure, In platform trends, N Business value of se	frastr Ianag ecurit	Emerging Techno ructure component gement issues. Se ty and control, Est	logies: s, Contemporary hardware pla curing Information System	s: System vulner	abil	porary softwar ity and abuse	
IT infrastructure, In platform trends, N Business value of se	frastr Ianag ecurit	Emerging Techno ructure component gement issues. Se ty and control, Est	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi	s: System vulner	abil	porary softwar ity and abuse	
IT infrastructure, In platform trends, N Business value of se	frastr Ianag ecurit nation	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV	s: System vulner	abil	porary softwar ity and abuse ology and tool	
IT infrastructure, In platform trends, M Business value of se for protecting inforr Achieving Operation	frastr Ianag ecurit nation	Emerging Techno ructure component gement issues. See ty and control, Est n resources. A cas Excellence and C	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV	s: System vulnera ty and control, Tea	abil chn	porary softwar ity and abuse ology and tool 08 Hrs	
IT infrastructure, In platform trends, M Business value of se for protecting inforr Achieving Operatie Enterprise systems,	frastr Ianag ecurit nation onal I Supp	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas Excellence and C ply chain manage	logies: s, Contemporary hardware pla curing Information Systems ablishing framework for securi e study on cybercrime. Unit –IV ustomer Intimacy:	s: System vulnera ty and control, Tea ner relationship ma	abil chn ana	porary softwar ity and abuse ology and tool 08 Hrs gement (CRM	
IT infrastructure, In platform trends, M Business value of se for protecting inforr Achieving Operation Enterprise systems, systems, Enterprise	frastr Ianag ecurit nation onal I Supp appli	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas Excellence and C ply chain manage ication. E-comme	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV ustomer Intimacy: ment (SCM) systems, Custom	s: System vulnera ty and control, Tea ner relationship ma Goods: E-commerc	abil chn ana ce a	porary softwar ity and abuse ology and tool 08 Hrs gement (CRM nd the internet	
IT infrastructure, In platform trends, M Business value of se for protecting inforr Achieving Operation Enterprise systems, systems, Enterprise	frastr Ianag ecurit nation onal I Supp appli	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas Excellence and C ply chain manage ication. E-comme ad technology, The	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV ustomer Intimacy: ment (SCM) systems, Custon rce: Digital Markets Digital (s: System vulnera ty and control, Tea ner relationship ma Goods: E-commerc	abil chn ana ce a	porary softwar ity and abuse ology and tool 08 Hrs gement (CRM nd the interne	
IT infrastructure, In platform trends, M Business value of se for protecting inform Achieving Operation Enterprise systems, systems, Enterprise E-commerce-busine	frastr Ianag ecurit nation onal I Supp appli	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas Excellence and C ply chain manage ication. E-comme ad technology, The	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV ustomer Intimacy: ment (SCM) systems, Custon rce: Digital Markets Digital (s: System vulnera ty and control, Tea ner relationship ma Goods: E-commerc	abil chn ana ce a	porary softwar ity and abuse ology and tool 08 Hrs gement (CRM nd the interne	
IT infrastructure, In platform trends, M Business value of se for protecting inform Achieving Operation Enterprise systems, systems, Enterprise E-commerce-busine	frastr Ianag ecurit nation onal I Supp appli ss an A Ca	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas Excellence and C ply chain manage ication. E-comme ad technology, The	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV ustomer Intimacy: ment (SCM) systems, Custom rce: Digital Markets Digital G mobile digital platform and r	s: System vulnera ty and control, Tea ner relationship ma Goods: E-commerc	abil chn ana ce a	porary softwar ity and abuse ology and tool 08 Hrs gement (CRM nd the interner Building and E	
IT infrastructure, In platform trends, M Business value of so for protecting inform Achieving Operation Enterprise systems, systems, Enterprise E-commerce-busine commerce web site. Managing Knowle	frastr lanag ecurit nation onal l Supp appli ass an A Ca dge:	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas Excellence and C ply chain manage ication. E-comme ad technology, The ase study on ERP.	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV ustomer Intimacy: ment (SCM) systems, Custom rce: Digital Markets Digital (mobile digital platform and r	s: System vulnera ty and control, Tea ner relationship ma Goods: E-commerc nobile E-commerc	abil chn ana ce a e, H	porary softwar ity and abuse ology and tool 08 Hrs gement (CRM nd the interne Building and E 07 Hrs	
IT infrastructure, In platform trends, M Business value of so for protecting inform Achieving Operation Enterprise systems, systems, Enterprise E-commerce-busine commerce web site. Managing Knowle The knowledge mage	frastr Ianag ecurit nation onal I Supp appli ess an A Ca dge: anage	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas Excellence and C ply chain manage ication. E-comme ad technology, The ase study on ERP.	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV ustomer Intimacy: ment (SCM) systems, Custom rce: Digital Markets Digital (e mobile digital platform and r Unit –V	s: System vulnera ty and control, Tea ner relationship ma Goods: E-commerc nobile E-commerc	abil chn ana ce a e, F	porary softwar ity and abuse ology and tool 08 Hrs gement (CRM nd the interne Building and E 07 Hrs nowledge wor	

Systems as planned organizational change, Overview of systems development.

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Understand and apply the fundamental concepts of information systems.					
CO2:	Develop the knowledge about management of information systems.					
CO3:	Interpret and recommend the use information technology to solve business problems.					
CO4 :	Apply a framework and process for aligning organization's IT objectives with business strategy.					

Reference Books Kenneth C. La

1	Kenneth C. Laudon and Jane P. Laudon: Management Information System, Managing the Digital Firm, Pearson Education, 14 th Global edition, 2016, ISBN:9781292094007.
2	James A. O' Brien, George M. Marakas: Management Information Systems, Global McGraw Hill, 10 th Edition, 2011, ISBN: 978-0072823110.
3	Steven Alter: Information Systems, The Foundation of E-Business, Pearson Education, 4 th Edition, 2002, ISBN:978-0130617736.
4	W.S. Jawadekar: Management Information Systems, Tata McGraw Hill, 2006, ISBN: 9780070616349.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	3	-	-	-	-	-	-	-	1	-	1
CO3	3	3	1	-	2	-	-	-	-	1	-	1
CO4	3	3	2	1	2	-	-	-	-	1	-	1

			V	Semester			
				'E MECHATRONICS			
			`	LOBAL ELECTIVE)		
0		1		Theory)	CIE		100 M
	se Code	:	18G5B11		CIE	:	100 Marks
Cred	its: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours:39 LSEE Duration:3.00 Ho							3.00 Hours
Cour	rse Learning O	bje	ctives: The students will	be able to			
1	Identify vario	us N	Iechatronics systems of a	a modern automobile			
2	Describe how	the	proper quantity/grade of	fuel affects engine perfe	ormance.		
3	Understand B	hara	t-VI / EURO-VI emissio	on norms			
4	Apply the know	wle	dge of engineering and s	cience to analyse the per	rformance of Me	cha	tronics
	system						
5	Analyse vehic	ele s	ub-systems comprising o	f sensors and actuators			

Unit-I	06 Hrs
Automobile Engines	
Classifications of Internal Combustion Engines. Engine nomenclature and mechanics. Mixture	formation
and direct fuel injection - homogeneous and stratified injection. Thermodynamic principles of	Otto and
Diesel cycle. Operation, characteristics and energy yield in a 4-stroke engine. Fuels: Gasoline,	Diesel,
LPG and Natural Gas for automotive applications. Fuel properties- Octane number and Cetane	number.
Unit-II	10 Hrs
Engine Auxiliary Systems:	
Air Intake and Exhaust System (Bharat Stage -VI norms) - Intake manifold, Turbocharger, In	tercooler,
Exhaust manifold, 3-way and oxidation catalytic convertor, Exhaust Gas Recirculation system.	
Common Rail Fuel Injection system- Low pressure and high-pressure fuel systems, Re	turn line,
Quantity control valve, Injectors – solenoid and piezo injectors.	
Unit-III	10 Hrs
Vehicular Auxiliary Systems:	
Vehicle frame and body classification- Hatchback, Sedan, SUV, Coupe, Roadster. Adaptive	Brakes -
Disc and drum brakes, Antilock Braking Systems, ESP, TCS. Wheels and Tyres- Toe-In,	Toe-Out,
Caster and Camber angle. Classification of tyres, Radial, Tubeless.	
Supplemental Restraint System: Active and passive safety, Vehicle structure, Gas generator	and air
bags, Belt Tensioner, Acceleration sensor, Rollover sensor, Seat occupancy recognition.	
Unit-IV	07 Hrs
Principles of motor vehicle electronics - Basic structure of control units, Functions of control	rol units and
On-Board Diagnostic kit.	
Telematics in vehicles – Radio Transmission, Interference and signal processing. Lubrication	and cooling
system- Components, working principle, Properties, Viscosity.	
Unit-V	06 Hrs
Sensors: Oxygen sensors, Crankshaft Angular Position Sensor, Manifold Absolute Pressure Se	ensor,
Coolant Temperature Sensor, Hot Film Mass Air flow Sensor, Throttle Position Sensor.	

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Describe the functions of Mechatronic systems in a modern automobile								
CO2:	Evaluate the performance of an engine by its parameters								
CO3:	Analyse the automotive exhaust pollutants as per emission norms								
CO4:	Demonstrate communication of control modules using a On-Board Diagnostic kit								

Refere	nce Books								
1.	Automotive Technology – A systems approach, Jack Erjavec, 5th Edition, Delamr Cengage								
	Learning, ISBN-13: 978-1428311497								
2.	Automotive Engineering Fundamentals, Richard Stone and Jeffrey K. Ball, 2004,								
	SAE International, ISBN: 0768009871								
3.	Bosch Automotive Handbook, Robert Bosch, 9th Edition, 2004, ISBN: 9780768081527								
4.	Understanding Automotive Electronics, William B Ribbens, 5th Edition, Butterworth-								
	Heinemann, ISBN 0-7506-7008-8								

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30 (Q) + 50 (T) + 20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	-	2	1	2	1	-	-	1	2	3	-	-	
CO2	2	1	2	1	3	-	-	2	2	3	-	-	
CO3	1	2	2	1	2	-	-	2	2	3	-	-	
CO4	1	2	2	1	2	-	-	2	2	1	-	1	

				Semester: V								
			TELECOM	MUNICATION SYS	STEMS							
			(GROUP I	B: GLOBAL ELEC	(TIVE)							
	(Theory)											
Cou	rse Code	:	18G5B12		CIE	:	100 Marks					
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks					
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours					
Cou	rse Learning C	bje	ectives: The student	s will be able to			·					
1	Represent sch	em	atic of communicati	on system and identif	Ty its components.							
2	Classify satell	ite	orbits and sub-syste	ms for communication	on.							
3	Analyze differ	rent	telecommunication	i services, systems an	d principles.							
4	Explain the ro	le d	of optical communic	ation system and its	components.							
5	Describe the f	eat	ures of wireless tech	nologies and standar	ds							

UNIT-I	06 Hrs
Introduction to Electronic Communication: The Significance of Human Commu	nication,
Communication Systems, Types of Electronic Communication, Modulation and Mult	iplexing,
Electromagnetic Spectrum, Bandwidth, A Survey of Communication Applications.	
The Fundamentals of Electronics: Gain, Attenuation, and Decibels.	
Radio Receivers: Super heterodyne receiver.	
UNIT-II	10 Hrs
Modulation Schemes: Analog Modulation: AM, FM and PM- brief review.	
Digital Modulation: PCM, Line Codes, ASK, FSK, PSK.	
Wideband Modulation: Spread spectrum, FHSS, DSSS.	
Multiple Access: FDMA, TDMA, CDMA.	
UNIT-III	09 Hrs
Satellite Communication: Satellite Orbits, Satellite Communication Systems, Satellite Sub	systems,
Ground Stations, Satellite Applications, Global Positioning System.	
UNIT-IV	07 Hrs
Optical Communication: Optical Principles, Optical Communication Systems, Fiber-Optical	c Cables,
Optical Transmitters and Receivers, Wavelength-Division Multiplexing, Passive Optical Network	vorks.
UNIT-V	07 Hrs
0111-1	
Cell Phone Technologies: Cellular concepts, Frequency allocation, Frequency reuse,	Internet
	Internet
Cell Phone Technologies: Cellular concepts, Frequency allocation, Frequency reuse,	

Cours	Course Outcomes: After completing the course, the students will be able to								
CO1	Describe the basics of communication systems.								
CO2	Analyze the importance of modulation and multiple access schemes for communication								
	systems.								
CO3	Analyze the operational concept of cell phone and other wireless technologies.								
CO4	Justify the use of different components and sub-system in advanced communication systems.								

Ref	erence Books
1	Principles of Electronic Communication Systems, Louis E. Frenzel, 4th Edition, 2016, Tata
	McGraw Hill, ISBN: 978-0-07-337385-0.
2	Electronic Communication Systems, George Kennedy, 3rd Edition, 2008, Tata McGraw Hill,
	ISBN: 0-02-800592-9.
3	Introduction to Telecommunications, Anu A. Gokhale, 2 nd Edition, 2008, Cengage Learning
	ISBN: 981-240-081-8.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	-	1	1	-	-	-	1	-	-	-
CO2	2	1	-	1	1	-	-	-	1	-	-	-
CO3	2	1	-	1	1	-	-	-	2	-	-	-
CO4	1	1	-	1	1	1	-	-	1	-	-	-

· · · · · · · · · · · · · · · · · · ·				Semester: V				
	(QUA	NTUM MECHA	NICS OF HETERO	/NANO STRUCT	JRES	5	
			(GROU	P B: GLOBAL EL	ECTIVE)			
~	~ .	, , ,		(Theory)				. <u>.</u>
	se Code	:	18G5B13		CIE	:	100 M	
	ts: L:T:P Hours	:	3:0:0 39L		SEE SEE Duration	:	100 M 3.00 H	
) Dhie	Sectives: The studen	ts will be able to	SEE Duration	:	5.00 П	lours
	8	÷		chanics in physical pr	coossos os wo rodu	o dir	ansion	
				of low dimensional s				
	-		-					lig.
				l in transport propertie	es of low dimension	ai ma	aterials.	
			heterostructures in		1 (1 ((1	
	-	now	ledge to design and	d develop smart devic	ces and sensors that	runs	on the q	uantum
1	technology.							
				Unit-I				08 Hrs
Dovio	w of Quantu	m M	Iechanics and Soli					U8 Hrs
	-			tainty Principle, grou	n valaaity. Tima in	1	donton	d damam dami
	•	•	•	• • • •		•		•
	•			, Perturbation theory				
	•		•	states and its depend		•		
-		-		ons and holes in b	ands, Effective ma	ass, o	listinct	regimes of
condu	ction and the	imp	ortant parameters c					
			ors and lower dim	Unit – II				08 Hrs
differe (From	ent geometrie 0-Dim to 3 I	es-Sq		l and intra-band pro Friangular and their	cess. Quantum we	lls o	t nanos	
			-	and its effect on band		n Dot		s and wells
). Strained Layers a ects in them.			n Dot		s and wells in Quantum
	tum Nano sti	c eff	-	Unit –III		n Dot		s and wells
Quant Archit Homo Lattice genesi	ecture and w -junction, He e: Kronig Pe as of Quantum As), hot elect	ruct ruct vork etero nney n Tr	ects in them. ures and Quantum ing of n-channel -junction, Hetero-s / Model of a supe ansport: Parallel tr	Unit –III	semiconductor cont on and strain doped ling Approximation mechanism, experim	a Dot nergy act(in Qua of a nenta	nterface) ntum W a super l data(fo	s and wells in Quantum 08 Hrs in details, Vells. Super lattice. The ocus will be
Quant Archit Homo Lattice genesi on Ga.	ecture and w -junction, He e: Kronig Pe as of Quantum As), hot elect	ruct ruct vork etero nney n Tr	ects in them. ures and Quantum ing of n-channel -junction, Hetero-s / Model of a supe ansport: Parallel tr	Unit –III n Transport: MOSFET, metal – s structures. Modulatio er-lattice, Tight Bind cansport : scattering r	semiconductor cont on and strain doped ling Approximation mechanism, experim	a Dot nergy act(in Qua of a nenta	nterface) ntum W a super l data(fo	s and wells in Quantum 08 Hrs) in details, Vells. Super lattice. The ocus will be per lattices:
Quant Archit Homo Lattice genesi on Ga. Stark e	ecture and w -junction, He e: Kronig Pe as of Quantun As), hot elect effect.	c efference ructor vorkie etero nney n Tr trons	ects in them. ures and Quantum ing of n-channel -junction, Hetero-s / Model of a supe ansport: Parallel tr 2. Perpendicular tra	Unit –III n Transport: MOSFET, metal – s structures. Modulatio er-lattice, Tight Bind cansport : scattering r ansport: Resonant tur	semiconductor cont on and strain doped ling Approximation nechanism, experin neling. Electric fiel	a Dot nergy act(in Qua of a nenta	nterface) ntum W a super l data(fo	s and wells in Quantum 08 Hrs 0 in details, Vells. Super lattice. The ocus will be
Quant Archit Homo Lattice genesi on Ga. Stark e Trans Quanti quanti other s of Sta	ecture and w -junction, He e: Kronig Per is of Quantum As), hot elect effect. Sport in Nano ized conducta zed conducta systems. Viol utes of a 2D	c eff ructu vorki etero nney n Tr rrons 	ects in them. ures and Quantum ing of n-channel -junction, Hetero-s Model of a supe ansport: Parallel tr b. Perpendicular tra uctures in electric : Landauer Buttike of devices like qu n of Kirchhoff's ci tem in a magnetic	Unit –III n Transport: MOSFET, metal – s structures. Modulatio er-lattice, Tight Bind cansport : scattering r ansport: Resonant tur Unit –IV c and magnetic fields er transmission form antum point contacts ircuit laws for quantue c field. Landau qua	semiconductor cont on and strain doped ling Approximation mechanism, experin meling. Electric fiel s: alism, Application s. Aharonov-Bohm um conductors. Cou untization of electro	act(in eact(in Qua of a d effe of fo effec	nterface) ntum W super data(fo ect in su ormalism of in gol o Blocka	s and wells in Quantum 08 Hrs in details, Vells. Super lattice. The ocus will be per lattices: 08 Hrs n to explain d rings and ide. Density
Quant Archit Homo Lattice genesi on Ga. Stark e Trans Quanti quanti other s of Sta	ecture and w -junction, He e: Kronig Per is of Quantum As), hot elect effect. Sport in Nano ized conducta zed conducta systems. Viol utes of a 2D	c eff ructu vorki etero nney n Tr rrons 	ects in them. ures and Quantum ing of n-channel -junction, Hetero-s Model of a supe ansport: Parallel tr b. Perpendicular tra uctures in electric : Landauer Buttike of devices like qu n of Kirchhoff's ci tem in a magnetic	Unit –III n Transport: MOSFET, metal – s structures. Modulatio er-lattice, Tight Bind cansport : scattering r ansport: Resonant tur Unit –IV c and magnetic fields er transmission form nantum point contacts ircuit laws for quantue c field. Landau qua Effect-integer and qua	semiconductor cont on and strain doped ling Approximation mechanism, experin meling. Electric fiel s: alism, Application s. Aharonov-Bohm um conductors. Cou untization of electro	act(in eact(in Qua of a d effe of fo effec	nterface) ntum W super data(fo ect in su ormalism of in gol o Blocka	s and wells in Quantum 08 Hrs in details, Vells. Super lattice. The per lattices: 08 Hrs to explain d rings and ide. Density gnetic field.
Quant Archit Homo Lattice genesi on Ga. Stark e Trans Quanti quanti other s of Sta Shubn	tecture and w -junction, He e: Kronig Pe is of Quantum As), hot elect effect. Sport in Nano ized conducta zed conducta systems. Viol ttes of a 2D ikov-de Haas	c eff ructivork: etero nney n Tr crons str ance lation syst	ects in them. ures and Quantum ing of n-channel -junction, Hetero-s Model of a supe ansport: Parallel tr b. Perpendicular tra uctures in electric : Landauer Buttike of devices like qu n of Kirchhoff's ci tem in a magnetic	Unit –III n Transport: MOSFET, metal – s structures. Modulatio er-lattice, Tight Bind cansport : scattering r ansport: Resonant tur Unit –IV c and magnetic fields er transmission form nantum point contacts ircuit laws for quantu c field. Landau qua Effect-integer and qua Unit –V	semiconductor cont on and strain doped ling Approximation mechanism, experin meling. Electric fiel s: alism, Application s. Aharonov-Bohm um conductors. Cou untization of electro	act(in eact(in Qua of a d effe of fo effec	nterface) ntum W super data(fo ect in su ormalism of in gol o Blocka	s and wells in Quantum 08 Hrs in details, Vells. Super lattice. The ocus will be per lattices: 08 Hrs n to explain d rings and ide. Density

transport devices, Single-electron transistors, Optical properties of Quantum Wells and Superlattices, Quantum Dots and Nano crystals. Quantum confined Stark effect, Stark ladders, Bloch oscillations. Spintronics, transport of spin, spin valve, Giant Maneto-resistance, Spin Injection (Johnson-Silsbee experiments).

Course	e Outcomes: After completing the course, the students will be able to
CO1:	After successful completion of the course the student will be able to identify the different domains
	of application of the concepts of Quantum mechanics in Nano structures, super-lattices and
	Photonics.
CO2:	The student will gain knowledge to understand the crucial physics layers and principles that are at
	the core of nano and meso technology.
CO3:	The student will be able to apply the concepts to solve problems (quantitative and qualitative)
CO4 :	The student can apply the concepts in an interdisciplinary manner and can create new ideas and
	products related to appliances and sensors, that use the said concepts.

Refere	ence Books
1	The Physics of Low Dimensional Semiconductors an introduction, John H Davies, xxx Edition,
1	1998, Cambridge University Press, ISBN: 0-521-48491-X (pbk).
2	Introduction to Quantum Mechanics, David J Griffiths & Darrell F. Schroeter, 3 rd Edition, 2018,
2	Cambridge University Press, ISBN: 978-1107189638
3	Nanotechnology for Microelectronics and Optoelectronics, J.M. Martinez-Duert, R.J. Martin Palma
3	and F. Agullo-Rueda, 1st Edition, 2006, Elsevier Press, ISBN: 9780080456959
4	Electronic Transport in Mesoscopic Systems, Supriyo Datta, 1 st Edition, 1997, Cambridge
4	University Press ISBN: 9780521599436
5	Semiconductor Optoelectronic devices, Pallab Bhattacharya, 2 nd Edition, 1996, Prentice Hall of
5	India, ISBN: 978-0134956565
(Semiconductor Devices, Physics and Technology, S. M. Sze, 2 nd Edition, 2008, Wiley Student
6	Edition, ISBN: 978-8126516810

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	2	1	3	2	2	-	-	-	1	
CO2	3	3	3	2	1	2	1	1	-	-	-	1	
CO3	3	3	3	2	1	1	1	1	-	-	-	1	
CO4	1	2	1	2	1	2	2	1	2	2	-	1	

				Semester: V				
			THIN FILM	IS AND NANOTE	CHNOLOGY			
			(GROU	P B: GLOBAL EI	LECTIVE)			
<u> </u>	~ .	1	100	(Theory)			400.35	
	rse Code	:	18G5B14		CIE	:	100 Marks	
	dits: L:T:P	:	3:0:0 39L		SEE SEE Duration	:	100 Marks	
	al Hours rso Loorning (:)bic	SPL ctives: The students	will be able to	SEE Duration	:	3.00 Hours	
<u>1</u>			asics of thin films st		X 7			
2					y. us techniques and the	air ch	aracterization	
4	methods.	now	ledge of unit time p	reparation by vario	us techniques and the		aracterization	
3		w1	dga to salact the mo	et potential mathe	ls to produce thin fill	me fo	r wonted	
3	applications.	JWIE	uge to select the III	si potential metho	is to produce thin fill	115 10	n wanteu	
4	**	thin	film applications.					
-+	Asses typical	um	min applications.					
				Unit-I			08 H	Hre
Non	ostructures an			0			001	
Type dime Quai	es of nanostru ensional, One d ntum Dots, shel	ictui lime ll st	ructures, Multilayer	nsional nano-struct thin films and sup	tured materials. Carl per lattice clusters. S	bon N ynthe	Nano Tubes (CN esis through Sol	NT) 1 ge
Type dime Quan and	es of nanostru ensional, One d ntum Dots, shel	ictui lime ll st sis.	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic	nsional nano-struct thin films and sup cal-chemical prop	tured materials. Carl	bon N ynthe	Nano Tubes (CN esis through Sol and challenges	NT) l gel s of
Type dime Quar and nanc	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar	lictur lime ll st sis. note	res and properties ensional, Zero-dime ructures, Multilayer Mechanical-physic chnology.	nsional nano-struct thin films and sup	tured materials. Carl per lattice clusters. S	bon N ynthe	Nano Tubes (CN esis through Sol	NT) l ge s of
Type dime Quan and nanc Thir	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar	lime lime ll st sis. note	res and properties ensional, Zero-dime ructures, Multilayer Mechanical-physic chnology.	nsional nano-struct thin films and sup cal-chemical prop Unit – II	tured materials. Carl per lattice clusters. S erties. Current tren	bon N ynthe nds	Vano Tubes (CN esis through Sol and challenges 08 H	NT) 1 ge ⁻ s of Hrs
Type dime Quan and nanc Thir Vac	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nan Film Prepara uum technolog	lime lime ll st sis. note tion y- I	res and properties ensional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p	nsional nano-struct thin films and sup cal-chemical prop <u>Unit – II</u> umps and vacuum	tured materials. Carl per lattice clusters. S erties. Current tren measurements, Phys	bon N ynthe nds	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit	NT) 1 ge s of Hrs ition
Type dime Quar and nanc Thir Vac (PV)	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar Film Prepara uum technolog D) Techniques	ictur lime ll st sis. note tion y- I s: E	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum nal evaporation, E	tured materials. Carl per lattice clusters. S erties. Current tren measurements, Phys lectron beam evapo	bon 1 ynthe nds sical S	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode	NT). 1 gei s of Hrs ition
Type dime Quan and nanco Thir Vacu (PV)	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar Film Prepara uum technolog D) Techniques	ictur lime ll st sis. note tion y- I s: E	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF	nsional nano-struct thin films and sup cal-chemical prop <u>Unit – II</u> umps and vacuum nal evaporation, E Sputtering, Magne	tured materials. Carl per lattice clusters. S erties. Current tren measurements, Phys	bon 1 ynthe nds sical S	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering.	NT) 1 gei s of Hrs ition
Type dime Quan and nanc Thir Vac (PV) depc	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar n Film Prepara uum technolog D) Techniques osition. Sputter	ictur lime ll st sis. note tion y- I :: E ring	res and properties nsional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum nal evaporation, E Sputtering, Magne Unit –III	tured materials. Carl per lattice clusters. S erties. Current tren measurements, Phys lectron beam evapo	bon 1 ynthe nds sical S	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode	NT) 1 gei s of Hrs ition
Type dime Quan and nanco Thir Vacu (PV) depo	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar Film Prepara uum technolog D) Techniques osition. Sputter	ictum lime ll st sis. note tion y- I :: E ring	res and properties nsional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF nd Growth of Thim	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum nal evaporation, E Sputtering, Magne Unit –III Films:	tured materials. Carl per lattice clusters. S erties. Current tree measurements, Phys lectron beam evapo etron sputtering, and	bon N ynthe nds sical S pration	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H	NT) 1 ge ² s of Hrs ition e arc Hrs
Type dime Quar and nanco Thir Vacu (PV) depo Surf Nucl	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar Film Prepara uum technolog D) Techniques osition. Sputter face Preparatio leation – theoret	ictum lime ll st sis. note tior y- I : E : E : ing on a	res and properties nsional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF nd Growth of Thim and experimental a	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum nal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre	tured materials. Carl per lattice clusters. S erties. Current tree measurements, Phys lectron beam evapo etron sputtering, and p paration & Engineer	bon N ynthe nds sical S pration Ion b	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grov	NT) 1 ge s of Hrs ition e arc Hrs
Type dime Quar and nance Thir Vace (PV) depoe Surf Nucl Clea	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar n Film Prepara uum technolog D) Techniques osition. Sputter face Preparatio leation – theoret ning, Modificat	ictum lime ll st sis. note tion y- I :: E ring on a tical	res and properties nsional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF nd Growth of Thim and experimental a Masking & Patterr	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum nal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre ning, Base Coats an	tured materials. Carl per lattice clusters. S erties. Current tree measurements, Phys lectron beam evapo etron sputtering, and i paration & Engineer ad Top Coats. Thin F	bon N ynthe nds sical S oration Ion b ing fo	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grow growth: Sequenc	NT) 1 ge s of <u>Hrs</u> ition e arc <u>Hrs</u> wwth ce of
Type dime Quar and nanco Thir Vacu (PV) depo Surf Nucl Clea thin	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar n Film Prepara uum technolog D) Techniques osition. Sputter face Preparatio leation – theoret ning, Modificat film growth, D	ictur lime ll st sis. note tion y- I :: E ing Dn a tical ion	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF nd Growth of Thim and experimental a Masking & Patterr cts and impurities,	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum nal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre- ting, Base Coats an Effect of Deposition	tured materials. Carl per lattice clusters. S erties. Current tree measurements, Phys lectron beam evapo etron sputtering, and i paration & Engineer ad Top Coats. Thin F on Parameters on fil	bon N ynthe nds sical S oration Ion b ing fo	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grow growth: Sequenc	NT) 1 ge s o <u>Hrs</u> itior itior e arc <u>Hrs</u> wwth ce of
Type dime Quar and nanco Thir Vacu (PV) depo Surf Nucl Clea thin	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar n Film Prepara uum technolog D) Techniques osition. Sputter face Preparatio leation – theoret ning, Modificat film growth, D	ictur lime ll st sis. note tion y- I :: E ing Dn a tical ion	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm DC sputtering, RF nd Growth of Thim and experimental a Masking & Patterr cts and impurities, Thickness, Surface,	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum hal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre ning, Base Coats an Effect of Deposition Physical, Chemical	tured materials. Carl per lattice clusters. S erties. Current tree measurements, Phys lectron beam evapo etron sputtering, and i paration & Engineer ad Top Coats. Thin F on Parameters on fil	bon N ynthe nds sical S oration Ion b ing fo	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grov growth: Sequence rowth. Properties	NT) 1 ge s or Hrs itior itior e arc Hrs wwth ce of es of
Type dime Quan and nance Thir Vace (PV) depce Surf Nucl Clea thin Thin	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar Film Prepara uum technolog D) Techniques osition. Sputter face Preparatio leation – theoret ning, Modificat film growth, D Films: Adhesio	tion y - I y - I y - I y - I i : E ing on a tical tical	res and properties nsional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Thern : DC sputtering, RF nd Growth of Thin and experimental a Masking & Patterr cts and impurities, Fhickness, Surface,	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum hal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre hing, Base Coats an Effect of Deposition Physical, Chemical Unit –IV	tured materials. Carl per lattice clusters. S erties. Current tree measurements, Phys lectron beam evapo etron sputtering, and i paration & Engineer ad Top Coats. Thin F on Parameters on fil	bon N ynthe nds sical S oration Ion b ing fo	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grov growth: Sequenc	NT) 1 ge s o Hrs ition e ard Hrs wth ce o es o
Type dime Quar and nancc Thir Vacu (PV) depcc Surf Nucl Clea thin Thin	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar n Film Prepara uum technolog D) Techniques osition. Sputter face Preparation leation – theoret ning, Modificat film growth, D n Films: Adhesio racterization o	tion tion y- H ing note ing n a tical ion Defe on, '	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF nd Growth of Thim and experimental a Masking & Patterr cts and impurities, Thickness, Surface,	nsional nano-struct thin films and sup- cal-chemical prop Unit – II umps and vacuum nal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre- ting, Base Coats an Effect of Deposition Physical, Chemical Unit –IV S:	tured materials. Carl per lattice clusters. S erties. Current tree measurements, Phys lectron beam evapo etron sputtering, and i paration & Engineer ad Top Coats. Thin F on Parameters on fil	bon N ynthe nds sical S pration Ion b ing fo iing fo	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grov growth: Sequenc rowth. Properties 08 H	NT) 1 ge s o Hrs ition e ard Hrs wth ce o es o Hrs
Type dime Quan and nance Thir Vacu (PV) depce Surf Nucl Clea thin Thin Thin Film	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar n Film Prepara uum technolog D) Techniques osition. Sputter face Preparatio leation – theoret ning, Modificat film growth, D n Films: Adhesio racterization o n thickness me	tion y- I tical tical tical tical tical tical tical tical tical tical tical tical tical tical	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm DC sputtering, RF nd Growth of Thim and experimental a Masking & Patterr cts and impurities, Thickness, Surface, min Film Properties rement: Quartz cry	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum hal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre ning, Base Coats an Effect of Deposition Physical, Chemical Unit –IV s: stal thickness mo	tured materials. Carl per lattice clusters. S erties. Current tren measurements, Phys lectron beam evapo etron sputtering, and i paration & Engineer and Top Coats. Thin F on Parameters on fill and Mechanical.	bon N ynthe nds sical S oration Ion b ing fo film g lm gr	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grov growth: Sequenc rowth. Properties 08 H r methods. Surf	NT) 1 ge s or Hrs itior e ard Hrs wwth ce or es or Hrs
Type dime Quar and nance Thir Vact (PV) depo Surf Nucl Clea thin Thin Thin Thin Thin Thin Thin	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar Film Prepara uum technolog D) Techniques osition. Sputter face Preparation leation – theoret ning, Modificat film growth, D a Films: Adhesion racterization on thickness met phology and to	tion y- I is: E ing on a tical tical f T asun	res and properties nsional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF nd Growth of Thim and experimental a Masking & Patterr cts and impurities, Thickness, Surface, in Film Properties rement: Quartz cry raphy by SEM, A	nsional nano-struct thin films and sup- cal-chemical prop Unit – II umps and vacuum nal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre- ting, Base Coats an Effect of Deposition Physical, Chemical Unit –IV s: stal thickness mo FM. Film compos	tured materials. Carl per lattice clusters. S erties. Current tren measurements, Phys lectron beam evapo etron sputtering, and i paration & Engineer ad Top Coats. Thin F on Parameters on fil and Mechanical.	bon N ynthe nds sical S ration Ion b ing fo film g lm gr	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grov growth: Sequence owth. Properties 08 H r methods. Surf ctron Spectrosco	NT) l ge s o Hrs ition e ard Hrs with ce o es o Hrs copy

Thin Film Applications:

Band gap Engineering through thin films for electrical and optical applications. Thin Film for energy applications - coating on solar cells, fuel cells, batteries and super capacitors. Thin film thermo electric materials for thermal sensor applications. Thin film coating as protective coating for optical surfaces and as anti-reflection. Thin Film drug delivery and antibacterial surfaces - opportunities and challenges

07 Hrs

Ellipsometry, Raman Spectroscopy. Dielectric and Mechanical properties characterization.

Unit –V

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understand the basic mechanism of surface modification and thin film growth.
CO2:	Attain strong hold on thin film preparation by various techniques and their characterization
	methods.
CO3:	Apply the knowledge to select the most potential methods to produce thin films for wanted
	applications.
CO4:	Detailed knowledge of thin film selection for various applications.

Refere	ence Books
1	Thin Film Phenomenon, K.L.Chopra, 1 st edition, 1969, McGraw-Hill ISBN-13: 978-0070107991.
2	Materials Science of Thin Films, Milton Ohring, 2 nd Edition, Academic Press, 2002, ISBN 978-0-
2	12-524975-1
2	Thin-Film Deposition: Principles and Practice, Donald Smith, 1st edition, 1994, McGraw-Hill
3	College, ISBN-13: 978-0071139137.
4	Handbook of Thin-Film Technology, Hartmut Frey, Hamid R Khan Editors, 1st edition, 2015,
4	Springer, ISBN 978-3-642-05429-7.
	Nanostructures and Thin Films for Multifunctional Applications Technology, Properties and
5	Devices, Ion Tiginyanu, Pavel Topala, Veaceslav Ursaki, 1st edition, 2016, Springer, ISBN 978-3-
	319-30197-6.

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	-	-	-	-	-	-	-	-	2
CO2	3	2	2	2	-	-	-	-	-	-	-	2
CO3	2	3	3	2	-	1	1	1	-	-	-	2
CO4	2	3	3	2	1	2	2	2	2	2	-	2

				Semester	: V			
	4	ADV	VANCES IN C		ENCE AND TECHNOL	OGY	7	
	-			ROUP B: GLOBA				
			X -	(Theory				
Cou	rse Code	:	18G5B15		CIE	:	100 Ma	rks
Cre	dits: L:T:P	:	3:0:0		SEE	:	100 Ma	ırks
Tota	al Hours	:	39L		SEE Duration	:	3.00 Ho	ours
Cou	rse Learning (Dbje	ectives: The stu	dents will be able	0			
1	Understand th	ne fi	Indamental & so	ocio, economic asp	pects of corrosion.			
2	Identify pract	ices	for the prevent	ion and remediatio	n of corrosion.			
3	Analyzing me	etho	dologies for pre	edicting corrosion t	endencies.			
4					nt suitable corrosion contr	ol me	asures.	
-	L'unduce vuil	040	corrosion situat	ions and impremen		01 1110	ubui obi	
				Unit-I				08 Hrs
Intr	oduction to con	rros	ion and its effe					00110
					on, economic losses, In	direct	losses -	Shutdown
					nvironmental damage, I			
			-	•	ustries, corrosion map of	-		CONTOSION
-				-	-			:1 and as
		_			on, chemical processing	indu	stries, o	ii and gas
Indu	stries, pulp and	pap	per plants, corro	sion effect in elect	ronic industry.			I
				Unit – II				08 Hrs
		nic	-	•	pes: Galvanic corrosion, stress corrosion, seas			
corre emb Crev	osion, intergra rittlement, high vice corrosion-r	nic nula tem	series, Pilling- r corrosion, o perature corros nanism of diffe	erosion corrosion sion, bacterial corro rential aeration co	pes: Galvanic corrosion, , stress corrosion, seas osion, corrosion in polyme rrosion, mixed potential	son c er (pla	eracking, astic) mat	hydrogen terials.
corre emb Crev	osion, intergra rittlement, high vice corrosion-r	nic nula tem	series, Pilling-H r corrosion, on perature corros	erosion corrosion sion, bacterial corro rential aeration co s.	, stress corrosion, seas	son c er (pla	eracking, astic) mat	hydrogen erials. lerstanding
corre emb Crev com	osion, intergra rittlement, high vice corrosion-r mon corrosion o	nic nula tem necl of m	series, Pilling-H ar corrosion, on perature corros manism of diffe metals and alloys	erosion corrosion sion, bacterial corre- rential aeration co s. Unit –III	, stress corrosion, seas	son c er (pla	eracking, astic) mat	hydrogen terials.
corre emb Crev com	osion, intergra rittlement, high vice corrosion-r mon corrosion o rosion in diffe	nic nula tem necl of m	series, Pilling-H ar corrosion, of aperature corros nanism of diffe netals and alloys t engineering n	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials	, stress corrosion, seas osion, corrosion in polymo rrosion, mixed potential	son c er (pla	eracking, astic) mat	hydrogen erials. lerstanding
corre emb Crev com Con	osion, intergra rittlement, high vice corrosion-r mon corrosion o rosion in diffe crete structures,	nic nula tem necl of m ren	series, Pilling-H ar corrosion, o perature corros nanism of diffe netals and alloys t engineering n plex, super dupl	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels,	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites.	son c er (pla theor	eracking, astic) mat y for und	hydrogen terials. lerstanding 07 Hrs
corre emb Crev com Corre Corre	osion, intergra rittlement, high vice corrosion-r mon corrosion o rosion in diffe crete structures, rosion in Speci	nic nula tem necl of m ren , duj	series, Pilling-H ar corrosion, o aperature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nic	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium	son c er (pla theor	eracking, astic) mat y for unc	hydrogen terials. lerstanding 07 Hrs oys.
corre emb Crev com Corr Corr Corr The	osion, intergra rittlement, high vice corrosion-r mon corrosion o rosion in diffe crete structures, rosion in Speci rmodynamics	nic nula tem necl of m ren , duj fic l	series, Pilling-H ar corrosion, o perature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nic	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites.	son c er (pla theor	eracking, astic) mat y for unc	hydrogen terials. lerstanding 07 Hrs oys.
corre emb Crev com Corr Corr Corr The	osion, intergra rittlement, high vice corrosion-r mon corrosion o rosion in diffe crete structures, rosion in Speci	nic nula tem necl of m ren , duj fic l	series, Pilling-H ar corrosion, o perature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po	erosion corrosion sion, bacterial corro rential aeration co s. Unit –III naterials lex stainless steels, rosion of Iron, Nic ourbaix diagram	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium	son c er (pla theor	eracking, astic) mat y for unc	hydrogen terials. lerstanding 07 Hrs 0ys. on and its
corre emb Crev com Con Con Con The calce	osion, intergra rittlement, high vice corrosion-r mon corrosion o rosion in diffe crete structures, rosion in Speci rmodynamics ulation for Al, C	nic nula tem necl of m ren fic I of Cu, I	series, Pilling-H ar corrosion, of aperature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe.	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nic	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium	son c er (pla theor	eracking, astic) mat y for unc	hydrogen terials. lerstanding 07 Hrs oys.
corre emb Crev com Corr Corr Corr The calcu	osion, intergra rittlement, high vice corrosion-r mon corrosion o rosion in diffe crete structures, rosion in Speci rmodynamics ulation for Al, C ances in Corro	nic nula tem necl of m ren fic I of Cu, I	series, Pilling-H ar corrosion, of aperature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe.	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u>	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in	son c er (pla theor n and metal	stic) mat stic) mat y for und Super all corrosid	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs
corre emb Crev com Cor Cor Cor The calce Adv	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics ulation for Al, C ances in Corro ciples of corro	nic nula tem necl of m ren fic du ific Cu, l	series, Pilling-H ar corrosion, of aperature corros nanism of diffe netals and alloys t engineering n olex, super dupl Materials: Corr Corrosion: Po Ni and Fe. n Control n prevention, r	erosion corrosion sion, bacterial corro rential aeration co s. Unit –III naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram Unit –IV naterial selection,	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in the design considerations,	son c er (pla theory n and metal	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment
corrections control co	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics alation for Al, C ances in Corro ciples of corro ease in veloc	nic nula tem necl of m ren fic fic Cu, l of Cu, l	series, Pilling-H ar corrosion, of aperature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe. h Control n prevention, r passivity, res	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u> material selection, moval oxidizer,	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in the design considerations, Inhibitors and passival	a and metal contro	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- - organic
corrections of the correction	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics ulation for Al, C ances in Corro ciples of corro ease in veloc croplating of Co	nic nula tem necl of m ren fic fic Cu, l of Cu, l	series, Pilling-H ar corrosion, of aperature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe. h Control n prevention, r passivity, res	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u> material selection, moval oxidizer,	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in the design considerations,	a and metal contro	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- - organic,
corrections of the correction	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics alation for Al, C ances in Corro ciples of corro ease in veloc	nic nula tem necl of m ren fic fic Cu, l of Cu, l	series, Pilling-H ar corrosion, of aperature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe. h Control n prevention, r passivity, res	erosion corrosion sion, bacterial corro rential aeration co s. Unit –III naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u> material selection, moval oxidizer, Chromium, physic	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in the design considerations, Inhibitors and passival	a and metal contro	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- - organic, ess plating
corrections of the correction of N	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics alation for Al, C ances in Corro ease in veloc croplating of Co ickel.	nic nula tem necl of m ren , duj fic 1 of Cu, 1 Osion Sion Sion	series, Pilling-H ar corrosion, of aperature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe. h Control n prevention, r passivity, res	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u> material selection, moval oxidizer,	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in the design considerations, Inhibitors and passival	a and metal contro	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- - organic
corrections of N	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics alation for Al, C ances in Corro ease in veloc croplating of Co ickel.	nic nula tem necl of m ren fic 1 of Cu, 1 osion city, oppo	series, Pilling-H ar corrosion, of aperature corros nanism of diffe- netals and alloys t engineering n olex, super dupl Materials: Corr Corrosion: Po Ni and Fe. n Control n prevention, r passivity, rei er, Nickel and O	erosion corrosion sion, bacterial corro rential aeration co s. Unit –III naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram Unit –IV material selection, moval oxidizer, Chromium, physic Unit –V	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in design considerations, Inhibitors and passivat al vapor deposition-sputt	n and metal	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- - organic, ess plating 09 Hrs
corra emb Crev com Con Con Cor The calcu Prin decr elect of N Cor Physical Cor Cor Cor	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics alation for Al, C ances in Corro ciples of corro ease in veloc croplating of Co ickel.	nic nula tem necl of m ren , duj ffic 1 of Cu, 1 Osion Sion Sion Sion Meth	series, Pilling-H ar corrosion, of aperature corros nanism of diffe- netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe. n Control n prevention, r passivity, res er, Nickel and O	erosion corrosion sion, bacterial corro rential aeration co s. Unit –III naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u> material selection, moval oxidizer, Chromium, physic <u>Unit –V</u> ens, environment,	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in the design considerations, Inhibitors and passival	n and metal	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- - organic ess plating 09 Hrs
corra emb Crev com Con Con Cor The calcu Prin decr elect of N Cor Physical Cor Cor Cor	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics alation for Al, C ances in Corro ciples of corro ease in veloc croplating of Co ickel.	nic nula tem necl of m ren , duj ffic 1 of Cu, 1 Osion Sion Sion Sion Meth	series, Pilling-H ar corrosion, of aperature corros nanism of diffe- netals and alloys t engineering n olex, super dupl Materials: Corr Corrosion: Po Ni and Fe. n Control n prevention, r passivity, rei er, Nickel and O	erosion corrosion sion, bacterial corro rential aeration co s. Unit –III naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u> material selection, moval oxidizer, Chromium, physic <u>Unit –V</u> ens, environment,	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in design considerations, Inhibitors and passivat al vapor deposition-sputt	n and metal	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- - organic, ess plating 09 Hrs
corrections of the second seco	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics ulation for Al, C ances in Corro ciples of corro case in veloc croplating of Co ickel.	nic nula tem mecl of n ren fic 1 of Cu, 1 of Cu, 1 osion city, oppe	series, Pilling-H ar corrosion, of aperature corros nanism of diffe- netals and alloys tengineering n olex, super dupl Materials: Corr Corrosion: Po Ni and Fe. h Control n prevention, re- passivity, re- er, Nickel and O hods: Specime ray, service test	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u> material selection, moval oxidizer, Chromium, physic <u>Unit –V</u> ens, environment, ss.	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in design considerations, Inhibitors and passivat al vapor deposition-sputt	on control on and metal control tors, ering,	Super all corrosid	hydroger terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- organic ess plating 09 Hrs Accelerated

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand the causes and mechanism of various types of corrosion							
CO2:	Identify, analyze and interpret corrosion with respect to practical situations.							
CO3:	Apply the knowledge of chemistry in solving issues related to corrosion.							
CO4:	Develop practical solutions for problems related to corrosion.							

Reference Books

1	Corrosion Engineering, M.G, Fontana, 3 rd Edition, 2005, Tata McGraw Hill, ISBN: 978-0070214637.
2	Principles and Prevention of Corrosion, D. A Jones, 2 nd Edition, 1996, Prentice Hall, ISBN: 978-0133599930.
3	Design and corrosion prevention, Pludek, 1978, McMillan, ISBN: 978-1349027897
4	Introduction to metal corrosion, Raj Narain, 1983, Oxford &IBH, ISBN: 8120402995.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	-	-	-	-	-	-	-	1	-	1	
CO2	3	2	2	1	-	-	-	-	-	1	-	1	
CO3	3	3	2	2	2	-	-	-	-	1	-	1	
CO4	3	3	3	3	2	-	-	-	-	1	-	1	

				Semester: V				
		CC	OMPUTATIONA	L ADVANCED NUN	IERICAL METHO	ODS		
	(GROUP B: GLOBAL ELECTIVE)							
	(Theory)							
	rse Code	:	18G5B16		CIE	:	100 Marks	
	dits: L:T:P	:	3:0:0		SEE	:	100 Marks	
	al Hours	:) :/	39L	unta uvill ha ahla ta	SEE Duration	:	3.00 Hours	
	0	•		ents will be able to	1 1 1			
1	-		•	lternative methods to s	solve algebraic and	trans	cendental equations	
-	•		merical techniques		· C. 11			
2		-	_	echniques arising in va			<u> </u>	
3		val	ue and boundary	value problems whi	ich have great sigr	nfica	nce in engineering	
	practice.			1 •	1.1.1.1.1.1	1		
4	·	nce	pts of eigen value	e and eigen vector to c	obtain the critical va	alues	of various physical	
	phenomena.				1 1 0 1			
5				nming language, imp	plementation of alg	gorith	ims and computer	
	programs to s	solve	e mathematical pro	oblems.				
				TT •4 T			07.11	
Alac	hunia and Tua		endental Equatio	Unit-I			07 Hrs	
0			-		ive method Aitken	nrook	Muller method	
			nulation using MA	ce - Fixed point iteration	ive method, Altken	proce	ess, wunter method,	
Chei	bysnev method.	. 511					07 11	
Into	rpolation:			Unit – II			07 Hrs	
	-	e di	fferences Finite d	lifferences of a polyno	mial Divided differ	ence	Newton's divided	
				te interpolation, Spline				
	-				e interpolation - ini	cal, (quadratic and cubic	
spline interpolation. Simulation using MATLAB. Unit –III 08 Hrs								
Differential Equations I:								
Runge-Kutta and Runge-Kutta-Felhberg methods to solve differential equations, Boundary value problems								
(BVPs) - Rayleigh-Ritz method, Shooting method, Differential transform method to solve differential								
			-	ing method, Differen		104 1		
equations. Simulation using MATLAB. Unit –IV 08 Hrs								
Diff	erential Equat	ions	s II:	Cint IV			UO III S	
				blems - Runge-Kutta r	nethod, Milne metho	od. C	ubic spline method.	
			-	ear, Nonlinear differen			-	
				Unit –V			09 Hrs	
Eige	en Value Probl	ems	5:				07 1115	
0				ver method, Inverse	Power method. Bo	ounds	on Eigen values.	
-		-					-	
	Gershgorin circle theorem, Jacobi method for symmetric matrices, Given's method. Simulation using							

MATLAB.

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Identify and interpret the fundamental aspects of different Mathematical concepts and							
	corresponding computational techniques.							
CO2:	Apply the knowledge and skills of computational techniques to solve different types of application							
	problems.							
CO3:	Analyze the physical problem and use appropriate method to solve numerically using							
	computational techniques.							
CO4:	Distinguish the overall mathematical knowledge gained to demonstrate and analyze the problems							
	arising in engineering practice.							

Refere	Reference Books						
1	Numerical methods for scientific and engineering computation, M. K. Jain, S. R. K. Iyengar and R.						
1	K. Jain, 6 th Edition, 2012, New Age International Publishers, ISBN-13: 978-81-224-2001-2.						
2	Numerical Analysis, Richard L. Burden and J. Douglas Faires, 9th Edition, 2012, Cengage						
2	Learning, ISBN-13: 978-81-315-1654-6.						
3	Introductory Methods of Numerical Analysis, S. S. Sastry, 4th Edition, 2011, PHI Learning Private						
5	Ltd., ISBN: 978-81-203-2761-0.						
4	Numerical Methods for Engineers, Steven C. Chapra, Raymond P. Canale, 5th Edition, 2011, Tata						
-	Mcgraw Hill, ISBN-10: 0-07-063416-5.						

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

MATHEMATICS FOR MACHINE LEARNING (GROUP B: GLOBAL ELECTIVE) (Theory) Course Code : 1865B17 CIE : 100 Marks Credits: L:T:P : 3:0:0 SEE : 100 Marks Course Code : 100 Marks Course Learning Objectives: The students will be able to 1 Understand the basic knowledge on the fundamental concepts of linear algebra that form foundation of machine intelligence. 2 Acquire practical knowledge of vector calculus and optimization to understand the machine learn algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of mach learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decis problems. Unit-I 07 Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Compleme Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit - II Vector Calculus and Continuous					Semester: V										
(Theory) Course Code : 100 Marks Credits: L:T:P : 3:0:0 SEE : 100 Marks Course Learning Objectives: The students will be able to SEE Duration : 3:0:0 More SEE 100 Marks Course Learning Objectives: The students will be able to 1 Understand the basic knowledge on the fundamental concepts of linear algebra that form foundation of machine intelligence. 2 Acquire practical knowledge or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of machine learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decis problems. Unit-I 07 Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Compleme Inner Product of Functions, Orthogonal Projections, Rotations,				MATHEMAT		E LEARNING									
Course Code : 18G5B17 CIE : 100 Marks Credits: L:T:P : 30:0 SEE : 100 Marks Total Hours : 39L SEE Duration : 3.00 Hours Course Learning Objectives: The students will be able to SEE Duration : 3.00 Hours Course Learning Objectives: The students will be able to Hours of machine intelligence.				(GROU	P B: GLOBAL ELI	ECTIVE)									
Credits: L:T:P : 3:0:0 SEE : 100 Marks Total Hours : 391 SEE Duration : 3.00 Hours Course Learning Objectives: The students will be able to Indextand the basic knowledge on the fundamental concepts of linear algebra that form foundation of machine intelligence. Acquire practical knowledge of vector calculus and optimization to understand the machine learn algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of mach learning. Analyze the appropriate mathematical techniques for classification and optimization of decis problems. 5 Analyze the appropriate mathematical techniques for classification and optimization of decis problems. Unit-I 07 Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Compleme Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. 07 Hrs Unit - II 07 Hrs Vector Calculus and Continuous Optimization: Intel Interization and Multivariate Taylor Series, Optimization. Unit - II 07 Hrs Orthogonal Projections, Rotation															
Total Hours : 39L SEE Duration : 3.00 Hours Course Learning Objectives: The students will be able to 1 Understand the basic knowledge on the fundamental concepts of linear algebra that form foundation of machine intelligence. Acquire practical knowledge of vector calculus and optimization to understand the machine learnin algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of machine learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decisi problems. Unit-I Of Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complemed Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit -I Of Hrs Vector Calculus and Continuous Optimization Inter I OT Hrs Sign colspan= 2 Unit - II OT Hrs Vector S			-				-								
Course Learning Objectives: The students will be able to 1 Understand the basic knowledge on the fundamental concepts of linear algebra that form foundation of machine intelligence. 2 Acquire practical knowledge of vector calculus and optimization to understand the machine learn algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of mach learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decise problems. Unit-I 07 Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Compleme Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit - II 07 Hrs Vector Calculus and Continuous Optimization Gradients of Matrices, Identities for Computing Gradiert Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. Unit - II Vector Calculus and Continuous Optimization Unit - III <td col<="" th=""><th></th><th></th><th>:</th><th></th><th></th><th></th><th></th><th></th></td>	<th></th> <th></th> <th>:</th> <th></th> <th></th> <th></th> <th></th> <th></th>			:											
1 Understand the basic knowledge on the fundamental concepts of linear algebra that form foundation of machine intelligence. 2 Acquire practical knowledge of vector calculus and optimization to understand the machine learn algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of mach learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decis problems. Unit-I Of Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit - II Of Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradiert Brobability and Distributions: Onstruction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit -IV Unit -IV Unit -IV) Ohid		s will be able to	SEE Duration	•	5.00 Hours							
foundation of machine intelligence. 2 Acquire practical knowledge of vector calculus and optimization to understand the machine learn algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of mach learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decise problems. Of Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit - II Of Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit - II 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradiert Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. Unit -III 08 Hrs <td <="" colspan="2" td=""><td></td><td>6</td><th>•</th><th></th><th></th><td>concepts of linear</td><td>· əla</td><td>ebra that form the</td></td>	<td></td> <td>6</td> <th>•</th> <th></th> <th></th> <td>concepts of linear</td> <td>· əla</td> <td>ebra that form the</td>			6	•			concepts of linear	· əla	ebra that form the					
2 Acquire practical knowledge of vector calculus and optimization to understand the machine learn algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of mach learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decise problems. Unit-I 07 Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complemed Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit - II 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradiert Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. Unit -II 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs <td>I</td> <td></td> <th></th> <th>-</th> <th>n the fundamental</th> <td>concepts of inteal</td> <td>arg</td> <td></td>	I			-	n the fundamental	concepts of inteal	arg								
algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of mach learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decis problems. 6 Unit-I 07 Hrs 7 Inear Algebra: 7 Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Compleme Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit – II 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradier Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. Unit –III 08 Hrs Probability and Distributions: 08 Hrs Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Unit –IV 08 Hrs	2				or calculus and ontir	nization to understa	nd th	he machine learning							
3 Use the concepts of probability and distributions to analyze possible applications of mach learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decis problems. 6 Unit-I 07 Hrs 7 Linear Algebra: 07 Hrs 8 Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complement 1 Unit – II 07 Hrs Vector Calculus and Continuous Optimization: 1 Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradiert 1 Unit – III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs	2			-	or calculus and optim	inzation to underste	ina u								
learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decise problems. 6 Unit-I 07 Hrs 1 Linear Algebra: 07 Hrs Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complemed Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradier Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. Unit –III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs	3			<u>^</u>	nd distributions to	analyze possible a	annlia	cations of machine							
4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decise problems. 6 Unit-I 07 Hrs 1 Linear Algebra: 07 Hrs Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complemed Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradiert Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Unit –IV 08 Hrs	U		leept	s of probability a	nd distributions to	unaryze possible a	ippin	cations of machine							
5 Analyze the appropriate mathematical techniques for classification and optimization of decise problems. 6 Unit-I 07 Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complement Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit – II O7 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradiert Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Unit –IV 08 Hrs	4		ncer	ts of regression and	estimation to solve a	problems of machin	e lea	rning							
problems. O7 Hrs Linear Algebra: 07 Hrs Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Compleme Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. 07 Hrs Vector Calculus and Continuous Optimization: 07 Hrs Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradier Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. Unit – III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Unit –IV 08 Hrs	-							-							
Unit-I 07 Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Compleme Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit – II 07 Hrs Vector Calculus and Continuous Optimization: 07 Hrs Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradier Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. 08 Hrs Probability and Distributions: 07 Nrs Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Unit –IV 08 Hrs	5	•	чрр	iopriate mathemati	cur teeninques 101 (and the and th	Pun								
Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complement Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit – II 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradient Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization: Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Unit – III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs		Problems.													
Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complement Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit – II 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradient Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization: Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Unit – III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs				l	Unit-I			07 Hrs							
Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complement Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit – II 07 Hrs Vector Calculus and Continuous Optimization: 07 Hrs Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradiert Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization: Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. 08 Hrs Probability and Distributions: 08 Hrs Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Unit –IV 08 Hrs	Line	ar Algebra:						·							
Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit – II 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradient Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization: Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Unit –III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Unit –IV 08 Hrs	Revi	ew of Vector	Spac	ces-Linear Independ	dence, Basis, Rank a	and Linear Mappin	gs. A	Affine Spaces, Inner							
Unit – II07 HrsVector Calculus and Continuous Optimization:Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing GradientBackpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, OptimizationUsing Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization.Unit –III08 HrsProbability and Distributions:Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform.Unit –IV08 HrsLinear Regression:	Prod	ucts, Lengths a	and]	Distances, Angles a	nd Orthogonality. O	rthonormal Basis, (Drtho								
Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradient Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Unit –III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs															
Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradient Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Unit –III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs Linear Regression: 08 Hrs	Inner	-		-											
Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Unit –III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs Linear Regression:		r Product of Fu	Incti	ons, Orthogonal Pro	jections, Rotations, S nit – II										
Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Unit –III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs Linear Regression:	Vect	r Product of Fu	nction	ons, Orthogonal Pro U Continuous Optimi	ojections, Rotations, S nit – II zation:	Singular Value Dec	ompo	osition. 07 Hrs							
Unit –III08 HrsProbability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform.Unit –IV08 HrsLinear Regression:08 Hrs	Vect Grad	r Product of Fu cor Calculus an lients of Vect	nction nd C	ons, Orthogonal Pro U: Continuous Optimiz /alued Functions,	ojections, Rotations, S nit – II zation: Gradients of Matri	Singular Value Dec	ompo Cor	mputing Gradients							
Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs Linear Regression:	Vect Grad Back	r Product of Fu cor Calculus and lients of Vector appropagation and	nd C tor-V	ons, Orthogonal Pro U Continuous Optimi Valued Functions, utomatic Differentia	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a	Singular Value Dec ices, Identities for and Multivariate Ta	Cor Vor S	mputing Gradients Series, Optimization							
Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs Linear Regression:	Vect Grad Back	r Product of Fu cor Calculus and lients of Vector appropagation and	nd C tor-V	ons, Orthogonal Pro U Continuous Optimi Valued Functions, utomatic Differentia t, Constrained Optim	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization and nization and Lagrang	Singular Value Dec ices, Identities for and Multivariate Ta	Cor Vor S	mputing Gradients Series, Optimization ex Optimization.							
Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs Linear Regression:	Vect Grad Back Usin	r Product of Fu cor Calculus an lients of Vect cpropagation an g Gradient Des	nd C tor-V nd A	ons, Orthogonal Pro U Continuous Optimi Valued Functions, utomatic Differentia t, Constrained Optim	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization and nization and Lagrang	Singular Value Dec ices, Identities for and Multivariate Ta	Cor Vor S	mputing Gradients Series, Optimization ex Optimization.							
Inverse Transform. Unit –IV 08 Hrs Linear Regression:	Vect Grad Back Usin	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Des	nd C tor-V nd A scent	ons, Orthogonal Pro U Continuous Optimi Valued Functions, utomatic Differentia t, Constrained Optim Un butions:	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C	Conve	mputing Gradients Series, Optimization ex Optimization. 08 Hrs							
Unit –IV08 HrsLinear Regression:08	Vect Grad Back Usin Prob	r Product of Fu cor Calculus and lients of Vecto coropagation and g Gradient Des coability and Distruction of a I	nd C tor-V nd A scent istri Prob	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discr	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum	Cor ylor S Conve	mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and							
Linear Regression:	Vect Grad Back Usin Prob Cons Baye	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese pability and Distruction of a I estruction of a I	nd C tor-V nd A scent istri Prob	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discr	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum	Cor ylor S Conve	mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and							
	Vect Grad Back Usin Prob Cons Baye	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese pability and Distruction of a I estruction of a I	nd C tor-V nd A scent istri Prob	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discussion Distribution, O	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum	Cor ylor S Conve	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables							
	Vect Grad Back Usin Prob Cons Baye Inver	r Product of Fu cor Calculus and lients of Vecto appropagation and g Gradient Dese Dability and Distruction of a H es' Theorem, Conservation of a H rse Transform.	nd C tor-V nd A scent istri Prob	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discussion Distribution, O	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum	Cor ylor S Conve	mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and							
Problem Formulation, Parameter Estimation, Bayesian Linear Regression, Maximum Likelihood	Vect Grad Back Usin Prob Cons Baye Inver	r Product of Fu for Calculus and lients of Vector g Gradient Des pability and Di struction of a I es' Theorem, C rse Transform.	nd C tor-V ad A scent istri istri Gaus	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discussian Distribution, O	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the I nit –IV	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family	Corve	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs							
	Vect Grad Back Usin Prob Cons Baye Inver	r Product of Fu cor Calculus and lients of Vecto appropagation and g Gradient Des Dability and Di struction of a H es' Theorem, O rse Transform.	inction nd C tor-V ad A scent istri istri Gaus	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discussian Distribution, O	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the I nit –IV	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family	Corve	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs							
	Vect Grad Back Usin Prob Cons Baye Inver Line Prob Orthe	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese pability and Distruction of a I estruction of a I estruc	Inctional of the second of the	ons, Orthogonal Pro U: Continuous Optimi: Valued Functions, utomatic Differentia t, Constrained Optim Ui butions: ability Space, Discussian Distribution, O Ui Parameter Estima	pjections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the I nit –IV tion, Bayesian Line	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family	Corve	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs							
•	Vect Grad Back Usin Prob Cons Baye Inver Line Prob Orthe Dens	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Des bability and Distruction of a H es' Theorem, C rse Transform. car Regression lem Formulation ogonal Projector	inction nd C tor-V nd A scent istri istri istri ion, ion, ion, n wi	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, C Un Parameter Estima th Gaussian Mixtu	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models:	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M	Corylor S conve Rule , Cha	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs 08 Hrs hum Likelihood as							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia	Vect Grad Back Usin Prob Cons Baye Inver Line Prob Ortho Dens Gaus	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese oability and Distruction of a H estruction of a H estruc	inction nd C tor-V nd A scent istri istri istri ion, ion, ion, n wi	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, C Un Parameter Estima th Gaussian Mixtu	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models:	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M	Corylor S conve Rule , Cha	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs 08 Hrs hum Likelihood as							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective.	Vect Grad Back Usin Prob Cons Baye Inver Line Prob Ortho Dens Gaus	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese oability and Distruction of a H estruction of a H estruc	inction nd C tor-V nd A scent istri istri istri ion, ion, ion, n wi	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discu- sian Distribution, C Un Parameter Estima th Gaussian Mixtu el, Parameter Learn	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M	Corylor S conve Rule , Cha	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs hum Likelihood as hum, Latent-Variables							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. 09 Hrs	Vect Grad Back Usin Prob Cons Baye Inver Prob Orthe Dens Gaus Persp	r Product of Fu cor Calculus and lients of Vector corpopagation and g Gradient Des oability and Distruction of a H es' Theorem, O rse Transform. ear Regression lem Formulation ogonal Projection sity Estimation ssian Mixture H pective.	inction nd C tor-V nd A scent istri istri Gaus : ion, ion, ion. Mod	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discr sian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Al	Corylor S conve Rule , Cha	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs hum Likelihood as hum, Latent-Variables							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA):	Vect Grad Back Usin Prob Cons Baye Inver Inver Prob Ortho Dens Gaus Persp	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Dese oability and Distruction of a H ess' Theorem, O rse Transform. Car Regression lem Formulation ogonal Projection sity Estimation sian Mixture H pective.	inction nd C tor-V nd A scent istri istri Gaus ion, ion, ion. Mod	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim t, Constrained Optim Un butions: ability Space, Discussian Distribution, O Ui Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the I nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V I Component Analys)	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA):	Conve ylor S Conve Rule , Cha laxim	Opsition. O7 Hrs mputing Gradients Series, Optimization Series, Optimization. 08 Hrs ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs num Likelihood as 08 Hrs hum, Latent-Variable 09 Hrs							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation at the setting of the setting of the setting.	Vect Grad Back Usin Prob Cons Baye Inver Inver Prob Ortho Dens Gaus Persp Prob	r Product of Fu cor Calculus and lients of Vector corpopagation and g Gradient Des oability and Distruction of a H es' Theorem, O rese Transform. Car Regression lem Formulation ogonal Projector sity Estimation ssian Mixture H pective.	inction nd C tor-V nd A scent istri istri Prob Gaus :: ion, ion. n wi Mod	ons, Orthogonal Pro U: Continuous Optimiz Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Per	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V I Component Analys spective, Projection	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen	Corve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation a Low-Rank Approximations, PCA in High Dimensions, Key Steps of PCA in Practice, Latent Varia	Vect Grad Back Usin Prob Cons Baye Inver Inver Prob Gaus Persp Dime Prob	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Dess oability and Distruction of a H ess' Theorem, O rse Transform. Car Regression lem Formulatt ogonal Projections sian Mixture H pective. ensionality Re lem Setting, M -Rank Approx	inction nd C tor-V nd A scent istri istri Prob Gaus :: ion, ion. n wi Mod	ons, Orthogonal Pro U: Continuous Optimiz Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Per	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V I Component Analys spective, Projection	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen	Corve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation a Low-Rank Approximations, PCA in High Dimensions, Key Steps of PCA in Practice, Latent Varia Perspective.	Vect Grad Back Usin Prob Cons Baye Inver Inver Prob Gaus Persp Dime Prob Low Persp	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese pability and Distruction of a H ess' Theorem, Of rise Transform. Car Regression lem Formulat ogonal Projections sian Mixture H pective. ensionality Re lem Setting, M -Rank Approx pective.	inction nd C tor-V nd A scent istri Prob Gaus istri ion, ion, ion, ion, ion, Mod	ons, Orthogonal Pro U: Continuous Optimi: /alued Functions, utomatic Differentia t, Constrained Optimi butions: ability Space, Discr sian Distribution, O Ui Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Per tions, PCA in High	ojections, Rotations, Solution, Internet Solution: Gradients of Matriation, Linearization and Lagrangenit and Lagrangenit and Lagrangenit and Continuous Conjugacy and the Herrice and Continuous Conjugacy and the Herrice Models: The	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen	Corve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation a Low-Rank Approximations, PCA in High Dimensions, Key Steps of PCA in Practice, Latent Varia Perspective. Classification with Support Vector Machines:	Vect Grad Back Usin Prob Cons Baye Inver Prob Orthe Dens Gaus Persp Prob Class	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Des oblity and Distruction of a H es' Theorem, O rse Transform. Car Regression lem Formulat ogonal Projection sity Estimation sian Mixture H pective. ensionality Re lem Setting, M -Rank Approx pective. sification with	inction nd C tor-V nd A scent istri istri Gaus Gaus Caus Caus Caus Caus Caus Caus Caus C	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Persions, PCA in High poport Vector Mach	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I <u>Init –V</u> I Component Analysis spective, Projection n Dimensions, Key mines:	Singular Value Dec aces, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen Steps of PCA in F	Conve ylor S Conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables of Wariables 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and ce, Latent Variable							
Orthogonal Projection. Density Estimation with Gaussian Mixture Models:	Vect Grad Back Usin Prob Cons Baye Inver	r Product of Fu cor Calculus and lients of Vecto appropagation and g Gradient Dese Dability and Distruction of a H es' Theorem, Conservation of a H rse Transform.	nd C tor-V nd A scent istri Prob	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discussion Distribution, C	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum	Cor ylor S Conve	07 Hrs 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables							
Density Estimation with Caussian Mixture Models.	Vect Grad Back Usin Prob Cons Baye Inver Line Prob Orthe	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese pability and Distruction of a I estruction of a I estruc	Inctional of the second of the	ons, Orthogonal Pro U: Continuous Optimi: Valued Functions, utomatic Differentia t, Constrained Optim Ui butions: ability Space, Discussian Distribution, O Ui Parameter Estima	pjections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the I nit –IV tion, Bayesian Line	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family	Corve	05 ition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs							
Density Estimation with Gaussian Mixture Woulds.	Vect Grad Back Usin Prob Cons Baye Inver Inver Line Prob	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese pability and Distruction of a I estruction of a I estruc	Inctional of the second of the	ons, Orthogonal Pro U: Continuous Optimi: Valued Functions, utomatic Differentia t, Constrained Optim Ui butions: ability Space, Discussian Distribution, O Ui Parameter Estima	pjections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the I nit –IV tion, Bayesian Line	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family	Corve	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs							
•	Vect Grad Back Usin Prob Cons Baye Inver Inver Line Prob Orthe Dens	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Des bability and Distruction of a H es' Theorem, C rse Transform. car Regression lem Formulation ogonal Projector	inction nd C tor-V nd A scent istri istri istri ion, ion, ion, n wi	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, C Un Parameter Estima th Gaussian Mixtu	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models:	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M	Corylor S conve Rule , Cha	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs 08 Hrs hum Likelihood as							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia	Vect Grad Back Usin Prob Cons Baye Inver Line Prob Ortho Dens Gaus	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese oability and Distruction of a H estruction of a H estruc	inction nd C tor-V nd A scent istri istri istri ion, ion, ion, n wi	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, C Un Parameter Estima th Gaussian Mixtu	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models:	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M	Corylor S conve Rule , Cha	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs 08 Hrs hum Likelihood as							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. 09 Hrs	Vect Grad Back Usin Prob Cons Baye Inver Line Prob Orthe Dens Gaus Persp	r Product of Fu cor Calculus and lients of Vector corpopagation and g Gradient Des oability and Distruction of a H es' Theorem, O rse Transform. ear Regression lem Formulation ogonal Projection sity Estimation ssian Mixture H pective.	inction nd C tor-V nd A scent istri istri Gaus : ion, ion, ion. Mod	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discr sian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Al	Corylor S conve Rule , Cha	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs hum Likelihood as hum, Latent-Variables							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA):	Vect Grad Back Usin Prob Cons Baye Inver Inver Line Prob Ortho Dens Gaus Persp	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Dese oability and Distruction of a H ess' Theorem, O rse Transform. Car Regression lem Formulation ogonal Projection sity Estimation sian Mixture H pective.	inction nd C tor-V nd A scent istri istri Gaus ion, ion, ion. Mod	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim t, Constrained Optim Un butions: ability Space, Discussian Distribution, O Ui Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the I nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V I Component Analys)	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA):	Conve vlor S conve Rule , Cha laxim	Opsition. O7 Hrs mputing Gradients Series, Optimization Series, Optimization. 08 Hrs ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs num Likelihood as 08 Hrs hum, Latent-Variable 09 Hrs							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation at the provide temperature of temperature	Vect Grad Back Usin Prob Cons Baye Inver Prob Ortho Dens Gaus Persp Prob	r Product of Fu cor Calculus and lients of Vector corpopagation and g Gradient Des oability and Distruction of a H es' Theorem, O rese Transform. Car Regression lem Formulation ogonal Projector sity Estimation ssian Mixture H pective.	inction nd C tor-V nd A scent istri istri Prob Gaus :: ion, ion. n wi Mod	ons, Orthogonal Pro U: Continuous Optimiz Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Per	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V I Component Analys spective, Projection	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen	Corve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation a Low-Rank Approximations, PCA in High Dimensions, Key Steps of PCA in Practice, Latent Varia	Vect Grad Back Usin Prob Cons Baye Inver Inver Line Prob Gaus Persp Dime Prob	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Dess oability and Distruction of a H ess' Theorem, O rse Transform. Car Regression lem Formulatt ogonal Projections sian Mixture H pective. ensionality Re lem Setting, M -Rank Approx	inction nd C tor-V nd A scent istri istri Prob Gaus :: ion, ion. n wi Mod	ons, Orthogonal Pro U: Continuous Optimiz Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Per	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V I Component Analys spective, Projection	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen	Corve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation a Low-Rank Approximations, PCA in High Dimensions, Key Steps of PCA in Practice, Latent Varia Perspective. Perspective	Vect Grad Back Usin Prob Cons Baye Inver Inver Prob Gaus Persp Dime Prob Low Persp	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese pability and Distruction of a H ess' Theorem, Of rise Transform. Car Regression lem Formulat ogonal Projections sian Mixture H pective. ensionality Re lem Setting, M -Rank Approx pective.	inction nd C tor-V nd A scent istri istri Prob Gaus istri ion, ion, ion, ion, Mod educ Maxi imat	ons, Orthogonal Pro U: Continuous Optimi: /alued Functions, utomatic Differentia t, Constrained Optimi butions: ability Space, Discr sian Distribution, O Ui Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Per tions, PCA in High	ojections, Rotations, Solution, Internet Solution: Gradients of Matriation, Linearization and Lagrangenit and Lagrangenit and Lagrangenit and Continuous Conjugacy and the Herrice and Continuous Conjugacy and the Herrice Models: The	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen	Corve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation a Low-Rank Approximations, PCA in High Dimensions, Key Steps of PCA in Practice, Latent Varia Perspective. Classification with Support Vector Machines:	Vect Grad Back Usin Prob Cons Baye Inver Prob Orthe Dens Gaus Persp Prob Cow- Persp Clas	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Des oblity and Distruction of a H es' Theorem, O rse Transform. Car Regression lem Formulat ogonal Projection sity Estimation sian Mixture H pective. ensionality Re lem Setting, M -Rank Approx pective. sification with	inction nd C tor-V nd A scent istri istri Gaus Gaus Caus Caus Caus Caus Caus Caus Caus C	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Persions, PCA in High poport Vector Mach	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I <u>Init –V</u> I Component Analysis spective, Projection n Dimensions, Key mines:	Singular Value Dec aces, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen Steps of PCA in F	Conve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables of Wariables 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and ce, Latent Variable							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation a Low-Rank Approximations, PCA in High Dimensions, Key Steps of PCA in Practice, Latent Varia Perspective.	Vect Grad Back Usin Prob Cons Baye Inver Inver Prob Orthe Dens Gaus Persp Dime Prob Low- Persp Clas Sepa	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Dess bability and Distruction of a H ess' Theorem, O rise Transform. Car Regression lem Formulation ogonal Projections sian Mixture H pective. ensionality Re lem Setting, N -Rank Approx pective. sification with arating Hyperp	inction nd C tor-V nd A scent istri istri ion, ion, ion, ion, Mod educ Aaxi imat a Suj blane	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Persions, PCA in High poport Vector Mach	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I <u>Init –V</u> I Component Analysis spective, Projection n Dimensions, Key mines:	Singular Value Dec aces, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen Steps of PCA in F	Conve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables of Wariables 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and ce, Latent Variable							

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Explore the fundamental concepts of mathematics involved in machine learning techniques.						
CO2:	Orient the basic concepts of mathematics towards machine learning approach.						
CO3:	Apply the linear algebra and probability concepts to understand the development of different						
	machine learning techniques.						
CO4:	Analyze the mathematics concepts to develop different machine learning models to solve practical						
	problems.						

Refere	Reference Books							
1	Mathematics for Machine Learning, M. P. Deisenroth, A. A. Faisal and C. S. Ong, 1st Edition,							
1	2020, Cambridge University Press.							
2	Linear Algebra and Learning from Data, Gilbert Strang, 1st Edition, 2019, Wellesley Cambridge							
4	Press, ISBN: 0692196382, 9780692196380.							
3	Introduction to Machine Learning, Ethem Alpaydin, 2 nd Edition, 2010, PHI Publication, ISBN-							
5	978-81-203-4160-9.							
4	The Elements of Statistical Learning, Trevor Hastie, Robert Tibshirani and Jerome Friedman, 2 nd							
4	Edition, 2009, Springer, ISBN: 978-0-387-84857-0, 978-0-387-84858-7.							

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

			V Semester				
			ENGINEERING ECONOMY				
		(0	ROUP B: GLOBAL ELECTIVI	E)			
		I	(Theory)		1	[
Course Code	:	18G5B18		CIE	:	100 Marks	
Course Code	:	18G5B02		SEE	:	100 Marks	
Total Hours	:	39L		SEE Duration	:	03 Hours	
Course Learnin	ng O	bjectives: Stud	lents are expected to				
1. To incul	cate	an understandi	ng of concept of money and its imp	portance in the ev	valu	ation of	
projects.							
2. Analyze	the p	present worth o	f an asset.				
3. Evaluate	the	alternatives ba	sed on the Equivalent Annual Wort	h.			
4. Illustrate	e con	cept of money	and its importance in evaluating th	e projects.			

Unit – I	07 Hrs
Introduction: Principles of Engineering Economy, Engineering Decision- Makers, Engineering	ering and
Economics, Problem solving and Decision making, Intuition and Analysis, Tactics and Strategy.	
Interest and Interest Factors: Interest rate, Simple interest, Compound interest, Cash- flow	diagrams,
Exercises and Discussion.	
Unit – II	07 Hrs
Present worth comparison : Conditions for present worth comparisons, Basic Present worth com	nparisons,
Present worth equivalence, Net Present worth, Assets with unequal lives, infinite lives, Futu	re worth
comparison, Pay – back comparison, Exercises, Discussions and problems.	
Unit – III	07 Hrs
Equivalent annual worth comparisons: Equivalent Annual Worth Comparison methods, Situ	ations for
Equivalent Annual Worth Comparison Consideration of asset life, Comparison of assets with	equal and
unequal lives, Use of sinking fund method, Exercises, Problems.	
Rate of return calculations: Rate of return, Minimum acceptable rate of return, IRR, IRR miscon	nceptions,
Problems.	
Unit – IV	06 Hrs
Replacement Analysis: Replacement studies, replacement due to deterioration, obsolescence, in	adequacy,
economic life for cyclic replacements, Exercises, Problems.	
Break- Even Analysis: Basic concepts, Linear Break- Even analysis, Exercises, Problems.	
Unit – V	06 Hrs
Depreciation: Causes of Depreciation, Basic methods of computing depreciation charges, I	Exercises,
Problems.	
Effects of inflation: Causes, consequences and control of inflation, inflation in economic analysis	8.
Course Outcomes: After going through this course the student will be able to	
CO 1: Explain the time value of money, and how to sketch the cash flow diagram	

	1
CO 2:	Compare the alternatives using different compound interest factors, Select a feasible alternative
	based on the analysis.
CO 3:	Formulate a given problem for decision making

CO 4:	Evaluate alternatives and develop capital budget for different scenarios
	Drandate anternatives and develop capital badget for anterent section

Referen	Reference Books:							
1.	Engineering Economy, Riggs J.L., 5th Edition, Tata McGraw Hill, ISBN 0-07-058670-5							
2.	Engineering Economics, R Panneerselvam, Eastern Economy Edition 2001, PHI, ISBN – 81-							
	203-1743-2.							
3.	Cost Accounting, Khan M Y, 2 nd Edition, 2000, Tata McGraw-Hill, ISBN 0070402248							
4.	Mechanical Estimating & Costing, T.R.Banga, S.C.Sharma, 16th Edition, 2011, Khanna							
	Publishers, ISBN 8174091009							

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	1	1	-	-	-	-	-	-	-	-	1
CO2	2	1	1	-	-	-	-	-	-	-	-	-
CO3	1	1	1	-	1	-	-	-	-	-	-	-
CO4	-	1	2	-	1	1	-	-	-	-	1	-

		Semester: VI							
	INTRODUCTIO	ON TO MANAGEME	NT AND ECON	IOM	ICS				
(Theory)									
Course Code	: 18HEM61	(CIE Marks	:	100 Marks				
Credits: L:T:P	: 3:0:0	S	SEE Marks	:	100 Marks				
Hours : 36L SEE Duration : 3.00 Hours									
		udents will be able to							
	evolution of manag								
2 Acquire knowledge of the functions of Management.									
		s of Micro economics a			1				
4 Understand the	concepts of macroe	economics relevant to c	lifferent organiza	ationa	l contexts.				
		UNIT-I			7 Hrs				
Introduction to M	nogomont. Mono	gement Functions, Role	o & Skille Man	aam					
					h: Operations Research,				
	e	lies, Contemporary Ap							
		UNIT-II	<u>, , , , , , , , , , , , , , , , , , , </u>		7 Hrs				
Foundations of P	anning: Types of	f Goals & Plans, App	proaches to Setti	ng G	oals & Plans, Strategic				
		mpetitive Strategies.		C					
Organizational Str	ructure & Design:	Overview of Designin	g Organizational	Struc	cture: Work				
		hain of Command, Spa		ntrali	zation &				
Decentralization, Fo	ormalization, Mech	anistic & Organic Stru	ctures.		I				
UNIT-III 8 Hrs									
					eds Theory, McGregor's				
-		-	ontemporary The	eories	of Motivation: Adam's				
Equity & Vroom's		eories: Ohio State & U	niversity of Miel	higon	Studios Plaka &				
0		cy Theories of Leaders	•	•					
		eadership: Transaction							
Leudersnip, Conten	ipolary views of E	UNIT-IV		uona	7 Hrs				
Importance of Eco	onomics.Microecon		nomics.Theories	and	Models to Understand				
Economic Issues, An									
			Services, Price E	lastic	ity of Demand and Price				
Elasticity of Supp	ly,Elasticity and	Pricing, Changes in In	ncome and Pric	es A	Affecting Consumption				
Choices, Monopolis	tic Competition,Oli	igopoly.							
		UNIT-V			7 Hrs				
		s and inflation, Exchang			X				
		,Money and banks,Inte							
					el, The AS-AD-model,				
	esian model, The n	eo-classical synthesis,	Exchange rate de	eterm	ination and the Mundell-				
Fleming model									
Course Outeen	oge After complete	ing the course the sta	donte will be ab	lo to					
		ing the course, the stu			os of an organization				
CO1: Explain the	principles of mana	agement theory & recog	gnize the characte	eristio	es of an organization. nanagement and design				

CO2:	Demonstrate the importance of key performance areas in strategic management and design
	appropriate organizational structures and possess an ability to conceive various organizational
	dynamics.
CO3:	Select & Implement the right leadership practices in organizations that would enable systems orientation.

Refe	erence Books
1.	Stephen Robbins, Mary Coulter & NeharikaVohra, Management, Pearson Education Publications,
	10 th Edition, ISBN: 978-81-317-2720-1.
2.	James Stoner, Edward Freeman & Daniel Gilbert Jr, Management, PHI, 6th Edition, ISBN: 81-203-
	0981-2.
3.	Steven A. Greenlaw , David Shapiro, Principles of Microeconomics, 2nd Edition, ISBN: 978-1-947172-
	34-0
4.	Dwivedi.D.N, Macroeconomics: Theory and Policy, McGraw Hill Education; 3rd
	Edition,2010,ISBN-13: 978-0070091450.
5.	Peter Jochumzen, Essentials of Macroeconomics, 1 st Edition., 2010, ISBN:978-87-7681-558-5.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3		1			3		3	3	3	3	3
CO2	3	2						1	2	3	2	2
CO3			1			2		2	2	3	3	3
CO4	2		2			3	1	3	2	2	3	3

					S	Semester: V	I			
			С	OMPUTE			ND PROTOCOL	S		
		-			(The	ory & Pra	ctice)			
Course Code: : 18EC62 CIE Marks : 100+50 Mar										
	dits: L:T:P	:	3:0:1				SEE Marks	:		
Hou		:		+ 33P			SEE Duration	:	03+03 Hours	
Cou	rse Learning									
1	Develop awar					U 1	•			
2 Analyze various aspects involved in multiple accesses, various data switching techniques.										
3 Explain protocols operating at different layers of computer networks										
 4 Analyze various data compression techniques and security issues. 5 Analyze various aspects involved in network control and traffic management. 										
5	Analyze vario	ous a	spects	involved	in netwo	ork control a	ind traffic managen	nent	•	
					UNI	тт			07Hrs	
~				.						
Netv Serv	works and Phys	sical terne	Media et Bacl	a, Delay ar kbones, Na	nd Loss APs, and	in Packet-S d ISPs. Netv		Prot	tocol Layers and Their /IP. Physical Layer:	
				<u> </u>	UNIT				07 Hrs	
Ran LAN	dom Access pro	otoc d Ał	ols RP, IE	EE 802.3 I	LANs, E Frame R	Ethernet, Hu elay. IEEE	bs, Bridges, and Sv		Iltiple Access Protocols	
	work Layer-Lo				UNIT				07 Hrs	
IPv6 Forv		ructi	ire, A	ldress Spa	ce of IP	V6, Transit	ion from IPV4 to II ting. Datagram net		ks; virtual circuits. RIP,	
					UNIT	'-IV			07 Hrs	
UDI Con cont	P, TCP. gestion control	and Fast	resou t retrai	rce allocat ismit. Fast	ion-Issu recover	es in resour ry. Rate-bas	ce allocation, Queu	iing	disciplines congestion Congestion avoidance	
14 1	4				UNI		and the PATE	. 1	08 Hrs	
store Network Network serv and	ed video: UDF works. Case stu work support fo ice, Different s Call admission	P Studies or M ervio	reamir : Netf ultime	g, HTTP ix, You T dia: Dime	Stream ube and nsioning	ing, Adapti Kankan g Best-Effor	ve steaming and l t Networks. Provid	DAS	Applications, Streaming SH, Content distribution multiple classes of Resource Reservation	
	ctical's: CCN		C	• .•						
	ctical's: Comp Port J: Evnori									
	Part –I: Experi I)Implement Bi				- progra	annning.				
	b)Character stu									
		-			or error	detection us	ing C programs.			
	mplement Enci		•							
							is using C program			
	ruskal's Algori		, . ,			uigoituili		•		
-, ••	ii) Prim's A		rithms							
Elec	tronics & Comm								Page 25	
	$\ldots \ldots $									

4) Implement STOP and WAIT protocol using socket programming concept using C Program.5) Implement RSA algorithm using C program.

Part-II: Experiments that may be carried out using QualNet/NS-3/Packet Tracer

- 1 Simulate & Analyze CSMA/CD and CSMA/CA Protocols.
- 2 Test and verify Network configurations using Packet Tracer.
- 3 Configure Inter VLAN network using Packet Tracer
- 4 Configure and test a given network using Packet Tracer

Simulation of congestion control algorithms using NS-3

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Acquire the knowledge of network architecture, topologies and security issues.								
CO2:	Design a network for given configuration by assigning IP addresses.								
CO3:	Analyze various aspects involved in network control and traffic management								
CO4:	Analyze the performance of various scheduling algorithms								

Reference Books

1.	Computer Networks- A System Approach, Larry L Peterson, Bruce S Davie, 4 th edition, 2007,
	ELSEVIER publication, ISBN: 978-0123705488
2.	Data Communication and Networking, B Forouzan, 4th Edition, 2006, TMH, ISBN: 0-07-010829-3
3.	Computer Networks, James F. Kurose, Keith W. Ross, 2 nd Edition, 2003, Pearson Education, ISBN: 0199217637
4.	Computer Communication Networks, Andrew S Tanenbaum and David J Wetherall, 5 th Edition, 2010, Person Education. ISBN :978-0-13-212695-3
5.	Multimedia Networks: Protocols, Design and Application Hans W. Barz, Gregory A.

Bassett, WILEY publication, ISBN: 978-1-119-09013-7

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	-	-	-	-	-	-	-	1	-	1		
CO2	3	2	2	1	-	-	-	-	-	1	-	1		
CO3	3	3	2	2	2	-	-	-	-	1	-	1		
CO4	3	3	3	3	2	_	_	-	_	1	-	1		

Low-1 Medium-2 High-3

				Semester:								
COMMUNICATION SYSTEMS- 2 (Theory & Practice)												
C			105062	(Theory & Pr	,		100 50 34					
	rse Code lits: L:T:P	:	18EC63		CIE	:	100+50 Ma					
		:	3:0:1 36L+33P		SEE SEE Duration	:	100+50 Ma 03+03 Hou					
	l Hours			udents will be able t		:	03+03 Hou	rs				
1						·ks a	nd the conce	nts of signal				
	Identify the digital communication system as a series of functional blocks and the concepts of signal and channel representation.											
2	Apply the concept of signal conversion to symbols and symbol processing in transmitter and receiver blocks.											
3	Compute performance issues and parameters for symbol processing and recovery in ideal and corrupted channel conditions.											
4	Compute and mitigate for performance parameters in corrupted and distorted channel conditions.											
				UNIT-I				09 Hrs				
Quad Geon staten Geon	Digital Communication Transmitter: Digital communication blocks and impediments. Bandpass and equivalent low pass signal representation, Quadrature Sampling of bandpass signals, Bandpass Sampling Theorem statement with Applications. Geometric Representation of Signals in terms of a low pass basis set, Gram Schmidt procedure, conversion statement to bandpass basis set. Geometric representation of signals: Baseband modulated signals with examples Bandpass band limited signals - BPSK, QPSK, M-PSK, M- QAM. Transmitter Architectures and PSD,											
Powe	er limited – FS	K, E	PSK, MSK an	d applications.								
			gh AWGN Cl	UNIT-II				09 Hrs				
binar Cohe error. Cohe	y signaling, Pr erent demodu erent Demodu	robal Iati o I lati o	oility of error f on scheme –	or binary baseband BPSK, QPSK, BFS	rry signals with AW pulses (Line codes). SK Receiver Archite M-PAM, M-PSK and	ecture	e, Probability	y of symbol				
11000	ability of cirol	thee	se signais, Low	UNIT-III				07 Hrs				
Symb (With Com Inter	bol representa hout derivation munication tl Symbol Inter	ition, 1). h rou feren	Block diagr	ams treatment of ited Channels: Dig ign for Band limite	on-Coherent demodu Transmitter and Re ital Transmission thr d ideal channel with	eceiv ougł	er, Probabili n Band limite	ity of error d channels -				
Signa		Band			SI – Correlative cod	ling,	DB and MD	B, with and				
				UNIT-IV				07 Hrs				
Likel		e de	coding – Viter	rbi search Algorithn	ansfer function and d with Hard and soft							
				UNIT-V				07 Hrs				
Hopp Spread Spect	ONIT-V 07 Hrs Principles of Spread Spectrum (SS) Concept of Spread Spectrum, Direct Sequence/SS, Frequency Hopped SS, Processing Gain, Interference, and probability of error statement only. PN sequences for Spread Spectrum – M- sequences with Properties; Gold, Kasami sequences with basic properties. Spread Spectrum Synchronization (Block diagram treatment) - Code Acquisition and Tracking.											
			cation system ude Modulatio	s 2 Lab on and Demodulation	n using MATLAB							

- b) Pulse Amplitude Modulation and Demodulation using DSP processor
- 2. a) ASK Modulation and Demodulation using MATLAB
 - b) ASK Modulation and Demodulation using DSP processor.
- 3. a) BFSK Modulation and Demodulation using MATLABb) BFSK Modulation and Demodulation using DSP processor
- 4. a) BPSK Modulation and Demodulation using MATLABb) BPSK Modulation and Demodulation using DSP processor
- 5. a) QPSK Modulation and Demodulation using MATLABb) QPSK Modulation and Demodulation using DSP processor
- 6. MSK Modulation and phase trellis using MATLAB
- 7. QAM modulation and demodulation using MATLAB Communication systems toolbox
- 8. a) Duobinary and modified duobinary coding with and without precoding using MATLABb) Generation of PN Sequences for spread spectrum communication using MATLAB
- 9. a) Convolution encoding for a given input sequence using MATLAB
 - b) Convolution decoding using Viterbi hard decision decoding using MATLAB

Simulation of direct sequence Spread Spectrum and Frequency Hopped Spread Spectrum using MATLAB

Cours	Course Outcomes: After completing the course, the students will be able to									
CO1:	Associate and apply the concepts of Bandpass sampling to well specified signals and channels.									
CO2:	Analyze and compute performance parameters and transfer rates for low pas and bandpass symbol									
	under ideal and corrupted non-band limited channels.									
CO3:	Test and validate symbol processing and performance parameters at the receiver under ideal and									
	corrupted bandlimited channels.									
CO4:	Demonstrate by simulation and emulation bandpass signals subjected to convolution coding and									
	symbol processed at transmitter and correspondingly demodulated and estimated at receiver after									
	passing through a corrupted channel.									

Reference Books

Iter	chere books
1.	Digital Communication Systems, Simon Haykin ,1 st Edition, 2013, John Wiley and sons, ISBN-978
	81 265 2151 7.
2.	Fundamentals of Communication Systems, John G. Proakis, Masoud Salehi, 2nd Edition, 2014,
	Pearson Educations, ISBN: 978-0-1333-5485-0
3.	Modern Digital and Analog communication Systems, B.P.Lathi and Zhi Ding, 4 th Edition, 2010,

Oxford University Press, , ISBN: 9780198073802.
4. Digital Communications, Ian A. Glover, Peter M. Grant, 3rd Edition, 2010, Pearson Educations, ISBN:978-0-273-71830-7

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50(T) + 30(Q) + 20(EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	-	-	3	-	-	1	-	1	-	1		
CO2	3	2	2	1	3	-	-	1	-	1	-	1		
CO3	3	3	2	2	3	-	-	1	-	1	-	1		
CO4	3	3	3	3	3	-	-	1	-	1	-	1		

Low-1 Medium-2 High-3

	Semester: VI												
	Minor Project												
Cou	rse Code	:	18EC64		CIE	:	50 Marks						
Cred	lits: L:T:P	:	0:0:2		SEE	:	50 Marks						
Hou	rs	:	26P		SEE Duration	:	02 Hours						
Cou	Course Learning Objectives: To enable the students to:												
	Knowledge	4 <i>p</i> j	plication: Ac	quire the ability to make	links across	dif	ferent areas of						
1	knowledge a	nd	to generate, o	levelop and evaluate ideas	s and informati	ion	so as to apply						
	these skills to	o th	e project task										
2	Communicat	tion	n: Acquire th	e skills to communicate	effectively and	l to	present ideas						
4	clearly and c	ohe	erently to a sp	ecific audience in both the	written and ora	al fo	orms.						
3	Collaboratio	n:	Acquire coll	aborative skills through	working in a	te	am to achieve						
3	common goals.												
4	Independent	L	earning: Lea	arn on their own, refle	ct on their le	eari	ning and take						
4	appropriate action to improve it.												

Guidelines for Minor Project

- 1. The minor project is to be carried out individually or by a team of two-three students.
- 2. Each student in a team must contribute equally in the tasks mentioned below.
- 3. Each group has to select a current topic that will use the technical knowledge of their program of study after intensive literature survey.
- 4. The project should result in system/module which can be demonstrated, using the available resources in the college.
- 5. The CIE evaluation will be done by the committee constituted by the department. The committee shall consist of respective guide & two senior faculty members as examiners. The evaluation will be done for each student separately.
- 6. The final copy of the report should be submitted after incorporation of any modifications suggested by the evaluation committee.

The minor-project tasks would involve:

- 1. Carry out the Literature Survey of the topic chosen.
- 2. Understand the requirements specification of the minor-project.
- 3. Detail the design concepts as applicable through appropriate functional block diagrams.
- 4. Commence implementation of the methodology after approval by the faculty.
- 5. Conduct thorough testing of all the modules developed and carry out integrated testing.
- 6. Demonstrate the functioning of the minor project along with presentations of the same.
- 7. Prepare a project report covering all the above phases with proper inference to the results obtained.
- 8. Conclusion and Future Enhancements must also be included in the report.

The students are required to submit the report in the prescribed format provided by the department.

Course	Outcomes: After completing the course, the students will be able to
CO 1:	Interpreting and implementing the project in the chosen domain by applying the
	concepts learnt.
CO 2:	The course will facilitate effective participation by the student in team work and
	development of communication and presentation skills essential for being part of any
	of the domains in his / her future career.
CO 3:	Appling project life cycle effectively to develop an efficient product.
CO 4:	Produce students who would be equipped to pursue higher studies in a specialized
	area or carry out research work in an industrial environment.

Scheme of Evaluation for CIE Marks:

Evaluation will be carried out in three phases:

Phase	Activity	Weightage
Ι	Synopsis submission, approval of the selected topic, Problem	10M
	definition, Literature review, formulation of objectives, methodology	
II	Mid-term evaluation to review the progress of implementation,	15M
	design, testing and result analysis along with documentation	
III	Submission of report, Final presentation and demonstration	25M
	Total	50M

Scheme of Evaluation for SEE Marks:

Sl. No.	Evaluation Component	Marks
1.	Written presentation of synopsis: Write up	5M
2.	Presentation/Demonstration of the project	15M
3.	Demonstration of the project	20M
4.	Viva	05M
5.	Report	05M
	Total	50M

	CO-PO Mapping													
CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10									PO11	PO12				
CO1	Η	Η	Н	Η	Μ	Μ	L	Μ	Μ	Μ	Μ	Μ		
CO2	Η	Η	Н	Η	Μ	Μ	L	Μ	Μ	Μ	Μ	Μ		
CO3	Η	Н	Н	Η	Μ	Μ	L	Μ	Μ	Μ	Μ	Μ		
CO4	L	L	L	L	L	L	L	Μ	L	Μ	L	L		

	Semester: VI								
	INTERNET OF THINGS								
	(Elective C: Professional Elective)								
				(Common to All Branches)					
Cou	rse Code	:	18CS6C1		CIE Marks		100		
Credits: L:T:P		:	3:0:0	1	SEE Marks		100		
Tota	al Hours	:	39L		SEE Duration	:	3 Hrs		
Cou	rse Learning	g Ob	jectives: The	students will be able to					
1.	Understand	desi	gn principles	in lot ,edge ,fog computing and its	s challenges				
2.	2. Identify the Internet Connectivity, security issues and its protocols								
3.	Explore and	1 imp	olement Intern	net of Things (IoT) and New Compu	uting Paradigms				
4.	Apply and	analy	ze the Orche	stration and resource management i	nioT, 5G, Fog, Ed	lge,	and Clouds		

Unit – I8 HrsInternet of Things Strategic Research and Innovation Agenda -Internet of Things Vision ,IoT Strategic
Research and Innovation Directions , IoT Applications , Internet of Things and Related Future Internet
Technologies , Infrastructure , Networks and Communication , Processes , Data Management , Security,
Privacy & Trust , Device Level Energy Issues

Unit – II8 HrsInternet of Things Standardisation — Status, Requirements, Initiatives and Organisations - Introduction ,
M2M Service Layer Standardisation , OGC Sensor Web for IoT , IEEE and IETF , ITU-T . Simpler IoT
Word(s) of Tomorrow, More Interoperability Challenges to Cope Today-Physical vs Virtual , Solve the
Basic First — The Physical Word , The Data Interoperability , The Semantic Interoperability , The
Organizational Interoperability , The Eternal Interoperability , The Importance of Standardisation — The
Beginning of Everything

Unit – III8 HrsInternet of Things Privacy, Security and Governance-Introduction, Overview of Activity Chain —
Governance, Privacy and Security Issues, Contribution From FP7 Project, Security and Privacy Challenge
in Data Aggregation for the IoT in Smart Cities-Security, Privacy and Trust in Iot-Data-Platforms for Smart
Cities, First Steps Towards a Secure Platform, Smartie Approach

Unit – IV8 HrsInternet of Things (IoT) and New Computing Paradigms Fog and Edge Computing Completing the
Cloud ,Advantages of FEC: SCALE , How FEC AchievesThese Advantages: SCANC 9,Hierarchy of Fog
and Edge Computing , Business Models , Addressing the Challenges in Federating Edge Resources, The
Networking Challenge, The Management Challenge , Integrating IoT + Fog + Cloud7 Hrs

Management and Orchestration of Network Slices in 5G, Fog, Edge, and Clouds Introduction Background, Network Slicing in 5G, Network Slicing in Software-Defined Clouds, Network Slicing Management in Edge and Fog

Course	Outcomes: After completing the course, the students will be able to							
CO 1:	Understand and Explore Internet of Things (IoT) with New Computing Paradigms like 5G, Fog,							
	Edge, and Clouds							
CO 2:	Analyze Prototyping and demonstrate resource management concepts in New Computing							
	Paradigms							
CO 3:	Apply optimal wireless technology to implement Internet of Things and edge computing							
	applications							
CO 4:	Propose IoT-enabled applications for building smart spaces and services with security features,							
	resource management and edge computing							

Refer	ence Books:
1.	Internet of Things: Converging Technologies for Smart Environments and Integrated Ecosystems, Dr. Ovidiu Vermesan, Dr. Peter Friess, River Publishers, 2013ISBN: 978-87-92982- 73-5(Print) ISBN: 978-87-92982-96-4(E-Book).
2.	Fog and Edge Computing: Principles and Paradigms, Rajkumar Buyya , Satish Narayana Srirama, 2019, Wiley series on parallel and distributed computing, ISBN: 978-1-119-52498-4.
3.	Internet of Things: Architecture and Design Principles, Raj Kamal, 2017, TMH Publications, ISBN:9789352605224.
4.	Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M Communications, Daniel Minoli, 1 st Edition, 2013, Willy Publications ,ISBN: 978-1-118-47347- 4.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	1	-	2	2	-	-	1	-	2
CO2	2	2	1	1	-	2	2	-	1	1	-	3
CO3	1	2	1	1	-	2	2	-	1	1	-	2
CO4	1	2	2	2	-	3	3	1	2	2	-	3

	Semester: VI						
				REAL TIME SY	STEMS		
			(Gre	up C: Professiona	Core Elective)		
Cou	rse Code	:	18EC6C2		CIE	:	100 Marks
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks
Total Hours		:	36L		SEE Duration	:	3.00 Hours
Cou	rse Learning ()bje	ectives: The stu	dents will be able to)		
1	Understand fu	inct	ional difference	s between different	real time systems.		
2		eva	luate the hardw	are functionality re	equired by embedde	ed sys	stem to achieve real-time
	operation.						
3	3 Analyse, evaluate and implement task control and real-time scheduling algorithms required to perform multitasking.						
4	Demonstrate	the	concept of re	al-time programmi	ng using tasks and	1 gai	n knowledge and skills
	necessary to c	lesi	gn and develop	embedded applicati	ons by means of rea	ıl-tim	e operating systems.

Unit-I	07 Hrs
Introduction: Overview, Architecture of Real Time Systems: Hardware and Software, Real	Time Services.
System Resources: Resource Analysis, Real Time Service Utility, Cyclic Executives, Tim	ing Constraints
and Modelling of Timing Constraints, Applications of Real Time System.	
Unit – II	08 Hrs
Processing: Scheduling Classes, Scheduler Concepts, Pre-emptive Fixed Priority Policy, F	easibility, Rate
Monotonic LUB, Necessary & Sufficient Feasibility, Dead Line Monotonic, Dynamic Priorit	y Policies.
I/O Resources: WCET, Intermediate I/O, Execution Efficiency.	
Unit –III	07 Hrs
RTOS Services: Task Creation, Inter Task Communication: Pipes, Message Queues, Mail	Box, Memory
Mapped Objects; Critical Section, Shared Data Problem, Synchronization: Semaphores, M	Mutex; Remote
Procedure and Sockets.	
Real Time Memory Management: Process Stack Management, Dynamic Allocation	
Unit –IV	07 Hrs
Handling Resource Sharing and Dependencies Among Real-Time Tasks	
Resource Sharing among Real-Time Tasks, Priority Inversion, Priority Ceiling Protocol	(PCP), Priority
Inheritance Protocol (PIP), Highest Locker Protocol (HLP), Types of Priority Inversio	n Under PCP,
Racing, Deadlock, Live lock, Starvation.	
Unit –V	07 Hrs
Examples of Real Time OS: VxWorks: Task Management, Scheduling, Primitive K	ernel Services,
Application Program development using APIs	

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Understand the fundamental concepts of real-time system and real-time operating system.						
CO2:	Analyse the given requirements, design hardware & software for real time systems.						
CO3:	Apply modern engineering tools for real time firmware development & performance						
	analysis.						
CO4:	Verify the specifications of various real time operating systems used for meeting timing						
	constraints of given problem.						

Refer	ence Books							
1	Real-Time Embedded Systems and Components, Sam Siewert, 2007, Cengage Learnin							
1	Edition, ISBN: 9788131502532							
2	Real-Time Systems: Theory and Practice, Rajib Mall, 2007, Pearson, ISBN 978-81-317-0069-3							
2	Real-Time Concepts for Embedded Systems, Qing Li and Carolyn Yao, 2003 CMP Books,							
5	ISBN:1578201241							
4	Technical Reference Manuals: VxWorks, Posix.							

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	2	-	-	-	-	-		-	
CO2	3	2	2	1	2	1	-	-	-	1	-	1
CO3	3	3	2	2	3	1	1	1	-	1	-	1
CO4	2	3	2	2	1	1	2	2	2	2	2	1

				Semester:	VI		
			Ι	LOW POWER VLS			
			(Gro	oup C: Professional	Core Elective)		
Co	urse Code	:	18EC6C3		CIE	:	100 Marks
	edits: L:T:P	:	3:0:0		SEE	:	100 Marks
To	tal Hours	:	36L		SEE Duration	:	3.00 Hours
Co	ourse Learning ()bje	ectives: The stu	dents will be able to			
1	Explain the need	d fo	r low power VI	LSI chips, Sources of	f power dissipation	on I	Digital Integrated circuits.
2	• •			hnology such as Tra	nsistor sizing & gat	e ox	tide thickness and Device
	innovation on L						
3				d power analysis tec			
4	•			ccuracy and resource	ces for both simula	tion	s based and probability-
-	based power and						
5	· · ·	-		ques to optimize the	e power dissipation	n of	the design reducing the
6	switching activi			liles some himselien of	as au autici aineurite u	:	1
6	Design and anal	yze	digital circuits	like combinational,	sequential circuits t	ISINĮ	g low power concepts.
				Unit-I			07 Hrs
In	troduction			Omt I			07 1115
		er	VLSI Design	Sources of power d	issination Power d	issir	oation in CMOS circuits:
				-	-	-	ischarging, Static Power:
				erging low power ap			isenarging, statie i ower.
	-				-		ct, sub-micron MOSFET,
	te induced drain		-		eture, iong enumer	ente	
00		loui		Unit – II			07 Hrs
Po	wer Estimation	-Sig	nal Modeling a		lation. Probabilistic	tecl	niques for signal activity
							ation using input vector
				it level, information			
	. .			Unit –III	× 11		07 Hrs
D	evice and Tech	nol	ogy Impact of	n Low Power Ele	ctronics Introducti	on,	Dynamic Dissipation in
CN	AOS, Effects of V	UDD	and V_t on speed	l, Constraints on V _t	Reduction, Transisto	or ar	d Gate Sizing, Transistor
Siz	ing and Optimal	Gat	e Oxide Thickr	ness (Quantitative an	alysis only) Impact	of T	echnology Scaling.
							and Device Innovations
							Pre-computational Logic,
	wer gating Techn			0		Ū	
				Unit –IV			07 Hrs
L	ow Power Circui	it T	echniques				
			-	circuits, Circuit desi	gn styles, Analysis	of	adders, multipliers, Flip-
Flo	ops and Latches, l	Low	Power Cell Li	brary.			
Lo	w power SRA	Μ	architectures:	SRAM organizat	ion, MOS SRAM	ce	lls-4T and 6T, Banked
							r in write driver circuits.
Re	ducing power in	sens	se amplifier circ	cuits.	01		
	01		•	Unit –V			08Hrs
Sy	nthesis for Low	Pov	ver				
-				ecture-Driven Volta	ge Scaling, Power	re	duction using Operation
					0 0		ns, CMOS gates, Power
							er Vs distributed buffers
							lancing, Energy recovery
	IOS and Adiaba						
Co	urse Outcomes:	Af	ter completing	the course, the stu	dents will be able to	0	
C	D1: Acquire the	kn	owledge with re	egard to the physical	principles, analysis	and	l the characteristics of the

low power designs.

CO2:	Identify, formulate, and solve engineering problems in the area of low power VLSI designs.
CO3:	Use the techniques and skills in system designing through modern engineering tools such as logic
	works SPICE and description languages such as VHDL and Verilog.
CO4:	Design a digital system, components or process to meet desired needs of low power within realistic
	constraints.

Reference Books

Low-Power CMOS VLSI Circuit Design, Kaushik Roy and Sharat Prasad, 2009, John Wiley India press, ISBN: 978-81-265-2023-7,
Practical Low Power Digital VLSI Design, Gary K. Yeap, 2009, Kluwer Academic Publishers, ISBN: 978-1-4613-77778-8.
Low Power Design Methodologies, Jan M. Rabaey and MassoudPedram, 5 th reprint, Kluwer Academic Publishers, ISBN: 978-1-4613-5975-3, 2002.
Low Power CMOS design, Anantha Chandrakasan and Robert W. Brodersen, 1998, Wiley-IEEE press, ISBN: 0-7803-3429-9.
]

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	2	1	1	1	-	-	1	1	-	3
CO2	2	2	2	1	1	1	-	-	1	1	-	3
CO3	2	2	2	1	3	2	-	-	2	1	-	3
CO4	2	2	2	1	3	2	-	-	2	1	-	3

				Semester:	VI		
			DATAI	BASE MANAGEM	ENT SYSTESMS		
			(Gro	up C: Professional	Core Elective)		
Cour	se Code	:	18EC6C4		CIE	:	100 Marks
Cred	its: L:T:P	:	3:0:0		SEE	:	100 Marks
Tota	l Hours	:	36L		SEE Duration	:	3.00 Hours
Cour	se Learning C)bje	ectives: The stu	dents will be able to)		
1	Explain the fu	ınd	amental differe	nces between logica	l and physical datab	ase o	design.
2	Understandin	g o	f the context, pl	nases and technique	s for designing and	builc	ling database information
	systems in bu	sin	ess.				
3	Explain the b	oasi	c concepts of a	elational data mod	el, entity relationsh	ip n	nodel, relational database
			<u> </u>	<u> </u>	L and Postgre SQL		
4						e wit	h the fundamental tasks
	involved with	m	odelling, design	ing, and implement	ing a DBMS		

Unit-I

Unit – II

07 Hrs

08Hrs

Introduction: Evolution of Data Centric Systems, Need & Purpose of Database Systems. Transaction Management, Database user categories and Database architecture, Data Modelling- ER Diagrams.

Entity Relational Model: Relational Model Concepts, Relational Model Constraints and Relational Database Schemas. Entity types, sets, Relationship, attribute. Integrity constraints, Referential constraints. Update Operations, Transactions and dealing with constraint violations. Concepts of Keys, Super Key, Primary, Candidate and Foreign Keys. Case Study discussions for ER Diagrams. Introduction to Mango DB.

Relational Algebra: Unary Relational Operations: SELECT and PROJECT, Relational Algebra Operations from Set Theory. Binary Relational operation: equi join, natural join, outer join and inner join. Additional relational operation

SQL : SQL Data Definition and Data Types, Specifying basic constraints in SQL, Schema change statements in SQL, Basic queries in SQL, More complex SQL Queries. Insert, Delete and Update statements in SQL, Specifying constraints as Assertion and Trigger, Views (Virtual Tables) in SQL.

Unit –III 07Hrs **Postgre SQL:** Data types, Creating a database, create a table, drop the database, drop table, select table, insert a record, update record, delete a record, order by, group by, triggers, substring, database keys. Postgre SQL vs MySQL.

Unit -IV

Database Design - 1: Informal Design Guidelines for Relation Schemas, Functional Dependencies, Normal Forms Based on Primary Keys, General Definitions of Second and Third Normal Forms, Boyce-Codd Normal Form. Database Design -2 Properties of Relational Decompositions, Algorithms for Relational Database Schema Design, Multivalued Dependencies and Fourth Normal Form, Join Dependencies.

Unit –V 07 Hrs Transaction Management: The ACID Properties, Transactions and Schedules, Concurrent Execution of Transactions, Lock- Based Concurrency Control, Performance of locking, Transaction support in SQL, Introduction to crash recovery, 2PL, Serializability and Recoverability, Lock Management, Introduction to ARIES, The log, Other recovery-related structures, The write-ahead log protocol, Check pointing, Recovering from a System Crash, Media Recovery, Other approaches and interaction with concurrency control.

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understand the fundamentals of Data Base management system, entity-relationship model,
	Relational Algebra, Database Design, Transaction Management.
CO2:	Illustrate the working of data base & transactions by writing queries using SQL and Postgre SQL

07 Hrs

CO3:	Analyze an information storage problem and derive an information model expressed in the form of
	an entity relation diagram and other optional analysis forms, such as a data dictionary.
CO4:	Design a data model that satisfies relational theory and provides users with business Queries,
	business forms and business reports.

Refere	nce Books
1	Elmasri, Navathe, "Fundamentals of Database Systems", 5 th Edition, Pearson Education, 2007, ISBN-13: 9780321369574
2	Raghu Ramakrishnan, Johannes Gehrke, "Database Management Systems", 3 rd Edition, McGraw, ISBN-10: 0072465638
3	DimitriFontaine,"The art of Postgre SQL", 2nd edition, O'Reilly Media, Inc., 2014, ISBN- 9781788472296
4	Silberschatz, Korth, Sudharshan, "Data base System Concepts", 6th Edition, Mc, ISBN-10: 9332901384

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-]	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	-	-	-	-	-	-	2
CO2	3	2	3	-	3	-	-	-	-	-	-	2
CO3	3	3	2	2	3	-	-	-	2	-	-	2
CO4	3	3	-	2	3	-	-	-	2	-	-	2

				Semester:	VI		
				CONTROL ENGI			
			(Gro	oup C: Professional	Core Elective)		
Cou	rse Code	:	18EC6C5		CIE	:	100 Marks
Cre	dits: L:T:P	:	3:0:0		SEE	:	100 Marks
Tota	al Hours	:	36 L		SEE Duration	:	3.00 Hours
Cou	rse Learning C						
1	·		÷	assical control syst	em analysis techni	ique	s, system response and
	performance c						~
2	·			and Analyze contro	l systems using sig	gnal	flow graphs and block
2	diagram techn			analuata atabilita a	f facilita als acestral	~~~~4	ana naina hath tima and
3	frequency don		•	evaluate stability c	of feedback control	syst	ems using both time and
4				state model by ch	osing proper state	vari	ables using physical and
7							the system performance
	phase variable				s and compensators	011	ine system performance
				Unit-I			08Hrs
Intr	oduction:						
Defi	nitions, Classifi	icati	ion of control s	ystems open loop a	nd closed loop, linea	ar ar	nd nonlinear, time variant
and	time invariant,	con	tinuous and dia	screte time systems	. Block diagram of	a ty	pical closed loop control
				l different terminolo			
							cept, transfer function of
		two	rks, different fo	orms of transfer fun	ctions, Modeling of	me	chanical translational and
rotat	tional systems.						
				Unit – II			07 Hrs
	k Diagram and					р	
						Pro	of), Relative Advantages,
	e Response of			FG and Block diagra	ill to SFG.		
					er systems time dor	nair	specifications. Type and
				and static error cons		man	specifications. Type and
						z ci	iterion, relative stability
anal			1	5, 51	J ,		, j
	-			Unit –III			07 Hrs
Roo	t Locus: Intro	duc	tion, concept	of magnitude and	angle criterion, con	nstru	action of root loci, root
cont	ours. Effect of a	addi	ng a pole/zero t	to the system.	-		
		lysi	s: Introduction	, concept of state, s	tate variable and sta	ate r	nodel, state modelling of
	ar systems.						
						rs, S	Similarity transformation,
trans	sformation of a	stat	e model to diag	onal/Jordan canonic	al form.		07.11
Г	1 '		· c·	Unit –IV	1		07 Hrs
	•	•	cifications, con	cept of phase margi	n and gain margin,	corr	elation between time and
	uency response. Juency Domain		nalvsis				
	- v		•	ots Polar plots Pri	nciple of argument	N	yquist plots and Nyquist
	ility criterion. E			ous. i olui pious, i i	incipie of argument	, · ·.	quist prots and regquist
	-,	1	r	Linit V			0711
Cor	trollors and C		ansatars.	Unit –V			07Hrs
	trollers and Co	-		D controllers and th	eir effects on the d	unar	nic and static behavior of
							ks. Design of controllers
				ors (lag-lead) using		., 011	as posign of controllers
(* 11	,	- 40	and compensat	using iouu) using	con prom.		

Course	e outcomes: On completion of the course, the student should have acquired the ability to
CO1:	Comprehend the different types of control systems and their building blocks
CO2:	Analyze the different systems by means of their transfer function
CO3:	Evaluate the performance of systems and assess their stability
CO4:	Design the system or compensator for the desired performance parameters and explain the concepts
	of state space, eigen value and Eigen vectors

Reference Books

1	Control System Engineering, J Nagarath and I.J.Nagarath and M Gopal, 5 th edition, 2007, New age international publishers, ISBN: 81-224-1775-2M.Gopal, "Control systems - Principles and design", TMH,2 nd edition,2006, ISBN: 0071231277, 9780071231275
2	K.Ogata, "Modern control engineering", Pearson education, 2004, 4 th edition. ISBN: 1-317-1887-2
3	Modern Control Systems, R.C. Dorf and R.H.Bishop, 12 th Edition,2010, Addison Wesley, ISBN 13: 978-0136024583
4	Automatic Control Systems, Kuo B.C 9 th Edition, 2014, ., Prentice Hall of India Ltd., New Delhi, ISBN- 13: 978-8126552337

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	1	1	1	1	-	2	2	-	1
CO2	2	2	2	2	1	1	1	-	2	1	-	1
CO3	3	3	2	2	2	1	1	-	2	2	-	1
CO4	3	3	2	1	1	1	1	-	2	1	-	1

				Semester: V	νI		
			CRYPTOG	RAPHY AND NET	WORK SECURI	ТΥ	
			(Gro	up C: Professional	Core Elective)		
Cour	se Code	:	18EC6C6		CIE	:	100 Marks
Cred	its: L:T:P	:	3:0:0		SEE	:	100 Marks
Tota	l Hours	:	36L		SEE Duration	:	3.00 Hours
Cour	rse Learning ()bje	ectives: The stu	dents will be able to			
1	Define the fu	nda	mentals of Secu	rity and cryptograph	ny for data transmis	sion.	
2	Explain the p	rinc	ciples of cryptog	graphy and encryptio	on.		
3	Analyse mod	ern	stenographic te	chniques and differe	ntiate between sten	ograj	phy and cryptography
4	Explain IRM	fea	tures and descri	be DRM systems an	d technologies		
5	Identify the n	ece	ssity of data sec	curity in various indu	istries.		

Unit-I	07Hrs
Introduction Services, Mechanism and Attacks, Model for Network Security	·
Classical Encryption Techniques	
Symmetric Cipher Model, Substitution Techniques, Transposition Techniques, Simplified	d DES. Problems
Block Ciphers and DES (Data Encryption Standards)	
Simplified DES Block, Cipher Principles, DES and strength of DES, Block cipher des	sign principles and
modes of operation, The AES Cipher	
Unit – II	07 Hrs
Public Key Cryptography and RSA	
Principles of Public Key Cryptosystems, RSA Algorithm, Problems	
Other Public Key Cryptosystems and Key Management	
Key Management, Diffie-Hellman exchange, Elliptic Curve Arithmetics, Elliptic Curve C	Cryptography.
Message Authentication and Hash Functions	
Authentication Requirements, Authentication Functions, Message Authentication Co	odes(MAC), Hash
Functions, Security of Hash functions and MAC's	
Unit –III	07 Hrs
Authentication Applications: Kerberos, X-509 Authentication Service, Public-Key Infra	astructure.
Electronic Mail security: Pretty Good Privacy, S/MIME, Data Compression usin	ng ZIP, Radix-64
Conversion.	0
ID Converter ID Converter Architecture Authoritection Hander ECD (Encountering	
IP Security IP Security Architecture, Authentication Header, ESP (Encapsulating Sec	curity Pay Load),
IP Security IP Security Architecture, Authentication Header, ESP (Encapsulating Sec Security Associations, Key	curity Pay Load),
	curity Pay Load),
Security Associations, Key	07 Hrs
Security Associations, Key Unit –IV	07 Hrs
Security Associations, Key Unit –IV Transport-Level Security: Web security Issues, Security Socket Layer (SSL) and	07 Hrs Transport Layer
Security Associations, Key Unit –IV Transport-Level Security: Web security Issues, Security Socket Layer (SSL) and Security, HTTPS and Secure Shell Wireless network security: IEEE 802.11 Wireless LAN Overview, IEEE 802.11	07 Hrs Transport Layer
Security Associations, Key Unit –IV Transport-Level Security: Web security Issues, Security Socket Layer (SSL) and Security, HTTPS and Secure Shell	07 Hrs Transport Layer
Security Associations, Key Unit –IV Transport-Level Security: Web security Issues, Security Socket Layer (SSL) and Security, HTTPS and Secure Shell Wireless network security: IEEE 802.11 Wireless LAN Overview, IEEE 802.11 Security, Wireless application Protocol Overview, Wireless Transport Layer Security	07 Hrs Transport Layer
Security Associations, Key Unit –IV Transport-Level Security: Web security Issues, Security Socket Layer (SSL) and Security, HTTPS and Secure Shell Wireless network security: IEEE 802.11 Wireless LAN Overview, IEEE 802.11 Security, Wireless application Protocol Overview, Wireless Transport Layer Security Security Unit –V	07 Hrs Transport Layer WAP End-End 08 Hrs
Security Associations, Key Unit –IV Transport-Level Security: Web security Issues, Security Socket Layer (SSL) and Security, HTTPS and Secure Shell Wireless network security: IEEE 802.11 Wireless LAN Overview, IEEE 802.11 Security, Wireless application Protocol Overview, Wireless Transport Layer Security Security Unit –V Steganography: Introduction to Steganography, Modern Techniques in Steganography	07 Hrs I Transport Layer Ii Wireless LAN y, WAP End-End 08 Hrs aphy, Comparison
Security Associations, Key Unit –IV Transport-Level Security: Web security Issues, Security Socket Layer (SSL) and Security, HTTPS and Secure Shell Wireless network security: IEEE 802.11 Wireless LAN Overview, IEEE 802.11 Security, Wireless application Protocol Overview, Wireless Transport Layer Security Security Unit –V Steganography: Introduction to Steganography, Modern Techniques in Steganography between Steganography and Cryptography, Detecting Steganography, Stegoanalysis,	07 Hrs I Transport Layer Ii Wireless LAN y, WAP End-End 08 Hrs aphy, Comparison
Security Associations, Key Unit –IV Transport-Level Security: Web security Issues, Security Socket Layer (SSL) and Security, HTTPS and Secure Shell Wireless network security: IEEE 802.11 Wireless LAN Overview, IEEE 802.11 Security, Wireless application Protocol Overview, Wireless Transport Layer Security Security Unit –V Steganography: Introduction to Steganography, Modern Techniques in Steganography between Steganography and Cryptography, Detecting Steganography, Stegoanalysis, Steganography.	07 Hrs 1 Transport Layer 1 Wireless LAN y, WAP End-End 08 Hrs aphy, Comparison Applications
Security Associations, Key Unit –IV Transport-Level Security: Web security Issues, Security Socket Layer (SSL) and Security, HTTPS and Secure Shell Wireless network security: IEEE 802.11 Wireless LAN Overview, IEEE 802.11 Security, Wireless application Protocol Overview, Wireless Transport Layer Security Security Unit –V Steganography: Introduction to Steganography, Modern Techniques in Steganography between Steganography and Cryptography, Detecting Steganography, Stegoanalysis, Steganography. Information Rights Management: Introduction to IRM, Features, Naming conventions	07 Hrs I Transport Layer Ii Wireless LAN y, WAP End-End 08 Hrs raphy, Comparison Applications of IRM.
Security Associations, Key Unit –IV Transport-Level Security: Web security Issues, Security Socket Layer (SSL) and Security, HTTPS and Secure Shell Wireless network security: IEEE 802.11 Wireless LAN Overview, IEEE 802.11 Security, Wireless application Protocol Overview, Wireless Transport Layer Security Security Unit –V Steganography: Introduction to Steganography, Modern Techniques in Steganography between Steganography and Cryptography, Detecting Steganography, Stegoanalysis, Steganography. Information Rights Management: Introduction to IRM, Features, Naming conventions Digital Right Management: Introduction to DRM, Environment For DRM Systems, I	07 Hrs I Transport Layer Ii Wireless LAN y, WAP End-End 08 Hrs raphy, Comparison Applications of IRM.
Security Associations, Key Unit –IV Transport-Level Security: Web security Issues, Security Socket Layer (SSL) and Security, HTTPS and Secure Shell Wireless network security: IEEE 802.11 Wireless LAN Overview, IEEE 802.11 Security, Wireless application Protocol Overview, Wireless Transport Layer Security Security Unit –V Steganography: Introduction to Steganography, Modern Techniques in Steganography between Steganography and Cryptography, Detecting Steganography, Stegoanalysis, Steganography. Information Rights Management: Introduction to IRM, Features, Naming conventions Digital Right Management: Introduction to DRM, Environment For DRM Systems, I	07 Hrs I Transport Layer Ii Wireless LAN y, WAP End-End 08 Hrs raphy, Comparison Applications of IRM.
Security Associations, Key Unit –IV Transport-Level Security: Web security Issues, Security Socket Layer (SSL) and Security, HTTPS and Secure Shell Wireless network security: IEEE 802.11 Wireless LAN Overview, IEEE 802.11 Security, Wireless application Protocol Overview, Wireless Transport Layer Security Security Unit –V Steganography: Introduction to Steganography, Modern Techniques in Steganography between Steganography and Cryptography, Detecting Steganography, Stegoanalysis, Steganography. Information Rights Management: Introduction to IRM, Features, Naming conventions Digital Right Management: Introduction to DRM, Environment For DRM Systems, I for DRM Systems, Common DRM techniques, DRM technologies.	07 Hrs I Transport Layer Ii Wireless LAN y, WAP End-End 08 Hrs raphy, Comparison Applications of IRM.
Security Associations, Key Unit –IV Transport-Level Security: Web security Issues, Security Socket Layer (SSL) and Security, HTTPS and Secure Shell Wireless network security: IEEE 802.11 Wireless LAN Overview, IEEE 802.11 Security, Wireless application Protocol Overview, Wireless Transport Layer Security Security Unit –V Steganography: Introduction to Steganography, Modern Techniques in Steganography between Steganography and Cryptography, Detecting Steganography, Stegoanalysis, Steganography. Information Rights Management: Introduction to IRM, Features, Naming conventions Digital Right Management: Introduction to DRM, Environment For DRM Systems, I for DRM Systems, Common DRM techniques, DRM technologies. Course Outcomes: After completing the course, the students will be able to	07 Hrs I Transport Layer Ii Wireless LAN y, WAP End-End 08 Hrs raphy, Comparison Applications of IRM.
Security Associations, Key Unit –IV Transport-Level Security: Web security Issues, Security Socket Layer (SSL) and Security, HTTPS and Secure Shell Wireless network security: IEEE 802.11 Wireless LAN Overview, IEEE 802.11 Security, Wireless application Protocol Overview, Wireless Transport Layer Security Security Unit –V Steganography: Introduction to Steganography, Modern Techniques in Steganography setemation Rights Management: Introduction to IRM, Features, Naming conventions Digital Right Management: Introduction to DRM, Environment For DRM Systems, I for DRM Systems, Common DRM techniques, DRM technologies. Course Outcomes: After completing the course, the students will be able to CO1 Identifying external and internal threats to an organization.	07 Hrs 1 Transport Layer 1 Wireless LAN y, WAP End-End 08 Hrs aphy, Comparison Applications of of IRM. Evaluation Criteria
Security Associations, Key Unit –IV Transport-Level Security: Web security Issues, Security Socket Layer (SSL) and Security, HTTPS and Secure Shell Wireless network security: IEEE 802.11 Wireless LAN Overview, IEEE 802.11 Security, Wireless application Protocol Overview, Wireless Transport Layer Security Security Unit –V Steganography: Introduction to Steganography, Modern Techniques in Steganography between Steganography and Cryptography, Detecting Steganography, Stegoanalysis, Steganography. Information Rights Management: Introduction to IRM, Features, Naming conventions Digital Right Management: Introduction to DRM, Environment For DRM Systems, I for DRM Systems, Common DRM techniques, DRM technologies. Course Outcomes: After completing the course, the students will be able to	07 Hrs 1 Transport Layer 1 Wireless LAN y, WAP End-End 08 Hrs raphy, Comparison Applications of IRM. Evaluation Criteria

Analyze cryptographic and stegnographic techniques, and differentiate between them.

Evaluate & Compare different encryption algorithms.

CO3

CO4 Use of modern tools for implementing different security algorithms and comparing their robustness.

Refer	ence Books
1	Cryptography and Network Security, Williams Stallings, 2003, Pearson Education/PHI, ISBN: 0-13-111502-2.
2	Network Security, Perlman - Kaufman Spenciner, 2002, Pearson Education/PHI, ISBN: 9971–51–345–5.
3	Cryptography & Network Security, Atul Kahate, 2003, TMH, ISBN-81-203-2186-3.
4	Investigator's Guide to Steganography, Gregory Kipper,

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	-	-	-	-	-	-		-	-
CO2	3	2	2	3	-	-	-	2	2		-	-
CO3	2	2	3	3	-	-	-	2	2		-	-
CO4	3	3	3	3	2	3	2	3	3	3	2	3

				Semester	: VI		
	DIG	ITA			ING ARM CORTEX	ΚM	DEVICES
Carr	mas Cada			oup D: Profession			100 Monles
	rse Code dits: L:T:P	:	18EC6D1 3:0:0		CIE SEE	:	100 Marks 100 Marks
	al Hours	•	3.0.0 36L		SEE Duration	:	
))hia		dents will be able		•	5.00 110015
1						and	signal representation for
•	processing or		·	ig putit ill digital	signa processing e	ina	signal representation for
2				iguring Codecs an	d writing program sta	tem	ents to read digital and
	analog signals			0 0			6
3			signal processi	ng operations to m	eet the real-world req	uire	ments.
4			<u> </u>	U	used in signal proces		
5					<u> </u>	<u> </u>	processing operations.
-	8FF			8			
				Unit-I			07 Hrs
Intr	oduction						1
com Prae STM Prog	munication usin c tice: 132F407 Disco gramming Exan	ng P very nple	olling, Interrup , WM5102 Co s: Configuratio	ots, DMA decs	Time Input and Out		nput and Output, Data Demonstration of Polling, 08 Hrs
Sam	nling Reconst	ruct	ion and Alias		Frequency Domains	s F	ast Fourier Transform -
Pra Sam Anti		sing Dis	crete Fourier T	Transform of a Seq			The sponse of the WM5102 FFT of A Signal in Real-
				Unit –III			07 Hrs
Intro Prac The Obse	c tice: Moving Aver ervation of Fr	age eque	Filter, Obser ency Response	e using a Pseudo covery and WM51	ncy Response Using Random Input Sign		Sinusoidal Input Signal, Demonstration of Filters
				Unit –IV			07 Hrs
Intro Filte Pra Desi	ers Design c tice: ign of A Simp	le II	R Low Pass F	Filter, Filter Progra	amming Using Differ		nods of Design, Low Pass e Equation, Experimental
Mea	surement of the	e Ma	ignitude Freque	ency Response of t	ne Filter		A7 II
F. 4				Unit –V			07 Hrs
Intro Equa Pra	alization, Perfo	rmai	nce Function, I	LMS Algorithm			ng, Noise Cancellation, stem Identification using

Adaptive Filter, Estimating WM5102 Codec Bandwidth using two Audio Cards

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Describe the programmer's model of ARM processor and identify requirements to realize the
	signal processing operations.
CO2:	Realize real time signal processing applications & primitive OS operations on different ARM
	architectures by making use of software libraries.
CO3:	Apply the optimization methods available for ARM architectures to design embedded software to
	meet given constraints with the help of modern engineering tools.
CO4:	Engage in self-study to formulate, design, implement, analyze and demonstrate an application
	realized on ARM development boards through assignments.

Refer	rence Books
1	Digital Signal Processing on using ARM Cortex M4, Donald S Reay, 2016, John Wiley & Sons, ISBN 978-1-118-85904-9.
2	ARM-based Digital Signal Processing Lab-in-a-Box, ARM University Program, World Wide Education Program, ISBN- 10: 9780470936863
3	ARM System Developers Guide, Andrew N Sloss, Dominic Symes, Chris Wright, 2008, Elsevier, Morgan Kaufman publishers, 2008, ISBN-13:9788181476463
4	Technical reference manual for ARM processor cores including Cortex M, Wolfson PI Codec, Keil Products, ISBN

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	-	-	-	-	-	-		-	-
CO2	3	2	2	3	-	-	-	2	2		-	-
CO3	2	2	3	3	-	-	-	2	2		-	-
CO4	3	3	3	3	2	3	2	3	3	3	2	3

			Sem	ester: VI			
				TER VISION			
	-		roup D: Profes	sional Core Elective)	-		
Course Code	:	18EC6D2		CIE	:	100 Mark	
Credits: L:T:P	:	3:0:0		SEE	:	100 Mark	
Total Hours		39 L		SEE Duration	:	3.00 Hou	rs
Course Learning1Acquire know				in computer vision.			
· · ·		<u> </u>		Filtering, Segmenting, Rec	ogni	tion and ala	ssification
		A		6.6	<u> </u>		ssification.
				puter vision in real time a			
4 Develop skill	s to	work or carry	y out task on mu	lti-disciplinary domains /	proj	ects.	
			Unit-I				08 Hrs
Introduction to I	Digit	al Image Fu					00 111 5
	<u> </u>	0		quisition, Image sensors,	Fund	lamental St	eps in Digital
				ssing System, Image Sam			
Basic Relationship			C C				· · ·
Intensity Transfo	orma	ation and s		Background, Some ba			
				zation, Mechanics of spat	ial fi	ltering, spat	ial correlation
and convolution, S	moo	thing spatial					
			Unit – II				08 Hrs
Early vision:		гч. г.	F '1, 1,		•	I. C	· D' ·
				Convolution, Shift Inva			
				ects in Discrete Convol Sampling and Aliasing, Fi			
				ique: Scale and Image Py			es, rechnique.
Image Segmentati		und i manig	r atterns, reenn	ique. Seule una innuge i y	lann	G D	
0 0		Line Edge de	etection, Detecti	ion of Isolation points, L	ine	detection, E	dge Models ,
				es for Edge Detection,			
Detection, Thresho	oldin	g : Foundati	on, Basic globa	al thresholding, Region g	grow	ing, Region	splitting and
Merging.							
			Unit –III				08 Hrs
Image Segmentati		•					
_			-	teractive segmentation, for			-
				ustering methods, watersh segmentation with Mean s			
6			0	sive clustering with a grap		terminology	y and facts for
graphs, Aggiomera	uve	clustering wi	Unit –IV	sive clustering with a grap	<u>, 11.</u>		07 Hrs
Learning Phase to	o clas	ssification					07 1113
0			loss to determ	ine decisions, training er	ror.	test error a	nd overfitting.
regularization, erro					,		
5					inter	grams and	
-		-		ance, class conditional h	usios		Naive Bayes,
ciussilication asing	g ine	arest Neighb	ors, Linear Su	ance, class conditional h pport vector Machine, K	_		-
Adaboost. Case stu	-	-	-	pport vector Machine, K	_		
Adaboost. Case stu	idy v	vith deep neu	ral networks, B	pport vector Machine, K	ernel	machines,	Boosting and
Adaboost. Case stu Practical methods	idy v for 1	vith deep neu Building clas	ral networks, Bassifiers: Manipu elassifiers, solvin	pport vector Machine, Ka aidu, Google	ernel	machines, ve performa	Boosting and nce, Building
Adaboost. Case stu Practical methods multiclass classifie	idy v for 1 rs ou	vith deep neu Building class at of Binary c	ral networks, Basifiers: Manipu	pport vector Machine, Ka aidu, Google Ilating training data to in	ernel	machines, ve performa	Boosting and
Adaboost. Case stu Practical methods multiclass classifie Detecting Objects	idy v for 1 rs ou in in	vith deep neu Building clas at of Binary c mages	ral networks, Basifiers: Manipu lassifiers, solvin Unit –V	pport vector Machine, Ka aidu, Google llating training data to in ng for SVMS and Kernal n	ernel	machines, ve performa ines.	Boosting and ince, Building 08 Hrs
Adaboost. Case stu Practical methods multiclass classifie Detecting Objects The sliding wind	idy v for 1 rs ou in in ow	vith deep neu Building clas at of Binary c mages	ral networks, Basifiers: Manipu lassifiers, solvin Unit –V	pport vector Machine, Ka aidu, Google Ilating training data to in	ernel	machines, ve performa ines.	Boosting and ince, Building 08 Hrs
Adaboost. Case stu Practical methods multiclass classifie Detecting Objects The sliding wind deformable objects	idy v for 1 rs ou in in ow	vith deep neu Building clas at of Binary c mages method, Fac	ral networks, Basifiers: Manipu lassifiers, solvin Unit –V	pport vector Machine, Ka aidu, Google llating training data to in ng for SVMS and Kernal n	ernel	machines, ve performa ines.	Boosting and ince, Building 08 Hrs
Adaboost. Case stu Practical methods multiclass classifie Detecting Objects The sliding wind deformable objects Topics in Object 1	idy v for 1 rs ou in in ow	vith deep neu Building clas at of Binary c mages method, Fac gnition	ral networks, Basifiers: Manipu elassifiers, solvin Unit –V ce detection, I	pport vector Machine, Ka aidu, Google Ilating training data to in ng for SVMS and Kernal n Detecting Humans, Dete	ernel nprov mach	machines, ve performa <u>ines.</u> g Boundari	Boosting and ince, Building 08 Hrs es, Detecting
Adaboost. Case stu Practical methods multiclass classifie Detecting Objects The sliding wind deformable objects Topics in Object I Object recognition	idy v for 1 rs ou in in ow Reco	with deep neu Building class at of Binary c mages method, Fac gnition rent strategie	ral networks, Bi ssifiers: Manipu lassifiers, solvin Unit –V ce detection, I es of object rec	pport vector Machine, Ka aidu, Google llating training data to in ng for SVMS and Kernal n	ernel nprov <u>nach</u> ecting Sele	machines, ve performa ines. g Boundari ection, impl	Boosting and ince, Building 08 Hrs es, Detecting roving current

unfamiliar, parts poselets and consistency, chunks of meanings

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Explore and acquire knowledge on fundamentals of computer vision concepts.							
CO2:	Analyze the inherent difficulties encountered in computer vision and its interpretation.							
CO3:	Apply computer vision techniques to solve complex problems.							
CO4:	Investigate and draw inferences by processing image in real time applications.							

Reference Books

1	Digital Image Processing, Rafael C. Gonzalez, Richard E. Woods, 3rd Edition; 2012, Pearson
-	Education, ISBN- 9780131687288.
2	Computer Vision: A Modern Approach, David Forsyth and Jean Ponce, 2nd edition, 2015, Prentice
2	Hall, ISBN- 978-81-203-5060-1.
2	Tinku Acharya , Ajoy K. Ray "Image Processing-Principles and Applications" John Wiley & Sons,
3	Inc., ISBN-13 978-0-471-71998-4, Aug 2005.
4	Computer Vision: Algorithms and Applications, Richard Szeliski, Springer Verlag, 2013 Edition,
4	ISBN-13: 978-1848829343, ebook :http://szeliski.org/Book/.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	-	-	2	-	1	1	2	1	-	1
CO2	-	2	-	1	-	-	-	-	1	-	-	2
CO3	1	1	1	-	1	1	1	2	1	2	-	2
CO4	2	1	2	1	3	2	-	1	-	3	-	2

				Semester:	VI			
			DATAS	STRUCTURES AN	D ALGORITHMS	5		
			(Gr	oup D: Professiona	l Core Elective)			
				(Common to EC	and TC)			
Cou	rse Code	:	18EC6D3		CIE	:	100 Mar	ks
Cre	dits: L:T:P	:	3:0:0		SEE	:	100 Mar	ks
Tota	al Hours	:	39L		SEE Duration	:	3.00 Hou	irs
Cou	rse Learning (Dbje	ectives: The st	udents will be able to)			
1	Formulate an engineering p			iented programmin	g, using C++/Java,	as	a modern	tool to solve
2	0 01	an u	nderstanding	of basic data structu gorithms.	res (such as an arra	y-bas	ed list, lin	ked list, stack
3	Demonstrate	the	ability to ana	yze, design, apply ate their solutions.	and use data struct	ures	and algori	ithms to solve
4		co	ntains iterative	of analysis of alg e constructs and a	•	-		
Lists	s, Linked Repre	sent	ation	Unit-I roduction to oops co	-		-	
Lists Al Stac Pare	s, Linked Repre Igorithm Analy the and queue: enthesis matchin	sent sis: Stang, (ation Mathematical ck and queue Queue applicati		, What to Analyze, ng linear list and l angement.	<u>Runı</u> inke	hing Time (ntation, Linear Calculations. 08 Hrs ck application-
Lists Al Stac Pare Ha Unit	s, Linked Repre gorithm Analy ck and queue: enthesis matchir ashing: Hash ta t –III	sent sis: Stang, (ble	ation Mathematical ck and queue Queue applicati representation-	oduction to oops co Background, Mode Unit – II implementation usi on-railroad car rearn ideal hashing, hash chains	, What to Analyze, ng linear list and l angement. ng with linear open	Runi inke addi	hing Time (d list. Stac essing, has	ntation, Linear Calculations. 08 Hrs k application- sh tables with 07 Hrs
Lists Al Stac Pare Ha Unit Bina Base	s, Linked Repre gorithm Analy ck and queue: enthesis matching ashing: Hash taing t –III ary and other Taing ed Representation	sent vsis: Stang, (ble 1 Free on, 1	ation Mathematical ck and queue Queue applicati representation- es: Trees, Bina Linked Represe	roduction to oops co Background, Mode Unit – II implementation usi on-railroad car rearr ideal hashing, hash chains ry Trees, Properties entation, Common E ng data in a BST. In	, What to Analyze, ng linear list and l angement. ng with linear open and Representation inary Tree Operatio	Runi inke addi of B: ns.	aing Time (d list. Stac essing, has nary Trees	ntation, Linear Calculations. 08 Hrs k application- sh tables with 07 Hrs Formula
Lists Al Stac Pare Ha Unit Bina Base Bina	s, Linked Repre gorithm Analy ck and queue: enthesis matching ashing: Hash tain t –III ary and other The ed Representation ary Search Tre	Stang, (ble = Free (F	ation Mathematical ck and queue Queue applicati representation- es: Trees, Bina Linked Represe SST). Organizi	roduction to oops co Background, Mode Unit – II implementation usi on-railroad car rearr ideal hashing, hash chains ry Trees, Properties entation, Common E ng data in a BST. In Unit –IV	, What to Analyze, ng linear list and l angement. ng with linear open and Representation inary Tree Operatio serting and deleting	Runn inke addr of B ns. item	ing Time (d list. Stac essing, has nary Trees s in a BST	ntation, Linear Calculations. 08 Hrs k application tables with 07 Hrs -Formula
Lists Al Stac Pare Ha Unit Bina Base Bina Defi Prot	s, Linked Repre gorithm Analy ck and queue: enthesis matchin ashing: Hash ta t –III ary and other T ed Representation ary Search Tree prity Queues (E ph Algorithms initions, Proper	Stang, (ble 1 Free on, 1 Ree (F Heap :: tties	ation <u>Mathematical</u> ck and queue Queue application- representation- es: Trees, Bina Linked Represe ST). Organizion (ST). Model, Sin of graphs, R	roduction to oops co Background, Model Unit – II implementation usion-railroad car rearrideal hashing, hash chains ry Trees, Properties entation, Common E ng data in a BST. In Unit –IV nple Implementation epresentation of Gree, Depth-First Sear	, What to Analyze, ng linear list and l angement. ing with linear open and Representation inary Tree Operatio serting and deleting as, Binary Heap, Lef	Runn inke addu of B ns. item item	hing Time (d list. Stac essing, has nary Trees s in a BST Heaps. gorithms, 1	ntation, Linear Calculations. 08 Hrs k application- sh tables with 07 Hrs -Formula 08 Hrs Network Flow action to NP-
Lists Al Stac Pare Ha Unit Bina Base Bina Defi Prot Com	s, Linked Repre gorithm Analy k and queue: enthesis matchin ashing: Hash ta t –III ary and other T ed Representationary Search Tree prity Queues (H ph Algorithms initions, Proper plems, Minimu	Stang, (Stang, (ble = Free (F Heag :: ties m	ation Mathematical ck and queue Queue application- representation- es: Trees, Bina Linked Represe SST). Organizi os): Model, Sir of graphs, R Spanning Tree	roduction to oops co Background, Model Unit – II implementation usion-railroad car rearrideal hashing, hash chains ry Trees, Properties entation, Common E ng data in a BST. In Unit –IV nple Implementation epresentation of Gree, Depth-First Sear Unit –V	, What to Analyze, ng linear list and l angement. ing with linear open and Representation inary Tree Operatio serting and deleting as, Binary Heap, Lef	Runn inke addu of B ns. item item	hing Time (d list. Stac essing, has nary Trees s in a BST Heaps. gorithms, 1	ntation, Linea Calculations. 08 Hrs k application sh tables with 07 Hrs Formula 08 Hrs Network Flow

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Acquire the knowledge of importance of data structures in computer programs.							
CO2:	Represent and solve data analytics problems using graph algorithms.							
CO3 :	Implement classic data structures: array lists, linked lists, stacks, queues, heaps, binary trees, hash							

	tables.
CO4:	Evaluate the performance of various algorithms built using different data structures.

Refer	rence Books
1	Data Structures and Algorithm Analysis in C++ (3rd edition), by M. A. Weiss. Addison-Wesley, ISBN-10: 032144146X & ISBN-13: 9780321441461
1	ISBN-10: 032144146X & ISBN-13: 9780321441461
2	Sartaj Sahani; "Data structures, Algorithms and applications in c++"; McGraw Hill; 2000;1st
2	Edition; ISBN: 10:007236226X
2	Data Structures Using C++, D.S. Malik, 2 nd Edition, 2009, Cengage Learning, ISBN- 13: 978-0-
3	324-78201-1

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	2	3	-	-	-	-	-	-		-	-	
CO2	3	2	2	3	-	-	-	2	2		-	-	
CO3	2	2	3	3	-	-	-	2	2		-	-	
CO4	3	3	3	3	2	3	2	3	3	3	2	3	

	Semester: VI											
	RADIO FREQUENCY & MILLIMETER WAVE IC DESIGN											
	(Group D: Professional Core Elective)											
Course Code		:	18EC6D4		CIE	:	100 Marks					
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks					
То	Total Hours		36L		SEE Duration	:	3.00 Hours					
Co	urse Learning (Obje	ectives: The stu	dents will be able to								
1	Define and den	nons	trate the import	ance of radio frequent	ncy and millimeter	wave	e IC design.					
2	Analyze the fu	nctic	onality and desig	gn issues of RF circu	its and systems.							
3	Design of vario	ous c	ircuit blocks in	an RF transceiver.								
4	Evaluate the di	ffere	ent performance	parameters used in l	RF design.							

Unit-I	8 Hrs						
Basic concepts in RF design - Units in RF design, Nonlinearity and Time Variance, Effects							
- harmonic distortion, gain compression - 1 dB compression point, desensitization, b	olocking, cross						
modulation, intermodulation - third intercept point, cascaded nonlinear stages - IM spectra i	n a cascade.						
Noise in RF circuits - Representation of noise in circuits - input referred noise, Noise figure	re, Noise figure						
of cascaded stages, Noise figure of lossy circuits, Sensitivity, dynamic range - spurious free	dynamic range						
(SFDR).	[
Unit – II	8 Hrs						
Transceiver architectures – channel selection and band selection, Heterodyne – constant L							
IF downconversion, problem of image, image rejection vs channel selection, dual IF topolog							
simple homodyne and homodyne with quadrature down conversion, issues in homodyne re-							
Reject - Hartley & Weaver architecture. Transmitter architectures - Direct conversion	and two-step						
transmitters.							
Review of two port parameters and their significance.							
Nanoscale MOSFETs - Parasitic resistances (Rs, Rd, Rg), parasitic capacitances (Cgs, Cgd,),	simplified and						
extrinsic small-signal models. High-frequency figures of merit: f _T and f _{MAX.}	1						
Unit –III	9 Hrs						
Matching networks - Passive RLC circuits, impedance transformation - Quality factor, see	eries to parallel						
conversion, basic matching networks- L, Pi-match networks – design example.							
Low noise Amplifier - Performance parameters, Problem of Input matching, CS stage with							
Cascode CS stage with inductive degeneration (MOSFET circuits only), Noise figure calcula	tion, Amplifier						
bandwidth extension techniques, Millimeter Wave LNAs.	Γ						
Unit –IV	7 Hrs						
Mixer - Performance parameters, Mixer noise figures, single balanced and double balance	ced (active and						
passive) – working (MOSFET circuits only), Millimeter Wave Mixers.							
Oscillators - Performance parameters, Feedback view and one port view of oscillators,	Cross coupled						
oscillator, three point oscillators, (MOSFET circuits only), Ring oscillators.	ſ						
Unit –V	7 Hrs						
Phase Locked Loops - Basic concepts - Phase detector, Type I PLL, Dynamics of simple P							
of simple PLL, Type II PLLs - PFD, charge pump, charge pump PLL, PFD/CP Nonidea	lities (concepts						
only) – Up and Down Skew and Width Mismatch, Charge Injection and clock feedthrough.							
Course Outcomes: After completing the course, the students will be able to							
CO1: Investigate the functionality of a typical RF system.							
CO2: Analyze CMOS circuits and its impact on Radio frequency and Millimeter Wave IC design.							
CO3: Design and implement various circuit blocks for RF transceiver chain with specificat	tion.						
COA: Evaluate the different performance parameters used in PE design using CAD tools							

CO4: Evaluate the different performance parameters used in RF design using CAD tools.

Refer	ence Books								
1	Behzad Razavi,	"RF Microelectronics '	', 2nd	Edition	Pearson	Education,	2012,	ISBN :	13:

	9780137134731
2	Thomas H Lee, "The Design of CMOS Radio Frequency Integrated Circuits",2nd Edition, Cambridge University Press, 2004, ISBN : 9780511817281
3	John Rogers ,Calvin Plett, "Radio Frequency Integrated Circuits Design", Artech House, 2003, ISBN : 1-58053-502-x
4	S. Voinigescu, "High-Frequency Integrated Circuits", The Cambridge RF and Microwave Engineering Series, 1 st edition, 2013, ISBN : 978-0521873024

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	-	-	-	-	-	-	-	-	-	2	
CO2	3	2	-	-	-	-	-	-	-	-	-	2	
CO3	3	3	2	-	2	-	-	3	2	-	-	2	
CO4	3	3	-	-	2	-	-	-	-	-	-	2	

	Semester: VI											
	DEEP LEARNING											
	(Group D: Professional Core Elective)											
Course Code		:	18EC6D5		CIE		100 Marks					
Credits: L:T:P		:	3:0:0		SEE		100 Marks					
Tota	al Hours	:	36L		SEE Duration		3.00 Hours					
Cou	rse Learning ()bje	ectives: The stu	dents will be able to								
1	Discuss the ba	sic	mathematical f	undamentals for deep	o learning							
2	Identify the de	eep	neural network	architecture								
3	Appreciate the	e lea	arning technique	es for the deep neural	l network							
4	Understand th	e oj	otimization and	regularizations techr	niques.							
5	Analyse the de	eep	learning model	s using standard mod	lels/ libraries							

	Unit-I	08 Hrs
Introdu	action: History of Deep Learning, Deep Learning Success Stories Gradient	Descent (GD)
	ntum Based GD, Nesterov Accelerated GD, Stochastic GD, AdaGrad, RMSProp, I	
eigenv	ectors, Eigenvalue Decomposition, Basis, Principal Component Analysis and its	interpretations
Singul	ar Value Decomposition	-
	Unit – II	07 Hrs
	ncoders and relation to PCA, Regularization in autoencoders, Denoising autoen	
	coders, Contractive autoencoders, Bias Variance Tradeoff, L2 regularization, Early st	
augme	ntation, Parameter sharing and tying, Injecting noise at input, Ensemble methods, Dro	pout
	Unit –III	07 Hrs
Greedy	A Layerwise Pre-training, Better activation functions, Better weight initialization	methods, Batch
Norma	lization.	
	lutional Neural Networks, LeNet, AlexNet, ZF-Net, VGGNet, GoogLeNet, I	ResNet, Objec
Detect	ion, RCNN, Fast RCNN, Faster RCNN, YOLO	-
	Unit –IV	07 Hrs
	ent Neural Networks, Backpropagation Through Time (BPTT), Vanishing and Explo	oding Gradients
Trunca	ated BPTT	
	Unit –V	07 Hrs
	Recurrent Units (GRUs), Long Short Term Memory (LSTM) Cells, Solving the var	
-	m with LSTMs, Autoregressive Models: NADE, MADE, PixelRNN, Generat	ive Adversaria
Netwo	rks (GANs)	
	e Outcomes: After completing the course, the students will be able to	
CO1:	Understand the fundamentals of various neural network architecture and training me	
CO2:	Apply the techniques for regularization and optimization of the deep learning netwo	orks
CO3:	Appreciate the various models of deep learning networks and its applications	
CO4:	Engage in self-study to formulate, design, implement and analyze an applicat	ion realized or
	relevant platform.	
D 4		
Refere	ence Books	
1	Goodfellow, I., Bengio, Y., and Courville, A., Deep Learning, MIT Press, 2 0262035618	2016.ISBN- 10
2	Bengio, Yoshua. "Learning deep architectures for AI." Foundations and trends in M	achine Learning
4	2.1 (2009) ISBN- 978-3-642-24412-4	
3	Bishop, C., Pattern Recognition and Machine Learning, Berlin: Springer-Verlag, 20	06. ISBN- 978
3	0-387-31073-2	

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	-	-	-	-	-	-	-	-	-	2	
CO2	3	2	-	-	-	-	-	-	-	-	-	2	
CO3	3	3	2	-	2	-	-	3	2	-	-	2	
CO4	3	3	-	-	2	-	-	-	-	-	-	2	

Semester: VI											
ALGORITHMS FOR VLSI DESIGN AND AUTOMATION											
(Group D: Professional Core Elective)											
Course Code : 18EC6D6 CIE : 100 Marks											
s: L:T:P	:	3:0:0		SEE	:	100 Marks					
Total Hours : 36L SEE Duration : 3.00 Hours											
e Learning O	bje	ectives: The stu	dents will be able to								
Analyze the co	onc	ept of digital sy	stems, how they can	be optimized for a	area,	power and cost, why it is					
advantageous	to ı	use physical des	sign tools.								
implement the	e co	oncept of the p	hysical design cycle	and develop algo	rithn	ns (tools)for each design					
cycle step.											
Optimize the o	ligi	ital system at ar	chitectural level.								
Synthesize a g	ive	en system startir	ng with problem requ	irements, identifyi	ng ai	nd designing the building					
blocks, and then integrating blocks designed earlier											
	L:T:P Iours Learning O Analyze the co dvantageous mplement the ycle step. Dptimize the co synthesize a g	Code:: L:T:P:Iours:Learning ObjectAnalyze the concentdvantageous to the concentdvantageous to the concentycle step.Optimize the digetynthesize a give	Code:18EC6D6:13:0:0Iours:3:0:0Iours:36LLearning Objectives: The stu Analyze the concept of digital sy dvantageous to use physical des mplement the concept of the p ycle step.Optimize the digital system at ar Synthesize a given system starting	(Group D: Professional (Code : 18EC6D6 : L:T:P : 3:0:0 Iours : 36L Iours Learning Objectives: The students will be able to Analyze the concept of digital systems, how they can dvantageous to use physical design tools. Iours Iours mplement the concept of the physical design cycle step. Deprimize the digital system at architectural level. Iours Iours	(Group D: Professional Core Elective) Code : 18EC6D6 CIE SEE SEE SEE SEE Iours : 36L SEE Duration Learning Objectives: The students will be able to SEE Duration Analyze the concept of digital systems, how they can be optimized for a dvantageous to use physical design tools. mplement the concept of the physical design cycle and develop algo ycle step. Optimize the digital system at architectural level. ynthesize a given system starting with problem requirements, identifying the starting with problem requirements.	(Group D: Professional Core Elective) Code : 18EC6D6 CIE : SEE : 3:0:0 SEE : Iours : 36L SEE Duration : Learning Objectives: The students will be able to SEE Duration : Analyze the concept of digital systems, how they can be optimized for area, dvantageous to use physical design tools. mplement the concept of the physical design cycle and develop algorithm ycle step. Optimize the digital system at architectural level. ynthesize a given system starting with problem requirements, identifying an architectural level.					

Unit-I	07 Hrs
Scheduling Algorithms: Introduction, A model for scheduling problems, Scheduling wit	hout and with
resource constraints, Scheduling algorithms for extended sequencing models, Scheduling pip	elined circuits,
Resource sharing and binding.	
Unit – II	07 Hrs
Data Structure and Basic Algorithms: Basic Terminology, Graph Search Algorithms,	Computational
Geometry Algorithms, Basic Data structures. Partitioning: Problem Formulation, Cla	assification of
Partitioning Algorithms, Group migration Algorithms, Simulated Annealing and evolution al	lgorithm, other
partitioning algorithms	
Unit –III	07Hrs
Floor Planning and Pin Assignment: Problem formulation, classification, Constraint	based, Integer
programming based, rectangular Dualization, simulated evolution floor planning algorithm	s. Placement:
Problem formulation, Classification, Simulation based, Partitioning based Placement Algorith	nms
Unit –IV	08 Hrs
Global Routing: Problem formulation, Classification, Maze routing Algorithms, Line Prob	be Algorithms,
shortest path-based Algorithms, Steiner tree-based Algorithms Detailed Routing: Probler	n formulation,
Classification single Layer routing, General river routing, Single row routing	
Unit –V	07 Hrs
Channel, Clock and Power Routing: Two-layer channel routing Algorithms, Design con	siderations for
the clocking system, delay calculation for clock trees, Problem formulation, Clock routing A	Algorithms, H-
tree based Algorithms, MMM Algorithms, Geometric matching based Algorithms, In	ntroduction to
compaction, shadow propagation algorithm.	
Course Outcomes: After completing the course, the students will be able to	
CO1: Analyze each stage of VLSI design flow to develop a CAD tool for physical design.	
CO2: Apply design knowledge to develop algorithms for VLSI design automation.	

Re	ference Books
1	Synthesis and Optimization of Digital Circuit, 1994, Giovanni De Micheli, McGraw- Hill, ISBN: 10-0070163332
2	Algorithms for VLSI Physical Design Automation, N.A. Sherwani, 2002, Kluwar Academic Publishers, ISBN: 0-7923-8393-1
3	An Introduction to VLSI Physical Design, M Sarraf Zadeh, C K Wong, 1996, McGraw Hill, ISBN:0070571945
4	Algorithms for VLSI Design Automation, S.H. Gerez, 1998, John Wiley & Sons, ISBN: 978-0-471- 98489-4

CO3: Evaluate the algorithms for optimizing VLSI design with respect to speed, power and area.

CO4: Create an optimized VLSI IC design technique using various algorithms.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	1	3	2	3	-	-	-	1	1	2	3
CO2	3	2	3	1	3	-	1	1	2	2	3	3
CO3	3	2	3	3	3	1	-	-	1	1	3	3
CO4	3	3	3	1	3	-	-	1	2	1	1	3

	Semester: VI								
	AIRCRAFT SYSTEMS								
			(GROI	UP E: GLOBAL ELECTIV	VE)				
				(Theory)					
Cou	rse Code	:	: 18G6E01		IE	:	100 Marks		
Credits: L:T:P			3:0:0	SI	SEE		100 Marks		
Hours		:	39L	SI	EE Duration		3.00 Hours		
Cou	rse Learning O	bje	ectives: To ena	ble the students to:					
1	List the variou	is s	ystems involve	d in the design of an aircraft					
2	2 Demonstrate the technical attributes of all the subsystems of an aircraft								
3									
4	Demonstrate t	he i	integration of the	he systems with the airplane					

Unit-I	07Hrs
Flight Control Systems: Primary and secondary flight controls, Flight control linkage	e system,
Conventional Systems, Power assisted and fully powered flight controls.	
Unit – II	10Hrs
Aircraft Hydraulic & Pneumatic Systems: Components of a typical Hydraulic system, W	orking or
hydraulic system, Power packs, Hydraulic actuators. Pneumatic system and components, Use	e of bleed
air, Landing gear and braking, Shock absorbers-Retraction mechanism.	
Unit -III	08Hrs
Aircraft Fuel Systems: Characteristics of aircraft fuel system, Fuel system and its con	mponents,
Gravity feed and pressure feed fuel systems, Fuel pumps-classification, Fuel control unit.	
Unit -IV	07Hrs
Environmental Control Systems: Air-conditioning system, vapour cycle system, de-icing	and anti-
icing system, Fire detection- warning and suppression. Crew escape aids.	
Engine Systems: Engine starting sequence, Starting and Ignition systems, Engine oils and lubricating system.	l a typical
	a typical 07Hrs
lubricating system.	07Hrs
lubricating system. Unit -V	07Hrs
lubricating system. Unit -V Aircraft Instruments : Instruments displays, panels & layouts, Instrumentation grouping, N	07Hrs Vavigation

sensing, stall warning, Mach warning, altitude alerting system.

Course Outcomes:

At the end of this course the student will be able to :

CO1:	Categorise the various systems required for designing a complete airplane
CO2:	Comprehend the complexities involved during development of flight vehicles.
CO3:	Explain the role and importance of each systems for designing a safe and efficient flight vehicle
CO4 :	Demonstrate the different integration techniques involved in the design of an air vehicle

Reference Books

	Introduction to Flight, John D. Anderson, 7 th Edition, 2011, McGraw-Hill Education, ISBN 9780071086059.
2	Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration, Moir, I. and Seabridge, A.,3 rd Edition, 2008, Wiley Publications, ISBN- 978-0470059968

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	3	2	2	-	-	-	1
CO2	2	3	3	3	1	1	1	1	-	-	-	1
CO3	2	2	3	3	1	-	-	-	-	-	-	2
CO4	3	3	3	3	1	2	1	2	-	-	-	1

Semester: VI BIO INSPIRED ENGINEERING (GROUP E: GLOBAL ELECTIVE)								
Соц	(Theory) Course Code : 18G6E02 CIE : 100 Marks							
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks	
Tota	l Hours	:	39 L	SEE Duration		:	3.00 Hours	
Cou	rse Learning ()bj	ectives: The studen	ts will be able to				
1	To familiarize	e er	igineering students	with basic biologica	l concepts			
2	Utilize the si	mil	arities noted in nat	ture for a particular	problem to bring i	nsp	iration to the	
	designer.			_		_		
3	Explain appli	cat	ions such as smart	structures, self-heali	ng materials, and ro	bot	ics relative to	
	their biological analogs							
4 To gain an understanding that the design principles from nature can be translated into novel								
	devices and st	truc	ctures.	_				

Unit-I	08 Hrs
Introduction to biological systems: General and Special biomolecules, Plant, an	imal and
microbial cell types, Somatic and Sensory system. Plant process - Photosynthesis. Neural	networks,
Neuron models-Signal encoding architecture, Synaptic plasticity-Supervised, unsuper	vised and
reinforcement learning, Evolution of artificial neural networks-Hybrid neural systems	with case
study Harvesting Desert Fog.	
Unit – II	08 Hrs
Introduction to Biomimetics: Introduction to micro architectural aspects. Structures and	l physical
functions of biological composites of engineering – related case study: Camera from eyes	, clothing
designs and hooks from Velcro Criteria for future materials design and processing. Con	mputation
Cellular systems: Cellular automata - modelling with cellular systems with cellular s	systems –
artificial life – analysis and synthesis of cellular systems: Nature's Water Filter.	
Unit –III	08 Hrs
Engineering of synthetic organs: Growth, development and principle of artificial skins	s, hearing
aids, artificial limbs, artificial lungs and artificial lever. Implants-working principle of pa	acemaker,
Breast Implants, Artificial Eye Lenses, Blood sugar monitoring, artificial heart. Appl	ication of
Spine Screws, Rods and Artificial Discs, Metal Screws, Pins, Plates and Rods	
Unit –IV	07 Hrs
Biosimilars: Introduction, characteristics and bioequivalence. Criteria for Bioequivalence.	uivalence,
Development of Biosimilars, Statistical Methods for Assessing Biosimilarity, I	ssues on
Immunogenicity Studies, Regulatory Requirements, Stability Analysis of Biosimilar	Products,
Challenges involved in Biosimilars.	
Unit –V	08 Hrs
Biomechatronics: Introduction to MEMS based devices, Evolution of behavioural	systems,
learning in behavioural systems – co evolution of body and control. Behaviour in cognitiv	ve science
and artificial intelligence. Biological inspiration for robots, Robots as biological mo	
robotics behaviour, Application of sleek scale of shark skin.	
Course Outcomest After completing the course the students will be able to	

Course Outcomes: After completing the course, the students will be able to						
CO1:	Remember and explain the concepts of biological and physiological processes					
CO2:	Elucidate the basic principles for design and development of biological systems.					
CO3:	Differentiate biological phenomena to support inspiration for visual and conceptual design problems					

CO4:	Develop technical solutions to customer needs by utilizing a variety of bio-inspiration
	techniques.

Reference Books

	KUUU	LICC DOORS
	1	Yoseph Bar-Cohen. Biomimetics: Biologically Inspired Technologies D. Floreano and C. Mattiussi, "Bio-Inspired Artificial Intelligence", CRC Press, 2018. ISBN: 1420037714, 9781420037715.
-		Bououdina, Mohamed. Emerging Research on Bioinspired Materials Engineering. IGI
	2	Global, 2016. ISBN: 1466698128, 9781466698123.
	3	Christopher H. M. Jenkins. Bio-Inspired Engineering. Momentum Press, 2011. ISBN:
		1606502255, 9781606502259.
	4	Göran Pohl, Werner Nachtigall. Biomimetics for Architecture & Design: Nature -
		Analogies - Technology. Springer, 2019. ISBN: 3319191209, 978331919120

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks**.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover the entire unit having the same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	-	1	3	2	-	1	1	1	-
CO2	3	3	2	3	2	-	1	2	-	1	2	-
CO3	2	2	2	3	3	3	2	2	-	1	2	2
CO4	2	2	3	3	2	-	1	2	1	-	-	-

			Semester: VI						
		SUSTA	AINABLE TECHNO	DLOGY					
		(GROU	P E: GLOBAL ELE	CTIVE)					
			(Theory)						
Course Code	:	18G6E03		CIE	:	100 Marks			
Credits: L:T:P : 3:0:0 SEE : 10									
Total Hours	:	39L		SEE Duration	:	3.00 Hours			
Course Learning	g Obj	ectives: The stud	ents will be able to						
				tion of industrial and e	ecolo	gical systems			
			life cycle assessment.						
				appropriate case studie	es.				
4 Use concep	ts of s	systems-based, tr	ans-disciplinary appro	bach to sustainability.					
			TT •4 T						
Introduction to			Unit-I			08 Hrs			
Introduction to		•	nts and Life Cyclo	Analysis, Material	flor	v and west			
		• •	ects, Character of Env	-	110	w and wast			
management, en	mica		Unit – II	ironnentar i robienis		07 Hrs			
Environmental l)ata (Collection and L	CA Methodology:			07 111			
				sis of Environmenta	l Da	ata, Commo			
			CA Methodology. – Ge			,			
J.			Unit –III	,		08 Hrs			
Life Cycle Asses	smen	t:				·			
			cle Interpretation, LCA	A Benefits and Drawb	acks				
Wet Biomass Ga									
				tion, Biomass conver					
-	0	0	5	gestion, Classification	1 of	biogas plants			
Floating drum pla	nt an	a fixed dome plai	nt their advantages an Unit –IV	d disadvantages.		08 Hrs			
Design for Susta	inahi	litx,.	Unit –I v			00 113			
0		v	ental Design for Susta	inability					
Dry Biomass Ga			intui Design for Susta	indonity.					
U U			rmal gasification of b	iomass, Classification	of g	asifiers, Fixe			
bed systems:		,	0	,	0	,			
•			Unit –V			08 Hrs			
Case Studies:									
	r Org	anics Treatment	Plant, Bio-methanatic	on, Bioethanol produc	tion.	Bio fuel from			
water hyacinth.									
		<u> </u>	he course, the studer						
	Understand the sustainability challenges facing the current generation, and systems-based								
approach	approaches required to create sustainable solutions for society.								
CO2: Identify	proble	ems in sustainabi	ility and formulate a	ppropriate solutions l	based	l on scientifi			
research, applied science, social and economic issues.									
				ciplinary approach to	susta	inability			
11 2		· · · · · · · · · · · · · · · · · · ·		c research, applied s		÷			
	- app		s subta on berenting	- resources, upplied s		e, sooiai an			

	Refere	ference Books											
	1	Sustainable	Engineering	Principles	and	Practice,	Bavik	R	Bhakshi,	2019,	Cambridge		
		University Press, ISBN - 9781108333726.											

economic issues.

	Environmental Life Cycle Assessment, Olivier Jolliet, Myriam Saade-Sbeih, Shanna Shaked,
2	Alexandre Jolliet, Pierre Crettaz, 1st Edition, CRC Press, ISBN: 9781439887660.
2	Sustainable Engineering: Drivers, Metrics, Tools, and Applications, Krishna R. Reddy,
3	Claudio Cameselle, Jeffrey A. Adams, 2019, John Wiley & Sons, ISBN-9781119493938

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	-	-	-	-	-	1	-	1
CO4	3	3	3	3	-	-	-	-	-	1	-	1

Semester: VI									
	GRAPH THEORY								
		(GROUP E: O	GLOBAL ELECT	TIVE)					
			(Theory)						
Course Code	:	18G6E04		CIE Marks	:	100 Marks			
Credits: L:T:P	Credits: L:T:P : 3:0:0 SEE Marks : 100 Marks								
Total Hours	:	39L		SEE Duration	:	3.00 Hours			

Cour	se Learning Objectives: The students will be able to
1	I understand the basics of smark the same and their requires a moment

Cour		ing Ob	jeen co.	Incs	luucin	9 WH						
1	Understa	and the	basics of	graph	theory	and	their	various	prope	erties.		
0	37 11	1.1	•	1	1.	1	.1	1.1	1		•	11

2

- Model problems using graphs and to solve these problems algorithmically. Apply graph theory concepts to solve real world applications like routing, TSP/traffic control, 3 etc.
- Optimize the solutions to real problems like transport problems etc., 4

UNIT-I	07 Hrs
Introduction to graph theory	
Introduction, Mathematical preliminaries, definitions and examples of graphs, degree	es and regular
graphs, sub graphs, directed graphs, in degrees and out degrees in digraphs.	C
Basic concepts in graph theory	
Paths and cycles, connectivity, homomorphism and isomorphism of graphs, connectivity	y in digraphs.
UNIT-II	09 Hrs
Graph representations, Trees, Forests	·
Adjacency matrix of a graph, Incidence matrix of a graph, Adjacency lists, Trees and	d properties of
trees, Characterization of trees, Centers of trees, Rooted trees, Binary threes, Spann	ning trees and
forests, Spanning trees of complete graphs, An application to electrical networks, I	Minimum cos
spanning trees.	
UNIT-III	09 Hrs
Fundamental properties of graphs and digraphs	•
Bipartite graphs, Eulerian graphs, Hamiltonian graphs, Hamiltonian cycles in wei	ighted graphs
Eulerian digraphs.	0 0 1
Planar graphs, Connectivity and Flows	
Embedding in surfaces, Euler's formula, Characterization of planar graphs, Kuratow	ski's theorem
Dual of a planar graphs.	
UNIT-IV	07 Hrs
Matchings and Factors	
Min-Max theorem, Independent sets and covers, Dominating sets, maximum bipartite m	atching.
Coloring of graphs	
The chromatic number of a graph, Results for general graphs, The chromatic polynom	ial of a graph
Basic properties of chromatic polynomial, chordal graphs, powers of graphs, Edge color	ing of graphs
UNIT-V	07Hrs
Graph algorithms	
Graph connectivity algorithms, Breadth first search and Depth first search, Shortest pa	ath algorithms
Dijikstra's shortest path algorithm, Minimum cost spanning tree algorithms, Algorithm	•
and Prim's.	
Course Outcomes: After completing the course, the students will be able to	
CO1. Understand and explore the basics of graph theory.	

Course	Course Outcomes: After completing the course, the students will be able to						
CO1.	Understand and explore the basics of graph theory.						
CO2.	Analyse the significance of graph theory in different engineering disciplines						
CO3.	Demonstrate algorithms used in interdisciplinary engineering domains.						
CO4.	Evaluate or synthesize any real world applications using graph theory.						

Reference	Books

1.	Introduction to graph theory, Douglas B. West, 2 nd Edition, 2001, PHI, ISBN- 9780130144003,
	ISBN-0130144002.
2.	Graph Theory, Modeling, Applications and Algorithms, Geir Agnarsson, Raymond Greenlaw,
	Pearson Education, 1 st Edition, 2008, ISBN- 978-81-317-1728-8.
3.	Introduction to Algorithms, Cormen T.H., Leiserson C. E, Rivest R.L., Stein C., 3rd Edition,
	2010, PHI, ISBN:9780262033848

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-l	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	-	-	-	-	-	-	1	1	-	-
CO2	2	3	2	1	-	-	-	-	2	2	-	1
CO3	2	2	3	2	-	-	-	-	2	2	-	1
CO4	2	2	3	2	-	1	-	-	2	2	-	1

			Semester: VI					
		DI	ISASTER MANAGE	MENT				
(GROUP E: GLOBAL ELECTIVE)								
(Theory)								
Course Code : 18G6E05 CIE : 100 Marks								
Credits: L:T:P								
Total Hours	:	39L		SEE Duration	:	3.00 Hours		
Course Learning	Ob	jectives: The stu	dents will be able to		_	1		
1 Study the env	viror	nmental impact of	of natural and manmad	e calamities				
2 Learn to anal	yze	and assess risk i	nvolved due to disaster	rs.				
		ole of public part						
4 Learn the ma	nage	ement tools and	mitigation techniques.					
			Unit-I			08 Hrs		
Natural disasters				111 .1 1				
			Hazards- floods, land					
			ients, harmful gases, B					
			tivities. Preparation of Post disaster plans. Re					
organization and a			-	ner camp organizatio	II. N	ole of voluntary		
organization and a	inte	u torees during (Unit – II			07 11		
Diale analysis and			Unit – 11			07 Hrs		
Risk analysis and			alysis. Analytical te	abriques and tools	of	rick accomment		
			k characterization. Ris					
emergency respon						inagement, i ii ii		
			Unit –III			08 Hrs		
Environmental In	npa	ct Assessment (
			ciples of EIA. Regula	atory framework in I	ndia	. Environmental		
inventory. Base lin				-				
			Unit –IV			08 Hrs		
Assessment and M	Met	hodologies						
		0	es, Socio economic an	d cultural environment	ntal	assessment. EIA		
			list approaches. Econo					
EIA. Public partic	cipa	tion in environn	nental decision makin	g. Procedures for rev	iewi	ng EIA analysis		
and statement. Dec	cisic	on methods for e	valuation of alternative	es.				
			Unit –V			08 Hrs		
Disaster Mitigati	on a	nd Managemer						
e		0	management, tools an	d techniques, primary	and	l secondary data		
Natural disasters its causes and remedies-Earthquake hazards-Causes and remedies, Flood and Drought								
assessment, causes and remedies, Landslides-causes and remedies. Fire hazards in buildings, Fire								
hazard management, Traffic management, Cyclones and hurricanes, inter department cooperation.								
Regional and glob	al d	isaster mitigation	n.	-		_		
Course Outcome	s: A	fter completing	g the course, the stude	ents will be able to				
			f disasters and manage		ter s	ituation.		
CO2. Estimata			the might by conductin			1		

CO4: Analyze and evaluated the impact of measures adopted to mitigate the impacts.

Refer	Reference Books								
1	Environmental Impact Analysis Hand Book, John G Rau and David C Wooten, Edition: 2013, ISBN: 978-0070512177.								
2	Introduction to environmental Impact assessment, John Glasson, RikiTherivel, Andrew Chadwick, Edition: 2012, Research Press, ISBN:000-0415664705.2005, Reliance Publishing House, New Delhi.								
3	Natural Disaster Reduction, Girish K Mishrta, G C Mathew (eds), Edition, 2005, Reliance Publishing House, New Delhi,								
4	Remote Sensing and Image Interpretation, Thomas M. Lillisand and R.W. Keifer, 6 th Edition, 2002, John Wiley, ISBN:9780470052457.								

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO	-PO M	apping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	1	1	-	-	1	1	-	-	-	-	-
CO2	-	2	1	-	-	2	1	1	-	-	-	-
CO3	-	2	1	-	-	2	1	3	-	-	-	-
CO4	-	1	1	-	-	3	2	1	-	-	-	-

			Sen	nester: VI		
			WEARABLI	E ELECTRONICS		
			(GROUP E: GI	LOBAL ELECTIVE)		
			(7)	Theory)		
Cou	rse Code	:	18G6E06	CIE	:	100 Marks
Cre	dits: L:T:P	:	3:0:0	SEE	:	100 Marks
Tota	al Hours	:	39L	SEE Duration	:	3.00 Hours
Cou	rse Learning	Obj	ectives: The students will	be able to		
1	Explain the t	ypes	and application of wearab	le sensor.		
2	Describe the	wor	king of sensitivity, conduc	tivity and energy generation in wear	abl	e devices.
3	Explain the v	varic	us facets of wearable appli	cation, advantage & challenges.		
4	Understand of	liffe	rent testing and calibration	in wearable devices.		

Unit-I	08 Hrs
Introduction: world of wearable (WOW), Role of wearable, The Emerging Concept of	Big Data, The
Ecosystem Enabling Digital Life, Smart Mobile Communication Devices, Attributes	of Wearables,
Taxonomy for Wearables, Advancements in Wearables, Textiles and Clothing, Applications	s of Wearables.
[Ref 1: Chapter 1.1]	

Unit – II 08 Hrs Wearable Bio and Chemical Sensors: Introduction, System Design, Microneedle Technology, Sampling Gases, Types of Sensors, Challenges in Chemical Biochemical Sensing, Sensor Stability, Interface with the Body, Textile Integration, Power Requirements, Applications: Personal Health, Sports Performance, Safety and Security, Case studies. [Ref 1: Chapter 2.1]

Unit –III	07 Hrs
Smart Textile: Conductive fibres for electronic textiles: an overview, Types of con	nductive fibre,
Applications of conductive fibres, Bulk conductive polymer yarn, Bulk conductive	polymer yarn,
Techniques for processing CPYs, Wet-spinning technique, Electrospinning technique, case	studies, Hands
on project in wearable textile: Solar Backpack, LED Matrix wallet. [Ref 2: Chapter 1,2] &.	Ref 3: Chapter
6,9]	
Unit –IV	08 Hrs

	00 1115
Energy Harvesting Systems: Introduction, Energy Harvesting from Temperature Gradien	ıt,
Thermoelectric Generators, Dc-Dc Converter Topologies, Dc-Dc Converter Design for Ult	tra-Low Input
Voltages, Energy Harvesting from Foot Motion, Ac-Dc Converters, Wireless Energy Trans	smission,
Energy Harvesting from Light, Case studies. [Ref 1: Chapter 4.1]	

Unit –V	08 Hrs
Wearable antennas for communication systems: Introduction, Background of textile an	tennas, Design
rules for embroidered antennas, Integration of embroidered textile surfaces onto polyn	mer substrates,
Characterizations of embroidered conductive, textiles at radio frequencies, RF p	erformance of
embroidered textile antennas, Applications of embroidered antennas. [Ref 2: Chapter 10]	

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Describe the different types and wearable sensors, textile, energy harvesting systems and antenna
CO2:	Analysis measurable quantity and working of wearable electronic devices.
CO3:	Determine & interpret the outcome of the wearable devices and solve the design challenges
CO4:	Analyse and Evaluate the wearable device output parameter in real time scenario or given problem
	statement.

Refer	rence Books
1	Wearable Sensors: Fundamentals, Implementation and Applications, Edward Sazonov, Michael R.
l	Neuman Academic Press, 1 st Edition, 2014, ISBN-13: 978-0124186620.
2	Electronic Textiles: Smart Fabrics and Wearable Technology, Tilak Dias, Woodhead Publishing;
2	1 st Edition, ISBN-13: 978-0081002018.
2	Make It, Wear It: Wearable Electronics for Makers, Crafters, and Cosplayers, McGraw-Hill
3	Education, 1st Edition, ISBN-13: 978-1260116151.
	Flexible and Wearable Electronics for Smart Clothing: Aimed to Smart Clothing, Gang Wang,
4	Chengyi Hou, Hongzhi Wang, Wiley, 1st Edition, ISBN-13: 978-3527345342
_	Printed Batteries: Materials, Technologies and Applications, Senentxu Lanceros-Méndez, Carlos
5	Miguel Costa, Wiley, 1st Edition, ISBN-13: 978-1119287421

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO	PO Ma	apping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	-	-	-	-	-	-		-	-
CO2	3	2	2	3	-	-	-	2	2		-	-
CO3	2	2	3	3	-	-	-	2	2		-	-
CO4	3	3	3	3	2	3	2	3	3	3	2	3

				Semester: VI			
			ENERGY AUD	ITING AND MAN	AGEMENT		
	(GROUP E: GLOBAL ELECTIVE)						
				(Theory)		_	
Co	ourse Code	:	18G6E07		CIE	:	100 Marks
Cr	edits: L:T:P	:	3:0:0		SEE	:	100 Marks
To	otal Hours	:	39L		SEE Duration	:	3.00 Hours
Co	ourse Learning	g O	bjectives: The stud	ents will be able to			
1	Understand th	ne r	eed for energy audi	t, energy manageme	nt and the concepts	of t	ooth.
2	Explain Proce	esse	es for energy audit o	of electrical systems.			
3	Design and de	eve	lop processes for en	ergy audit of mecha	nical systems.		
4	Prepare the fo	orm	at for energy audit of	of buildings and ligh	ting systems.		

Unit-I	06 Hrs
Types of Energy Audit and Energy-Audit Methodology: Definition of Energy Audit,	Place of
Audit, Energy – Audit Methodology, Financial Analysis, Sensitivity Analysis, Project F	inancing
Options, Energy Monitoring and Training.	
Survey Instrumentation: Electrical Measurement, Thermal Measurement, Light Measurement, Light Measurement, Light Measurement, Light Measurement, Light Measurement, Light Measurement, Measurement, Light M	urement,
Speed Measurement, Data Logger and Data Acquisition System,	
Energy Audit of a Power Plant: Indian Power Plant Scenario, Benefit of Audit, Types	of
Power Plants, Energy Audit of Power Plant.	
Unit – II	10 Hrs
Electrical Load Management: Electrical Passiag Electrical Load Management, Variable	•

Electrical-Load Management: Electrical Basics, Electrical Load Management, Variable-Frequency Drives, Harmonics and its Effects, Electricity Tariff, Power Factor, Transmission and Distribution Losses.

Energy Audit of Motors: Classification of Motors, Parameters related to Motors, Efficiency of a Motor, Energy Conservation in Motors, BEE Star Rating and Labelling.

Energy Audit of Pumps, Blowers and Cooling Towers: Pumps, Fans and Blowers, Cooling Towers

Unit -III 10 Hrs
Energy Audit of Boilers: Classification of Boilers, Parts of Boiler, Efficiency of a Boiler, Role
of excess Air in Boiler Efficiency, Energy Saving Methods.
Energy Audit of Furnaces: Parts of a Furnace, classification of Furnaces, Energy saving
Measures in Furnaces, Furnace Efficiency
Energy Audit of Steam-Distribution Systems :S team as Heating Fluid, Steam Basics,
Requirement of Steam, Pressure, Piping, Losses in Steam Distribution Systems, Energy
Conservation Methods
Unit –IV 07 Hrs
Unit –IV 07 Hrs Compressed Air System: Classification of Compressors, Types of Compressors, Compressed
Compressed Air System: Classification of Compressors, Types of Compressors, Compressed
Compressed Air System : Classification of Compressors, Types of Compressors, Compressed Air – System Layout, Energy – Saving Potential in a Compressed – Air System.
Compressed Air System : Classification of Compressors, Types of Compressors, Compressed Air – System Layout, Energy – Saving Potential in a Compressed – Air System. Energy Audit of HVAC Systems: Introduction to HVAC, Components of Air – Conditioning

Unit –V06 HrsEnergy Audit of Lighting Systems: Fundamentals of Lighting, Different Lighting Systems,
Ballasts, Fixtures (Luminaries), Reflectors, Lenses and Louvres, Lighting Control Systems,
Lighting System Audit, Energy Saving Opportunities.06 Hrs

Energy Audit Applied to Buildings: Energy – Saving Measures in New Buildings, Water Audit, Method of Audit, General Energy – Savings Tips Applicable to New as well as Existing Buildings.

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Explain the need for energy audit, prepare a flow for audit and identify the instruments						
	needed.						
CO2:	Design and perform the energy audit process for electrical systems.						
CO3:	Design and perform the energy audit process for mechanical systems						
CO4 :	Propose energy management scheme for a building						

Reference Books

INCIG	LICHCE DOORS
1	Handbook of energy audit, Sonal Desai, Kindle Edition, 2015, McGraw Hill Education, ISBN: 9339221346, 9789339221348
2	Energy management handbook, Wayne C Turner and Steve Doty, 6 th Edition, 2015, CRC Press, ISBN: 0-88173-542-6
3	Energy management, Sanjeev Singh and Umesh Rathore, 1 st Edition, 2016, Katson Books, ISBN 10: 9350141019, ISBN 13: 9789350141014
4	Energy audit of building systems, Moncef Krarti, 2 nd Edition, 2010, CRC Press ISBN: 9781439828717

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-I	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	1	2	3	2	1	1	1	2
CO2	3	3	2	2	2	2	3	2	1	1	2	2
CO3	3	3	2	2	2	2	3	2	1	1	2	2
CO4	3	3	2	2	2	2	3	3	1	1	2	2

	Semester: VI							
	VIRTUAL INSTRUMENTATION & APPLICATIONS							
			(Gl	ROUP E: GLOBAL ELECTIV	VE)			
		1	ſ	(Theory)				
	rse Code	:	18G6E08		CIE	:	100 Marks	
	dits: L:T:P	:	3:0:0		SEE	:	100 Marks	
	al Hours	:	39L		SEE Duration	:	3.00 Hours	
		<u> </u>	v	e students will be able to				
1				e between conventional and graph	ical programmin	g		
2				and virtual instrument.	6.1.4	•••	• • • • • •	
3	Analyzing LabVIEW	the	e dasies of dat	a acquisition and learning the conc	epts of data acqu	151t	tion with	
4		ר <u>א</u> ד	real time annl	cation using myRIO and myDAQ	programming co	nce	ents	
-	Developing	<u>,</u> u	icar time appi	ication using mytero and myDrig	programming ee			
				Unit-I			07 Hrs	
Basi	c of Virtual	Inst	rumentation,	Introduction to Lab VIEW, Comp	onents of LabVI	EW	V and Labels.,	
Cont	troller, Indic	cato	rs data type	s, wiring tool, debugging tools	, Creating Sub-	Vis	s, Boolean, -	
Mec	hanical actio	n- s	witch, and la	ch actions, Enum, Text, Ring, Typ	e Def, Strict Typ	e E	Def.	
				Unit – II			09 Hrs	
For	Loop, While	Lo	op , Shift reg	sters, stack shift register, feedbac	k node, and tunn	el,	elapsed time,	
				mula node, Sequence structures, L			^	
				Unit –III			09 Hrs	
Arra	ys and cluste	ers,	Visual displa	y types- graphs, charts, XY graph,	Introduction to	Stri		
	-		-	cal examples, File Formats, File I/C			-	
	0		, ,1	Unit –IV	, ,	1	07 Hrs	
Desi	gn Pattern-	Pro	oducer-Consu	mer Model, Event Structure Mo	odel, Master-Sla	ve	Model, State	
	•			n using Semaphore, Introduction to				
		-		ssistants, Analysis Assistants, I	· •			
			-	ured it as Virtual labs, Counters, L				
)	<u> </u>	Unit –V			07 Hrs	
Sign	al Processing	y A	pplication- Fo	purier transforms, Power spectrum,	Correlation met	hoc		
-				on using myRIO, Communication			-	
	e			re myRIO for speed control of D	·			
			•	and onboard sensors. Develop	•		• •	
~ ~	isition and p			and onboard sensors. Develop.	ment of control		, stem, mage	
acqu	instruori and p		ossing					

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Remember and understand the fundamentals of Virtual Instrumentation and data Acquisition.							
CO2:	Apply the theoretical concepts to realize practical systems.							
CO3:	Analyze and evaluate the performance of Virtual Instrumentation Systems.							
CO4 :	Create a VI system to solve real time problems using data acquisition.							

Reference Books						
1	Jovitha Jerome, Virtual instrumentation Using LabVIEW,4th Edition, 2010, PHI Learning					
I	Pvt.Ltd , ISBN: 978-8120340305					

2	Sanjay Gupta & Joseph John, Virtual Instrumentation Using LabVIEW, 2 nd Edition, 2017, Tata McGraw Hill Publisher Ltd, ISBN : 978-0070700284
2	Tata McGraw Hill Publisher Ltd, ISBN : 978-0070700284
2	Lisa. K. Wills, LabVIEW for Everyone, 2 nd Edition, 2008, Prentice Hall of India, , ISBN :
3	978-013185672
	Garry Johnson, Richard Jennings, LabVIEW Graphical Programming, , 4thEdition , 2017,
4	McGraw Hill Professional, ISBN: 978-1259005336

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks are executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	-	-	-	-	-	1	1	-	1
CO2	1	3	2	1	2	-	-	-	1	1	-	1
CO3	2	2	3	3	3	-	-	-	1	1	-	2
CO4	1	2	2	3	3	1	0	2	3	2	1	2

	Semester: VI							
	SYSTEMS ENGINEERING							
			(GROUP I	E: GLOBAL ELECT	IVE)			
				(Theory)		1	1	
Cou	rse Code	:	18G6E09	CI	E	:	100 Marks	
Credits: L:T:P		:	3:0:0	SE	E	:	100 Marks	
Total Hours :			39 L	SE	E Duration	:	3.00 Hours	
Cou	rse Learning (Obje	ectives:					
1.	Understand th	he L	ife Cycle of System	IS.				
2.	Explain the re	ole	of Stake holders and	their needs in organiz	ational system	ıs.		
3.	Develop and	Doc	cument the knowled	ge base for effective s	ystems engine	ering	g processes.	
4.								
5.	Create the fra	me	works for quality pro	ocesses to ensure high	reliability of s	syste	ems.	

UNIT-I	06 Hrs
System Engineering and the World of Modem System: What is System Engineering?, Or	rigins of
System Engineering, Examples of Systems Requiring Systems Engineering, System Eng	ineering
viewpoint, Systems Engineering as a Profession, The power of Systems Engineering, problem	s.
Structure of Complex Systems: System building blocks and interfaces, Hierarchy of C	Complex
systems, System building blocks, The system environment, Interfaces and Interactions.	
The System Development Process: Systems Engineering through the system Life Cycle, Evol	utionary
Characteristics of the description of the sector of the sector of the sector of the description of the sector of t	

Characteristics of the development process, The system engineering method, Testing throughout system development, problems.

UNIT – II10 HrsSystems Engineering Management: Managing systems development and risks, Work breakdownstructure (WBS), System Engineering Management Plan (SEMP), Risk Management, Organization ofSystems Engineering, Systems Engineering Capability Maturity Assessment, Systems Engineeringstandards, Problem.

Needs Analysis: Originating a new system, Operations analysis, Functional analysis, Feasibility analysis, Feasibility definition, Needs validation, System operational requirements, problems.

Concept Exploration: Developing the system requirements, Operational requirements analysis, Performance requirements formulation, Implementation concept exploration, Performance requirements validation, problems.

UNIT – III10 HrsConcept Definition: Selecting the system concept, Performance requirements analysis, Functional
analysis and formulation, Concept selection, Concept validation, System Development planning,
System Functional Specifications, problems10 Hrs

Advanced Development: Reducing program risks, Requirements analysis, Functional Analysis and Design, Prototype development, Development testing, Risk reduction, problems.

UNIT – IV	07 Hrs					
Engineering Design: Implementing the System Building blocks, requirements analysis, Functional						
analysis and design, Component design, Design validation, Configuration Management, proble	ems.					
Integration and Evaluation: Integrating, Testing and evaluating the total system, Test planning and						
preparation, System integration, Developmental system testing, Operational test and eva	aluation,					
problems.						
LINIT – V	06 Hrs					

Production: Systems Engineering in the factory, Engineering for production, Transition from development to production, Production operations, Acquiring a production knowledge base, problems.

Operations and support: Installing, maintenance and upgrading the system, Installation and test, Inservice support, Major system upgrades: Modernization, Operational factors in system development, problems.

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand the Life Cycle of Systems.							
CO2:	Explain the role of Stake holders and their needs in organizational systems.							
CO3:	Develop and Document the knowledge base for effective systems engineering processes.							
CO4:	Apply available tools, methods and technologies to support complex high technology systems.							
CO5:	Create the frameworks for quality processes to ensure high reliability of systems.							

Reference Books:

-	
1.	Systems Engineering – Principles and Practice, Alexander Kossoaikoff, William N Sweet, 2012,
	John Wiley & Sons, Inc, ISBN: 978-81-265-2453-2
2.	Handbook of Systems Engineering and Management, Andrew P. Sage, William B. Rouse, 1999,
	John Wiley & Sons, Inc., ISBN 0-471-15405-9
3.	General System Theory: Foundation, Development, Applications, Ludwig von Bertalanffy, 1973,
	Penguin University Books, ISBN: 0140600043, 9780140600049.
4.	Systems Engineering and Analysis, Blanchard, B., and Fabrycky, W., 5th edition, 2010, Prentice
	Hall, Saddle River, NJ, USA

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	-	-	-	-	1	-	-	-	-	-	1	
CO2	-	2	3	-	1	-	-	1	-	-	2	-	
CO3	-	3	-	-	-	2	2	1	-	3	2	-	
CO4	-	-	2	1	-	-	-	-	-	-	-	-	
CO5	1	1	-	2	-	1	2	-	3	-	-	-	

			S	emester: VI			
	I	NTI	RODUCTION TO MOBI	LE APPLICATION I	DEVELOPMEN	JT	
			(GROUP E: C	GLOBAL ELECTIV	'E)		
		_		(Theory)			<u></u>
	e Code	:	18G6E10		CIE	:	100 Marks
	ts: L:T:P	:	3:0:0		SEE	:	100 Marks
Total]		:	39L		SEE Duration	:	3.00 Hours
			ctives: The students will b		1 1		
1	-		e knowledge on essentials		<u>^</u>		
2			e basic and advanced featu				
3	-		lls in designing and buildi		÷ .		rm.
4		-	nd publish innovative mot			•	
5	Comprehen	d th	e knowledge on essentials	of android application	development.		
			T	•			00.11
TA	1 4*		Un	it-I			08 H
	luction:		. 1 . 1	1° (° T (1		1 т	/ 11° A 1
		-	systems and smart phone				-
	-		oid app project, deploying			JIL	Jesign: Building
•			, Layouts, Views and Reso		•	• • • •	Intende Tredit
			The Activity Lifecycle,		-		
-		ng s	upport libraries, The And	droid Studio Debugger	, Testing androi	ld a	ipp, The Andro
Suppo	rt Library.		T T •/				
I. ann a			Unit	; – II			08 H
	experience:	T	anut Controlo Monuo Co	man Naviation Dear	lan Wiener Deliel		1
			nput Controls, Menus, Sch		-		-
	-		Themes, Material Design,	Providing Resources in	or Adaptive Lay	out	s, resulig app (
Tesun	g the User Inte	eria		TTT			
Work	ing in the bac	lzar	Unit	-111			08 H
	0	0	vncTask and Async Task	Loader Connect to th	a Internet Bree	daa	st Docoivors
-			heduling and optimizing				
	Ferring Data E	-	v , v	background tasks - Iv	otifications, Sen	Cut	ning Alarins, a
1141151			Unit	IV			08 H
All ah	out data:			- I V			00 11
		ting	s, Storing Data, Shared Pro	eferences Ann Setting	s Storing data us	sinc	sol ite - SOL
		-	e. Sharing data with conten		-	-	
			s and Debugging, Displayi		-		os and Fragmer
-		-	ogramming: Internet, E	÷ •	-	-	
			web pages and maps, con				
		-	d services, Sensors.	municating with SND		au	
301 1100	lo - Location (Jase		t V			07 H
			Uni	t - V			1 U/ H
Hardy	vare Sunnort	8					0711
	ware Support			curity Firebase and A	dMob Publish	and	

Form Factors, Using Google Services.

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Comprehend the basic features of android platform and the application development process.
	Acquire familiarity with basic building blocks of Android application and its architecture.
CO2:	Apply and explore the basic framework, usage of SDK to build Android applications incorporating
	Android features in developing mobile applications.
CO3:	Demonstrate proficiency in coding on a mobile programming platform using advanced Android
	technologies, handle security issues, rich graphics interfaces, using debugging and troubleshooting
	tools.
CO4:	Create innovative applications, understand the economics and features of the app marketplace by
	offering the applications for download.

Refere	ence Books
1	Android Programming, Phillips, Stewart, Hardy and Marsicano, Big Nerd Ranch Guide, 2 nd Edition,
1	2015, ISBN-13 978-0134171494
2	Android Studio Development Essentials - Android 6, Neil Smyth, 2015, Createspace Independent
2	Publishing Platform, ISBN: 9781519722089
3	Android Programming – Pushing the limits, Eric Hellman, 2013, Wiley, ISBN-13: 978-1118717370
4	Professional Android 2 Application Development, Reto Meier, Wiley India Pvt.Ltd 1st Edition,
4	2012, ISBN-13: 9788126525898
=	Beginning Android 3, Mark Murphy, Apress Springer India Pvt Ltd, 1st Edition, 2011, ISBN-13:
5	978-1-4302-3297-1
(Android Developer Training - https://developers.google.com/training/android/
6	Android Testing Support Library - https://google.github.io/android-testing-support-library/

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	3	-	-	-	-	-	-	2
CO2	3	-	-	-	3	-	-	-	-	-	1	2
CO3	-	3	3	-	3	-	1	-	-	2	1	3
CO4	3	3	3	1	3	2	1	2	2	1	1	3

	Semester: VI											
	INDUSTRIAL AUTOMATION											
	(GROUP E: GLOBAL ELECTIVE) (THOERY)											
Cour	Course Code : 18G6E11 CIE : 100 Marks											
Credits: L:T:P : 3:0:0 SEE				SEE	:	100 Marks						
Tota	Total Hours:39 LSEE Duration:3.00 Hours											
Cou	rse Learning (Dbj	ectives: The students will	be able to								
1	Identify the v	ario	ous types of Actuators, ser	nsors and switching devices us	sed in	n industrial						
	automation.											
2	Understand	the	fundamentals of CNC, PL	C and Industrial robots.								
3	Describe the	fun	ctions of hardware compo	nents for automation								
4	Prepare simp	le n	anual part programs for C	CNC and Ladder logic for PLO	С.							
5	Demonstrate	the	ability to develop suitable	e industrial automation system	is usi	ng all the concepts						

Unit-I	06 Hrs
Overview of Automation in Industry	
Basic kinds of Industrial type equipment, automation and process control, mechanization vs au	tomation.
continuous and discrete control, basic elements of an automated system, advanced automation	functions,
levels of automation, basic automation circuits.	
Unit-II	10 Hrs
Sensors and Industrial Switching elements.	
Sensor terminology, Classification of sensors and transducers, Limit switch, Temperature s	ensors,
Light sensors, position sensors, inductive and capacitive proximity sensors, optical encoders,	Relays,
Solenoids, moving part logic elements, fluidic elements, timers, comparisons between sw	vitching
elements.	
Industrial Automation Synthesis	
Introductory principles, basic automation examples, meaning of the electrical and mechanical	latch,
automation circuits with sensors, design regulations and implementation.	
Unit-III	10 Hrs
Logical Design of Automation Circuits	
Postulates and theorems of Boolean algebra, Classical state diagrams, state diagrams with sens	ors, step
by step transition due to discrete successive signal, state diagram with time relays, compone	nts state
diagram method, state diagrams and minimum realisations, sequential automation s	systems,
Applications - Bi directional lead screw movable worktable with two speeds, Palindromic mo	ovement
of a worktable with memory.	
Elements of electro pneumatic actuation	
Basic elements of pneumatic system, pneumatic cylinders, Symbolic representations of pneum	atic and
electrical switching devices, Indirect control of double acting cylinders, memory control	circuit,
cascading design, automatic return motion, quick exhaust valve circuit, and cyclic operat	ion of a
cylinder, pressure sequence valve and time delay valve circuits. Automatic return motion, Se	parating
similar balls, Stamping device.	
Unit-IV	06 Hrs
Numerical Control and Robotics	·
Numerical control, components of CNC, classification, coordinate systems, motion control str	ategies,
	-

Numerical control, components of CNC, classification, coordinate systems, motion control strategies, interpolation, NC words, Simple part programming for turning, milling and drilling. Components of the robot, base types, grippers, Configurations and simple programming using VAL.

Unit-V	07 Hrs

Programmable logic control systems

Internal structure, principles of operation, latching, ladder diagrams, programming instructions, types of timers, forms of counters, writing simple ladder diagrams from narrative description and Boolean logic. Programming exercises on motor control in two directions, traffic control, cyclic movement of cylinder, conveyor belt control, alarm system, sequential process, and continuous filling operation on a conveyor.

Course	Outcomes: After completing the course, the students will be able to
CO1:	Recall and Illustrate the application of sensors actuators, switching elements and inspection
	technologies in industrial automation.
CO2:	Build the circuit diagrams for fluid power automation, Ladder diagrams for PLC and
	identify its application areas.
CO3:	Evaluate CNC part programs for 2D complex profiles, perform machining and turning
	centres interfaced with Robots.
CO4:	Develop a suitable industrial automated system integrating all of the above advanced
	automation concepts

Referen	ce Books
1.	Stamatios Manesis, George Nikolakopoulos, 'Introduction to Industrial Automation', CRC Press, 2018, ISBN - 978-1-4987-0540-0
	TTESS, 2010, ISBN - 978-1-4987-0540-0
2.	David W. Pessen, 'Industrial automation; Circuit design and components', Wiley India, 1st
	Edition, 2011, ISBN -13-978-8126529889.
3.	Joji P, 'Pneumatic Controls', Wiley India, 1st Edition, ISBN – 978–81–265–1542–4.
4.	Petruzella, Frank D, Programmable logic controllers, McGraw-Hill, 4th Edition, 2013, ISBN-
	13: 978-0-07-351088-0

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30 (Q) + 50 (T) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	2	2	-	3	1	-	-	-	1	-	1
CO2	2	2	3	2	2	-	-	-	1	2	-	1
CO3	2	2	3	3	2	-	-	-	-	2	-	-
CO4	3	3	3	2	2	-	-	-	-	2	-	1

	Semester: VI								
MOBILE NETWORK SYSTEM AND STANDARDS (GROUP E: GLOBAL ELECTIVE) (Theory)									
Cou	rse Code	:	18G6E12	CIE	:	100 Marks			
Crec	Credits: L:T:P		3:0:0	SEE	:	100 Marks			
Hrs/	Week	:	40L	SEE Duration	:	3.00 Hrs			
Cou	rse Learning	; Ol	ojectives: The	students will be able to					
1	Understand the perform		•	ciples of cellular communication and	factors that	t might degrade			
2	Describe the	e se	cond-Generati	on pan-European digital mobile cellula	communi	cation standards.			
3	Analyze the	30	G cellular techr	ologies including GPRS and UMTS.					
4	Compare th	e ez	kisting and fut	are trends in Wireless technologies.					

Unit-I	07 Hrs
Principle of Cellular Communication: Cellular Terminology, Cell Structure and Cluster, F	requency
Reuse Concept, Cluster size and System Capacity, Method of Locating Co-channel cells, F	requency
Reuse distance, Co-channel Interference and Signal Quality, Co-channel interference F	eduction
Methods.	
Unit – II	08 Hrs
Basic Cellular system: Consideration of components of a cellular system- A basic cellular	r system
connected to PSTN, Main parts of a basic cellular system, Operation of a Cellular	system,
Performance criteria- Voice quality, Trunking and Grade of Service, Spectral Efficiency of	f FDMA
and TDMA systems.	
Unit –III	09 Hrs
Second generation Cellular Technology: GSM: GSM Network Architecture, Identifiers	s used in
GSM System, GSM channels, Authentication and Security in GSM, GSM Call Procedu	re, GSM
Hand-off Procedures.	
IS-95: Forward Link, Reverse Link, Soft-handover in IS-95.	
Unit –IV	08 Hrs
3G Digital Cellular Technology: GPRS: GPRS technology, GPRS Network Architectur	e, GPRS
signalling, Mobility Management in GPRS.	
UMTS: UMTS Network Architecture, UMTS Interfaces, UMTS Air Interface Specification	s, UMTS
Channels.	
Unit –V	08 Hrs
Wireless Personal Area Networks: Network architecture, components, Bluetooth,	Zigbee,
Applications. Wireless Local Area networks: Network Architecture, Standards, Application	
rippileutons, i in cless Locul in cu networks, i termore cleare, standards, i ippileuton	s.

architecture, Protocol stack.

Course	Course Outcomes: After completing the course, the students will be able to							
CO1	Describe the concepts and terminologies for Cellular Communication.							
CO2	Analyze the Architecture, Hand-off and Security aspects in 2G and 3G Networks.							
CO3	Compare the performance features of 2G and 3G Cellular Technologies.							
CO4	Analyze and Compare the architectures of various Wireless technologies and standards.							

Reference Books

Keitt	
1	Wireless Communications, T.L. Singal, 2 nd Reprint 2011, Tata McGraw Hill Education
1	Private Limited, ISBN: 978-0-07-068178-1.
2	Wireless and Mobile Networks Concepts and Protocols, Dr.Sunil Kumar S Manvi, 2010,
2	Willey India Pvt. Ltd., ISBN: 978-81-265-2069-5.
3	Wireless Communication, Upena Dalal, 1 st Edition, 2009, Oxford higher Education,
5	ISBN-13:978-0-19-806066-6.
4	Wireless Communications Principles and practice, Theodore S Rappaport, 2 nd Edition,
4	Pearson, ISBN 97881-317-3186-4.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	-	2	-	-	-		-	-	
CO2	3	2	3	-	2	-	-	-	2	-	-	
CO3	3	3	-	2	2	-	-	-	2	-	-	3
CO4	3	2	2	-	2	-	-	-	2	-	-	3

				Semester: VI					
	THIN FILM NANO DEVICE FABRICATION TECHNOLOGY								
	(GROUP E: GLOBAL ELECTIVE)								
C	(Theory) Course Code : 18G6E13 CIE : 100 Marks								
		:	18G6E13		CIE	: 100 Marks			
	lits: L:T:P	:	3:0:0		SEE	:			
	l Hours	:	39L		SEE Duration	:	3.00 Hours		
-	<u> </u>		ctives: The students						
1			ing of vacuum and r		C (1) C'1 1				
2	-	_	-	nd characterization o		ostri	uctures		
3	U 11 1		<u> </u>	for desired application					
4	Fabricate and	Eva	aluate thin film nand	devices for advanced	d applications				
				Unit-I			08 Hrs		
Vacu	um Technolog	gy:							
Intro	duction (KTG,	cla	ssification of Vacu	um), Gas transport a	nd pumping, Q-rate	e ca	lculation, Basics of		
Vacu	um - Principles	s of	different vacuum pu	umps: Rotary, Roots,	Diffusion, Turbo mo	olec	ular, and Cryogenic		
	-		-	pump (TSP); differe			• •		
				and Penning gauges.	I I G , H				
cone	ept of cupuoli			Unit – II			08 Hrs		
Subs	strate Surfaces	&]	Thin Film Nucleation				00 1115		
Aton	nic view of sub	stra	te surfaces, Thermo	odynamic aspects of	nucleation, Kinetic	pro	cesses in nucleation		
				tion and growth (Brie		•			
Defe	cts in Thin Fil	ms:							

0-D (point defects), 1-D (line defects), 2&3-D (grain boundaries, stacking faults, crystal twins, voids and precipitates), strain mismatch, Ion implantation defects (Amorphization), Effects of defects on the film (Electrical resistivity, PN junction leakage current, diffusion, Mechanical stress), defect propagation in films

08 Hrs

Fabrication Techniques

Chemical Approaches: Electro Spinning and spin coating routes, Pulsed electro-chemical vapor deposition (PECVD)

Unit –III

Physical Approaches: Metalorganic chemical vapor deposition (MOCVD), Atomic Layer Deposition (ALD) - pulsed laser deposition, Arc plasma deposition.

Lithography: Photo/FIB techniques, Etching process: Dry and Wet etching

Unit –IV07 HrsCharacterization TechniquesSurface morphology measurements: Kelvin-probe Force Microscopy (KFM), Surface X-ray Diffraction(SXRD), Vacancy type defects and interfacial surface chemistry: Positron Annihilation LifetimeSpectroscopy (PALS), Angle Resolved X-ray Photoelectron spectroscopy (ARXPS) Point, line defects,grain boundary studies: Transmission Electron microscopy (TEM), UV Visible Spectroscopy (UV-Vis)Unit –V08 HrsSilicon wafer fabrication – Wafer to cell formation - I-V characteristics and spectral response of c-Si solarcells. Factors limiting the efficiency, Differences in properties between crystalline silicon and amorphous(a-Si) siliconThin Film Solar Cells: Principle of multi-junction cells, Structure and fabrication of GaInP/GaAs/Ge triplejunction solar cell - Cell configuration – techniques used for the deposition of each layer- cellcharacteristics, optical efficiency measurements (brief)

Thin film Nano Biosensor: Biosensors and nanotechnology, Basic biosensor architecture, Biosensor

(receptor/antigen) recognition element, Biosensor transducer (electrochemical, optical, thermal, mass), Glucowatch TM, Examples in cancer detection

Field Effect Transistors: Overview, Basic Structure, I-V Characteristics, Lateral transport of electrons in different regions of transistors.

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	CO1: Choose the right choice of material for the desired application						
CO2:	Improve the desired nanostructures and their properties						
CO3:	Fabricate appropriate Nanodevices						
CO4:	Optimize the nanodevice fabrication process for repeatability.						

Refere	Reference Books							
1	Solid State Physics, Ashcroft & Mermin, 2 nd Edition, Brooks/Cole, 1976, ISBN-13: 978-							
1	0030839931							
2	Nanotechnology for photovoltaics, Loucas Tsakalakos, 1st Edition, 2010, ISBN 9781420076745.							
2	Microfabrication for Industrial Applications, Regina Luttge, 1st Edition, William Andrew,2011,							
3	ISBN: 9780815515821.							

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-]	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	-	-	-	-	-	-		-	2
CO2	3	2	2	2	-	-	-	-	-		-	2
CO3	2	3	3	2	2	1	1	1	-	1	-	2
CO4	2	3	3	2	2	2	2	2	2	2	-	2

					Semeste	er: VI					
	CHEMIS	TRY	OF AD	VANCE	D ENERGY S		E DEVICES I	FOR E	2-N	IOBILIT	Y
				(GRO	OUP E: GLOB	BAL ELEC	CTIVE)				
					(Theo			r			
	e Code	:	18G6E	14			CIE		:	100 Mar	
									100 Mar		
							SEE Duration	n	:	3.00 Hou	irs
					ents will be abl dvanced storag						
					e devices for E	0					mina
										•	
V	vehicles.				mistry to ana		•				ric/nybri
4 I	Develop kno	owled	lge of bat	ttery mar	nagement syste	em and recy	cling of stora	ge dev	vice	es.	
			~	~	Unit-I						07 Hrs
		0	•	•	ns in Electric						
-			-	•	es and sustaina	-			-		
	-				on. Vehicle pe				-		
			•	•••	and power re	•	ts for various	HEV	S	and EVs	Vehicle
Fundar	mentals of b	attery	y technol	ogy in hy	ybrid vehicles.						
					Unit – II						08 Hrs
Advan	ced Lithiu	m ior	a Battery	7 Techno	logy for Floot	twig wohigh	0.0.0				
				Ittimu	hogy for Elect	uric-venicio	es:				
Basic of	concepts of	lithiu	•		vanced Lithiun			y: Cel	1 c	onstructio	n, batter
	-		um batter	ries, Adv		n batteries	for E-mobilit	•			
compo	nents, prin	ciple	um batter of oper	ries, Adv ration, e	vanced Lithiun	n batteries rication, el	for E-mobilit ectrolytes, ba	attery	m	odules an	d packs
compo Constr	nents, prin	ciple king	um batter of oper and futur	ries, Adv ration, e re applica	vanced Lithiun electrode fabri	n batteries rication, el	for E-mobilit ectrolytes, ba	attery	m	odules an	d packs
compo Constr	nents, prinuction, wor	ciple king	um batter of oper and futur	ries, Adv ration, e re applica	vanced Lithiun electrode fabri	n batteries rication, el	for E-mobilit ectrolytes, ba	attery	m	odules an	d packs
compo Constr sulfide	nents, prinuction, wor	ciple king olid-s	um batter of oper and futur tate batte	ries, Adv ration, e re applica pries.	vanced Lithium electrode fabri ations of Li-po Unit –III	n batteries rication, el	for E-mobilit ectrolytes, ba	attery	m	odules an	nd packs y, Li-iro
compo Constr sulfide Future	nents, prin uction, worl cells and so e Scope in n	ciple king blid-s	um batter of oper and futur tate batte	ries, Adw ration, e re applica pries. Batterie	vanced Lithium electrode fabri ations of Li-po Unit –III	n batteries rication, el olymer batt	for E-mobilit ectrolytes, ba eries, Li-S ba	attery ttery, 1	m Li-	odules an Air batter	nd packs y, Li-iro 08 Hrs
compo Constr sulfide Future Limita	nents, prin uction, work cells and so e Scope in r tions of lit	ciple king blid-s blid-s	um batten of oper and futur tate batte Lithium batteries	ries, Adv ration, e re applica eries. Batterie s. Const	vanced Lithium electrode fabri ations of Li-po Unit –III es:	n batteries rication, el olymer batt	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a	attery ttery, 1	m Li-	odules an Air batter	nd packs y, Li-iro 08 Hrs n-Lithiur
compo Constr sulfide Future Limita batterie	e Scope in r tions of lit	ciple king blid-s blid-s non- l hium batte	um batter of oper and futur tate batte Lithium batteries ry, Magr	ries, Adv ration, e re applica eries. Batterie s. Const nesium b	vanced Lithiun electrode fabri ations of Li-po Unit –III es: ruction, comp	n batteries rication, el olymer batt ponents, we Metal Hyd	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery,	attery ttery, 1 pplicat Zebra	m Li-	odules an Air batter	d packs y, Li-iro 08 Hrs n-Lithiur dium an
compo Constr sulfide Future Limita batterie iron-ba	e Scope in r tions of littes: Sodium- ased batteri	ciple king blid-s blid-s hium batte es, 1	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp pattery, Nickel tteries. Advan	n batteries rication, el olymer batt ponents, we Metal Hyd nced batter	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans	attery ttery, 1 pplicat Zebra	m Li- Lion	odules an Air batter ns of Nor ells, Vana n: Ni-MH	d packs y, Li-iro 08 Hrs n-Lithiur dium an
compo Constr sulfide Future Limita batterie iron-ba	e Scope in r tions of littes: Sodium- ased batteri	ciple king blid-s blid-s hium batte es, 1	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp pattery, Nickel tteries. Advan ntages and app	n batteries rication, el olymer batt ponents, we Metal Hyd nced batter	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans	attery ttery, 1 pplicat Zebra	m Li- Lion	odules an Air batter ns of Nor ells, Vana n: Ni-MH	nd packs y, Li-iro 08 Hrs n-Lithiur dium an l battery
compo Constr sulfide Future Limita batterie iron-ba horizon	e Scope in r tions of littes: Sodium- ased batteri	ciple king blid-s non- l hium batte es, l b-Aci	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro d batterie	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp battery, Nickel tteries. Advan ntages and app Unit –IV	n batteries rication, el olymer batt ponents, we Metal Hyd nced batter	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans	attery ttery, 1 pplicat Zebra	m Li- Lion	odules an Air batter ns of Nor ells, Vana n: Ni-MH	nd packs y, Li-iro 08 Hrs n-Lithiur dium an l battery
compo Constr sulfide Future Limita batterid iron-ba horizon	e Scope in r tions of littes: Sodium- ased batteri ntal plate Pt	ciple king blid-s bon- hium batte es, 1 b-Acie	um batter of oper and futur tate batter Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp pattery, Nickel tteries. Advan ntages and app Unit –IV ices:	n batteries rication, el olymer batt ponents, we Metal Hyd need batter plications of	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium l	pplicat Zebra Sportat	m Li- ion ior es.	odules an Air batter ns of Nor ells, Vana n: Ni-MH	d packs y, Li-iro 08 Hrs n-Lithiur dium an battery 08 Hrs
compo Constr sulfide Futuro Limita batterio iron-ba horizon Chemi Introdu	e Scope in r tions of litters sed batterint ntal plate Pt istry of Alter action to su	ciple king blid-s blid-s non- hium batte es, I b-Acid ernat	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora apacitor,	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material	vanced Lithium electrode fabri ations of Li-po Unit –III es: rruction, comp pattery, Nickel tteries. Advan ntages and app Unit –IV ices: I characteristic	n batteries rication, el olymer batt ponents, we Metal Hyd need batter plications of	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium l ction, workin	pplicat zebra sportat batterio	ma Li- ion ior es. ap	odules an Air batter ns of Nor ells, Vana n: Ni-MH	nd packs y, Li-iro 08 Hrs n-Lithiur dium an l battery 08 Hrs of Supe
compo Constr sulfide Future Limita batteric iron-ba horizon Chemi Introdu capacit	e Scope in r tions of littes: Sodium- ased batteri ntal plate Pt istry of Alter action to su tors and Ul	ciple king blid-s blid-s blid-s blid-s bli	um batter of oper and futur tate batter Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora apacitor, apacitor	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E m	vanced Lithium electrode fabri ations of Li-po Unit –III es: rruction, comp battery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double	n batteries rication, el olymer batt ponents, we Metal Hyd need batter plications of cs. Constru le layer Su	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium ction, workin per capacitors	pplicat Zebra sportat batterio g and s, Aqu	ion ion ior es. ap	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super	d packs y, Li-iro 08 Hrs n-Lithiur dium an battery 08 Hrs of Supe capacitor
compo Constr sulfide Futuro Limita batterio iron-ba horizon Chemi Introdu capacit organio	e Scope in retions of littles: Sodium- ased batteri ntal plate Ptroving and Ulicons and Ul	ciple king blid-s blid-s non-l hium batte es, l b-Acie ernat per c tra ca er ca	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora apacitor, apacitors,	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E me asymmet	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp battery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa	n batteries fication, el olymer batt ponents, we detal Hyd need batter blications of cs. Constru le layer Su acitors and	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium ction, workin per capacitors Ultra capacito	pplicat pplicat Zebra sportat batterio g and s, Aqu	ma Li- Lion ion es. ap ieo dva	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super a anced batt	nd packs y, Li-iro 08 Hrs n-Lithiur dium an l battery 08 Hrs of Supe capacitor ery-supe
compo Constr sulfide Future Limita batteric iron-ba horizon Chemi Introdu capacit organic capacit	e Scope in retions of litters: Sodium- ased batterintal plate Ptristers and Ulic based superior to superior and Ulic based superior hybrids for the superior	ciple king blid-s blid-s non-l hium batte tra ca er cap for la	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora apacitor, apacitor, pacitors, rge vehic	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E ma asymmet	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp battery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa tery-Fuel cell h	n batteries rication, el olymer batt ponents, we Metal Hyd need batter plications of es. Constru le layer Su acitors and hybridizatio	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium ction, workin per capacitors Ultra capacito on for transpor	g and sports. Aquors. A	me Li- ion ior es. ap ieo dv: ap	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super a anced batt oplications	n-Lithiur dium an battery 08 Hrs of Supe capacitor ery-supe , Battery
compo Constr sulfide Future Limita batterie iron-ba horizon Chemi Introdu capacit organie capacit	e Scope in retions of litters: Sodium- ased batterintal plate Ptristers and Ulic based superior to superior and Ulic based superior hybrids for the superior	ciple king blid-s blid-s non-l hium batte tra ca er cap for la	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora apacitor, apacitor, pacitors, rge vehic	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E ma asymmet	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp pattery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa tery-Fuel cell h	n batteries rication, el olymer batt ponents, we Metal Hyd need batter plications of es. Constru le layer Su acitors and hybridizatio	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium ction, workin per capacitors Ultra capacito on for transpor	g and sports. Aquors. A	me Li- ion ior es. ap ieo dv: ap	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super a anced batt oplications	d packs y, Li-iro 08 Hrs n-Lithiur dium an l battery 08 Hrs of Supe capacitor ery-supe , Battery energy.
compo Constr sulfide Futuro Limita batterio iron-ba horizon Chemi Introdu capacit organic capacit Solar C	nents, prin uction, work cells and so e Scope in re- tions of litt es: Sodium- ased batteri ntal plate Pt istry of Alter uction to su tors and Ul c based super tor hybrids f	ciple king blid-s blid-s on- l hium batte es, l b-Acie es, l b-Acie ernat per c tra ca for la coltaic	um batter of oper and futur tate batter Lithium batteries ry, Magr Ni-Hydro d batteries ive Stora apacitor, apacitor, apacitors, rge vehic c) hybridi	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E me asymmet cles, Batt ization, a	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp battery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa tery-Fuel cell h	n batteries rication, el olymer batt ponents, we Metal Hyd need batter plications of es. Constru le layer Su acitors and hybridizatio	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium ction, workin per capacitors Ultra capacito on for transpor	g and sports. Aquors. A	me Li- ion ior es. ap ieo dv: ap	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super a anced batt oplications	d packs y, Li-iro 08 Hrs n-Lithiur dium an l battery 08 Hrs of Supe capacitor ery-supe , Battery energy.
compo Constr sulfide Future Limita batterid iron-ba horizon Chemi Introdu capacit organic capacit Solar C Batter	nents, prin uction, work cells and so e Scope in r tions of litt es: Sodium- ased batteri ntal plate Pt istry of Alte uction to su tors and Ul c based supe tor hybrids f Cell (Photov	ciple king blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora apacitor, apacitor, apacitors, rge vehic c) hybridi	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E me asymmet cles, Batt ization, a	Vanced Lithium electrode fabri ations of Li-po Unit –III es: rruction, compositery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa tery-Fuel cell h and advanced e Unit –V	n batteries rication, el olymer batt bonents, we Metal Hyd need batter blications of cs. Constru le layer Su acitors and hybridizatio	for E-mobilit ectrolytes, ba eries, Li-S ba orking and ap dride Battery, ries for trans f non-lithium l ection, workin per capacitors Ultra capacito on for transpor age devices fo	g and s, Aquors, Aquor	me Li- Li- ior es. ap leo dva ap	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super anced batt plications o of solar o	d packs y, Li-iro 08 Hrs n-Lithiur dium an battery 08 Hrs of Supe capacitor ery-supe , Battery energy. 08 Hrs
compo Constr sulfide Future Limita batterie iron-ba horizon Chemi Introdu capacit organic capacit Solar C Batter Battery	e Scope in retions of littles: Sodium- ased batteri ntal plate Ptroving and Ulic based superior of Alteriations and Ulic based superior by brids for Cell (Photov y Maintena	ciple king blid-s blid-s non- bhium batte es, 1 b-Acid es, 1 b-Acid ernat per c tra ca for la coltaic ance a ent Sy	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora apacitor; apacitor; c) hybridi and Recy ystems (E	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E me asymmet cles, Batt ization, a ycling: BMS), Fu	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp pattery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa tery-Fuel cell h and advanced e Unit –V	n batteries fication, el olymer batt bonents, we detal Hyd need batter blications of cs. Constru le layer Su acitors and hybridizations energy stors	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium l ection, workin per capacitor Ultra capacitor age devices fo anagement sys	pplicat Zebra sportat batterio g and s, Aqu ors. A rtation or back	me Li- Lion ion es. ap eo dva ap -up	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super anced batt pplications o of solar of l controls.	d packs y, Li-iro 08 Hrs n-Lithium dium and battery 08 Hrs of Supe capaciton ery-supe , Battery energy. 08 Hrs
compo Constr sulfide Future Limita batteric iron-ba horizon Chemi Introdu capacit organic capacit Solar C Battery Battery	e Scope in re- tions of litters: Sodium- ased batterin ntal plate Pter istry of Alter iction to support tor hybrids f Cell (Photov y Maintena y Management y Thermal M	ciple king blid-s blid-s non-l hium batte es, l b-Acie er cap for la oltaic ance a ent Sy Viana	um batter of oper and futur tate batter batteries ry, Magr Ni-Hydro d batteries ive Stora apacitor, apacitor, coacitors, rge vehic c) hybridi	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E ma asymmet cles, Batt ization, a ycling: BMS), Fu Passive o	Vanced Lithium electrode fabri ations of Li-po Unit –III es: rruction, compositery, Nickel tteries. Advan ntages and app Unit –IV ices: I characteristic obility: Double tric super capa tery-Fuel cell h and advanced e Unit –V undamentals of cooling – PCN	m batteries rication, el olymer batt ponents, we Metal Hyd need batter plications of cs. Constru le layer Su acitors and hybridization energy stors f battery ma M systems,	for E-mobilit ectrolytes, ba eries, Li-S ba orking and ap dride Battery, ries for trans f non-lithium l ction, workin per capacitors Ultra capacito on for transpor age devices fo anagement sys	g and sportat g and s, Aquors. A rtation or back stems a ng – L	me Li- Lion ior es. ap ieo dv: ap ieo dv: ap	odules an Air batter Air batter ans of Nor ells, Vana n: Ni-MH plications us super anced batt pplications o of solar of o of solar of ancel solar of ancel batt	d packs y, Li-iro 08 Hrs n-Lithiur dium an battery 08 Hrs of Supe capaciton ery-supe , Battery energy. 08 Hrs
compo Constr sulfide Future Limita batterie iron-ba horizon Chemi Introdu capacit organic capacit Solar C Battery Battery Battery	nents, prin uction, work cells and so e Scope in r tions of litt es: Sodium- ased batteri ntal plate Pt istry of Alte uction to su tors and Ul c based supe tor hybrids f Cell (Photov y Maintena y Manageme y Thermal My Recycling	ciple king blid-s blid-s non-l hium batte es, l b-Acid ernat per c tra ca for la coltaic ance a coltaic ance a for la	um batter of oper and futur tate batter batteries ry, Magr Ni-Hydro d batteries ive Stora apacitor, apacitor, c) hybridi and Recy ystems (E gement: 1 hnologies	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E me asymmet cles, Batt ization, a ycling: BMS), Fu Passive o s: Techn	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, compositery, Nickel tteries. Advan ntages and app Unit –IV ices: I characteristic obility: Double tric super capa tery-Fuel cell h and advanced e Unit –V undamentals of cooling – PCN pology and eco	n batteries rication, el olymer batt ponents, we Metal Hyd need batter blications of cs. Constru le layer Su acitors and hybridizatio energy stora f battery ma M systems, onomic asp	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium l ection, workin per capacitor Ultra capacitor age devices fo anagement sys Active coolin pects of batter	pplicat Zebra sportat batterio g and s, Aqu ors. A rtation or back stems a ng – L ry recy	me Li- Li- ior es. ap eo dv: ap -up -up -up	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super anced batt plications o of solar of l controls. uids & air ing. Envir	d packs y, Li-iro 08 Hrs n-Lithiur dium an l battery 08 Hrs of Supe capacitor ery-supe , Battery energy. 08 Hrs
compo Constr sulfide Future Limita batterie iron-ba horizon Chemi Introdu capacit organic capacit Solar C Batter Battery Battery safety	nents, prin uction, work cells and so e Scope in r tions of litt es: Sodium- ased batteri ntal plate Pt istry of Alte uction to su tors and Ul c based supe tor hybrids f Cell (Photov y Maintena y Manageme y Thermal My Recycling	ciple king blid-s blid-s non- bhium batte es, 1 b-Acid ernat per c tra ca for la coltaid ent Sy Mana recy	um batter of oper and futur tate batter Lithium batteries ry, Magr Ni-Hydro d batteries ive Stora apacitor; apacitor; apacitor; c) hybridi and Recy ystems (E gement: hnologies cling pro	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E me asymmet cles, Batt ization, a ycling: BMS), Fu Passive o s: Techn ocess. Re	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp pattery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa tery-Fuel cell h and advanced e Unit –V undamentals of cooling – PCN ology and ecc egulations and	n batteries rication, el olymer batt ponents, we Metal Hyd need batter blications of cs. Constru le layer Su acitors and hybridizatio energy stora f battery ma M systems, onomic asp	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium l ection, workin per capacitor Ultra capacitor age devices fo anagement sys Active coolin pects of batter	pplicat Zebra sportat batterio g and s, Aqu ors. A rtation or back stems a ng – L ry recy	me Li- Li- ior es. ap eo dv: ap -up -up -up	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super anced batt plications o of solar of l controls. uids & air ing. Envir	d packs y, Li-iro 08 Hrs n-Lithiur dium an l battery 08 Hrs of Supe capacitor ery-supe , Battery energy. 08 Hrs

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understanding the fundamentals of advanced batteries, super capacitors and fuel cells for electric
	vehicles.
CO2:	Applying the chemistry knowledge used for hybridization of various energy storage and conversion
	devices for vehicle electrification.
CO3:	Analyses of battery management, safety, global market trends for large format batteries.
CO4:	Evaluation of efficiency of a battery with respect to cost, environmental safety, material, energy
	consumption, reuse and recycling.

Refere	ence Books
1	Battery reference book, T. R. Crompton., 3rd edition, NEWNES Reed Educational and Professional
1	Publishing Ltd 2000, ISBN: 07506 4625 X.
2	Batteries for Electric Vehicles, D. A. J. Rand, R. Woods, and R. M. Dell, Society of Automotive
2	Engineers, Warrendale PA, 2003. ISBN 10: 0768001277.
2	Lithium Batteries, Science and Technology, GA. Nazri and G. Pistoa, Kluwer Academic Publisher,
3	2003, ISBN 978-0-387-92675-9.
4	Battery Technology Handbook, H. A. Kiehne, Marcel Dekker, NYC, 2003. ISBN: 0824742494
4	9780824742492.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	2	-	-	-	-	1	-	1
CO2	3	3	2	2	2	-	-	-	1	1	-	1
CO3	2	2	3	3	2	-	-	-	3	1	2	1
CO4	3	3	2	3	2	-	-	-	2	1	3	1

				Semester: VI					
			ADVANCE	ED STATISTICAL	METHODS				
			(GROU	P E: GLOBAL ELE	ECTIVE)				
(Theory)									
	rse Code	:	18G6E15		CIE	:	100 Marks		
	lits: L:T:P	:	3:0:0		SEE	:	100 Marks		
	ll Hours	:	39L		SEE Duration	:	3.00 Hours		
			ctives: The student		-1: C'				
1				basic knowledge on	classification and re	egres	ssion trees that form		
			analyzing data.						
2		-	•	and conjoint analysis	· ·				
3		-		analysis and factor	analysis which hav	ve g	reat significance in		
	engineering p	ract	ice.						
4	Demonstrate	the p	practical importance	e of regression and lo	glinear models.				
				Unit-I			07 Hrs		
Clas	sification and	Reg	ression Trees:						
			-	orical or Quantitative	-	ion [Frees, Classification		
Trees	s, Stopping Ru	les, l	Pruning and Cross-V	Validation, Loss func	tions, Geometry.				
				Unit – II			07 Hrs		
Clus	ster Analysis:								
Intro	duction, Types	s of	Clustering, Correlat	tions and Distances,	Hierarchical Cluster	ring,	Partitioning via K-		
mear	ns, Additive Tr	ees.							
				Unit –III			08 Hrs		
Conj	joint Analysis:	:							
Intro	duction, Addit	tive	Tables, Multiplicat	tive Tables, Comput	ting Table Margins	bas	sed on an Additive		
Mod	el, Applied Co	njoii	nt Analysis.	-					
		0	•	Unit –IV			08 Hrs		
Disc	riminant Anal	ysis	and Factor Analys	sis:			Ι		
Intro	duction, Linea	r Di	scriminant Model,	Linear discriminant	function, Discrimi	nant	analysis, Principal		
				nponents versus Fact			•		
	1 /			Unit –V	5 / 11		09 Hrs		
Logi	stic Regressio	n an	d Loglinear Mode				•> 115		
	0		0	ogit, Conditional Lo	git. Discrete Choice	e Lo	git. Stepwise Logit.		
	ng a Loglinear	-	-				5., Step Logit,		
1 1111	is a Dogiment	.,100							
Сош	rse Outcomes	Aft	er completing the	course, the students	will be able to				
CO1			1 0	of statistical methods		ielde	engineering		
	1								
002	CO2: Apply the knowledge and skills of statistical techniques to understand various types of analysis.								

CO3:	Analyze the appropriate statistical techniques to solve the real-world problem and to optimize the
	solution.
CO4.	Distinguish the overall knowledge goined to demonstrate the problems origing in many prestical

CO4: Distinguish the overall knowledge gained to demonstrate the problems arising in many practical situations.

Refere	Reference Books							
1	Statistics I, SYSTAT 10.2, ISBN 81-88341-04-5.							
2	Nonparametric Statistical Inference, Gibbons J., D., and Chakraborti, S., 4 th Edition, 2003, Marcel Decker, New York. ISBN: 0-8247-4052-1.							

3	Applied Statistics and Probability for Engineers, Douglas C. Montgomery and George C. Runger, 6 th Edition, 2014, John Wiley & Sons, ISBN: 13 9781118539712, ISBN (BRV):9781118645062.
4	An Introduction to Multivariate Analysis, T. W. Anderson, 3 rd Edition, 2003, John Wiley & Sons, New Jersey, ISBN: 0-471-36091-0.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

				Semester:	VI						
			MA	THEMATICAL							
			(GRO		L ELECTIVE)						
~	~ .		10000	(Theory			400.7.7.7				
	rse Code	:	18G6E16		CIE	:	100 Marks				
	dits: L:T:P	:	3:0:0	SEE : 100 Marks							
	al Hours):)::	39L	lanta mill ha ahla t	SEE Duration	:	3.00 Hours				
	0			lents will be able t		1:					
1	· ·	Adequate exposure to understand the basic knowledge of mathematical modeling. Use the concepts of discrete process models arising in various fields.									
2		-	-								
3	Apply the concepts of modeling of nano liquids which have great significance in engineering practice.										
4	Demonstrate	the	practical impor	tance of graph th	eoretic models, variationa	ıl pro	blem and dynamic				
	programming	5 .									
				Unit-I			07 Hrs				
Eler	nentary Mathe	ema	tical Modeling:								
Basi	c concepts. Re	al v	world problems,	(Science and En	gineering), Approximatio	n of	the problem, Steps				
	-		-		l, Logistic model, Model						
		-	-	•	blems), Chemical reaction						
				0 01	trical circuits (LCR).	1, DI	ug ubsorption from				
0100		011 0	a projectile, et	Unit – II	inear chedits (LCK).		07 Hrs				
Dia	crete Process	Ма	dolar	0mt – 11			07 1115				
				T . 1			1 1 1 1 1				
			—		discrete models-simple of		-				
		diff	erence equation	is in economics,	finance, population dyna	amics	s and genetics and				
prob	ability theory.										
Mod	leling of Nano			Unit –III			08 Hrs				
		_	_				•				
	o liquids-Basic	_	_		of nano liquids-Buongio	rno]	•				
Nan	•	c co	oncepts, Mathem	natical modeling			Model (Two phase				
Nan mod	lel): Relative in	c co mpo	oncepts, Mathem ortance of the n	natical modeling anoparticle transp	of nano liquids-Buongio	vatio	Model (Two phase n equation for two				
Nan mod	lel): Relative in	c co mpo	oncepts, Mathem ortance of the n	natical modeling anoparticle transp	of nano liquids-Buongio ort mechanisms. Conser	vatio	Model (Two phase n equation for two				
Nan mod phas	lel): Relative in se nano liquids:	c co mpo The	oncepts, Mathem ortance of the n e Continuity equa	natical modeling anoparticle transp ation, Momentum	of nano liquids-Buongio ort mechanisms. Conser	vatio	Model (Two phase n equation for two				
Nan mod phas Gra	el): Relative in se nano liquids: ph Theoretic N	c co mpo The Mod	oncepts, Mathem ortance of the n e Continuity equa	natical modeling anoparticle transp ation, Momentum Unit –IV	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equa	vation.	Model (Two phase n equation for two 08 Hrs				
Nan mod phas Gra Mat	lel): Relative in se nano liquids: ph Theoretic M hematical mod	c co mpo The Mod eling	oncepts, Mathem ortance of the n e Continuity equa lels: g through graph	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equa	vation.	Model (Two phase n equation for two 08 Hrs				
Nan mod phas Gra Mat	lel): Relative in se nano liquids: ph Theoretic M hematical mod	c co mpo The Mod eling	oncepts, Mathem ortance of the n e Continuity equa lels: g through graph	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equa	vation.	Model (Two phase n equation for two 08 Hrs cted graphs, signed				
Nan mod phas Gra Mat grap	el): Relative in se nano liquids: ph Theoretic M hematical mod hs and weighte	c co mpo The Mod eling d gr	oncepts, Mathem ortance of the n e Continuity equa lels: g through graph raphs. Problems	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equa	vation.	Model (Two phase n equation for two 08 Hrs				
Nan mod phas Gra Mati grap Var	el): Relative in se nano liquids: ph Theoretic M hematical mod hs and weighte iational Proble	c co mpo The VIod eling d gr	oncepts, Mathem ortance of the n e Continuity equa lels: g through graph aphs. Problems	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V rogramming:	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equa ns of undirected graphs, pplications.	vation. tion. direc	Model (Two phase n equation for two 08 Hrs cted graphs, signed 09 Hrs				
Nan mod phas Gra Mati grap Var Opti	el): Relative in se nano liquids: ph Theoretic N hematical mod hs and weighte iational Proble mization princ	c co mpo The Mod eling d gr em a ciple	e Continuity equates of the n continuity equation of the	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V rogramming: ues, Mathematica	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equa	vation. tion. direc	Model (Two phase n equation for two 08 Hrs cted graphs, signed 09 Hrs				
Nan mod phas Gra Mati grap Var Opti	el): Relative in se nano liquids: ph Theoretic N hematical mod hs and weighte iational Proble mization princ	c co mpo The Mod eling d gr em a ciple	oncepts, Mathem ortance of the n e Continuity equa lels: g through graph aphs. Problems	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V rogramming: ues, Mathematica	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equa ns of undirected graphs, pplications.	vation. tion. direc	Model (Two phase n equation for two 08 Hrs cted graphs, signed 09 Hrs				
Nan mod phas Gra Mat grap Var Opti prog	el): Relative in se nano liquids: ph Theoretic M hematical mod hs and weighte iational Proble mization princ gramming, Prob	c co mpo The Mod elin, d gr em a ciple	oncepts, Mathem ortance of the n e Continuity equa- lels: g through graph aphs. Problems y and Dynamic Pr es and techniqu s with engineerin	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V rogramming: nes, Mathematica ng applications.	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equants of undirected graphs, pplications.	vation. tion. direc	Model (Two phase n equation for two 08 Hrs cted graphs, signed 09 Hrs				
Nan mod phas Gra Mat grap Var Opti prog	el): Relative in se nano liquids: ph Theoretic M hematical mod hs and weighte iational Proble mization princ gramming, Prob	c co mpo The Mod elin, d gr em a ciple isiple isiple	encepts, Mathem ortance of the n e Continuity equa elels: g through graph aphs. Problems and Dynamic Pr es and techniqu s with engineerin ter completing t	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V rogramming: nes, Mathematica ng applications.	of nano liquids-Buongio port mechanisms. Conser equation and Energy equa ns of undirected graphs, pplications.	direc	Model (Two phase n equation for two 08 Hrs cted graphs, signed 09 Hrs plem and dynamic				
Nan mod phas Gra Mati grap Var Opti prog Cou	iel): Relative in se nano liquids: ph Theoretic M hematical mod hs and weighte iational Proble mization prince gramming, Prob irse Outcomes: i: Explore the	v co mpo The Mod elin, d gr em a ciple lem : Aft	oncepts, Mathem ortance of the n e Continuity equa- lels: g through graph aphs. Problems v and Dynamic Pr es and techniqu s with engineerin ter completing to adamental conce	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V rogramming: nes, Mathematica ng applications.	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equants of undirected graphs, pplications.	direct prot	Model (Two phase n equation for two 08 Hrs cted graphs, signed 09 Hrs blem and dynamic				
Nan mod phas Gra Mat grap Var Opti prog	iel): Relative in se nano liquids: ph Theoretic M hematical mod hs and weighte iational Proble mization prince gramming, Prob irse Outcomes: i: Explore the	v co mpo The Mod elin, d gr em a ciple lem : Aft	oncepts, Mathem ortance of the n e Continuity equa- lels: g through graph aphs. Problems v and Dynamic Pr es and techniqu s with engineerin ter completing to adamental conce	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V rogramming: nes, Mathematica ng applications.	of nano liquids-Buongio port mechanisms. Conser equation and Energy equa ns of undirected graphs, pplications.	direct prot	Model (Two phase n equation for two 08 Hrs cted graphs, signed 09 Hrs blem and dynamic				
Nan mod phas Gra Mati grap Var Opti prog Cou	 Relative in se nano liquids: ph Theoretic Mematical modules and weighte iational Problection princet gramming, Problection I: Explore the analysis. 	c co mpo The Mod elin, d gr em a ciple iem a ciple iem a ciple	oncepts, Mathem ortance of the n e Continuity equa- lels: g through graph aphs. Problems v and Dynamic Pr es and techniqu s with engineerin ter completing to idamental concep- wledge and skill	hatical modeling anoparticle transp ation, Momentum Unit –IV hs-Models in tern with engineering a Unit –V rogramming: hes, Mathematica ing applications. the course, the stup pts of mathematica is of discrete and	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equants of undirected graphs, pplications.	direct prob	Model (Two phase n equation for two 08 Hrs eted graphs, signed 09 Hrs olem and dynamic lds engineering. nd various types of				

Refere	ence Books
1	Mathematical Modeling, J. N. Kapur, 1st Edition, 1998, New Age International, New Delhi, ISBN:
1	81-224-0006-X.
2	Case studies in mathematical modeling, D. J. G. James and J. J. Mcdonald, 1981, Stanly Thames,
2	Cheltonham, ISBN: 0470271779, 9780470271773.
2	Modeling with difference equations, D. N. Burghes, M. S. Borrie, Ellis Harwood, 1981, ISBN 13:
3	9780853122869.
	Mathematical Modeling: Models, Analysis and Applications, Sandip Banerjee, 2014, Chapman and
4	Hall/CRC Textbook, ISBN 9781439854518.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

	(GROUP E: GLOBAL ELECTIVE)											
	(Theory)											
Co	Course Code : 18G6E17 CIE Marks : 100 Ma											
Cr	edits: L:T:P	: 3:0:0	SEE Marks		100 Marks							
	tal Hours	: 39L	SEE Durati	on :	3.00 Hours							
Co	urse Learning O	bjectives:										
1	To make partici	pants self-discove	er their innate flow, entrepreneurial style, and ide	ntify p	roblems							
	worth solving th	nereby becoming	entrepreneurs									
2	To handhold par	rticipants on lean	methodology to craft value proposition and get 1	eady v	vith lean							
	canvas											
3	To create solution	on demo by cond	ucting customer interviews and finding problem-	solutic	n fit for							
	building Minim	um Viable Produ	ct (MVP)									
4	To make partici	pants understand	cost structure, pricing, revenue types and import	ance of	f adopting							
		ip to build good to			1 0							
5	To help particip	ants build a stron	g brand and identify various sales channels for th	neir pro	ducts and							
	services			1								
(To take particip	ants through basi	cs of business regulations and other legal terms a	long-v	vith							
6	understanding of Intellectual Property Rights											

Unit-I	08 Hrs
Self-Discovery and Opportunity Discovery	
Finding the Flow; Effectuation; Identifying the Effectuation principles used in activities; Identify	ving
Problem Worth Solving; Design Thinking; Brainstorming; Presenting the Identified problems; Id	lentifying
the Entrepreneurial Style.	
Unit – II	08 Hrs
Customer, Solution and Lean Methodology	
Customers and Markets; Segmentation and Targeting; Identifying Jobs, Pains, and Gains and Ea	rly
Adopters; Crafting Value Proposition Canvas (VPC); Presenting VPC; Basics of Business Mode	l and
Lean Approach; Sketching the Lean Canvas; Risks and Assumptions; Presenting Lean Canvas.	
Unit – III	07 Hrs
Problem-Solution Fit and Building MVP	
Blue Ocean Strategy - Plotting the Strategy Canvas; Four Action Framework: Eliminate-Reduce	-Raise-
Create Grid of Blue Ocean Strategy; Building Solution Demo and Conducting Solution Interview	vs;
Problem-Solution Fit; Building MVP; Product-Market Fit; Presenting MVP.	
Unit – IV	07 Hrs
Financial Planning & Team Building	
Cost Structure - Estimating Costs; Revenues and Pricing: Revenue Streams, Revenue Types, Ide	ntifying
Secondary Revenue Streams, Estimating Revenue and Price; Profitability Checks; Bootstrapping	and
Initial Financing; Practising Pitch; Shared Leadership; Hiring and Fitment, Team Role and	
Responsibilities.	
Unit – V	09 Hrs
Marketing, Sales, Regulations and Intellectual Property	
Positioning and Branding; Channels; Sales Planning; Project Management; Basics of Business	

Regulations; How to Get Help to Get Started; Patents, Trademark, Licensing, Contracts; Common Legal mistakes, Types of Permits, Tax Registration Documents, Compliance; Infringement and Remedies, Ownership and Transfer.

Course	Course Outcomes: After completing the course, the students will be able to						
CO1	Showcase the ability to discern distinct entrepreneurial traits						
CO2	Know the parameters to assess opportunities and constraints for new business ideas						
CO3	Understand the systematic process to select and screen a business idea						
CO4	Design strategies for successful implementation of ideas						
CO5	Create Business Model and develop Minimum Viable Product						

Refer	Reference Books:					
1	Running Lean: Iterate from Plan A to a Plan That Works. O'Reilly Media, Maurya, A., 2012.					
2	Entrepreneurship. Roy, R., 2012. Oxford University Press					
3	Intellectual Property Law in India. Gupta, T. S., 2011. Kluwer Law International					
4	Flow: The Psychology of Optimal Experience. Czikszentmihalyi, M., 2008. Harper Perennial					
4	Modern Classics					
5	Effectuation: Elements of Entrepreneurial Expertise. Sarasvathy, S. D., 2009. Edward Elgar					
3	Publishing Ltd.					

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

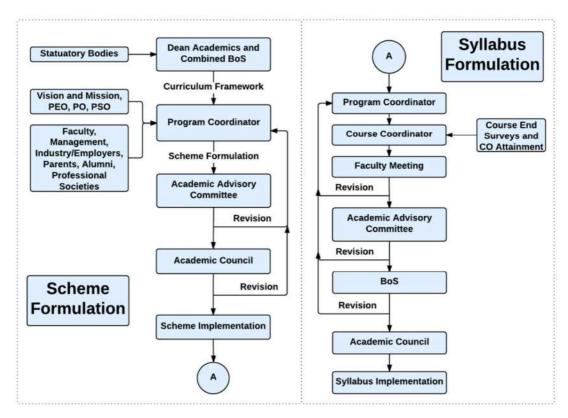
Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	2	-	1	2	2	-	1
CO2	1	1	-	-	-	3	2	3	1	2	-	1
CO3	-	1	-	-	-	2	1	3	3	3	3	3
CO4	-	1	2	2	3	-	-	-	1	-	2	1

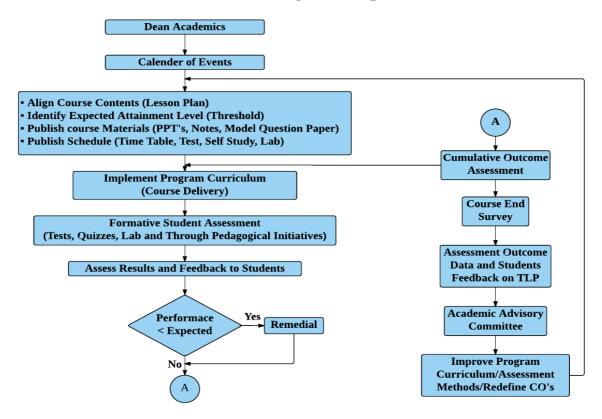
	Semester: VI								
	Professional Practice – II								
	Employability Skills And Professional Development Of Engineers								
Co	Course Code : 18HSE68 CIE Marks : 50 Marks								
Cı	Credits: L:T:P		0:0:1		SEE Marks	:	50 Marks		
Hours : 18 L					CIE Duration	:	02 Hrs		
Co	ourse Learning ()bj	ectives: The stu	idents will be able t	0				
1	Improve qualita	tive	and quantitativ	e problem solving sk	tills.				
2	2 Apply critical and logical thinking process to specific problems.								
3	Ability to verbally compare and contrast words and arrive at relationships between concepts, based on								
3	verbal reasoning.								
4	4 Applying good mind maps that help in communicating ideas as well as in technical documentation								

UNIT-I	06 Hrs				
Aptitude Test Preparation- Importance of Aptitude tests, Key Components, Quantitati	•				
Problem Solving, Data Sufficiency, Data Analysis - Number Systems, Math Vocabulary, fraction decimals,					
digit places etc.					
Reasoning and Logical Aptitude, - Introduction to puzzle and games organizing informati	on, parts of an				
argument, common flaws, arguments and assumptions. Analytical Reasoning, Critical Reason	ning.				
UNIT-II	06 Hrs				
Verbal Analogies - What are Analogies, How to Solve Verbal Analogies & developing High	er Vocabulary,				
Grammar, Comprehension and Application, Written Ability. Non- Verbal Reasoning,	Brain Teasers.				
Creativity Aptitude.					
Group Discussion- Theory & Evaluation : Understanding why and how is the group discuss	sion conducted,				
The techniques of group discussion, Discuss the FAQs of group discussion, body language du	uring GD.				
UNIT-III.A	06 Hrs				
Resume Writing- Writing Resume, how to write effective resume, Understanding the basic es	ssentials for a				
resume, Resume writing tips Guidelines for better presentation of facts.					
UNIT-III.B	06 Hrs				
Technical Documentation - Introduction to technical writing- Emphasis on language differe	ence between				
general and technical writing, Contents in a technical document, Report design overview & f	ormat				
Headings, list & special notes, Writing processes, Translating technical information, Power revision					
techniques, Patterns & elements of sentences, Common grammar, usage & punctuation probl	ems.				
UNIT-IV	06 Hrs				
Interview Skills -a) Personal Interviews , b) Group Interviews , c) Mock Interviews - Questions asked &					
how to handle them, Body language in interview, Etiquette, Dress code in interview, Behavioral and					
technical interviews, Mock interviews - Mock interviews with different Panels. Practice on stress					
interviews, technical interviews, General HR interviews etc.					
UNIT-V	06 Hrs				
Interpersonal Relations - Optimal Co-existence, Cultural Sensitivity, Gender sensitivity	•				
Adapting to the Corporate Culture- Capability & Maturity Model, Decision Making Analysis, Brain Storm.					
Adapting to the Corporate Culture.					
Adapting to the Corporate Culture- Capability & Maturity Model, Decision Making Analysi	s, Brain Storm.				

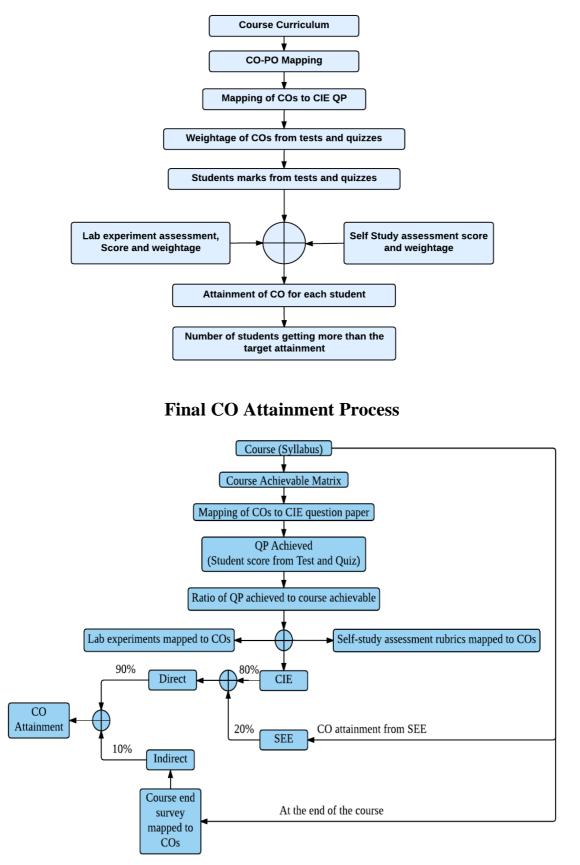

Course Outcomes: After completing the course, the students will be able to					
CO1:	Inculcate employability skill to suit the industry requirement.				
CO2:	Analyze problems using quantitative and reasoning skills				
CO3:	Exhibit verbal aptitude skills with appropriate comprehension and application.				
CO4:	Focus on Personal Strengths and Competent to face interviews and answer				
Reference Books					
1 T	the 7 Habits of Highly Effective Beenle Stephen B Covey Free Press 2004 Edition ISPN:				

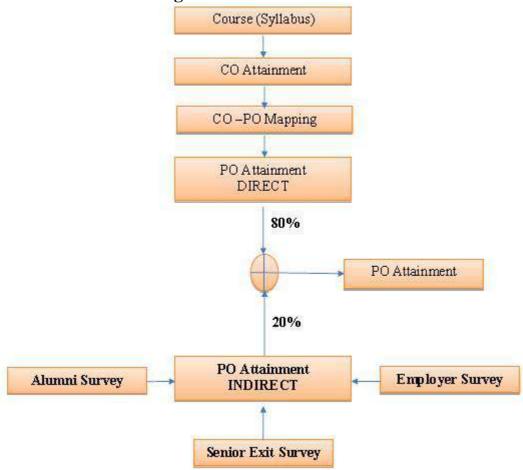
1. The 7 Habits of Highly Effective People, Stephen R Covey Free Press, 2004 Edition, ISBN:

	0743272455
2.	How to win friends and influence people, Dale Carnegie General Press, 1 st Edition, 2016, ISBN:
	9789380914787
3.	Crucial Conversation: Tools for Talking When Stakes are High, Kerry Patterson, Joseph Grenny, Ron
	Mcmillan 2012 Edition, McGraw-Hill Publication ISBN: 9780071772204
4.	Ethnus, Aptimithra: Best Aptitude Book, 2014 Edition, Tata McGraw Hill ISBN: 9781259058738


Scheme of Continuous Internal Examination and Semester End Examination


Phase	Activity	Weightage
Phase I	CIE will be conducted during the 5^{th} semester and evaluated for 50 marks. The	50%
	e	30%
V Sem	test will have two components. The Quiz is evaluated for 15 marks and second	
	component consisting of questions requiring descriptive answers is evaluated	
	for 35 marks. The test & quiz will assess the skills acquired through the	
	training module.	
	SEE is based on the test conducted at the end of the 5 th semester The test will	
	have two components a Quiz evaluated for 15 marks and second component	
	consisting of questions requiring descriptive answers is evaluated for 35 marks.	
Phase II	During the 6 th semester a test will be conducted and evaluated for 50 marks.	50%
VI Sem	The test will have two components a Short Quiz and Questions requiring	
	descriptive answers. The test & quiz will assess the skills acquired through the	
	training module.	
	SEE is based on the test conducted at the end of the 6 th semester The test will	
	have two components. The Quiz evaluated for 15 marks and second	
	component consisting of questions requiring descriptive answers is evaluated	
	for 35 marks	
Phase III	At the end of the VI Sem Marks of CIE (5 th Sem and 6 th Sem) is consolidated	d for 50 marks
At the	(Average of Test1 and Test 2 (CIE 1+CIE2)/2.	
end of VI	At the end of the VI Sem Marks of SEE (5th Sem and 6th Sem) is consolidate	d for 50 marks
Sem	(Average of CIE 1 and CIE 2 (CIE 1+CIE2)/2.	




Curriculum Design Process

Academic Planning And Implementation

Program Outcome Attainment Process

PROGRAM OUTCOMES (POs)

1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.

2. **Problem analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.

4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.

6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.