

RV COLLEGE OF ENGINEERING®

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus of III & IV Semesters

2018 SCHEME

ELECTRONICS & COMMUNICATION ENGINEERING

VISION

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

MISSION

- 1. To deliver outcome based Quality education, emphasizing on experiential learning with the state of the art infrastructure.
- 2. To create a conducive environment for interdisciplinary research and innovation.
- 3. To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- 4. To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- 5. To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

QUALITY POLICY

Achieving Excellence in Techni-cal Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

CORE VALUES

Professionalism, Commitment, Integrity, Team Work, Innovation

RV COLLEGE OF ENGINEERING®

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus of III & IV Semesters

2018 SCHEME

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

DEPARTMENT VISION

Imparting quality technical education through interdisciplinary research, innovation and teamwork for developing inclusive & sustainable technology in the area of Electronics and Communication Engineering.

DEPARTMENT MISSION

- To impart quality technical education to produce industry-ready engineers with a research outlook.
- To train the Electronics & Communication Engineering graduates to meet future global challenges by inculcating a quest for modern technologies in the emerging areas.
- To create centres of excellence in the field of Electronics & Communication Engineering with industrial and university collaborations.
- To develop entrepreneurial skills among the graduates to create new employment opportunities.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **PEO1.** To apply concepts of mathematics, science and computing to Electronics and Communication Engineering
- **PEO2.** To design and develop interdisciplinary and innovative systems.
- **PEO3.** To inculcate effective communication skills, team work, ethics, leadership in preparation for a successful career in industry and R & D organizations.

PROGRAM SPECIFIC OUTCOMES (PSOS)

PSO	Description
PSO1	Should be able to clearly understand the concepts and applications in the field of Communication/networking, signal processing, embedded systems and semiconductor technology.
PSO2	Should be able to associate the learning from the courses related to Microelectronics, Signal processing, Microcomputers, Embedded and Communication Systems to arrive at solutions to real world problems.
PSO3	Should have the capability to comprehend the technological advancements in the usage of modern design tools to analyze and design subsystems/processes for a variety of applications.
PSO4	Should possess the skills to communicate in both oral and written forms, the work already done and the future plans with necessary road maps, demonstrating the practice of professional ethics and the concerns for societal and environmental wellbeing.

Lead Society: Institute of Electrical and Electronics Engineers (IEEE)

ABBREVIATIONS

Sl. No.	Abbreviation	Meaning		
1.	VTU	Visvesvaraya Technological University		
2.	BS	Basic Sciences		
3.	CIE	Continuous Internal Evaluation		
4.	SEE	Semester End Examination		
5.	CE	Professional Core Elective		
6.	GE	Global Elective		
7.	HSS	Humanities and Social Sciences		
8.	CV	Civil Engineering		
9.	ME	Mechanical Engineering		
10.	EE	Electrical & Electronics Engineering		
11.	EC	Electronics & Communication Engineering		
12.	IM	Industrial Engineering & Management		
13.	EI	Electronics & Instrumentation Engineering		
14.	СН	Chemical Engineering		
15.	CS	Computer Science & Engineering		
16.	TE	Telecommunication Engineering		
17.	IS	Information Science & Engineering		
18.	BT	Biotechnology		
19.	AS	Aerospace Engineering		
20.	PH	Physics		
21.	СН	Chemistry		
22.	MA	Mathematics		

INDEX

	III Semester				
Sl. No.	Course Code	Course Title	Page No.		
1.	18MA31B	Discrete and Integral Transforms	1		
2.	18BT32A	Environmental Technology	3		
3.	18EC33	Analog Microelectronic Circuits	5		
4.	18EC34	Analysis & Design of Digital Circuits	8		
5.	18TE35	Principles of Electromagnetic Fields	11		
6.	18EE36	Network Analysis	13		
7.	18DMA37#	Bridge Course Mathematics	15		
8.	18HS38 #	Kannada Course	17		
		IV Semester			
Sl. No.	Course Code	Course Title	Page No.		
1.	18MA41B	Linear Algebra, Statistics and Probability Theory	20		
2.	18EC42	Engineering Materials	22		
3.	18EC43	Advanced Digital System Design using Verilog HDL	24		
4.	18EI44	Microprocessor & Microcontroller	27		
5.	18TE45	Signals and Systems	30		
6.	18EC46	Analog Integrated Circuits Design	32		
7.	18DCS48	Bridge Course C Programming	34		
8.	18HS49	Professional Practice-I Communication Skills	38		

RV COLLEGE OF ENGINEERING®

(Autonomous Institution Affiliated to VTU, Belagavi)

ELECTRONICS AND COMMUNICATION ENGINEERING

	THIRD SEMESTER CREDIT SCHEME						
Sl. Course Code		ourse Code Course Title BoS	DoC	Credi	it Allo	cation	Total
No.	Course Code	Course Tide	D03	L	T	P	Credits
1.	18MA31B*	Discrete and Integral Transforms (Common to EC, EE, EI & TE)		4	1	0	5
2.	Environmental Technology		2	0	0	2	
3.	18EC33	Analog Microelectronic Circuits	EC	4	0	1	5
4.	18EC34	Analysis & Design of Digital Circuits (Common to EC, EE, EI & TE)	EC	4	0	1	5
5.	18TE35	Principles of Electromagnetic Fields (Common to EC, EE &TE)	TE	3	0	0	3
6.	18EE36	Network Analysis (Common to EE, EC & TE)	EE	3	0	0	3
7.	18DMA37***	Bridge Course: Mathematics	MA	2	0	0	0
8.	18HS38 #	Kannada Course (Common to all branches)	HSS	1	0	0	0
	Total Number of Credits 20 1 2 2					23	
	To	otal number of Hours/Week		20+3*	2	5	

*Engineering Mathematics - III

Liigiik	Engineering wathematies in						
Sl. No	COURSE TITLE	COURSE CODE	PROGRAMMES				
1.	Linear Algebra, Laplace Transform and	18MA31A	CS & IS				
	Combinatorics						
2.	Discrete and Integral Transforms	18MA31B	EC, EE, EI & TE				
3.	Engineering Mathematics –III	18MA31C	AS, BT, CH, CV, IM & ME				

**

Sl. No	COURSE TITLE	COURSE CODE	PROGRAMMES
1.	Environmental Technology	18BT32A	EE, EC, EI, CS, TE & IS
2.	Biology for Engineers	18BT32B	BT & AS
3.	Engineering Materials	18ME32	ME, CH & IM

*** Bridge Course: Audit course for lateral entry diploma students

Sl. No	COURSE TITLE	COURSE CODE	PROGRAMS
1	Bridge Course Mathematics	18DMA37	AS, BT,CH, CV, EC, EE, EI,
	-		IM, ME &TE
2	Bridge Course C Programming	18DCS37	CS & IS

[#] Mandatory audit course for all students

RV COLLEGE OF ENGINEERING®

(Autonomous Institution Affiliated to VTU, Belagavi)

ELECTRONICS AND COMMUNICATION ENGINEERING

	FOURTH SEMESTER CREDIT SCHEME							
Sl.	Course Code	Course Title	BOS	Credit Allocation		ation	Total	
No	Course Coue	Course Title	воз	L	T	P	Credits	
1.	18MA41B*	Linear Algebra, Statistics and Probability Theory (Common to EC, EE, EI & TE)	MA	4	1	0	5	
2.	18EC42**	Engineering Materials (Common to EC, EE, EI & TE)	EC	2	0	0	2	
3.	18EC43 Advanced Digital System Design using Verilog HDL EC		EC	3	0	1	4	
4.	18EI44	Microprocessor & Microcontroller (Common to EI, EC, EE & TE)	EI	3	0	1	4	
5.	18TE45	Signals and Systems (Common to TE, EC, EE & EI)	TE	3	1	0	4	
6.	18EC46	Analog Integrated Circuits Design	EC	3	0	0	3	
7.	18EC47	Design Thinking lab	EC	0	0	2	2	
8.	18DCS48 ***	Bridge Course: C Programming	CS	2	0	0	0	
9.	18HS49	Professional Practice-I Communication Skills (Common to all Programmes)	HSS	0	0	1	1	
	Total Number of Credits			18	2	5	25	
	Total	number of Hours/Week	_	18+2	4	10+1		

* ENGINEERING MATHEMATICS – IV

Sl. No	COURSE TITLE	COURSE CODE	PROGRAMMES
1.	Graph Theory, Statistics and Probability Theory	18MA41A	CS & IS
2.	Linear Algebra, Statistics and Probability Theory	18MA41B	EC, EE, EI & TE
3.	Engineering Mathematics –IV	18MA41C	AS, CH, CV & ME

**

Sl. No	COURSE TITLE	COURSE CODE	PROGRAMMES
1.	Engineering Materials	18EC42	EC, EE, EI & TE
2.	Biology for Engineers	18BT42B	CS & IS
3.	Environmental Technology	18BT42A	CV, ME, IM, CH, BT
			& AS

*** Bridge Course: Audit course for lateral entry diploma students

Sl. No	COURSE TITLE	COURSE CODE	PROGRAMMES
1	Bridge Course Mathematics	18DMA48	CS & IS
2	Bridge Course C Programming	18DCS48	AS, BT, CH,CV,EC, EE,EI,IM, ME & TE

Note: Internship to be taken up during the vacation period after the 4th semester

	Semester: III						
	DISCRETE AND INTEGRAL TRANSFORMS						
				(Theory)			
			(Commo	on to EC, EE, EI & '	TE)		
Cou	rse Code	:	18MA31B		CIE	:	100 Marks
Credits: L:T:P : 4:1:0 SEE : 100 Mark				100 Marks			
Total Hours : 52L+26T SEE Duration : 03 Hours				03 Hours			
Cou	rse Learning C)bje	ectives: The students	s will be able to			
1	Understand th	ie e	xistence and basic co	oncepts of Laplace, F	Fourier and z - transf	orm	S.
2	Demonstrate t	the	concepts of Laplace	transform to solve of	rdinary differential e	qua	tions.
3	Analyze the c	onc	ept of periodic phen	omena and develop l	Fourier series.		
4							
5	Use mathema	tica	l IT tools to analyze	and visualize the abo	ove concepts.		

Unit-I	10 Hrs

Laplace Transform:

Existence and uniqueness of Laplace transform (LT), transform of elementary functions, region of convergence. Properties - linearity, scaling, s - domain shift, differentiation in the s - domain, division by t, differentiation and integration in the time domain. LT of special functions - Periodic functions (square wave, saw-tooth wave, triangular wave, full & half wave rectifier), Heaviside unit step function, unit impulse function, t - shift property. Relevant MATLAB commands to develop additional insight into the concepts.

Unit – II 11 Hrs

Inverse Laplace Transform:

Definition, properties, evaluation using different methods. Convolution theorem (without proof), problems. Application to solve ordinary linear differential equations. Relevant MATLAB commands to develop additional insight into the concepts.

Unit –III 11 Hrs

Fourier Series:

Introduction, periodic function, even and odd functions. Dirichlet's conditions, Euler's formulae for Fourier series, complex Fourier series, problems on time periodic signals (square wave, half wave rectifier, saw-tooth wave and triangular wave), Fourier sine series, Fourier cosine series. Relevant MATLAB commands to develop Fouries series of functions.

Unit –IV 10 Hrs

Fourier Transform:

Fourier integral theorem, complex Fourier transform, Fourier sine transform, Fourier cosine transform, properties - linearity, scaling, time-shift and modulation. Convolution theorem (without proof), problems. Parseval's identity. Relevant MATLAB commands to develop additional insight into the concepts.

Unit -V 10 Hrs

Z-Transform:

Introduction, z - transform of standard functions, Region of convergence, properties - linearity, scaling, shifting theorem, initial and final value theorems. Inverse z - transform using power series and partial fraction expansions, convolution theorem (without proof), problems. Application to solve difference equations arising in communication and control systems. Relevant MATLAB commands to develop additional insight into the concepts.

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understand the significance of fundamental concepts of transforms, inverse transforms and
	periodic phenomena.
CO2:	Demonstrate the properties of transforms and inverse transforms, graphical representation of
	various wave forms.
CO3:	Evaluate transforms of special functions, develop Fourier series of various type of functions.
CO4:	Apply transform techniques to solve differential equations and difference equations occurring
	in engineering problems.

Refer	ence Books
1	Higher Engineering Mathematics, B.S. Grewal, 44 th Edition, 2015, Khanna Publishers, ISBN: 978- 81-933284-9-1.
2	A Text Book of Engineering Mathematics, N.P. Bali & Manish Goyal, 7 th Edition, 2010, Lakshmi Publications, ISBN: 978-81-7008-992-6.
3	Advanced Engineering Mathematics, Erwin Kreyszig, 9 th Edition, 2007, John Wiley & Sons, ISBN: 978-81-265-3135-6.
4	Signals and systems, Simon Haykins and Barry Van Veen, 2 nd Edition, 2003, John Wiley & Sons, ISBN: 9971-51-239-4.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	2	-	-	-	-	1	-	1
CO4	3	3	3	3	2	-	-	-	-	1	-	1

High-3: Medium-2: Low-1

				Semester: III				
	ENIVIRONMENTAL TECHNOLOGY							
				(Theory)				
			(Comm	on to EC,EE,TE &	z EI)			
Cou	rse Code	••	18BT32A		CIE	:	50	
Cred	lits: L:T:P	••	2:0:0		SEE	:	50	
Tota	l Hours	••	26L		SEE Duration	:	02 Hours	
Cou	rse Learning C	bje	ectives: The students	s will be able to				
1	Understand th	e v	arious components	of environment and	the significance o	f th	e sustainability of	
	healthy enviro	nn	nent.					
2	Recognize th	e	implications of dif	fferent types of t	he wastes produ	ced	by natural and	
	anthropogenic activity.							
3	3 Learn the strategies to recover the energy from the waste.							
4	Design the mo	ode	ls that help mitigate	or prevent the neg	ative impact of pro	pos	sed activity on the	
	environment.							

Unit-I 05 Hrs

Introduction: Environment - Components of environment, Ecosystem. Impact of anthropogenic activities on environment (agriculture, mining and transportation), Environmental education, Environmental acts & regulations, role of non-governmental organizations (NGOs), EMS: ISO 14000, Environmental Impact Assessment. Environmental auditing.

Unit – II 06 Hrs

Environmental pollution: Air pollution – point and non-point sources of air pollution and their controlling measures (particulate and gaseous contaminants). Noise pollution, Land pollution (sources, impacts and remedial measures).

Water management: Water conservation techniques, water borne diseases & water induced diseases, arsenic & fluoride problems in drinking water and ground water contamination, advanced waste water treatment techniques.

Unit –III 06 Hrs

Waste management, Solid waste management, e waste management & biomedical waste management – sources, characteristics & disposal methods. Concepts of Reduce, Reuse and Recycling of the wastes.

Energy – Different types of energy, conventional sources & non-conventional sources of energy, solar energy, hydro electric energy, wind energy, Nuclear energy, Biomass & Biogas Fossil Fuels, Hydrogen as an alternative energy.

Unit –IV 05 Hrs

Environmental design: Principles of Environmental design, Green buildings, green materials, Leadership in Energy and Environmental Design (LEED), soilless cultivation (hydroponics), organic farming, use of biofuels, carbon credits, carbon foot prints, Opportunities for green technology markets, carbon sequestration.

Unit –V 04 Hrs

Resource recovery system: Processing techniques, materials recovery systems, biological conversion (composting and anaerobic digestion). Thermal conversion products (combustion, incineration, gasification, pyrolysis, use of Refuse Derived Fuels). Case studies of Biomass conversion, e waste.

Course	Outcomes: After completing the course, the students will be able to								
CO1:	Identify the components of environment and exemplify the detrimental impact of								
	anthropogenic activities on the environment.								
CO2:	Differentiate the various types of wastes and suggest appropriate safe technological methods								
	to manage the waste.								
CO3:	Aware of different renewable energy resources and can analyse the nature of waste and								
	propose methods to extract clean energy.								
CO4:	Adopt the appropriate recovering methods to recover the essential resources from the wastes								
	for reuse or recycling.								

Refere	ence Books
1	Introduction to environmental engineering and science, Gilbert, M.M. Pearson Education. India: 3rd Edition (2015). ISBN: 9332549761, ISBN-13: 978-9332549760.
2	Environmental Engineering, Howard S. Peavy, Donald R. Rowe and George Tchobanoglous. McGraw Hill Education, First edition (1 July 2017). ISBN-10: 9351340260, ISBN-13: 978-9351340263
3	Environmental Science, G. Tyler Miller (Author), Scott Spoolman (Author), – 15 th Edition, Publisher: Brooks Cole, ISBN-13: 978-1305090446 ISBN-10: 130509044
4	Environment Management, Vijay Kulkarni and T. V. Ramachandra 2009 TERI Press; ISBN: 8179931846, 9788179931844

Continuous Internal Evaluation (CIE); Theory (50 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 15 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 30 marks each and the sum of the marks scored from three tests is reduced to 25. The marks component for experiential learning is 20.

Total CIE is 15(Q) + 30(T) + 05(EL) = 50 Marks.

Semester End Evaluation (SEE); Theory (50 Marks)

SEE for 50 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 10 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 8 marks adding up to 40 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO	-PO M	apping					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1						3		2	-		-
CO2	2	3	3	2	1		3	3	2	-	2	1
CO3		3	1	3		2	3	3	2	-	1	2
CO4	1		2	1	3		2		2	-		2

High-3: Medium-2: Low-1

				Semester: III				
	ANALOG MICROELECTRONIC CIRCUITS							
				(Theory & Practice)				
Cou	rse Code	:	18EC33		CIE	:	100+50 Marks	
Cred	lits: L:T:P	:	4:0:1		SEE	:	100+50 Marks	
Total Hours		:	50L + 33P		SEE Duration	:	03+03 Hours	
Cou	rse Learning C)bje	ectives: The stud	dents will be able to				
1	Apply the kno	owl	edge of BJTs and	d MOSFETs to design	practical electronic	cir	cuits.	
2	Design and co	ond	uct experiments	using BJTs/MOSFETs	Op Amps and to	ana	lyze and interpret	
	the results.							
3	3 Design electronic sub systems such as feedback amplifiers, oscillators, power amplifiers to						wer amplifiers to	
	meet the required specifications.							
4	4 Communicate and discuss effectively the technical details with reference to analog electronic							
	subsystems us	sing	g BJTs, MOSFE	Ts and Op Amps.				
5	Use of mathematical IT tools to analyze and visualize the above concepts.							

MOS Field Effect Transistors (MOSFETS):

Device structure and physical operation, current voltage characteristics, MOSFET circuits at dc, Biasing in discrete MOS amplifier circuits, small signal operation and models, channel length modulation, transconductance, MOSFET as an amplifier – CS stage, CS stage with degeneration, CG and CD stages, discrete amplifier design problems.

Unit – II 10 Hrs

Bipolar Junction Transistors (BJTs):

BJT circuits at dc, Biasing in discrete BJT amplifier circuits – classic discrete circuit bias arrangement, two power supply version, collector to base bias, biasing using constant current source, small signal operation and models – re model, hybrid π model, collector current and transconductance, early effect, BJT as an amplifier – CE stage, CE stage with degeneration, CC stage, discrete amplifier design problems, Darlington pair.

Unit –III 10 Hrs

High frequency model of MOSFET and BJT:

MOSFET / BJT internal capacitors and high frequency model, frequency response of CS/ CE amplifier,

Current sources and current mirrors:

Basic current mirror, bipolar current mirror with base current compensation, Wilson current mirror using BJT, Wilson MOS mirror, Widlar current source, Cascode current mirror, design problems

Unit –IV 10 Hrs

Operational Amplifiers:

Effect of finite open loop gain, finite bandwidth, large signal operation of opamps - slew rate, output voltage saturation, output current limits,

Linear Opamp circuits – Non inverting and inverting amplifiers, Difference and Instrumentation amplifiers.

Nonlinear Opamp circuits - Schmitt trigger, Sine wave oscillators - Opamp RC oscillators - Phase shift and Wien bridge oscillator, LC tuned oscillators and crystal oscillators, precision rectifiers.

Unit –V 10 Hrs

Feedback Amplifiers and Large Signal Amplifiers:

Properties of negative feedback, the four basic feedback topologies, practical circuits of the two types of feedback with opamps (Voltage series and Voltage shunt feedbacks), classification of output stages, class A, class AB, class B circuits, thermal resistance and heat sinking of power transistors.

Practical's:

- 1. Design & testing of half wave / full wave rectifier circuits, and Zener diode voltage regulator.
- 2. Design & testing of (a) Inverting amplifier (b) Non inverting amplifier
 - (c) Summing circuit (d) Comparator and (e) Schmitt trigger, using operational amplifier.
- 3. Static characteristics of NMOS transistor
- 4. Design and testing of RC phase shift and Wien bridge oscillator circuits using operational amplifier.
- 5. Design & testing of an RC coupled amplifier using BJT in CE configuration.
- 6. Design & testing of Darlington emitter follower circuit with and without boot strapping.
- 7. LC Oscillators: Hartley and Colpitts oscillators using BJT
- 8. Design and testing of class B and class AB power amplifier circuits.

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Explore the principles associated in designing amplifiers, oscillators and rectifiers.							
CO2:	Analyse discrete analog circuits based on BJTs, MOSFETS and Opamps.							
CO3:	Evaluate the performance parameters of discrete analog circuits based on standard specifications.							
CO4:	Design discrete analog circuits based on BJTs, MOSFETS and Opamps.							

Ref	erence Books
1	Microelectronic Circuits Theory and Applications, Adel S Sedra, & Kenneth C Smith, adapted by A Chandorkar, International version, 5 th Edition, 2009, Oxford University Press, ISBN: 0195338839.
2	Fundamentals of Microelectronics, Behzad Razavi, 2 nd Edition, 2013, Wiley, ISBN-10: 1118156323
3	Electronic Devices and Circuits , Jacob Millman, Christos C Halkias & Satyabrata Jit, 2 nd Edition, 2008, Tata McGraw Hill publication,. ISBN: 0070634556
4	Electronic Devices and Circuit Theory, Robert L Boylestad & Louis Nashelsky, 10 th Edition, 2008, PHI publication, ISBN: 9788131725290.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) + 10(T) + 10(IE) = 50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

	CO-PO Mapping													
CO/PO	CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO1	3	3	3	-	1	2	2	-	3	-	-	2		
CO2	3	3	3	-	1	2	2	-	3	-	-	2		
CO3	3	3	3	2	1	2	2	2	3	2	-	2		
CO4	3	3	3	2	1	2	2	2	3	2	-	2		

High-3: Medium-2: Low-1

	Semester: III										
	ANALYSIS & DESIGN OF DIGITAL CIRCUITS										
	(Theory & Practice)										
			(Commo	on to EC, EE, EI &	(TE)						
Cou	rse Code	:	18EC34		CIE	:	100+50 Marks				
Cred	lits: L:T:P	:	4:0:1		SEE	:	100+50 Marks				
Tota	l Hours	:	52L + 33P		SEE Duration	:	03+03 Hours				
Cou	rse Learning C	bje	ectives: The student	s will be able to							
1	Understand v	aric	ous types of logic fa	milies, explain the	concept logic func	tion	ns, SOP, POS and				
	canonical exp	res	sions, simplification	techniques.							
2	Design and u	se	standard combination	onal circuit buildin	g blocks: multiple	xer	s, demultiplexers,				
	binary decode	ers a	and encoders, decod	ers, Arithmetic Circ	cuits, code convert	ers					
3	Implement di	ffeı	rent sequential circu	uits using various t	flip flops to realiz	e s	tate machines for				
	given timing	oeh	avior.								
4	Analyze proc	esse	or organization and	design arithmetic	& logic unit by us	ing	combinational &				
	sequential circ	cuit	S.								
5	Understand v	aric	ous types of logic fa	milies, explain the	concept logic func	tion	ns, SOP, POS and				
	5 Understand various types of logic families, explain the concept logic functions, SOP, POS and canonical expressions, simplification techniques.										

Unit-I 10 Hrs

Digital Integrated Circuits: Digital IC Logic Families: Transistor-Transistor Logic (Totem pole TTL), Emitter Coupled Logic (ECL), Complementary MOS (CMOS) Logic.

Characteristics and Performance Parameters of CMOS Inverter: Introduction, Propagation delay, Sourcing, Sinking, Fan-in, Fan-out, V_{IH}, V_{OH}, V_{IL}, V_{OL} and corresponding currents, Noise margin, Power dissipation, power consumption, power-delay product as a figure of merit. **Simplification Techniques:**5-variable K-Map, Quine-McClusky Minimization, Numerical Examples.

Unit – II 11 Hrs

Combinational Circuits Design and Analysis:

Parallel Adder/Subtractor using IC 7483, Decoders, Encoders, Multiplexers and De-Multiplexers, Priority encoder and Magnitude comparator, Arithmetic circuits and code converters using Multiplexers and Decoders, Concepts of ripple carry and carry look ahead adders, BCD adder.

Unit –III 11 Hrs

Sequential Circuits Design and Analysis-I: Introduction, Latches and Flip Flops, Triggering of Flip Flops, Flip Flop Excitation Tables, Flip-Flop conversions, Registers, Shift Registers and Various Operations, Ring counters, Johnson counters, Ripple Counters.

Unit –IV 10 Hrs

Sequential Circuits Design and Analysis II: Introduction, FSM (Melay and Moore), Analysis of Clocked Sequential Circuits, State table and Reduction, Design of synchronous Counters, Programmable counters. Design with State Equations, Sequence generators (PRBS).

Unit –V 10 Hrs

Design of a Processor Unit:

Introduction, Processor Organization, Arithmetic Logic Unit, Design of Arithmetic Unit, Design of Logic unit, Design of Arithmetic and Logic unit, Status Register, Design of Shifter, The Complete Processor unit and op-code generation.

Practical's:

Note: a) Out of ten experiments, for seven experiments manual will be provided.

Each of these would also include practice experiments. Last three experiments are case studies and are compulsory.

b) Practice questions: Students should design the experiment in advance and practice the lab.

- 1. a) Realization of Binary Adder and Subtractor using universal gates and IC-7483.
 - b) Practice Question: Design a parallel binary subtractor to get actual difference based on the value of Count (correction circuit).
- 2. a) Arithmetic circuits- Realize the given Boolean expressions using MUX/DEMUX using IC-74153, IC-74139.
 - b) Practice Question: Realize FA/FS using MUX/DEMUX.
- 3. a) Code convertors i) Binary to Gray ii) BCD to Excess-3 using Decoder/demux.
- b) Practice Question i) Binary to excess-3 using IC-7483 ii) Gray to Binary using Decoder
 - 4. a) Design a two-bit magnitude comparator using logic gates.
 - b) Drive the LED Display using IC-7447.
 - c) Practice Question: Design an n-bit comparator using IC-7485(make use of cascading facility)
 - 5. a) Design a Master JK-FF using NAND gates. Also design D-FF and T-FF using same. Observe the waveform using CRO.
 - b) Practice Question: Design a Master Slave JK-FF using P-Spice simulation software and observe the waveforms.
 - 6. a) Realization of asynchronous mod-n counter using IC-7490, IC-7493.
 - b) Using IC-7495 perform SISO, SIPO, PISO, PIPO, Shift left operations.
 - c) Design ring and Johnson counter using IC-7495
 - b) Practice Question: Design mod-99 counter using IC-7490.
 - 7. a) Design of synchronous 3-bit up/down counter using IC-7476/IC-74112.
 - b) Design a synchronous counter to count given sequence.
 - c) Using presettable counters IC-74192/193 perform mod-n counts.
 - d) Practice Question: Design a synchronous 4-bit up/down counter using P-Spice simulation software and observe the waveforms.
 - 8. Design a sequence generator using a shift register to obtain a sequence Y= 100010011010111
 - 9. Using IC-74192/193, drive the LED display and generate a given sequence
- 10. Design a 2-bit ALU operation using P-Spice simulation software and observe the waveforms.

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Apply the knowledge of digital electronics to construct combinational and sequential sub-									
	systems useful for digital system designs.									
CO2:	Develop a solution to real-life problems based on the knowledge of digital electronics.									
CO3:	Implement the engineering solutions with the help of modern engineering tools, hardware									
	design and practices.									
CO4:	Analyze and update the knowledge for obtaining sustainable solutions for technological									
	enhancements in the field of digital electronics.									

Refere	ence Books										
1	Digital Logic and Computer Design, M. Morris Mano, Pearson Education Inc., 13th										
	Impression, 2011, ISBN: 978-81-7758-409-7.										
,	Fundamentals of Logic Design, Charles H. Roth (Jr.), West publications, 4th Edition, 1992,										
	ISBN-13: 978-0-314-92218-2.										
2	Digital Fundamentals, Thomas Floyd, 11 th Edition, Pearson Education India, ISBN 13: 978-1-										
3	292-07598-3, 2015.										
4	Digital Principle and Design, Donald D. Givone, Mc Graw-Hill, ISBN: 0-07-119520-3 (ISE),										

		2003.
Ī	5	Digital Principles and Applications, Albert Paul Malvino and Donald P Leach, 7 th Edition, Tata McGraw Hill Education Private Limited, 2011, ISBN (13 digit): 978-0-07-014170-4 and
		ISBN (10 digit): 0-07-014170-3

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) + 10(T) + 10(IE) = 50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

	CO-PO Mapping												
CO/PO	CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
CO1	3	2	1	1	1	-	-	-	-	2	1	3	
CO2	3	2	3	2	3	3	2	2	2	2	1	2	
CO3	3	3	3	3	3	3	3	3	3	2	3	3	
CO4	3	3	3	3	1	3	-	-	-	1	1	3	

High-3: Medium-2: Low-1

	Semester: III												
	PRINCIPLES OF ELECTROMAGNETIC FIELDS												
	(Theory)												
			(Com	mon to EC, EE &T	TE)								
Cou	Course Code : 18TE35 CIE : 100 Marks												
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks						
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours						
Cou	rse Learning ()bj	ectives: The student	ts will be able to									
1	Apply knowle	edg	e of mathematics, s	cience, and engineer	ring basics to the an	alys	is and design of						
	electrical systems involving electric and magnetic fields as well as electromagnetic waves.												
2													
3	•		·	odels of communicat									

Unit-I 07 Hrs

Electrostatics 1: Coulomb's law, illustrative examples, Electric Field Intensity, Applications (field due to Line charge distribution, Surface charge distribution- Sheet, Circular ring, disk), Illustrative examples. Flux, Flux density, Gauss's Law, Divergence Theorem(qualitative treatment), Application of Gauss's Law (Field due to Continuous Line Charge, Sheet Charge, Metal Sphere, Spherical shell) Illustrative examples.

Unit – II 09 Hrs

Electrostatics-2: Electric Potential, Relation between E and V, Applications (Field and potential due to Line charge distribution, Surface charge distribution- sheet), Energy Density in an Electric Field, Illustrative examples. Energy Density, Boundary Conditions (dielectric-dielectric, dielectric-conductor), Poisson's and Laplace's Equations, Applications of Laplace's and Poisson's Equations (Different capacitors), Illustrative examples.

Unit –III 09 Hrs

Magneto Static Fields-1: Current, Current density, Biot -Savart Law, Applications (Infinite linear conductor, current carrying in loop, solenoid), Magnetic Flux and Flux Density, Ampere's Circuital Law, Stroke's theorem (qualitative treatment), Applications (Infinite line current, sheet current, coaxial transmission line), Problems.

Unit –IV 08 Hrs

Magneto Static Fields-2: Magnetic potentials, Magnetic energy, Magnetic Boundary Conditions, Force due to magnetic fields(Charged particle, Current element), Lorentz Force equation, Inductors. Maxwell's Equations: Introduction, Faraday's Law, Transformer and Motional EMFs, Displacement Current, Maxwell's Equations in Final Forms, Time-Varying Potentials, Time-Harmonic Fields, Illustrative examples

Unit –V 07 Hrs

Electromagnetic Waves: Introduction, Waves in General, Wave Propagation in Lossy Dielectrics, Plane Waves in Lossless Dielectrics, Plane Waves in Free Space, Plane Waves in Good Conductors, Power and the Poynting Vector, Numericals, Reflection of a Plane Wave at Normal Incidence. Illustrative examples.

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Explain fundamental laws governing electromagnetic fields and evaluate the physical quantiti							
	es of electromagnetic fields.							
CO2:	Determine the electromagnetic fields exerted on charged particles, current elements and other devices.							
	devices.							

CO3:	Design electromagnetic energy storage devices like capacitor, inductor which are frequently used in electrical systems.
CO4:	Deduce and justify the concepts of electromagnetic waves, means of transporting energy from
	two different medium.

Ref	erence Books
1.	Elements of Electromagnetics, Matthew N O Sadiku, Oxford University Press, 4th Edition, 2007,
	ISBN-13: 978-0195300482.
2.	Engineering Electromagnetics, William H. Hayt Jr. and John A. Buck, Tata McGraw Hill, 6th
	Edition, 2001, ISBN: 978-0071089012.
3.	Electromagnetic Waves and Radiating Systems, Edward C. Jordan and Keith G. Balmain, Prentice
	Hall of India, 2 nd Edition, 1968. Reprint 2002.
4.	Electromagnetics with Applications, John Krauss and Daniel A. Fleisch, McGraw Hill, 5th
ì	Edition 1999 ISBN-10: 0072899697/ISBN-13: 978-0072899696

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping													
CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO												PO12		
CO1	3	2	-	-	-	-	-	-	-	1	-	1		
CO2	2	2	2	1	-	-	-	-	-	1	-	1		
CO3	1	3	2	2	2	-	-	-	-	1	-	1		
CO4	2	3	3	3	2	-	-	-	-	1	-	1		

High-3: Medium-2: Low-1

	Semester: III										
	NETWORK ANALYSIS										
	(Theory)										
			(Comn	non to EE, EC & TE	E)						
Cou	rse Code	:	18EE36		CIE	:	100 Marks				
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks				
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours				
Cou	rse Learning C)bje	ectives:								
1	Apply knowle	edg	ge of mathematics,	science, and engine	ering to the analysi	is a	and design of				
	electrical circu	uits									
2	Apply the lo	op	& nodal analysis t	o solve networks ar	nd complex network	s t	ising network				
	theorems and	cor	ncept of dot conventi	ion used in practice.							
3	Analyze unba	alar	nced loads connected	ed to balanced thre	e-phase supply and	l u	nderstand the				
	concept of net	utra	ıl shift.								
4	Find the time	coı	nstants, initial and fi	nal values, and comp	olete responses for R	LC	circuits under				
	ac and dc exci	itati	ions.								

ac and dc excitations.					
Unit-I	08 Hrs				
Practical sources, source transformation, source shifting, Loop and Node analysis w	ith linear				
dependent and independent sources for DC and AC networks. Principle of duality.					
Unit – II	08 Hrs				
Network Theorems:					
Superposition, Reciprocity, Thevenin's, Norton's, Maximum Power transfer and I	Millman's				
theorems.					
Dot convention: Analysis of coupled circuits, problems on the above, series and paralle circ	uits.				
Unit –III	08 Hrs				
Polyphase Circuits:					
Analysis of unbalanced loads connected to balanced three-phase supply, neutral shift.					
Analysis of unbalanced loads connected to balanced three-phase supply, neutral shift.					
Analysis of unbalanced loads connected to balanced three-phase supply, neutral shift. Two port networks:					
Two port networks:	08 Hrs				
Two port networks: Z, Y, ABCD and Hybrid parameters, their inter relationship and numerical problems	08 Hrs				
Two port networks: Z, Y, ABCD and Hybrid parameters, their inter relationship and numerical problems Unit –IV	08 Hrs				
Two port networks: Z, Y, ABCD and Hybrid parameters, their inter relationship and numerical problems Unit –IV Resonance in Networks:	08 Hrs				

initial and final conditions in R-L, R-C and R-L-C Circuits for DC and AC excitations.

Unit -V 08 Hrs

Laplace Transformation and Applications: Definition, Laplace and inverse Laplace transforms of standard functions, shifting theorem. Waveform synthesis, initial and final value theorems. Impulse function, Convolution theorem, Network functions of single port & two port networks-Driving point & transfer functions (immetence function).

Course	Course outcomes: On completion of the course, the student should have acquired the ability to								
CO1:	CO1: Understand the basic concepts of circuits, theorems, three phase unbalanced circuits and								
	waveform synthesis.								
CO2:	Apply the basic concepts and solve circuits with DC or AC excitation and coupled circuits								
	using theorems and transformations								
CO3:	Compare the steady state and transient response of a circuit through application of inverse								
	transformation and shifting theorems								
CO4:	Design and implement a circuit as per the given specifications and constraints.								

Refere	Reference Books								
1	Network Analysis, M.E Van Valkenberg, , 3 rd Edition, Reprint 2002, PHI, <i>ISBN</i> 81-7808-729-42.								
2	Engineering Circuit Analysis, Hayt, Kemmerly and Durbin, 6 th Edition, 2002, TMH, <i>ISB</i> , 10: 0071122273.								
3	Electric circuits, Joseph Edminister and Mahmood Nahvi, 3 rd Edition,2001, TN ISBN:0074635913								
4	Network Theory, K Channa Venkatesh , D Ganesh Rao, 1 st Edition, Pearson education, 2012, ISBN-13-9788131732311								

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 F								PO12				
CO1	2	2	1	1	1	1	1	-	2	2	-	1
CO2	2	2	2	2	1	1	1	-	2	1	-	1
CO3	3	3	2	2	2	1	1	-	2	2	-	1
CO4	3	3	2	1	1	1	1	-	2	1	-	1

High-3: Medium-2: Low-1

	Semester: III							
	BRIDGE COURSE MATHEMATICS							
			(Comi	mon to all branches)			
Cou	Course Code : 18DMA37 CIE : 50 Marks							
Cred	lits: L:T:P	:	2:0:0		SEE	:	50 Marks	
	Audit (Co	urse		SEE Duration	:	02 Hours	
Cou	rse Learning Ob	je	ctives: The students	s will be able to				
1				s of several variable				
	these functions	a	and its applications,	, approximate a fur	ction of single vari	iabl	e in terms of	
	infinite series.							
2	Acquire concep	ots	of vector functions	, scalar fields and di	fferential calculus of	f ve	ctor functions	
	in Cartesian coo	orc	linates.					
3	Explore the po	oss	sibility of finding	approximate solution	ns using numerical	me	ethods in the	
	absence of analytical solutions of various systems of equations.							
4	4 Recognize linear differential equations, apply analytical techniques to compute solutions.							
5	Gain knowledge	e (of multiple integrals	and their application	ıs.			
6								

Unit-I	05 Hrs
--------	--------

Differential Calculus:

Taylor and Maclaurin series for function of single variable. Partial derivatives – Introduction, simple problems. Total derivative, composite functions. Jacobians – simple problems.

Unit – II 05 Hrs

Vector Differentiation:

Introduction, simple problems in terms of velocity and acceleration. Concepts of gradient, divergence – solenoidal vector function, curl – irrotational vector function and Laplacian, simple problems.

Unit –III 06 Hrs

Differential Equations:

Higher order linear differential equations with constant coefficients, solution of homogeneous equations - Complementary functions. Non homogeneous equations –Inverse differential operator method of finding particular integral based on input function (force function).

Unit –IV 05 Hrs

Numerical Methods:

Solution of algebraic and transcendental equations – Intermediate value property, Newton-Raphson method. Solution of first order ordinary differential equations – Taylor series and 4^{th} order Runge-Kutta methods. Numerical integration – Simpson's $1/3^{rd}$, $3/8^{th}$ and Weddle's rules. (All methods without proof).

Unit –V 05 Hrs

Multiple Integrals:

Evaluation of double integrals, change of order of integration. Evaluation of triple integrals. Applications – Area, volume and mass – simple problems.

Course	Course Outcomes: After completing the course, the students will be able to								
CO1: Understand the concept of partial differentiation, double integrals, vector differentiatio									
	solutions of higher order linear differential equations and requirement of numerical methods.								
CO2:	CO2: Solve problems on total derivatives of implicit functions, Jacobians, homogeneous line differential equations, velocity and acceleration vectors.								
CO3:	CO3: Apply acquired knowledge to find infinite series expansion of functions, solution of non-								
	homogeneous linear differential equations and numerical solution of equations.								

CO4:	Evaluate triple integrals, area, volume and mass, different operations using del operator on
	scalar and vector point functions, numerical solution of differential equations and numerical
	integration.

Refer	Reference Books								
1	Higher Engineering Mathematics, Khanna Publishers, B.S. Grewal, 44 th Edition, 2015, IS 978-81-933284-9-1.								
2	Higher Engineering Mathematics, B.V. Ramana, 11 th Edition, 2010, Tata McGraw-Hill, ISBN: 978-0-07-063419-0.								
3	A Text Book of Engineering Mathematics, N.P. Bali & Manish Goyal, Lakshmi Publications, 7 th Edition, 2010, ISBN: 978-81-31808320.								
4	Advanced Engineering Mathematics, Erwin Kreyszig, John Wiley & Sons, 10 th Edition, 2016, ISBN: 978-0470458365.								

Continuous Internal Evaluation (CIE); Theory (50 Marks)

CIE is executed by way of quizzes (Q) and tests (T). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. The two tests are conducted for 30 marks each and the sum of the marks scored from two tests is reduced to 30.

Total CIE is 20(Q) + 30(T) = 50 Marks.

Semester End Evaluation (SEE); Theory (50 Marks)

SEE for 50 marks is executed by means of an examination. The Question paper for the course consists of five main questions, one from each unit for 10 marks adding up to 50 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Semester: III KANNADA (KALI, LIPI AND ANUBHAVA) (Common to all branches)							
Course Code : 18HS38 CIE : 50 Marks							
Credits: L:T:P			1:0:0		SEE	:	NA
Total Hours : 18Hrs CIE Duration : 90 Minu						90 Minutes	
Cou	rse Learning ()bje	ectives: The student	ts will be able to			
1	Learn basic co	omr	nunication skills in	Kannada language (V	yavaharika Kannad	a).	
2	Read and und	erst	and simple words a	nd sentences of news	paper and hoardings	in k	Kannada
	language		_				
3	Enable to Ide	ntif	y grammar or comm	non language structure	e.		
4							
5	Imbibe ethica	1, m	oral, national and c	ultural values through	various forms of li	erat	ure through
	Kannada languaga						

KANNADA KALI (spoken Kannada)	
(to those students who does not know Kannada)	
Unit-I	06 Hrs

1.namaskaara

Introducing the self, enquiring about mother tongue, native place, profession etc., interrogative particles

2.niivucennaagiddiiraa?

Enquiring about the welfare, personal pronouns, possessive forms

- 3.nimageeenubeeku?
- 4.nimagekannadagottaa?
- 5. nanagemeeshTrakelasaishTa

'yes'/'no'/'not'type of interrogative and assertive sentences, modal verbs and negations.

Unit – II 06 Hrs

6.oLLeyacollege

Qualitative and quantitative adjectives

7.aakaaSadabaNNaniili

Locative case markers, post positions and colours

8.ivattueshTanetaariikhu?

Cardinal numbers, numeral adjectives, ordinal numbers, human numerals, weekdays and kinship words

9. College bassuesh Tugan Tege ide?

Dative case markers.

10.naanubengaLuuralliiddiini

Present tense, habitual future tense form of verb root IRU

Unit –III 06Hrs

11. RV collegealliooduttiini

Introducing few frequently used verb forms like nooDu, maaDu, hoogu, koDu, keeLu, kuDi, hoDi, bari etc.,. Simple present tense and habitual future tense form of human and non-human verbs.

12. Record barii beeku

Definitive, permissive and prohibitive form of verbs

13.bengaLuurigeyaavaagabandri?

Past tense form of verbs(human and non-human)

14.dinanityadasambhaashaNe

Few simple conversations retlated to day-to-day activities

15.Few ritual words/sentences which are frequently used in spoken Kannada

Note : Introducing few ritualistic words/sentences/phrases in each lesson.	
KANNADA LIPI	
(to those students who know only speaking and does not know reading	
Unit –I	04Hrs
1. Introduction of Kannada alphabets (primary letters).	
Unit –II	05Hrs
2. Combination of secondary symbols of vowels with consonants ('kaagunita').	
Unit –III	05Hrs
3. Secondary symbols of consonants and its combination with other consonants b heterogeneous ('Somyouktaakshara').	oth homogenous and
Unit –IV	04Hrs
4. Framing simple sentences and reading paragraphs.	
<u>ಕನ್ನಡ ಅನುಭವ (ಕನ್ನಡ ಕಲಿತವರಿಗೆ)</u>	
Unit –I	06 Hrs
೧, ಕರ್ನಾಟಕ ಸಂಸ್ಕೃತಿ (ಇತಿಹಾಸ) – ಡಾ. ಎಂ.ಚಿದಾನಂದ ಮೂರ್ತಿ	
೨. ವಿಜ್ಞಾನ ಬರವಣಿಗೆಗಳ ಭಾಷಾಂತರ(ವಿಜ್ಞಾನ ಸಾಹಿತ್ಯ) – ಜೆ. ಆರ್. ಲಕ್ಷ್ಮಣರಾವ್	
೩. ಮಂಕುತಿಮ್ಮನ ಕಗ್ಗ (ಕಾವ್ಯ) – ಡಾ. ಡಿ.ವಿ. ಗುಂಡಪ್ಪ	
೪. ರಾಧಾಕೃಷ್ಣನ್ (ವ್ಯಕ್ತಿಚಿತ್ರ) – ಎ. ಎನ್. ಮೂರ್ತಿರಾವ್	
Unit –II	06 Hrs
೫. ಕುಚೇಲನ ಭಾಗ್ಯ (ಸಣ್ಣಕಥೆ) – ಮಾಸ್ತಿ ವೆಂಕಟೇಶ ಅಯ್ಯಂಗಾರ್	
೬. ಎದೆತುಂಬಿ ಹಾಡಿದೆನು (ಕಾವ್ಯ) – ಡಾ. ಜಿ. ಎಸ್ ಶಿವರುದ್ರಪ್ಪ	
೭. (ಮುಕ್ತ ಪ್ರಬಂಧ) – 'ಗೌತಮೆ'	
೮. ಮೂರ್ಖರ 'ರಾಜ್ಯದಲ್ಲಿ (ಜನಪದಕಥೆ)	
೯. ವಚನ ಸಾಹಿತ್ಯ ಮತ್ತುದಾಸ ಸಾಹಿತ್ಯ – ಸರ್ವಜ್ಞ, ಬಸವಣ್ಣ ಮತ್ತು ಮರಂದರದಾಸರು	
Unit –III	06 Hrs
೧೦. ಸರ್. ಎಂ. ವಿಶ್ವೇಶ್ವರಯ್ಯ (ವ್ಯಕ್ತಿಚಿತ್ರ) – ಎಸ್. ರಾಮಮೂರ್ತಿ	
೧೧. ರತ್ನನ್ ಪರ್ಪಂಚ (ಪದ್ಮ) – ಜಿ. ಪಿ.ರಾಜರತ್ನಂ	
೧೨. ಶಲ್ಯ ಪರ್ವ (ಮಹಾಭಾರತದಒಂದು ಪ್ರಸಂಗ) – ಎ. ಆರ್. ಕೃಷ್ಣಶಾಸ್ತ್ರಿ	
೧೩. ಆಡಳಿತ ಕನ್ನಡ – ಎಚ್. ಜಿ. ಶ್ರೀನಿವಾಸ ಪ್ರಸಾದ್	
<u> </u>	

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understand and converse in Kannada at places/situations like canteen, mess, hotel, hostel, while travelling in auto/bus/train/bus station/railway station/post office/bank; conversing with general public, over phone etc.,.
CO2:	Enable to write the proper sentences in Kannada language.
CO3:	Learn Language and Grammar skills for writing Kannada language.
CO4:	Create interest towards Kannada Literature and administrative language.
Refere	nce Books
1	Kannada Kali, H. G. Srinivasa Prasad & S. Ramamurthy, 5 th Edition, 2019, RV College of Engineering Bengaluru.
2	Kannada Lipi, H. G. Srinivasa Prasad & S. Ramamurthy, 5th Edition, 2019, RV College of

Engineering Bengaluru.

2

3	Kannada Anubhava, K. N. Subramanya, S. Narahari, H. G. Srinivasa Prasad, S. Ramamurthy and S. Sathyanarayana, 5 th Edition, 2019, RV College of Engineering Bengaluru.
4	Spoken Kannada, Kannada SahithyaParishat, Bengaluru.
5	Kannada Manasu, Prasarangakannadavishwavidyalaya, Hampi.

Continuous Internal Evaluation (CIE); (50 Marks)

Award of **CIE**will be based on the two written test that will be conducted during the semester period. The CIE will be calculated based on the average score obtained in the two tests. In the case of Kannada Kali CIE will be based on oral examination process. The CIE will be based on average of two tests conducted during the semester period.

Total CIE marks: (T1+T2)/2. T1 is the marks obtained for Test 1 out of maximum of 50 marks. T2 is the marks obtained for Test 2 out of maximum of 50 marks.

				Semester: IV					
	LINEAR ALGEBRA, STATISTICS AND PROBABILITY THEORY								
				(Theory)					
			(Commo	on to EC, EE, EI &	TE)				
Cou	rse Code	:	18MA41B		CIE	:	100 Marks		
Cred	lits: L:T:P	:	4:1:0		SEE	:	100 Marks		
Total Hours			52L+26T	SEE Duration		:	03 Hours		
Cou	rse Learning C	bj€	ectives: The student	s will be able to					
1	Understand th	e b	asics of Linear Alge	ebra and Probability t	heory.				
2	2 Demonstrate the concepts of linear transformation, orthogonality and factorization of matrices.								
3	3 Apply the knowledge of the statistical analysis and theory of probability in the study of								
	uncertainties.								
4	4 Use probability and sampling theory to solve random physical phenomena and implement								
	appropriate distribution models.								
5									

Linear Algebra – I:

Vector spaces, subspaces, linear dependence, basis, dimension, four fundamental subspaces. Rank and nullity theorem (without proof). Linear transformations- projection, rotation and reflection matrices, matrix representation, kernel and image of a linear transformation.

Unit – II 11 Hrs

Linear Algebra – II:

Orthogonal and orthonormal bases, Gram-Schmidt process, QR- factorization, Eigen values and Eigen vectors (recapitulation). Diagonalization of a matrix (symmetric matrices), singular value decomposition. SVD applied to digital image processing (using MATLAB).

Unit –III 11 Hrs

Statistics:

Central moments, mean, variance, coefficients of skewness and kurtosis in terms of moments. Curve fitting by method of least squares, fitting of curves – Polynomial, exponential and power functions. Correlation and linear regression analysis –problems. Simulation using MATLAB.

Unit –IV 10 Hrs

Probability:

Basic concepts and Baye's rule. Random variables - Discrete and continuous, probability mass function, probability density function, cumulative density function, mean, variance - problems. Joint probability distribution function - Discrete and continuous, covariance, correlation and problems related to applications. Simulation using MATLAB.

Unit –V 10 Hrs

Probability Distributions:

Discrete and continuous distributions - Binomial, Poisson, Exponential and Normal. Sampling theory - Sampling, sampling distributions, standard errors, student's t-distribution, chi-square distribution as a test of goodness of fit, problems. Simulation using MATLAB.

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Understand the fundamental concepts of linear algebra, probability and sampling theory.						
CO2:	Solve the problems of vector spaces, linear transformation, measures of statistical data, curve						
	fitting and functions of random variables.						
CO3:	Apply the acquired knowledge to solve the problems on factorization of a matrix, correlation,						

	regression, probability and sampling distributions.
CO4:	Evaluate decomposition of a matrix and estimate goodness of fit of problems occurring in
	engineering applications.

Refere	ence Books
1	Linear Algebra and Its Applications, Gilbert Strang, 4th Edition, 2006, Cengage Learning
	India Edition, ISBN: 81-315-0172-8.
2	Higher Engineering Mathematics, B.S. Grewal, 44 th Edition, 2015, Khanna Publishers,
2	ISBN: 978- 81-933284-9-1.
2	Schaum's Outline of Linear Algebra, Seymour Lipschutz and Marc Lipson, 5th Edition, 2012,
3	McGraw Hill Education, ISBN-978-0-07179456-5.
4	Introduction to Probability and Statistics, S. Lipschutz and Schiller (Schaum's outline series),
4	ISBN: 978-0-07-176249-6.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	-	-	1
CO2	3	2	-	-	-	-	-	-	-	-	-	1
CO3	1	2	2	-	-	-	-	-	-	-	-	1
CO4	-	1	1	3	-	-	-	-	-	-	-	1

High-3: Medium-2: Low-1

	Semester: IV							
	ENGINEERING MATERIALS							
				(Theory)				
			(Commo	n to EC, EE, EI & TE)				
Cour	rse Code	••	18EC42	CIE		••	50 Marks	
Credits: L:T:P		••	2:0:0	SEE		:	50 Marks	
Tota	Total Hours		27L	SEE Duration		:	02 Hours	
Cour	rse Learning O	bje	ectives: The students	s will be able to				
1	Understand th	ne i	material classification	on and categorizes material rela	ated to v	ario	ous electronic	
	properties							
2 Understand fabrication & characterization techniques and nanomaterial growth								
3	3 Understand the material electronics transport and applications in electronics industry							
4	Understand to the extend electronic devices based on novel and emerging materials							

4 Understand to the extend electronic devices based on novel and emerging materials	
Unit-I	05 Hrs
Introduction: Classification and Properties of Materials, Materials Used in Electrical and E	Electronic
Industries, Requirements and Future Developments of Electronic Materials	
Unit – II	07 Hrs
Classical Theory of Electrical Conduction and Conducting Materials: Resistivi	ty, TCR
(Temperature Coefficient of Resistivity) and Matthiessen's Rule, Traditional Classification of	of Metals,
Insulators and Semiconductors, Drude's Free Electron Theory, Hall Effect, Wiedemann-Fr	anz Law,
Resistivity of Alloys, Nordheim's Rule, Resistivity of Alloys and Multiphase Solids	
Unit –III	05 Hrs
Thin Film Electronic Materials: Techniques for Preparation of Thin Films, Thin Film Co	onducting
Materials, Thin Film Resistors, Transparent and Conductive Thin Films, Thin Film	Magnetic
Materials	J
Unit –IV	05 Hrs
Organic Electronic Materials: Conducting Polymers, Charge carriers, Synthesis of Co	onducting
Polymers, Semiconducting Organic Materials, Organic Light Emitting Diode, Organic FET	
Unit –V	05 Hrs
Nanomaterials for Electronic Device Applications: Techniques for Preparation of Nano	materials
(Quantum Dots & CNT only), Micro-/Nano-devices Using Nanostructured Materials: CNT t	ransistor,
Single electron transistor	ŕ

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Explain electronics material classification, different physical properties and to the extend
	device applications.
CO2:	Define the transport mechanism (in solid state & organic), working principle of electronic
	material and assess material parameters for practical requirement.
CO3:	Summarize various fabrication, characterization and synthesis techniques for the electronic
	nanomaterials and thin film growth.
CO4:	Identify and calculate material parameters including electrical conductivity, resistivity,
	magnetic and optical properties for real-time electronic applications.

Refere	Reference Books						
1	Introduction to Electronic Materials for Engineers, Wei Gao & Zhengwei Li, Nigel Sammes, 2 nd Edition, World Scientific Publishing Co. Pvt. Ltd, ISBN:9789814293693						
2	Principles of Electronic Materials and Devices, S O Kasap, 3 rd Edition, 2017, McGraw Hill Education, ISBN-13: 978-0070648203						
3	Electronic Properties of Materials, Rolf E. Hummel, 4 th Edition, 2011, Springer, ISBN-13: 978-1489998415						

Continuous Internal Evaluation (CIE); Theory (50 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 15 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 30 marks each and the sum of the marks scored from three tests is reduced to 25. The marks component for Experiential Learning is 20.

Total CIE is 15(Q) + 25(T) + 10(EL) = 50 Marks.

Semester End Evaluation (SEE); Theory (50 Marks)

SEE for 50 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 10 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 8 marks adding up to 40 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	1	2	-	-	-	-	2
CO2	3	2	-	-	-	1	2	-	-	-	-	2
CO3	3	3	2	-	-	1	2	-	-	-	-	2
CO4	3	3	2	2	-	2	2	-	-	-	-	2

High-3: Medium-2: Low-1

Semester: IV										
	ADVANCED DIGITAL SYSTEM DESIGN USING VERILOG HDL									
			(\mathbf{T})	heory & Practice)						
Cou	rse Code	:	18EC43		CIE	:	100+50 Marks			
Cred	lits: L:T:P	:	3:0:1		SEE	:	100+50 Marks			
Total Hours			40L + 33P		SEE Duration	:	03+03 Hours			
Cou	rse Learning O	bje	ectives: The students	s will be able to						
1	Design Digita	1 ci	rcuit (combinational	l and sequential) ar	nd model using V	eril	og HDL, synthesis			
	to obtain RTL	,								
2	Write HDL	mo	dels that can be s	ynthesized into in	tegrated circuits	usi	ing programmable			
	hardware such	ı as	FPGAs							
3	Analyze flow	of	electronic design fro	om concept to regist	ter transfer level (RT	L) verification and			
	synthesis to fi	nal	programmable devi	ce implementation						
4	Design a digi	tal	system which inclu	ides controller, data	a processor and o	outp	out devices, model			
	using Verilog	and	d verify the function	ality						
5	Write test mo	dul	es and fitting design:	s to verify the funct	ionality in FPGA					

Unit-I 08 Hrs

Introduction to Verilog: Design Methodology-An Introduction: Verilog History, System representation, Number representation and Verilog ports. Verilog Data Types: Net, Register and Constant. Verilog Operators: Logical, Arithmetic, Bitwise, Reduction, Relational, Concatenation and Conditional. Verilog Primitives. Logic Simulation, Design Verification, and Test Methodology: Four-Value Logic and Signal Resolution in Verilog, Test Methodology Signal Generators for Test benches, Event-Driven Simulation, Sized Numbers. Modeling Styles: Dataflow Modeling: Boolean Equation-Based Models of Combinational Logic, Propagation Delay and Continuous Assignments.

Unit – II 09 Hrs

Structural Modeling: Design of Combinational Logic, Verilog Structural Models, Module Ports, Top-Down Design and Nested Modules. Gate level modeling Behavioral Modeling: Latches and Level-Sensitive Circuits in Verilog, Cyclic Behavioral Models of Flip-Flops and Latches, Cyclic Behavior and Edge Detection. A Comparison of Styles for Behavioral modeling, Behavioral Models of Multiplexers, Encoders, and Decoders. Dataflow Models of a Linear-Feedback Shift Register. Tasks & Functions.

Unit –III 08 Hrs

Algorithmic State Machine Charts for Behavioral Modeling: Algorithmic State Machine Charts for Behavioral Modeling, ASMD charts, Behavioral Models of Counters, Shift Registers, and Register Files and Arrays of Registers (Memories). Design Example: serial adder, sequence detector (Mealy-Moore) Keypad Scanner and Encoder. Functional Units for Addition and Subtraction: Ripple-Carry Adder, Carry Look-Ahead Adder, Overflow and Underflow, Array Multiplier.

Unit –IV 08 Hrs

Design of Processor Architectures for Arithmetic Processors: Functional Units for Multiplication: Sequential Binary Multiplier, Sequential Multiplier Design: Hierarchical Decomposition STG-Based Controller Design, Efficient STG-Based Sequential Binary Multiplier, Reduced-Register sequential multiplier, Multiplication of signed binary number.

Unit –V 07 Hrs

Synthesis of Combinational Logic: Introduction to Synthesis, Synthesis of Combinational Logic, Synthesis of Sequential Logic with Latches, Synthesis of Three-state Devices, Synthesis of Sequential Logic with Flip-Flops. Memories: General concepts, Memory Types, Asynchronous static RAM, Synchronous static RAM. Introduction to FPGA

Practical's:

1. Multiplexer and De-multiplexer

- 2. Decoders and Encoders.
- 3. Code converters and Comparator.
- 4. Binary Adder (Ripple Adder and carry look ahead adder).
- 5. Flipflops.
- 6. Counters.
- 7. Shift Register
- 8. FSM- Sequence Detector, etc.
- 9. Serial Adder.
- 10. Stepper Motor
- 11. DAC
- 12. Display Interfacing

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Analyze digital circuit and system and model using Verilog HDL									
CO2:	Develop synthesizable code for digital function and Apply EDA tools for simulation,									
	verification and synthesis of digital design.									
CO3:	Apply design knowledge to FSM based digital modules using high-level HDL description									
	and Port it on to FPGA for verification									
CO4:	Design, develop and verify the performance of efficient digital system using various digital									
	blocks									

Refere	Reference Books									
1	Advanced Digital Design with the Verilog HDL, M.D. Ciletti, Prentice Hall PTR -2 nd									
1	Editions ISBN: 0136019285.									
2	Verilog HDL: A Guide to Digital Design & Synthesis, Samir Palnitkar, SunSoft Press, 1st									
4	Edition, 1996, ISBN: 978-81-775-8918-4. 3									
2	Digital Design: An Embedded Systems Approach Using VERILOG, Peter J. Ashenden,									
3	Elsevier, 2015, ISBN: 978-0-12-369527-									
4	Digital Systems Design Using Verilog, Roth, Charles, John, Lizy K, Kil Lee, Byeong ISBN									
4	10: 1285051076 / ISBN 13: 9781285051079.									

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average mark (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) + 10(T) + 10(IE) = 50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	1	-	-	-	-	-	-	-	1
CO2	3	2	2	1	-	1	-	-	2	-	-	1
CO3	3	3	2	-	3	1	-	1	2	1	1	1
CO4	3	3	2	-	3	1	-	1	2	1	1	1

High-3: Medium-2: Low-1

	Semester: IV										
	MICROPROCESSOR & MICROCONTROLLER										
	(Theory & Practice)										
Cou	rse Code	:	18EI44		CIE Marks:	:	100+50 Marks				
Cred	lits: L:T:P	:	3:0:1		SEE Marks:	:	100+50 Marks				
Tota	l Hours:	:	39L+33P		SEE Duration:	:	03+03 Hours				
Cou	rse Learning	g Ob	jectives: The	students will be able to							
1	1			and debug simple micropro	ocessor-based applic	atio	ns using the Intel				
	8086 archit	ectui	e.								
2	Understand	& A	analyze the ar	chitecture of 8051 microc	ontroller						
	Use softwa	re de	velopment to	ols to assemble, test and d	ebug the programs b	y us	sing breakpoints,				
3	single-stepp	ping,	monitoring th	ne changes in register/mer	nory contents, on a h	ard	ware platform or on				
	an emulator	r.									
4	Apply asser	mbly	directives an	d assembly language to in	nplement flow contro	ol (s	equential,				
_	conditional	al and iterative).									
5	Design and	inte	rface the exter	rnal components of micro	processor and micro	cont	roller				

UNIT-I	07 Hrs									
MPU Organization: Instruction set Architectures, Harvard & Von-Neuman Architectures	ectures, Micro									
programmed & Hardwired Control unit, Floating Point & Fixed-Point Processor, Endianness.										
Intel's 8086 architecture, Pin groups, Functioning, Segmentation, Address generation, Stack, Interrupts.										

8086 Assembly Language Programming: Addressing Modes of 8086, Instruction Format, Program Development Tools, Assembler Directives, Instruction Set of 8086: Data Transfer Instructions, Arithmetic Instructions, Bit Manipulation Instructions, Branching Instructions, Processor Control

Instructions, String Instructions, Macros, Procedures, Assembly Language Programming Examples.

UNIT-III 09 Hrs

Hardware of 8051 Microcontrollers: Introduction to Embedded system, Microcontroller, Comparison of Microprocessor and Microcontroller, Intel MCS 51 family, Architecture and Pin Functions of 8051 Microcontroller, CPU Organization, Program Counter, Timing and Machine Cycles, Internal Memory Organization, Registers, Stack, Input/ Output Ports, Counters and Timers, Interrupts, Power Saving Modes.

UNIT-IV 07 Hrs

8051 Microcontroller Based System Design: I/O Port Programming, Programming timers, Asynchronous Serial Data Communication, Interrupt Service Routines. Programming in C, Inline Assembly, Interfacing DAC, Interfacing Matrix Keyboard and Seven Segment Displays, Interfacing ADC in polled mode & Interrupt Mode, Interfacing LCD.

UNIT-V 07 Hrs

Peripheral Based Systems Clock generator(8284), Memory Devices, Address Decoding, Interfacing Memory, I/O sub System: Busy wait, DMA, Interrupt Driven, Memory Maps, I/O Port address decoding, Introduction to 8255, Interfacing 8255 with 8086, Interrupt Based IO Design.

Practical: Processor & Controller Lab:

Experiments with 8086 Assembly using MASM

- 1. Data Transfer Programs: Block Moves & Exchange (With & Without Overlap) with &without String Instructions.
- 2. Arithmetic Operations: Addition, Multiplication & Division on 32-Bit Data.
- 3. a) Code Conversions: Use XLAT Instruction to Convert Binary to BCD, Input from Keyboard & Display Result on the Console.
 - b) ASCII Operations: Addition, Subtraction, Multiplication

- 4. a) Search for a Key in an Array of Elements using Linear Search, Binary Search. Find Efficiency in each case.
 - b) Sort an Array Using Bubble Sort & Selection Sort. Find Efficiency in each case.

Interfacing experiments with 8051 C using Keil software

- 5. Illustrate the interfacing of LCD and LED with variant of 8051 Microcontroller using C language.
- 6. Implement the interfacing of stepper motor and DC Motor with variant of 8051 Microcontroller using C programming language.
- 7. Implement the interfacing of ADC with variant of 8051 Microcontroller using C language.
- 8. Write a C program to interface 4 x 4 keypad with variant of 8051 Microcontroller
- 9. Write a C program to interface DAC and Elevator with variant of 8051 Microcontroller
- 10. Design 8051 based system to measure the frequency of TTL waveform. Design 8051 based system for automatic controlling of light.

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Interpret the architecture, instruction set, memory organization and addressing modes of the								
	microprocessors and microcontrollers.								
CO2:	Analyze pin functions / ports for implementing peripheral interfaces with microprocessors and								
	microcontrollers.								
CO3:	Apply the knowledge of microprocessor and microcontroller for implementing assembly								
	language/C programming.								
CO4:	Engage in assignment to understand, formulate, design and analyze problems to be realized on								
	embedded processors.								

Refe	erence Books									
1.	Douglas Hall, "Micro-Processors and Interfacing-Programming & Hardware", TMH, 2 nd Edition,									
	2002, ISBN-10- 0070601674									
2.	Barry B. Brey, "The Intel Micro-processors, Architecture, Programming and Interfacing", Pearson									
	Education, 6 th Edition, 2008, ISBN-10: 0135026458									
3.	Kenneth J. Ayala, "The 8051 Microcontroller Architecture, Programming & Applications",									
	Thomson Learning, 2 nd Edition, 2004.									
4.	Muhammad A Mazidi, "The 8051 Microcontroller and Embedded Systems", Pearson Education,									
	2 nd Edition, 2009.									

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) + 10(T) + 10(IE) = 50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	3	2	2	-	-	-	-	1	-	1
CO4	3	3	3	3	2	1	1	2	1	2	1	3

Low-1 Medium-2 High-3

	Semester: IV								
	SIGNALS AND SYSTEMS								
				(Theory)					
			(Comr	mon to TE, EC, EE & EI)					
Cou	rse Code	:	18TE45	CIE	:	100 Marks			
Credits: L:T:P : 3:1:0						100 Marks			
Tota	Total Hours : 39L + 26T			SEE Duration	:	3.00 Hrs			
Cou	rse Learning	y 0	bjectives: The s	students will be able to					
1	Express a s	sigi	nal and a syster	n in both time and frequency domain	ns a	and develop a			
	mathematic	al p	process to migrat	te between the two representations of the	e sa	ame entity.			
2	Analyze a co	mp	lex signal in terms	s of basic signals in continuous and discrete	tir	ne flavours.			
3	3 Define discrete-time signals and systems, and express the differences with their								
	continuous- time analogy.								
4	Understand t	he	computation of FF	T algorithm in linear filtering & correlation	ns.				

Unit-I	8 Hrs					
Introduction to Signals and System: Definition of Signals, Classification of Signals, Basic						
Operations on Signals: Operations Performed on the Independent and Dependent	Variable,					
Precedence Rule, Elementary Signals. Definition of Systems, System Vie	ewed as					
Interconnection of Operations, Properties of Systems.						
Unit – II	8 Hrs					
Time domain representations of Linear Time Invariant Systems: Convoluti	on Sum,					
Convolution Sum Evaluation Procedure, Convolution Integrals, Convolution	Integrals					
Evaluation Procedure, Interconnections of LTI System, Relations between LTI	System					
Properties and the Impulse Response, step response, Difference Equation Represen						
Unit –III	8 Hrs					
Applications of Fourier Representations to Mixed Signal classes: Review of	Fourier					
representation of signals, Introduction to DTFS and DTFT, Introduction, Fourier T	ransform					
Representations of periodic signals, Convolution and multiplication with Mixtures of	periodic					
and Non-Periodic signals, Fourier Transform representation of discrete time signals,						
Unit –IV	8 Hrs					
The Discrete Fourier transform - Its properties and Applications: Frequency						
Sampling and Reconstruction of Discrete time signals, DFT, DFT as a linear Transfer						
Relationship of DFT to other transforms. Properties of DFT: Periodicity, Linearity and						
Symmetry properties, Multiplication of two DFTs and circular convolution, addition						
properties. Linear filtering methods based on the DFT: Use of DFT in linear filtering.						
Unit –V	7 Hrs					
Efficient computation of DFT - FFT Algorithms: Direct computation of DFT, Radix-2						

Efficient computation of DFT - FFT Algorithms: Direct computation of DFT, Radix-2 FFT Algorithms and Implementation of FFT Algorithms, Applications of FFT algorithms, Efficient computation of DFT of two real sequences, Efficient computation of DFT of a 2N –

Course Outcomes: After completing the course, the students will be able to							
CO1	Analyze the fundamental concepts of the both continuous and discrete signals and						
	systems, Representation of both periodic & aperiodic signals in frequency domain.						
CO2	Apply the properties of signals and analyze both continuous and discrete systems						
	commonly found in communication, signal processing and control systems.						

CO3	Analyze continuous & discrete systems both in time & frequency domain.									
CO4	Apply efficient methods/algorithms for the computation of frequency domain									
	representation & vice-versa.									

Refer	ence Books
1	Signals and Systems, Simon Haykin and Barry Van Veen, John Wiley & Sons, 2 nd Edition, 2008.
2	Digital Signal Processing, Proakis G & Dimitris G. Manolakis, PHI, 3 rd Edition, 2007.
3	Signals and Systems, V. Oppenheim, Alan Willsky and A. Hamid Nawab, Pearson Education Asia/PHI, 2 nd Edition, 2006.
4	Digital Signal Processing A Practical Approach, Emmanuel C. Ifeachar, Barrie E. Jervis, Pearson Education, 2 nd Ed., 2003

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	-	2	-	-	-		-	-	
CO2	3	2	3	-	2	-	-	-	2	-	-	
CO3	3	3	-	2	2	-	-	-	2	-	-	3
CO4	3	2	2	_	2	-	-	1	2	-	-	3

High-3: Medium-2: Low-1

Semester: IV									
	ANALOG INTEGRATED CIRCUITS DESIGN								
				(Theory)					
Cou	rse Code	:	18EC46		CIE	:	100 Marks		
Credits: L:T:P			3:0:0		SEE	:	100 Marks		
Tota	l Hours	:	40L		SEE Duration	:	03 Hours		
Cou	rse Learning C	bje	ectives: The students	s will be able to					
1	Design basic a	amp	olifiers and different	ial amplifiers using l	MOSFETs.				
2	Design differe	ent	opamp topologies fo	or a given specification	on				
3	3 Analyze stability of OPAMPs and apply the appropriate compensation technique.								
4	Design and ar	ıaly	sis of filters and osc	illators	·		·		
5									

Unit-I 08 Hrs

Introduction to Analog Integrated Design: Models for analog design, body transconductance.

Single-stage Amplifiers – CS stage, diode connected load, current source load and source

degeneration, review of CD and CG stages (all amplifier analysis with body effect), Cascode stage & folded cascode concepts. Design of amplifier from specifications.

Differential Amplifiers – MOS differential pair, Small signal operation - half circuit analysis, common mode response, differential amplifier with active load, common mode gain and CMRR, frequency response of the differential amplifier

Unit – II 09 Hrs

Operational Amplifiers: General considerations – performance parameters, One-Stage Op amps – cascode opamps, telescopic opamps, folded cascode opamps, Two-Stage Op amps, Gain Boosting, Comparison of performance of various opamp topologies. Design of opamps from specifications.

Unit –III 09 Hrs

Stability in feedback systems: Review of Bode rules, problem of instability, stability condition, gain-phase crossovers, phase margin,

Frequency Compensation: Frequency response of CS amplifier - Miller effect, poles in a system, pole-splitting, Miller compensation. Two stage opamp - Compensation techniques, closed-loop stability, optimal phase margin.

Unit –IV 07 Hrs

Noise: MOSFET noise models, types of noise – thermal, flicker, Representation of noise in circuits, Noise in single stage amplifiers (Common source only).

Integrated Oscillators: Ring oscillators, LC oscillators – Cross coupled oscillators, VCO

Unit –V 07 Hrs

Analog Filters : Classification of filters, transfer function of filters, Second order filters, active filters – sallen and key filters, KHN biquad, Tow Thomas, biquads based on simulated inductors.

Bandgap references: Temperature independent references - Bipolar CTAT, PTAT, Band gap references (BGR)

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Apply the knowledge of MOSFET based discrete amplifiers to investigate various design						
	trends in analog IC design						
CO2:	Analyze the functionality of analog circuits & systems						
CO3:	Design and implement analog integrated circuits						
CO4:	Evaluate the different performance parameters of analog integrated circuits						

Refere	nce Books
1	Design of Analog CMOS Integrated Circuits, Behzad Razavi, 2002, Mc GrawHill Edition, ISBN: 0-07-238032-2
2	CMOS Circuit Design, Layout and Simulation, R. Jacob Baker, Harry W. Li and David E. Boyce, 2002, IEEE Press, ISBN: 81-203-1682-7
3	CMOS Mixed-signal Circuit Design, R. Jacob Baker, 2009, IEEE Press, ISBN: 978-81-265-1657-5
4	Analysis and Design of Analog Integrated Circuits, Paul R. Gray, Paul J. Hurst, Stephen H. Lewis, Robert G. Meyer, "", 4 th edition, 2008, Wiley India Private Limited, ISBN:978-8126515691
5	Fundamentals of Microelectronics, Behzad Razavi, 2 nd Edition, 2013, Wiley, ISBN-10: 1118156323

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	-	-	-	-	-	-	2
CO2	3	2	3	-	3	-	-	-	-	-	-	2
CO3	3	3	2	2	3	-	-	-	2	-	-	2
CO4	3	3	-	2	3	-	-	-	2	-	-	2

High-3: Medium-2: Low-1

Semester: IV										
	C PROGRAMMING Bridge Course									
			(Comm	on to all branch	ies)					
Course	e Code	:	18DCS48		CIE Marks	:	50			
Credits: L:T:P : 2:0:0			2:0:0		SEE Marks	:	50			
	Audit Course SEE Duration : 2.00 Hour									
Course	e Learning	g Obje	ctives: The students	s will be able to						
1.	Develop a programm		•	nalytical skills to	apply knowledge of	f basi	c concepts of			
2.	Learn bas	ic prin	ciples of problem so	olving through pr	ogramming.					
3.	Write C programs using appropriate programming constructs adopted in programming.									
4.	Solve con	nplex p	problems using C pr	ogramming.						

Unit – I	4 Hrs

Introduction to Reasoning, Algorithms and Flowcharts:

Skill development – Examples related to Arithmetical Reasoning and Analytical Reasoning. Fundamentals of algorithms and flowcharts

Introduction to C programming:

Basic structure of C program, Features of C language, Character set, C tokens, Keywords and Identifiers, Constants, Variables, Data types.

Unit – II 4 Hrs

Handling Input and Output Operations

Formatted input/output functions, Unformatted input/output functions with programming examples using different input/output functions.

Operators and Expressions

Arithmetic operators, Relational operators, Logical Operators, Assignment operators, Increment and decrement operators, Conditional operators, Bit-wise operators, Arithmetic expressions. Evaluation of expressions, Precedence of arithmetic operators, Type conversion in expressions, Operator precedence and associativity.

Unit – III 6 Hrs

Programming Constructs

Decision Making and Branching

Decision making with 'if' statement, Simple 'if' statement, the 'if...else' statement, nesting of 'if...else' statements, The 'else if' ladder, The 'switch' statement, The '?:' operator, The 'goto' statement

Decision making and looping The while statement, The do while statement, The 'for' statement, Jumps in loops.

Unit – IV 6 Hrs

Arrays

One dimensional arrays, Declaration of one dimensional arrays. Initialization of one dimensional arrays, Two dimensional arrays, Initializing two dimensional arrays.

Character Arrays and Strings

Declaring and Initializing String Variables, Reading Strings from Terminal, Writing strings to screen, String handling functions.

Unit – V 8 Hrs

User-defined functions

Need for User Defined Functions, Definition of functions, Return values and their types, Function calls, Function declaration. Examples.

Introduction to Pointers: Introduction, Declaration and initialization of pointers. Examples **Structures and Unions:** Introduction, Structure and union definition, Declaring structure and union variables, Accessing structure members. Example programs.

	PRACTICE PROGRAMS
1.	Familiarization with programming environment, concept of naming the program files, storing,
	compilation, execution and debugging. Taking any simple C- code. (Example programs
	having the delimeters, format specifiers in printf and scanf)
2.	Debug the errors and understand the working of input statements in a program by compiling the C-code.
3.	Implement C Program to demonstrate the working of operators and analyze the output.
4.	Simple computational problems using arithmetic expressions and use of each
7.	operator (+,-,/,%) leading to implementation of a Commercial calculator with
	appropriate message:
	a)Read the values from the keyboard
	b) Perform all the arithmetic operations.
	c) Handle the errors and print appropriate message.
5.	Write a C program to find and output all the roots if a given quadratic equation, for
	non-zero coefficients. (Using ifelse statement).
6a.	Write a C program to print out a multiplication table for a given NxN and also to print the
	sum table using skip count 'n' values for a given upper bound.
6b.	Write a C program to generate the patterns using for loops.
	Example: (to print * if it is even number)
	1
	**
	333
	55555
7a.	Write a C program to find the Greatest common divisor (GCD)and Least common multiplier
	(LCM)
7b.	Write a C program to input a number and check whether the number is palindrome or not.
8.	Develop a C program for one dimensional, demonstrate a C program that reads N integer
	numbers and arrange them in ascending or descending order using bubble sort technique.
9.	Develop and demonstrate a C program for Matrix multiplication:
	a) Read the sizes of two matrices and check the compatibility for multiplication.
	b) Print the appropriate message if the condition is not satisfied and ask user to re-enter
	the size of matrix. c) Read the input matrix
	d) Perform matrix multiplication and print the result along with the input matrix.
10.	Using functions develop a C program to perform the following tasks by parameter passing
100	concept:
	a) To read a string from the user
	Print appropriate message for palindrome or not palindrome

11a.1	Write a C program to find the length of the string without using library function.							
1b.	Write a program to enter a sentence and print total number of vowels.							
12.	Design a structure 'Complex' and write a C program to perform the following operations:							
	i. Reading a complex number.							
	ii. Addition of two complex numbers.							
	iii. Print the result							
13.	Create a structure called student with the following members student name, rollno, and a							
	structure with marks details in three tests. Write a C program to create N records and							
	a) Search on roll no and display all the records.							
	b) Average marks in each test.							
	c) Highest marks in each test							

Course	Course Outcomes: After Completing the course, the students will be able to						
CO1	Understand and explore the fundamental computer concepts and basic programming principles like data types, input/output functions, operators, programming constructs and user defined functions.						
CO2	Analyze and Develop algorithmic solutions to problems.						
CO3	Implement and Demonstrate capabilities of writing 'C' programs in optimized, robust and reusable code.						
CO4	Apply appropriate concepts of data structures like arrays, structures implement programs for various applications						

Reference	Reference Books							
1.	Programming in C, P. Dey, M. Ghosh, First Edition, 2007, Oxford University press, ISBN (13): 9780195687910.							
2.	The C Programming Language, Kernighan B.W and Dennis M. Ritchie, Second Edition, 2005, Prentice Hall, ISBN (13): 9780131101630.							
3.	Turbo C: The Complete Reference, H. Schildt, 4 th Edition, 2000, Mcgraw Hill Education, ISBN-13: 9780070411838.							
4.	Understanding Pointers in C, Yashavant P. Kanetkar, 4 th Edition, 2003, BPB publications, ISBN-13: 978-8176563581							
5.	C IN DEPTH, S.K Srivastava, Deepali Srivastava, 3 rd Edition, 2013, BPB publication, ISBN9788183330480							

Continuous Internal Evaluation (CIE); Theory (50 Marks)

CIE is executed by way of quizzes (Q), tests (T) and lab practice (P). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks the sum of the marks scored from quizzes would be reduced to 10 marks. The two tests are conducted for 30 marks each and the sum of the marks scored from two tests is reduced to 30. The programs practiced would be assessed for 10 marks (Execution and Documentation).

Total CIE is 10(Q) + 30(T) + 10(P) = 50 Marks.

Semester End Evaluation (SEE); Theory (50 Marks)

SEE for 50 marks is executed by means of an examination. The Question paper for the course consists of five main questions, one from each unit for 10 marks adding up to 50 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	-	1	-	-	-	1	-	-	1
CO2	3	3	3	2	2	-	-	-	1	-	-	1
CO3	3	3	3	-	-	-	-	-	2	2	1	2
CO4	3	3	3	-	-	-	1	-	2	2	1	2

High-3: Medium-2: Low-1

	Semester: III and IV							
	PROFESSIONAL PRACTICE – I							
			COMM	UNICATION SKIL	LS			
(Common to all Programmes)								
Course Code		••	18HS49		CIE		50	
Credits: L:T:P		••	0:0:1		SEE	:	50	
Tota	l Hours	ours : 18 hrs			SEE Duration	••	2 Hours	
Cou	Course Learning Objectives: The students will be able to							
1	1 Understand their own communication style, the essentials of good communication and develop						n and develop	
	their confidence to communicate effectively.							
2	2 Manage stress by applying stress management skills.							
3	3 Ability to give contribution to the planning and coordinate Team work.							
4	4 Ability to make problem solving decisions related to ethics.							

III Semester 6 Hrs

Communication Skills: Basics, Method, Means, Process and Purpose, Basics of Business Communication, Written & Oral Communication, Listening.

Communication with Confidence & Clarity- Interaction with people, the need the uses and the methods, Getting phonetically correct, using politically correct language, Debate & Extempore.

6 Hrs

Assertive Communication- Concept of Assertive communication, Importance and applicability of Assertive communication, Assertive Words, being assertive.

Presentation Skills- Discussing the basic concepts of presentation skills, Articulation Skills, IQ & GK, How to make effective presentations, body language & Dress code in presentation, media of presentation.

6 Hrs

Team Work- Team Work and its important elements Clarifying the advantages and challenges of team work Understanding bargains in team building Defining behaviour to sync with team work Stages of Team Building Features of successful teams.

IV Semester 6 Hrs

Body Language & Proxemics - Rapport Building - Gestures, postures, facial expression and body movements in different situations, Importance of Proxemics, Right personal space to maintain with different people.

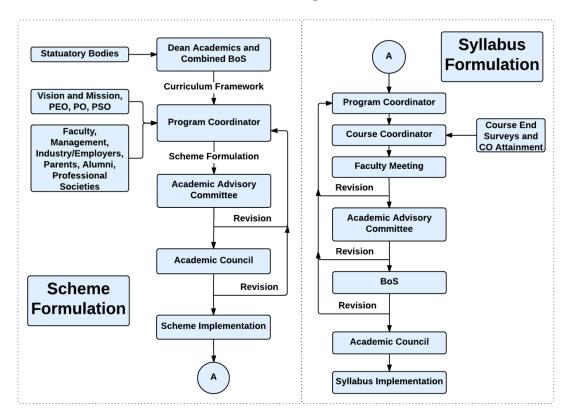
6Hrs

Motivation and Stress Management: Self-motivation, group motivation, leadership abilities, Stress clauses and stress busters to handle stress and de-stress; Understanding stress - Concept of sound body and mind, Dealing with anxiety, tension, and relaxation techniques. Individual Counseling & Guidance, Career Orientation. Balancing Personal & Professional Life-

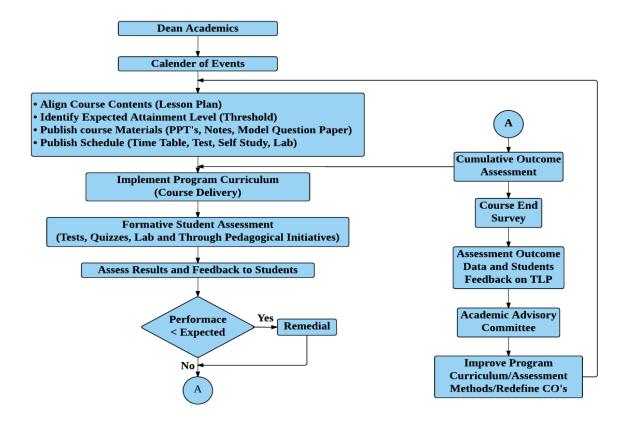
6 Hrs

Professional Practice - Professional Dress Code, Time Sense, Respecting People & their Space, Relevant Behaviour at different Hierarchical Levels. Positive Attitude, Self Analysis and Self-Management.

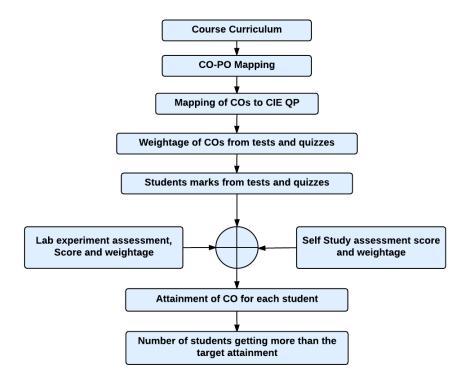
Professional Ethics - values to be practiced, standards and codes to be adopted as professional engineers in the society for various projects. Balancing Personal & Professional Life

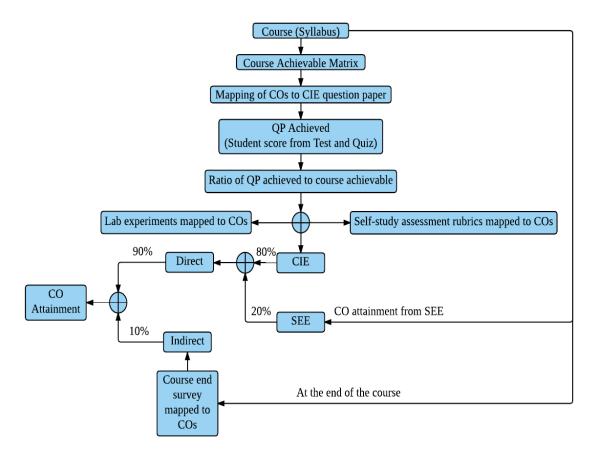

engine	engineers in the society for various projects. Balancing Personal & Professional Life					
Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Inculcate skills for life, such as problem solving, decision making, stress management					
CO2:	Develop leadership and interpersonal working skills and professional ethics.					
CO3:	Apply verbal communication skills with appropriate body language.					
CO4·	Develop, their potential and become self-confident to acquire a high degree of self					

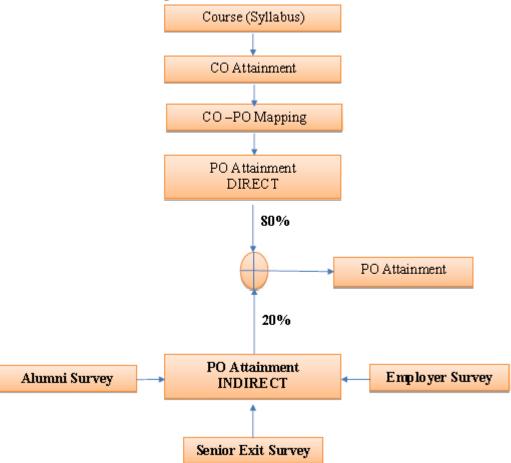
Ref	erence Books
1.	The 7 Habits of Highly Effective People, Stephen R Covey, Free Press, 2004 Edition, ISBN:
	0743272455
2.	How to win friends and influence people, Dale Carnegie, General Press, 1st Edition, 2016, ISBN:
	9789380914787
3.	Crucial Conversation: Tools for Talking When Stakes are High, Kerry Patterson, Joseph Grenny,
	Ron Mcmillan, McGraw-Hill Publication, 2012 Edition, ISBN: 9780071772204
4.	Aptimithra: Best Aptitude Book, Ethnus, Tata McGraw Hill, 2014 Edition, ISBN: 9781259058738


Scheme of Continuous Internal Examination and Semester End Examination

Phase	Activity	Weightage
Phase I	CIE will be conducted during the 3 rd semester and evaluated for 50 marks.	50%
III Sem	The test will have two components. The Quiz is evaluated for 15 marks and	
	second component consisting of questions requiring descriptive answers is	
	evaluated for 35 marks. The test & quiz will assess the skills acquired	
	through the training module.	
	SEE is based on the test conducted at the end of the 3 rd semester The test	
	will have two components a Quiz evaluated for 15 marks and second	
	component consisting of questions requiring descriptive answers is	
	evaluated for 35 marks.	
Phase II	During the 4 th semester a test will be conducted and evaluated for 50 marks.	50%
IV Sem	The test will have two components a Short Quiz and Questions requiring	
	descriptive answers. The test & quiz will assess the skills acquired through	
	the training module.	
	SEE is based on the test conducted at the end of the 4 th semester The test	
	will have two components. The Quiz evaluated for 15 marks and second	
	component consisting of questions requiring descriptive answers is	
	evaluated for 35 marks	
Phase III	At the end of the IV Sem Marks of CIE (3 rd Sem and 4 th Sem) is consolidated	for 50 marks
At the	(Average of Test1 and Test 2 (CIE 1+CIE2)/2.	
end of IV	At the end of the IV Sem Marks of SEE (3 rd Sem and 4 th Sem) is consolidated	for 50 marks
Sem	(Average of CIE 1 and CIE 2 (CIE 1+CIE2)/2.	


Curriculum Design Process


Academic Planning and Implementation


Process for Course Outcome Attainment

Final CO Attainment Process

Program Outcome Attainment Process

PROGRAM OUTCOMES (POs)

- 1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.
- 2. **Problem analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.
- 6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. **Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. **Life-long learning:** Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.