

RV COLLEGE OF ENGINEERING[®]

(Autonomous Institution Affiliated to VTU, Belagavi)

R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus of VII & VIII Semesters

2016 SCHEME

ELECTRONICS & COMMUNICATION ENGINEERING

VISION

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

MISSION

- 1. To deliver outcome based Quality education, emphasizing on experiential learning with the state of the art infrastructure.
- 2. To create a conducive environment for interdisciplinary research and innovation.
- 3. To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- 4. To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- 5. To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

QUALITY POLICY

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

CORE VALUES

Professionalism, Commitment, Integrity, Team Work, Innovation

RV COLLEGE OF ENGINEERING[®]

(Autonomous Institution Affiliated to VTU, Belagavi)

R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus of VII & VIII Semesters

2016 SCHEME

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

DEPARTMENT VISION

Imparting quality technical education through interdisciplinary research, innovation and teamwork for developing inclusive & sustainable technology in the area of Electronics and Communication Engineering.

DEPARTMENT MISSION

- To impart quality technical education to produce industry-ready engineers with a research outlook.
- To train the Electronics & Communication Engineering graduates to meet future global challenges by inculcating a quest for modern technologies in the emerging areas.
- To create centres of excellence in the field of Electronics & Communication Engineering with industrial and university collaborations.
- To develop entrepreneurial skills among the graduates to create new employment opportunities.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **PEO1.** To apply concepts of mathematics, science and computing to Electronics and Communication Engineering
- **PEO2.** To design and develop interdisciplinary and innovative systems.
- **PEO3.** To inculcate effective communication skills, team work, ethics, leadership in preparation for a successful career in industry and R & D organizations.

PSO	Description
PSO1	Should be able to clearly understand the concepts and applications in the field of
	Communication/networking, signal processing, embedded systems and semiconductor
	technology.
PSO2	Should be able to associate the learning from the courses related to Microelectronics,
	Signal processing, Microcomputers, Embedded and Communication Systems to arrive
	at solutions to real world problems.
PSO3	Should have the capability to comprehend the technological advancements in the usage
	of modern design tools to analyze and design subsystems/processes for a variety of
	applications.
PSO4	Should possess the skills to communicate in both oral and written forms, the work
	already done and the future plans with necessary road maps, demonstrating the practice
	of professional ethics and the concerns for societal and environmental wellbeing.
	Lead Society: Institute of Electrical and Electronics Engineers (IEEE)

PROGRAM SPECIFIC OUTCOMES (PSOS)

SL. NO.	ABBREVIATION	MEANING				
1.	VTU	Visvesvaraya Technological University				
2.	BS	Basic Sciences				
3.	CIE	Continuous Internal Evaluation				
4.	SEE	Semester End Examination				
5.	CE	Professional Core Elective				
6.	GE	Global Elective				
7.	HSS	Humanities and Social Sciences				
8.	CV	Civil Engineering				
9.	ME	Mechanical Engineering				
10.	EE	Electrical & Electronics Engineering				
11.	EC	Electronics & Communication Engineering				
12.	IM	Industrial Engineering & Management				
13.	EI	Electronics & Instrumentation Engineering				
14.	CH	Chemical Engineering				
15.	CS	Computer Science & Engineering				
16.	TE	Telecommunication Engineering				
17.	IS	Information Science & Engineering				
18.	BT	Biotechnology				
19.	AS	Aerospace Engineering				
20.	PY	Physics				
21.	CY	Chemistry				
22.	MA	Mathematics				

ABBREVIATIONS

INDEX

	VII Semester					
Sl. No.	Course Code	Name of the Course	Page No.			
1.	16EC71	Microwave & Radiating Systems	1			
2.	16EC72	Broadband Wireless –LTE 4G	4			
3.	16EC73P	Minor Project	6			
	GR	OUP F: PROFESSIONAL CORE ELECTIVES				
1.	16EC7F1	Satellite Communications & GPS	7			
2.	16EC7F2	ARM Programming & Optimization	9			
3.	16EC7F3	Speech Processing	11			
4.	16EC7F4	Radio Frequency Integrated Circuits Design	13			
5.	16EC7F5	High Performance Computing	15			
6.	16EC7F6	Integrated Photonics	17			
7.	16EC7F7	Nanoelectronics	19			
	GR	OUP G: PROFESSIONAL CORE ELECTIVES				
1.	16EC7G1	Radar & Navigation	21			
2.	16EC7G2	Automotive Electronics	23			
3.	16EC7G3	Multimedia Communication	25			
4.	16EC7G4	VLSI Testing for ICs	27			
5.	16EC7G5	High Speed digital design	29			
6.	16EC7G6	MEMS and Smart Systems	31			

	GROUP H: OPEN ELECTIVES							
Sl. No.	Host	Course Code	Course Title	Page				
	Dept			No.				
1.	BT	16G7H01	Nanotechnology	33				
2.	СН	16G7H02	Industrial Safety and Risk Management	35				
3.	CV	16G7H03	Intelligent Transport System	37				
4.	CS	16G7H04	Intelligent Systems	39				
5.	EC	16G7H05	Image Processing and Machine Learning	41				
6.	EE	16G7H06	Design of Renewable Energy Systems	43				
7.	IM	16G7H07	Systems Engineering	45				
8.	EI	16G7H08	MEMS and Applications	47				
9.	IS	16G7H09	Introduction to Internet of Things	49				
10.	ME	16G7H10	Industry 4.0 – Smart Manufacturing for The	51				
			Future					
11.	TE	16G7H11	Space Technology and Applications	53				
12.	MA	16G7H12	Advanced linear Algebra	55				
13.	PY	16G7H13	Thin Film Nanotechnology	57				
14.	CY	16G7H14	Engineering Material for Advanced Technology	59				
15.	HSS	16G7H15	Applied Psychology for Engineers	62				
16.	HSS	16G7H16	Foundational Course on Entrepreneurship	64				
17.	AS	16G7H17	Unmanned Aerial Vehicles	66				

		VIII Semester	
1	16EC81	Major Project	68
2	16EC82	Technical Seminar	71
3	16HS83	Innovation and Social Skills	72

RV COLLEGE OF ENGINEERING® (Autonomous Institution Affiliated to VTU, Belagavi) ELECTRONICS AND COMMUNICATION ENGINEERING

	SEVENTH SEMESTER CREDIT SCHEME							
Sl.	Course				Tatal			
Ν	Code	Course Title	BOS	Lectur	Tutor	Practical	SS	Credits
0				е	ial		~~	
1	16EC71	Microwave & Radiating Systems	ECE	4	0	1	0	5
2	16EC72	Broadband Wireless –LTE 4G	ECE	4	0	0	0	4
3	16EC73P	Minor Project**	ECE	0	0	3	0	3
4	16EC7FX	Elective F (PE)	ECE	4	0	0	0	4
5	16EC7GX	Elective G(PE)	ECE	4	0	0	0	4
6	16G7HXX	Elective H (GE)*	Respectiv e BOS	3	0	0	0	3
	Tota	No. of Credits		19	0	4	0	23
	No.	Of Hrs/Week		19	0	4	0	

*Students should take other department Global Elective courses;

** Minor Project-6 hours per week;

	EIGTH SEMESTER CREDIT SCHEME							
Sl.	Sl. Course		BO		-	Total		
No	Code	Course Title	S	Lecture	Tutorial	Practical	SS	Credits
1.	16EC81	Major Project	ECE	0	0	16	0	16
2.	16EC82	Technical Seminar	ECE	0	0	2	0	2
3.	16HS83	83 Innovation and Social Skills		0	0	2	0	2
Total No. of Credits				0	0	20	0	20
No. Of Hrs.				0	0	40	0	

	VII Semester					
	GROUP F: PROFESSIONAL ELECTIVES					
Sl. No.	Course Code	Course Title				
1.	16EC7F1	Satellite Communications & GPS				
2.	16EC7F2	ARM Programming & Optimization				
3.	16EC7F3	Speech Processing				
4.	16EC7F4	Radio Frequency Integrated Circuits Design				
5.	16EC7F5	High Performance Computing				
6.	16EC7F6	Integrated Photonics				
7.	16EC7F7	Nanoelectronics				
VII Semester						
	GROUP G: PROFESSIONAL ELECTIVES					
Sl. No. Course Code Course Title						
1.	16EC7G1	Radar & Navigation				
2.	16EC7G2	Automotive Electronics				
3.	16EC7G3	Multimedia Communication				
4.	16EC7G4	VLSI Testing for ICs				
5.	16EC7G5	High Speed digital design				
6.	16EC7G6	MEMS and Smart Systems				

OPEN ELECTIVES							
Sl.	Host	Course Code	Course Title	Credits			
No.	Dept						
1.	BT	16G7H01	Nanotechnology	3			
2.	CH	16G7H02	Industrial Safety and Risk Management	3			
3.	CV	16G7H03	Intelligent Transport System	3			
4.	CS	16G7H04	Intelligent Systems	3			
5.	EC	16G7H05	Image Processing and Machine Learning	3			
6.	EE	16G7H06	Design of Renewable Energy Systems	3			
7.	IM	16G7H07	Systems Engineering	3			
8.	EI	16G7H08	MEMS and Applications	3			
9.	IS	16G7H09	Introduction to Internet of Things	3			
10.	ME	16G7H10	Industry 4.0 – Smart Manufacturing for The Future	3			
11.	TE	16G7H11	Space Technology and Applications	3			
12.	MA	16G7H12	Advanced linear Algebra	3			
13.	PY	16G7H13	Thin Film Nanotechnology	3			
14.	CY	16G7H14	Engineering Materials for Advanced Technology	3			
15.	HSS	16G7H15	Applied Psychology for Engineers	3			
16.	HSS	16G7H16	Foundational Course on Entrepreneurship	3			
17.	AS	16G7H17	Unmanned Aerial Vehicles	3			

	Semester: VII						
	MICROWAVE AND RADIATING SYSTEMS						
			(Th	eory and Pra	actice)		
Cou	Course Code : 16EC71 CIE : 100+ 50 Marks						
Crec	Credits: L:T:P:S : 4:0:1:0 SEE : 100+50 Marks						
Total Hours :		:	46L		SEE Duration	:	3.00 Hours
Cou	Course Learning Objectives: The students will be able to						
1	1 Apply the knowledge of fields and waves to develop concepts of transmission line theory.						
2	2 Describe the basic operation of microwave devices.						
3	3 Describe the radiation from isolated, linear wire antennas and from linear elements near or on						
	a conducting surface.						
4	4 Calculate the fundamental parameters for antennas and the radiation field from an antenna						
	using potential functions.						
			T	• • 4 T			00.11

Transmission Lines : Introduction, transmission lines equations and solutions, termination of line by infinite line, by characteristic impedance, short circuit line, open circuit line and any load resistive impedance , input impedance reflection and transmission coefficients, standing waves and SWR(at both load end and generator end). Unit – II 09 Hrs Impedance Transforms and Matching: Quarter wave transforms, Smith chart construction and properties, Single stub matching. Microwave Waveguides: Introduction, TE, TM waves Rectangular waveguides (quantitative analysis TE, TM modes), circular waveguides (quantitative analysis), dominant modes, group velocity phase velocity, and wave impedance, Microwave cavities (quantitative analysis), resonant frequency. S-parameters: Introduction, properties of S matrix (qualitative analysis) Unit – III 09 Hrs Microwave Passive Devices: Waveguide Tee's, Directional couplers, circulators, power divider, Isolators (Faraday isolator), phase shifters (Rotatory type), Attenuators (Rotatory type), (s-parameters of all devices) 09 Hrs Microwave Sources: Multicavity Klystron amplifier, Reflex klystron oscillator RF Amplifiers and Front End Modules for Communications – Gain and Output Power, Return Loss and Reverse Isolation, Noise Figure, Harmonics, Theory of Inter-modulation Distortion and measurement, Efficiency. Unit –IV 09 Hrs
by infinite line, by characteristic impedance, short circuit line, open circuit line and any load resistive impedance ,input impedance reflection and transmission coefficients, standing waves and SWR(at both load end and generator end). Unit – II 09 Hrs Impedance Transforms and Matching: Quarter wave transforms, Smith chart construction and properties, Single stub matching. Og Hrs Microwave Waveguides: Introduction, TE, TM waves Rectangular waveguides (quantitative analysis TE, TM modes), circular waveguides (quantitative analysis), dominant modes, group velocity phase velocity, and wave impedance, Microwave cavities (quantitative analysis), resonant frequency. S-parameters: Introduction, properties of S matrix (qualitative analysis) O9 Hrs Microwave Passive Devices: Waveguide Tee's, Directional couplers, circulators, power divider, Isolators (Faraday isolator), phase shifters (Rotatory type), Attenuators (Rotatory type), (s-parameters of all devices) O9 Hrs Microwave Sources: Multicavity Klystron amplifier, Reflex klystron oscillator RF Amplifiers and Front End Modules for Communications – Gain and Output Power, Return Loss and Reverse Isolation, Noise Figure, Harmonics, Theory of Inter-modulation Distortion and measurement, Efficiency.
impedance ,input impedance reflection and transmission coefficients, standing waves and SWR(at both load end and generator end). Unit – II 09 Hrs Impedance Transforms and Matching: Quarter wave transforms, Smith chart construction and properties, Single stub matching. Microwave Waveguides: Introduction, TE, TM waves Rectangular waveguides (quantitative analysis TE, TM modes), circular waveguides (quantitative analysis), dominant modes, group velocity phase velocity, and wave impedance, Microwave cavities (quantitative analysis), resonant frequency. S-parameters: Introduction, properties of S matrix (qualitative analysis) 09 Hrs Microwave Passive Devices: Waveguide Tee's, Directional couplers, circulators, power divider, Isolators (Faraday isolator), phase shifters (Rotatory type), Attenuators (Rotatory type), (s- parameters of all devices) 09 Hrs Microwave Sources: Multicavity Klystron amplifier, Reflex klystron oscillator RF Amplifiers and Front End Modules for Communications – Gain and Output Power, Return Loss and Reverse Isolation, Noise Figure, Harmonics, Theory of Inter-modulation Distortion and measurement, Efficiency. Unit –IV 09 Hrs
both load end and generator end). Unit – II 09 Hrs Impedance Transforms and Matching: Quarter wave transforms, Smith chart construction and properties, Single stub matching. Microwave Waveguides: Introduction, TE, TM waves Rectangular waveguides (quantitative analysis TE, TM modes), circular waveguides (quantitative analysis), dominant modes, group velocity phase velocity, and wave impedance, Microwave cavities (quantitative analysis), resonant frequency. S-parameters: Introduction, properties of S matrix (qualitative analysis) S-parameters: Introduction, properties of S matrix (qualitative analysis) 09 Hrs Microwave Passive Devices: Waveguide Tee's, Directional couplers, circulators, power divider, Isolators (Faraday isolator), phase shifters (Rotatory type), Attenuators (Rotatory type), (s-parameters of all devices) 09 Hrs Microwave Sources: Multicavity Klystron amplifier, Reflex klystron oscillator RF Amplifiers and Front End Modules for Communications – Gain and Output Power, Return Loss and Reverse Isolation, Noise Figure, Harmonics, Theory of Inter-modulation Distortion and measurement, Efficiency. Unit –IV 09 Hrs
Unit – II09 HrsImpedance Transforms and Matching: Quarter wave transforms, Smith chart construction and properties, Single stub matching.Microwave Waveguides: Introduction, TE, TM waves Rectangular waveguides (quantitative analysis), dominant modes, group velocity phase velocity, and wave impedance, Microwave cavities (quantitative analysis), resonant frequency.G9 HrsS-parameters: Introduction, properties of S matrix (qualitative analysis)09 HrsMicrowave Passive Devices: Waveguide Tee's, Directional couplers, circulators, power divider, Isolators (Faraday isolator), phase shifters (Rotatory type), Attenuators (Rotatory type), (s- parameters of all devices)09 HrsMicrowave Sources: Multicavity Klystron amplifier, Reflex klystron oscillator RF Amplifiers and Front End Modules for Communications – Gain and Output Power, Return Loss and Reverse Isolation, Noise Figure, Harmonics, Theory of Inter-modulation Distortion and measurement, Efficiency.09 Hrs
Impedance Transforms and Matching: Quarter wave transforms, Smith chart construction and properties, Single stub matching. Microwave Waveguides: Introduction, TE, TM waves Rectangular waveguides (quantitative analysis TE, TM modes), circular waveguides (quantitative analysis), dominant modes, group velocity phase velocity, and wave impedance, Microwave cavities (quantitative analysis), resonant frequency. S-parameters: Introduction, properties of S matrix (qualitative analysis) Unit –III 09 Hrs Microwave Passive Devices: Waveguide Tee's, Directional couplers, circulators, power divider, Isolators (Faraday isolator), phase shifters (Rotatory type), Attenuators (Rotatory type), (s-parameters of all devices) Microwave Sources: Multicavity Klystron amplifier, Reflex klystron oscillator RF Amplifiers and Front End Modules for Communications – Gain and Output Power, Return Loss and Reverse Isolation, Noise Figure, Harmonics, Theory of Inter-modulation Distortion and measurement, Efficiency. Unit –IV 09 Hrs
properties, Single stub matching. Microwave Waveguides: Introduction, TE, TM waves Rectangular waveguides (quantitative analysis TE, TM modes), circular waveguides (quantitative analysis), dominant modes, group velocity phase velocity, and wave impedance, Microwave cavities (quantitative analysis), resonant frequency. S-parameters: Introduction, properties of S matrix (qualitative analysis) Unit –III 09 Hrs Microwave Passive Devices: Waveguide Tee's, Directional couplers, circulators, power divider, Isolators (Faraday isolator), phase shifters (Rotatory type), Attenuators (Rotatory type), (s-parameters of all devices) Microwave Sources: Multicavity Klystron amplifier, Reflex klystron oscillator RF Amplifiers and Front End Modules for Communications – Gain and Output Power, Return Loss and Reverse Isolation, Noise Figure, Harmonics, Theory of Inter-modulation Distortion and measurement, Efficiency. Unit –IV 09 Hrs
Microwave Waveguides: Introduction, TE, TM waves Rectangular waveguides (quantitative analysis TE, TM modes), circular waveguides (quantitative analysis), dominant modes, group velocity phase velocity, and wave impedance, Microwave cavities (quantitative analysis), resonant frequency. S-parameters: Introduction, properties of S matrix (qualitative analysis) Unit –III 09 Hrs Microwave Passive Devices: Waveguide Tee's, Directional couplers, circulators, power divider, Isolators (Faraday isolator), phase shifters (Rotatory type), Attenuators (Rotatory type), (s-parameters of all devices) Microwave Sources: Multicavity Klystron amplifier, Reflex klystron oscillator RF Amplifiers and Front End Modules for Communications – Gain and Output Power, Return Loss and Reverse Isolation, Noise Figure, Harmonics, Theory of Inter-modulation Distortion and measurement, Efficiency. 09 Hrs
analysis TE, TM modes), circular waveguides (quantitative analysis), dominant modes, group velocity phase velocity, and wave impedance, Microwave cavities (quantitative analysis), resonant frequency. S-parameters: Introduction, properties of S matrix (qualitative analysis) Unit –III 09 Hrs Microwave Passive Devices: Waveguide Tee's, Directional couplers, circulators, power divider, Isolators (Faraday isolator), phase shifters (Rotatory type), Attenuators (Rotatory type), (s- parameters of all devices) Microwave Sources: Multicavity Klystron amplifier, Reflex klystron oscillator RF Amplifiers and Front End Modules for Communications – Gain and Output Power, Return Loss and Reverse Isolation, Noise Figure, Harmonics, Theory of Inter-modulation Distortion and measurement, Efficiency. Unit–IV 09 Hrs
velocity phase velocity, and wave impedance, Microwave cavities (quantitative analysis), resonant frequency. S-parameters: Introduction, properties of S matrix (qualitative analysis) Unit –III 09 Hrs Microwave Passive Devices: Waveguide Tee's, Directional couplers, circulators, power divider, Isolators (Faraday isolator), phase shifters (Rotatory type), Attenuators (Rotatory type), (s- parameters of all devices) Microwave Sources: Multicavity Klystron amplifier, Reflex klystron oscillator RF Amplifiers and Front End Modules for Communications – Gain and Output Power, Return Loss and Reverse Isolation, Noise Figure, Harmonics, Theory of Inter-modulation Distortion and measurement, Efficiency. Unit–IV 09 Hrs
frequency. S-parameters: Introduction, properties of S matrix (qualitative analysis) Unit –III 09 Hrs Microwave Passive Devices: Waveguide Tee's, Directional couplers, circulators, power divider, Isolators (Faraday isolator), phase shifters (Rotatory type), Attenuators (Rotatory type), (s-parameters of all devices) Microwave Sources: Multicavity Klystron amplifier, Reflex klystron oscillator RF Amplifiers and Front End Modules for Communications – Gain and Output Power, Return Loss and Reverse Isolation, Noise Figure, Harmonics, Theory of Inter-modulation Distortion and measurement, Efficiency. Unit –IV 09 Hrs
S-parameters: Introduction, properties of S matrix (qualitative analysis) 09 Hrs Unit –III 09 Hrs Microwave Passive Devices: Waveguide Tee's, Directional couplers, circulators, power divider, Isolators (Faraday isolator), phase shifters (Rotatory type), Attenuators (Rotatory type), (s-parameters of all devices) Microwave Sources: Multicavity Klystron amplifier, Reflex klystron oscillator RF Amplifiers and Front End Modules for Communications – Gain and Output Power, Return Loss and Reverse Isolation, Noise Figure, Harmonics, Theory of Inter-modulation Distortion and measurement, Efficiency. Unit –IV 09 Hrs
Unit –III09 HrsMicrowave Passive Devices: Waveguide Tee's, Directional couplers, circulators, power divider, Isolators (Faraday isolator), phase shifters (Rotatory type), Attenuators (Rotatory type), (s- parameters of all devices)Microwave Sources: Multicavity Klystron amplifier, Reflex klystron oscillatorRF Amplifiers and Front End Modules for Communications – Gain and Output Power, Return Loss and Reverse Isolation, Noise Figure, Harmonics, Theory of Inter-modulation Distortion and measurement, Efficiency.Unit –IV09 Hrs
Microwave Passive Devices: Waveguide Tee's, Directional couplers, circulators, power divider, Isolators (Faraday isolator), phase shifters (Rotatory type), Attenuators (Rotatory type), (s-parameters of all devices) Microwave Sources: Multicavity Klystron amplifier, Reflex klystron oscillator RF Amplifiers and Front End Modules for Communications – Gain and Output Power, Return Loss and Reverse Isolation, Noise Figure, Harmonics, Theory of Inter-modulation Distortion and measurement, Efficiency. Unit –IV 09 Hrs
Isolators (Faraday isolator), phase shifters (Rotatory type), Attenuators (Rotatory type), (s- parameters of all devices) Microwave Sources: Multicavity Klystron amplifier, Reflex klystron oscillator RF Amplifiers and Front End Modules for Communications – Gain and Output Power, Return Loss and Reverse Isolation, Noise Figure, Harmonics, Theory of Inter-modulation Distortion and measurement, Efficiency. Unit –IV 09 Hrs
parameters of all devices) Microwave Sources: Multicavity Klystron amplifier, Reflex klystron oscillator RF Amplifiers and Front End Modules for Communications – Gain and Output Power, Return Loss and Reverse Isolation, Noise Figure, Harmonics, Theory of Inter-modulation Distortion and measurement, Efficiency. Unit –IV 09 Hrs
Microwave Sources: Multicavity Klystron amplifier, Reflex klystron oscillator RF Amplifiers and Front End Modules for Communications – Gain and Output Power, Return Loss and Reverse Isolation, Noise Figure, Harmonics, Theory of Inter-modulation Distortion and measurement, Efficiency. 09 Hrs
RF Amplifiers and Front End Modules for Communications – Gain and Output Power, Return Loss and Reverse Isolation, Noise Figure, Harmonics, Theory of Inter-modulation Distortion and measurement, Efficiency. Unit –IV 09 Hrs
Loss and Reverse Isolation, Noise Figure, Harmonics, Theory of Inter-modulation Distortion and measurement, Efficiency. Unit –IV 09 Hrs
Unit –IV 09 Hrs
Unit –IV 09 Hrs
a company and the second se
Antenna Basics: Introduction, antenna radiation mechanism, basic Antenna parameters, patterns,
beam area, radiation intensity, beam efficiency, diversity and gain, antenna apertures, effective
height, bandwidth, radiation, efficiency, antenna temperature and antenna field zones. Wire
Antennas: Electric dipoles: Introduction, short electric dipole (fields, power density, power radiated,
directivity, radiation resistance), Half wave dipoles(field: qualitative analysis power density, power
radiated, directivity, radiation resistance).
Unit – V IO Hrs
Antenna Arrays: Introduction, pattern multiplication, Array of two isotropic point sources, N
element linear array with uniform spacing and phase(Array factor), Broadside and end fire
array(Directivity, location of beam with, Beam width, etc.). Antenna Types: Folded dipole, Yagi-
(Qualitative analysis only Construction working)
(Quantative analysis only: Construction, working).
Practical's: Microwayos and Padiating systems lab
1 Study of mode curves of Reflex klystron source
 Design and Simulation of Patch Antenna (coavial feed). Dipole and Horn antenna using HFSS.
3 Radiation Characteristics of Pyramidal Horn Antenna (X-hand)

- 4. Characterization of Ring resonator, Power divider, Microwave Directional Coupler and Hybrid coupler (Strip line type, C-band)
- 5. Design and Simulation of Waveguide Magic-Tee using HFSS
- 6. Characterization of Microwave Magic Tee, Directional Coupler, Circulator, Tunable Attenuator and Isolator (Waveguide type, X-band)
- 7. Radiation characteristics of Log-periodic and Yagi antenna (C-band)
- 8. Radiation characteristics of Microstrip Patch and Printed Dipole Antenna(X-band)
- 9. Design and Simulation of a Printed Hybrid Ring using HFSS
- 10. Characterization of Lowpass, bandpass and band stop filters (C-Band)

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Explain and summarize the working of transmission line, Waveguides, Microwave Passive
	Devices and Antennas
CO2:	Analyze wave propagation in transmission line, Waveguides and characterize the passive
	microwave components and Antennas.
CO3:	Design the transmission lines, passive microwave components and Antennas for given
	specification and also match the impedance.
CO4:	Evaluate S-Parameter, VSWR for transmission lines, Microwave components and radiation
	pattern for Antennas.

Refer	ence Books
1	Microwave Engineering, David M Pozar, John Wiley, 3rd Edition, 2004, ISBN-13: 978-
L	0471644514
2	Antenna Theory and Design, C A Balanis, John Wiley & sons, Inc. publication, 3rd
2	Edition,2005,ISBN-13: 978-0471667827
2	National Instruments, 'Basics of Power Amplifier and Front End Module Measurements'
3	White paper, http://www.ni.com/rf/
4	Foundations of Microwave Engineering, R E Collin, IEEE Press on Electromagnetic and
4	Wave Theory, 2 nd Edition, ISBN-13: 978-0-7803-6031-0/ 0-7803-6031-1
5	Antennas, John D.Krauss, McGraw-Hill International Edition, 3rd Edition, 2006.ISBN-
	13: 978-0071232012

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project is 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering

the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	2	-	-	2	-	1
CO2	3	2	2	1	-	-	2	-	-	2	-	1
CO3	3	3	2	2	-	-	2	-	-	2	-	1
CO4	3	3	3	3	-	-	2	-	-	2	-	1

				Semester: VII			
			BROAD	BAND WIRELESS	5 -LTE 4G		
				(Theory)			
Cou	rse Code	:	16EC72	C	CIE	••	100 Marks
Cred	lits: L:T:P:S	:	4:0:0:0	S	EE	:	100 Marks
Tota	l Hours	:	46L	S	EE Duration	:	03 Hours
Cou	rse Learning ()bj	ectives: The stud	lents will be able to			
1	Identify real l	ife	channels and stat	tistical characterizati	ion for them.		
2	Identify GSM	l, it	s physical layer a	ind call processing a	s well as scenari	os a	ind services.
3	Analyze the Synchronizati	on.	concept and a	pplications of spi	read spectrum	te	chniques including
4	Identify physic	ical	layer and call pr	ocessing protocols f	for cellular CDM	A.	
				TT *4 T			00 Шта
Dovi	ow of Logoov	2-10	toma	Unit-I			09 Hrs
Kevi	ew of Legacy :	Sys TT	tems	M. Cincle comion ED			EDE Channel
Key	Enablers for I	- 1 1 	L leatures: OFD	ing Multiontonno T	JMA, Single cari	ner	FDE, Channel
Arch	itengure I TE	N IS Nat	work Architectu	nig, Munitantenna To	echniques, ir ba	seu	Flat network
Wire	less Fundame	nte	Is Cellular con	cent Broadband wir	reless channel (F	X	C) Fading in BWC
Mod	eling BWC _	Бm	nirical and Stati	stical models. Mitic	gation of Narroy	v h	and and Broadband
Fadir			ipiliear and Stati	stical models, writig		v U	and and Droadband
1 uun	-8		T	Init – II			09 Hrs
Mult	ticarrier Mo	հոլ	ation: OFDM	basics. OFDM i	in LTE. Timi	ng	and Frequency
Sync	hronization. PA	AR.	SC-FDE.		,	8	
OFD	MA and SC-F	DN	A: OFDM with	FDMA. TDMA. CI	DMA. OFDMA.	SC	-FDMA. OFDMA
and S	SC-FDMA in L	TE		7 7 -	7 - 7		y –
Mult	tiple Antenna	Tra	ansmission and	Reception: Spatial	Diversity overv	iew	, Receive Diversity,
Tran	smit Diversity,	Int	erference cancell	ation and signal enh	ancement, Spati	al N	Aultiplexing, Choice
betw	een Diversity,	Inte	erference suppres	sion and Spatial Mu	ltiplexing		1 6,
-	.		U U	Init –III	1 0		09 Hrs
Over	view and Ch	anr	nel Structure of	LTE: Introduction	n to LTE, Chan	nel	Structure of LTE,
Dow	nlink OFDMA	Ra	dio Resource, Up	olink SC-FDMA Rad	dio Resource .		
Dow	nlink Transp	ort	Channel Proce	essing: Overview,	Downlink share	d	channels, Downlink
Cont	rol Channels, E	Broa	adcast channels, l	Multicast channels, I	Downlink physic	al c	channels, H-ARQ on
Dow	nlink						
			U	Init –IV			10 Hrs
Upli	nk Channel 7	[ra	nsport Processi	ng: Overview, Upl	link shared char	nne	ls, Uplink Control
Infor	mation, Uplink	Re	eference signals,	Random Access Cha	annels, H-ARQ o	on u	ıplink
Phys	ical Layer Pro	oce	dures: Hybrid –	ARQ procedures, C	Channel Quality I	ndi	cator CQI feedback,
Prece	Precoder for closed loop MIMO Operations, Uplink channel sounding, Buffer status Reporting in						
uplin	k, Scheduling	an	d Resource Allo	ocation, Cell Search	h, Random Acc	ess	Procedures, Power
Cont	Control in uplink.						
Unit –V 09 Hrs							
Radi	o Resource M	ana	agement and Mo	bility Managemen	t:	_	
PDC	PDCP overview, MAC/RLC overview, RRC overview, Mobility Management, Inter-cell						
Inter	Interference Coordination						
C	0.4		y 1 1 1	1 41 4 1			
Cou	rse Outcomes:	Af	ter completing t	ne course, the stud	ents will be able	e to	
	: Associate to	erm	s in the system a	renitecture to the fur	nctional standard	. sp	ecified in LIE 4G.
	: Analyze the	e ro	ble of LTE radio	interface protocols a	and EPS Data co	onv	ergence protocols to

set up, reconfigure and release data and voice from users.CO3:Demonstrate the UTRAN and EPS handling processes from set up to release including

	mobility management for a variety of data call scenarios.
CO4:	Test and Evaluate the Performance of resource management and packet data processing
	and transport algorithms.

Reference Books							
1	Fundamentals of LTE, Arunabha Ghosh, Jan Zhang, Jefferey Andrews, Riaz Mohammed, Prentice Hall, Communications Engg and Emerging Technologies.						
2	LTE for UMTS Evolution to LTE-Advanced', Harri Holma and Antti Toskala,, 2 nd Edition - 2011, John Wiley & Sons, Ltd. Print ISBN: 9780470660003.						

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project is 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	2	-	-	2	-	3
CO2	3	2	2	1	-	-	2	-	-	2	-	3
CO3	3	3	2	2	-	-	2	-	-	2	-	3
CO4	3	3	3	3	-	-	2	-	-	2	-	3

	VII Semester							
				MINOR PROJECT				
Cour	rse Code	••	16EC73P		CIE		100 Marks	
Credits: L: T: P: S		:	0:0:3:0		SEE	:	100 Marks	
Hrs/week		:	06		SEE Duration	:	3 Hours	
Cour	rse Learning O	bje	ctives: The st	udents will be able to				
1	Create interest in	n in	novative devel	opments and preferably interdisci	plinary field.			
2	Work independe	entl	y, analyze, eva	luate and solve the given problem				
3	Inculcate the ski	lls	for good preser	ntation and improve the technical	report writing skills.			
4	4 Recognize the need for planning, preparation, management and financial budgeting.							
5	Acquire collabo	rati	ve skills throug	h working in a team to achieve co	ommon goals.			

Mini Project Guidelines:

- 1. Each project group will have two to four students, they can form their groups amongst their class.
- 2. Each group has to select a current topic that will use the technical knowledge of their program of study after intensive literature survey.
- 3. Guides will be allotted by the department based on the topic chosen.
- 4. The project should result in system/module which can be demonstrated, using the available resources in the college.
- 5. The CIE evaluation will be done by the committee constituted by the department. The committee shall consist of respective guide & two senior faculty members as examiners. The evaluation will be done for each student separately.
- 6. The final copy of the report should be submitted after incorporation of any modifications suggested by the evaluation committee

Guidelines for Evaluation:

CIE Assessment:

The following are the weightages given for the various stages of the project:

- 1. Selection of the topic and formulation of objectives: 10%
- 2. Design and Development of Project methodology: 30%
- 3. Execution of Project: 30%
- 4. Presentation, Demonstration and Discussion: 20%
- 5. Report Writing:10%

Evaluation will be carried out in three phases:

Phase	Activity	Weightage
Ι	Synopsis submission, approval of the selected topic, formulation of objectives	20%
II	Mid-term evaluation to review the progress of work and documentation	30%
III	Submission of report, Final presentation and demonstration	50%

SEE Assessment:

The following are the weightages given during SEE Examination:

- 1. Written presentation of synopsis:10%
- 2. Presentation/Demonstration of the project: 30%
- 3. Methodology and Discussion: 30%
- 4. Technical Report: 10%
- 5. Viva Voce: 20%

Course Outcomes of Mini Project:

	V
1	Define Specifications, Conceptualize, Design and implement a project
2	Communicate the work carried out as a technical report and orally
3	Work in a team and contribute to team work
4	Indulge in self-learning and be motivated for life-long learning

				Semester: VII			
			SATELLITE	COMMUNICA	TIONS & GPS		
a	~ .	-	(Group F:	Professional Co	ore Elective)	1	100 1 1
Cou	rse Code	:	16EC7F1		CIE	:	100 Marks
Cred	lits: L:T:P:S	:	4:0:0:0		SEE	:	100 Marks
Tota	l Hours	:	50L		SEE Duration	:	03 Hours
Cou	rse Learning Ob	jec	tives: The studer	nts will be able to			
1	Understand the	Sat	ellite orbits and o	orbital perturbation	ons.		
2	Analyze link po	we	r budget calculat	ions and losses in	the atmosphere.		
3	Understand the	con	nponents of the s	satellite in space a	and Earth stations		
4	Analyze Fixed (Coc	ordinate System a	and GPS C/A Coo	de Signal Structure	e	
				[]			10 Hug
Orres	. View of Setelli	to 6	watana Introdu	UIIII-I	allocation Vanla	1.000	IV IIIS
Over	r view of Satelli	te S	ystems: Introdu	iction, frequency	allocation, Kepler		s, definitions, orbital
elem	ent, apogee and	per	and least most	bit perturbations,	inclined orbits, c		Casatationary arbity
Intro	duction ontenno	pi 1ec	ane, local mean	n unne and sun	synchronous ord	IIS,	Geostationary orbit:
Intro	duction, antenna,	100	ok angles, polar i	mx antenna, mm	is of visibility, ear	th e	cupse of saterifie, sun
trans	n outage.		T	nit II			10 Um
Dron	agation Impair	nor	U. Its and Space Li	int – II ink: Introduction	atmospheric loss	iot	IV IIIS
ottop	ustion other im	nei	monte Space L	ink: Introduction	, autiospheric loss		n lossos link nowor
buda	at system noise	ран СМ	P uplink down	link affects of r	in, EINF, transmis	551U D	ii iosses, iiik powei
buug	et, system noise,		K, upinik, uowi	nit III	ani, comoneu Civi	<u>.</u>	10 Um
Snor	Somont. Intr	du	otion nower sur	nly unite altitud	a control station	kaai	ing thermal control
	C transponders	onte	enon, power sup	Forth Segment: I	ntroduction receiv		nly home TV system
outde	or unit indoor u	anu nit	MATY CATY	Tx = Rx earth st	ation		iny nome i v system,
outu		mi,		$\frac{1}{1} = \frac{1}{1} = \frac{1}{1} = \frac{1}{1}$			10 Hrs
GPS	· Introduction Hi	isto	rv of GPS Devel	opment A Basic	GPS Receiver An	nro	aches of Presentation
Softy	vare Approach	Po	tential Advanta	opinion, reduse	tware Approach	R	asic GPS Concent:
Intro	duction GPS Per	for	mance Requirem	ents Basic GPS	Concept Basic Ed	niat	ions for Finding User
Posit	ion Measureme	nt of	of Pseudo-range	Solution of Us	er Position from	Pse	udo-ranges Position
Solu	tion with more	tha	n Four Satellite	es. User Position	in Spherical Co	oord	linate System. Earth
Geor	netry. Basic Rela	tior	ships in an Ellip	se. Calculation of	f Altitude. Calculat	tion	of Geodetic Latitude.
Calc	ulation of a Point	on	the Surface of t	he Earth. Satellite	e Selection. Diluti	on	of Precision. Satellite
Cons	stellation: Introd	ucti	on, Control Seg	ment of the GPS	System, Satellite	Cor	stellation, Maximum
Diffe	erential Power Le	vel	from Different	Satellites, Sidere	al Day, Doppler F	Freq	uency Shift, Average
Rate	of Change of the	Do	ppler Frequency	, Maximum Rate	of Change of the	Dot	opler Frequency, Rate
of C	hange of the Dop	ople	r Frequency Du	e to User Accele	ration, Kepler's E	Eque	tion, True and Mean
Anomaly, Signal Strength at User Location.							
			U	nit –V			10 Hrs
Eart	h-Centered, Ear	th-	Fixed Coordina	te System : Intro	duction, Direction	n Co	osine Matrix, Satellite
Orbit Frame to Equator Frame Transform, Vernal Equinox, Earth Rotation, Overall Transform from							
Orbit Frame to Earth-Centered, Earth-Fixed Frame, Perturbations, Correction of GPS System Time of							
Tran	Transmission, Calculation of Satellite Position, Coordinate Adjustment for Satellites, Ephemeris Data.:						
GPS	C/A Code Sign	nal	Structure: Intro	oduction, Transm	nitting Frequency,	Co	de Division-Multiple
Acce	ess (CDMA) Sign	als,	P Code, C/A C	ode and Data For	rmat, Generation of	of C	A Code, Correlation
Prop	erties of C/A Cod	le, I	Navigation Data	Bits, Telemetry	(TLM) and Hand	Ove	r Word (HOW), GPS
Time	Time and the Satellite Z Count, Parity Check Algorithm, Navigation Data from sub frame 1, Navigation						

Data from subframes 2 and 3, Navigation Data from subframes 4 and 5-Support Data, Ionospheric

Model, Tropospheric Model, Selectivity Availability (SA) and Typical Position Errors.

Course Outcomes: After completing the course, the students will be able to						
CO1:	Analyse the basic concepts of orbital mechanics of satellites and GPS					
CO2:	Apply the basic concepts to solve problems in satellites and GPS					
CO3:	Analyze various transmission losses and components of space & Earth Segment					
CO4:	Evaluate noise effect and Signal Structure of Satellite and GPS.					

Reference Books

1	Satellite Communications, Dennis Roddy, McGraw-Hill, 4 th Edition, 2006, ISBN 0-07-146298-8
2	Satellite Communications, Timothy Pratt, Charles Bostian and Jeremy Allnutt, John Wiley & Sons, 2 nd Edition, 2003, ISBN: 978-0-471-37007-9
3	Fundamentals of Global Positioning System Receivers: A Software Approach James Bao-Yen, Tsui, John Wiley,2 nd Edition , 2005, ISBN: 978-0-471-70647-2
4	Fundamentals of Satellite Communication, K. N. Raja Rao, PHI Learning Pvt. Ltd, 2 nd Edition, ISBN, 8120324013

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project is 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-l	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	-	-	-	-	-	1	-	1
CO2	3	3	2	1	-	-	-	-	-	1	-	1
CO3	3	1	2	1	-	-	-	-	-	1	-	1
CO4	3	2	2	1	-	-	-	-	-	1	-	1

Low-1 Medium-2 High-3

	Semester: VII							
	ARM PROGRAMMING & OPTIMIZATION							
	(Group F: Professional Core Elective)							
Cour	Course Code : 16EC7F2 CIE : 100 Marks				100 Marks			
Cred	lits: L:T:P:S	:	4:0:0:0		SEE	:	100 Marks	
Tota	l Hours	:	50L		SEE Duration	:	03 Hours	
Cour	Course Learning Objectives: The students will be able to							
1	Discuss the b	asic	c principles of ARM	system design.				
2	2 Identify the major hardware components ARM data path architecture.							
3	3 Identify the design issues ARM based embedded system with the basic knowledge of firmware,							
	embedded OS & ARM architectures.							
4	4 Analyze the execution of instructions/program knowing the basic principles of ARM							
	architecture and assembly language.							
5	5 Compare programs written in C & assembly to execute on ARM platform.							
			Un	it-I			10 Hrs	
T .	1 D .	D		· · · · · ·		τ.		

Introduction, Data Path Architecture, Registers, Modes, Exceptions ARM Instruct	tions: Data
processing instructions, Branch instructions, Load store instructions, software interrupt	instructions,
program status register instructions, loading constants, ARMv5E extension, and	conditional
execution. Thumb Instructions: Thumb register usage, ARM Thumb inter working, C	Other branch
instructions, data processing instructions, single register load store instructions, multiple	register load
store instructions, stack instructions, software interrupt instruction.	
Unit – II	10 Hrs

	10 111 5
Programming in C for ARM: Overview of C Compilers and optimization, basic C c	lata types, C
looping structures, register allocation, function calls, pointer aliasing, structure arran	igement, bit
fields, unaligned Data and Endianess, division, floating point, inline functions and inlin	ne assembly,
portability issues.	
	10 II.ma

Unit –III	10 Hrs
Writing and Optimizing ARM Assembly Code: Writing assembly code, profilin	g and cycle
counting, instruction scheduling, register allocation, conditional execution, looping co	nstructs, Bit
manipulation, efficient switches. Handling unaligned data	
Unit_IV	10 Hrs

Cint –i v	10 1115
Digital Signal Processing on ARM: Representing a digital signal, Introduction to DSP of	on the ARM,
FIR filters, Realization of filters on ARM7 and Cortex M3, IIR Filters, Realization	of filters on
ARM7 and Cortex M3, CMSIS DSP Library	
	1

Unit –V10 HrsException and Interrupt Handling Exception Handling, Interrupts, Non-nested Interrupt handler,
Re-entrant Interrupt handler Firmware & Boot loader Embedded Operating Systems Fundamental
Components, Simple Operating System

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Describe the programmer's model of ARM processor and analyse the instruction set
	architecture to realize complex operations.
CO2:	Apply the optimization methods available for ARM architectures to design embedded
	software to meet given constraints with the help of modern engineering tools.
CO3:	Realize real time signal processing applications & primitive OS operations on different ARM
	architectures by making use of software libraries.
CO4:	Engage in self-study to formulate, design, implement, analyze and demonstrate an
	application realized on ARM development boards through assignments.

Refer	ence Books
1	ARM System Developers Guide, Andrew N Sloss, Dominic Symes, Chris Wright, Elsevier,
1	Morgan Kaufman publishers, 2008, ISBN-13:9788181476463
2	ARM Architecture Reference Manual, David seal, Addison-Wesley, 2 nd Edition, 2009,
2	ISBN-13:9780201737196
3	ARM System on Chip Architecture, Steve Furber, Pearson Education Limited,2 nd Edition,
3	ISBN-13:9780201675191
4	Technical reference manual for ARM processor cores, including Cortex, ARM 11, ARM 9
4	& ARM 7 processor families.
5	User guides and reference manuals for ARM software development and modeling tools.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project is 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	-	-	-	-	-	-		-	-
CO2	3	2	2	3	-	-	-	2	2		-	-
CO3	2	2	3	3	-	-	-	2	2		-	-
CO4	3	3	3	3	2	3	2	3	3	3	2	3

	Semester: VII							
	SPEECH PROCESSING							
			(Group H	F: Professional Core Electi	ve)			
Cour	rse Code	:	16EC7F3		CIE	:	100 Marks	
Cred	lits: L:T:P:S	:	4:0:0:0		SEE	:	100 Marks	
Tota	l Hours	:	50L		SEE Duration	:	03 Hours	
Cour	Course Learning Objectives: The students will be able to							
1	Develop the s	stude	nts mathematic	al, scientific, and computati	ional skills releva	nt t	o the field of	
	biomedical signal processing.							
2	2 Enhance the student's ability in formulating problems and designing analysis tools for							
	biological signals.							
3	3 Increase the students awareness of the complexity of various biological phenomena and							
	cultivate an understanding of the same							
4	Foster effecti	ve in	teraction skills	and teamwork communicat	ion			

Unit-I	10 Hrs
Introduction to digital speech signal processing: Digitization and recording, Hu	man speech
production and source filter model, Place and manner at articulation, Articulatory a	and acoustic
phonetics, Uniform tube modeling of speech processing, Human auditory system, Speech	n perception.
Unit – II	10 Hrs
Time Domain Models for Speech Processing: Time dependent representation of speech	, Short time
average zero crossing rate, Speech vs. silence discrimination using energy and zero cro	ossing, pitch
period estimation using parallel processing approach, short time autocorrelation function	n, Short time
average magnitude difference function, Pitch period estimation using autocorrelation fu	nction.
Unit –III	10 Hrs
Short Time Fourier Analysis: introduction, Definitions and properties, Fourie	r transform
interpretation, linear filtering interpretation, Sampling rates of X(ejw) in time and frequencies	uency, Filter
bank summation method of short time synthesis, Spectrographic displays.	
Unit –IV	10 Hrs
Feature extraction: Extraction of Fundamental frequency, Frequency domain	fundamental
frequency detection algorithm, Segmental and supra segmental features of speech sign	nal, Cepstral
transform coefficients parameters extraction, Mel-frequency Cepstral coefficients, MF	CC features
vector.	
Unit –V	10 Hrs
Speech based Applications: Text to speech synthesis, Automatic speech recognition	n, Statistical
modelling of automatic speech recognition, and Speech based technology development for	or e learning.

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Analyze the basic signal processing techniques in biological signals						
CO2:	Apply basic mathematical, scientific and computational skills necessary to analyze						
	biomedical signals.						
CO3:	Formulate and solve basic problems in biomedical signal analysis.						
CO4:	Design of Signal processing algorithm to be used in DSP Processor						

Refer	ence Books
1	Digital Processing of Speech Signals, L R Rabiner and R W Schafer, Pearson Education 2004. ISBN: 0-13-213603-1
2	Digital Speech Processing, Synthesis and Recognition, Sadoaki Furui, Second Edition, Mercel Dekk er 2002. ISBN-13: 978-0824704520
3	Fundamentals of Speech Recognition, Rabiner and B.Juang ,Pearson Education, 2004, ISBN- 13: 978-0130151575

4	Discrete-Time Speech Signal Processing: Principles and Practice, Thomas F. Quatieri, Prantice Hell: 1 adjition (10 November 2008) ISBN:0-12-242042 X
	Pfentice Hall, 1 edition (10 November 2008),ISBN:0-13-242942-X
	Theory and Applications of Digital Speech Processing, L. R. Rabiner and R. W. Schafer,
Э	Pearson; 1 edition (3 March 2010), ISBN: 978-0136034285

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project is 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	1	3	2	1	2	2	3	3	3
CO2	3	3	3	2	3	1	1	1	3	1	3	3
CO3	3	3	3	2	3	1	1	1	2	1	3	3
CO4	3	3	3	3	2	1	1	1	2	1	3	3

	Semester: VII										
RADIO FREQUENCY INTEGRATED CIRCUITS DESIGN											
(Group F: Professional Core Elective)											
Cou	rse Code	:	16EC7F4		CIE	:	100 Marks				
Credits: L:T:P:S		:	4:0:0:0		SEE	:	100 Marks				
Total Hours		:	50L	SEE Duration		:	03 Hours				
Cou	rse Learning (Obje	ctives: The stud	lents will be able	to						
1	Define and d	emor	strate the impo	rtance of radio fr	equency design.						
2	Analyze the	funct	ionality and des	sign issues of RF	circuits and system	ns.					
3	Design and in	mple	ment RF transce	eiver.	-						
4	Evaluate the	diffe	rent performanc	e parameters use	ed in RF design.						

Unit-I	10 Hrs
Introduction to RF Design and Wireless Technology - various disciplines in RF design,	RF design
hexagon.	_
Basic concepts in RF design - Units in RF design, Nonlinearity and Time Variance,	Effects of
nonlinearity - harmonic distortion, gain compression - 1 dB compression point, deser	nsitization,
blocking, cross modulation, intermodulation – third intercept point, cascaded nonlinear s	tages – IM

Unit – II10 HrsNoise in RF circuits - Representation of noise in circuits – input referred noise, Noise figure, Noise
figure of cascaded stages, Noise figure of lossy circuits, Sensitivity, dynamic range – spurious free
dynamic range (SFDR).

Transceiver architectures – channel selection and band selection, Heterodyne – constant LO and constant IF downconversion, problem of image, image rejection vs channel selection, dual IF topology, Homodyne – simple homodyne and homodyne with quadrature down conversion, issues in homodyne receivers, Image Reject – Hartley & Weaver architecture. Transmitter architectures - Direct conversion and two-step transmitters.

Unit –III	10 Hrs								
Passive impedance transformation – Quality factor, series to parallel conversion, basic matching									
networks- L, T, Pi-match networks, tapped inductor and capacitor networks									
Low noise Amplifier - Performance parameters, Problem of Input matching, CS stage with load, Cascode CS stage with inductive degeneration (MOSFET circuits only), No calculation.	inductive vise figure								
Unit –IV	10 Hrs								

Mixer - Performance parameters, Mixer noise figures, single balanced and double balanced (active and passive) – working (MOSFET circuits only)

Oscillators - Performance parameters, Feedback view and one port view of oscillators, Cross coupled oscillator, three point oscillators, (MOSFET circuits only), Ring oscillators.

Unit -V10 HrsPhase Locked Loops - Basic concepts - Phase detector, Type I PLL, Dynamics of simple PLL,
Drawbacks of simple PLL, Type II PLLs - PFD, charge pump, charge pump PLL, PFD/CP
Nonidealities (concepts only) – Up and Down Skew and Width Mismatch, Charge Injection and
clock feedthrough.

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Investigate the functionality of a typical RF system.								
CO2:	Analyze CMOS circuits and its impact on Radio frequency IC design.								
CO3:	Design and implement RF transceiver chain with specification.								
CO4:	Evaluate the different performance parameters used in RF design using CAD tools.								

spectra in a cascade.

Refer	ence Books
1	RF Microelectronics, Behzad Razavi, 2nd Edition Pearson Education, 2012
2	The Design of CMOS Radio Frequency Integrated Circuits, Thomas H Lee, 2nd Edition,
4	Cambridge University Press, 2004
3	Radio Frequency Integrated Circuits Design, John Rogers ,Calvin Plett, Artech House, 2003
4	VLSI for Wireless Communications, Bosco Leung, Pearson Education, 2004

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project is 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	-	-	2
CO2	3	2	-	-	-	-	-	-	-	-	-	2
CO3	3	3	2	-	2	-	-	3	2	-	-	2
CO4	3	3	-	-	2	-	-	-	-	-	-	2

Semester: VII											
HIGH PERFORMANCE COMPUTING											
			(Group F	: Professional C	ore Elective)						
Cours	se Code	:	16EC7F5		CIE : 100 Marks						
Credi	its: L:T:P:S	:	4:0:0:0		SEE	:	100 Marks				
Total	Hours	:	50L		SEE Duration	:	03 Hours				
Course Learning Objectives: The students will be able to											
1	To review th	e tre	ends in parallel pr	ogramming.							
2	To demonstr	ate	the basic ideas of	multiprocessing	and parallel operat	ions	with case studies.				
3	To expose to	bas	sics of parallel pro	ogramming.							
4	To demonstr	ate	parallel programm	ning using MPI,	OpenAcc and Open	nMF					
				Unit-I			10 Hrs				
Multi	processors a	nd '	Thread level par	allelism:							
Introd	luction, Symr	neti	ic shared memor	y architectures; I	Performance of syn	nme	etric shared-memory				
multip	processors,	Dist	ributed shared	memory and	directory-based	coh	erence, Basics of				
synch	ronization, M	ode	els of memory cor	isistency.			10 11				
D (\bigcup nit – II			10 Hrs				
Data-	Level Parall	elis	m in Vector, SIN	1D, and GPU Ai	chitectures:						
Introd	luction, Vect	or	Architecture, SIN	AD Instruction S	Set Extensions for	r M	ultimedia, Graphics				
Proces	ssing Units, L	vete	cting and Enhanci	ing Loop-Level P	arallelism, Mobile	vers	sus Server GPUs and				
Testa	versus Core 1	1.	T	T			10 11				
Intro	duction to De	rol	lol Programmin	J nit –111			10 Hrs				
Motiv	ation Scope	of	Parallal Computi	5. ng Principles of	Darallal Algorith	n da	sign. Proliminarias				
Decor	nnosition Tec	01 hni	ques Characterist	tics of Tasks and	Interactions Mann	in u	Techniques for Load				
Balan	cing Method	s fo	r containing Inter	action Overheads	Parallel Algorith	me l	Models				
Dalan	eing, wiethou	5 10	I containing inter	Init –IV	s, i aranci i tigoriti	1115 1	10 Hrs				
Progr	amming Usi	no	the Using Messa	ge Passing Para	liom•		10 1115				
Princi	nles of Mess	ne age	Passing Program	ming Ruilding	Blocks MPI Ton	പിറം	ies and Embedding				
Overla	apping Com	miii	ication with co	mputation Coll	ective Communic	atio	n and computation				
operat	tions Groups	and	Communicators	inputation, con	cetive commune	uno	in und computation				
operat	lions, croups	unc		Unit _V			10 Hrs				
GPU	Programmin	19 11	sing Open ACC:	Serial to paralle	l programming usi	ng (DenACC: A Simple				
Data-I	Parallel Loop	. Ta	sk-Parallel Exam	ple. Amdahl's La	w and Scaling. Par	allel	Execution and Race				
Condi	itions. Lock-I	Free	Programming.	Controlling Paral	lel Resources. Pi	oelir	ing data transfers				
with (OpenACC: 1	ntro	oduction to Pipel	ining, Mandelbr	ot Generator, Pip	elini	ng Across Multiple				
Devic	es.		I -	0,	· 1		C 1				
Cours	se Outcomes	: Af	fter completing t	he course, the st	udents will be ab	e to					
C01:	Explore the	e fu	ndamentals of high	h-performance c	omputing concepts	5.					

- **CO2:** Analyze the performance of parallel programming.
- **CO3:** Design parallel computing constructs for different applications.
- **CO4:** Demonstrate Parallel computing concepts for suitable applications.

Reference Books

1	Ananth Grama, Anshul Gupta, George Karypis, Vipin Kumar, Introduction to Parallel
	Computing, 2 nd Edition, 2013, Pearson Education, ISBN 13: <u>9788131708071</u> .
2	CUDA Programming: A Developers Guide to Parallel Computing with GPUs, Shane Cook, 1 st
	Edition, 2013, Morgan Kaufmann, ISBN:9780124159334.
3	Parallel Programming with Open ACC, Rob Farber, 1 st Edition, 2016, Morgan Kaufmann
	(MK) Publication, ISBN :9780124103979.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project is 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	-	-	-	-	-	-	-	1	-	1		
CO2	3	2	2	1	-	-	-	-	-	1	-	1		
CO3	3	3	2	2	2	-	-	-	-	1	-	1		
CO4	3	3	3	3	2	-	-	-	-	1	-	1		

	Semester: VII								
	INTEGRATED PHOTONICS								
			(Group F: l	Professional Core Elective)					
Cou	rse Code	••	16EC7F6	CIE		:	100 Marks		
Credits: L:T:P:S		••	4:0:0:0	SEE		••	100 Marks		
Tota	l Hours	••	52L	SEE Du	ration	••	03 Hours		
Cou	rse Learning ()bj	ectives: The studen	ts will be able to					
1	Learn the fu	nda	amental principles	of photonics and light-ma	tter inter	rac	tions		
2	Explain and	illı	ustrate light guidir	ng, calculate wave propaga	tion in w	vav	veguide systems		
3	3 Calculate characteristics of optical resonators								
4	4 Develop the ability to formulate problems related to photonic structures/processes and								
	analyze them								

Unit-I	10 Hrs						
Introduction to EM theory: EM wave in dielectric media, Monochromatic EM waves, Absorption							
and Dispersion, Pulse propagation in Dispersive media, Polarization of light, Reflection and							
Refraction, Optics in Anisotropic media.							
Unit – II							
Interaction of optical waves: with dielectric and metal interfaces, matrix optics. Comp	outational						
methods for integrated photonics. Propagation-matrix approach, multilayered and periodic	media.						
Unit –III	11 Hrs						
Waveguide optics: Symmetric dielectric waveguides. Asymmetric dielectric wa	veguides.						
Rectangular waveguides. Optical fibers. Attenuation and dispersion in optical waveguide	es. Signal						
distortion in optical waveguides, group delay.							
Silicon waveguides: fabrication, waveguide loss, scattering, absorption, radiation. D	ispersion						
engineering. Optical nonlinearities in silicon waveguides. Coupling to waveguide: edge	, grating,						
evanescent coupling, spot-size converters.							
Unit –IV	10 Hrs						
Coupled optical waveguides: Mach-Zehnder interferometer, cascaded MZI optical fi	lters, star						
couplers. Filters figures of merit. Optical ring resonators. Add-drop multiplexers. Wavegui	ide Bragg						
gratings. Polarization dependence and management. Waveguide polarization splitters and	l rotators.						
Optical isolation.							
Unit –V	10 Hrs						
Photonic modulators: electro-optical and thermo-optical effects. Phase and amplitude modulators.							
Thermal phase shifter, thermo-optic switch.							
Non-linear optics: Non-linear media, Second-order Non-linear optics, Third-order Non-linear							
optics.							
Course Outcomes: After completing the course, the students will be able to							
CO1. Define and emploin the monoportion of light in conducting and non-conducting man	1:						

Course	course outcomes: After completing the course, the students will be usie to								
CO1:	Define and explain the propagation of light in conducting and non-conducting media.								
CO2:	Define and explain the physics governing laser behaviour and light matter interaction								
CO3:	Apply wave optics and diffraction theory to a range of problems								
CO4:	Calculate properties of and design modern optical fibres and photonic crystals.								

Refere	ence Books
1	Fundamentals of Photonics, B.E.A. Saleh, M.C. Teich, Wiley India Pvt Ltd; 2 nd edition, 2012, ISBN: 9788126537747
2	Photonics - Optical Electronics in Modern Communications, A. Yariv and P. Yeh, Oxford University Press, 6th Edition, ISBN: 0195179463

	Photonic Crystals – Molding the Flow of Light, John D. Joannopoulos, Steven G.
3	Johnson, Joshua N. Winn, and Robert D. Meade, Princeton University Press; 2 nd
	Revised edition, 2013, ISBN-10: 0691124566
4	Silicon Photonics - Fundamentals and Devices, M. Jamal Deen and P.K. Basu, John Wiley
4	& Sons Ltd., 3rd Edition 2010, ISBN: 0-321-26977-2

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project is 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	-	-	-	-	-	1	-	1
CO4	3	3	3	3	-	-	-	-	-	1	-	1

	Semester: VII									
			N	ANOELECTRO	DNICS					
			(Group l	F: Professional	Core Elective)					
Cou	Course Code:16EC7F7CIE:100 Marks									
Cred	lits: L:T:P:S	:	4:0:0:0		SEE	:	100 Marks			
Tota	l Hours	:	50L		SEE Duration	:	03 Hours			
Cou	rse Learning (Obj	ectives: The stud	dents will be able	e to					
1	Develop su	bst	antial understa	nding of cont	temporary releva	nce	and potential of			
	nanoelectron	ics;								
2	Develop app	reci	ation of how fac	ctors like scaling	g and dimension le	ad	to novel behaviour of			
	nanoelectron	ic c	omponents;							
3	Develop und	erst	anding of the in	portance of qua	ntum ideas and th	eir	place in modelling of			
	nanoelectron	ic p	henomena and d	evices;						
4	Expose to a v	ari	ety of nanoelectr	onic phenomena	, nanoelectronic co	mp	onents and their			
	possible applications.									
Unit-I 10 Hrs										
Revi	Review of Electrons Quantum mechanics: Electrons wave particle duality, Wave equation, Wave									
pack	ets and uncert	ain	ty, Schrodinger'	s Equation, The	Time Independen	nt S	Schrödinger Equation,			
Stati	Stationary States, The Infinite Square Well, Harmonic Oscillator-Algebraic method									

Unit – II	10 Hrs
Free and confined electrons: Free electrons, Periodic boundary conditions, Electrons	Confined to
a Bounded Region of Space, and Quantum Numbers, Fermi level and Chemical potent	ial, Partially
Confined Electrons- Finite Potential Wells, Quantum Dots, Wires, and Wells	

Unit –III10 HrsElectrons subject to a periodic potential: Electrons in periodic potential, Kronig-Penney of Band
structure- Effective Mass, Band theory of Solids: Interacting system model, Band structure,
electronic band transition, graphene and carbon nanotube10 Hrs

Unit –IV10 HrsTunnel junctions and applications of tunneling: Tunneling Through a Potential Barrier, Potential
Energy Profiles for Material Interfaces, Applications of Tunneling, Field Emission, Gate—Oxide
Tunneling and Hot Electron Effects in MOSFETs, Scanning Tunneling Microscope, Double Barrier
Tunneling and the Resonant Tunneling Diode

Unit –V10 HrsCoulomb blockade and the single-electron transistor: Tunnel Junction Excited by a CurrentSource, Coulomb Blockade in a Quantum Dot Circuit, The Single-Electron Transistor, Single-Electron Transistor Logic, Other SET and FET Structures, Carbon Nanotube Transistors (FETs andSETs), Semiconductor Nanowire FETs and SETs, Molecular SETs and Molecular Electronics

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Define novel behaviour of nanoelectronics devices and quantum behaviour of matter at the								
	nano scale & modelling of nanoelectronics devices.								
CO2:	Comprehend principles of devices such as tunneling diodes, single electron transistor,								
	spintronic devices.								
CO3:	Analysis fundamental concepts and methods of Analysis quantum tunneling, resonant								
	tunneling, Coulomb blockade, density of quantum states, quantum statistics and quantum								
	modelling.								
CO4:	Evaluate nano scale effects in futuristic electron devices & quantum level computing								

Refer	ence Books
1	Fundamentals of Nanoelectronics, George W. Hanson, Pearson, 1 st edition, (2009), ISBN:
L	978-8131726792
•	Introduction to Quantum Mechanics, J. Griffiths David, Pearson Education, 2 nd edition
<u> </u>	(2015), ISBN-13: 978-9332542891
	Introduction to Nanotechnology, Charles P. Poole, Jr., Frank J. Owens, Wiley (15 January
3	2007), ISBN:978-8126510993
4	Nanoelectronics and Information Technology, Rainer Waser, Wiley VCH; 3rd Revised
4	edition edition(2012), ISBN: 978-3527409273

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project is 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											
CO1	3	2	-	-	-	1	2	-	-	-	-	2
CO2	3	2	1	-	-	1	2	-	-	-	-	2
CO3	3	3	2	-	2	1	2	-	-	-	-	2
CO4	3	3	3	2	2	1	2	-	-	-	-	2

	Semester: VII								
	RADAR & NAVIGATION								
			(Group G	F: Professional C	ore Elective)				
Course Code:16EC7G1CIE:100 Marks							100 Marks		
Credits: L:T:P:S		:	4:0:0:0		SEE	:	100 Marks		
Total Hours		:	48L		SEE Duration	:	03 Hours		
Cou	rse Learning (Obje	ctives: The stude	ents will be able to)				
1	Understand t	he ba	sic operation of	pulse and CW rac	lar systems.				
2	2 Evaluate the radar performance based on pulse width, peak power and beam width.								
3	3 Choose suitable tracking radar for a given problem.								
4	4 Understand the working of phased array radars and navigational aids								

Unit-I	10 Hrs								
Radar and Radar Equation: Introduction, Radar block diagram and operation,	frequencies,								
applications, types of displays, derivation of radar equation, minimum detectable signal, probability of									
false alarm and threshold detection, radar cross-section, system losses.									
Unit – II	10 Hrs								
CW Radar : Doppler Effect, CW Radar, applications, FM – CW radar, altimeter, Multiple Frequency									
Radar. Pulse Radar - MTI, Delay Line Canceller, Multiple Frequencies, Range-gated Doppler Filters,									
Non-coherent MTI, Pulse Doppler Radar									
Unit –III									
Tracking Radar: Sequential lobing, conical scanning, monopulse, phase comparison	monopulse,								
tracking in range, comparison of trackers.									
Unit –IV	09 Hrs								
Detection: Introduction, Matched Filter, Detection Criteria, Detector characteristics.									
Unit –V									
Phased Arrays: Basic concepts, feeds, phase shifters, frequency scan arrays, mul	tiple beams,								
applications advantages and limitations Navigational Aids: Direction Finder VOR II S	and Loran								

Course	Course Outcomes: After completing the course, the students will be able to										
CO1:	Understand the basic operation of pulse and CW radar systems.										
CO2:	Evaluate the radar performance based on pulse width, peak power and beam width.										
CO3:	Choose suitable tracking radar for a given problem.										
CO4:	Select appropriate criterion for detecting a target.										

Refere	ence Books
1	Understanding Automotive Electronics, Williams. B. Ribbens, Elsevier science, 6 th Edition,
L	Newness publication,2003, ISBN-9780080481494.
2	Automotive Electronics Handbook, Robert Bosch, John Wiley and Sons, 2004
2	Automotive Embedded Systems Handbook, Nicolas Navet, F Simonot-Lion, Industrial
3	Information Technology Series, CRC press.
4	Automotive Control Systems Engine, Uwekiencke and lars Nielsen, Driveline and vehicle",
4	Springer, 2 nd Edition, 2005, ISBN 0-387-95368X

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	1	-	-	-	-	-	-	-	1
CO2	3	2	2	1	-	1	-	-	-	-	-	1
CO3	3	2	2	1	-	1	-	-	-	-	-	1
CO4	3	1	2	1	-	1	-	-	-	-	-	

Low-1 Medium-2 High-3

				Semester: VII								
AUTOMOTIVE ELECTRONICS												
(Group G: Professional Core Elective)												
Cou	rse Code	:	16EC7G2	CI	E	:	100 Marks					
Cred	lits: L:T:P:S	:	4:0:0:0	SE	E	:	100 Marks					
Total Hours:48LSEE Duration:03 Hours												
Cou	Course Learning Objectives: The students will be able to											
1	Acquire the	kno	wledge of aut	omotive domain fur	ndamentals, n	eed	of Electronics and					
	communication interfaces in Automotive systems.											
2	2 Apply various types of sensors, actuators and Motion Control techniques in Automotive systems											
3	Understand d	ligit	al engine contro	ol systems and Embe	edded Softwar	re's	and ECU's used in					
	automotive sy	ster	ns.									
4	Analyse the co	once	epts of Diagnosti	cs, safety and advance	es in Automotiv	ve e	lectronic Systems.					
			1	J nit-I			10 Hrs					
Func	lamentals of .	Aut	omotive: Use o	of Electronics in Aut	tomotive, Evo	lutio	on of Electronics in					
Auto	motive, Autom	otiv	e Systems, The l	Engine, Engine Contro	ol, Internal Co	mbı	stion Engines, Spark					
Ignit	ion Engines and	l Al	ternative Engine	s. Ignition System, Ign	nition Timing,	Dri	vetrain, Suspensions,					
Brak	es and Steering	Sys	tems, Demonstra	ation of Four Cylinder	manual transn	niss	ion Engine.					
Basi	cs of electronic	en	gine control: Mo	otivation for Electroni	c Engine Cont	rol ·	 Exhaust Emissions, 					
Fuel	Economy, Co	nce	pt of an Electro	onic Engine control	system, Defin	itio	n of General terms,					
Defin	nition of Engine	e pe	rformance terms	, Engine mapping, Ef	fect of Air/Fue	el ra	tio, spark timing and					
EGR	on performance	e, (Control Strategy,	Electronic Fuel contr	ol system, An	alys	is of intake manifold					
press	ure, Electronic	Ign	ition.									
			U	nit – II			10 Hrs					
Auto	motive Sensor	s ar	d Actuators:									
Syste	em Approach to	Co	ntrol and Instrum	nentation: Concept of A	A System, Ana	alog	and Digital Systems,					
Basic	c Measurement	Sy	stems, Analog a	nd Digital Signal Pr	ocessing, Auto	ome	tive Control System					
Appl	ications of Sens	sors	and Actuators,									
Sens	ors: Air Flow	Se	nsor, Engine Cr	ankshaft Angular Po	sition Sensor,	Th	rottle Angle Sensor,					
Tem	perature Sensor	:, Se	ensors for Feedb	ack Control, Sensors	for Driver As	ssist	ance System: Radar,					
Lida	r, Video Techno	olog	у.									
Actu	ators: Solenoic	ls, F	Piezo Electric For	ce Generators, Electri	ic Motors and S	Swi	tches.					
			U	nit –III			10 Hrs					
Digit	tal Engine Cor	ntro	l Systems: Digi	tal Engine control fea	atures, Control	l mo	odes for fuel Control					
(Seve	en Modes), EC	GR (Control, Electron	nic Ignition Control	- Closed Loop	p Ig	nition timing, Spark					
Adva	ance Correction	n So	cheme, Integrate	d Engine Control S	ystem - Secon	ndaı	ry Air Management,					
Evap	orative Emissic	ons (Canister Purge, A	utomatic System Adj	ustment, Syste	m E	Diagnostics.					
Vehi	cle Motion Co	ontr	ol: Typical Crui	ise Control System, I	Digital Cruise	Co	ntrol System, Digital					
Spee	d Sensor, Thro	ottle	Actuator, Digita	al Cruise Control con	nfiguration, Cr	uise	control Electronics					
(Digi	ital only), Antil	ock	Brake System (A	ABS)								
			U	nit –IV			09 Hrs					
Auto	motive Comm	uni	cation Systems:									
Auto	motive networ	king	g: Bus systems,	Technical principles	s, network top	polo	gy. Buses in motor					
vehic	cles: CAN, Flex	Ra	y, LIN, Ethernet,	IP, PSI5, MOST, D2	B and DSI.							
Auto	motive Embed	ldec	l Software Deve	lopment								
Fund	amentals of Sof	twa	re and software d	evelopment lifecycles	. Overview of A	AU	TOSAR methodology					
and p	principles of AU	JTO	SAR Architectur	e. Use of MoTeC M80	00 ECU in eng	ine	management and data					
Acqu	isition Solution	ıs.			e		-					
			U	nit –V			09 Hrs					

Diagnostics and Safety in Automotive:

Timing Light, Engine Analyzer, Electronic Control System Diagnostics: Onboard diagnostics, Offboard diagnostics, Expert Systems, Occupant Protection Systems - Accelerometer based Air Bag systems, Case study on ON-BOARD, OFF-BOARD diagnostics.

Advances in Automotive Electronic Systems: Alternative Fuel Engines, Electric and Hybrid vehicles, Fuel cell powered cars, Collision Avoidance Radar warning Systems, Navigation: Navigation Sensors, Radio Navigation, dead reckoning navigation, Video based driver assistance systems, Night vision Systems

Cours	e Outcomes: After completing the course, the students will be able to
CO1:	Acquire the knowledge of automotive domain fundamentals, need of Electronics and
	communication interfaces in Automotive systems.
CO2:	Apply various types of sensors, actuators and Motion Control techniques in Automotive systems
CO3:	Analyze digital engine control systems and Embedded Software's and ECU's used in automotive
	systems.
CO4:	Illustrate the concepts of Diagnostics, safety and advances in Automotive electronic Systems.

Reference Books

- 1. Understanding Automotive Electronics, Williams. B. Ribbens, 6th Edition, 2003, Elsevier science, Newness publication, ISBN-9780080481494.
- 2. Automotive Electronics Handbook, Robert Bosch, 2004, John Wiley and Sons,

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	1	-	-	-	-	-	-	-	1
CO2	3	2	2	1	-	1	-	-	-	-	-	1
CO3	3	2	2	1	-	1	-	-	-	-	-	1
CO4	3	1	2	1	-	1	-	-	-	-	-	

Low-1 Medium-2 High-3

Semester: VII										
MULTIMEDIA COMMUNICATION										
(Group G: Professional Core Elective)										
Cou	Course Code : 16EC7G3 CIE : 100 Marks									
Cred	Credits: L:T:P:S :		4:0:0:0		SEE	:	100 Marks			
Tota	l Hours	:	48L		SEE Duration	:	03 Hours			
Cou	rse Learning (Obje	ctives: The stuc	dents will be able	to					
1	Understand t	he ba	sics of analog a	and digital video:	video representation	on a	and transmission			
2	Analyze anal	og ai	nd digital video	signals and syste	ems					
3	Analyze the	fund	amental video p	processing technic	ques & acquire the	bas	sic skill of designing			
	video compre	essio	n	-	_					
4	Design video	tran	smission system	ns: error control a	and rate control					

	-							
Unit-I	10 Hrs							
Multimedia Communications: multimedia information representation, multimedia	networks,							
multimedia applications, network QoS and application QoS								
Unit – II	10 Hrs							
Text and image compression, compression principles, text compression- Runlength, Huffman, LZW,								
Image compression- GIF, TIFF and JPEG.								
Unit –III								
Audio and video compression: Introduction, audio compression, DPCM, ADPCM, APC, LPC, video								
compression, video compression principles,								
Unit –IV								
Video compression standards: H.261, H.263, MPEG, MPEG 1, MPEG 2, MPEG-4 and	Reversible							
VLCs,								
Unit –V	09 Hrs							
The Internet: Introduction, IP datagrams, fragmentation, Ip address, ARP and RARP, QoS	. Transport							
Protocol: Introduction, TCP/IP, TCP, UDP, RTP and RTCP.	-							

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Describe and describe various multimedia data.									
CO2:	Analyze the representation of multimedia data.									
CO3:	Describe the concept involved in MPEG4 standards.									
CO4:	Develop algorithms for protocols like RTP,RTCP for multimedia communication .over									
	mobile networks.									

Refer	ence Books
1	Multimedia Communications, Fred Halsall, Pearson education, 2001. ISBN: 8131709949, 978-8131709948
2	Multimedia Communication Systems, K. R. Rao, Zoran S. Bojkovic, Dragorad A. Milovanovic, Pearson education, 2004.ISBN: 013031398X978-0130313980
3	Multimedia: Computing, Communications and Applications, Raif steinmetz, Klara Nahrstedt, Pearson education, 2002,ISBN: 3540408673, 978-3540408673
4	Multimedia : An Introduction, John Billamil, Louis Molina, PHI, 2002, ISBN: 1575765578, 978-1575765570

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	1	-	-	-	-	-	-	-	1
CO2	3	2	2	1	-	1	-	-	-	-	-	1
CO3	3	2	2	1	-	1	-	-	-	-	-	1
CO4	3	1	2	1	-	1	-	-	-	-	-	

Low-1 Medium-2 High-3

Semester: VII									
VLSI TESTING FOR ICs									
(Group G: Professional Core Elective)									
Course Code		:	16EC7G4		CIE		100 Marks		
Credits: L:T:P:S		:	4:0:0:0		SEE	:	100 Marks		
Total Hours		:	48L		SEE Duration	:	03 Hours		
Cou	Course Learning Objectives: The students will be able to								
1	Understand different types of faults associated with logic circuits and types of testing by								
	employing fault models to the logic circuits.								
2	2 Understand advanced methods of simulation and digital testing algorithms and use the								
	appropriate methods for achieving fault coverage specifications in design.								
3	Explain the concepts Design for Testability								
4	4 Recognize different techniques in Built In Self-Test (BIST) such as MBIST and LBIST.								

Unit-I	10 Hrs						
Introduction to Testing- Introduction to Testing, Role of testing VLSI circuits, VLSI trends							
affecting testing, Faults in digital circuits.							
Fault Modeling- Functional Testing, Structural Testing, Types of Fault Models, Stuck-at Faults,							
Bridging Faults, cross point faults, Fault Equivalence, Fault Dominance							
Unit – II	10 Hrs						
Fault Simulation - Fault Simulation algorithm - Serial, Parallel, Deductive and Concurre	ent Fault						
Simulation.							
Testability Measure - Controllability, Observability, SCOAP measures for combinational and							
sequential circuits.							
Unit –III							
ATPG for Combinational Circuits- Path Sensitization Methods, Roth's D- Algorithm, Boolean							
Difference, Complexity of Sequential ATPG, Time Frame Expansion.							
Design for Testability- Ad-hoc, Structured DFT- Scan method, Scan Design Rules, Overheads of Scan							
Design, partial scan methods, multiple chain scan methods.							
Unit –IV							
Self-test And Test Algorithms-Built-In self-Test, test pattern generation for BIST, response							
compaction - Parity checking, Ones counting, Transition Count, Signature analyser (SISR and							
MISR).							
Circular BIST, BIST Architectures.							
Unit –V							
Memory Testing-Testable Memory Design Test Algorithms, Reduced Functional Faults-MARCH and							
MAT+ algorithm. Test generation for Embedded RAMs. MBIST							

Course Outcomes: After completing the course, the students will be able to							
CO1:	Attain knowledge about testing, fault modeling & collapsing.						
CO2:	Explore various fault simulation methods.						
CO3:	Evaluate the significance of combinational ATPG and sequential test pattern generation.						
CO4:	Get complete knowledge about different methods of LBIST and MBIST associated						
	with testing.						

Reference Books							
1	VLSI Test Principles and Architectures, L. T. Wang, C. W. Wu, and X. Wen, Morgan						
	Kaufmann, 2006, ISBN-13: 978-0-12-370597-6, ISBN-10: 0-12-370597-5.						
2	Digital Circuit Testing and Testability, Parag.K.Lala, Academic Press.						
3	Essentials of Electronic Testing for Digital, Memory, and Mixed-Signal VLSI Circuits M. L.						
	Bushnell and V. D. Agrawal, Kluwer Academic Publishers, 2000, ISBN: 0-7923-7991-8.						

4	Digital Systems Testing and Testable Design M. Abramovici, M. A. Breuer, and A. D.
	Friedman, Computer Science Press, 1990, ISBN: 0-7167-8179-4.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	-	2	-	-	-	-	1	-	1
CO2	2	2	2	1	2	-	-	-	-	1	-	1
CO3	2	3	2	2	2	-	-	-	-	1	-	1
CO4	2	3	2	3	2	-	-	-	-	1	-	1

Low-1 Medium-2 High-3
Semester: VII							
			HIGH S	SPEED DIGITAI	L DESIGN		
			(Group G	: Professional Co	ore Elective)		
Cou	rse Code	:	16EC7G5		CIE	:	100 Marks
Crec	lits: L:T:P:S	:	4:0:0:0		SEE	:	100 Marks
Tota	Total Hours		48L		SEE Duration	:	03 Hours
Cou	rse Learning (Dbj	jectives: The stud	lents will be able t	0		
1	Understand analog circuit principles relevant to high speed digital design.						
2	Analyze power distribution and noise in Power supply network and signaling over						
	transmission lines.						
3	3 Demonstrate the functionality of different clocked and non-clocked digital circuits and						
	memory elements.						
4	Analyze the performance of clocked, non-clocked and latching circuits.						

Unit-I	10 Hrs				
The Interconnect: Introduction, Interconnect Modelling, Resistance, Capacitance, Inductance, Skin					
Effect, Temperature Dependence, Interconnect Impact: Delay, Energy, Crosstalk, Induc	tive Effects,				
An Aside on Effective Resistance and Elmore Delay, Interconnect Engineering, Width, S	Spacing, and				
Layer, Repeaters, Crosstalk Control, Low-Swing Signalling, Regenerators, Logical	Effort with				
Wires.					
Unit – II	10 Hrs				

Introduction to high speed digital design: Frequency, time and distance issues in a	ligital VLSI
design. Capacitance and inductance effects, high speed properties of logic gates, speed	and power.
Modeling of wires, geometry and electrical properties of wires, Electrical model	s of wires,
transmission lines, lossless LC transmission lines, lossy RLC transmission lines	and special
transmission lines.	

Unit –III10 HrsPower distribution and Noise: Power supply network, local power regulation, IR drops, area
bonding. On-chip bypass capacitors and symbiotic bypass capacitors. Power supply isolation. Noise
sources in digital systems, power supply noise, crosstalk and inter symbol interference. Power
distribution on chips.

Unit –IV	09 Hrs
Clocked & non clocked Logics:Non clocked Logic Styles: Static CMOS, DCVS	Logic, Non-
Clocked Pass Gate FamiliesClocked Logic Styles: Single-Rail Domino Logic, Dual-F	Rail Domino
Structures	

Unit –V09 HrsLatching Strategies:Basic Latch Design, and Latching single-ended logic and Differential Logic,
Race Free Latches for Pre-charged Logic Asynchronous Latch Techniques, DDR memories.

Course Outcomes: After completing the course, the students will be able to					
CO1:	Investigate the special requirements that are imposed on high speed digital design.				
CO2:	Analyze the characteristics of transmission lines and high speed latches and circuits.				
CO3:	Analyze the Signaling convention in transmission media and high speed digital logics.				
CO4:	Evaluate the performance of various transmission lines and high speed digital circuits.				

Refere	Reference Books					
1	Digital Systems Engineering, William S. Dally & John W. Poulton, Cambridge University					
	Press, 1998. ISBN 0-521-59292-5					
2	CMOS VLSI Design: A Circuit and Systems Perspective, Neil H. E. Weste David Money					
	Harris Pearson Publication, 4th Edition, 2011, ISBN 13: 978-0-321-54774-3					
	High Speed CMOS Design Styles, Kerry Bernstein, Keith M. Carrig, Christopher M.					
3	Durham, Patrick R. Hansen, David Hogenmiller, Edward J. Nowak, Norman J. Rohrer,					
	Kluwer Academic Publishers in 1999, ISBN 978-1-4613-7549-4.					

4	High Speed Digital Circuits, Masakazu Shoji, Addison Wesley Publishing Company, 1996. ISBN 978-0201634839.
5	High Speed Digital Design, Howard Johnson & Martin Graham, A Handbook of Black Magic, Prentice Hall PTR, 1993.
6	Digital Integrated Circuits: A Design Perspective, Jan M.Rabaey, Anantha Chadrakasan, Borivoje Nikolic, (2/e), Pearson 2016, ISBN-13: 978-0130909961.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

					CO-l	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	1	-	-	-	-	-	1	-	1
CO2	3	2	2	1	1	-	-	-	-	1	-	1
CO3	3	2	1	1	2	-	-	-	-	1	-	1
CO4	3	3	3	3	3	-	-	-	-	1	-	1

Low-1 Medium-2 High-3

Semester: VII							
	MEMS AND SMART SYSTEMS						
			(Group G	: Professional C	Core Elective)		
Cou	rse Code	:	16EC7G6		CIE	:	100 Marks
Cred	Credits: L:T:P:S		4:0:0:0	SEE		:	100 Marks
Total Hours		:	48L		SEE Duration	:	03 Hours
Cou	rse Learning (Obj	jectives: The stud	lents will be able	to		
1	1 Explain the operation principles of advanced micro- and smart systems.						
2	2 Describe the technology to fabricate advanced micro- and smart systems.						
3	3 Understand different methods to fabricate MEMS devices.						
4	Present the basics of implementation of MEMS into products						

Unit-I	10 Hrs				
Introduction to Micro and Smart Systems: Introduction, Microsystem vs MEMS, Sma	art Materials,				
structures and system, Integrated Microsystems, Application of Smart Materials and Microsystems.					
Feynman's vision, Evolution of micro-manufacturing. Multi-disciplinary aspects. Applic	ations areas.				
Commercial products.					
Modelling: Scaling issues, Scaling in geometry, Scaling in rigid body dynamics	, scaling in				
electrostatic forces, scaling in electromagnetic forces, scaling in electricity, scaling in flu	id dynamics.				
scaling effects in the optical domain, scaling in biochemical phenomena.	•				
Unit – II	10 Hrs				
Micro and Smart Devices and Systems: Principles					
Definitions and salient features of sensors, actuators, and systems. Sensors: silico	n capacitive				
accelerometer, piezo-resistive pressure sensor, Actuators: silicon micro-mirror array	s, magnetic				
micro relay, piezo-electric based inkjet printhead, electro-thermal actuator. portable blo	od analyzer,				
fiber optic sensors, Electrostatic Comb drive, Microsystems at Radio frequency.	•				
Unit –III	10 Hrs				
Materials: Introduction, Substrates and Wafers, Active substrate materials, Si as a substr	ate material,				
Si compounds, Si Piezoresistors, Gallium Arsenide, Quartz, Piezoelectric Crystals and I	Polymers.				
Micro Manufacturing and Material Processing: Silicon wafer processing, Oxidation, CVD, PVD					
, lithography, thin-film deposition, etching (wet and dry), wafer-bonding, and metalliza	tion, Silicon				
micromachining: surface, bulk, bonding based process flows.	1				
Unit –IV	09 Hrs				
Electronics Circuits for Micro and Smart Systems: Electronic Amplifiers, Signal (Conditioning				
Circuits: Differential Amplifier, Instrumentation Amplifier, Wheatstone Bridge, Phase L	ocked Loop,				
Analog to Digital Conversion, Practical Signal Conditioning Circuits: Differen	itial Charge				
Measurement, Switched Capacitor circuits, Circuits for frequency measurement shifts.	T				
Unit –V	09 Hrs				
Electronics, Circuits and Packaging: Micro Systems Packaging, objectives and spec	ial issues in				
micro system packaging, Types of Microsystem Packages, Packaging Technologies					
Case study of devices Cantilevers, Pressure sensors, accelerometers, micro heater.					
Course Outcomes: After completing the course, the students will be able to					
CO1: Describe main principles of MEMS and smart systems.					
CO2: Demonstrate confidence in MEMS and smart systems through practical expe	rience using				
typical modern Computer Aided Design software for this task					

	typical modern Computer Anded Design software for this task.
CO3:	Apply a concept of a micro- and smart systems into a real device considering the scaling
	laws and boundary conditions involved.
CO4:	Evaluate the principles and processes involved in the implementation of MEMS devices

Refer	ence Books
1	MEMS & Microsystems: Design and Manufacture, Tai-Ran Tsu, Tata Mc-Graw-Hill.ISBN-
-	13:9780070487093
2	Micro and Smart Systems, K.J.Vinoy, G.K.Ananthasuresh, S.Gopalakrishnan, K.N.Bhat,
	Wiley India, ISBN: 9788126527151
3	Microsystems Design, S. D. Senturia, Kluwer Academic Publishers, Boston, USA, 2001,
	ISBN 0-7923-7246-8.
4	Analysis and Design Principles of MEMS Devices, Minhang Bao, Elsevier, Amsterdam,
	Netherlands, ISBN 0-444-51616-6.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	3	2	-	1	-	-	-	-	1
CO2	-	-	2	-	2	1	1	-	2	-	-	1
CO3	3	1	2	3	2	1	1	1	1	1	-	1
CO4	1	3	3	3	2	1	1	1	1	1	-	1

Low-1 Medium-2 High-3

	Semester: IV								
	NANOTECHNOLOGY								
			(Grou	p H: Global Elective	e)				
Cour	rse Code	:	16G7H01		CIE	:	100 Marks		
Cred	lits: L:T:P:S	:	3:0:0:0		SEE	••	100 Marks		
Tota	l Hours	:	36L		SEE Duration	:	3.00 Hours		
Cour	rse Learning C)bje	ectives: The students	will be able to					
1	To have the b	asic	knowledge of nano	materials and the proc	cess.				
2	Describe met	hod	s of nanoscale manu	facturing and characte	erization can be enal	oled	l.		
3	To learn abou	t Na	ano sensors and their	applications in mecha	anical, electrical, elec	ctro	nic, Magnetic,		
	Chemical field.								
4	4 To understand the concept for a nanoscale product based on sensing, transducing, and actuating								
	mechanism.								
5	To have awar	ene	ss about the nanosca	le products used in m	ultidisciplinary field	ls.			

Unit-I	06 Hrs				
Introduction to Nanomaterials: History of Nanotechnology, structures and properties of	of carbon				
based: Fullerenes (Bucky Ball, Nanotubes), metal based: Nano Shells, Quantum Dots, Des	ndrimers,				
Diamond like carbon (DLC) Nanocarriers, bionanomaterails: protein & DNA based nanos	tructures,				
Hybrids: hybrid biological/inorganic, Nanosafety Issues: Toxicology health effects ca	aused by				
nanoparticles.					
Unit – II	08 Hrs				
Characterization of Nanostructures: Spectroscopy : UV-Visible spectroscopy, Fourier T infrared spectroscopy (FTIR), Raman Spectroscopy, X-ray spectroscopy. Electron mic Scanning electron microscopy (SEM), Transmission electron microscopy (TEM). Scannin microscopy : Atomic Force microscopy (AFM), Scanning tunnel microscopy (STM).	Transform Croscopy: ng probe				
Nano Synthesis and Fabrication: Introduction & overview of Nanofabrication: Bottom up down approaches using processes like Ball milling, Sol-gel Process, Chemical Vapour d (CVD), plsma arching and various lithography techniques (Hard & Soft lithography).	o and Top eposition				
Unit –III	09 Hrs				
Nanosensors: Overview of nanosensors, prospects and market. Types of Nanosensors	and their				
applications. Electromagnetic nanosensors: Electronic nose and electronic tongue,	Magnetic				
nanosensors. Mechanical nanosensors: Cantilever Nanosensors, Mechanics of CNTs, Bi	osensors:				
Biosensors in modern medicine.					
Unit –IV	06 Hrs				
Micro & Nano-Electromechanical systems and Microfluidics: MEMS/NEMS: Magnetic, Chemical and Mechanical Transducers –Sensing and Actuators. Microfludics: Laminar flow, Hagen- Peouiselle equation, basic fluid ideas, Special considerations of flow in small channels, mixing, microvalves & micropumps.					
Unit –V	07 Hrs				
Applications of Nanotechnology: Molecular electronics, molecular switches, mechanic	al cutting				

Applications of Nanotechnology: Molecular electronics, molecular switches, mechanical cutting tools, machine components, DLC coated grinding wheels. solar cells, Batteries, fuel cells, Nanofilters. Medical nanotechnology: in Diagnostics, Therapeutics, Drug delivery and Nanosurgery.

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Remember, understand, and apply knowledge about of nanomaterials and their uses.						
CO2:	Interpret and apply the techniques of manufacturing and characterization processes						
CO3:	Apply the knowledge of Nanosensors, related to nanosensors in electronics, mechanical, chemical, and biological systems.						
CO4:	Create and evaluate nano Design, Devices and Systems in various disciplines						

Reference Books1Textbook of Nanosciences and Nanotechnology, B.S. Murty., P. Shankar., B.Raj, B..B.1Rath, and J. Murday, Springer, Co-publication with University Press (India) Pvt. Ltd. VCH,
XII.1st Edition, 2013, ISBN- 978-3-642-28030-6.2Physical, Chemical and Biological, V. K. Khanna, Nano sensors, CRC press, 1st
edition, 2013, ISBN 9781439827123 (Unit III).3Nanostructured materials, Nanostructured materials, C. C. Kock, William Andrew
Publishing, 2nd edition, 2007, ISBN 0-8155-1534-0.4Nanotechnology, M.Wilson., K. Kannangara., G.Smith., M.Simmons., B. Raguse, overseas
Press (India) Private Ltd., 1st edition, 2005, ISBN 81-88689-20-3.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10. **Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks**.

Semester End Evaluation (SEE); Theory (100 Marks)

Semester: VII									
INDUSTRIAL SAFETY AND RISK MANAGEMENT									
(Group H: Global Elective)									
Cours	e Code	:	16G7H02		CIE	:	100 Marks		
Credit	ts: L:T:P:S	:	3:0:0:0		SEE	:	100 Marks		
Total 2	Hours	:	36L		SEE Duration	:	3.00 Hours		
Cours	e Learning (Obj	ectives: The studen	ts will be able to					
1 Understand the basics of risk assessment methodologies									
2 Select appropriate risk assessment techniques									
3	Analyze put	olic	and individual perc	eption of risk					
4	Relate safet	y, e	rgonomics and hum	an factors					
5	Carry out ris	sk a	ssessment in proces	s industries					
			Ţ	J nit-I			08 Hrs		
Gener	al Risk Iden	tifi	cation Methods – I	•					
Hazard	l identification	n ı	nethodologies, risk	assessment methods	s-PHA, HAZOP, M	ICA	, consequence		
analysi	is, hazards ir	ı w	orkplaces-nature an	d type of work place	ces, types of hazard	ds, h	nazards due to		
improp	per housekee	oing	g, hazards due to fir	e in multi floor indu	stries and buildings	•			
			U	nit — II			07 Hrs		
Risk A	Assessment N	/let	hods – II:						
Risk a	djusted disco	unt	ed rate method, cert	ainty equivalent coef	fficient method, qua	antit	ative analysis,		
probab	oility distribu	tio	n, coefficient of va	ariation method, Sir	nulation method, S	Shac	kle approach,		
Hiller	's model, Hei	tz l	Model.				I		
			UI	nit –III			07 Hrs		
Risk N	Aanagement	_]	II:						
Emerg	ency relief S	Syst	ems, Diers prograr	n, bench scale expe	riments, design of	em	ergency relief		
system	ıs, risk m	ana	gement plan, man	datory technology	option analysis,	risk	management		
alterna	tives, risk n	nan	agement tools, risl	k management plan	s, risk index meth	10d,	Dowfire and		
explos	ion method,	Mo	nd index Method.						
		_	U	nit –IV			07 Hrs		
Risk A	Assurance an	d A	Assessment – IV:			-			
Proper	ty insurance,	tra	insport insurance, li	iability insurance, ri	sk Assessment, lov	v Pr	obability high		
consequence events. Fault tree analysis, Event tree analysis.									
Unit –V 07Hrs									
Risk A	Analysis in (Ch	emical Industries	V: Handling and s	storage of chemical	ls, p	process plants,		
personnel protection equipment's. International environmental management system.									
Cours	e Outcomes:	A	fter completing the	course, the studen	ts will be able to				
CO1:	Recall ris	x as	sessment technique	s used in process ind	lustry				
CO2:	Interpret t	he	various risk assessm	nent tools					
CO3:	Use hazar	d ic	lentification tools for	or safety managemen	ıt				
CO4: Analyze tools and safety procedures for protection in process industries									

CO4: Analyze tools and safety procedures for protection in process industries

Refere	Reference Books						
1	Functional Safety in the Process Industry : A Handbook of practical Guidance in the application of IEC61511 and ANSI/ISA-84, Kirkcaldy K.J.D Chauhan, North corolina, Lulu publication,2012,ISBN:1291187235						
2	Safety Instrumented Systems Verification Practical probabilistic calculations, Goble and William M., Pensulvania ISA publication,2005,ISBN:155617909X						
3	Industrial safety and risk Management, Laird Wilson and Doug Mc Cutcheon, The University of Alberta press, Canada, 1 st Edition, 2003, ISBN: 0888643942.						
4	Environmental Engineering – A Design Approach, Sincero A P and Sincero G A, Prentice						

	Hall of India, New Delhi, 1996, ISBN: 0024105643
5	Risks in Chemical units, Pandya C G, Oxford and IBH publications, New Delhi, 1992, ISBN:
5	8120406907

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	Semester: VII								
			INTELLIGEN	T TRANSPORT SYST	ГЕМ				
			(Group	H: Global Elective)					
Cou	urse Code		16G7H03	CII	E	:	100 Marks		
Crec	lits: L:T:P:S		3:0:0:0	SEI	E	:	100 Marks		
Tot	al Hours	Hours : 36L		SEI	E Duration	:	3.00 Hours		
Cou	rse Learning (Obje	ectives: The student	s will be able to					
1	Understand b	asic	traffic flow and con	ntrol for ITS					
2	2 Understand user services for application in transportation system								
3	3 Understand ITS architecture and its planning at various levels								
4	Evaluate user	ser	vices at various leve	els					

Unit – I	08 Hrs				
Introduction: -Historical Background, Definition, Future prospectus, ITS training and ed	lucational				
needs.					
Fundamentals of Traffic Flow and Control- Traffic flow elements, Traffic flow models, Shock waves					
in Traffic streams, Traffic signalization and control principles, Ramp metering, Traffic simulation					
Unit – II	06 Hrs				
ITS User services-User services bundles, Travel and Traffic management, Public Trans	sportation				
Operations, Electronic Payment, Commercial Vehicles Operations, Emergency Mar	agement,				
Advanced Vehicle Control and safety systems, Information Management, Maintena	ance and				
construction Management					
Unit –III	07 Hrs				
ITS Applications and their benefits-Freeway and incident management systems-o	bjectives,				
functions, traffic Surveillance and incident detection, Ramp control, incident management, A	Advanced				
arterial traffic control systems- historical development, Adaptive traffic control algorithms, A	Advanced				
Public Transportation Systems-Automatic vehicle location systems, Transit Operations soft	ware and				
information systems, Electronic fare payment systems, Multimodal Traveler Information systems	tems				
Unit –IV	07 Hrs				
ITS Architecture-Regional and Project ITS Architecture, Need of ITS architecture, co	oncept of				
Operations, National ITS Architecture, Architecture development tool.	D1 .				
TTS Planning -Transportation planning and ITS, Planning and the National ITS Architecture,	Planning				
for ITS, Integrating ITS into Transportation Planning, relevant case studies.					
Unit –V	08 Hrs				
ITS Standards -Standard development process, National ITS architecture and standards, ITS	standards				
application areas, National Transportation Communications for ITS Protocol, Standards testi	ng.				
TTS Evaluation – Project selection at the planning level, Deployment Tracking, Impact As	sessment,				
Benefits by 115 components, Evaluation Guidelines, Challenges and Opportunities.					

Course	Course Outcomes: After completing the course, the students will be able to				
CO1:	Identify various applications of ITS				
CO2:	Apply ITS applications at different levels.				
CO3:	Examine ITS architecture for planning process.				
CO4 :	Define the significance of ITS for various levels				

Refere	ence Books
1	Fundamentals of Intelligent Transportation Systems Planning, Choudury M A and Sadek A, Artech House publishers (31 March 2003); ISBN-10: 1580531601
2	Intelligent transportation systems standards, Bob Williams, Artech House, London, 2008. ISBN-13: 978-1-59693-291-3.
3	Intelligent Transport Systems: Technologies and Applications, Asier Perallos, Unai Hernandez-Jayo, Enrique Onieva, Ignacio Julio García Zuazola, Wiley Publishing ©2015, ISBN:1118894782 9781118894781
4	ITS Hand Book 2000 Recommendations for World Road Association (PIARC) by Kan Paul Chen, John Miles.
5	Intelligent Transport Systems, Dominique Luzeaux ,Jean-René Ruault, Michel Chavret, 7 MAR 2013 Copyright © 2010 by John Wiley & Sons, Inc DOI: 10.1002/9781118557495.ch6

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

Semester: VII									
	INTELLIGENT SYSTEMS								
			(Grou	p H: Global Electiv	ve)				
Cou	rse Code	:	16G7H04		CIE		100 Marks		
Cred	lits: L:T:P:S	:	3:0:0:0		SEE		100 Marks		
Tota	l Hours	:	35L	SEE Duration			3.00 Hours		
Cou	rse Learning (Dbj	ectives: The studen	ts will be able to					
1	Understand for	und	amental AI concept	s and current issues.					
2	Understand a	nd	apply a range of AI	techniques including	g search, logic-based	l rea	asoning,		
	neural networks and reasoning with uncertain information.								
3	3 Recognize computational problems suited to an intelligent system solution.								
4	Identify and I	ist	the basic issues of k	nowledge representa	ation, blind and heur	isti	c search.		

0/11/5
Introduction: The Foundations of Artificial Intelligence, History of Artificial Intelligence, The State
of the Art, Intelligent Agent: Introduction, How Agents Should Act, Structure of Intelligent Agents,
Problem-solving: Solving Problems by Searching Search Strategies, Avoiding Repeated States
,Avoiding Repeated States

Unit – II07 HrsInformed Search Methods: Best-First Search, Heuristic Functions, Memory Bounded Search,
Iterative Improvement AlgorithmsSearch

Game Playing: Introduction: Games as Search Problems, Perfect Decisions in Two-Person, Games Imperfect Decisions, Alpha-Beta Pruning, Games That Include an Element of Chance

nit –III

Knowledge Inference

Knowledge representation -Production based system, Frame based system. Inference - Backward chaining, Forward chaining, Rule value approach, Fuzzy reasoning - Certainty factors, Bayes Rule, Uncertainty Principles, Bayesian Theory-Bayesian Network-Dempster - Shafer theory.

Unit –IV	07 Hrs
Learning from Observations: A General Model of Learning Agents, Inductive Learning,	Learning
Decision Trees, Using Information Theory, Learning General Logical Descriptions, Why	Learning
Works: Computational Learning Theory	
Reinforcement Learning: Passive Learning in a Known Environment, Passive Learni	ng in an
Unknown Environment, Active Learning in an Unknown Environment	
T T •4 T T	

Unit – v	0/Hrs
Expert Systems, Components, Production rules, Statistical reasoning, certainty factors,m	easure of
belief and disbelief, Meta level knowledge, Introspection. Expert systems - Architecture	of expert
systems, Roles of expert systems - Knowledge Acquisition -Meta knowledge, Heuristics	3. Typical
expert systems - MYCIN, DART, XOON, Expert systems shells.	

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand and explore the basic concepts and challenges of Artificial Intelligence.							
CO2:	Analyze and explain basic intelligent system algorithms to solve problems.							
CO3:	Apply Artificial Intelligence and various logic-based techniques in real world problems.							
CO4:	Assess their applicability by comparing different Intelligent System techniques							

07 Hrs

Refere	ence Books
1	AI – A Modern Approach ,Stuart Russel, Peter Norvig , 2 nd Edition, Pearson Education, 2010, ISBN-13: 978-0137903955.
2	Artificial Intelligence (SIE) ,Kevin Night, Elaine Rich, Nair B., ,McGraw Hill, 1 st Edition, 2008, ISBN: 9780070087705
3	Introduction to AI and ES ,Dan W. Patterson, Pearson Education, 1 st Edition ,2007. ISBN: 0132097680
4	Introduction to Expert Systems ,Peter Jackson, 3 rd Edition, Pearson Education, 2007, ISBN- 978-0201876864

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 60 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10. **Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks**.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	2	2	1	2	-	2	2
CO2	3	3	3	3	3	2	2	1	2	-	2	2
CO3	3	3	3	3	3	2	1	1	2	-	2	2
CO4	3	3	3	3	3	1	2	1	1	1	2	2

High-3: Medium-2 : Low-1

	Semester: VII							
IMAGE PROCESSING AND MACHINE LEARNING								
(Group H: Global Elective)								
Cou	rse Code	:	16G7H05		CIE	:	100 Marks	
Crea	lits: L:T:P:S	:	3:0:0:0		SEE	:	100 Marks	
Tota	l Hours	:	40L		SEE Duration	:	03 Hours	
Cou	rse Learning (Obj	ectives: The studen	ts will be able to				
1	Understand th	ne r	najor concepts and	techniques in image	processing and Mac	chine	e Learning	
2	To explore, n	nani	pulate and analyze	image processing tec	chniques			
3	To become fa	mil	iar with regression	methods, classificati	on methods, cluster	ing	methods.	
4	Demonstrate	ima	ige processing and I	Machine Learning kr	nowledge by design	ing a	and	
	implementing	g alg	gorithms to solve pr	actical problems				
			J	U nit-I			08 Hrs	
Intro	oduction to im	age	e processing:					
Imag	ges, Pixels, Im	age	resolution, PPI and	d DPI, Bitmap imag	ges, Lossless and lo	ossy	compression,	
Imag	ge file formats	, C	olor spaces, Bezier	curve, Ellipsoid, C	Gamma correction,	Adv	vanced image	
conc	epts							
			U	nit – II			08 Hrs	
uploa simil	cs of python, values of python, values adding & view larities.	vari ving	ables & data types an image, Image	, data structures, co resolution, gamma	a correction, deter	min	al statements, ing structural	
			Uı	nit —III			08 Hrs	
Adva Blen , Me Thre	anced Image J ding Two Imag dian Filter ,Ga sholding ,Calc	oro ges, auss ulat	cessing using Open Changing Contrast ian Filter ,Bilateral ing Gradients , Perf	a CV and Brightness Addi Filter ,Changing th Forming Histogram E	ing Text to Images S le Shape of Images Equalization	Smo ,Ef	othing Images fecting Image	
			Uı	nit –IV			08 Hrs	
Mac	hine Learning	; Te	echniques in Image	e Processing				
Baye	esian Classifica	tio	n, Maximum Likelil	nood Methods, Neura	al Networks; Non-p	aran	netric models;	
Man	ifold estimation	n, S	upport Vector Mac	hines, Logistic Regre	ession			
			U	nit –V			08 Hrs	
Intro	o <mark>duction to</mark> ob	jec	t Tracking , Model	ling & Recognition				
Exhaustive vs. Stochastic Search, Shapes, Contours, and Appearance Models. Mean-shift tracking;								
Contour-based models, Adaboost approaches: Face Detection / Recognition, Tracking.								
Cou	rse Outcomes	: Af	ter completing the	course, the studen	ts will be able to			
CO1	: Gain know	ledg	ge about basic conc	epts of Image Proces	sing			
CO2	Lentify ma	ichi	ne learning techniq	ues suitable for a giv	ren problem			
CO3	: Write prog	ram	s for specific applic	cations in image proc	essing			

CO4: Apply different techniques for various applications using machine learning techniques.

Refe	erence Books
1	Practical Machine Learning and Image Processing: For Facial Recognition, Object Detection,
-	and Pattern Recognition Using Python, by Himanshu Singh, Apress publisher.
2	Pattern Recognition and Machine Learning, by Christopher Bishop, Springer, 2008
3	Computer Vision: A modern Approach by David Forsyth and Jean Ponce, Prentice Hall India
	2004.
4	Machine Vision : Theory Algorithms Practicalities , by E.R. Davies Elsevier 2005.
5	Digital Image Processing, Rafael C. Gonzalez and Richard E. Woods Pearson Education, Ed,
3	2001.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10. **Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks**.

Semester End Evaluation (SEE); Theory (100 Marks)

			SEMESTER: '	VII						
DESIGN OF RENEWABLE ENERGY SYSTEMS										
~ ~ ~	r –		(Group H: Global E	lective)		100				
Course Code	:	16G7H06		CIE Marks	:	100				
Credits: L:T:P:S	:	3:0:0:0		SEE Marks	:	100)			
Total Hours		40L		SEE Duration	:	3.0	0 Hours			
Lourse Learning (Jbje	cuves:	to to month on multidia	inlinent projects						
 To provide opportunity for students to work on multidisciplinary projects. To familiarize the students with the basic concerts of renegatively and students with the basic concerts of renegatively and students. 										
2 To tamiliarize the students with the basic concepts of nonconventional energy sources and allied technological systems for energy conversion										
3 To impart skill to formulate, solve and analyze basic Non – conventional energy problems and prepare										
them for gradua	te sti	idies.		n conventional energy	prot		, and propulo			
4 To enable the st	uden	t to design pr	imarily solar and wind	power systems.						
5 To expose the st	uder	nts to various	applications of solar, v	vind and tidal systems.						
			UNIT – I	2			07 Hrs			
An introduction to	ene	rgy sources:								
Industry overview,	ince	entives for re	enewable, utility persp	ective, Relevant problem	ns d	iscus	sion, current			
positions of renewa	ble e	nergy conditi	ons							
			UNIT – II				09 Hrs			
PV Technology:										
photovoltaic power	, PV	projects, Buil	lding-integrated PV sy	stem, PV cell technologie	es, s	olar e	energy maps,			
Technology trends,	Phot	tovoltaic Pow	ver Systems: PV cell, N	Module and Array, Equiva	alen	t elec	trical circuit,			
open-circuit voltage	e and	short-circuit	current, I-V and P-V c	curves, Array design (diff	erer	it met	thodologies),			
peak-power operation	on, s	ystem compo	nents.							
			UNIT – III				09 Hrs			
Wind Speed and E	nerg	gy:								
Speed and power re	elatio	ns, power ext	tracted from the wind,	Air density, Global wind	l pa	tterns	, wind speed			
distribution (parame	eters	calculations)	, wind speed predictio	n, Wind Power Systems	: sy	vstem	components			
, turbine rating , po	wer v	vs. speed and	TSR, maximum energ	y capture, maximum pow	er o	operat	tion, system-			
design trade-offs, s	yster	n control requ	uirements, environmen	tal aspects.						
			UNIT – IV				07 Hrs			
Geothermal and o	cean	energy:								
Geothermal power,	, geo	pressured s	sources, Geothermal	well drilling, advantage	s ai	nd di	sadvantages,			
Comparison of flash	ned s	team and tota	l flow concept				-			
Energy from ocean	n : O]	FEC power ge	eneration, OPEN and C	CLOSED cycle OTEC. Es	stim	ate of	f Energy and			
power in simple sin	gle b	asin tidal and	l double basin tidal sys	tem						
			UNIT – V				08 Hrs			
Stand-alone system	n:									
PV stand-alone, Ele	ectric	vehicle, win	d standalone, hybrid s	ystems (case study), syst	em	sizing	g, wind farm			
sizing.										
Grid-Connected S	ystei	ms: introduct	tion, interface require	nents, synchronizing wit	h th	ne gri	id, operating			
limit, Energy storage and load scheduling, Grid stability issues, distributed power generation.										
Course outcomes:		1 / 1			c	NT	. 1			
COI: Demonstrate	an ı	understanding	g of the scientific pri	nciples of methodology	of	Non-	conventional			
energy.	rin ~ 1	knowledge of	different Denewskie	normy agionas related to	ioc					
CO2: Acquire work	ung l	the exetern	lated concents offer the	volv in the wind an area 1	ucs.	nina				
COA: Studente will	uyze	able to desid	a the appropriate pro-	very in the wind energy de	-81g	ung.	a model her			
developed pr	nerl		e de appropriate proc	cours to ensure that the	e w	UIKIII	g model has			
developed pro	operl	у.								

Refer	ence Books
1.	Wind and Solar Power Systems Design, Analysis and operation, Mukund R Patel, 2 nd Edition, 2006,
	Taylor and Francis publishers, ISBN 978-0-8493-1570-1.
2.	Non-Conventional sources of energy, G.D.Rai, 4th Edition, 2009, Khanna Publishers, ISBN
	8174090738, 9788174090737,
3.	Solar Energy, Sukhatme, 4 th Edition, 2017, McGraw Hill Education, ISBN-13 : 978-9352607112
4.	Renewable energy sources, John Twidell, Tony Weir, 3 rd Edition, 2015, Routledge Publisher, ISBN-13: 978-0415584388.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

				VII Semester					
SYSTEMS ENGINEERING									
(Group H: Global Elective)									
Coι	irse Code	:	16G7H07		CIE Marks	:	100		
Cre	dits: L:T:P:S	:	3:0:0:0		SEE Marks	:	100		
Tot	al Hours	:	33L		SEE Duration	:	03 Hours	6	
Coι	irse Learning	Ob	jectives:						
1	Develop an ap	pre	eciation and unc	lerstanding of the role of system	s engineering proce	esse	s and syster	ms	
	management i	n p	producing produ	icts and services.					
2	Document sys	ster	natic measurem	ent approaches for generally cr	oss disciplinary dev	velo	pment effor	rt.	
3	Discuss capab	ilit	ty assessment m	odels to evaluate and improve	orgnizational system	ns e	engineering		
	capabilities.								
				Unit-I			07 H	irs	
Sys	tem Engineeri	ng	and the Wor	d of Modem System: What i	is System Enginee	ring	?, Origins	of	
Sys	tem Engineerii	ıg,	Examples of	Systems Requiring Systems	Engineering, Sys	tem	Engineerii	ng	
viev	vpoint, Systems	s Ei	ngineering as a	Profession, The power of Syste	ms Engineering, pr	oble	ems.		
Stru	ucture of Com	ple	x Systems: Sys	tem building blocks and interfa	ces, Hierarchy of C	Com	plex system	ns,	
Sys	tem building bl	ock	s, The system e	environment, Interfaces and Inte	eractions.				
The	e System Devel	op	ment Process:	Systems Engineering through t	the system Life Cy	cle,	Evolutiona	ıry	
Cha	racteristics of t	he	development p	rocess, The system engineering	method, Testing th	irou	ghout syste	em	
dev	elopment, probl	em	18.						
				Unit – II			07 H	írs	
Sys	tems Engineer	in	g Managemen	t: Managing systems develop	ment and risks, V	Vor	k breakdov	wn	
stru	cture (WBS), S	sys	tem Engineerin	g Management Plan (SEMP),	Risk Management	Or	ganization	of	
Sys	tems Engineeri	ng	, Systems Eng	ineering Capability Maturity	Assessment, Syste	ems	Engineerii	ng	
stan	dards, Problem	• .							
Nee	ds Analysis: O	rıg	inating a new sy	stem, Operations analysis, Fun	ctional analysis, Fe	asıb	ility analys	51S,	
Fea	sibility definition	m,	Needs validatio	on, System operational requirem	ients, problems.				
Cor	icept Explora	tio	n: Developing	the system requirements, (Operational requir	eme	nts analys:	51S,	
Per	formance requir	em	ents formulation	on, Implementation concept exp	oloration, Performa	nce	requiremen	nts	
valı	dation, problem	IS.							
a			<u> </u>	Unit – III			<u> </u>	lrs	
Cor	icept Definitio	n:	Selecting the	system concept, Performance	requirements ana	lysı	s, Function	nal	
ana	lysis and formu	lat:	ion, Concept se	lection, Concept validation, Sys	stem Development	plan	ining, Syste	em	
Fun	ctional Specific	at1	ons, problems						
Adv	vanced Develo	pm	ient: Reducing	program risks, Requirements	analysis, Function	nal	Analysis ai	nd	
Des	ign, Prototype o	lev	elopment, Devo	elopment testing, Risk reduction	n, problems.				
				Unit – IV			<u> </u>	lrs	
Eng	gineering Desi	gn	Implementing	the System Building blocks,	requirements ana	lysi	s, Function	nal	
analysis and design, Component design, Design validation, Configuration Management, problems.									
Inte	egration and E	va	luation: Integr	ating, Testing and evaluating	the total system, T	est .	planning a	nd	
prep	preparation, System integration, Developmental system testing, Operational test and evaluation, problems.								
-	~			Unit – V		-	<u> 06 H</u>	lrs	
Pro	duction: Syste	em	s Engineering	in the factory, Engineering	tor production,	Tra	nsition fro)m	
dev	elopment to pro	du	ction, Productio	on operations, Acquiring a prod	uction knowledge b	ase	, problems.		
Op	erations and s	ւթ	port: Installing	, maintenance and upgrading t	he system, Installa	tion	and test, I	ln-	
serv	nce support, M	lajo	or system upgr	ades: Modernization, Operation	nal factors in system	em	developme	nt,	
prol	olems.								

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Understand the Life Cycle of Systems.				
CO2	Explain the role of Stake holders and their needs in organizational systems.				
CO3	Develop and Document the knowledge base for effective systems engineering processes.				
CO4	Apply available tools, methods and technologies to support complex high technology systems.				
CO5	Create the frameworks for quality processes to ensure high reliability of systems.				

Reference Books

1	Systems Engineering – Principles and Practice, Alexander Kossoakoff, William N Sweet, 2012,
1	John Wiley & Sons, Inc, ISBN: 978-81-265-2453-2
2	Systems Engineering and Analysis, Blanchard, B., and Fabrycky W, 5 th Edition, 2010, Saddle
4	River, NJ, USA: Prentice Hall.
3	Handbook of Human Systems Integration, Booher, H. (ed.) 2003. Hoboken, NJ, USA: Wiley.
4	Systems Engineering: A 21 st Century Methodology, Hitchins, D., 2007. Chichester, England:
4	Wiley.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

. <u></u>				Semester: VII			
			MEN	IS AND APPLICAT	IONS		
l			(Gi	roup H: Global Elect	tive)		
Cou	rse Code	:	16G7H08		CIE	:	100 Marks
Crec	lits: L:T:P:S	:	3:0:0:0		SEE	:	100 Marks
Tota	l Hours	:	35L		SEE Duration	:	3.00 Hours
Cou	rse Learning ()bje	ectives: The stude	ents will be able to			
1	Understand th	ne ru	idiments of Micro	o fabrication techniqu	es.		
2	Identify and a	ISSO	ciate the various	sensors and actuators	to applications.		
3	Analyze diffe	rent	materials used for	or MEMS.			
4	Design applic	atic	ons of MEMS to c	lisciplines.			
				Unit - I			06 Hrs
Over	rview of MEM	IS 8	k Microsystems:	MEMS and Microsy	stems, Typical MEM	S and	d micro system
prod	ucts, Evolution	of	micro fabrication	, Microsystems and n	nicroelectronics, Mult	idisc	iplinary nature
of M	licrosystems, L	Des1	gn and manufact	ure, Applications of	Microsystems in auto	mot	ve, healthcare,
aeros	space and other	ind	lustries.	· · · · · · · · · · · ·	<i>\C</i> '		
Wor	King Principle	0I .	Microsystems: E	siomedical and biosen	sors. Micro sensors: A	Acou	stic, Chemical,
Optio	cal, Pressure, 1	ner	nal.	TI:4 TT			00 II
Umt – II 08 Hrs							
foreas MEMS with micro actuators. Microgrimors, micrometers, microsoluce and micropumps, micro							
2000	arometers mic	rofl	uidies	crogrippers, inicromo	iors, microvarves and	mer	opumps, micro
Intr	elonicies, inc	alin	a. Scaling in Geo	metry Scaling in Rigi	d body dynamics. Sea	ling	in Electrostatic
force	s scaling in ele	ectr	magnetic forces	and scaling in fluid m	echanics	img	III Electrostatic
10100	s, seaming in en	cour	sindghette forees	Unit – III	leenames.		08 Hrs
Mat	erials for MEN	AS :	and Microsysten	is: Substrates and waf	fers. Active substrate	nate	rials. Silicon as
subs	trate material.	Sil	icon Compound	s. Si-Piezo resistors.	GaAs. Ouartz. Pie	zoele	ectric Crystals.
Poly	mers and packa	gin	g materials. Thre	e level of Microsysten	n packaging, Die leve	pac	kaging, Device
level	packaging, Sy	/stei	m level packagir	ng. Interfaces in micr	osystem packaging. I	Essei	tial packaging
technologies: die preparation, Surface bonding, Wire bonding, Sealing, 3D packaging.							
Unit – IV 06 Hrs							
Mic	osystem Fabri	icat	ion Process: Intr	oduction to microsyst	ems, Photolithograph	y, Io	n Implantation,
Diffusion, Oxidation, CVD, PVD-Sputtering, Deposition of Epiaxy, Etching, LIGA process: General							
description, Materials for substrates and photoresists, Electroplating and SLIGA process.							
Unit – V 07 Hrs							
Tacti	ile and Flow se	ensc	ors – Piezoelectri	c sensors and actuate	ors – piezoelectric eff	ects	- piezoelectric
mate	rials – Applicat	tion	s to Inertia, Acou	stic, Tactile and Flow	v sensors.		
	wiow Applico	4.	Fabrication D	manage in Application			
Over	view, Applica	tior	i, radrication ri	rocess in Application	S:		
Ove Silic	on Capacitive A	dor Acc	elerometer, Piezo	o resistive Pressure se	s: ensor, Electrostatic Co	omb	drive, Portable

Course Outcomes: After completing the course, the students will be able to				
CO1:	Understand the operation of micro devices, micro systems and their applications.			
CO2:	Apply the principle of material science to sensor design.			
CO3:	Analyze the materials used for sensor designs.			
CO4:	Conceptualize and design micro devices, micro systems.			

Refere	ence Books
1	MEMS & Microsystems Design and Manufacture, Tai-Ran Hsu, 2 nd Edition, 2002, Tata
	McGraw Hill Education, New Delhi, ISBN-13:978-0-07-048709-3.
2	Foundations of MEMS, Chang Liu, 2012, Pearson Education Inc., ISBN-13:978-0-13-249736-
	7.
2	Smart Material Systems and MEMS, Vijay K Varadan, K. J. Vinoy, S. Gopalakrishnan, 2006,
3	Wiley-INDIA, ISBN-978-81-265-3170-7.
4	Micro and Smart Systems, G.K. Ananthasuresh, K.J. Vinoy, K.N. Bhat, V.K. Aatre, 2015, Wiley
	Publications, ISBN-:978-81-265-2715-1.

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The marks component for Assignment is 10. Total CIE is 30(Q) + 60(T) + 10(A) = 100.

Semester End Evaluation (SEE); Theory (100 Marks)

	Semester: VII					
			INTRODUCTIO	N TO INTERNET OF TH	INGS	
			(Grou	o H: Global Elective)		
Cou	rse Code	:	16G7H09	CIE	:	100 Marks
Credits: L:T:P:S		:	3:0:0:0	SEE	:	100 Marks
Total Hours		:	39L	SEE I	Duration :	3.00 Hours
Cou	Course Learning Objectives: The students will be able to					
1	1 Learn the fundamentals of IoT					
2	2 Understands the hardware, networks & protocols used in IoT development					
3	3 Illustrate smart applications using IoT devices and building applications					
4	4 Know more advanced concepts like cloud connectivity in IoT					
5	Learn the fundamentals of IoT					

Unit-I	06 Hrs			
Fundamentals Of IOT: Introduction, Physical design of IoT, Logical design of IoT, IoT				
technologies, IoT Levels and Deployment Templates, , IoTvs M2M				
Unit – II	06 Hrs			
IOT Design Methodology: Need for IoT systems management, IoT Design Methodology				
Internet of Things Strategic Research and Innovation Agenda: Internet of Things Vi	sion, IoT			
Strategic Research and Innovation Directions, IoT Smart-X Applications, Internet of Th	nings and			
Related Future Internet Technologies.				
Unit –III	11 Hrs			
IOT Systems - Logical Design using Python: Provides an introduction to Python, installing Python,				
Python data types & data structures, control flow, functions, modules, packages, file input/output,				
data/time operations and classes.				
Unit –IV	09 Hrs			
IOT Physical Devices & Endpoints: What is an IoT device, Raspberry Pi device, About t	he board,			
Linux on Raspberry Pi, Raspberry Pi interfaces, Programming Raspberry Pi with Python.				
Unit –V	07 Hrs			
IOT Physical Servers & Cloud Offerings: Provides an introduction to the use of cloud platforms				
and frameworks such as Xively and AWS for developing IoT applications.				
Course Outcomes: After completing the course, the students will be able to				
CO1: Understand the fundamentals of IoT.				

CO2:	Analyse the IoT devices, programming, networking requirements and protocols for
	building IoT products.
CO3:	Apply the concepts to design and develop IoT applications

CO4: Creating applications of IoT using physical devices and interfacing with cloud.

Reference Books

nerere	Acc Books
1	Internet of Things (A Hands-on-Approach), Vijay Madisetti and ArshdeepBahga, 1 st Edition, VPT, 2014, ISBN-13: 978-0996025515.
2	Internet of Things – From Research and Innovation to Market Deployment, OvidiuVermesan, Peter Friess, River Publishers Series in Communication, River Publishers, 2014, ISBN: ISBN: 978-87-93102-94-1 (Hard copy), 978-87-93102-95-8 (Ebook) (UnitsII 2 nd part)
3	Rethinking the Internet of Things: A Scalable Approach to Connecting Everything, Francis daCosta, , 1 st Edition, Apress Publications, 2013, ISBN-13: 978-1430257400.
4	Meta products - Building the Internet of Things, WimerHazenberg, Menno Huisman, BIS Publishers, 2012, ISBN: 9789863692515.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10. **Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks**.

Semester End Evaluation (SEE); Theory (100 Marks)

			Semester: VII			
INDU	ST	RY 4.0- SMART N	ANUFACTURIN	G FOR THE FUT	URF	C
		(Grou	o H: Global Electiv	e)		
Course Code	:	16G7H10		CIE	:	100 Marks
Credits: L:T:P:S	:	3:0:0:0		SEE	:	100 Marks
Total Hours	:	39L		SEE Duration	:	3.00 Hours
Course Learning	Obi	ectives: The studen	ts will be able to	522 2 41 40 00		
1 Understand t	he ir	mportance and role	of Smart Manufactu	ring Systems IoT a	nd I	ЮТ
2 Explain impo	ortar	nce of automation te	chnologies, sensors.	Robotics and Macl	nine	vision.
3 Understand a	nnli	ication of artificial i	ntelligence and the n	eed for data transfor	mat	ion handling
storing and se	ecur	ity.	interingenee and the h		mat	, indiana, india
4 Understand s	imu	lation, predictive a	nd knowledge model	ing along with anal	vsis	
5 Learn networ	king	g sustainable techn	ology and factory ne	etworks	<u> </u>	
		5, sustainuore teenin	ology and factory in			
		Ī	Init-I			06 Hrs
Smart Manufactu	ring	and Industry 4.0				00 1115
Need for Smart N	Man	ufacturing Advan	tages Emerging te	chnologies in Sma	nt m	anufacturing
CAD Architecture	surr	ounding 3D Model	(B-rep and CSG)	MEMS Industry 4 ()_Int	eroperability
Information transr	oare	ncy. Technical as	sistance. Decentral	lized decision-mak	ing.	Internet of
Things(IoT). Indust	trv I	Internet of Things (IoT). Future of Mar	ufacturing industrie	es.	
8-(,,	<u> </u>	<u>U</u> I	nit – II	8	-	09 Hrs
Manufacturing Au	utor	nation				
Technology intensi	ve n	nanufacturing and c	vber-physical syste	ms. Automation usi	ng R	Robotics. Data
storage, retrieval,	man	ipulation and pres	entation: Mechanisn	ns for sensing sta	te a	nd modifying
processes Material handling systems controlling material movement and machine flow						
Mechatronics. Transducers and sensors. Proximity sensors. Biosensors. Acceleration Machine						
Vision-Flaw detect	tion	, Positioning, Ident	ification, Verificatio	on and Measureme	nt–A	Application of
Machine Vision in	indu	ustries	,			11
		Uı	nit –III			09 Hrs
Data handling using	ng F	Embedded System	5			
Data transformation–Mathematical functions, Regression, Need for different functions, Data						
merging-Discrete and Random variables. Transformation languages. Interfacing systems-						
Microprocessors, I	Dire	ct memory access	, Data transfer sch	emes and systems	, Co	ommunication
systems-Modulatio	on,	Time domain	and frequency de	omain, Industrial	Ne	etwork Data
Communications, I	Data	Security Artificial	Intelligence – Intel	ligent systems, Fuz	zy lo	ogics, Neural
networks – Supervised, Unsupervised and Reinforced learning						
Unit –IV 06 Hrs						
Simulation, Model	ling	and Analysis				
Simulation - system	n en	tities, input variable	es, performance mea	sures, and Function	al re	lationships,
types of simulation. Predictive modeling and simulation tools. Knowledge Modeling –types and						
technology options, Functional analysis of control systems – Linear and Non-linear,						
Functional decomposition, Functional sequencing, Information / dataflow, Interface						
Unit –V 09 Hrs						
Performance Measures of Smart Manufacturing Systems- Smart manufacturing- Sensing and						
Perception, Manipulation, Mobility and Autonomy, Factory Networks, Information Modeling and				Modeling and		
Testing, Performance Measurement and Optimization, Engineering System integration, Production						
Network integration, Production network data quality, Sustainable Processes and Resources,						
Integration Infrastructure for Sustainable Manufacturing						

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Explain role and importance of Smart Manufacturing Systems, IoT and IIoT					
CO2:	Explain importance of automation technologies, sensors, robotics and machine vision					
CO3:	Illustrate the application of artificial intelligence and need for data transformation, handling					
CO4:	Explain analytical and simulation for performance study of smart technologies and					
	networks					

Refere	Reference Books				
	Smart Manufacturing Innovation and Transformation: Interconnection And Intelligence				
1	Zongwei Luo, 1 st Edition, IGI Global Publications, 2014, ISBN-13: 978-1466658363 ISBN-				
	10: 1466658363				
2	Simon Frechette, Yan Lu. KC Morris, Smart Manufacturing Standards, NIST, 1st Edition,				
2	2016, Project report.				

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10. **Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks**.

Semester End Evaluation (SEE); Theory (100 Marks)

Semester: VII									
SPACE TECHNOLOGY AND APPLICATIONS									
		((Froup H: Global Elective)	CIE	-	100 1 1			
Course Code	:	16G/HII			:	100 Marks			
Credits: L:T:P:S	:	3:0:0:0		SEE //	:	100 Marks			
Hrs/Week		35L		SEE Duration	:	3.00 Hours			
Course Learning Objectives: The students will be able to									
Define the earth concepts.	1 Define the earth environment and its behavior, launching vehicles for satellites and its associated concepts.								
2 Analyze satellite	es in	terms of technologies	ology, structure and commu	inications.					
3 Use satellites for	r spa	ace applications	, remote sensing and metro	logy.					
4 Apply the space	tech	nnology, techno	logy mission and advanced	space systems to n	atic	on's growth.			
			UNIT-I			07 Hrs			
Earth's environr	nen	t: Atmosphere	, ionosphere, Magnetosp	ohere, Van Allen	Ra	diation belts,			
Interplanetary med	ium	, Solar wind, So	olar- Earth Weather Relatio	ns.					
Launch Vehicles:	Ro	ocketry, Propell	ants, Propulsion, Combus	stion, Solid, Liquid	l ar	nd Cryogenic			
engines, Control ar	nd G	uidance system	, Ion propulsion and Nucle	ar Propulsion.					
UNIT-II 07 Hrs									
Satellite Technol and Quality and Re	ogy eliab	: Structural, lility, Payloads,	Mechanical, Thermal, Po Space simulation.	ower control, Teler	neti	ry, Telecomm			
Satellite structure	: Sa	tellite Commun	ications, Transponders, Sat	tellite antennas.		I			
			UNIT-III			07 Hrs			
Satellite Commun	icat	ions: LEO, MI	EO and GEO orbits, Altitud	e and orbit controls,	, Mı	ultiple Access			
Techniques.	_								
Space application medicine, Satellite	s: T nav	elephony, V-SA igation, GPS.	AT, DBS system, Satellite F	Radio and TV, Tele-	Ed	ucation, Tele-			
			UNIT-IV			07 Hrs			
Remote Sensing: Visual bands, Agricultural, Crop vegetation, Forestry, water Resources, Land use, Land mapping, geology, Urban development resource Management, and image processing techniques. Metrology: Weather forecast (Long term and Short term), weather modelling, Cyclone predictions, Disaster and flood warning rainfall predictions using satellites									
			UNIT-V			07Hrs			
Satellite payloads experiments, space Advanced space s Inter-space commu	: Teo bio yste nica	chnology missic logy and Interna ms: Remote se ttion systems.	ons, deep space planetary m ational space Missions. nsing cameras, planetary pa	issions, Lunar miss ayloads, space shutt	ions le,	s, zero gravity space station,			

Course Outcomes: After completing the course, the students will be able to									
CO1	Explain different types of satellites, orbit and associated subsystems.								
CO2	Apply the basics of launching vehicles, satellites and sub systems for space applications.								
CO3	Analyze the applications of satellite in the area of communication, remote sensing, metrology etc.,								
CO4	Study technology trends, satellite missions and advanced space systems.								

Refe	rence Books
1	Atmosphere, weather and climate, R G Barry, Routledge publications, 2009, ISBN- 10
	:0415465702.
2	Fundamentals of Satellite Communication, K N Raja Rao, PHI, 2012, ISBN:9788120324015.
3	Satellite Communication, Timothy pratt, John Wiley, 1986 ISBN: 978-0- 471- 37007 -9,
	ISBN 10: 047137007X.
4	Remote sensing and applications, B C Panda, VIVA books Pvt. Ltd., 2009,
	ISBN: 108176496308.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

Semester: VII											
ADVANCED LINEAR ALGEBRA											
Com	rsa Cada		(Grou	p H: Global Electiv	ve)		100 Morke				
Cred	lits: L:T:P:S	•	3.0.0.0		SEE	•	100 Marks				
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours				
Cour	rse Learning	Obi	ectives: The studer	ts will be able to	02222000000	•					
1	1 Adequate exposure to learn the fundamental concepts to model a system of linear equations										
	and to obtain	the	solution of system	of linear equations.			-				
2	Analyze and	exte	end the structure of	vector spaces, linear	transformations, Syr	nme	etric matrices,				
	quadratic forms required in applications of Business, Science and Engineering.										
3	Apply the co	once	ept of Eigenvalues	to study differentia	al equations and dyn	nam	ical systems.				
	Apply the co	nce	pt of Orthogonality	to examine some of	the least-squares pro	ble	ms.				
4	Apply Linear	r Pr	ogramming to Netv	ork problems and G	ame theory.						
			I	Unit-I			07 Hrs				
Syste	em of linear e	qua	tions	~							
Matr	ices and syste	m o	f linear equations,	Geometry of linear e	equations, Linear mo	dels	in Business,				
Scier	ice and Engli	neer	ing-Input-Output n	nodel in Economics	s, Balancing chemic	al e	quations and				
Elect	incar networks		T	nit _ II			09 Hrs				
Vect	or snaces and	lin	ear transformatio	ng — 11			07 1113				
Revi	sion of Vector	Spa	ces. Subspaces. Li	near independence. E	Basis. Dimension and	Ch	ange of basis.				
Appl	ications to Di	iffer	ence equations, M	arkov chains. Inters	section, Sum, Produ	ct o	f spaces and				
Tens	or product o	f t	wo vector spaces.	Introduction to I	Linear transformatio	ns,	Geometrical				
inter	pretations in 2	-din	nensions and 3-dim	ensions.							
			U	nit –III			09 Hrs				
Orth	ogonality, Ei	gen	values and Eigen	vectors							
Ortho	ogonality, Inne	er pi	roduct spaces, Appl	ications to Weighted	l least-squares and Fo	ourie	er series, Fast				
Four	ier transform.	Eig	en values and Eige	n vectors, Applicatio	ons to Differential eq	uati	ons, Discrete				
dyna	mical systems	•	TT	n:t IV			07 II.ma				
Sym	metric matric	000 0	U and auadratic form	nr –1 v			07 HIS				
Intro	duction to svi	. cs <i>c</i> mma	etric matrices Oua	us dratic forms. Test f	or Positive definiter	Iess	Constrained				
Optin	nization. Sing	ular	Value Decomposit	ion. Applications to	image processing.	1000,	Constrained				
- I ·			Ŭ	nit –V	61 8		07 Hrs				
Line	ar programm	ing	and game theory								
A Ge	eometrical intr	odu	ction to Linear pro	gramming, Simplex	method and its geon	netri	ical meaning,				
Network models-Max flow-min cut theorem, Payoff matrix and Matrix games.											
r											
Cour	rse Outcomes	: Af	fter completing the	e course, the studen	ts will be able to						
CO1	: Identify an	d in	terpret the fundame	ental concepts of line	ear equations, vector	space	ces, linear				
	transforma	tion	is, Orthogonality, E	igen values, symmet	tric matrices, quadrat	ic fo	orms, linear				
CO	• Apply the	ing kno	and game theory.	f Linear algebra to a	olve lineer equations	4:4	forman				
	differential	l eqi	uations, constrained	l optimization proble	ems, linear programm	, un ning	problems				

Refere	ence Books
1	Linear Algebra and Its Applications, David C Lay, Pearson Education; III Edition; 2003;
	ISBN: 978-81-775-8333-5.
2	Linear Algebra with Applications, Gareth Williams; 6 th edition; 2008; Narosa publications;
	ISBN: 978-81-7319-981-3.
3	Linear Algebra and Its Applications; Gilbert Strang; IV Edition; Cengage Learning India
	Edition; 2006; ISBN: 81-315-0172-8.
4	Elementary Linear Algebra Applications, Version Howard Anton and Chris Rorres; Wiley
	Global Education; 11 th Edition; 2013; ISBN: 9781118879160.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 60 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

High-3: Medium-2 : Low-1

	Semester: VII										
THIN FILM NANOTECHNOLOGY											
(Group H: Global Elective)											
Cou	Course Code:16G7H13CIE:100 Marks										
Credits: L:T:P:S		:	3:0:0:0	SEE		:	100 Marks				
Total Hours			39L	SEE Duration		:	3.00 Hours				
Cou	rse Learning ()bj	ectives: The student	ts will be able	to						
1	Understand th	ne i	mportance of vacuu	m in thin film :	fabrication						
2	Acquire the k	nov	vledge of thin film p	preparation by	various techniques						
3	Analyze the p	orop	perties of thin films	using different	characterization met	hods	S				
4	Optimize the	pro	cess parameter and	property deper	Idence						
5	Apply the know	owl	edge for developing	g thin film devi	ces.						

Unit-I									
Vacuum Technology: Basics of Vacuum - Principles of different vacuum pumps: Rotar	y, Roots,								
Diffusion, Turbo molecular and Cryogenic pumps; Measurement of vacuum - Co	ncept of								
Capacitance Manometer, Pirani and Penning gauges - Vacuum Systems & Applications.									

Unit – II

Methods of thin film preparation

Physical Vapor Deposition (PVD) Techniques:

Evaporation: Thermal evaporation, Electron beam evaporation, Laser ablation, and Cathode arc deposition. *Sputtering*: DC sputtering, RF Sputtering, Magnetron sputtering, Reactive Sputtering, and Ion beam sputtering.

Chemical Vapor Deposition (CVD) Techniques: Conventional CVD, Plasma Enhance CVD (PECVD) and Atomic layer deposition (ALD).

Other Methods: Spin coating and Spray Pyrolysis.

Unit –III	07 Hrs							
Surface Modification and Growth of Thin Films:								
Surface preparation & Engineering for Thin film growth: Cleaning, Modification, Masking &								
Patterning, Base Coats and Top Coats.	C							
Thin Film growth: Sequence of thin film growth, Defects and impurities, Effect of Deposition								
Parameters on film growth.	-							
Unit –IV	08 Hrs							
Properties and Characterization of Thin Films								
Film thickness (Quartz crystal thickness monitor and Stylus Profiler);								
Film Adhesion (Tape, Cross-hatch test, and Humidity methods);								
Surface morphology and topography (SEM and AFM);								
Film composition (X-ray Photoelectron Spectroscopy);								
Film structure (X-ray diffraction and Raman studies);								
Electrical characterization (Four Probe and Semiconductor Analyzer); and								
Optical characterization (Spectrophotometer).								
Unit –V	08 Hrs							
Thin Film Applications:								
 Electrodes: Deposition of a Metal film, Ex: Aluminum. 								
 Transparent conducting oxides (TCO) – Preparation and Optimization of a semicor 	ducting							
film, Ex: ZnO.								
 Optimization of a dielectric film, Ex: Al₂O₃ or Si₃N₄. 								
Thin Film Devices:								
• Thin Film Transistors (TFT),								
Thin Film Sensors								
Thin Film Capacitors								

• Thin film Solar Cells,

08 Hrs

- Thin film Solar Absorbers
- Diamond-like carbon (DLC) coating
- EMI Shielding coatings
- Hard coatings
- Coatings on Plastics/Polymers.

Cours	Course Outcomes: After completing the course, the students will be able to								
CO1	Understand the importance of vacuum technology for thin film growth								
CO2	Prepare various kinds of thin films using different deposition techniques								
CO3	Characterize the deposited films for various properties								
CO4	Fabricate thin film based devices.								

Reference Books

	A Chee Boons
1.	Vacuum Technology by A. Roth, Elsevier, 3rd Edition, 1976, ISBN: 9780444880109,
	9780444598745,
2.	Thin Film Phenomenon by K.L. Chopra, McGraw-Hill, 1 st Edition, 1969, ISBN: 0070107998,
	978-0070107991
3.	Materials Science of Thin Films by Milton Ohring, Elsevier, 2 rd Edition, 2001, ISBN:
	9780125249751
4.	Thin-Film Deposition: Principles and Practice by Donald Smith, McGraw-Hill, 1 st Edition,
	1995, ISBN: 0070585024, 9780070585027

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 60 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10. **Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks**.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2
CO1			1									2
CO2				2								2
CO3					2							2
CO4			2	2	2		2		2	2		2

High-3; Medium-2; Low-1

ENGINEERING MATERIALS FOR ADVANCED TECHNOLOGY (Group H: Global Elective) Course Code: 1 16G7H14 CIE 1 00 Marks Credits: L.T:P:S : 3:0:0:0 SEE : 100 Marks Total Hours : 3:0:0:0 SEE : 100 Marks Course Code: : 3:0:0:0 SEE Duration : 3:0:0 Hours Course Learning Objectives: The students will be able to see Duration : 3:0:0 Hours 1 Apply the basic concepts of Chemistry to develop futuristic materials for high-tech applications in the area of Engineering. Impart sound knowledge in the different fields of material chemistry so as to apply it to the problems in engineering field. 3 3 Develop analytical capabilities of students so that they can characterize, transform and use materials in engineering and apply knowledge gained in solving related engineering problems. UNIT-I 08 Hrs Coating and packaging materials Suptosis and applications of Polymer coating materials: Teflon, Silicone films Polyvinyl chloride & its copolymers, Poly vinyl acetate, Poly ethylene-HDPE, LDPE, Polyurethane. Properties required in a pigment and extenders. Inorganic pigments, extanders. Inorganic pigments, ettanders. Develop materials Dotphymer Solyphymers & biodegradable polymers.	Semester: VII								
(Group H: Global Elective) Course Code: : 16G7H14 CIE : 100 Marks Credits: L:T:P:S : 3:0:0:0 SEE : 100 Marks Course Learning Objectives: The students will be able to SEE Duration : 3:0:0 Hours Course Learning Objectives: The students will be able to Marks SEE Duration : 3:0:0 Hours 1 Aapply the basic concepts of Chemistry to develop futuristic materials for high-tech applications in the area of Engineering. Impart sound knowledge in the different fields of material chemistry so as to apply it to the problems in engineering field. Just course and apply knowledge gained in solving related engineering problems. 3 UNIT-I O8 Hrs Coating and packaging materials Surface Coating materials: UNIT-I O8 Hrs Coating and packaging materials Teflon, Silicone films Polyvinyl chloride & its copolymers, Poly vinyl acetate, Poly ethylene-HDPE, LDPE, Polyurethane. Properties required in a pigment and extenders. Inorganic pigments-itianium dioxide, zinc oxide, carbon black, chromate pigments, chrome green, ultramarine blue, iron blue, cadmium red. Corrosion inhibiting pigments. Ceramic greenties. Developments in new polymers such as dendrimers,	ENGINEERING MATERIALS FOR ADVANCED TECHNOLOGY								
Course Code: 1 16G7H14 CIE 100 Marks Credits: L:T:P:S : 3:0:0:0 SEE : 100 Marks Course Learning Objectives: The students will be able to Aapply the basic concepts of Chemistry to develop futuristic materials for high-tech applications in the area of Engineering. 3 Aapply the basic concepts of Chemistry to develop futuristic materials for high-tech applications in the area of Engineering field. 2 Impart sound knowledge in the different fields of material chemistry so as to apply it to the problems in engineering field. Develop analytical capabilities of students so that they can characterize, transform and use materials in engineering and apply knowledge gained in solving related engineering problems. Coating and packaging materials UNIT-I 08 Hrs Coating and packaging materials: Stefon, Silicone films Polyvinyl chloride & its copolymers, Poly vinyl acetate, Poly ethylene-HDPE, LDPE, Polyurethane. Properties required in a pigment and extenders. Inorganic pigments, intanium dioxide, zinc oxide, carbon black, chromate pigments, chrome green, ultramarine blue, iron blue, cadmium red. Corosion inhibiting pigments- zinc phosphate, zinc and barium chromate pigments, ceramic pigments, metal flake pigments, extenders. Developments in new polymers such as dendrimers, biopoplymers & biodegradable polymers. Packaging materials Food products: Cellulosic and Polymeric packaging materials	(Group H: Global Elective)								
Credits: L:T:P:S 1 3:0:0:0 SEE 1 100 Marks Total Hours i 39L SEE Duration i 3.00 Hours Course Learning Objectives: The students will be able to in the area of Engineering. Impart sound knowledge in the different fields of material chemistry so as to apply it to the problems in engineering field. Impart sound knowledge in the different fields of material chemistry so as to apply it to the materials in engineering field. 3 Develop analytical capabilities of students so that they can characterize, transform and use materials in engineering and apply knowledge gained in solving related engineering problems. VINT-I 08 Hrs Coating and packaging materials Surface Coating materials: Surface Coating materials: Synthesis and applications of Polymer coating materials: Teflon, Silicone films Polyvinyl chloride & its copolymers, Poly vinyl acetate, Poly ethylene-HDPE, LDPE, Polyurethane. Properties required in a pigment and extenders. Inorganic pigments-titanium dioxide, zinc oxide, carbon black, chromate pigments, chrome green, ultramarine blue, iron blue, cadmium red. Corrosion inhibiting pigments- zinc phosphate, zinc and barium chromate pigments, ceramic pigments, metal flake pigments- such as dendrimers, biopoplymers & biodegradable polymers. Packaging materials: Ford products: Cellulosic and Polymeric packaging materials and their properties – including barrier properties, strength properties, optical properties. Glass, aluminium, tin, paper, plastics, composites. <t< th=""><th>Cou</th><th colspan="8">Course Code: : 16G7H14 CIE : 100 Marks</th></t<>	Cou	Course Code: : 16G7H14 CIE : 100 Marks							
Total Hours i:] 39LSEE Duration:] 3.00 HoursCourse Learning Objectives: The students will be able to1Apply the basic concepts of Chemistry to develop futuristic materials for high-tech applications in the area of Engineering.2Impart sound knowledge in the different fields of material chemistry so as to apply it to the problems in engineering field.3Develop analytical capabilities of students so that they can characterize, transform and use materials in engineering and apply knowledge gained in solving related engineering problems.VITI-I08 HrsCourse Coating materialsSurface Coating materialsCoating materialsCoating materialsCoating materialsCoating materialsSurface Coating materialsSurface Coating materials<	Cred	lits: L:T:P:S	:	3:0:0:0		SEE	:	100 Marks	
Course Learning Objectives: The students will be able to 1 Aaapply the basic concepts of Chemistry to develop futuristic materials for high-tech applications in the area of Engineering. 2 Impart sound knowledge in the different fields of material chemistry so as to apply it to the problems in engineering field. 3 Develop analytical capabilities of students so that they can characterize, transform and use materials in engineering and apply knowledge gained in solving related engineering problems. Coating and packaging materials Surface Coating materials Surface Coating materials Surface Coating materials: Synthesis and applications of Polymer coating materials: Teflon, Silicone films Polyvinyl chloride & its copolymers, Poly vinyl acetate, Poly ethylene-HDPE, LDPE, Polyurethane. Properties required in a pigment and extenders. Inorganic pigments-titanium dioxide, zinc oxide, carbon black, chromate pigments, chrome green, ultramarine blue, iron blue, cadmium red. Corrosion inhibiting pigments- zinc phosphate, zinc and barium chromate pigments, ceramic pigments, metal flake pigments, extenders. Developments in new polymers such as dendrimers, biopoplymers & biodegradable polymers. Packaging materials: Food products: Cellulosic and Polymeric packaging materials and their properties – including barrier properties, strength properties, optical properties, Glass, aluminium, tin, paper, plastics, compos	Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours	
1 Aapply the basic concepts of Chemistry to develop futuristic materials for high-tech applications in the area of Engineering. 2 Impart sound knowledge in the different fields of material chemistry so as to apply it to the problems in engineering field. 3 Develop analytical capabilities of students so that they can characterize, transform and use materials in engineering and apply knowledge gained in solving related engineering problems. UNIT-I 08 Hrs Coating and packaging materials Surface Coating materials Surface Coating materials: Surface Coating materials: Surface Coating materials: Surface Coating materials: Projecties required in a pigment and extenders. Inorganic pigments-titanium dioxide, zinc oxide, carbon black, chromate pigments, chrome green, ultramarine blue, iron blue, cadmium red. Corrosion inhibiting pigments- zinc phosphate, zinc and barium chromate pigments, ceramic pigments in new polymers such as dendrimers, biopoplymers & biodegradable polymers. Packaging materials: Food products: Cellulosic and Polymeric packaging materials and their properties – including barrier properties, strength properties, optical properties. Glass, aluminium, tin, paper, plastics, composites. Pharmaceutical products: Injectibles and tablet packaging materials. <	Cou	rse Learning Obje	ectiv	ves: The students v	vill be able to				
2 Impart sound knowledge in the different fields of material chemistry so as to apply it to the problems in engineering field. 3 Develop analytical capabilities of students so that they can characterize, transform and use materials in engineering and apply knowledge gained in solving related engineering problems. UNIT-I 08 Hrs Coating and packaging materials Synthesis and applications of Polymer coating materials: Teflon, Silicone films Polyvinyl chloride & its copolymers, Poly vinyl acetate, Poly ethylene-HDPE, LDPE, Polyurethane. Properties required in a pigment and extenders. Inorganic pigments-titanium dioxide, zinc oxide, carbon black, chromate pigments, chrome green, ultramarine blue, iron blue, cadmium red. Corrosion inhibiting pigments- zinc phosphate, zinc and barium chromate pigments, ceramic pigments, metal flake pigments, extenders. Developments in new polymers such as dendrimers, biopoplymers & biodegradable polymers. Packaging materials Food products: Cellulosic and Polymeric packaging materials and their properties – including barrier properties, strength properties, optical properties. Glass, aluminium, tin, paper, plastics, composites. Pharmaceutical products: Injectibles and tablet packaging materials. O7 Hrs Adhesives Introduction-Classification of Adhesives-Natural adhesives, synthetic adhesives, multi part adhesives, pressure sensitive adhesives, contact adhesive, strength- Physical factors influencing Adhesive Action- surface tension	1	1 Aapply the basic concepts of Chemistry to develop futuristic materials for high-tech applications in the area of Engineering.							
3 Develop analytical capabilities of students so that they can characterize, transform and use materials in engineering and apply knowledge gained in solving related engineering problems. 0 UNIT-I 08 Hrs Coating and packaging materials Surface Coating materials Introduction in piblicing pigments- cinc wide, carbon black, chromate pigments, chrome green, ultramarine blue, iron blue, cadmium red. Corrosion inhibiting pigments- zinc phosphate, zinc and barium chromate pigments, ceramic pigments, metal flake pigments, extenders. <t< td=""><td>2</td><td>Impart sound known in engine</td><td>owl neer</td><td>edge in the differe</td><th>ent fields of m</th><th>naterial chemistry so</th><td>as to a</td><td>apply it to the</td></t<>	2	Impart sound known in engine	owl neer	edge in the differe	ent fields of m	naterial chemistry so	as to a	apply it to the	
UNIT-I 08 Hrs Coating and packaging materials Surface Coating materials: Synthesis and applications of Polymer coating materials: Teflon, Silicone films Polyvinyl chloride & its copolymers, Poly vinyl acetate, Poly ethylene-HDPE, LDPE, Polyurethane. Properties required in a pigment and extenders. Inorganic pigments-titanium dioxide, zinc oxide, carbon black, chromate pigments, chrome green, ultramarine blue, iron blue, cadmium red. Corrosion inhibiting pigments- zinc phosphate, zinc and barium chromate pigments, ceramic pigments, metal flake pigments, extenders. Developments in new polymers such as dendrimers, biopoplymers & biodegradable polymers. Packaging materials: Food products: Cellulosic and Polymeric packaging materials and their properties – including barrier properties, strength properties, optical properties. Glass, aluminium, tin, paper, plastics, composites. Pharmaceutical products: Injectibles and tablet packaging materials 07 Hrs Adhesives UNIT-II 07 Hrs Adhesives Adhesives., synthetic adhesives, multi part adhesives, pressure sensitive adhesives, contact adhesives, hot adhesive, suffice adhesive Action-surface smoothness, thickness of adhesive film, elasticity and tensile strength. Chemical Factors Influencing Adhesive action - presence of polar groups, degree of polymerization, complexity of the adhesive molecules, effect of pH. Adhesive action- specific adhesive action, mechanical adhesive action, fusion adhesion. Development of adhesives-swith reference to Epoxy, phenolics, Silicone, Polywing acetate.	3	Develop analytic materials in engin	al oneer	capabilities of studing and apply know	dents so that two so that the second se	they can characteriz in solving related eng	e, trans gineerin	form and use g problems.	
Coating and packaging materials Surface Coating materials: Synthesis and applications of Polymer coating materials: Teflon, Silicone films Polyvinyl chloride & its copolymers, Poly vinyl acetate, Poly ethylene-HDPE, LDPE, Polyurethane. Properties required in a pigment and extenders. Inorganic pigments-titanium dioxide, zinc oxide, carbon black, chromate pigments, chrome green, ultramarine blue, iron blue, cadmium red. Corrosion inhibiting pigments- zinc phosphate, zinc and barium chromate pigments, ceramic pigments in new polymers such as dendrimers, biopoplymers & biodegradable polymers. Packaging materials: Food products: Cellulosic and Polymeric packaging materials and their properties – including barrier properties, strength properties, optical properties. Glass, aluminium, tin, paper, plastics, composites. Pharmaceutical products: Injectibles and tablet packaging materials. UNIT-III 07 Hrs Adhesives Introduction-Classification of Adhesives-Natural adhesives, synthetic adhesives-drying adhesives, pressure sensitive adhesives, contact adhesives strength- Physical factors influencing Adhesive Action-surface tension, surface smoothness, thickness of adhesive strength- adsorption theory and diffusion theory. Preparation, curing and bonding Processes by adhesives strength - adsorption theory and diffusion theory. Preparation, curing and bonding Processes by adhesives strength - adsorption theory and diffusion theory. Preparation, curing and bonding Processes by adhesives strength - adsorption theory and diffusion theory. Preparation, curing and bonding Processes by adhesive strength - dosprint acta. </td <td></td> <td></td> <td></td> <td>UNI</td> <th>Г-І</th> <th></th> <td></td> <td>08 Hrs</td>				UNI	Г-І			08 Hrs	
Surface Coating materials: Synthesis and applications of Polymer coating materials: Teflon, Silicone films Polyvinyl chloride & its copolymers, Poly vinyl acetate, Poly ethylene-HDPE, LDPE, Polyurethane. Properties required in a pigment and extenders. Inorganic pigments-titanium dioxide, zinc oxide, carbon black, chromate pigments, chrome green, ultramarine blue, iron blue, cadmium red. Corrosion inhibiting pigments- zinc phosphate, zinc and barium chromate pigments, ceramic pigments, metal flake pigments, extenders. Developments in new polymers such as dendrimers, biopoplymers & biodegradable polymers. Packaging materials: Food products: Cellulosic and Polymeric packaging materials and their properties – including barrier properties, strength properties, optical properties. Glass, aluminium, tin, paper, plastics, composites. Pharmaceutical products: Injectibles and tablet packaging materials. O7 Hrs Adhesives Introduction-Classification of Adhesives-Natural adhesives, synthetic adhesives, multi part adhesives, Adhesive Action. Development of Adhesive strength- Physical factors influencing Adhesive Action- surface tension, surface smoothness, thickness of adhesive film, elasticity and tensile strength. Chemical Factors Influencing Adhesive action - presence of polar groups, degree of polymerization, complexity of the adhesiven. Development of adhesive strength- adsorption theory and diffusion theory. Preparation, curing and bonding Processes by adhesive strength- adsorption theory and diffusion theory. Preparation, curing and bonding Processes by adhesives-with reference to Epoxy, phenolics, Silicone, Polyurethane, Acrylic adhesives, Poly vinyl alcohol, Polyvinyl acetate. UNIT-III 08 Hrs	Coat	ing and nackaging	g m	aterials				00 1115	
Synthesis and applications of Polymer coating materials: Teflon, Silicone films Polyvinyl chloride & its copolymers, Poly vinyl acetate, Poly ethylene-HDPE, LDPE, Polyurethane. Properties required in a pigment and extenders. Inorganic pigments-titanium dioxide, zinc oxide, carbon black, chromate pigments, chrome green, ultramarine blue, iron blue, cadmium red. Corrosion inhibiting pigments- zinc phosphate, zinc and barium chromate pigments, ceramic pigments, metal flake pigments, extenders. Developments in new polymers such as dendrimers, biopoplymers & biodegradable polymers. Packaging materials: Food products: Cellulosic and Polymeric packaging materials and their properties – including barrier properties, strength properties, optical properties. Glass, aluminium, tin, paper, plastics, composites. Pharmaceutical products: Injectibles and tablet packaging materials. Introduction-Classification of Adhesives-Natural adhesives, synthetic adhesives-drying adhesives, pressure sensitive adhesives, contact adhesives, hot adhesives. One part adhesives, multi part adhesives. Adhesive Action. Development of Adhesive strength- Physical factors influencing Adhesive Action- surface tension, surface smoothness, thickness of adhesive film, elasticity and tensile strength. Chemical Factors Influencing Adhesive action - presence of polar groups, degree of polymerization, complexity of the adhesive molecules, effect of pH. Adhesive strength- adhesive action, mechanical adhesive action, fusion adhesion. Development of adhesive strength- adsorption theory and diffusion theory. Preparation, curing and bonding Processes by adhesives-with reference to Epoxy, phenolics, Silicone, Polyurethane, Acrylic adhesives, Poly vinyl alcohol, Polyvinyl acetate. UNIT-III 08 Hrs	Surf	ace Coating mater	s rial	s'					
copolymers, Poly vinyl acetate, Poly ethylene-HDPE, LDPE, Polyurethane. Properties required in a pigment and extenders. Inorganic pigments-titanium dioxide, zinc oxide, carbon black, chromate pigments, chrome green, ultramarine blue, iron blue, cadmium red. Corrosion inhibiting pigments- zinc phosphate, zinc and barium chromate pigments, ceramic pigments, metal flake pigments, extenders. Developments in new polymers such as dendrimers, biopoplymers & biodegradable polymers. Packaging materials: Food products: Cellulosic and Polymeric packaging materials and their properties – including barrier properties, strength properties, optical properties. Glass, aluminium, tin, paper, plastics, composites. Pharmaceutical products: Injectibles and tablet packaging materials. UNIT-II 07 Hrs Adhesives Introduction-Classification of Adhesives-Natural adhesives, synthetic adhesives-drying adhesives, pressure sensitive adhesives, contact adhesives strength- Physical factors influencing Adhesive Action-surface tension, surface smoothness, thickness of adhesive film, elasticity and tensile strength. Chemical Factors Influencing Adhesive action - presence of polar groups, degree of polymerization, complexity of the adhesive molecules, effect of pH. Adhesive action-specific adhesive action, mechanical adhesive action, fusion adhesion. Development of adhesive strength- adsorption theory and diffusion theory. Preparation, curing and bonding Processes by adhesives-with reference to Epoxy, phenolics, Silicone, Polyurethane, Acrylic adhesives, Poly vinyl alcohol, Polyvinyl acetate.	Svnt	hesis and application	ons	of Polymer coating	materials: Tef	lon. Silicone films Po	olvvinvl	chloride & its	
Properties required in a pigment and extenders. Inorganic pigments-titanium dioxide, zinc oxide, carbon black, chromate pigments, chrome green, ultramarine blue, iron blue, cadmium red. Corrosion inhibiting pigments- zinc phosphate, zinc and barium chromate pigments, ceramic pigments, metal flake pigments, extenders. Developments in new polymers such as dendrimers, biopoplymers & biodegradable polymers. Packaging materials: Food products: Cellulosic and Polymeric packaging materials and their properties – including barrier properties, strength properties, optical properties. Glass, aluminium, tin, paper, plastics, composites. Pharmaceutical products: Injectibles and tablet packaging materials. Mathematical products: Injectibles and tablet packaging materials. Mathematical products: Injectibles and tablet packaging materials. Mathematical products: Injectibles and tablet packaging materials. Pharmaceutical products: Injectibles and tablet packaging materials. Mathematical Notices Adhesives Introduction-Classification of Adhesives-Natural adhesives, synthetic adhesives-drying adhesives, pressure sensitive adhesives, contact adhesives, hot adhesives. One part adhesives, multi part adhesives. Adhesive Action. Development of Adhesive strength- Physical factors influencing Adhesive Action- surface tension, surface smoothness, thickness of adhesive film, elasticity and tensile strength. Chemical Factors Influencing Adhesive action - presence of polar groups, degree of polymerization, complexity of the adhesive molecules, effect of pH. Adhesive action- specific adhesive action, mechanical adhesive action, fusion adhesion. Development of adhesive strength- adsorption theory and diffusion theory. Preparation, curing and bonding Processes by adhesives-with reference to Epoxy, phenolics, Silicone, Polyurethane, Acrylic adhesives, Poly vinyl alcohol, Polyvinyl acetate. UNIT-III O8 Hrs	copo	lymers. Poly vinyl	ace	tate. Polv ethvlene	-HDPE, LDPE	. Polvurethane.			
Inorganic pigments-titanium dioxide, zinc oxide, carbon black, chromate pigments, chrome green, ultramarine blue, iron blue, cadmium red. Corrosion inhibiting pigments- zinc phosphate, zinc and barium chromate pigments, ceramic pigments, metal flake pigments, extenders. Developments in new polymers such as dendrimers, biopoplymers & biodegradable polymers. Packaging materials: Food products: Cellulosic and Polymeric packaging materials and their properties – including barrier properties, strength properties, optical properties. Glass, aluminium, tin, paper, plastics, composites. Pharmaceutical products: Injectibles and tablet packaging materials. Materials: Fod droducts: Cellulosic of Adhesives-Natural adhesives, synthetic adhesives-drying adhesives, pressure sensitive adhesives, contact adhesives, hot adhesives. One part adhesives, multi part adhesives. Adhesive Action. Development of Adhesive strength- Physical factors influencing Adhesive Action- surface tension, surface smoothness, thickness of adhesive film, elasticity and tensile strength. Chemical Factors Influencing Adhesive action - presence of polar groups, degree of polymerization, complexity of the adhesive molecules, effect of pH. Adhesive action- specific adhesive action, mechanical adhesive action, fusion adhesion. Development of adhesive strength- adsorption theory and diffusion theory. Preparation, curing and bonding Processes by adhesives-with reference to Epoxy, phenolics, Silicone, Polyurethane, Acrylic adhesives, Poly vinyl alcohol, Polyvinyl acetate. UNIT-III 08 Hrs	Prop	erties required in a	pig	ment and extender	s.	, , , , , , , , , , , , , , , , , , , ,			
ultramarine blue, iron blue, cadmium red. Corrosion inhibiting pigments- zinc phosphate, zinc and barium chromate pigments, ceramic pigments, metal flake pigments, extenders. Developments in new polymers such as dendrimers, biopoplymers & biodegradable polymers. Packaging materials: Food products: Cellulosic and Polymeric packaging materials and their properties – including barrier properties, strength properties, optical properties. Glass, aluminium, tin, paper, plastics, composites. Pharmaceutical products: Injectibles and tablet packaging materials. Pharmaceutical products: Injectibles and tablet packaging materials. Multi-II 07 Hrs Adhesives Introduction-Classification of Adhesives-Natural adhesives, synthetic adhesives, multi part adhesives, pressure sensitive adhesives, contact adhesives, hot adhesives. One part adhesives, multi part adhesives. Adhesive Action. Development of Adhesive strength- Physical factors influencing Adhesive Action- surface tension, surface smoothness, thickness of adhesive film, elasticity and tensile strength. Chemical Factors Influencing Adhesive action - presence of polar groups, degree of polymerization, complexity of the adhesive molecules, effect of pH. Adhesive action- specific adhesive action, mechanical adhesive action, fusion adhesion. Development of adhesive strength- adsorption theory and diffusion theory. Preparation, curing and bonding Processes by adhesives-with reference to Epoxy, phenolics, Silicone, Polyurethane, Acrylic adhesives, Poly vinyl alcohol, Polyvinyl acetate. UNIT-III 08 Hrs	Inorg	ganic pigments-tita	iniu	m dioxide, zinc o	xide, carbon l	olack, chromate pigi	nents, o	chrome green.	
Corrosion inhibiting pigments- zinc phosphate, zinc and barium chromate pigments, ceramic pigments, metal flake pigments, extenders. Developments in new polymers such as dendrimers, biopoplymers & biodegradable polymers. Packaging materials: Food products: Cellulosic and Polymeric packaging materials and their properties – including barrier properties, strength properties, optical properties. Glass, aluminium, tin, paper, plastics, composites. Pharmaceutical products: Injectibles and tablet packaging materials. Introduction-Classification of Adhesives-Natural adhesives, synthetic adhesives,	ultra	marine blue, iron b	lue,	cadmium red.			,	6	
pigments, metal flake pigments, extenders. Developments in new polymers such as dendrimers, biopoplymers & biodegradable polymers. Packaging materials: Food products: Cellulosic and Polymeric packaging materials and their properties – including barrier properties, strength properties, optical properties. Glass, aluminium, tin, paper, plastics, composites. Pharmaceutical products: Injectibles and tablet packaging materials. Pharmaceutical products: Injectibles and tablet packaging materials. Adhesives Adhesives adhesives, contact adhesives. Not adhesives. One part adhesives, multi part adhesives. Adhesive Action. Development of Adhesive strength- Physical factors influencing Adhesive Action- surface tension, surface smoothness, thickness of adhesive film, elasticity and tensile strength. Chemical Factors Influencing Adhesive action - presence of polar groups, degree of polymerization, complexity of the adhesive molecules, effect of pH. Adhesive action- specific adhesive action, mechanical adhesive action, fusion adhesion. Development of adhesive strength- adsorption theory and diffusion theory. Preparation	Corr	osion inhibiting	pig	ments- zinc phos	sphate, zinc a	nd barium chromat	te pigm	ents, ceramic	
Developments in new polymers such as dendrimers, biopoplymers & biodegradable polymers. Packaging materials: Food products: Cellulosic and Polymeric packaging materials and their properties – including barrier properties, strength properties, optical properties. Glass, aluminium, tin, paper, plastics, composites. Pharmaceutical products: Injectibles and tablet packaging materials. Pharmaceutical products: Injectibles and tablet	pigm	ents, metal flake pi	igm	ents, extenders.	-		2 -		
Packaging materials:Food products: Cellulosic and Polymeric packaging materials and their properties – including barrier properties, strength properties, optical properties. Glass, aluminium, tin, paper, plastics, composites.Pharmaceutical products: Injectibles and tablet packaging materials.OT HrsOT HrsAdhesivesIntroduction-Classification of Adhesives-Natural adhesives, synthetic adhesives-drying adhesives, pressure sensitive adhesives, contact adhesives, hot adhesives. One part adhesives, multi part adhesives. Adhesive Action. Development of Adhesive strength- Physical factors influencing Adhesive Action- surface tension, surface smoothness, thickness of adhesive film, elasticity and tensile strength. Chemical Factors Influencing Adhesive action - presence of polar groups, degree of polymerization, complexity of the adhesive molecules, effect of pH. Adhesive strength- adsorption theory and diffusion theory. Preparation, curing and bonding Processes by adhesives-with reference to Epoxy, phenolics, Silicone, Polyurethane, Acrylic adhesives, Poly vinyl alcohol, Polyvinyl acetate.08 Hrs	Deve	elopments in new p	oly	mers such as dendr	imers, biopopl	ymers & biodegradal	ble poly	mers.	
Food products: Cellulosic and Polymeric packaging materials and their properties – including barrier properties, strength properties, optical properties. Glass, aluminium, tin, paper, plastics, composites. Pharmaceutical products: Injectibles and tablet packaging materials. 07 Hrs Adhesives Introduction-Classification of Adhesives-Natural adhesives, synthetic adhesives-drying adhesives, pressure sensitive adhesives, contact adhesives, hot adhesives. One part adhesives, multi part adhesives. Adhesive Action. Development of Adhesive strength- Physical factors influencing Adhesive Action-surface tension, surface smoothness, thickness of adhesive film, elasticity and tensile strength. Chemical Factors Influencing Adhesive action - presence of polar groups, degree of polymerization, complexity of the adhesive molecules, effect of pH. Adhesive action- specific adhesive action, mechanical adhesive action, fusion adhesion. Development of adhesive strength- adsorption theory and diffusion theory. Preparation, curing and bonding Processes by adhesives-with reference to Epoxy, phenolics, Silicone, Polyurethane, Acrylic adhesives, Poly vinyl alcohol, Polyvinyl acetate. 08 Hrs	Pack	aging materials:							
properties, strength properties, optical properties. Glass, aluminium, tin, paper, plastics, composites.Pharmaceutical products: Injectibles and tablet packaging materials.UNIT-II07 HrsAdhesivesIntroduction-Classification of Adhesives-Natural adhesives, synthetic adhesives-drying adhesives, pressure sensitive adhesives, contact adhesives, hot adhesives. One part adhesives, multi part adhesives. Adhesive Action. Development of Adhesive strength- Physical factors influencing Adhesive Action- surface tension, surface smoothness, thickness of adhesive film, elasticity and tensile strength. Chemical Factors Influencing Adhesive action - presence of polar groups, degree of polymerization, complexity of the adhesive molecules, effect of pH. Adhesive strength- adsorption theory and diffusion theory. Preparation, curing and bonding Processes by adhesives-with reference to Epoxy, phenolics, Silicone, Polyurethane, Acrylic adhesives, Poly vinyl alcohol, Polyvinyl acetate.08 Hrs	Food	l products: Cellulos	sic	and Polymeric pac	kaging materia	als and their properti	es – inc	luding barrier	
Pharmaceutical products: Injectibles and tablet packaging materials. UNIT-II 07 Hrs Adhesives Introduction-Classification of Adhesives-Natural adhesives, synthetic adhesives-drying adhesives, pressure sensitive adhesives, contact adhesives, hot adhesives. One part adhesives, multi part adhesives. Adhesive Action. Development of Adhesive strength- Physical factors influencing Adhesive Actionsurface tension, surface smoothness, thickness of adhesive film, elasticity and tensile strength. Chemical Factors Influencing Adhesive action - presence of polar groups, degree of polymerization, complexity of the adhesive molecules, effect of pH. Adhesive action- specific adhesive action, mechanical adhesive action, fusion adhesion. Development of adhesive strength- adsorption theory and diffusion theory. Preparation, curing and bonding Processes by adhesives-with reference to Epoxy, phenolics, Silicone, Polyurethane, Acrylic adhesives, Poly vinyl alcohol, Polyvinyl acetate. UNIT-III 08 Hrs	prop	erties, strength prop	pert	ies, optical propert	ies. Glass, alur	ninium, tin, paper, pl	lastics, o	composites.	
UNIT-II07 HrsAdhesivesIntroduction-Classification of Adhesives-Natural adhesives, synthetic adhesives-drying adhesives, pressure sensitive adhesives, contact adhesives, hot adhesives. One part adhesives, multi part adhesives. Adhesive Action. Development of Adhesive strength- Physical factors influencing Adhesive Action- surface tension, surface smoothness, thickness of adhesive film, elasticity and tensile strength. Chemical Factors Influencing Adhesive action - presence of polar groups, degree of polymerization, complexity of the adhesive molecules, effect of pH. Adhesive action- specific adhesive action, mechanical adhesive action, fusion adhesion. Development of adhesive strength- adsorption theory and diffusion theory. Preparation, curing and bonding Processes by adhesives-with reference to Epoxy, phenolics, Silicone, Polyurethane, Acrylic adhesives, Poly vinyl alcohol, Polyvinyl acetate.08 Hrs	Phar	rmaceutical produ	icts	Injectibles and tal	blet packaging	materials.		-	
AdhesivesIntroduction-Classification of Adhesives-Natural adhesives, synthetic adhesives-drying adhesives, pressure sensitive adhesives, contact adhesives, hot adhesives. One part adhesives, multi part adhesives. Adhesive Action. Development of Adhesive strength- Physical factors influencing Adhesive Action- surface tension, surface smoothness, thickness of adhesive film, elasticity and tensile strength. Chemical Factors Influencing Adhesive action - presence of polar groups, degree of polymerization, complexity of the adhesive molecules, effect of pH. Adhesive action- specific adhesive action, mechanical adhesive action, fusion adhesion. Development of adhesive strength- adsorption theory and diffusion theory. Preparation, curing and bonding Processes by adhesives-with reference to Epoxy, phenolics, Silicone, Polyurethane, Acrylic adhesives, Poly vinyl alcohol, Polyvinyl acetate.08 Hrs				UNIT	Г -II			07 Hrs	
Introduction-Classification of Adhesives-Natural adhesives, synthetic adhesives-drying adhesives, pressure sensitive adhesives, contact adhesives, hot adhesives. One part adhesives, multi part adhesives. Adhesive Action. Development of Adhesive strength- Physical factors influencing Adhesive Actionsurface tension, surface smoothness, thickness of adhesive film, elasticity and tensile strength. Chemical Factors Influencing Adhesive action - presence of polar groups, degree of polymerization, complexity of the adhesive molecules, effect of pH. Adhesive action- specific adhesive action, mechanical adhesive action, fusion adhesion. Development of adhesive strength- adsorption theory and diffusion theory. Preparation, curing and bonding Processes by adhesives-with reference to Epoxy, phenolics, Silicone, Polyurethane, Acrylic adhesives, Poly vinyl alcohol, Polyvinyl acetate.	Adh	esives							
pressure sensitive adhesives, contact adhesives, hot adhesives. One part adhesives, multi part adhesives.Adhesive Action. Development of Adhesive strength- Physical factors influencing Adhesive Action- surface tension, surface smoothness, thickness of adhesive film, elasticity and tensile strength. Chemical Factors Influencing Adhesive action - presence of polar groups, degree of polymerization, complexity of the adhesive molecules, effect of pH. Adhesive action- specific adhesive action, mechanical adhesive action, fusion adhesion. Development of adhesive strength- adsorption theory and diffusion theory. Preparation, curing and bonding Processes by adhesives-with reference to Epoxy, phenolics, Silicone, Polyurethane, Acrylic adhesives, Poly vinyl alcohol, Polyvinyl acetate.08 Hrs	Intro	Introduction-Classification of Adhesives-Natural adhesives, synthetic adhesives-drving adhesives.							
Adhesive Action. Development of Adhesive strength- Physical factors influencing Adhesive Action- surface tension, surface smoothness, thickness of adhesive film, elasticity and tensile strength. Chemical Factors Influencing Adhesive action - presence of polar groups, degree of polymerization, complexity of the adhesive molecules, effect of pH. Adhesive action- specific adhesive action, mechanical adhesive action, fusion adhesion. Development of adhesive strength- adsorption theory and diffusion theory. Preparation, curing and bonding Processes by adhesives-with reference to Epoxy, phenolics, Silicone, Polyurethane, Acrylic adhesives, Poly vinyl alcohol, Polyvinyl acetate.08 Hrs	pressure sensitive adhesives, contact adhesives, hot adhesives. One part adhesives, multi part adhesives.								
surface tension, surface smoothness, thickness of adhesive film, elasticity and tensile strength. Chemical Factors Influencing Adhesive action - presence of polar groups, degree of polymerization, complexity of the adhesive molecules, effect of pH. Adhesive action- specific adhesive action, mechanical adhesive action, fusion adhesion. Development of adhesive strength- adsorption theory and diffusion theory. Preparation, curing and bonding Processes by adhesives-with reference to Epoxy, phenolics, Silicone, Polyurethane, Acrylic adhesives, Poly vinyl alcohol, Polyvinyl acetate.	Adhe	Adhesive Action. Development of Adhesive strength- Physical factors influencing Adhesive Action-							
Factors Influencing Adhesive action - presence of polar groups, degree of polymerization, complexity of the adhesive molecules, effect of pH. Adhesive action- specific adhesive action, mechanical adhesive action, fusion adhesion. Development of adhesive strength- adsorption theory and diffusion theory. Preparation, curing and bonding Processes by adhesives-with reference to Epoxy, phenolics, Silicone, Polyurethane, Acrylic adhesives, Poly vinyl alcohol, Polyvinyl acetate.08 Hrs	surfa	ce tension, surface	sme	oothness, thickness	of adhesive fil	m, elasticity and tens	ile stren	gth. Chemical	
of the adhesive molecules, effect of pH. Adhesive action- specific adhesive action, mechanical adhesive action, fusion adhesion. Development of adhesive strength- adsorption theory and diffusion theory. Preparation, curing and bonding Processes by adhesives-with reference to Epoxy, phenolics, Silicone, Polyurethane, Acrylic adhesives, Poly vinyl alcohol, Polyvinyl acetate.	Facto	Factors Influencing Adhesive action - presence of polar groups, degree of polymerization, complexity							
action, fusion adhesion. Development of adhesive strength- adsorption theory and diffusion theory. Preparation, curing and bonding Processes by adhesives-with reference to Epoxy, phenolics, Silicone, Polyurethane, Acrylic adhesives, Poly vinyl alcohol, Polyvinyl acetate. UNIT-III 08 Hrs	of th	of the adhesive molecules, effect of pH. Adhesive action- specific adhesive action, mechanical adhesive							
Preparation, curing and bonding Processes by adhesives-with reference to Epoxy, phenolics, Silicone, Polyurethane, Acrylic adhesives, Poly vinyl alcohol, Polyvinyl acetate. UNIT-III 08 Hrs	actio	action, fusion adhesion. Development of adhesive strength- adsorption theory and diffusion theory.							
Polyurethane, Acrylic adhesives, Poly vinyl alcohol, Polyvinyl acetate. UNIT-III 08 Hrs	Prep	Preparation, curing and bonding Processes by adhesives-with reference to Epoxy, phenolics, Silicone,							
UNIT-III 08 Hrs	Poly	Polyurethane, Acrylic adhesives, Poly vinyl alcohol, Polyvinyl acetate.							
				UNIT	-III			08 Hrs	

Optical fibre materials

Fiber Optics, Advantages of optical fiber communication over analog communication, Classification based on refractive index of the core- step index and graded index optical fibres, Classification based on core radius-single mode and multimode optical fibres, Fibre fabrication.-Methods to manufacture optical glass fibres. Double crucible method and preform methods. Manufacture of perform- Chemical Vapour Deposition (CVD), Modified vapour deposition (MCVD) Plasma activated vapour deposition (PCVD), Outside vapour deposition (OVD)-Vapour-phase axial deposition (VAD). Drawing the fibres from perform, coating and jacketing process.

Ion exchange resins and membranes

Ion exchange resins-Introduction, Types, physical properties, chemical properties-capacity, swelling, kinetics, stability, ion exchange equilibrium, regeneration. Applications of ion exchange resinssoftening of water, demineralization of water, advantages and disadvantages of ion exchange resinscalcium sulphate fouling, iron fouling, adsorption of organic matter, bacterial contamination. Ion exchange membranes, Types, Classification, Fabrication of ion exchange cottons- anion exchange cotton and cation exchange cotton. Application of ion exchange membranes in purification of water by electro dialysis method.

JNIT-IV

08 Hrs

08 Hrs

Spectroscopic Characterization of materials:

Electromagnetic radiation, interaction of materials with electromagnetic radiation.

UV- visible spectrophotometry :Introduction-Electronic transitions- factors influencing position and intensity of absorption bands-absorption spectra of dienes, polyene and α,β -unsaturated carbonyl compounds, Working of UV-Vis spectrophotometer, Theoretical calculation of λ_{max} by using Woodward-Fieser rules- for cyclic and α,β -unsaturated carbonyl compounds.

IR Spectroscopy: Introduction, principle, molecular vibrations, vibrational frequency, number of fundamental vibrations, factors influencing fundamental vibrations, instrumentation of IR spectrophotometer, sampling techniques and application of IR spectroscopy in characterization of functional groups.

UNIT-V

NMR spectroscopy:

H¹ NMR Spectroscopy: Basic concepts- relaxation process. NMR spectrometer-FT NMR-Solvents used in NMR, internal standards-Chemical equivalence -Integrals and Integrations- chemical shift-Factors affecting chemical shifts- shielding and deshielding effects – chemical and magnetic equivalent – magnetic anisotropy-spin-spin splitting rules- Application of NMR on various compounds such as alkanes, alkenes, alkynes, alkyl halides, alcohols, ethers, amines, aldehydes, ketones, carboxylic acids, esters, amides & mono substituted aromatic compounds. Problems on prediction of structure of compounds.

Course Outcomes: After completing the course, the students will be able to						
CO1 Identify sustainable engineering materials and	l understand their properties.					
CO2 Apply the basic concepts of chemistry to dev	elop futuristic materials for high-tech applications					
in different areas of engineering.						
CO3 Analyze and evaluate the specific application	of materials.					
CO4 Design the route for synthesis of material and	its characterization.					

Reference Books

1.	Materials Science, G.K.Narula, K.S.Narula & V.K.Gupta. 38th Editon, 2015, Tata McGraw-Hill
	Publishing Company Limited ISBN: 978-0-07-451796-3.
2.	Solar Lighting, Ramachandra Pode and Boucar Diouf, Springer e-book, 2011, ISBN: 978-1-44-
	712133-6 (Print) 978-1-44-712134-3 (Online),
3.	Spectroscopy of organic compounds, P.S.Kalsi, 6 th Edition, 2013, New Age International(P)
	ltd,publisher, ISBN: 978-1-22-415438-6.
4.	Food Packaging Materials, Mahadeviah M & Gowramma RV, 6 th Edition, 1996, Tata McGraw
	Hill Publishing Company Ltd, ISBN :746-2-23-82 9780-0.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

Semester: VII (Global elective)									
APPLIED PSYCHOLOGY FOR ENGINEERS									
			(Grou	up H: Global Elect	ive)				
Cou	Course Code : 16G7H15 CIE : 100								
Cred	lits: L:T:P:S	:	3:0:0:0		SEE	:	100		
Tota	l Hours	:	35		SEE Duration	:	3 Hours		
Cou	rse Learning (Obje	ctives: The studen	ts will be able to					
1	To appreciate	hun	han behavior and h	uman mind in the co	ontext of learner's im	me	diate society and		
	environment.								
2	To understand	d the	importance of life	long learning and pe	ersonal flexibility to	sus	tain personal and		
	Professional development as the nature of work evolves.								
3	To provide s	tude	nts with knowledg	ge and skills for bu	uilding firm foundat	ion	for the suitable		
	engineering p	rofe	ssions.						
4	4 To prepare students to function as effective Engineering Psychologists in an Industrial,								
	Governmental or consulting organization.								
5	To enable students to use psychological knowledge, skills, and values in occupational pursuits in								
	a variety of settings that meet personal goals and societal needs.								

Unit – I	07 Hrs						
Introduction to Psychology: Definition and goals of Psychology: Role of a Psychologist in the Society:							
Today's Perspectives (Branches of psychology). Psychodynamic, Behavioristic, Cognitive, Humanistic,							
Psychological Research and Methods to study Human Behavior: Experimental, Ob	oservation,						
Questionnaire and Clinical Method.	n						
Unit - II	07 Hrs						
Intelligence and Aptitude: Concept and definition of Intelligence and Aptitude, Nature of In	telligence.						
Theories of Intelligence – Spearman, Thurston, Guilford Vernon. Characteristics of Intellig	ence tests,						
Types of tests. Measurement of Intelligence and Aptitude, Concept of IQ, Measurement of	f Multiple						
Intelligence – Fluid and Crystallized Intelligence.							
Unit – III	07 Hrs						
Personality: Concept and definition of personality, Approaches of personality- psychoanalytic	cal, Socio-						
Cultural, Interpersonal and developmental, Humanistic, Behaviorist, Trait and type ap	oproaches.						
Assessment of Personality: Self- report measures of Personality, Questionnaires, Rating S	Scales and						
Projective techniques, its Characteristics, advantages & limitations, examples. Behavioral As	ssessment.						
Psychological Stress: a. Stress- Definition, Symptoms of Stress, Extreme products of stress v	s Burnout,						
Work Place Trauma. Causes of Stress – Job related causes of stress. Sources of Frustrat	ion, Stress						
and Job Performance, Stress Vulnerability-Stress threshold, perceived control.	1						
Unit – IV	07 Hrs						
Application of Psychology in Working Environment: The present scenario of ir	formation						
technology, the role of psychologist in the organization, Selection and Training of P	sychology						
Professionals to work in the field of Information Technology. Distance learning, Psy	chological						
consequences of recent developments in information Technology. Type A and Type B Psy	chological						
Counseiing - Need for Counseiing, Types – Directed, Non- Directed, Participative Counseiin	1g.						
Unit – V Learning: Definition Conditioning Classical Conditioning Design of Classical Co	0/Hrs						
Learning: Definition, Conditioning – Classical Conditioning, Basics of Classical Co	nditioning						
(Payloy) the process of Extinction Discrimination and Constraining Operant Conditionin	nditioning						
(Pavlov), the process of Extinction, Discrimination and Generalization. Operant Conditioning evol. The basics of operant conditioning. Schedules of reinforcement. Cognitive – Social a	nditioning g (Skinner						
(Pavlov), the process of Extinction, Discrimination and Generalization. Operant Conditioning expt). The basics of operant conditioning, Schedules of reinforcement. Cognitive – Social a to learning – Latent Learning, Observational Learning, Trial and Error Method, Insightful Le	nditioning g (Skinner pproaches						
(Pavlov), the process of Extinction, Discrimination and Generalization. Operant Conditioning expt). The basics of operant conditioning, Schedules of reinforcement. Cognitive – Social a to learning – Latent Learning, Observational Learning, Trial and Error Method, Insightful Le	nditioning g (Skinner pproaches earning.						
(Pavlov), the process of Extinction, Discrimination and Generalization. Operant Conditioning expt). The basics of operant conditioning, Schedules of reinforcement. Cognitive – Social a to learning – Latent Learning, Observational Learning, Trial and Error Method, Insightful Le Experimental Psychology (Practicals)- Self Study 2 Hrs /Week	nditioning g (Skinner pproaches earning.						
(Pavlov), the process of Extinction, Discrimination and Generalization. Operant Conditioning expt). The basics of operant conditioning, Schedules of reinforcement. Cognitive – Social a to learning – Latent Learning, Observational Learning, Trial and Error Method, Insightful Le Experimental Psychology (Practicals)- Self Study 2 Hrs /Week 1.Bhatia's Battery of Performance and intelligence test	nditioning g (Skinner pproaches earning.						
(Pavlov), the process of Extinction, Discrimination and Generalization. Operant Conditioning expt). The basics of operant conditioning, Schedules of reinforcement. Cognitive – Social a to learning – Latent Learning, Observational Learning, Trial and Error Method, Insightful Learning – Latent Learning – Social a to learning – Latent Learning, Observational Learning, Trial and Error Method, Insightful Learning – Latent Learning, Observational Learning, Trial and Error Method, Insightful Learning – Latent Learning, Observational Learning, Trial and Error Method, Insightful Learning – Latent Learning – Latent Learning of Performance and Intelligence test 2.Multidimensional Assessment of Personality	nditioning g (Skinner pproaches earning.						

3.David's Battery of Differential Abilities (Aptitude test)

4.Bilateral Transfer of Training Mirror drawing apparatus with Electronic Digital Reset Error Counter (Performance)

5. Student Stress Scale.

Cours	Course Outcomes: After completing the course, the students will be able to						
CO1	Describe the basic theories, principles, and concepts of applied psychology as they relate to						
	behaviors and mental processes.						
CO2	Define learning and compare and contrast the factors that cognitive, behavioral, and						
	Humanistic theorists believe influence the learning process.						
CO3	Develop understanding of psychological attributes such as intelligence, aptitude, creativity, resulting in their enhancement and apply effective strategies for self-management and self-improvement.						
CO4	Apply the theories into their own and others' lives in order to better understand their personalities						
	and experiences.						

Reference Books

1.	Understanding Psychology Feldman R. S, IV edition, (1996) McGraw Hill India
2.	Psychology Robert A. Baron, III edition (1995) Prentice Hall India
3.	Organizational Behaviour , Stephen P Robbins Pearson Education Publications, 13th Edition, $ISBN - 81-317 - 1132 - 3$
4.	Organisational Behaviour : Human Behaviour at Work ,John W.Newstrem and Keith Davis. Tata McGraw Hill India, 10th Edition, ISBN 0-07-046504-5

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10. Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	VII Semester								
FOUNDATIONAL COURSE ON ENTREPRENEURSHIP									
(Group H: Global Elective)									
Co	Course Code : 16G7H16 CIE Marks : 100								
Cr	edits: L:T:P:S	:	3:0:0:0			SEE Marks	:	100	
Total Hours : 36L SEE Duration : 03 Hours								03 Hours	
Co	urse Learning () Db	jectives:						
1	To make partic	ripa	nts self-discov	er their ir	nate flow, entrepre	eneurial style, and ide	ntif	v problems	
	worth solving t	her	eby becoming	entreprene	eurs	, , , , , , , , , , , , , , , , , , ,		J I	
2	To handhold p	arti	cipants on lean	methodo	logy to craft value	proposition and get r	ead	v with lean	
	canvas		- F			rr		<i>J</i>	
3	To create solut	ior	demo by cond	lucting cu	stomer interviews	and finding problem-	solı	ution fit for	
-	building Minin	nun	n Viable Produc	ct (MVP)		and many processi	5010		
4	To make partic	ina	nts understand	cost struc	ture pricing reven	ue types and importat	ice	of adopting	
-	shared leadersh	in	to build good te	eam	, priorig, reven			or weopung	
5	To help partici	pan	ts build a stron	g brand a	nd identify various	sales channels for the	ir p	roducts and	
-	services	p		0	j ·		r		
6	To take partic	ipa	nts through ba	sics of b	usiness regulations	s and other legal ter	ms	along-with	
	understanding	of I	ntellectual Pro	perty Right	nts			8	
ļ									
				Unit	-I			07 Hrs	
Se	f-Discoverv and	10	pportunity Di	scoverv					
Fir	iding the Flow:	Eff	ectuation: Iden	tifving th	e Effectuation prin	ciples used in activit	ies:	Identifying	
Pro	blem Worth S	olv	ing: Design 7	Chinking:	Brainstorming: P	resenting the Identi	fied	problems:	
Ide	entifying the Entr	ep	reneurial Style.	6,	8,	8		r ·····	
		Ĵ		Unit -	- II			07 Hrs	
Cu	stomer, Solutio	n a	nd Lean Meth	odology				•	
Cu	stomers and Ma	rke	ts; Segmentati	on and Ta	argeting; Identifyin	g Jobs, Pains, and G	ains	s and Early	
Ad	opters; Crafting	Va	lue Proposition	Canvas ((VPC); Presenting	VPC; Basics of Busir	iess	Model and	
Le	an Approach; Sk	etc	hing the Lean C	Canvas; R	isks and Assumptio	ons; Presenting Lean C	Canv	/as.	
	•		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Unit –	- III			07 Hrs	
Pr	oblem-Solution	Fit	and Building	MVP				·	
Blu	ue Ocean Strateg	у-	Plotting the Str	ategy Car	vas; Four Action F	ramework: Eliminate-	Rec	luce-Raise-	
Create Grid of Blue Ocean Strategy; Building Solution Demo and Conducting Solution Interviews:									
Problem-Solution Fit; Building MVP; Product-Market Fit; Presenting MVP.									
Unit – IV 06 Hrs									
Fii	nancial Planning	g &	z Team Buildir	ng					
Cost Structure - Estimating Costs; Revenues and Pricing: Revenue Streams, Revenue Types, Identifying									
Secondary Revenue Streams, Estimating Revenue and Price; Profitability Checks; Bootstrapping and									
Ini	Initial Financing; Practising Pitch; Shared Leadership; Hiring and Fitment, Team Role and								
Re	Responsibilities.								
				Unit -	- V			09 Hrs	
Ma	Marketing, Sales, Regulations and Intellectual Property								
Po	sitioning and B	rar	ding; Channel	s; Sales	Planning; Project	Management; Basic	s o	f Business	
Re	gulations; How t	0 C	et Help to Get S	Started; Pa	atents, Trademark, I	Licensing, Contracts;	Con	nmon Legal	
mi	stakes, Types of	Pe	ermits, Tax Reg	gistration	Documents, Comp	liance; Infringement	and	Remedies,	
Ov	Ownership and Transfer.								
Course	Course Outcomes: After completing the course, the students will be able to								
------------	--	--	--	--	--				
CO1	showcase the ability to discern distinct entrepreneurial traits								
CO2	Know the parameters to assess opportunities and constraints for new business ideas								
CO3	Understand the systematic process to select and screen a business idea								
CO4	design strategies for successful implementation of ideas								
CO5	Create Business Model and develop Minimum Viable Product								

Ref	erence Books
1	Running Lean: Iterate from Plan A to a Plan That Works. O'Reilly Media, Maurya, A., 2012.
2	Entrepreneurship. Roy, R., 2012. Oxford University Press
3	Intellectual Property Law in India. Gupta, T. S., 2011. Kluwer Law International
4	Flow: The Psychology of Optimal Experience. Czikszentmihalyi, M., 2008. Harper Perennial
4	Modern Classics
5	Effectuation: Elements of Entrepreneurial Expertise. Sarasvathy, S. D., 2009. Edward Elgar
5	Publishing Ltd.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)- (Needs to be discussed)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	Semester: IIV							
	UNMANNED AERIAL VEHICLES							
0	(Group H: Global Elective)							
	odites I .T.D.S	:	16G/H1/ 3:0:0:0		SFF			00 Marks
		•	3.0.0.0		SEE SEE Duration:			UU WIAIKS
	ourse Learning	l · Ohi	JOL	students will be able	to	<u> </u>		1115
1	Get an overview	v of	the history of	f IIAV systems	10			
-	Understand the	$\frac{100}{100}$	nortance of a	erodynamics propulsion	n structures and avioni	00	in	the design of
2	UAV							
3	Demonstrate at systems, integra	oilit	y to address n with manne	the various mission pay d systems	vloads - on-board & of	: t-	boai	rd, propulsion
4	Assess the perfe	orm	ance and airv	vorthiness of the designe	ed UAV			_
				Unit-I				06 Hrs
In	troduction to Fl	igh	t Vehicles:					
H	story of Flight V	ehi	cles and UAV	s, Classifications, Woki	ing principles of flight	ve	hicl	e.
III Ta		nn: nfi	anned Aircra	their advantages disadu	ontagoa Sustan Comp		tion	Applications
of	UAVs Characte	rict	ics of Aircraf	tilen auvantages uisauva	antages, system Compo	51	tion	, Applications
01	UAVS, Characte	1151	ies of Alferat	Init _ II				07 Hrs
D	sign of UAV Sv	ster	ns: Governi	ng aspects:				07 1113
2.	a. Aerodyna	mic	s. b. Propuls	ion. C. structure. d. Co	ontrols			
A	erodynamics:		s, s, <u> </u>					
In	troduction basic	Aer	odynamics, li	ft, drag, Aerofoils, wing	area optimization.			
Pr	opulsion:							
In	troduction to proj	puls	ion system in	UAV, Propulsion system	m for fixed wing UAV	an	d V	TOL (Vertical
tal	ke-off and landin	g) (JAV, Advanc	ed propulsion systems,	fuel cells, generators ba	ise	ed sy	ystems.
				Unit -III				07Hrs
St	ructures of UAV	/:						
Μ	echanic loading,	basi	ics of types of	fload calculation and str	uctural engineering, Ma	ite	rial	used for UAV
(g	eneral introducti	on)	, FRP and m	ethods of usage in UA	V, Testing of FRP sp	be	cime	ens for UAV,
se	lection criteria f	or	structure, Ty	pes of structural eleme	ents used in UAV the	ir	sig	nificance and
ch	aracteristics, Me	tho	ls of manufac	turing UAV structure.				
				Unit -IV	-			07 Hrs
Controls, Avionics, Hardware, Communication, Payloads: Basics of control system and Systems for control system in UAV, PID control, simulation introduction to Hardware in loop system (HILS), Avionics: Autopilot (AP) – architecture of AP, sensors, actuators, power supply, integration, installation, configuration, and testing.								
Ha El sig	Hardware, Communication Electronics Hardware in UAV, Communication methods, communication antenna and their significance.							
Pa Pa	Payloads: Payload types and their applications							
				Unit -V				09 Hrs
De ba	esign of UAV Sy sed exercise	yste	ems: Fixed v	ving UAV and Rotary v	wing UAV (VTOL) Ta	sk	spe	cific, activity

Cours	Course Outcomes: At the end of this course the student will be able to :					
CO1	Appraise the evolution of UAVs and understand the current potential benefits of UAVs					
CO2	Apply the principles of Aerospace Engineering in design and development of UAVs					
CO3	Determine and evaluate the performance of UAV designed for various Missions and					
	applications					
CO4	Assess the performance and airworthiness of the designed UAV					

Reference Books

1	Unmanned Aircraft Systems UAV design, development and deployment, Reg Austin, 1 st Edition, 2010, Wiley, ISBN 9780470058190.
2	Flight Stability and Automatic Control, Robert C. Nelson, 2 nd Edition, October 1, 1997, McGraw-Hill, Inc, ISBN 978-0070462731.
3	Advances in Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy, Kimon P. Valavanis, 1 st Edition,2007, Springer ISBN 9781402061141
4	Introduction to UAV Systems, Paul G Fahlstrom, Thomas J Gleason, 4 th Edition, 2012, Wiley, ISBN: 978-1-119-97866-4
5	Design of Unmanned Air Vehicle Systems, Dr. Armand J. Chaput, 3 rd Edition, 2001, Lockheed Martin Aeronautics Company, ISBN: 978-1-60086-843-6

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)- (Needs to be discussed)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	3	2	2				1
CO2	2	3	3	3	1	1	1	1				2
CO3	1		3	3								2
CO4	3	3	3	3		2	1	2				2

High-3 : Medium-2 : Low-1

Semester: VIII								
	MAJOR PROJECT							
			(C	ommon to all I	Programs)			
Cou	rse Code	:	16EC81		CIE	:	100 Marks	
Crec	lits: L:T:P:S	:	0:0:16:0		SEE	:	100 Marks	
Hours / Week			32		SEE Duration	:	3.00 Hours	
Cour	rse Learning Obj	ject	ives: The stu	dents will be ab	le to			
1	Acquire the abi	lity	to make link	across differen	t areas of knowled	lge	and to generate, develop	
	and evaluate id	eas	and informati	ion so as to apply	these skills to the	pro	ject task.	
2	Acquire the ski	ills	to communic	ate effectively an	nd to present ideas	cle	early and coherently to a	
	specific audience in both written and oral forms.							
3	3 Acquire collaborative skills through working in a team to achieve common goals.							
4	Self-learn, refle	ect o	on their learning	ng and take appr	opriate action to im	npro	ove it.	
5	Prepare schedu	les	and budgets a	nd keep track of	the progress and ex	xpe	nditure.	

Major Project Guidelines:

- 1. The project topic, title and synopsis have to be finalized and submitted to their respective internal guide(s) before the beginning of the 8th semester.
- 2. The detailed Synopsis (*approved by the department Project Review Committee*) has to be submitted during the 1st week after the commencement of 8th semester.

Batch Formation:

- Students are free to choose their project partners from within the program or any other program;
- Each student in the team must contribute towards the successful completion of the project. The project may be carried out In-house / Industry / R & D Institution;
- > The project work is to be carried out by a team of two to four students, in exceptional cases where a student is placed in a company and offered an internship through the competitive process or student is selected for internship at national or international level through competitive process, the student can work independently.
- The students are allowed to do either a project for full 5 days in the industry or full 5 days in the college.
- In case the project work is carried out outside Bengaluru, such students must be available during Project Evaluation process scheduled by the respective departments and they must also interact with their guide regularly through Email / Webinar / Skype etc.

Project Topic Selection:

The topics of the project work must be in the *field of respective program areas or in line with CoE's (Centre of Excellence) identified by the college* or List of project areas as given by industry/Faculty. The projects as far as possible should have societal relevance with focus on sustainability.

Project Evaluation:

- Continuous monitoring of project work will be carried out and cumulative evaluation will be done.
- The students are required to meet their internal guides once in a week to report their progress in project work.
- Weekly Activity Report (WAR) has to be maintained in the form of a diary by the project batch and the same has to be discussed with the Internal Guide regularly.
- In case of *Industry project*, during the course of project work, the internal guides will have continuous interaction with external guides and will visit the industry at least twice during the project period.

- ➢ For CIE assessment the project groups must give a final seminar with the draft copy of the project report.
- The presentation by each group will be for 20-30 minutes and every member of the team needs to justify the contributions to the project.
- The project team is required to submit Hard copies of the detailed Project Report in the prescribed format to the department.
 - ➢ For CIE 50% weightage should be given to the project guide and 50% weightage to the project evaluation committee.
 - Before the final evaluations the project group is required to produce a No dues certificate from Industry, Central Library and Department.

Cours	e Outcomes of Major Project:
1	Apply knowledge of mathematics, science and engineering to solve respective engineering
	domain problems.
2	Design, develop, present and document innovative/multidisciplinary modules for a complete
	engineering system.
3	Use modern engineering tools, software and equipment to solve problem and engage in life-long
	learning to follow technological developments.
4	Function effectively as an individual, or leader in diverse teams, with the understanding of
	professional ethics and responsibilities.

CIE Assessment:

The following are the weightings given for the various stages of the project.

1.	Selection of the topic and formulation of objectives	10%
2.	Design and Development of Project methodology	25%
3.	Execution of Project	25%
4.	Presentation, Demonstration and Results Discussion	30%
5.	Report Writing & Publication	10%
SEE Assessn	nent:	
The follo	wing are the weightages given during Viva Examination.	
1.	Written presentation of synopsis	10%
2.	Presentation/Demonstration of the project	30%
3.	Methodology and Experimental Results & Discussion	30%
4.	Report	10%
5.	Viva Voce	20%

Calendar of Events for the Project Work:

Week	Event
Beginning of 7 th Semester	Formation of group and approval by the department committee.
7 th Semester	Problem selection and literature survey
Last two weeks of 7 th	Finalization of project and guide allotment
Semester	
II Week of 8 th Semester	Synopsis submission and preliminary seminar
III Week	First visit of the internal guides to industry (In case of project being carried out in industry)
III to VI Week	Design and development of project methodology
VII to IX Week	Implementation of the project
X Week	Submission of draft copy of the project report

Electronics and Communication Engineering

XI and XII Week	Second visit by guide to industry for demonstration. Final seminar by
	Finalization of CIE.

Evaluation Scheme for CIE and SEE								
Scheme of Evaluation for CI	Scheme of Evaluation for SEE							
Particulars	%Marks	Particulars	%Marks					
Project Evaluation I	10%	Project Synopsis (Initial Write up)	10%					
Project Evaluation II	25%	Project Demo / Presentation	30%					
Project Evaluation III	25%	Methodology and Results Discussion	30%					
Project Evaluation Phase-IV (Submission of Draft Project Report for Verification)	30%	Project Work Report	10%					
Project Evaluation Phase-V (Project Final Internal Evaluation)	10%	Viva-voce	20%					
Total	100	Total	100					

Sah nd SEE Г ~ **I** for CIF

Semester: VIII							
TECHNICAL SEMINAR							
(Common to all Programs)							
Cou	rse Code	••	16EC82		CIE	•••	100 Marks
Credits: L:T:P:S		••	0:0:2:0		SEE	•••	100 Marks
Hours / Week			04		SEE Duration	:	3.00 Hours
Course Learning Objectives: The students will be able to							
1	1 Recognize recent developments in specific program and in multidisciplinary fields.						
2	Summarize the recent technologies and inculcate the skills for literature survey.						
3	B Demonstrate good presentation skills.						
4	Plan and improve the Technical Report writing skills.						
5	Support Group discussion and Team work.						

General Guidelines for the Seminar

- 1. The seminar has to be presented by individual student.
- 2. The topic of the seminar should be from current thrust area along with consultation with the guide.
- 3. The topic can be based on standard papers (like IEEE/ACM/CSI etc.) in the thrust area for the selected topic.
- 4. Presenting/publishing this paper in conference/ Journal will be given weightage in CIE.
- 5. The student needs to submit both hard & soft copy of the seminar report.
- 6. As Outcome of Technical Seminar, each student has to prepare a technical paper out of seminar topic.

Cour	se Outcomes of Technical Seminar:			
1	Communicate effectively on complex engineering problems and demonstrate contextual			
	knowledge to assess societal and environmental contexts.			
2	Identify, formulate, review research literature, analyze and Design solutions for complex			
	engineering problems using appropriate techniques with effective documentation.			
3	Analyze, interpret and synthesize the information to provide valid conclusions with innovative			
	ideas and ethical principles.			
4	Apply the knowledge of engineering specialization to suggest solutions to complex engineering			
	problems and recognize the need for technological changes.			

Evaluation of CIE Marks:

1.	Relevance of the topic	10%
2.	Literature Survey	10%
3.	Presentation	40%
4.	Report	20%
5.	Paper Publication	20%

Semester: VIII							
INNOVATION & SOCIAL SKILLS							
(Common to all Programs)							
Course (Code	••	16HSS83		CIE	••	NA
Credits:	L:T:P:S	••	0:0:1:0		SEE	••	NA
Hours / Week		••	02		SEE Duration	••	NA
Course Learning Objectives: The students will be able to							
1	1 To provide a platform for the students to exhibit their organizational capabilities, team						
	building, ethical values and extra mural abilities.						
2	2 To encourage to carryout innovative ideas and projects.						
3	3 Take part in societal and community building activities.						
4	4 Make self-learning, ethics and lifelong learning a motto.						

Guidelines

- 1. The HSS will be evaluated individually based on the broad parameters which include the progress made by student during 3rd& 4th year in innovative projects, Seminar, Paper Presentation, Field activity & other Co-curricular activities.
- 2. Students shall submit a report and documents as a proof his/her achievements.

Course Outcomes of Innovation & Social Skills:				
1	Apply the knowledge and skills for solving societal issues			
2	Plan to work in team in various areas with inclusive effort and sustainability			
3	Organize various events and use managerial and budgeting abilities			
4	Demonstrate leadership qualities and ethics			

Curriculum Design Process

Academic Planning and Implementation

PROCESS FOR COURSE OUTCOME ATTAINMENT

Final CO Attainment Process

Program Outcome Attainment Process

Guidelines for Fixing Targets

• The target may be fixed based on last 3 years' average attainment

PROGRAM OUTCOMES (POs)

1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.

2. **Problem analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet t h e specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.

4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.

6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. **Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with t h e society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. **Life-long learning:** Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.