

RV COLLEGE OF ENGINEERING[®]

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus of III & IV Semesters

2018 SCHEME

ELECTRONICS & COMMUNICATION ENGINEERING

VISION

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

MISSION

- 1. To deliver outcome based Quality education, emphasizing on experiential learning with the state of the art infrastructure.
- 2. To create a conducive environment for interdisciplinary research and innovation.
- 3. To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- 4. To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- 5. To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

QUALITY POLICY

Achieving Excellence in Techni-cal Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

CORE VALUES

Professionalism, Commitment, Integrity, Team Work, Innovation

RV COLLEGE OF ENGINEERING[®] (Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road

Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus of III & IV Semesters

2018 SCHEME

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

DEPARTMENT VISION

Imparting quality technical education through interdisciplinary research, innovation and teamwork for developing inclusive & sustainable technology in the area of Electronics and Communication Engineering.

DEPARTMENT MISSION

- To impart quality technical education to produce industry-ready engineers with a research outlook.
- To train the Electronics & Communication Engineering graduates to meet future global challenges by inculcating a quest for modern technologies in the emerging areas.
- To create centres of excellence in the field of Electronics & Communication Engineering with industrial and university collaborations.
- To develop entrepreneurial skills among the graduates to create new employment opportunities.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **PEO1.** To apply concepts of mathematics, science and computing to Electronics and Communication Engineering
- **PEO2.** To design and develop interdisciplinary and innovative systems.
- **PEO3.** To inculcate effective communication skills, team work, ethics, leadership in preparation for a successful career in industry and R & D organizations.

PROGRAM SPECIFIC OUTCOMES (PSOS)

PSO	Description
PSO1	Should be able to clearly understand the concepts and applications in the field of
	Communication/networking, signal processing, embedded systems and semiconductor
	technology.
PSO2	Should be able to associate the learning from the courses related to Microelectronics,
	Signal processing, Microcomputers, Embedded and Communication Systems to arrive at
	solutions to real world problems.
PSO3	Should have the capability to comprehend the technological advancements in the usage of
	modern design tools to analyze and design subsystems/processes for a variety of
	applications.
PSO4	Should possess the skills to communicate in both oral and written forms, the work
	already done and the future plans with necessary road maps, demonstrating the practice
	of professional ethics and the concerns for societal and environmental wellbeing.

Lead Society: Institute of Electrical and Electronics Engineers (IEEE)

Sl. No.	Abbreviation	Meaning		
1.	VTU	Visvesvaraya Technological University		
2.	BS	Basic Sciences		
3.	CIE	Continuous Internal Evaluation		
4.	SEE	Semester End Examination		
5.	CE	Professional Core Elective		
6.	GE	Global Elective		
7.	HSS	Humanities and Social Sciences		
8.	CV	Civil Engineering		
9.	ME	Mechanical Engineering		
10.	EE	Electrical & Electronics Engineering		
11.	EC	Electronics & Communication Engineering		
12.	IM	Industrial Engineering & Management		
13.	EI	Electronics & Instrumentation Engineering		
14.	СН	Chemical Engineering		
15.	CS	Computer Science & Engineering		
16.	ET	Electronics & Telecommunication Engineering		
17.	IS	Information Science & Engineering		
18.	BT	Biotechnology		
19.	AS	Aerospace Engineering		
20.	PH	Physics		
21.	СН	Chemistry		
22.	MA	Mathematics		

ABBREVIATIONS

INDEX

	III Semester				
Sl. No.	Course Code	Course Title	Page No.		
1.	18MA31B	Discrete and Integral Transforms	1		
2.	18BT32A	Environmental Technology	3		
3.	18EC33	Analog Microelectronic Circuits	5		
4.	18EC34	Analysis & Design of Digital Circuits	8		
5.	18ET35	Principles of Electromagnetic Fields	11		
6.	18EE36	Network Analysis	13		
7.	18DMA37 [#]	Bridge Course Mathematics	15		
8.	18HS38 [#]	Kannada Course	K1-K4		
		IV Semester			
Sl. No.	Course Code	Course Title	Page No.		
1.	18MA41B	Linear Algebra, Statistics and Probability Theory	17		
2.	18EC42	Engineering Materials	19		
3.	18EC43	Advanced Digital System Design using Verilog HDL	21		
4.	18EI44	Microprocessor & Microcontroller	24		
5.	18ET45	Signals and Systems	27		
6.	18EC46	Analog Integrated Circuits Design	29		
7.	18DCS48	Bridge Course C Programming	31		
8.	18HS49	Professional Practice-I Communication Skills	35		

RV COLLEGE OF ENGINEERING[®] (Autonomous Institution Affiliated to VTU, Belagavi) ELECTRONICS AND COMMUNICATION ENGINEERING

	THIRD SEMESTER CREDIT SCHEME						
Sl.	Course Code	Course Title	DoS	Credit	Alloca	ation	Total
No.	Course Code	Course The	D02	L	Т	Р	Credits
1.	18MA31B*	Discrete and Integral Transforms (Common to EC, EE, EI & ET)	Discrete and Integral Transforms (Common to EC, EE, EI & ET) MA		1	0	5
2.18BT32A**Environmental Technology (Common to EE, EC, EI, CS, ET & BT IS)BT		2	0	0	2		
3.	18EC33	Analog Microelectronic Circuits	EC	4	0	1	5
4.	18EC34Analysis & Design of Digital Circuits (Common to EC, EE, EI & ET)EC		4	0	1	5	
5.	18ET35	Principles of Electromagnetic Fields (Common to EC, EE & ET)	ET	3	0	0	3
6.	18EE36	Network Analysis (Common to EE, EC & ET)	EE	3	0	0	3
7.	18DMA37***	Bridge Course: Mathematics	MA	2	0	0	0
8.	8. 18HS38 [#] Kannada Course HSS		HSS	1	0	0	1
	Total Number of Credits 21 1 2 24					24	
	Total number of Hours/Week21+2***25						

*Engineering Mathematics - III

Sl. No	COURSE TITLE	COURSE CODE	PROGRAMMES
1.	Linear Algebra, Laplace Transform and	18MA31A	CS & IS
	Combinatorics		
2.	Discrete and Integral Transforms	18MA31B	EC, EE, EI & ET
3.	Engineering Mathematics –III	18MA31C	AS, BT, CH, CV, IM & ME

**

Sl. No	COURSE TITLE	COURSE CODE	PROGRAMMES
1.	Environmental Technology	18BT32A	EE, EC, EI, CS, ET & IS
2.	Biology for Engineers	18BT32B	BT & AS
3.	Engineering Materials	18ME32	ME, CH & IM
***	Bridge Course: Audit course for lateral ent	ry diploma students	
Sl. No	COURSE TITLE	COURSE CODE	PROGRAMS
1	Bridge Course Mathematics	18DMA37	AS, BT,CH, CV, EC, EE, EI,
			IM, ME &ET
2	Bridge Course C Programming	18DCS37	CS & IS

There are two text books prescribed by VTU for the Kannada Course:

1. Samskruthika Kannada (AADALITHA KANNADA);

2. Balake Kannada (VYAVAHARIKA KANNADA);

The first text book is prescribed for the students who know Kannada to speak, read and write (KARNATAKA STUDENTS). The second text book is for students who do not understand the Kannada language (NON-KARNATAKA STUDENTS)

RV COLLEGE OF ENGINEERING[®] (Autonomous Institution Affiliated to VTU, Belagavi) ELECTRONICS AND COMMUNICATION ENGINEERING

	FOURTH SEMESTER CREDIT SCHEME						
Sl.	Course Code	Course Title	POS	Credit	Alloca	tion	Total
No	Course Coue	Course The	BOS	L	Т	Р	Credits
1.	18MA41B*	Linear Algebra, Statistics and Probability Theory (Common to EC, EE, EI & ET)	MA	4	1	0	5
2.	18EC42**	Engineering Materials (Common to EC, EE, EI & ET)	EC	2	0	0	2
3.	18EC43	Advanced Digital System Design using Verilog HDL		3	0	1	4
4.	18EI44	Microprocessor & Microcontroller (Common to EI, EC, EE & ET)	EI	3	0	1	4
5.	18ET45	Signals and Systems (Common to ET, EC, EE & EI)	ET	3	1	0	4
6.	18EC46	Analog Integrated Circuits Design	EC	3	0	0	3
7.	18EC47	Design Thinking lab	EC	0	0	2	2
8.	18DCS48 ***	Bridge Course: C Programming	CS	2	0	0	0
9.	18HS49	Professional Practice-I Communication Skills (Common to all Programmes)	HSS	0	0	1	1
	Tot	al Number of Credits		18	2	5	25
	Total number of Hours/Week18+2***410+1						

* ENGINEERING MATHEMATICS – IV

Sl. No	COURSE TITLE	COURSE	PROGRAMMES
		CODE	
1.	Graph Theory, Statistics and Probability	18MA41A	CS & IS
	Theory		
2.	Linear Algebra, Statistics and Probability	18MA41B	EC, EE, EI & ET
	Theory		
3.	Engineering Mathematics –IV	18MA41C	AS, CH, CV & ME
**		•	

Sl. No	COURSE TITLE	COURSE CODE	PROGRAMMES
1.	Engineering Materials	18EC42	EC, EE, EI & ET
2.	Biology for Engineers	18BT42B	CS & IS
3.	Environmental Technology	18BT42A	CV, ME, IM, CH, BT
			& AS

*** Bridge Course: Audit course for lateral entry diploma students

Sl. No	COURSE TITLE	COURSE CODE	PROGRAMMES
1	Bridge Course Mathematics	18DMA48	CS & IS
2	Bridge Course C Programming	18DCS48	AS, BT, CH,CV,EC, EE,EI,IM, ME & ET

Note: Internship to be taken up during the vacation period after the 4th semester

	Semester: III						
	DISCRETE AND INTEGRAL TRANSFORMS						
	(Theory)						
9		r –	(Commo	n to EC, EE, El &	ET)	1	100 14 1
Cou	rse Code	:	18MA31B		CIE	:	100 Marks
Cree	dits: L:T:P	:	4:1:0		SEE	: 100 Marks	
Tota	al Hours	:	52L+261		SEE Duration	:	03 Hours
Cou	rse Learning O	€bje	ectives: The students	s will be able to			
1	Understand th	le e	xistence and basic co	oncepts of Laplace, I	-ourier and z - transfo	orm	S.
2	Demonstrate t	he	concepts of Laplace	transform to solve o	rdinary differential e	qua	tions.
3	Analyze the c	onc	ept of periodic phen	omena and develop	Fourier series.		
4	Solve differen	ice	equations; interpret	the physical signification of the set	ance of solutions.		
5	Use mathema	tica	I II tools to analyze	and visualize the ab	ove concepts.		
			T	Init I			10 Ung
Lon	laga Transform		L L) 1111-1			10 115
Exis	tence and uniqu	ı. Jen	ess of Laplace trans	form (LT) transfor	m of elementary fur	nctio	ons region of
conv	vergence Proper	rties	s - linearity scaling	s - domain shift dif	ferentiation in the s -		main division
by t.	differentiation	and	d integration in the	time domain. LT of	special functions - F	Perio	odic functions
(squ	are wave, saw-	too	th wave, triangular	wave, full & half	wave rectifier). He	avis	side unit step
func	tion, unit impu	ılse	function, t - shif	t property. Relevai	nt MATLAB comm	and	ls to develop
addi	tional insight in	to t	he concepts.				ľ
			Uı	nit — II			11 Hrs
Inve	Inverse Laplace Transform:						
Defi	nition, properti	es,	evaluation using d	ifferent methods. C	convolution theorem	(w	ithout proof),
prob	lems. Application	on 1	to solve ordinary lin	ear differential equa	tions. Relevant MA	ΓLA	AB commands
to develop additional insight into the concepts.							
_	Unit –III 11 Hrs						
Fou	rier Series:	. ,	· · · 1	11.C C D'''	1		C 1 C
Introduction, periodic function, even and odd functions. Dirichlet's conditions, Euler's formulae for							
Four	fier series, com	plex	x Fourier series, pro	blems on time peri	odic signals (square	wa	ve, half wave
recu MA	TI A B common	wa do t	o develop Fouries se	ries of functions	eries, Fourier cosine	ser	ies. Relevant
IVIA	I LAD Command	18 0	Uneverop Fouries se	it IV			10 Hrs
Fou	rier Transform	•	0				101115
Four	ier integral th	eor	em complex Four	ier transform Fou	rier sine transform	F	ourier cosine
trans	form propertie		linearity scaling t	ime-shift and modu	lation Convolution	, i theo	orem (without
proo	f), problems, P	arse	eval's identity. Rele	evant MATLAB cor	nmands to develop	add	itional insight
into	into the concepts.						
			U	nit –V			10 Hrs
Z-T	ransform:		_				
Intro	Introduction, z - transform of standard functions. Region of convergence. properties - linearity.						
scali	ng, shifting the	ore	m, initial and final	value theorems. Inv	erse z - transform us	sing	g power series
and	partial fraction	exp	ansions, convolutior	n theorem (without p	proof), problems. Ap	plic	cation to solve
diffe	rence equations	ari	sing in communication	on and control syste	ms. Relevant MATL	AB	commands to
deve	lop additional in	nsig	ght into the concepts				

Course	e Outcomes: After completing the course, the students will be able to			
CO1:	Understand the significance of fundamental concepts of transforms, inverse transforms and			
	periodic phenomena.			
CO2:	Demonstrate the properties of transforms and inverse transforms, graphical representation of			
	various wave forms.			
CO3:	Evaluate transforms of special functions, develop Fourier series of various type of functions.			
CO4:	Apply transform techniques to solve differential equations and difference equations occurring			
	in engineering problems.			

Reference Books

KUUU	AICC DOOKS
1	Higher Engineering Mathematics, B.S. Grewal, 44 th Edition, 2015, Khanna Publishers,
-	ISBN: 978- 81-933284-9-1.
2	A Text Book of Engineering Mathematics, N.P. Bali & Manish Goyal, 7th Edition, 2010,
2	Lakshmi Publications, ISBN: 978-81-7008-992-6.
3	Advanced Engineering Mathematics, Erwin Kreyszig, 9 th Edition, 2007, John Wiley & Sons,
3	ISBN: 978-81-265-3135-6.
4	Signals and systems, Simon Haykins and Barry Van Veen, 2 nd Edition, 2003, John Wiley &
4	Sons. ISBN: 9971-51-239-4.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	-	-	-	-	-	-	-	1	-	1		
CO2	3	2	2	1	-	-	-	-	-	1	-	1		
CO3	3	3	2	2	2	-	-	-	-	1	-	1		
CO4	3	3	3	3	2	-	-	-	-	1	-	1		

High-3: Medium-2: Low-1

Semester: III												
	ENIVIRONMENTAL TECHNOLOGY											
(Theory)												
(Common to EC,EE,ET & EI)												
Cour	Course Code : 18BT32A CIE : 50											
Cred	lits: L:T:P	:	2:0:0		SEE	:	50					
Tota	l Hours	:	26L		SEE Duration	••	02 Hour	rs.				
Cour	rse Learning Ob	oje	ctives: The students	s will be able to								
1	1 Understand the various components of environment and the significance of the sustainability of											
	healthy environ	nm	ent.									
2	Recognize the	i	mplications of dif	ferent types of t	he wastes produ	ced	by natu	ıral and				
	anthropogenic activity.											
3	Learn the strate	gi	es to recover the end	ergy from the waste	2.							
4	Design the mod	lel	s that help mitigate	or prevent the neg	ative impact of pro	pos	sed activit	ty on the				
	environment.											
	•											
			τ	J nit-I				05 Hrs				
Intro	oduction: Envir	on	ment - Component	s of environment,	Ecosystem. Impa	act	of anthro	opogenic				
activ	ities on enviro	nn	nent (agriculture,	mining and trans	sportation), Envir	onn	nental ed	lucation,				
Envi	ronmental acts &	re	egulations, role of n	on-governmental o	rganizations (NGO	s),	EMS: ISO	D 14000,				
Envi	ronmental Impac	t A	Assessment. Enviror	mental auditing.								
			U	nit – II				06 Hrs				

Environmental pollution: Air pollution – point and non-point sources of air pollution and their controlling measures (particulate and gaseous contaminants). Noise pollution, Land pollution (sources, impacts and remedial measures).

Water management: Water conservation techniques, water borne diseases & water induced diseases, arsenic & fluoride problems in drinking water and ground water contamination, advanced waste water treatment techniques.

	l	Unit –III			06 Hrs
Waste management, S	olid waste m	anagement, e	e waste	management & biomedi	cal waste
management – sources,	characteristics	& disposal	methods.	Concepts of Reduce,	Reuse and
Recycling of the wastes.					
D D'00	C	. 1	0	. 1	c

Energy – Different types of energy, conventional sources & non-conventional sources of energy, solar energy, hydro electric energy, wind energy, Nuclear energy, Biomass & Biogas Fossil Fuels, Hydrogen as an alternative energy.

Unit –IV	05 Hrs
Environmental design: Principles of Environmental design, Green buildings, green	materials,
Leadership in Energy and Environmental Design (LEED), soilless cultivation (hydroponics), organic
farming, use of biofuels, carbon credits, carbon foot prints, Opportunities for green te	echnology
markets, carbon sequestration.	

Unit -V04 HrsResource recovery system: Processing techniques, materials recovery systems, biological conversion
(composting and anaerobic digestion). Thermal conversion products (combustion, incineration,
gasification, pyrolysis, use of Refuse Derived Fuels). Case studies of Biomass conversion, e waste.

Course	Course Outcomes: After completing the course, the students will be able to													
CO1:	Identify the components of environment and exemplify the detrimental impact of													
	anthropogenic activities on the environment.													
CO2:	Differentiate the various types of wastes and suggest appropriate safe technological methods													
	to manage the waste.													
CO3:	Aware of different renewable energy resources and can analyse the nature of waste and													
	propose methods to extract clean energy.													
CO4:	Adopt the appropriate recovering methods to recover the essential resources from the wastes													
	for reuse or recycling.													

Reference Books

Iterere	nee boons
1	Introduction to environmental engineering and science, Gilbert, M.M. Pearson Education. India: 3rd Edition (2015). ISBN: 9332549761, ISBN-13: 978-9332549760.
2	Environmental Engineering, Howard S. Peavy, Donald R. Rowe and George Tchobanoglous. McGraw Hill Education, First edition (1 July 2017). ISBN-10: 9351340260, ISBN-13: 978- 9351340263
3	Environmental Science, G. Tyler Miller (Author), Scott Spoolman (Author), – 15 th Edition, Publisher: Brooks Cole, ISBN-13: 978-1305090446 ISBN-10: 130509044
4	Environment Management, Vijay Kulkarni and T. V. Ramachandra 2009 TERI Press; ISBN: 8179931846, 9788179931844

Continuous Internal Evaluation (CIE); Theory (50 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 15 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 30 marks each and the sum of the marks scored from three tests is reduced to 25. The marks component for experiential learning is 20.

Total CIE is 15(Q) +30(T) +05(EL) =50 Marks.

Semester End Evaluation (SEE); Theory (50 Marks)

SEE for 50 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 10 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 8 marks adding up to 40 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	1						3		2	-		-		
CO2	2	3	3	2	1		3	3	2	-	2	1		
CO3		3	1	3		2	3	3	2	-	1	2		
CO4	1		2	1	3		2		2	-		2		

High-3: Medium-2 : Low-1

Semester: III														
ANALOG MICROELECTRONIC CIRCUITS														
	<u> </u>	1	105022	(Theory & Practice)	CIE	1	100 50 14 1							
Cou	rse Code	:	18EC33		CIE	:	100+50 Marks							
Crec	lits: L:T:P	:	4:0:1		SEE	:	100+50 Marks							
Iotal Hours : DUL + 33P SEE Duration : 03+03 Hours														
Course Learning Objectives: The students will be able to														
 Apply the knowledge of BJTs and MOSFETs to design practical electronic circuits. Design and conduct experiments using PITe/MOSEETs/On Ample and to engly and integrate 														
2	2 Design and conduct experiments using BJTs/MOSFETs/Op Amps and to analyze and interpret the results.													
3	3 Design electronic sub systems such as feedback amplifiers, oscillators, power amplifiers to meet the required specifications.													
4	Communicate subsystems us	e an sing	d discuss effect BJTs, MOSFE	ively the technical deta Is and Op Amps.	ails with reference	; to	analog electronic							
5	Use of mather	mat	ical IT tools to a	nalyze and visualize th	e above concepts.									
	I			J	*									
				Unit-I			10 Hrs							
Devi Biasi modu	MOS Field Effect Transistors (MOSFETS): Device structure and physical operation, current voltage characteristics, MOSFET circuits at dc, Biasing in discrete MOS amplifier circuits, small signal operation and models, channel length modulation, transconductance, MOSFET as an amplifier – CS stage, CS stage with degeneration, CG and CD stages discrete amplifier design problems													
			r r	Unit – II			10 Hrs							
BJT arran smal early desig	Bipolar Junction Transistors (BJTs): BJT circuits at dc, Biasing in discrete BJT amplifier circuits – classic discrete circuit bias arrangement, two power supply version, collector to base bias, biasing using constant current source, small signal operation and models – re model, hybrid π model, collector current and transconductance, early effect, BJT as an amplifier – CE stage, CE stage with degeneration, CC stage, discrete amplifier													
				Unit –III			10 Hrs							
High MOS ampl Curr Basic using	High frequency model of MOSFET and BJT : MOSFET / BJT internal capacitors and high frequency model, frequency response of CS/ CE amplifier, Current sources and current mirrors : Basic current mirror, bipolar current mirror with base current compensation, Wilson current mirror using BIT Wilson MOS mirror Widlar current source Cascode current mirror design problems													
				Unit –IV			10 Hrs							
Operational Amplifiers: Effect of finite open loop gain, finite bandwidth, large signal operation of opamps - slew rate, output voltage saturation, output current limits, Linear Opamp circuits – Non inverting and inverting amplifiers, Difference and Instrumentation amplifiers.														
shift	and Wien bride		cuits - Schinitt I scillator I C tur	ed oscillators and crust	nators – Opamp R	.U (on rectifiers							
SIIIIt		500	semator, LC tull	Unit –V	ai oscillators, prec	1310	10 Hrs							
Feed Prop of fe stage	back Amplifie erties of negative edback with or es, class A, class	e rs a ve f opar s Al	and Large Signa eedback, the fou nps (Voltage se B, class B circui	al Amplifiers: ar basic feedback topolo eries and Voltage shu ts, thermal resistance an	ogies, practical ciro nt feedbacks), cla nd heat sinking of	cuit ssif	Initial of when bridge oscillators, be tuned oscillators and crystal oscillators, precision rectifiers. Unit –V 10 Hrs Feedback Amplifiers and Large Signal Amplifiers: Properties of negative feedback, the four basic feedback topologies, practical circuits of the two types of feedback with opamps (Voltage series and Voltage shunt feedbacks), classification of output stages, class A, class AB, class B circuits, thermal resistance and heat sinking of power transistors.							

Practical's:

- 1. Design & testing of half wave / full wave rectifier circuits, and Zener diode voltage regulator.
- 2. Design &testing of (a) Inverting amplifier (b) Non inverting amplifier(c) Summing circuit (d) Comparator and (e) Schmitt trigger, using operational amplifier.
- 3. Static characteristics of NMOS transistor
- 4. Design and testing of RC phase shift and Wien bridge oscillator circuits using operational amplifier.
- 5. Design & testing of an RC coupled amplifier using BJT in CE configuration.
- 6. Design & testing of Darlington emitter follower circuit with and without boot strapping.
- 7. LC Oscillators: Hartley and Colpitts oscillators using BJT
- 8. Design and testing of class B and class AB power amplifier circuits.

Course	Course Outcomes: After completing the course, the students will be able to											
CO1:	Explore the principles associated in designing amplifiers, oscillators and rectifiers.											
CO2:	Analyse discrete analog circuits based on BJTs, MOSFETS and Opamps.											
CO3:	Evaluate the performance parameters of discrete analog circuits based on standard											
	specifications.											
CO4:	Design discrete analog circuits based on BJTs, MOSFETS and Opamps.											

Ref	erence Books
1	Microelectronic Circuits Theory and Applications, Adel S Sedra, & Kenneth C Smith, adapted by A Chandorkar, International version, 5 th Edition, 2009, Oxford University Press, ISBN: 0195338839.
2	Fundamentals of Microelectronics, Behzad Razavi, 2 nd Edition, 2013, Wiley, ISBN-10: 1118156323
3	Electronic Devices and Circuits, Jacob Millman, Christos C Halkias & Satyabrata Jit, 2 nd Edition, 2008, Tata McGraw Hill publication,. ISBN: 0070634556
4	Electronic Devices and Circuit Theory, Robert L Boylestad & Louis Nashelsky, 10 th Edition, 2008, PHI publication, ISBN: 9788131725290.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	3	3	-	1	2	2	-	3	-	-	2			
CO2	3	3	3	-	1	2	2	-	3	-	-	2			
CO3	3	3	3	2	1	2	2	2	3	2	-	2			
CO4	3	3	3	2	1	2	2	2	3	2	-	2			

High-3: Medium-2 : Low-1

Semester: III												
			ANALYSIS & DE	ESIGN OF DIGITA	AL CIRCUITS							
(Theory & Practice)												
(Common to EC, EE, EI & ET)												
Cou	rse Code	:	18EC34		CIE	:	100+50 Marks					
Cred	lits: L:T:P	:	4:0:1		SEE	:	100+50 Marks					
Tota	l Hours	:	52L + 33P		SEE Duration	:	03+03 Hours					
Course Learning Objectives: The students will be able to												
1	1 Understand various types of logic families; explain the concept logic functions, SOP, POS and canonical expressions, simplification techniques.											
2 Design and use standard combinational circuit building blocks: multiplexers, demultiplexers,												
	binary decoders and encoders, decoders, Arithmetic Circuits, code converters											
3	Implement d	iffer	ent sequential circ	uits using various	flip flops to realiz	e s	tate machines for					
4	given timing	beha	WIOR.	1	0 1	•						
4	Analyze proc		or organization and	design arithmetic	& logic unit by us	ing	combinational &					
	sequential ch	cuit										
			1	Unit-I			10 Hrs					
Digit	al Integrated	Cir	cuits: Digital IC	Logic Families: T	ransistor-Transisto	r L	ogic (Totem pole					
TTL), Emitter Cou	pled	Logic (ECL), Com	olementary MOS (C	CMOS) Logic.							
Chai	racteristics an	d Pe	erformance Param	eters of CMOS In	verter: Introductio	n, I	Propagation delay,					
Sour	cing, Sinking,	Fan	-in, Fan-out, V _{IH} , `	V_{OH} , V_{IL} , V_{OL} and	corresponding cur	ren	ts, Noise margin,					
Powe	er dissipation,	pow	ver consumption, p	ower-delay produc	t as a figure of r	ner	it. Simplification					
Tech	niques:5-varia	able	K-Map, Quine-Mc	Clusky Minimizatio	n, Numerical Exan	nple	es.					
				nit – II			11 Hrs					
Com	binational Ci	rcuit	s Design and Anal	ysis: Decedera Erecde	Multinlanana a	ا، م	De Multiglevere					
Paral	ity encoder	and	Magnitude comp	Decouers, Elicoue	circuits and co	unu 1⊿	De-Multiplexers,					
Mult	inlexers and D	ecod	lers Concepts of riv	nle carry and carry	look ahead adders	R	CD adder					
Ivituit	ipiexeis und D	0000	U	nit –III	Took aneud adders	, D	11 Hrs					
Sequ	ential Circuit	s De	sign and Analysis	·I : Introduction, La	tches and Flip Flor	os.	Triggering of Flip					
Flops	s, Flip Flop E	Excita	ation Tables, Flip-	Flop conversions,	Registers, Shift R	egi	sters and Various					
Oper	ations, Ring co	ounte	ers, Johnson counte	rs, Ripple Counters		U						
			U	nit –ĪV			10 Hrs					
Sequ	ential Circui	ts D	esign and Analysi	s II: Introduction,	FSM (Melay and	Mo	oore), Analysis of					
Cloc	ked Sequentia	al C	Circuits, State tab	le and Reduction	, Design of syr	ich	ronous Counters,					
Prog	rammable cour	nters	. Design with State	Equations, Sequence	ce generators (PRB	S).						
D •	e D		L L	nit –V			10 Hrs					
Desig	gn of a Proces	sor	U nit: Onconinction Arit	hundia Lasia Unit	Design of Arithm	4:	a Unit Design of					
	uuction, Proce	of	Organization, And	innetic Logic Unit,	, Design of Anum	leti hift	or The Complete					
Proce	essor unit and	on-ci	ode generation	de unit, Status Reg	dister, Design of 5		er, The Complete					
Prac	tical's	ope	Sue generation.									
Practical's: Note: a) Out of tan experiments, for seven experiments manual will be provided												
Note	Fach of these would also include practice experiments. Last three											
Note	Each of these would also include practice experiments. Last three											
Note	Each of the experime	i exp hese nts a	would also include re case studies and	practice experiment are compulsory.	ts. Last three							
Note	Each of the experime b) Practice of the big	i exp hese nts a quest	would also include re case studies and ions: Students shou	practice experiment are compulsory. Ild design the exper	is. Last three	nd						
Note	Each of the experime b) Practice of practice	hese nts a quest the la	would also include re case studies and ions: Students shou ab.	practice experiments manual practice experiment are compulsory.	is. Last three	nd						
Note 1	Each of the experime b) Practice of practice . a) Realization	hese nts a quest the la	would also include re case studies and ions: Students shou ab. f Binary Adder and	practice experiments manual practice experiment are compulsory. Ild design the exper	in will be provided. ts. Last three iment in advance a niversal gates and l	nd [C-	7483.					

value of Count (correction circuit).
2. a) Arithmetic circuits- Realize the given Boolean expressions using
MUX/DEMUX using IC-74153, IC-74139.
b) Practice Question: Realize FA/FS using MUX/DEMUX.
3. a) Code convertors i) Binary to Gray ii) BCD to Excess-3 using Decoder/demux.
b) Practice Question i) Binary to excess-3 using IC-7483 ii) Gray to
Binary using Decoder
4. a) Design a two-bit magnitude comparator using logic gates.
b) Drive the LED Display using IC-7447.
c) Practice Question: Design an n-bit comparator using IC-7485(make use of cascading
facility)
5. a) Design a Master JK-FF using NAND gates. Also design D-FF and T-FF using same.
Observe the waveform using CRO.
b) Practice Question: Design a Master Slave JK-FF using P-Spice simulation
software and observe the waveforms.
6. a) Realization of asynchronous mod-n counter using IC-7490, IC-7493.
b) Using IC-7495 perform SISO, SIPO, PISO, PIPO, Shift left operations.
c) Design ring and Johnson counter using IC-7495
b) Practice Question: Design mod-99 counter using IC-7490.
7. a) Design of synchronous 3-bit up/down counter using IC-7476/IC-74112.
b) Design a synchronous counter to count given sequence.
c) Using presettable counters IC-74192/193 perform mod-n counts.
d) Practice Question: Design a synchronous 4-bit up/down counter using P-Spice
simulation software and observe the waveforms.
8. Design a sequence generator using a shift register to obtain a sequence
Y = 100010011010111

9. Using IC-74192/193, drive the LED display and generate a given sequence

10. Design a 2-bit ALU operation using P-Spice simulation software and observe the waveforms.

Course	e Outcomes: After completing the course, the students will be able to										
CO1:	Apply the knowledge of digital electronics to construct combinational and sequential sub-										
	systems useful for digital system designs.										
CO2:	Develop a solution to real-life problems based on the knowledge of digital electronics.										
CO3:	Implement the engineering solutions with the help of modern engineering tools, hardware										
	design and practices.										
CO4:	Analyze and update the knowledge for obtaining sustainable solutions for technological										
	enhancements in the field of digital electronics.										

Reference Books

Iterere	nee Doords
1	Digital Logic and Computer Design, M. Morris Mano, Pearson Education Inc., 13 th Impression, 2011, ISBN: 978-81-7758-409-7.
2	Fundamentals of Logic Design, Charles H. Roth (Jr.), West publications, 4th Edition, 1992, ISBN-13: 978-0-314-92218-2.
3	Digital Fundamentals, Thomas Floyd, 11 th Edition, Pearson Education India, ISBN 13: 978-1-292-07598-3, 2015.
4	Digital Principle and Design, Donald D. Givone, Mc Graw-Hill, ISBN: 0-07-119520-3 (ISE), 2003.
5	Digital Principles and Applications, Albert Paul Malvino and Donald P Leach, 7 th Edition,

Tata McGraw Hill Education Private Limited, 2011, ISBN (13 digit): 978-0-07-014170-4 and ISBN (10 digit): 0-07-014170-3

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks are considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	2	1	1	1	-	-	-	-	2	1	3			
CO2	3	2	3	2	3	3	2	2	2	2	1	2			
CO3	3	3	3	3	3	3	3	3	3	2	3	3			
CO4	3	3	3	3	1	3	-	-	-	1	1	3			

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

High-3: Medium-2: Low-1

	Semester: III											
-	PRINCIPLES OF ELECTROMAGNETIC FIELDS											
(Theory)												
(Common to EC, EE & ET)												
Cou	rse Code	:	18ET35		CIE	:	100 Marks					
Crea	lits: L:T:P	••	3:0:0		SEE	:	100 Marks					
Total Hours: 39LSEE Duration: 3.00 Hours												
Cou	rse Learning (bj	ectives: The student	s will be able to			·					
1	Apply knowle	edg	e of mathematics, se	cience, and engineer	ing basics to the an	alys	is and design of					
	electrical systems involving electric and magnetic fields as well as electromagnetic waves.											
2	Interpret and	app	ly the concepts which	ch comes in Antenna	and RF communica	tio	1.					
3	Develop and	desi	ign mathematical me	odels of communicat	tion channels.							
				J nit-I			07 Hrs					
Elec	trostatics 1: ('ou]	lomb's law, illustra	tive examples, Elec	tric Field Intensity,	Ap	plications (field					
due	to Line charge	di	stribution, Surface	charge distribution-	Sheet, Circular rin	g, d	lisk), Illustrative					
exan	nples. Flux, Flu	x d	ensity, Gauss's Law	, Divergence Theore	m(qualitative treatm	ent), Application of					
Gaus	ss's Law (Field	au	ie to Continuous L	ine Charge, Sheet G	Charge, Metal Sphe	ere,	Spherical shell)					
mus	trative example	s.	T.	sit II			00 Hrs					
Floo	tractation 2. E	laat	UI ria Dotantial Dalati	III – II on between E and V	Applications (Fis)	1.0	nd notantial dua					
to	ino chorgo dist	ribr	tion Surface charge	on between E and V	(, Applications (Field)) Energy Density i	n a	no potential due					
	trative examp		Energy Density	Boundary Condi	tions (dielectric-di	n a elec	tric dielectric-					
cond	luctor) Poisson	ies. n's	and Laplace's Fau	ations Applications	of Laplace's and	Pois	son's Faultions					
(Diff	ferent capacitor	s).	Illustrative examples	S.	or Euplace 5 and		Son's Equations					
(211		.,,.	Ur	nit –III			09 Hrs					
Mag	neto Static Fi	eld	s-1: Current, Curre	nt density, Biot -Sa	wart Law, Applicat	ions	s (Infinite linear					
cond	uctor, current	carı	ying in loop, solen	oid), Magnetic Flux	and Flux Density,	An	pere's Circuital					
Law	, Stroke's theor	em	(qualitative treatme	nt), Applications (In	finite line current, sl	heet	current, coaxial					
trans	mission line), I	Prob	olems.									
			Ur	nit –IV			08 Hrs					
Mag	neto Static F	ield	s-2: Magnetic pote	entials, Magnetic er	nergy, Magnetic Bo	unc	lary Conditions,					
Forc	e due to magne	tic	fields(Charged parti	cle, Current element), Lorentz Force equ	atic	on, Inductors.					
Max	well's Equation	ns:	Introduction, Farac	lay's Law, Transfor	mer and Motional E	MF	s, Displacement					
Curr	ent, Maxwell's	S E	quations in Final	Forms, Time-Varyi	ng Potentials, 11m	e-H	armonic Fields,					
mus	trative example	s	TI	n:4 V/			07 II.ma					
Floo	tromagnotic V	Vor	Ul	mi – v Vavas in Canaral W	Vava Propagation in	<u>, T</u>	U/ HIS					
Plan	e Wayes in Lo	v av sele	s Dielectrics Plan	e Waves in General, V	ave Flopagation II ace Plane Waves it	LC G	and Conductors					
Pow	er and the Po	vnti	ng Vector. Numer	icals. Reflection of	a Plane Wave at	. O. No	rmal Incidence					
Illus	trative example	s.				1,0						
Cou	rse Outcomes:	Af	ter completing the	course, the student	s will be able to							
COI	• Evploin fu		. 0	,								
	EXPLAINING	nda	mental laws govern	ing electromagnetic	fields and evaluate t	he 1	ohysical quantiti					

CO3:	Design electromagnetic energy storage devices like capacitor, inductor which are frequently used in electrical systems.
CO4:	Deduce and justify the concepts of electromagnetic waves, means of transporting energy from
	two different medium.

Reference Books

1.	Elements of Electromagnetics, Matthew N O Sadiku, Oxford University Press, 4th Edition, 2007,
	ISBN-13: 978-0195300482.
2.	Engineering Electromagnetics, William H. Hayt Jr. and John A. Buck , Tata McGraw Hill, 6 th
	Edition, 2001, ISBN: 978-0071089012.
3.	Electromagnetic Waves and Radiating Systems, Edward C. Jordan and Keith G. Balmain, Prentice
	Hall of India, 2 nd Edition, 1968. Reprint 2002.
4.	Electromagnetics with Applications, John Krauss and Daniel A. Fleisch, McGraw Hill, 5th
	Edition 1999 ISBN-10:0072899697/ISBN-13:978-0072899696

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping														
CO/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
PO															
CO1	3	2	-	-	-	-	-	-	-	1	-	1			
CO2	2	2	2	1	-	-	-	-	-	1	-	1			
CO3	1	3	2	2	2	-	-	-	-	1	-	1			
CO4	2	3	3	3	2	-	-	-	-	1	-	1			

High-3: Medium-2: Low-1

				Semester: III								
NETWORK ANALYSIS												
	(Theory)											
G	(Common to EE, EC & ET)											
Cou	rse Code	:	18EE36	CIE		100 Marks						
Cree	Oreanis: L:1:r : 5:0:0 SEE The LW 201											
Tota	Total Hours : 39L SEE Duration : 3.00 Hours											
Course Learning Objectives:												
1	electrical circ	cuits	e of mathematics,	science, and engineering to the	e analysis	and design of						
2	Apply the lo theorems and	oop l cor	& nodal analysis t acept of dot convent	o solve networks and complex on used in practice.	networks	using network						
3	Analyze unb	alar	nced loads connect	ed to balanced three-phase su	pply and	understand the						
4	Find the time		stants, initial and fi	nal values, and complete response	ses for RLC	C circuits under						
-	ac and dc exc	itati	ons.									
			1	Init-I		08 Hrs						
Prac	tical sources	SOII	rce_transformation	source shifting Loop and N	ode analys	sis with linear						
depe	ndent and inde	pen	dent sources for DC	and AC networks. Principle of d	luality.							
			U	nit — II		08 Hrs						
Netv	vork Theorem	s:										
Supe	erposition, Rec	cipro	ocity, Thevenin's,	Norton's, Maximum Power	transfer ar	nd Millman's						
theo:	rems.	nali	reis of coupled circu	its problems on the above series	c and naral	la circuita						
Du	convention. A	mary	Ih	nit –III	s and parai	08 Hrs						
Poly	phase Circuits	s:	C.			00 1115						
Anal	lysis of unbalar	nced	loads connected to	balanced three-phase supply, neu	tral shift.							
Two	port network	s:										
Ζ, Υ	, ABCD and H	ybri	d parameters, their i	nter relationship and numerical p	roblems							
			U	nit –IV		08 Hrs						
Reso	onance in Netv	wor	ks:									
Serie	es and parallel i	reso	nance, Q-factor, Bai	idwidth. Response by varying	f, L, C.							
I rai	nsient Benavi	lor	and Initial Cond	itions:	ntation	Evaluation of						
initia	al and final con	ditio	ons in R-L R-C an	a R-L-C Circuits for DC and A	excitation	svaluation of						
miner		unn		$\frac{1}{1}$ nit $-V$	e exertation	08 Hrs						
Lap	lace Transform	mati	ion and Applicatio	ns: Definition. Laplace and inve	rse Laplac	e transforms of						
stand	lard functions.	shi	fting theorem. Way	eform synthesis, initial and final	value the	orems. Impulse						
function, Convolution theorem, Network functions of single port & two port networks-Driving point												
& tra	ansfer functions	s (in	nmetence function).									
Cou	rse outcomes:	On	completion of the c	ourse, the student should have ac	quired the	ability to						
CO	Understand	l the	e basic concepts of hesis.	circuits, theorems, three phase	unbalance	ed circuits and						
CO2	Apply the	basi	c concepts and solv	e circuits with DC or AC excita	ation and c	oupled circuits						
	using theor	ems	and transformation	S		_						
CO3	: Compare th	he s	teady state and tran	sient response of a circuit through	gh applicat	ion of inverse						

CO3: Compare the steady state and transient response of a circuit through application of transformation and shifting theorems
 CO4: Design and implement a circuit as per the given specifications and constraints.

Refere	ence Books
1	Network Analysis, M.E Van Valkenberg, , 3 rd Edition, Reprint 2002, PHI, <i>ISBN</i> 81-7808-729-42.
2	Engineering Circuit Analysis, Hayt, Kemmerly and Durbin, 6 th Edition, 2002, TMH, <i>ISBN</i> -10: 0071122273.
3	Electric circuits, Joseph Edminister and Mahmood Nahvi, 3 rd Edition,2001, TMH, ISBN:0074635913
4	Network Theory, K Channa Venkatesh, D Ganesh Rao, 1 st Edition, Pearson education, 2012, ISBN-13- 9788131732311

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	2	1	1	1	1	1	-	2	2	-	1		
CO2	2	2	2	2	1	1	1	-	2	1	-	1		
CO3	3	3	2	2	2	1	1	-	2	2	-	1		
CO4	3	3	2	1	1	1	1	-	2	1	-	1		

High-3: Medium-2 : Low-1

Semester: III										
	BRIDGE COURSE MATHEMATICS									
(Common to all branches)										
Course Code:18DMA37CIE:50 Marks										
Cred	lits: L:T:P :	2:0:0		SEE	: 50 Marks					
Audi	it Course	1		SEE Duration	:	02 Hours				
Cour	rse Learning Obje	ectives: The students	s will be able to			I				
1	Understand the c	concept of functions	s of several variable	es, types of derivativ	/es	involved with				
	these functions and its applications, approximate a function of single variable in terms of									
	infinite series.		1 (* 11 11		C					
2	Acquire concepts	s of vector functions	s, scalar fields and d	ifferential calculus o	f ve	ctor functions				
	in Cartesian coor	dinates.	• • • •	· · · ·	1					
3	Explore the pos	sibility of finding	approximate solutio	ons using numerical	m	ethods in the				
	absence of analyt	tical solutions of var	ious systems of equa	tions.		1 .*				
4	Recognize linear	differential equation	is, apply analytical to	echniques to compute	e so	lutions.				
5	Gain knowledge	of multiple integrals	and their application	1S.						
0	Use mathematica	I II tools to analyze	and visualize the ab	ove concepts.						
		Т	Init-I			05 Hrs				
Diffe	rential Calculus:									
Taylo	or and Maclaurin s	series for function of	f single variable. Par	tial derivatives – Int	rod	uction, simple				
probl	ems. Total derivat	ive, composite funct	ions. Jacobians – sin	nple problems.						
		Uı	nit — II			05 Hrs				
Vect	or Differentiation		1 1 1		1.	/ 1 ·				
Intro	duction, simple pro	oblems in terms of v	elocity and accelera	tion. Concepts of gra		nt, divergence				
- 501		Lion, cun – motatio	nit –III	ind Laplacian, simple	- pro	06 Hrs				
Diffe	rential Equations	<u> </u>				001115				
High	er order linear d	lifferential equation	s with constant co	efficients, solution	of	homogeneous				
equa	tions - Compleme	entary functions. No	on homogeneous eq	uations -Inverse dif	fere	ential operator				
meth	od of finding partie	cular integral based	on input function (fo	rce function).						
		U	nit –IV			05 Hrs				
Num	erical Methods:	nd transcondental a	austions Intermod	ioto volvo mecnostre	No	uton Donhoon				
meth	od Solution of fir	ind transcendental e	ifferential equations	- Taylor series and	∆ th	order Runge-				
Kutta	methods. Numer	rical integration – S	Simpson's 1/3 rd 3/8	th and Weddle's ru	les.	(All methods				
with	out proof).					(1.111.1110.110.110				
	Unit –V 05 Hrs									
Mult	iple Integrals:									
Evalu	Evaluation of double integrals, change of order of integration. Evaluation of triple integrals.									
Appl	Applications – Area, volume and mass – simple problems.									
Cours	Course Outcomer After completing the second distribute "111 11 4									
COUL COL	• Understand the	e concept of partia	l differentiation do	will be able to uble integrals vector	or c	lifferentiation				
	solutions of high	ther order linear diff	erential equations an	d requirement of nur	neri	cal methods.				
CO2	: Solve problem	s on total derivativ	es of implicit funct	ions, Jacobians, ho	mog	geneous linear				
	differential equ	ations, velocity and	acceleration vectors.	· · · ·		- 				
CO3	CO3: Apply acquired knowledge to find infinite series expansion of functions, solution of non-									

CO3: Apply acquired knowledge to find infinite series expansion of functions, solution of non-homogeneous linear differential equations and numerical solution of equations.

CO4:	Evaluate triple integrals, area, volume and mass, different operations using del operator on
	scalar and vector point functions, numerical solution of differential equations and numerical
	integration.

Reference Books

101010	
1	Higher Engineering Mathematics, Khanna Publishers, B.S. Grewal, 44 th Edition, 2015, ISBN: 978-81-933284-9-1.
2	Higher Engineering Mathematics, B.V. Ramana, 11 th Edition, 2010, Tata McGraw-Hill, ISBN: 978-0-07-063419-0.
3	A Text Book of Engineering Mathematics, N.P. Bali & Manish Goyal, Lakshmi Publications, 7 th Edition, 2010, ISBN: 978-81-31808320.
4	Advanced Engineering Mathematics, Erwin Kreyszig, John Wiley & Sons, 10 th Edition, 2016, ISBN: 978-0470458365.

Continuous Internal Evaluation (CIE); Theory (50 Marks)

CIE is executed by way of quizzes (Q) and tests (T). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. The two tests are conducted for 30 marks each and the sum of the marks scored from two tests is reduced to 30. **Total CIE is 20(Q) + 30(T) = 50 Marks.**

Semester End Evaluation (SEE); Theory (50 Marks)

SEE for 50 marks is executed by means of an examination. The Question paper for the course consists of five main questions, one from each unit for 10 marks adding up to 50 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	Semester: III								
	VYAVAHARIKA KANNADA								
(Common to all branches)									
Course	Code	:	18HS38		CIE	:	50 Marks		
Credits :	: L:T:P	:	1:0:0		SEE	:	50 Marks		
Total H	ours	:	16Hrs		CIE Duration	:	90 Minutes		
Course	Learning O	bje	ctives of Vyavahar	ika Kannada: The s	tudents will be able t	0			
1 M	Iotivate stud	ent	s to learn Kannada l	anguage with active i	involvement.				
2 L	earn basic co	m	nunication skills in	Kannada language (V	/yavaharika Kannada	a).			
3 Ir	nportance of	lea	arning local languag	e Kannada.					
	<u>v</u>	YY.	AVAHARIKA	KANNADA (B	ALAKE Kannad	da)	<u>.</u>		
		((to those studen	ts who does not l	know Kannada)				
				Unit-I			4Hrs		
Paricha	ya(Introduc	tio	n):						
Necessit	y of learning	; lo	cal language, Tips to	b learn the language v	with easy methods, H	lint	s for correct and		
polite co	nversation, l	His	tory of kannada lang	guage.					
17 1				Jnit – 11			4Hrs		
Kannad	a alphabtet	s ai	Mannada strass	lattare (vattakehara)) Kannada Khagu	mit	ha Pronunciation		
memoris	ation and us	ne, age	of the Kannada lett	ers), Kalillada Kilagi		na, i fonunciation,		
memorie	anon and us	uge	U III III III III III III III III III I	nit – III			4Hrs		
Kannad	a vocabular	v f	or communication						
Singular	and Plural i	iou	ns, Genders, Interro	gative words, Anton	yms, Inappropriate p	oror	nunciation, Number		
system,	List of veget	abl	es, Fractions, Menu	of food items, Name	es of the food items,	wo	rds relating to time,		
words re	elating to d	irec	tions, words relating	ig to human's feelin	gs and emotion, Par	ts c	of the human body,		
words re	elating to rela	tio	nship.	T •4 TT 7			477		
77 1		•		nit –I v			4Hrs		
Kannad	a Grammar	' in	Conversations:		diastings and its m	~ ~ ~	. Vanka Advanka		
Nouns,	pronouns, C	jse itiz	of pronouns in K	annada sentences, A	la communicative co	sage	e, verbs, Adverbs,		
Activitie	s in Kannad	a N	Jocabulory Conversion	sation		inci	ices ili kaillaua.		
11011/1110	in Human	,	ocuculory, conven						
Course	Outcomes	: A	fter completing t	he course, the stud	lents will be able t	0			
1 Usa	ge of local la	ing	uage in day today af	fairs.					
2 Con	struction of	sim	ple sentences accor	ding to the situation.					
3 Usa	ge of honorit	fic	words with elderly p	beople.					
4 Eas	y communica	atio	n with everyone.						
Referen	ce Books:								
$\begin{array}{c c} 1 & Vy_{3} \\ Vis \end{array}$	1 Vyavaharika Kannada patyapusthaka, L. Thimmesh, and V. Keshavamurthy, Prasaranga Visveshvaraya University, Belgaum.								
2 Kar Sat	2 Kannada Kali, K. N. Subramanya, S. Narahari, H. G. Srinivasa Prasad, S. Ramamurthy and S. Sathyanarayana, 5 th Edition, 2019, RV College of Engineering Bengaluru.								
3 Spo	oken Kannad	a, I	Kannada Sahithya P	arishat, Bengaluru.	· · · · ·				
		_	_ ವ್ಯಾವಹಾರಿಕ	ಕನ್ನಡ (Kannada	Version)				
			ම	ಧ್ಯಾ <u>ಯ − I</u>			4Hrs		

ಸ್ಥಳೀಯ ಅಥವಾ ಪ್ರಾದೇಶಿಕ ಭಾಷಾ ಕಲಿಕೆಯ ಅವಶ್ಯಕತೆ, ಭಾಷಾ ಕಲಿಕೆಯ ಸುಲಭ ವಿಧಾನಗಳು, ಸಂಭಾಷಣೆಗಾಗಿ ಸುಲಭ ಸೂಚ್ಯಗಳು ಕನ್ನಡ ಭಾಷೆಯ ಇತಿಹಾಸ.

ಅಧ್ಯಾಯ – II

4Hrs

ಕನ್ನಡ ಅಕ್ಷರಮಾಲೆ ಹಾಗೂ ಉಚ್ಛಾರಣೆ:

ಕನ್ನಡ ಅಕ್ಷರಮಾಲೆ, ಒತ್ತಕ್ಷರ, ಕಾಗುಣಿತ, ಉಚ್ಚಾರಣೆ, ಸ್ವರಗಳು ಉಚ್ಚಾರಣೆ, ವ್ಯಂಜನಗಳ ಉಚ್ಚಾರಣೆ.

ಅಧ್ಯಾಯ – III

4Hrs

ಸಂಭಾಷಣೆಗಾಗಿ ಕನ್ನಡ ಪದಗಳು:

ಸಂಭಾಷಣೆಯಲ್ಲಿ ಕನ್ನಡ ಬಳಕೆ:

ಏಕವಚನ, ಬಹುವಚನ, ಲಿಂಗಗಳು (ಸ್ತ್ರೀಲಿಂಗ, ಪುಲ್ಲಿಂಗ) ಪ್ರಶ್ನಾರ್ಥಕ ಪದಗಳು, ವಿರುದ್ಧಾರ್ಥಕ ಪದಗಳು, ಅಸಮಂಜಸ ಉಚ್ಚಾರಣೆ, ಸಂಖ್ಯಾ ವ್ಯವಸ್ಥೆ, ಗಣಿತದ ಚಿಹ್ನೆಗಳು, ಭಿನ್ನಾಂಶಗಳು.

ತರಕಾರಿಗಳ ಹೆಸರುಗಳು, ತಿಂಡಿಗಳ ಹೆಸರುಗಳು, ಆಹಾರಕ್ಕೆ ಸಂಬಂಧಿಸಿದ ಪದಗಳು, ಕಾಲ/ಸಮಯಕ್ಕೆ ಸಂಬಂಧಿಸಿದ ಪದಗಳು, ದಿಕ್ಕುಗಳ ಹೆಸರುಗಳು, ಭಾವನೆಗೆ ಸಂಬಂಧಿಸಿದ ಪದಗಳು, ಮಾನವ ಶರೀರದ ಭಾಗಗಳು, ಸಂಬಂಧದ ಪದಗಳು, ಸಾಮಾನ್ಯ ಸಂಭಾಷಣೆಯಲ್ಲಿ ಬಳಸುವಂತಹ ಪದಗಳು.

ಅಧ್ಯಾಯ	_	IV
--------	---	----

4Hrs

ನಾಮಪದಗಳು, ಸರ್ವನಾಮಗಳು, ನಾಮವಿಶೇಷಣಗಳು, ಕ್ರಿಯಾಪದಗಳು, ಕ್ರಿಯಾವಿಶೇಷಣಗಳು, ಕನ್ನಡದಲ್ಲಿ ಸಂಯೋಜನೆಗಳು, ಉಪಸರ್ಗಗಳು, ಪ್ರಶ್ನಾರ್ಥಕ ಪದಗಳು, ವಿಚಾರಣೆಯ / ವಿಚಾರಿಸುವ / ಬೇಡಿಕೆಯ ವಾಕ್ಯಗಳು. ಕನ್ನಡದಲ್ಲಿ ಚಟುವಟಿಕೆಗಳು, ಶಬ್ದಕೋಶ, ಸಂಭಾಷಣೆ.

ವ್ಯವಹಾರಿಕ ಕನ್ನಡದ ಕಲಿಕಾ ಫಲಿತಾಂಶಗಳು :

ซ	4
CO1:	ನಿತ್ಯ ಜೀವನದಲ್ಲಿ ಆಡುಭಾಷೆಯ ಬಳಕೆ.
CO2:	ಸಂದರ್ಭ, ಸನ್ನಿವೇಶಕ್ಕನುಗುಣವಾಗಿ ಸರಳ ಕನ್ನಡ ವಾಕ್ಯಗಳ ಬಳಕೆ.
CO3:	ಗೌರವ ಸಂಬೋಧನೆಯ ಬಳಕೆ.
CO4:	ಇತರರೊಡನೆ ಸುಲಭ ಸಂವಹನ.

ಆಧಾರ ಪುಸ್ತಕಗಳು :

1	ವ್ಯವಹಾರಿಕ ಕನ್ನಡ ಪಠ್ಯಪುಸ್ತಕ, ಎಲ್.ತಿಮ್ಮೇಶ್ ಮತ್ತು ವಿ.ಕೇಶವಮೂರ್ತಿ, ಪ್ರಸಾರಾಂಗ, ವಿಶ್ವೇಶ್ವರಯ್ಯ ತಾಂತ್ರಿಕ ವಿದ್ಯಾಲಯ, ಬೆಳಗಾಂ.
2	ಕನ್ನಡ ಕಲಿ, ಕೆ.ಎನ್.ಸುಬ್ರಹ್ಮಣ್ಯಂ, ಎನ್.ಎಸ್.ನರಹರಿ, ಎಚ್.ಜಿ.ಶ್ರೀನಿವಾಸ 'ಪ್ರಸಾದ್, ಎಸ್.ರಾಮಮೂರ್ತಿ ಮತ್ತು ಎಸ್.ಸತ್ಯನಾರಾಯಣ, 2ನೇ ಮುದ್ರಣ 2019, ರಾ.ವಿ.ತಾಂತ್ರಿಕ ಮಹಾವಿದ್ಯಾಲಯ, ಬೆಂಗಳೂರು.
3	ಮಾತನಾಡುವ ಕನ್ನಡ, ಕನ್ನಡ ಸಾಹಿತ್ಯ ಪರಿಷತ್, ಬೆಂಗಳೂರು.

Continuous Internal Evaluation (CIE); (50 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Activity. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks and the sum of the marks scored from two quizzes is reduced to 10. The two tests are conducted for 50 marks each and the sum of the marks scored from two tests is reduced to 30. The marks component for Activity is 10. Total CIE is 10(Q) + 30(T) + 10(A) = 50 Marks.

Semester End Evaluation (SEE); Theory (50 Marks)

SEE for 50 marks executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 25 marks covering the complete syllabus. Part – B consists of essay type questions, one from each unit for 5 marks adding up to 25 marks.

[A A D A L ITTLA IZ A NINI A D A									
	(Common to all knowshop)									
	(Common to an pranches)									
	ಆಡಳಿತ ಕನ್ನಡ (ಕನ್ನಡಗಲಗಾಗಿ)									
ಆಡಳಿತ	ತ ಭಾಷಾ ಕಲಿಕೆಯ ಉದ್ದೇಶಗಳು: ವಿದ್ಯಾರ್ಥಿಗಳಲ್ಲಿ									
1	ಆಡಳಿತ ಕನ್ನಡದ ಪರಿಚಯ ಮಾಡಿಕೊಡುವುದು.									
2	z ಕನ್ನಡ ಭಾಷೆಯ ವ್ಯಾಕರಣದ ಬಗ್ಗೆ ಅರಿವು ಮೂಡಿಸುವುದು.									
3	3 ಕನ್ನಡ ಭಾಷಾ ಬರಹದಲ್ಲಿ ಕಂಡುಬರುವ ದೋಷಗಳು ಹಾಗೂ ಅವುಗಳ ನಿವಾರಣೆ ಮತ್ತು ಲೇಖನ ಚಿಹ್ನೆಗಳನ್ನು ಪರಿಚಯಿಸುವುದು.									
4	ಸಾಮಾನ್ಯ ಅರ್ಜಿಗಳು, ಸರ್ಕಾರಿ ಮತ್ತು ಅರೆಸರ್ಕಾರಿ ಪತ್ರ ವ್ಯವಹಾರದ ಬಗ್ಗೆ ಅರಿವು ಮೂಡಿಸುವುದು.									
5	ಭಾಷಾಂತರ, ಪ್ರಬಂದ, ರಚನೆ, ಕನ್ನಡ ಭಾಷಾಭ್ಯಾಸ ಮತ್ತು ಆಡಳಿತ ಕನ್ನಡದ ಪದಗಳ ಪರಿಚಯ ಮಾಡಿಕೊಡುವುದ	o.								
	ಆಡಳಿತ ಕನ್ನಡ									
	<u>(ಕನ್ನಡ ಕಲಿತವರಿಗೆ)</u>									
	ಅಧ್ಯಾಯ –I	4Hrs								
ಕನ್ನಡ	ಭಾಷೆ – ಸಂಕ್ಷಿಪ್ತ ವಿವರಣೆ:									
ಪ್ರಸ್ತಾವ ಆಡಳಿತ	ನೆ–ಕನ್ನಡ ಭಾಷೆ, ಶ್ರಾವಣ (ಕವನ)– ದ.ರಾ.ಬೇಂದ್ರೆ (ಕವಿ), ಬೆಲ್ಜಿಯ ಹಾಡು (ಕವನ) –ಸಿದ್ದಲಿಂಗಯ್ಯ (ಕವಿ) ತ ಬಾಷೆಕನ.ಡ. ಆಡಳಿತ ಬಾಷೆಯ ಲಕಣಗಳು. ಆಡಳಿತ ಬಾಷೆಯ ಪಯೋಜನಗಳು.									
	ಅದಾಯ –II	4 Hrs								
ಬಾಷಾ	ಪಯೋಗದಲಾಗುವ ಲೋಪದೋಷಗಳು ಮತ್ತು ಅವುಗಳ ನಿವಾರಣೆ:	#								
ಪ್ರಸ್ತಾವ ಮಹಾ ಗೌರವ	ನೆ– ಕಾಗುಣಿತದತಪ್ಪು ಬಳಕೆಯಿಂದಾಗುವ ಲೋಪದೋಷಗಳು ಅಥವಾ ಸಾಧುರೂಪಗಳ ಬಳಕೆ, ಅಲ್ಪ ಪ್ರಾಣ ಮತ್ತು ಪ್ರಾಣಗಳ ಬಳಕೆಯಲ್ಲಿನ ವ್ಯತ್ಯಾಸದಿಂದಾಗುವ ಲೋಪದೋಷಗಳು, ಲೇಖನ ಚಿಹ್ನೆಗಳು, ಕನ್ನಡ ಭಾಷೆಯಲ್ಲಿನ ಲೋಪ ಸೂಚಕಗಳ ಬಳಕೆ, ಭಾಷಾ ಬರದಲ್ಲಿ ಅನುಸರಿಸಬೇಕಾದ ಇನ್ನಿತರಕ್ರಮ, ಲೇಖನ ಚಿಹ್ನೆಗಳು ಮತ್ತು ಅವುಗಳ ಉಪಯ	ದೋಷಗಳು ಮೀಗ.								
	ಅಧ್ಯಾಯ –III	4Hrs								
ಪತ್ರ ವ್ಯ	್ರವಹಾರ:									
ಪ್ರಸ್ತಾವ	ನೆ– ಖಾಸಗಿ ಪತ್ರ ವ್ಯವಹಾರ, ಆಡಳಿತ ಪತ್ರಗಳು, ಅರ್ಜಿಯ ವಿವಿಧ ಬಗೆಗಳು ಮತ್ತು ಮಾದರಿಗಳು.									
	ಅಧ್ಯಾಯ –IV	4Hrs								
<mark>ಪ್ರಬಂಧ, ಸಂಕ್ಷಿಪ್ತ ಪ್ರಬಂಧರಚನೆ ಮತ್ತು ಭಾಷಾಂತರ:</mark> ಕನ್ನಡ ಶಬ್ಧಸಂಗ್ರಹ, ಜೋಡಿನುಡಿಗಳು, ಅನುಕರಣಾವ್ಯಯಗಳು, ಸಮಾನಾರ್ಥಕ ಪದಗಳು, ನಾನಾರ್ಥಗಳು, ವಿರುದ್ಧಪದಗಳು, ತತ್ಸಮ– ತದ್ಭವಗಳು, ದ್ವಿರುಕ್ತಿಗಳು, ನುಡಿಗಟ್ಟುಗಳು, ಶಬ್ಧಸಮೂಹಕ್ಕೆ ಒಂದು ಶಬ್ಧ, ಅನ್ಯದೇಶೀಯ ಪದಗಳು, ದೇಶೀಯಪದಗಳು.										
ಆಡಳಿತ ಕನ್ನಡದ ಕಲಿಕಾ ಫಲಿತಾಂಶಗಳು:										
C01	CO1: ಕನ್ನಡ ಬರಹದಲ್ಲಿ ವ್ಯಾಕರಣದ ಬಳಕೆ.									
CO2	CO2: ಕನ್ನಡದಲ್ಲಿ ಪತ್ರ ಬರೆಯುವಿಕೆ.									
CO3	CO3: ಕನ್ನಡ ಸಾಹಿತ್ಯ ಹಾಗೂ ಸಂಸ್ಕೃತಿಯ ಬಗ್ಗೆ ಆಸಕ್ತಿ ಮೂಡುವುದು.									
ಆಧಾರ	ಪುಸ್ತಕಗಳು :									
1	ಆಡಳಿತ ಕನ್ನಡ ಪಠ್ಯಪುಸ್ತಕ, ಎಲ್.ತಿಮ್ಮೇಶ್ ಮತ್ತು ವಿ.ಕೇಶವಮೂರ್ತಿ, ಪ್ರಸಾರಾಂಗ, ವಿಶ್ವೇಶ್ವರಯ್ಯ ತಾಂತ್ರಿಕ ಬೆಳಗಾಂ.	ವಿದ್ಯಾಲಯ,								
2	ಕನ್ನಡ ಅನುಭವ, ಕೆ.ಎನ್.ಸುಬ್ರಹ್ಮಣ್ಯಂ, ಎನ್.ಎಸ್.ನರಹರಿ, ಎಚ್.ಜಿ.ಶ್ರೀನಿವಾಸಪ್ರಸಾದ್, ಎಸ್.ರಾಮಮೂ ಎಸ್.ಸತ್ಯನಾರಾಯಣ, 2ನೇ ಮುದ್ರಣ 2019, ರಾ.ವಿ.ತಾಂತ್ರಿಕ ಮಹಾವಿದ್ಯಾಲಯ, ಬೆಂಗಳೂರು.	ರ್ತಿ ಮತ್ತು								

Continuous Internal Evaluation (CIE); (50 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Activity. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks and the sum of the marks scored from two quizzes is reduced to 10. The two tests are conducted for 50 marks each and the sum of the marks scored from two tests is reduced to 30. The marks component for Activity is 10. Total CIE is 10(Q) + 30(T) + 10(A) = 50 Marks.

Semester End Evaluation (SEE); Theory (50 Marks)

SEE for 50 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 10 marks covering the complete syllabus. Part – B is for 40 marks. It consists of essay type questions. Student has to answer any 4 questions out of 5 questions, each question carries 10 marks.

	Semester: IV								
	LIN	EAR	ALGEBRA, STAT	FISTICS AND PRC	BABILITY THEO	RY			
	(Theory)								
(Common to EC, EE, EI & ET)									
Cour	se Code	:	18MA41B		CIE	:	100 Marks		
Cred	its: L:T:P	:	4:1:0		SEE	:	100 Marks		
Tota	Hours	:	52L+261		SEE Duration	:	03 Hours		
Cour	<u>se Learning</u>	<u>Ubje</u> bab	ectives: The student	s will be able to	1				
1	Demonstrate	the	asics of Linear Alge	ora and Probability t	neory.	tion	of motricos		
<u>2</u> 3	Apply the k	nou	velocepts of the statis	tical analysis and t	beery of probability	$\frac{1000}{100}$	the study of		
5	uncertainties	now	ledge of the statis	lical analysis and u	neory of probability	m	the study of		
4	Use probabil	itv a	nd sampling theory	to solve random phys	sical phenomena and	limr	lement		
	appropriate of	listri	bution models.	r J	I I I I I I I I I I	r			
5	Use mathem	atica	ll IT tools to analyze	and visualize the ab	ove concepts.				
			τ	U nit-I			10 Hrs		
Linea	ar Algebra –	I:							
Vecto	or spaces, sub	space	es, linear dependenc	e, basis, dimension, t	four fundamental sub	ospac	ces. Rank and		
nullit	y theorem (w	ithou	ut proof). Linear tra	nsformations- projec	ction, rotation and re	eflect	tion matrices,		
matrı	x representati	on, k	ternel and image of a	a linear transformatio	on.		11 11		
T :		п.	Ui	nit – 11			11 Hrs		
	ar Algebra –	11: 1	11 0 0			1	1		
Ortho	gonal and ort	hond	ormal bases, Gram-S	schmidt process, QR-	- factorization, Eigen		les and Eigen		
decor	rs (recapitul	atioi ZD a	nnlied to digital ima	of a matrix (sy	$\mathbf{M} \mathbf{\Delta} \mathbf{T} \mathbf{I} \mathbf{\Delta} \mathbf{R}$, sn	igular value		
uccoi		Du		nit –III	WITTLAD).		11 Hrs		
Stati	stics:								
Centr	al moments.	near	n. variance, coefficie	ents of skewness and	kurtosis in terms of	mor	ments. Curve		
fitting	g by method	of le	ast squares. fitting	of curves – Polynom	nial. exponential and	pov	ver functions.		
Corre	elation and lin	ear r	egression analysis –	problems Simulation	n using MATLAB	Por			
Cont		cui i	U	nit _IV			10 Hrs		
Prob	ability:		U.				101115		
Basic	concents an	d B	ave's rule Randon	n variables - Discre	ete and continuous	nrol	hability mass		
funct	ion probabili	u D v de	ensity function cum	ulative density funct	tion mean variance	- pro	oblems Joint		
proba	bility distribution	ition	function - Discret	te and continuous, of	covariance, correlati	on a	and problems		
relate	d to application	ons.	Simulation using M	ATLAB.	,		1		
			U	nit –V			10 Hrs		
Prob	ability Distri	buti	ons:						
Discr	ete and contin	nuou	s distributions - Bin	omial, Poisson, Expo	onential and Normal	. Sar	npling theory		
- San	npling, sampli	ng d	istributions, standar	d errors, student's t-o	distribution, chi-squ	are c	listribution as		
a test	of goodness of	of fit	, problems. Simulat	tion using MATLAB	•				
G	0 /		, <u> </u>		••••••••••••••••••••••••••••••••••••••				
Cour	se Outcomes	: Af	ter completing the	course, the students	will be able to	.1:	(1		
		1 the	rundamental concep	pts of linear algebra,	probability and samp	oling	tneory.		
CO2	Solve the p	orobl	ems of vector space	s, linear transformati	on, measures of stati	stica	l data, curve		
	fitting and	func	tions of random var	iables.					
CO3	: Apply the	acqu	ired knowledge to se	olve the problems on	factorization of a m	atrix	, correlation,		

	regression, probability and sampling distributions.
CO4:	Evaluate decomposition of a matrix and estimate goodness of fit of problems occurring in
	engineering applications.

Reference Books

1	Linear Algebra and Its Applications, Gilbert Strang, 4 th Edition, 2006, Cengage Learning India Edition, ISBN: 81-315-0172-8.
2	Higher Engineering Mathematics, B.S. Grewal, 44 th Edition, 2015, Khanna Publishers, ISBN: 978-81-933284-9-1.
3	Schaum's Outline of Linear Algebra, Seymour Lipschutz and Marc Lipson, 5 th Edition, 2012, McGraw Hill Education, ISBN-978-0-07179456-5.
4	Introduction to Probability and Statistics, S. Lipschutz and Schiller (Schaum's outline series), ISBN: 978-0-07-176249-6.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks**.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	-	-	1
CO2	3	2	-	-	-	-	-	-	-	-	-	1
CO3	1	2	2	-	-	-	-	-	-	-	-	1
CO4	-	1	1	3	-	-	-	-	-	-	-	1

High-3: Medium-2 : Low-1

	Semester: IV						
			ENGINE	ERING MATERIA	LS		
				(Theory)			
			(Commo	on to EC, EE, EI & E	ET)		
Course Code		:	18EC42		CIE	:	50 Marks
Credits: L:T:P		:	2:0:0		SEE		50 Marks
Total Hours		:	27L	SEE Duration			02 Hours
Cour	rse Learning O)bje	ectives: The students	s will be able to			
1	1 Understand the material classification and categorizes material related to various electronic						ous electronic
	properties						
2	2 Understand fabrication & characterization techniques and nanomaterial growth						
3	3 Understand the material electronics transport and applications in electronics industry						
4	Understand to the extend electronic devices based on novel and emerging materials						

Unit-I	05 Hrs					
Introduction: Classification and Properties of Materials, Materials Used in Electrical and Electronic						
Industries, Requirements and Future Developments of Electronic Materials						
Unit – II	07 Hrs					
Classical Theory of Electrical Conduction and Conducting Materials: Resistivity	ity, TCR					
(Temperature Coefficient of Resistivity) and Matthiessen's Rule, Traditional Classification of	of Metals,					
Insulators and Semiconductors, Drude's Free Electron Theory, Hall Effect, Wiedemann-Fr	anz Law,					
Resistivity of Alloys, Nordheim's Rule, Resistivity of Alloys and Multiphase Solids						
Unit –III	05 Hrs					
Thin Film Electronic Materials: Techniques for Preparation of Thin Films, Thin Film Co	onducting					
Materials, Thin Film Resistors, Transparent and Conductive Thin Films, Thin Film	Magnetic					
Materials	-					
Unit –IV	05 Hrs					
Organic Electronic Materials: Conducting Polymers, Charge carriers, Synthesis of Conducting						
Polymers, Semiconducting Organic Materials, Organic Light Emitting Diode, Organic FET	Polymers, Semiconducting Organic Materials, Organic Light Emitting Diode, Organic FET					
Unit –V	05 Hrs					
Nanomaterials for Electronic Device Applications: Techniques for Preparation of Nanomaterials						
(Quantum Dots & CNT only), Micro-/Nano-devices Using Nanostructured Materials: CNT	transistor,					
Single electron transistor						
Course Outcomes: After completing the course, the students will be able to						

Course	Outcomes: After completing the course, the students will be able to
CO1:	Explain electronics material classification, different physical properties and to the extend
	device applications.
CO2:	Define the transport mechanism (in solid state & organic), working principle of electronic
	material and assess material parameters for practical requirement.
CO3:	Summarize various fabrication, characterization and synthesis techniques for the electronic
	nanomaterials and thin film growth.
CO4:	Identify and calculate material parameters including electrical conductivity, resistivity,
	magnetic and optical properties for real-time electronic applications.

Refere	ence Books
1	Introduction to Electronic Materials for Engineers, Wei Gao & Zhengwei Li, Nigel Sammes, 2 nd Edition World Scientific Publishing Co. Pyt. Ltd. ISBN:9789814293693
2	Principles of Electronic Materials and Devices, S O Kasap, 3 rd Edition, 2017, McGraw Hill
	Education, ISBN-13: 978-0070648203
3	Electronic Properties of Materials, Rolf E. Hummel, 4 th Edition, 2011, Springer, ISBN-13:
U	978-1489998415

Continuous Internal Evaluation (CIE); Theory (50 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 15 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 30 marks each and the sum of the marks scored from three tests is reduced to 25. The marks component for Experiential Learning is 20.

Total CIE is 15(Q) +25(T) +10(EL) =50 Marks.

Semester End Evaluation (SEE); Theory (50 Marks)

SEE for 50 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 10 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 8 marks adding up to 40 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	1	2	-	-	-	-	2
CO2	3	2	-	-	-	1	2	-	-	-	-	2
CO3	3	3	2	-	-	1	2	-	-	-	-	2
CO4	3	3	2	2	-	2	2	-	-	-	-	2

High-3: Medium-2: Low-1

				Semester: IV				
-	ADV	AN	CED DIGITAL SY	STEM DESIGN US	SING VERILO	GI	HDL	
	(Theory & Practice)							
Cou	rse Code	:	18EC43		CIE	:	100+50 Marks	
Cred	lits: L:T:P	:	3:0:1		SEE		100+50 Marks	
Tota	l Hours	:	40L + 33P		SEE Duration		03+03 Hours	
Cour	rse Learning (Dbje	ectives: The students	s will be able to				
1	Design Digita	al ci	rcuit (combinationa	l and sequential) and	model using V	eril	og HDL, synthesis	
	to obtain RTI							
2	Write HDL	mo	dels that can be s	ynthesized into inte	grated circuits	usi	ing programmable	
	hardware suc	h as	FPGAs			DT		
3	Analyze flow	of	electronic design fro	om concept to register	r transfer level (RT	L) verification and	
4	Synthesis to f	inai	programmable devi	dea controller data	magazzan and a		nut daviaca model	
4	Design a dig	Ital	system which hich	ality	processor and o	սպ	but devices, model	
5	Write test mo	dul	es and fitting design	s to verify the function	nality in FPGA			
	white test mo	uui	es and maing design	s to verify the function				
			Ţ	J nit-I			08 Hrs	
Intro	oduction to	Ver	ilog: Design Met	hodology-An Intro	duction: Veril	og	History, System	
repre	sentation, Nur	nbe	r representation and	l Verilog ports. Ve	rilog Data Typ	es:	Net, Register and	
Cons	tant. Verilog C	Dper	ators: Logical, Aritl	nmetic, Bitwise, Red	uction, Relation	al,	Concatenation and	
Cond	litional. Veril	log	Primitives. Logic S	Simulation, Design V	Verification, an	d٦	Test Methodology:	
Four	-Value Logic a	and	Signal Resolution i	n Verilog, Test Met	hodology Signa	1 G	Generators for Test	
benc	hes, Event-Dri	ven	Simulation, Sized	Numbers. Modeling	Styles: Dataflov	w N	Modeling: Boolean	
Equa	tion-Based Mc	del	s of Combinational I	Logic, Propagation D	elay and Contin	uou	is Assignments.	
			U	nit — II			09 Hrs	
Stru	ctural Modeli	ng:	Design of Combin	ational Logic, Verile	og Structural M	[od	els, Module Ports,	
Top-	Down Design	and	l Nested Modules.	Gate level modeling	g Behavioral M	ode	eling: Latches and	
Leve	l-Sensitive Cir	cuit	ts in Verilog, Cycli	c Behavioral Model	ls of Flip-Flops	ar	nd Latches, Cyclic	
Beha	vior and Edge	De	tection. A Comparis	on of Styles for Beh	avioral modelin	g, 1	Behavioral Models	
of M	lultiplexers, E	ncoo	lers, and Decoders.	Dataflow Models of	of a Linear-Fee	dba	ack Shift Register.	
1 ask	s & Functions.		T.	. 4 111			00 11	
Algo	withmia Stata	Мо	UI Johing Charts for I	111 –111 Pahawianal Madalin	a. Algorithmia	Sto	to Machina Charta	
Aig0	abayioral Mad	alin	a ASMD aborta Pa	benavioral Models of C	g. Algorithinic	Sid	istors and Dogistor	
Files	and Arrays of		gisters (Memories)	Design Example: se	vial adder segu	anc	a detector (Mealy	
Moo	and Anays of re) Keynad Sc	ann	er and Encoder Fur	Design Example. Se	Idition and Sub	trac	tion: Rinnle-Carry	
Adde	er Carry Look-	.Ahe	ad Adder Overflow	and Underflow Arr	av Multinlier	ac	tion. Ripple-Carry	
Tuut	Unit IV AQUINT AND A AND							
Desi	n of Proce	ssor	· Architectures for	or Arithmetic Pro	cessors: F	in	ctional Units for	
Mult	iplication: Se	aue	ential Binary Mu	ltiplier. Sequential	Multiplier I	Des	ign: Hierarchical	
Deco	Decomposition STG-Based Controller Design. Efficient STG-Based Sequential Binary Multiplier							
Redu	Reduced-Register sequential multiplier, Multiplication of signed binary number.							
	Unit –V 07 Hrs							
Synt	hesis of Com	bina	tional Logic: Intro	duction to Synthesis	s, Synthesis of	Cor	mbinational Logic,	
Syntl	nesis of Sequer	ntial	Logic with Latches	, Synthesis of Three-	state Devices, S	ynt	hesis of Sequential	
Logi	Logic with Flip-Flops. Memories: General concepts, Memory Types, Asynchronous static RAM,							
Sync	hronous static	RA	M. Introduction to F	PGA				
Prac	tical's:					_		
1	. Multiplexer	and	d De-multiplexer					

- 2. Decoders and Encoders.
- 3. Code converters and Comparator.
- 4. Binary Adder (Ripple Adder and carry look ahead adder).
- 5. Flipflops.
- 6. Counters.
- 7. Shift Register
- 8. FSM- Sequence Detector, etc.
- 9. Serial Adder.
- 10. Stepper Motor
- 11. DAC
- 12. Display Interfacing

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Analyze digital circuit and system and model using Verilog HDL							
CO2:	Develop synthesizable code for digital function and Apply EDA tools for simulation,							
	verification and synthesis of digital design.							
CO3:	Apply design knowledge to FSM based digital modules using high-level HDL description							
	and Port it on to FPGA for verification							
CO4:	Design, develop and verify the performance of efficient digital system using various digital							
	blocks							

Reference Books

1	Advanced Digital Design with the Verilog HDL, M.D. Ciletti, Prentice Hall PTR -2 nd Editions ISBN: 0136019285.
2	Verilog HDL: A Guide to Digital Design & Synthesis, Samir Palnitkar, SunSoft Press, 1 st Edition, 1996, ISBN: 978-81-775-8918-4. 3
3	Digital Design: An Embedded Systems Approach Using VERILOG, Peter J. Ashenden, Elsevier, 2015, ISBN: 978-0-12-369527-
4	Digital Systems Design Using Verilog, Roth, Charles, John, Lizy K, Kil Lee, Byeong ISBN 10: 1285051076 / ISBN 13: 9781285051079.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average mark (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

					CO-I	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	1	-	-	-	-	-	-	-	1
CO2	3	2	2	1	-	1	-	-	2	-	-	1
CO3	3	3	2	-	3	1	-	1	2	1	1	1
CO4	3	3	2	-	3	-	-	1	2	1	1	1

High-3: Medium-2: Low-1

				Semester: IV			
			MICRO	PROCESSOR & MICR	OCONTROLLER		
Com	nao Codo		100144	(Theory & Practi	ce)		100 - 50 Marte
Cou	rse Code	:	18E144		CIE Marks:	:	100+50 Marks
Tete		:	20L + 22D		SEE Marks:	:	100+30 Marks
Course Learning Objectives: The students will be able to							
Cou	Specify de	<u>; OU</u> sion	implement a	nd debug simple micropr	ocessor-based applic	atio	ns using the Intel
1	8086 archit	ectur	'e.	ind debug simple interopt	beessor bused uppire	ano	is using the inter
2	Understand	& A	nalyze the ar	chitecture of 8051 microc	controller		
	Use softwa	re de	velopment to	ols to assemble, test and o	debug the programs b	oy us	sing breakpoints,
3	single-stepp an emulator	oing, :.	monitoring th	ne changes in register/me	mory contents, on a l	nard	ware platform or on
4	Apply assert conditional	mbly and	directives an iterative).	d assembly language to in	mplement flow contr	ol (s	equential,
5	Design and	inter	face the exter	rnal components of micro	processor and micro	cont	roller
				UNIT-I			07 Hrs
MPU	J Organizat	tion:	Instruction	set Architectures, Harv	vard & Von-Neuma	in A	Architectures, Micro
prog Intel	rammed & H I's 8086 arch	aruw	ure Pin grou	unit, Floating Point & Fly	tation Address gene	Enu ratio	n Stack Interrupts
Inte	1 3 0000 al Cl	iiiiii	urc , i ili giou	UNIT-II	tation, Address gene	ano	N9 Hrs
8086	Assembly	Lan	guage Progr	amming: Addressing M	lodes of 8086. Instr	ucti	on Format. Program
Deve	elopment Too	ols, A	ssembler Dir	ectives, Instruction Set of	f 8086: Data Transfe	r Ins	tructions, Arithmetic
	Instructio	ns,	Bit Manipu	lation Instructions, B	ranching Instructio	ns,	Processor Control
Instr	uctions, Strin	ng In	structions, M	acros, Procedures, Assem	bly Language Progra	amn	ing Examples.
				UNIT-III			<u> </u>
Har	dware of 805	51 M	icrocontrolle	rs: Introduction to Embe	dded system, Microc	conti	oller, Comparison of
Micr	oprocessor a		Organization	Program Counter Tir	y, Architecture and	PII Vol	s Internal Memory
Orga	nization. Re	giste	rs. Stack. In	put/ Output Ports. Course	nters and Timers. I	nteri	upts. Power Saving
Mod	es.	0	, ,	I	· · · · · · · · · · · · · · · · · · ·		1 ,
				UNIT-IV			07 Hrs
8051	Microcon	troll	er Based S	System Design: I/O	Port Programming,	P	ogramming timers,
Asyr	ichronous S	erial	Data Comn	unication, Interrupt Se	rvice Routines. Pro	grar	nming in C, Inline
Asse	mbly, Interfa	icing	DAC, Interfa	icing Matrix Keyboard ai	nd Seven Segment D	ispla	ays, Interfacing ADC
in po	med mode &	Inte	rtupt Mode, I	LINIT V			07 Hrs
Peri	nheral Base	d Sv	stems Clock	$\frac{111-v}{1}$	ory Devices Addres	ss D	ecoding Interfacing
Men	norv. I/O sub	Svst	em: Busy wa	it. DMA. Interrupt Drive	n. Memory Maps. I/	0 Pc	ort address decoding.
Intro	Introduction to 8255, Interfacing 8255 with 8086. Interrupt Based IO Design.						
				•			
Prac	tical: Proces	ssor	& Controller	Lab:			·
Exp	eriments wit	h 80	86 Assembly	using MASM			
1	I. Data Tra	nsfer	Programs: E	Block Moves & Exchang	e (With & Without	Ove	erlap) with & without
	String Ins	struct	10ns.	Line Martin C. C. P	Visition - 20 D' D	4.5	
	2. Arithmetr	c Up	erations: Add	nuon, Multiplication & L	JIVISION ON 32-Bit Da	ita.	ut from Vorboard 0
	Display F	2011V 1100-	t on the Const	ALAT INSTRUCTION to CON	ivent billary to BCD	, mp	ut from Keyboard &
	b) ASCII Operations: Addition, Subtraction, Multiplication						

b) ASCII Operations: Addition, Subtraction, Multiplication

4. a) Search for a Key in an Array of Elements using Linear Search, Binary Search. Find Efficiency in each case.

b) Sort an Array Using Bubble Sort & Selection Sort. Find Efficiency in each case.

Interfacing experiments with 8051 C using Keil software

- 5. Illustrate the interfacing of LCD and LED with variant of 8051 Microcontroller using C language.
- 6. Implement the interfacing of stepper motor and DC Motor with variant of 8051 Microcontroller using C programming language.
- 7. Implement the interfacing of ADC with variant of 8051 Microcontroller using C language.
- 8. Write a C program to interface 4 x 4 keypad with variant of 8051 Microcontroller
- 9. Write a C program to interface DAC and Elevator with variant of 8051 Microcontroller
- 10. Design 8051 based system to measure the frequency of TTL waveform. Design 8051 based system for automatic controlling of light.

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Interpret the architecture, instruction set, memory organization and addressing modes of the
	microprocessors and microcontrollers.
CO2:	Analyze pin functions / ports for implementing peripheral interfaces with microprocessors and
	microcontrollers.
CO3:	Apply the knowledge of microprocessor and microcontroller for implementing assembly
	language/C programming.
CO4:	Engage in assignment to understand, formulate, design and analyze problems to be realized on
	embedded processors.

Refe	erence Books
1.	Douglas Hall, "Micro-Processors and Interfacing-Programming & Hardware", TMH, 2 nd Edition,
	2002, ISBN-10- 0070601674
2.	Barry B. Brey, "The Intel Micro-processors, Architecture, Programming and Interfacing", Pearson
	Education, 6 th Edition, 2008, ISBN-10: 0135026458
3.	Kenneth J. Ayala, "The 8051 Microcontroller Architecture, Programming & Applications",
	Thomson Learning, 2 nd Edition, 2004.
4.	Muhammad A Mazidi, "The 8051 Microcontroller and Embedded Systems", Pearson Education,
	2 nd Edition, 2009.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

					CO	PO Ma	apping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	3	2	2	-	-	-	-	1	-	1
CO4	3	3	3	3	2	1	1	2	1	2	1	3

Low-1 Medium-2 High-3

	Semester: IV						
	SIGNALS AND SYSTEMS						
				(Theory)			
C		1	(Com	non to ET, EC, I	<u>EE & EI)</u>		100 M 1
Cou	rse Code	:	18E145		CIE	:	100 Marks
Tote	ulls: L:I:P	:	3.1.0		SEE SEE Duration	:	2 00 Hrs
	II HOUIS		39L + 201	tudonte will ho e	SEE DUration	•	5.00 HIS
1	Express a s	<u>3 0</u>	nal and a system	n in both time	nd frequency domain	16 9	and develop a
1	mathematic	al r	process to migrat	e between the two	o representations of the		and develop a me entity.
2	Analyze a co	mp	blex signal in terms	s of basic signals in	continuous and discrete	e tin	ne flavours.
3	Define disc	cret	te-time signals	and systems, an	d express the differ	enc	es with their
	continuous-	tin	ne analogy.	•			
4	Understand t	he	computation of FF	T algorithm in line	ar filtering & correlation	ns.	
				Unit-I			8 Hrs
Intr	oduction to	Sig	nals and System	n: Definition of S	Signals, Classification	of	Signals, Basic
Ope	rations on Si	gna	als: Operations I	Performed on the	Independent and Dep	pen	dent Variable,
Prec	edence Rul	e, fo	Elementary S1	gnals. Definition	n of Systems, Sys	tem	Viewed as
Inter	connection o	of U	perations, Prope	<u>rties of Systems.</u> Unit – II			8 Hrs
Tim	e domain r	enr	esentations of	<u>Linear Time In</u>	variant Systems : (on	volution Sum
Con	volution Su	n n	Evaluation Pro	cedure. Convolu	tion Integrals. Conv	olu	tion Integrals
Eval	uation Prod	ced	ure, Interconnec	tions of LTI Sy	stem, Relations betw	veer	n LTI System
Prop	perties and th	e Iı	mpulse Response	e, step response,	Difference Equation	Rep	presentation of
				Unit –III			8 Hrs
App	lications of	Fo	ourier Represer	ntations to Mixe	ed Signal classes: R	evie	ew of Fourier
repr	esentation of	sig	gnals, Introduction	on to DTFS and I	OTFT, Introduction, F	Four	rier Transform
Rep	resentations of	of p	eriodic signals, (Convolution and 1	nultiplication with Mi	xtu	res of periodic
and	Non-Periodic	si;	gnals, Fourier Tr	ansform represen	tation of discrete time	sig	nals, sampling
The	Diservate Fr		ior transform	Unit –IV	and Applications: E	roa	8 Hrs
Sam	pling and Re		struction of Dis	rete time signals	DET DET as a linea	r T	ransformation
Rela	tionship of	DF	T to other tran	sforms Propertie	s of DFT. Periodici	tv	Linearity and
Svm	metry proper	tie	s. Multiplication	of two DFTs an	d circular convolution	су, 1. а	dditional DFT
prop	erties. Linea	r f	iltering methods	s based on the	DFT: Use of DFT in	ı li	near filtering.
				Unit –V			7 Hrs
Effi	cient compu	tat	ion of DFT - F	FT Algorithms:	Direct computation	of	DFT, Radix-2
FFT	Algorithms	and	d Implementatio	n of FFT Algori	thms, Applications of	FF	FT algorithms,
Effic	cient computa	atio	on of DFT of two	real sequences, l	Efficient computation	of l	DFT of a 2N –
r							

Cours	e Outcomes: After completing the course, the students will be able to
CO1	Analyze the fundamental concepts of the both continuous and discrete signals and
	systems, Representation of both periodic & aperiodic signals in frequency domain.
CO2	Apply the properties of signals and analyze both continuous and discrete systems
	commonly found in communication, signal processing and control systems.

CO3	Analyze	e continuou	is & discrete systems bo	oth in	time	& frequency do	mai	n.	
CO4	Apply	efficient	methods/algorithms	for	the	computation	of	frequency	domain
	representation & vice-versa.								

Refer	ence Books
1	Signals and Systems, Simon Haykin and Barry Van Veen, John Wiley & Sons, 2 nd Edition, 2008.
2	Digital Signal Processing, Proakis G & Dimitris G. Manolakis, PHI, 3 rd Edition, 2007.
3	Signals and Systems, V. Oppenheim, Alan Willsky and A. Hamid Nawab, Pearson Education Asia/ PHI, 2 nd Edition, 2006.
4	Digital Signal Processing A Practical Approach, Emmanuel C. Ifeachar, Barrie E. Jervis, Pearson Education, 2 nd Ed., 2003

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	-	2	-	-	-		-	-	
CO2	3	2	3	-	2	-	-	-	2	-	-	
CO3	3	3	-	2	2	-	-	-	2	-	-	3
CO4	3	2	2	-	2	-	-	-	2	-	-	3

High-3: Medium-2: Low-1

				Semester: IV					
			ANALOG INTE	GRATED CIRCUI	TS DESIGN				
				(Theory)					
Cou	rse Code	:	18EC46		CIE	:	100 Marks		
Cree	lits: L:T:P	:	3:0:0		SEE	:	100 Marks		
Tota	l Hours	:	40L		SEE Duration	: 03 Hours			
Cou	rse Learning ()bje	ectives: The students	s will be able to			I		
1	Design basic	amp	olifiers and different	ial amplifiers using N	MOSFETs.				
2	Design differ	ent	opamp topologies fo	or a given specification	on				
3	Analyze stabi	lity	of OPAMPs and ap	ply the appropriate c	ompensation technic	que.			
4	Design and an	naly	sis of filters and osc	illators					
5	Design basic	amp	olifiers and different	ial amplifiers using N	MOSFETs.				
			Ţ	Jnit-I			08 Hrs		
Intro	oduction to An		g Integrated Design	n: Models for analog	design, body transc	ondu	ictance.		
Sing	le-stage Amp	lifie	ers – CS stage, d	tode connected loa	id, current source	load	and source		
dege	neration, review	N Ol	CD and CG stages	(all amplifier analys	sis with body effect)	, Ca	scode stage &		
10106	ed cascode cond	ifio	s. Design of amplified MOS differen	tial pair Small sig	S. nation hal	foi	rouit onolucio		
Com	mon mode resi	nie	s – MOS ullelell	lifier with active lo	ad common mode	anir	and CMPR		
frequ	linoii linoue lesj	of t	be differential ampli	fier		gan	i allu Civilki,		
nequ	iency response	01 1		nit _ II			00 Hrs		
One	Unit – II U9 Hrs Operational Amplifiers: General considerations – performance perameters. One Stage On ampe								
case	ode onamps te	lesc	copic opamps folde	ed cascode onamps	Two-Stage On amn	s C	ain Boosting		
Com	parison of perf	orm	ance of various ona	mp topologies. Desig	n of opamps from s	necit	fications.		
	F F		UI	nit –III			09 Hrs		
Stab	ility in feedba	ıck	systems: Review of	of Bode rules, probl	em of instability, s	tabil	lity condition,		
gain	-phase crossove	ers,	phase margin,				5		
Freq	uency Compe	nsa	tion: Frequency res	ponse of CS amplif	ier - Miller effect, j	pole	s in a system,		
pole	-splitting, Mill	er (compensation. Two	stage opamp - C	ompensation techni	ques	s, closed-loop		
stabi	lity, optimal ph	ase	margin.						
			Uı	nit –IV			07 Hrs		
Nois	e: MOSFET no	oise	models, types of no	bise – thermal, flick	er, Representation o	f no	ise in circuits,		
Nois	e in single stag	e an	nplifiers (Common s	source only).					
Integ	grated Oscillat	ors	: Ring oscillators, L	<u>C oscillators – Cross</u>	s coupled oscillators	, VC			
				nit –V		1	07 Hrs		
Ana	log Filters : Cl	assi	fication of filters, tr	anster function of fil	ters, Second order fi	Iters	s, active filters		
-sal	len and key filt	ers,	KHN biquad, I ow	I nomas, biquads bas	ed on simulated ind		rs.		
Ban	agap reference	es:	Temperature indep	bendent references	- Bipolar CIAI, I	PIA	I, Band gap		
refer	ences (DUK)								
Cou	rse Autcomes:	Δf	ter completing the	course the students	will be able to				
CO1	· Apply the	kno	wledge of MOSEF	T based discrete an	milifiers to investig	nte 1	various design		
	trends in analog IC design								

CO2:	Analyze the functionality of analog circuits & systems
201	

CO3: Design and implement analog integrated circuits

CO4: Evaluate the different performance parameters of analog integrated circuits

Refere	ence Books
1	Design of Analog CMOS Integrated Circuits, Behzad Razavi, 2002, Mc GrawHill Edition,
I	ISBN: 0-07-238032-2
2	CMOS Circuit Design, Layout and Simulation, R. Jacob Baker, Harry W. Li and David E.
	Boyce, 2002, IEEE Press, ISBN: 81-203-1682-7
2	CMOS Mixed-signal Circuit Design, R. Jacob Baker, 2009, IEEE Press, ISBN: 978-81-265-
3	1657-5
	Analysis and Design of Analog Integrated Circuits, Paul R. Gray, Paul J. Hurst, Stephen H.
4	Lewis, Robert G. Meyer, "", 4 th edition, 2008, Wiley India Private Limited, ISBN:978-
	8126515691
5	Fundamentals of Microelectronics, Behzad Razavi, 2 nd Edition, 2013, Wiley, ISBN-10:
3	1118156323

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks**.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	-	-	-	-	-	-	2
CO2	3	2	3	-	3	-	-	-	-	-	-	2
CO3	3	3	2	2	3	-	-	-	2	-	-	2
CO4	3	3	-	2	3	-	-	-	2	-	-	2

High-3: Medium-2 : Low-1

	Semester: IV						
	Design Thinking Lab						
Cour	rse Code	:	18EC47		CIE	:	50 Marks
Cred	lits: L:T:P	:	0:0:2		SEE	:	50 Marks
Hou	rs	:	26P		SEE Duration	:	02 Hours
Cour	Course Learning Objectives: To enable the students to:						
	Knowledge Application: Acquire the ability to make links across different areas of						
1	knowledge a	nd	to generate, o	develop and evaluate idea	as and informati	on	so as to apply
	these skills to) pr	ovide solution	ns of societal concern			
2	Communicat	tior	i: Acquire th	e skills to communicate	effectively and	l to	present ideas
2	clearly and c	ohe	erently to a spe	ecific audience in both the	e written and ora	l fo	orms.
2	Collaboratio	n:	Acquire coll	aborative skills through	working in a	tea	am to achieve
3	common goa	ls.					
4	Independent	L	earning: Lea	arn on their own, refle	ect on their le	eari	ning and take
4	appropriate a	cti	on to improve	it			

Guidelines for Design Thinking Lab:

- 1. The Design Thinking Lab (DTL) is to be carried out by a team of two-three students.
- 2. Each student in a team must contribute equally in the tasks mentioned below.
- 3. Each group has to select a theme that will provide solutions to the challenges of societal concern. Normally three to four themes would be identified by the by the department
- 4. Each group should follow the stages of Empathy, Design, Ideate, prototype and Test for completion of DTL.
- 5. After every stage of DTL, the committee constituted by the department along with the coordinators would evaluate for CIE. The committee shall consist of respective coordinator & two senior faculty members as examiners. The evaluation will be done for each student separately.
- 6. The team should prepare a Digital Poster and a report should be submitted after incorporation of any modifications suggested by the evaluation committee.

The Design Thinking lab tasks would involve:

- 1. Carry out the detailed questionnaire to arrive at the problem of the selected theme. The empathy report shall be prepared based on the response of the stake holders.
- 2. For the problem identified, the team needs to give solution through thinking out of the box innovatively to complete the ideation stage of DTL
- 3. Once the idea of the solution is ready, detailed design has to be formulated in the Design stage considering the practical feasibility.
- 4. If the Design of the problem is approved, the team should implement the design and come out with prototype of the system.
- 5. Conduct thorough testing of all the modules in the prototype developed and carry out integrated testing.
- 6. Demonstrate the functioning of the prototype along with presentations of the same.
- 7. Prepare a Digital poster indicating all the stages of DTL separately. A Detailed project report also should be submitted covering the difficulties and challenges faced in each stage of DTL.
- 8. Methods of testing and validation should be clearly defined both in the Digital poster as well as the report.

The students are required to submit the Poster and the report in the prescribed format provided by the department.

Course	Outcomes: After completing the course, the students will be able to
CO 1:	Interpreting and implementing the empathy, ideate and design should be implemented by
	applying the concepts learnt.
CO 2:	The course will facilitate effective participation by the student in team work and
	development of communication and presentation skills essential for being part of any of
	the domains in his / her future career.
CO 3:	Appling project life cycle effectively to develop an efficient prototype.
CO 4:	Produce students who would be equipped to pursue higher studies in a specialized area
	or carry out research work in an industrial environment.

Scheme of Evaluation for CIE Marks:

Evaluation will be carried out in three phases:

Phase	Activity	Weightage
Ι	Empathy, Ideate evaluation	10M
II	Design evaluation	15M
III	Prototype evaluation, Digital Poster presentation and report submission	25M
	Total	50M

Scheme of Evaluation for SEE Marks:

Sl. No.	Evaluation Component	Marks
1.	Written presentation of synopsis: Write up	5M
2.	Presentation/Demonstration of the project	15M
3.	Demonstration of the project	20M
4.	Viva	05M
5.	Report	05M
	Total	50M

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Η	Η	Н	Н	Μ	Μ	L	Μ	Μ	Μ	Μ	Μ
CO2	Н	Н	Н	Н	Μ	Μ	L	Μ	Μ	Μ	Μ	Μ
CO3	Н	Η	Н	Н	Μ	Μ	L	Μ	Μ	Μ	Μ	Μ
CO4	L	L	L	L	L	L	L	Μ	L	Μ	L	L

			S	Semester: IV				
			C PF	ROGRAMMING	r T			
			В	Bridge Course				
	(Common to all branches)							
Cours	se Code	:	18DCS48		CIE Marks	:	50	
Credi	its: L:T:P	:	2:0:0		SEE Marks	:	50	
	Au	dit Co	urse		SEE Duration	:	2.00 Hours	
Cours	se Learning	g Obje	ctives: The student	s will be able to				
1.	Develop a programm	arithme ning in	tic reasoning and a C.	nalytical skills to	apply knowledge of l	oasi	c concepts of	
2.	Learn bas	ic prin	ciples of problem se	olving through pr	ogramming.			
3.	Write C p	orogran	ns using appropriate	e programming co	onstructs adopted in p	rog	ramming.	
4.	Solve con	nplex p	problems using C pr	ogramming.				
			Unit	- I			4 Hrs	
Skill Funda Intro Basic Identi	Introduction to Reasoning, Algorithms and Flowcharts: Skill development – Examples related to Arithmetical Reasoning and Analytical Reasoning. Fundamentals of algorithms and flowcharts Introduction to C programming: Basic structure of C program, Features of C language, Character set, C tokens, Keywords and							
			Unit -	- II			4 Hrs	
Hand	ling Innut	and O	utput Operations				• •	
Forma using Opera	atted input/c different inj ators and E	output 1 put/out Express	functions, Unforma put functions. sions	tted input/output	functions with progra	ımn	ning examples	
Arithn and c Evalu Opera	Arithmetic operators, Relational operators, Logical Operators, Assignment operators, Increment and decrement operators, Conditional operators, Bit-wise operators, Arithmetic expressions. Evaluation of expressions, Precedence of arithmetic operators, Type conversion in expressions, Operator precedence and associativity					ors, Increment e expressions. h expressions,		
			Unit –	- III			6 Hrs	
 Programming Constructs Decision Making and Branching Decision making with 'if' statement, Simple 'if' statement, the 'ifelse' statement, nesting of 'ifelse' statements, The 'else if' ladder, The 'switch' statement, The '?:' operator, The 'goto' statement. Decision making and looping The while statement, The do while statement, The 'for' statement, Jumps in loops. 								
-	•		Unit -	- IV			6 Hrs	
Array One d arrays Chara Decla	Unit – IV 6 Hrs Arrays One dimensional arrays, Declaration of one dimensional arrays. Initialization of one dimensional arrays, Two dimensional arrays, Initializing two dimensional arrays. Character Arrays and Strings Declaring and Initializing String Variables, Reading Strings from Terminal, Writing strings to arrays.							

Unit – V	8 Hrs
User-defined functions	
Need for User Defined Functions, Definition of functions, Return values and their typ	es, Function

calls, Function declaration. Examples.

Introduction to Pointers: Introduction, Declaration and initialization of pointers. Examples **Structures and Unions:** Introduction, Structure and union definition, Declaring structure and union variables, Accessing structure members. Example programs.

	PRACTICE PROGRAMS
1.	Familiarization with programming environment, concept of naming the program files, storing,
	compilation, execution and debugging. Taking any simple C- code. (Example programs
	having the delimeters, format specifiers in printf and scanf)
2.	Debug the errors and understand the working of input statements in a program by compiling
	the C-code.
3.	Implement C Program to demonstrate the working of operators and analyze the output.
4.	Simple computational problems using arithmetic expressions and use of each
	operator (+,-,/,%) leading to implementation of a Commercial calculator with
	appropriate message:
	a)Read the values from the keyboard
	b) Perform all the arithmetic operations.
	c) Handle the errors and print appropriate message.
5.	Write a C program to find and output all the roots if a given quadratic equation, for
	non-zero coefficients. (Using ifelse statement).
6a.	Write a C program to print out a multiplication table for a given NxN and also to print the
	sum table using skip count 'n' values for a given upper bound.
6h.	Write a C program to generate the patterns using for loops.
0.5.	Example: (to print * if it is even number)
	**
	333

	55555
7.9	Write a C program to find the Greatest common divisor (GCD)and Least common multiplier
/a.	(I CM)
7h	Write a C program to input a number and check whether the number is palindrome or not.
8	Develop a C program for one dimensional demonstrate a C program that reads N integer
0.	numbers and arrange them in ascending or descending order using bubble sort technique
9.	Develop and demonstrate a C program for Matrix multiplication:
	a) Read the sizes of two matrices and check the compatibility for multiplication.
	b) Print the appropriate message if the condition is not satisfied and ask user to re-enter
	the size of matrix.
	c) Read the input matrix
	d) Perform matrix multiplication and print the result along with the input matrix.
10.	Using functions develop a C program to perform the following tasks by parameter passing
	concept:
	a) To read a string from the user
	Print appropriate message for palindrome or not palindrome

11a.1	Write a C program to find the length of the string without using library function.
1b.	Write a program to enter a sentence and print total number of vowels.
12.	Design a structure 'Complex' and write a C program to perform the following operations:
	i. Reading a complex number.
	ii. Addition of two complex numbers.
	iii. Print the result
13.	Create a structure called student with the following members student name, rollno, and a
	structure with marks details in three tests. Write a C program to create N records and
	a) Search on roll no and display all the records.
	b) Average marks in each test.
	c) Highest marks in each test

Course O	outcomes: After Completing the course, the students will be able to
CO1	Understand and explore the fundamental computer concepts and basic programming principles like data types, input/output functions, operators, programming constructs and user defined functions.
CO2	Analyze and Develop algorithmic solutions to problems.
CO3	Implement and Demonstrate capabilities of writing 'C' programs in optimized, robust and reusable code.
CO4	Apply appropriate concepts of data structures like arrays, structures implement programs for various applications

Reference	Reference Books					
1.	Programming in C, P. Dey, M. Ghosh, First Edition, 2007, Oxford University press,					
	ISBN (13): 9780195687910.					
2.	The C Programming Language, Kernighan B.W and Dennis M. Ritchie, Second					
	Edition, 2005, Prentice Hall, ISBN (13): 9780131101630.					
3.	Turbo C: The Complete Reference, H. Schildt, 4 th Edition, 2000, Mcgraw Hill					
	Education, ISBN-13: 9780070411838.					
4.	Understanding Pointers in C, Yashavant P. Kanetkar, 4 th Edition, 2003, BPB					
	publications, ISBN-13: 978-8176563581					
5.	C IN DEPTH, S.K Srivastava, Deepali Srivastava, 3 rd Edition, 2013, BPB publication,					
	ISBN9788183330480					

Continuous Internal Evaluation (CIE); Theory (50 Marks)

CIE is executed by way of quizzes (Q), tests (T) and lab practice (P). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks the sum of the marks scored from quizzes would be reduced to 10 marks. The two tests are conducted for 30 marks each and the sum of the marks scored from two tests is reduced to 30. The programs practiced would be assessed for 10 marks (Execution and Documentation).

Total CIE is 10(Q) + 30(T) + 10(P) = 50 Marks.

Semester End Evaluation (SEE); Theory (50 Marks)

SEE for 50 marks is executed by means of an examination. The Question paper for the course consists of five main questions, one from each unit for 10 marks adding up to 50 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-l	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	-	1	-	-	-	1	-	-	1
CO2	3	3	3	2	2	-	-	-	1	-	-	1
CO3	3	3	3	-	-	-	-	-	2	2	1	2
CO4	3	3	3	-	-	-	1	-	2	2	1	2

High-3: Medium-2 : Low-1

			Ser	nester: III and IV				
			PROFESS	SIONAL PRACTIC	$\mathbf{E} - \mathbf{I}$			
			COMM	UNICATION SKIL	LS			
0	(Common to all Programmes)							
Cou	rse Code	:	18HS49		CIE	:	50	
Crec	lits: L:T:P	:	0:0:1		SEE	:	50	
Tota	I Hours	:	18 hrs		SEE Duration	:	2 Hours	
Cou	rse Learning ()bje	ectives: The student	s will be able to	<u> </u>		1 1 1	
	Understand th	neir	own communication	n style, the essentials	s of good communica	atio	n and develop	
2	Managa stress	ice i	o communicate erre	cuvery.				
2 3	Ability to give	s Uy e cc	apprying succes man	nning and coordinate	Team work			
<u> </u>	Ability to ma	ke r	roblem solving deci	sions related to ethic	s			
-	rionity to ma	KC P	solving deel	sions related to earle	5.			
				Semester			6 Hrs	
Com	munication S	Skil	Is: Basics, Method	d, Means, Process	and Purpose, Bas	sics	of Business	
Com	munication, W	ritte	en & Oral Communi	cation, Listening.				
Com	munication w	vith	Confidence & Cla	rity- Interaction wi	th people, the need	the	uses and the	
meth	ods, Getting pl	none	etically correct, using	g politically correct l	anguage, Debate & E	Exte	mpore.	
							6 Hrs	
Asse	rtive Commu	nica	ation- Concept of A	Assertive communica	tion, Importance and	d aj	pplicability of	
Asse	rtive communi	cati	on, Assertive Words	, being assertive.				
Pres	entation Skills	s- L	Discussing the basic	concepts of present	ation skills, Articula	tior	Skills, IQ &	
GK,	How to make	en	ective presentations	, body language &	Dress code in prese	ntat	ion, media of	
prese	intation.						6 Um	
Teen	Work Toom	We	ntr and its immontant	alamanta Clamifizina	the advantages and a	h_11	0 III S	
rean	1 WORK- Team	wo a ba	rk and its important	ling Defining behavi	our to sync with tea	nan m u	enges of team	
Tean	n Building Feat	g 00	s of successful team		our to sync with tea	III V	OIK Stages OI	
IV S	emester						6 Hrs	
Body	y Language &	Pr	oxemics - Rapport	Building - Gestures,	postures, facial exp	res	sion and body	
move	ements in diffe	ren	t situations, Importa	ince of Proxemics, F	Right personal space	to	maintain with	
diffe	rent people.							
							6Hrs	
Moti	vation and St	ress	s Management: Sel	f-motivation, group	motivation, leadershi	ip a	bilities, Stress	
claus	es and stress b	uste	rs to handle stress a	nd de-stress; Underst	anding stress - Conce	ept	of sound body	
and	mind, Dealing	g w	ith anxiety, tension	n, and relaxation to	echniques. Individua	al (Counseling &	
Guid	ance, Career O	rier	tation. Balancing Pe	ersonal & Professiona	al Life-			
							6 Hrs	
Prof	essional Pract	ice	- Professional Dres	ss Code, Time Sens	e, Respecting Peopl	e 8	their Space,	
Rele	Relevant Behaviour at different Hierarchical Levels. Positive Attitude, Self Analysis and Self-							
Man	Management.							
Protessional Ethics - values to be practiced, standards and codes to be adopted as professional angineers in the society for various projects. Palancing Demondl & Drofessional Life								
engineers in the society for various projects. Balancing Personal & Professional Life								
	Inculanta al		for life such as pro-	blem solving decision	mill be able to	naa	ement	
$\frac{cor}{cor}$	Develop lo	ade	rehin and internerso	nal working skills on	d professional ethics	uag		
CO2	· Apply verb	aue al c	communication ekille	with appropriate bo	dy language			
CO_4	· Develop fl	heir	notential and becom	e self-confident to a	couire a high degree	of	elf	
0.04	. Develop u	ii Cili	potential and becom		equite a mgn degree	01.5		

Refe	erence Books
1.	The 7 Habits of Highly Effective People, Stephen R Covey, Free Press, 2004 Edition, ISBN:
	0743272455
2.	How to win friends and influence people, Dale Carnegie, General Press, 1 st Edition, 2016, ISBN:
	9789380914787
3.	Crucial Conversation: Tools for Talking When Stakes are High, Kerry Patterson, Joseph Grenny,
	Ron Mcmillan, McGraw-Hill Publication, 2012 Edition, ISBN: 9780071772204
4.	Aptimithra: Best Aptitude Book, Ethnus, Tata McGraw Hill, 2014 Edition, ISBN: 9781259058738

Scheme of Continuous Internal Examination and Semester End Examination

Phase	Activity	Weightage
Phase I	CIE will be conducted during the 3 rd semester and evaluated for 50 marks.	50%
III Sem	The test will have two components. The Quiz is evaluated for 15 marks and	
	second component consisting of questions requiring descriptive answers is	
	evaluated for 35 marks. The test & quiz will assess the skills acquired	
	through the training module.	
	SEE is based on the test conducted at the end of the 3 rd semester The test	
	will have two components a Quiz evaluated for 15 marks and second	
	component consisting of questions requiring descriptive answers is	
	evaluated for 35 marks.	
Phase II	During the 4 th semester a test will be conducted and evaluated for 50 marks.	50%
IV Sem	The test will have two components a Short Quiz and Questions requiring	
	descriptive answers. The test & quiz will assess the skills acquired through	
	the training module.	
	SEE is based on the test conducted at the end of the 4 th semester The test	
	will have two components. The Quiz evaluated for 15 marks and second	
	component consisting of questions requiring descriptive answers is	
	evaluated for 35 marks	
Phase III	At the end of the IV Sem Marks of CIE (3 rd Sem and 4 th Sem) is consolidated for 50 marks	
At the	(Average of Test1 and Test 2 (CIE 1+CIE2)/2.	
end of IV	At the end of the IV Sem Marks of SEE (3 rd Sem and 4 th Sem) is consolidated for 50 marks	
Sem	(Average of CIE 1 and CIE 2 (CIE 1+CIE2)/2.	

Curriculum Design Process

Academic Planning and Implementation

Process for Course Outcome Attainment

Electronics & Communication Engineering

Program Outcome Attainment Process

PROGRAM OUTCOMES (POs)

1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.

2. **Problem analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.

4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.

6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.