

RV COLLEGE OF ENGINEERING®

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Scheme and Syllabus of I & II Semesters (Autonomous System of 2018 Scheme)

Master of Technology (M.Tech) in POWER ELECTRONICS

DEPARTMENT OF ELECTRICAL ENGINEERING **College Vision & Mission** (**To be included from our side**)

R.V.COLLEGE OF ENGINEERING

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Scheme and Syllabus of I & II Semesters (Autonomous System of 2018 Scheme)

Master of Technology (M.Tech) in POWER ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Department Vision

Attain technical excellence in Electrical and Electronics Engineering through graduate programs and interdisciplinary research related to sustainability in power, energy and allied fields.

Department Mission

- To provide technical education that combines rigorous academic study and the excitement of innovation enabling the students to engage in lifelong learning
- To establish Centre of Excellence in sustainable electrical energy, smart grids and systems
- To establish tie-ups with industries and institutions of repute and to foster building up of a wide knowledge base to keep in tune with upcoming technologies.
- To motivate commitment of faculty and students to collate, generate, disseminate, persevere, knowledge and to work for the benefit of society.
- To develop simple, appropriate and cost effective inclusive technologies which are instrumental in the up-liftment of the rural society.

Sl. No.	Abbreviation	Meaning			
1.	VTU	Visvesvaraya Technological University			
2.	BS	Basic Sciences			
3.	CIE	Continuous Internal Evaluation			
4.	SEE	Semester End Examination			
5.	CE	Professional Core Elective			
6.	GE	Global Elective			
7.	HSS	Humanities and Social Sciences			
8.	CV	Civil Engineering			
9.	ME	Mechanical Engineering			
10.	EE	Electrical and Electronics Engineering			
11.	EC	Electronics & Communication Engineering			
12.	IM	Industrial Engineering & Management			
13.	EI	Electronics & Instrumentation Engineering			
14.	СН	Chemical Engineering			
15.	CS	Computer Science & Engineering			
16.	TE	Telecommunication Engineering			
17.	IS	Information Science & Engineering			
18.	BT	Biotechnology			
19.	AS	Aerospace Engineering			
20.	PHY	Physics			
21.	СНҮ	Chemistry			
22.	MAT	Mathematics			

ABBREVIATIONS

		INDEX				
	I Semester					
Sl. No.	Course Code	Course Title	Page No.			
1.	18 MAT11A	Applied Mathematics	1			
2.	18MPE12	Power Converters-I	3			
3.	18MPE13	Control of AC – DC drives	5			
4.	18HSS14	Professional(Soft) Skills Development	8			
		GROUP A: CORE ELECTIVES				
1.	18MPE1A1	Advanced Control Systems	10			
2.	18MPE1A2	Intelligent Control Techniques	12			
3.	18MPE1A3	Embedded Systems for Power Electronics	14			
		GROUP B: CORE ELECTIVES				
1.	18MPE1B1	Power Quality Problems and Mitigation	16			
2.	18MPE1B2	Power System Harmonics	18			
3.	18MPE1B3	Smart Grid-Technology, Analysis and Applications	20			

		II Semester	
Sl. No.	Course Code	Course Title	Page No.
1.	18 MPE 21	Power Converters-II	22
2.	18 MPE 22	Modelling and Simulation of Power Electronic Systems	24
3.	18 IEM23	Research Methodology	26
4.	18MPE24	Minor Project	28
		GROUP C: CORE ELECTIVES	
1.	18MPE2C1	EMC in Power Electronics	29
2.	18MPE2C2	PWM Techniques for Converters	31
3.	18MPE2C3	DSP Controllers for Power Converters	33
		GROUP D: CORE ELECTIVES	
1.	18MPE2D1	Converters for Solar and Wind Systems	35
2.	18MPE2D2	Hybrid Electric Vehicles	37
3.	3. 18MPE2D3 Flexible AC Transmission System		39
		GROUP G: GLOBAL ELECTIVES	
1.	18CS2G01	Business Analytics	41
2.	18CV2G02	Industrial & Occupational Health and Safety	43
3.	18IM2G03	Modelling using Linear Programming	45
4.	18IM2G04	Project Management	46
5.	18CH2G05	Energy Management	48
6.	18ME2G06	Industry 4.0	50
7.	18ME2G07	Advanced Materials	52
8.	18CHY2G08	Composite Materials Science and Engineering	54
9.	18PHY2G09	Physics of Materials	56
10.	18MAT2G10	Advanced Statistical Methods	57

R V COLLEGE OF ENGINEERNG, BENGALURU-560 059 (Autonomous Institution Affiliated to VTU, Belagavi) DEPARTMENT OF ELECTRICAL ENGINEERING M.Tech in POWER ELECTRONICS

		FIRST SEMEST	ER CRE	DIT SCH	EME			
SI.	Course			Credit Allocation				
No.	Code	Course Title	BoS	L	Т	Р	Total Credits	
1	18 MAT11A	Applied Mathematics	MAT	3	1	0	4	
2	18MPE12	Power Converters-I	EE	4	0	1	5	
3	18MPE13	Control of AC – DC drives	EE	4	0	1	5	
4	18HSS14	Professional(Soft) Skills Development	HSS	0	0	0	0	
5	18MPE1AX	Elective – 1	EE	4	0	0	4	
6	18MPE1BX	Elective – 2	EE	4	0	0	4	
	To	tal number of Credits		19	1	2	22	
	Total	Number of Hours / Week		19	1	2	22	

		SECOND SEMES	STER CRI	EDIT SCI	HEME			
SI.	Course				Credit Allocation			
No.	Code	Course Title	BoS	L	Т	Р	Total Credits	
1	18 MPE 21	Power Converters-II	EE	4	0	1	5	
2	18 MPE 22	Modelling and Simulation of Power Electronic Systems	EE	4	0	0	4	
3	18 IEM 23	Research Methodology	HSS	3	0	0	3	
4	18MPE24	Minor Project	EE	0	0	2	2	
5	18MPE2CX	Elective – 3	EE	4	0	0	4	
6	18MPE2DX	Elective – 4	EE	4	0	0	4	
7	18XXX2GX	Global Elective	RES BOS	3	0	0	3	
	To	tal number of Credits	•	22	0	3	25	
	Total Number of Hours / Week				0	3	25	

	I Semester					
	GROUP A: CORE ELECTIVES					
Sl. No.	Course Title					
1.	18MPE1A1	Advanced Control Systems				
2.	18MPE1A2	Intelligent Control Techniques				
3.	18MPE1A3	Embedded Systems				
	GROUP B: CORE ELECTIVES					
1.	1. 18MPE1B1 Power Quality Problems and Mitigation					
2. 18MPE1B2 Power System Harmonics						
3.	18MPE1B3	Smart Grid-Technology, Analysis and Applications				
		II Semester				
		GROUP C: CORE ELECTIVES				
1.	18MPE2C1	EMC in Power Electronics				
2.	18MPE2C2	PWM Techniques				
3.	18MPE2C3	DSP Applications to Drives				
		GROUP D: CORE ELECTIVES				
1.	18MPE2D1	Converters for Solar and Wind Systems				
2.	18MPE2D2	Hybrid Electric Vehicles				
3.	18MPE2D3	Flexible AC Transmission System				

	GROUP E: GLOBAL ELECTIVES						
Sl. No.	Host Dept	Course Code	Course Title	Credits			
1.	CS	18CS2G01	Business Analytics	3			
2.	CV	18CV2G02	Industrial & Occupational Health and Safety	3			
3.	IM	18IM2G03	Modeling using Linear Programming	3			
4.	IM	18IM2G04	Project Management	3			
5.	СН	18CH2G05	Energy Management	3			
6.	ME	18ME2G06	Industry 4.0	3			
7.	ME	18ME2G07	Advanced Materials	3			
8.	CHY	18CHY2G08	Composite Materials Science and Engineering	3			
9.	PHY	18PHY2G09	Physics of Materials	3			
10.	MAT	18MAT2G10	Advanced Statistical Methods	3			

				Semester: I			
			A	PLIED MATHEMATICS – I			
	C			(Theory)			n
0		1		D, MCM, MPE, MBT, MBI,	, ,		
Course		:	18MAT11A		CIE Marks	:	100
Credits:	L:T:P	:	4:0:0		SEE Marks	:	100
Hours		:	47L		SEE Duration	:	3 Hrs
				Unit-I			
Statistic	s:			Unit-1			09 Hrs
		anar	es fitting of st	aight line, linearization of nonlin	ear laws curve f	Fitting	
				ent of correlation, lines of regre			
correlatio		cont		in or correlation, mes or regre	ssion, opearman	ium	`
• • • • • • • • • • • • • • • • • • • •				Unit – II			
Probabi	lity distr	ibut	ions:				09 Hrs
	•			Variables-Discrete and continue	ous random vari	ables	, ,
	-		•	enerating functions, standard d			
Exponen	tial, Nor	mal a	and Gamma dist	ributions.			
				Unit –III			
÷		-	0	n value problems:			09 Hrs
System	of linear	equ	ations - LU d	ecomposition and Gauss-Jordan	method, Eigen	value	e
•			U U	, Eigen values and Eigen vector	ors of real symr	netri	2
matrices	-Jacobi	meth	od, Power meth	od and Inverse Power method.			
		-		Unit –IV			
			f differential e		1. 1		10 Hrs
				-Finite difference method for			
.		•		erkin method. Finite differences	•	-	
method a				parabolic, Elliptic and Hyperboli	C PDE, Finite ele	emen	l
methou a	ing ship	ie pro	JUICHIIS	Unit –V			
Enginee	ring ont	imiz	ation:				10 Hrs
0				ation, statement of an optimiz	ation problem-	lesigi	
				t surface, objective function a			
				with inequality constraints-Kul			
Constrain			tion, Genetic				
Optimiza	ation of H	Fuzzy	v systems.	_			
				the course, the students will be			
				undamental concepts of statistic		, line	ear algebra
				mization arising in various fields		<u> </u>	
	· · ·		U U	skills of statistical/numerical/op		-	
-				bability distributions, linear equ	-	ue pr	oblems and
				ave great importance in science a			
				n to establish statistical/mathema	atical model and	use	appropriate
			ve and optimize				
	•			hematical knowledge gained to			•
				squares, probability distribution		ons,	eigen value
1	problems	s, diff	erential equation	ns and optimization arising in pra	ctical situations.		
De							
Referen)				and 1. 1.
	•			bability, Seymour Lipschutz and s. ISBN: 0-07-118356-6.	J Marc lars Lip	son,	2 Eultion

1 2010, Schaum's Outline Series, ISBN: 0-07-118356-6.

2	2	Introductory method of numerical analysis, S. S. Sastry, 4 th Edition, 2009, Prentice-Hall India Pvt. Ltd., ISBN : 81-203-1266-X.
3	3	Numerical methods for scientific and engineering computation, M K Jain, S. R. K. Iyengar, R. K. Jain, 6 th Edition, 2012, New Age International Publishers ISBN-13: 978-81-224-2001-2.
4	Ļ	Engineering Optimization Theory and Practice, Singiresu S. Rao, 3 rd Edition, 2009, New Age International (P) Ltd., ISBN: 81-224-1149-5.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks**.

Semester End Evaluation (SEE); Theory (100 Marks)

			Semester: I			
		POWEI	R CONVERTERS-I			
		(Theo	ory and Practice)			
Course Code	:	18MPE12		CIE Marks	:	100 + 50
Credits: L:T:P	:	4:0:1		SEE Marks	:	100+50
Hours	:	47 L		SEE Duration	:	3+3Hrs
Course Learning Obi						•

Course Learning Objectives:

Unit-I	
Power Semiconductor Devices:	10 Hrs
working principle, characteristics (static & dynamic) of Power Diodes, Schottky diodes, SiC	
diodes, GaN diode. Structure, physics of operation, characteristics (static & dynamic) of	
Thyristors, MOSFET, IGBT,	
Unit – II	1
Gate drive circuits and Protection, Operating Limitations and Safe operating Areas of	10 Hrs
Thyristors, MOSFET, IGBT .Working Principle GTOs.	
Choppers: Analysis of Step down, step up, step up-down choppers, Classification and	
Analysis of choppers	
Unit -III	1
Line Commutated Converters: Phase control, single phase and three phase semi controlled	09 Hrs
& fully controlled bridge converter, expression of output voltage/current interms of fourier	
series, power factor improvement methods, effect of source inductance, twelve pulse	
converter, design of converter circuits	
Unit –IV	T
Inverters: Principle of operation, performance parameters, single phase bridge inverters and	09 Hrs
three phase inverters, current source inverter, comparison between VSI & CSI.	
Output Voltage Control of Inverters: Single/multiple pulse, modified SPWM methods,	
PWM unipolar, bipolar switching and harmonic spectrum analysis for single phase and three	
phase inverters, third harmonic PWM, harmonic reduction and elimination.	
Unit –V	
AC Voltage Controllers: Principle of on-off control, phase control: single and 3 phase	09 Hrs
controllers – Design and analysis with R and R-L loads. Single phase and 3 phase dual	
converter.	
Multilevel Inverters: Introduction, types, diode clamped multi-level inverters, features &	
applications, capacitor clamped multilevel inverter, cascaded H-bridge multilevel inverter,	
multilevel inverters for hybrid converter- mixed level hybrid, asymmetric hybrid and soft	
switched multilevel inverters, super-lift multilevel inverters	
Introduction to matrix converters	

UNIT VI Lab Component

- 1. Analysis of static and dynamic characteristic of Power Diodes, Schottky diodes, SiC diodes, Thyristors
- 2. Design and Simulation of DC-DC Converters step-down, step-up, step up/down.
- 3. Performance analysis of DC-DC Converters step-down, step-up, step up/down.
- 4. Design and Simulation of single phase fully controlled and semi-controlled converter for RL load for continuous & discontinuous current mode
- 5. Performance testing of single phase fully controlled and semi-controlled converter for RL load for continuous & discontinuous current mode
- 6. Simulation Study of effect of source inductance on the performance of single phase fully controlled converter
- 7. Experimental Study of effect of source inductance on the performance of single phase fully controlled converter

- 8. Performance analysis of three phase fully controlled and semi-controlled converter for RL load for continuous & discontinuous current mode
- 9. Performance analysis of single phase bridge inverter for RL load and voltage control by single pulse width modulation
- 10. Design and Performance analysis of single phase bridge inverter for RL load and voltage control by sinusoidal pulse width modulation using a modern design tool.
- 11. Diode clamped multilevel inverter

Course	Outcomes: After completing the course, the students will be able to
CO1:	Understand the concepts of various converters, choppers inverters, multi-level inverters, matrix
	converters and ac regulators.
CO2:	Explain, evaluate and simulate converter, inverter and ac regulator topologies for a given
	application.
CO3:	Analyze the operations with waveforms of various converters, choppers inverters, multi-level
	inverters, matrix converters and ac regulators. Also choose appropriate control techniques and
	converters.
CO4:	Design PWM controller, various converters, inverters and ac regulators.

Reference Books

1	Fundamentals of Power Semiconductor Devices, B. JayantBaliga, 1st Edition, 1995, International
1	Thompson Computer Press, ISBN:9780387473130.
2	Power Electronics Converters, Applications, and Design, Ned Mohan, Tore M. Undeland,
4	William P. Robbins, 3 rd Edition, 2011, Wiley India Pvt Ltd, ISBN: 978-0-471-22693-2
2	Power Electronics, Circuit Devices and Applications, M. H. Rashid, 3 rd Edition, 2003, Prentice
3	Hall Publisher, ISBN-10: 0131011405
4	Power Electronics, M D Singh, K B Khanchandani, 2 nd Edition, 2012, Mc. Graw Hill, ISBN
4	9780070583894

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks**.

Scheme of Continuous Internal Evaluation (CIE) for Practicals: (50 Marks)

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150

Theory (100 Marks) + Practical (50 Marks) = Total Marks (150)

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit.

Scheme of Semester End Examination (SEE); Practical (50 Marks)

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester: I						
CONTROL OF AC – DC DRIVES						
		(Theory and Practice)				
:	18MPE13		CIE Marks	:	100+50	
:	4:0:1		SEE Marks	:	100+50	
:	47L		SEE Duration	:	3+3Hrs	
	:	: 4:0:1	CONTROL OF AC – DC DRIV (Theory and Practice)	CONTROL OF AC – DC DRIVES (Theory and Practice) CIE Marks \$ 4:0:1 CIE Marks	CONTROL OF AC – DC DRIVES (Theory and Practice) CIE Marks : 4:0:1 SEE Marks :	

Unit-I	
Fundamentals of Drives:	10 Hrs
Dynamics of Electric drives: Fundamentals of torque equations, speed torque	
conventions and multi-quadrant operations, drive parameters, components of load torque,	
classification of load torques, steady state stability, load equalization.	
Selection of motor power ratings: Thermal model of motor for heating and cooling,	
classes of motor duty, determination of moto ratings,	
Electrical drives: advantages, parts of electric drives, choice of electrical drives, status	
of DC AC drives.	
Unit – II	
DC Drive fundamentals:	09 Hrs
DC Motor drives: DC motors and their performance, starting, braking, speed	
control.	
Converter Control of DC Drives: Analysis of series and separately excited DC motor with	
single phase and three phase converters operating in different modes and configurations.	
Chopper Control of DC Drives: Analysis of series and separately excited DC motors fed	
from different choppers for both time ratio control and current limit control, four quadrant	
control.	
Unit –III	
Modelling of AC machines for Drives:	09 Hrs
AC Machines for drives: Introduction, Induction machines, rotating magnetic field,	
torque production, equivalent circuit, torque speed curve, variable voltage operation, variable	
frequency and V/F operation, drive operating regions, variable stator current operation, effect	
of harmonics, dynamic d-q model.	
synchronous machines, wound field machine, synchronous reluctance machine, permanent	
magnet machine, variable reluctance machines.	
Unit –IV	
Control and estimation of Induction machine drives:	09 Hrs
Introduction, Induction motor control with small signal model, scalar control, open	
loop v/f control, Current fed inverter control: Independent current and frequency control.	
Vector or field-oriented control, d c drive analogy, equivalent circuit and phasor	
diagram, principles of Vector control, direct or feedback vector control, flux vector estimation:	
voltage model. Indirect or feed forward vector control, direct torque and flux control,	
Unit –V	
Control and estimation of synchronous motor drives:	10 Hrs
Introduction, sinusoidal SPM machine drives, open loop v/f self-control model, absolute	
position encoder, optical analog resolver with decoder, vector control (field weakening mode),	
synchronous reluctance machine drives, trapezoidal SPM machine drives: drive operation with	
inverters, torque speed curve, machine dynamic model, drive control, Torque pulsation,	
extended speed operation, switched reluctance motor drives.	
UNIT VI Lab Component	
1. Performance Analysis of single phase fully controlled converter fed separately excited D	C motor
for continuous current mode.	

2. Performance Analysis of single phase semi controlled converter fed separately excited DC motor for continuous current mode.

- 3. Performance analysis of three phase fully controlled converter fed separately excited DC motor for continuous current mode.
- 4. Performance analysis of Chopper fed DC drive system with armature current in continuous current mode
- 5. Performance analysis of single phase fully controlled and dual converter fed separately excited DC motor for continuous and discontinuous current mode using simulation
- 6. Performance analysis of 4- quadrant chopper fed DC drive system using simulation
- 7. Speed control of single phase induction motor using V/F control
- 8. Speed control of three phase induction motor using V/F control
- 9. Simulation of Speed control of three phase induction motor using Static Cramer Control
- 10. Simulation of Speed control of three phase SPM machine from stator side
- 11. Simulation of Speed control of BLDC motor
- 12. Simulation of Regenerative Braking for 3- phase Induction motor

Course	Course Outcomes: After completing the course, the students will be able to				
CO1:	Understand the specifications, selection and design techniques of drive system for a given				
	applications.				
CO2:	Modelling and Building and electric drive system as per given specifications.				
CO3:	Simulate and build control modules for closed loop operation of an electric drive system				
CO4:	Analyze the issues related to effect of harmonics and external disturbances of electric drives.				

Refere	Reference Books				
1	Fundamentals of Electric drives, Gopal K Dubey, 2 nd Edition, 2010, Narosa publisher, ISBN:				
	978-81-7319-428-3				
2	Modern Power electronics and AC Drives, Bimal K Bose, 1 st Edition, 2001, PHI publication,				
2	ISBN-13: 978-0130167439.				
2	Power Electronics and Variable frequency drives, Bimal.K. Bose, Wiley student Edition, 2000,				
3	Wiley Publishers Distributors, New Delhi, ISBN No: 9788126529346				
4	Power Electronics in Motor Drives: Principles, Application and Design, Martin Brown, 1 st				
	Edition, 2010, Gazelle Distribution Publisher, ISBN:978-0905705897				

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks**.

Scheme of Continuous Internal Evaluation (CIE) for Practicals: (50 Marks)

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150

Theory (100 Marks) + Practical (50 Marks) = Total Marks (150)

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit.

Scheme of Semester End Examination (SEE); Practical (50 Marks)

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

		Semester I		
	PROFI	ESSIONAL SKILL DEVEI	LOPMENT	
Cou	rse Code: 18HSS14	Course Code: 18HSS14	Course Code: 18HSS14	
Crec	lits: L: T:P 0:0:3	Credits: L: T:P 0:0:3	Credits: L: T:P 0:0:3	
Hou	rs: 18L	Hours: 18L	Hours: 18L	
Cou	rse Learning Objectives: T	The students will be able to	· ·	
1	Understand the importance	of verbal and written comm	unication.	
2	Improve qualitative and qu	antitative problem-solving sl	cills.	
3	Apply critical and logical t	hink process to specific prob	lems.	
4	Manage stress by applying	stress management skills.		
Intro analy Resu	duction, Application, Simula vsis. 1 me Writing: Understanding	Communication, Personal Sk tion, Attitudinal Developmen the basic essentials for a re f facts. Theory and Application	t, Self Confidence, SWOC sume, Resume writing tips	03 Hrs
decim Subst Rease b. No Analy Logic and i argur Verb revie	nals, digit places etc. Simp titution Method, Inequalities. oning – a. Verbal - Blood Rela on- Verbal reasoning - Visual ytical Reasoning - Single & Mi cal Aptitude, - Syllogism, Ver nductive reasoning. Introduction nent, common flaws, argument bal Analogies/Aptitude – introduction	oduction to different question ence corrections, antonyms/syr	tions, Elimination Method, metic & Alphabet. classification. uencing. tement syllogism, Deductive zing information, parts of an types – analogies, Grammar	08 Hrs
Etiqu Groo differ	ette – Conversational and Proming, Behavioral and technic	& how to handle them, Body ofessional, Dress code in inter cal interviews, Mock intervie ess Interviews, Technical In	view, Professional attire and ws - Mock interviews with	03 Hrs
sensi	tivity; capability and maturit	Skills : Optimal co-existence, y model, decision making ab iveness) and presentation skills	ility and analysis for brain	02 Hrs
motiv Lead	vational speech with conclusion lership Skills: Ethics and Integ	p motivation, Behavioral Ma n. (Examples to be cited). grity, Goal Setting, leadership a should discuss case studies and	bility.	02 Hrs
doma		moura arscuss case studies allu	standards pertaining to then	

Course	Course Outcomes: After completing the course, the students will be able to		
CO1:	Develop professional skill to suit the industry requirement.		
CO2:	CO2: Analyze problems using quantitative and reasoning skills		
CO3:	Develop leadership and interpersonal working skills.		
CO4:	Demonstrate verbal communication skills with appropriate body language.		

Refere	Reference Books					
1	The 7 Habits of Highly Effective People, Stephen R Covey Free Press, 2004 Edition, ISBN: 0743272455					
2	How to win friends and influence people, Dale Carnegie General Press, 1 st Edition, 2016, ISBN: 9789380914787					
3	Crucial Conversation: Tools for Talking When Stakes are High, Kerry Patterson, Joseph Grenny, Ron Mcmillan 2012 Edition, McGraw-Hill Publication ISBN: 9780071772204					
4	Ethnus, Aptimithra: Best Aptitude Book ,2014 Edition, Tata McGraw Hill ISBN: 9781259058738					

Scheme of Continuous Internal Examination (CIE)

Evaluation of CIE will be carried out in TWO Phases.

Phase	Activity	Weightage
Ι	Test 1 is conducted after completion 9 of hours training program (3 Class) for 50 marks Part A- Quiz for 15 Marks and Part B for 50 Marks (Descriptive answers). The marks are consolidated to 50 Marks.	50%
II for 50 marks Pa	Test 2 is conducted after completion 18 hours of training program (6 Class) for 50 marks Part A- Quiz for 15 Marks and Part B for 50 Marks (Descriptive answers). The marks are consolidated to 50 Marks.	50%
III	Average of TWO tests and the score must be greater than 50% Two, tests and	

CIE Evaluation shall be done with weightage as follows:

Writing skills	10%
Logical Thinking	25%
Verbal Communication & Body Language	35%
Leadership, Interpersonal and Stress Bursting Skills	30%

SEE: Not Applicable

Semester: I						
	ADVANCED CONTROL SYSTEMS					
	(Elective Group A: Core Elective)					
Course Code	:	18MPE1A1	CIE	Marks	:	100
Credits: L:T:P	:	4:0:0	SEE	Marks	:	100
Hours:	:	47L	SEE	Duration	:	3Hrs

Unit-I	
Digital Control Systems: Review of difference equations and Z - transforms, sampled data systems: ideal sampler, sample and hold operations, Z- transfer function (Pulse transfer function), pulse transfer functions and different configurations for closed loop discrete-time control systems. Z - Transforms analysis of sampled data systems.	09 Hrs
Unit – II	
Mapping between the s-plane and the z-plane, stability analysis of closed loop systems in the z- plane Stability analysis (Jury's Stability Test and Bilinear Transformation), State model for continuous time and discrete time systems, Solutions of state equations(for both continuous and discrete systems), Discretization of continuous time state equations	09 Hrs
Unit –III	
Concepts of controllability and observability (for both continuous and discrete systems), design of state feedback controllers via pole placement, design of full and reduced order state observers and design of servo systems using pole placement technique. (for both continuous and discrete systems), full order and reduced order observers (for both continuous and discrete systems), dead beat control by state feedback	10 Hrs
Unit –IV	
Optimal control problems using state variable approach, state regulator and output regulator, Linear regulator problem: matrix Riccati equation and its solution, concepts of model reference control systems, adaptive control systems and design.	09 Hrs
Unit –V	
Non Linear Control Systems: Characteristics of nonlinear systems, Singular points, stability of nonlinear systems - phase plane analysis and describing function analysis, Lyapunov's stability criterion, Popov's criterion.	10 Hrs

Course	Course Outcomes: After completing the course, the students will be able to				
CO1:	Identify, Formulate and obtain transfer function models, solve discrete control engineering				
	problems, use the techniques, tools and skills related to discrete signals to solve complex control				
	engineering problems.				
CO2:	Apply the concepts of state space, controllability and observability, pole placement technique,				
	optimal & adaptive control and Liapunov stability.				
CO3:	Analyze and obtain state space models, solution of state equation, state feedback controllers and				
	observers, stability of linear nonlinear systems using phase plane and linear & nonlinear Liapunov				
	method.				
CO4:	Assess and design of state feedback controllers and observers, using pole placement for				
	continuous and discrete systems.				

Refere	Reference Books					
1	Digital Control & State Variable Methods, M. Gopal, 4 th Edition, 2012, McGraw Hill Education, ISBN: 9780071333276.					
2	Modern Control Engineering, Ogata. K., 5 th Edition, 2010, PHI, ISBN: 9788120340107.					
3	Discrete Time Control Systems, Ogata K, 2 nd Edition, 2011, PHI, ISBN: 9788120327603.					
4	Control Systems Engineering, Nagarath and Gopal, 2012, New Age International Publishers, ISBN: 9788122420081.					

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: I						
INTELLIGENT CONTROL TECHNIQUES IN DRIVES						
(Elective Group I)						
Course Code : 18MPE1A2 CIE Marks : 1						100
Credits: L:T:P	:	4:0:0		SEE Marks	:	100
Hours: 48L	:	48L		SEE Duration	:	3 Hrs

Unit-I	
Fuzzy Logic Systems: Introduction to fuzzy logic, fuzzy Vs crisp set, linguistic variables,	09 Hrs
membership functions, fuzzy sets and operations on crisp sets and fuzzy sets, Fuzzy relations,	
operations on fuzzy relation, Cartesian Product of Relation.linguistic variables, fuzzy if then	
rules, compositional rule of inference, Fuzzy Rule Base and Approximate Reasoning	
Unit – II	_
Fuzzy Logic Control: Basic concept of fuzzy logic control, relationship to PI, PD and PID	09 Hrs
control, design of FLC: determination of linguistic values, construction of knowledge base,	
inference engine, tuning, fuzzification, De-fuzzification methods. Fuzzy Inference Systems	
(FIS), Construction and Working Principle of FIS, Mamdani FIS models, Takagi-Sugeno-Kang	
(TSK) fuzzy models and concept of Adaptive Fuzzy control, Examples applicable to Drives.	
Unit –III	
Neural network: Fundamental Concept, history and development of neural network	10 Hrs
principles, Biological Neural Network, Comparison Between Biological Neuron and Artificial	
Neuron ,Important Terminologies of ANN.Basic Models and Advantages of Neural Networks	
Learning methods: types of learning, supervised, unsupervised, reinforced learning,	
knowledge representation and acquisition,	
Theory, architecture and learning algorithm of neural network models: McCulloc model,	
Hopfield model, Perceptron Network, Back propagation network	
Unit –IV	1
Neural Networks for feedback Control: Identification of system models using neural	10 Hrs
networks, Model predictive control, feedback linearization and model reference control using	
neural networks, Neural Network Reinforcement Learning Controller, Radial basis function	
neural networks, Basic learning laws in REF nets, Recurrent back propagation, CMAC	
networks and ART networks, Kmeans clustering algorithm. Kohnen's feature maps, pattern	
recognition & mapping, Examples applicable to Drives.	
Unit –V	1
Hybrid algorithms: Neuro-fuzzy systems, ANFIS and extreme-ANFIS, derivative free	10 Hrs
optimization methods, Genetic algorithms :- introduction, principle of natural selection, Flow	
chart of simple genetic algorithm, GA operators and parameters. particle swarm optimization,	
Solution of typical control problems.	
Case studies on Application to Electrical Drives.	

Course	Course Outcomes: After completing the course, the students will be able to				
CO1:	Explain the concepts ANN and Fuzzy Logic				
CO2:	Analyze the techniques involved in ANN and fuzzy logic applications				
CO3:	Design and model hybrid system with ANN and FL or independent system				
CO4:	Application of techniques in modern industrial drives and power electronics system				

Refere	Reference Books								
1	Principles of Soft Computing, Dr. S. N. Sivanandam and Dr. S. N. Deepa, 2 nd Edition, 2008, WILEY publication, ISBN: 9788126527410								
2	Fuzzy Logic – Intelligence, Control and Information, John Yen and Reza Langari, 3 rd Edition, 2009, Pearson Education Inc, ISBN 978-81-317-0534-6								
3	Neural Networks – A Comprehensive Foundation, Simon Haykin, 2 nd Edition, 1998, PH								

	Publisher, ISBN978-81-203-2373-5
4	Fuzzy Logic with Engineering Applications, Timothy J. Ross., 3 rd Edition, 2011, John Wiley and Sons, ISBN 978-0-470-74376-8

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks**.

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: I							
EMBEDDED SYSTEMS FOR POWER ELECTRONICS							
	(Elective Group A: Core Elective)						
Course Code	:	18MPE1A3		CIE Marks	:	100	
Credits: L:T:P	:	4:0:0		SEE Marks	:	100	
Hours	:	48 L		SEE Duration	:	3 hrs	

09 Hrs
10 Hrs
L .
09 Hrs
L .
10 Hrs
10 Hrs

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Gain understanding about the embedded system as a whole and its hardware and software						
	components						
CO2:	Analyze popular CPU architectures used in embedded systems such as ARM,PIC and writing						
	assembly language programming.						
CO3:	Apply embedded software design and modelling in power electronic circuits						
CO4:	come up with high level design of an embedded system from both hardware and software						
	perspective						

Refere	Reference Books				
1	The Definitive Guide to the ARM Cortex-M3, Joseph Yiu, 2 nd Edition. 2009, Elsevier Publisher, ISBN: 9789351071754,				
2	PIC Microcontroller, Muhammad Ali Mazidi, Rolin D. McKinlay, 1 st Edition, 2007, Prentice Hall Publisher, ISBN-13: 978-0131194045,				
3	Embedded Systems: Introduction to ARM Cortex [™] -M3 Microcontroller, Jonathan W Valvano, Volume1, 2012,CreateSpace Independent Publishing Platform, ISBN-13: 978-1477508992				
4	Microcontroller and Embedded System, Er. Vikrant Vij, 1 st Edition, 2011, Laxmi Publications; ISBN-13: 978-9381159019				

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a

combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: I							
	POWER QUALITY PROBLEMS AND MITIGATION						
	(Elective Group B: Core Elective)						
Course Code	:	18MPE1B1	CIE Marks	:	100		
Credits: L:T:P	:	4:0:0	SEE Marks	:	100		
Hours	:	45L	SEE Duration	:	3 Hrs		

Unit-I

Unit-I	
Power Quality: Introduction, State of the Art on Power Quality, Classification of Power	09 Hrs
Quality Problems, Power Quality definitions, Power Quality Standards and Monitoring,	
Numerical Examples	
Loads That Cause Power Quality Problems: Introduction, Nonlinear Loads, Classification of	
Nonlinear Loads, Power Quality Problems Caused by Nonlinear Loads, Analysis of Nonlinear	
Loads, Modeling, Simulation, and Performance of Nonlinear Loads, Grounding techniques,	
Numerical Examples.	
Unit – II	
Passive Power Filters – Introduction to Passive Power Filters, Classification, Principle of	09 Hrs
Operation, Analysis and Design, Modeling, Simulation, and Performance, Limitations,	
Parallel Resonance of Passive Filters with the Supply System and Its Mitigation, Numerical	
Examples	
Unit –III	
Active Shunt Compensation: Introduction, State of the Art on DSTATCOMs, Classification	09 Hrs
of DSTATCOMs, Principle of Operation and Control of DSTATCOMs, Analysis and Design	
of DSTATCOMs, Modelling, Simulation, and Performance of DSTATCOMs, Numerical	
Examples	
Unit –IV	
Active Series Compensation: Introduction, State of the Art on Active Series Compensators,	09 Hrs
Classification of Active Series Compensators, Principle of Operation and Control of Active	
Series Compensators, Analysis and Design of Active Series Compensators, Modelling,	
Simulation, and Performance of Active Series Compensators, Numerical Examples	
Unit –V	
Unified Power Quality Compensators: Introduction, State of the Art on Unified Power	09 Hrs
Quality Compensators, Classification of Unified Power Quality Compensators, Principle of	
Operation and Control of Unified Power Quality Compensators, Analysis and Design of	
Unified Power Quality Compensators, Modeling, Simulation, and Performance of UPQCs	
Course Outcomes: After completing the course, the students will be able to	

CO1:	Explain the various power quality problems and identify the causes of PQ disturbances in a
	system
CO2:	Model and Simulate Active series, shunt and unified compensators
CO3:	Analyze and design controllers for various compensators

CO4: Compute the level of PQ disturbance and design a suitable compensator for a system

Refere	Reference Books				
1	Power Quality Problems and Mitigation Techniques, Bhim Singh, Ambrish Chandra, Kamal Al- Haddad, 1 st Edition, 2015, John Wiley Publisher, ISBN: ISBN: 978-1-118-92205-7				
2	Power Quality Enhancement Using Custom Power Devices, Arindam Ghosh and Gerard Ledwich, 1 st Edition, 2002, Kluwer Academic Press, ISBN 1-4020-7180-9				
3	Power Quality, C. Sankaran, 2002,, CRC Press, ISBN 0-8493-1040-7				
4	Understanding Power Quality Problems: Voltage Sags and Interruptions, Math H.J. Bollen, 1 st Edition, 1999, Wiley India Pvt Ltd Publisher, ISBN-13: 978-8126530397				

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

1

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks**.

Scheme of Semester End Examination (SEE) for 100 marks:

			Semester: I		
			YER SYSTEM HARMONICS		
	- T		tive Group B: Core Elective)		400
Course Code	:	18MPE1B2	CIE Marks	:	100
Credits: L:T:P	:	4:0:0	SEE Marks	:	100
Hours	:	45L	SEE Duration	:	3 Hrs

Unit-I	
Fundamentals of Harmonics: Introduction, Examples of harmonic waveforms,	09 Hrs
characteristics of harmonics in power systems, measurement of harmonic distortion, power in	
passive elements, calculation of passive elements, resonance, capacitor banks and reactive	
power supply, capacitor banks and power factor correction, bus voltage rise and resonance,	
harmonics in transformers. Harmonics in Power system: Introduction, sources of harmonics,	
transformers, rotating machines, fluorescent and CFL lights, static var compensators,	
cycloconverters. Single phase controlled rectifiers, three phase converters.	
Unit – II	1
Effects of Harmonic Distortion on Power System: Introduction, thermal losses in a harmonic	09 Hrs
environment, harmonic effects on power system equipment: capacitor banks, transformers,	
rotating machines, protection, communication and electronic equipment.	
Mitigation of Power system Harmonics: Introduction, Passive harmonic filters : Tuned, De-	
tuned filters; Active Filters – Shunt and series; Hybrid filters	
Unit –III	
Limits of Harmonic Distortion: Introduction, voltage harmonic distortion limits, current	09 Hrs
harmonic distortion limits. IEEE 519-1992 standards for Harmonics	
Modelling of System Components for harmonic studies: Introduction, impedance in the	
presence of harmonics, skin effect, modelling of the high voltage grid, generator modelling,	
modelling of shunt capacitor banks, series capacitor banks, load models, induction motor	
modelling.	
Transformer Modelling: Introduction, modelling of two winding transformers, phase	
sequence admittance matrices, transmission of voltage and current across two winding	
transformers, transmission matrices and phase admittance matrix, modelling of three and four	
winding	
Unit –IV	
Modelling of Transmission lines/Cables: Introduction, skin effect, modelling of power lines,	09 Hrs
Line's series impedance, mutual coupling between conductors, mutually coupled lines, line's	
shunt capacitance, surge impedance and velocity of propagation, line's series impedance and	
shunt capacitance – single phase equivalents, the transmission (ABCD) matrix, the admittance	
matrix, conversion between the transmission and admittance matrices, the nominal pi model –	
single phase equivalent, the equivalent pi model – voltage and current the line, line losses, the	
equivalent pi model – single phase equivalent, variations in the network's short circuit capacity,	
examples – the nominal and equivalent models	
Unit –V	
Power in presence of harmonics : Active ,reactive distortion and apparent powers –	09 Hrs
definitions and computation. PF in the presence of harmonics – true PF, Displacement PF and	07 1115
Distortion PF	
Harmonic Studies : Harmonic Analyser; Calculation of harmonics through spread sheet;	
Design of filter with practical considerations; location of filters, Case studies of effects of	
harmonics.	1

Course	Course Outcomes: After completing the course, the students will be able to				
CO1:	Discuss the sources and effects of harmonics in a given power system				
CO2:	Compute the harmonic indices and distortion of power in the system				

CO3:	Model various components for harmonic studies
CO4:	Design passive and active filters to meet the IEEE 519-1992 standards

Refere	ence Books
1	Power System Harmonics, George J Wakileh , 1 st Edition, 2014, Springer Reprint, ISBN 978-3-540-42238-9
2	Power System Harmonic Analysis, Jos Arrillaga, Bruce C. Smith, Neville R. Watson, Alan R. Wood, 1 st Edition, 2014, Wiley Reprint, ISBN 0-470-85129-5
3	Power System Harmonics, J. Arrillaga, N.R. Watson, 2 nd Edition, 2003, Wiley Publisher, ISBN: 978-0-470-85129-6
4	Harmonics - Causes, effects and Control, White Paper, usa.siemens.com/lv-drives

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks**.

Scheme of Semester End Examination (SEE) for 100 marks:

			Semester: I		
S	MAR		HNOLOGY, ANALYSIS AND APPLICATIONS		
			lective Group B: Core Elective)		100
Course Code	:	18MPE1B3	CIE Marks: 100	:	100
Credits: L:T:P	:	4:0:0	SEE Marks: 100	:	100
Hours	:	45L	SEE Duration: 3Hrs	:	3 Hrs
			Unit-I		
INTRODUCTIO	N- D	Definition. Obj	ectives, Early Smart Grid initiatives, Overview of	the	09 Hrs
		Ū	Grid, smart grid from customers view, Issues of ener		
management in sn				0.	
INFORMATION	I AŇ	D COMMUN	ICATION TECHNOLOGIES: Dedicated and share	red	
communication ch	nanne	ls, Switching te	echniques, Communication channels, Layered architectu	ure	
and protocols					
			Unit-II		1
COMMUNICAT		TECHNOL			09 Hrs
			n exchange, control decentralization, Interoperability a	and	
connectivity, futur					
			R THE SMART GRID-Encryption and decrypti	on,	
Authentication, D	ıgıtal	signatures, Cyl	ber security standards		
					00.11
			ND-SIDE INTEGRATION: Need for demand response	e	09 Hrs
e			overview of the hardware used, Communications netering, Demand-side integration		
			QUIPMENT: Substation automation equipment, Fault	te	
in the distribution				15	
	•	00	RATION: Data sources, Energy management system	ns	
Wide area applica				11 5,	
		150000000000000000000000000000000000000	Unit-IV		
DISTRIBUTION	M	ANAGEMENT	SYSTEMS: Data sources and associated exter	nal	09 Hrs
systems, Modeling	g and	analysis tools,	Applications,		
		•			
ARCHITECTUR	RE A	ND RECON	FIGURATION : New structure of distribution gri	ds,	
planning : Long te	erm ar	nd short term, F	econfiguration to reduce power losses		
			Unit-V		
			urations, Renewable energy generation, Fault curr	ent	09 Hrs
e e		·	on in microgrids with renewable soruces,		
			ge technologies and case studies, technological challeng	ges	
with penetration o					
STANDARDIZA	TIO	N OF SMART	GRIDS – Issues, regulations and current status		

Course	Course Outcomes: After completing the course, the students will be able to				
CO1:	Explain the evolution of the smart grid and the different components of a smart grid				
CO2:	Critically evaluate the ICT options and choose the appropriate one for a given grid				
CO3:	Design and propose reconfiguration strategies for the smart distribution network				
CO4:	Assess and propose changes in metering, storage and regulation to implement smart grid				
	technology				

Refere	Reference Books					
1	Smart Grid: Technology and applications, Ekanayake J., Jenkins N., Liyanage K., Wu, J.,					
	Yokoyama A., 1 st Edition, 2012, Wiley Publications, ISBN 978-0-470-97409-4					
2	Smart Grids, Nouredine Hadjsaid and Jean-Claude, 1 st Edition, 2012, Wiley Publications, ISBN –					
2	978-1-84821-261-9					

3	Smart Grid: Fundamentals of Design and Analysis, James Momoh, 1 st Edition, 2012, Wiley-IEEE Press, ISBN: 978-0-470-88939-8
4	Smart Grids – Fundamentals and Technologies in Electricity Networks, Bernd M. Buchholz, 1 st Edition, 2016, Springer Vieweg Publisher, ISBN-13: 978-3662525265

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks**.

Scheme of Semester End Examination (SEE) for 100 marks:

	Semester: II							
			POWER CONVERTERS-I	[
			(Theory and Practice)					
Course Code	:	18MPE21		CIE Marks	:	100+50		
Credits: L:T:P	:	4:0:1		SEE Marks	:	100+50		
Hours	:	45L		SEE Duration	:	3+3 Hrs		

Unit-I				
Non isolated dc-dc converters: Comparison of linear and switch mode power converter.	09 Hrs			
Analysis and Design Buck, Boost, Buck-boost, Cuk and SEPIC converters in continuous and				
discontinuous modes. Interleaved converters. High boost converter.				
Unit-II				
Isolated DC-DC Converters: Principle of operation, Analysis and Design of isolated DC- DC	09 Hrs			
converters Flyback, Forward, Push Pull, Half Bridge and Full bridge topologies in continuous				
and discontinuous current mode operation. Bidirectional converters.				
Unit-III				
Resonant Converters: Introduction to soft switching, comparison between zero voltage and zero current switching, classification, ZVS, ZCS converters, series resonant, parallel resonant	09 Hrs			
and series-parallel resonant converter topologies: analysis and design.				
Unit-IV				
Design of magnetic: Design of magnetic components-inductors and transformers.	09 Hrs			
Modelling of converters- small signal modelling, State space average modelling of non isolated				
converters.				
Unit-V				
Closed loop Control of DC-DC converters: Basic control techniques: Voltage control, current	09 Hrs			
control, Design of type 2 and type 3 error amplifiers. Stability analysis of converters. PWM ICs				
for DC-DC Converters.				
UNIT VI Lab Component				
1. Design and Simulation of DC-DC Converters step-down, step-up, step up/down.				
2. Design and practical implementation of two and four quadrant choppers.				
3. Design ,Simulation and testing of non-isolated converter for RL load for continuous				
& discontinuous current mode(Cuk, SEPIC) in open loop and closed loop,				
4. Design, Simulation and testing of isolated converter for RL load for continuous &				
discontinuous current mode) in open loop and closed loop.				
5. Design, simulation and testing of series resonant converter.				

Course	Course Outcomes: After completing the course, the students will be able to			
CO1:	Understand the working of different converter for continuous and discontinuous operation,			
	modeling			
CO2:	2: Explain and simulate various converters for given parameters			
CO3:	CO3: Analyze and evaluate performance of various converters with feedback controller.			
CO4:	<u> </u>			

Reference Books					
1	Power Electronics Converters, Applications, and Design, Ned Mohan, Tore M. Undeland, William P. Robbins, 3 rd Edition, Wiley India Pvt Ltd, 2011. ISBN: 978-0-471-22693-2				
2	Power Electronics, Daniel w Hart, 1 st Edition, 2014, McGrawHill Education, ISBN-13: 978-0073380674				

3	Power Electronics, Circuit Devices and Applications, M. H. Rashid, 3 rd Edition, 1998, PHI, ISBN-10: 0131011405
4	Power Electronics Essentials & Applications, L Umanand, 1 st Editon, 2013, Willey Publisher, ISBN-978-81-265-1945-3

Continuous Internal Evaluation (CIE): Total marks: 100+50=150

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks**.

Scheme of Continuous Internal Evaluation (CIE) for Practicals: (50 Marks)

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150

Theory (100 Marks) + Practical (50 Marks) = Total Marks (150)

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Scheme of Semester End Examination (SEE); Practical (50 Marks)

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	Semester: II						
MOD	MODELLING AND SIMULATION OF POWER ELECTRONIC SYSTEMS						
			(Theory)				
Course Code	:	18MPE22		CIE Marks	:	100	
Credits: L:T:P	:	4:0:0		SEE Marks	:	100	
Hours	:	45L		SEE Duration	:	3 Hrs	

Unit-I	
Computer Simulation of Power Electronic Converters and Systems: Challenges in computer	09 Hrs
simulation, simulation process, Types of analysis, mechanics of simulation, circuit-oriented	
simulators, equation solvers, comparison of circuit oriented simulators and equation solvers.	
Modelling of Systems: Input-Output relations, differential equations and linearization, state	
space representation, transfer function representation.	
MNA and ST approaches: Nodal analysis, Modified Nodal analysis, the sparse tableau	
approach. Non linear circuits The Newton-Raphson Method, computation time, convergence	
issues, nonlinear circuit equations, Practical limit.	
Unit-II	
Introduction to transient simulation Discretization of time, transient analysis, Accuracy and	09 Hrs
stability, Explicit and Implicit Schemes.	
Method for Transient Simulation Introduction, Numerical methods for solving ODEs,	
Stability of numerical methods. Stiff equations, Adaptive step size, (excluding compact	
representation of RK formulas, multistep method, generalised linear multi step method)	
Transient analysis in circuit simulation, Equivalent circuit approach, and practical aspects.	
Unit-III	
Steady state analysis : Direct method for SSW computation, simulation examples, computational efficiency.	09 Hrs
DC DC converters: Simple DC to DC converter, switched mode power converters, more	
versatile power converters, discontinuous mode of operation in DC to DC converters.	
Unit-IV	
Dynamic performance of switched mode power converters Introduction, PWM converter,	09 Hrs
Average model of the converter, Circuit Averaged model of the converter.	
Closed loop control of switching converters Introduction, Close loop control, closed loop	
performance functions	
Unit-V	
Advanced topics in Switching converters Current programmed control of DC to DC	09 Hrs
converters, Soft switching converters.	

Course	Course Outcomes: After completing the course, the students will be able to		
CO1:	Analyze performance parameters of various circuits, Power electronic converters and Drives by		
	modelling and simulating with appropriate time steps		
CO2:	: Solve steady state and transient problems of Power electronic systems		
CO3:	Apply numerical techniques to solve ODE using numerical techniques		
CO4:	Design, Implement and Analyze open and closed loop systems		

Refe	Reference Books				
1	Simulation of Power Electronic Circuits, M.B.Patil, V.Ramanarayanan, V.T.Ranganathan, 1st				
I	Edition, 2013, Narosa Publishing House, ISBN: 978-81-7319-989-9				
2	Power Electronics Converters, Applications, and Design, Ned Mohan, Tore M. Undeland, William				
	P. Robbins, 3 rd Edition, 2011, Wiley India Pvt Ltd, ISBN : 978-81-265-1090-0				
3	Power Electronics Essentials and Applications, L.Umanand, 1 st Edition, 2009, John Wiley & Sons,				

	ISBN: 978-81-265-1945-3								
	Power Electronics : Devices, Circuits And Matlab Simulations, Alok Jain, 1st Edition,								
4	2011, Penram International Publishing, ISBN-13: 978-8187972389								

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks**.

Semester End Evaluation (SEE); Theory (100 Marks)

RESEARCH METHODOLOGY							
	(Theory)						
Course Code	:	18IEM23	CIE Marks: 100	:	100		
Credits: L:T:P	:	3:0:0	SEE Marks: 100	:	100		
Hours	:	36 L	SEE Duration: 3Hrs	:	3 Hrs		

Unit-I		
Overview of Research: Research and its types, identifying and defining research problem and	07	Hrs
introduction to different research designs. Essential constituents of Literature Review Basic		
principles of experimental design, completely randomized, randomized block, Latin Square,		
Factorial.		
Unit-II	1	
Data and data collection: Overview of probability and data types	08	Hrs
Primary data and Secondary Data, methods of primary data collection, classification of secondary		
data, designing questionnaires and schedules.		
Sampling Methods: Probability sampling and Non-probability sampling		
Unit-III		
Processing and analysis of Data: Statistical measures of location, spread and shape, Correlation	07	Hrs
and regression, Hypothesis Testing and ANOVA. Interpretation of output from statistical	0.	
software tools		
Unit-IV		
Advanced statistical analyses: Non parametric tests, Introduction to multiple regression, factor	07	Hrs
analysis, cluster analysis, principal component analysis. Usage and interpretation of output from	07	1115
statistical analysis software tools.		
Unit-V		
	07	TT
Essentials of Report writing and Ethical issues: Significance of Report Writing ,Different	07	Hrs
Steps in Writing Report, Layout of the Research Report , Ethical issues related to Research,		
Publishing, Plagiarism.		
Case studies: Discussion of case studies specific to the domain area of specialization		

Course Outcomes: After completing the course, the students will be able to					
CO1:	Explain the principles and concepts of research types, data types and analysis procedures.				
CO2:	Apply appropriate method for data collection and analyze the data using statistical principles.				
CO3:	Present research output in a structured report as per the technical and ethical standards.				
CO4:	Create research design for a given engineering and management problem situation.				

Reference Books1Research Methodology Methods and techniques, Kothari C.R., 4th Edition, 2019, New Age
International Publishers, ISBN: 978-93-86649-22-52Management Research Methodology, Krishnaswami, K.N., Sivakumar, A. I. and Mathirajan, M., 1st
Edition, 2006. Pearson Education: New Delhi, ISBN: 978-81-77585-63-63The Research Methods Knowledge Base, William M. K. Trochim, James P. Donnelly, 3rd Edition,
Atomic Dog Publishing, 2006. ISBN: 978-15926029194Statistics for Management, Levin, R.I. and Rubin, D.S., 7th Edition, Pearson Education: New Delhi.

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks**.

Semester End Evaluation (SEE); Theory (100 Marks)

MINOR PROJECT						
Course Code		18MPE24	CIE Mark	5	:	100
Credits L: T: P	:	0:0:4	SEE Mark	s	:	100
Credits		02	SEE Durat	ion	:	3 Hrs

GUIDELINES

- 1. Each project group will consist of maximum of two students.
- 2. Each student / group has to select a contemporary topic that will use the technical knowledge of their program of study after intensive literature survey.
- 3. Allocation of the guides preferably in accordance with the expertise of the faculty.
- 4. The number of projects that a faculty can guide would be limited to four.
- 5. The minor project would be performed in-house.
- 6. The implementation of the project must be preferably carried out using the resources available in the department/college.

Course Outcomes: After completing the course, the students will be able to					
CO1	Conceptualize, design and implement solutions for specific problems.				
CO2	Communicate the solutions through presentations and technical reports.				
CO3	Apply resource managements skills for projects.				
CO4	Synthesize self-learning, team work and ethics.				

Scheme of Continuous Internal Examination

Evaluation will be carried out in 3 phases. The evaluation committee will comprise of 4 members: Guide, Two Senior Faculty Members and Head of the Department.

Phase	Activity	Weightage
Ι	Synopsys submission, Preliminary seminar for the approval of selected topic and objectives formulation	20%
II	Midterm seminar to review the progress of the work and documentation	40%
III	Oral presentation, demonstration and submission of project report	40%

** Phase wise rubrics to be prepared by the respective departments

CIE Evaluation shall be done with weightage / distribution as follows:

• Selection of the topic & formulation of objectives	10%
• Design and simulation/ algorithm development/ experimental setup	25%
Conducting experiments/ implementation / testing	25%
Demonstration & Presentation	15%
Report writing	25%

Scheme of Semester End Examination (SEE):

The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.

• Brief write up about the project	05%
Presentation / Demonstration of the Project	20%
Methodology and Experimental results & Discussion	25%
• Report	20%
Viva Voce	30%
Semester: II	

			AC IN POWER ELECTRO				
(Elective Group C: Core Elective) Course Code: : 18MPE2C1 CIE Marks : 100							
Credits:	:	4:0:0		SEE Marks	:	100	
Hours	•	45L		SEE Duration	:	3 H	rs
nouis	•	431		SEL Duration	•	5 11	1.5
			Unit-I				
Introduction to the EMC: Introduction, Designing for electromagnetic compatibility, EMC regulation, typical noise path and use of network theory Methods of noise coupling, Method of eliminating interferences, MIL-STD explanation. Industrial applications Cabling:				09 Hrs			
magnetic couplin	ng b	etween shield	ing, effect of shield on capa and the inner conductor, s magnetic fields, shield trans	hielding to prevent			
			Unit-II				1
SHIELDING :Near fields and far fields, characteristics and wave impedances, shielding effectiveness, absorption loss, reflection loss, composite absorption and reflection losses, summary of shielding equation, shielding with magnetic material, experimental data. apertures, wave guide below cut off, conductive gaskets, conductive windows, conductive coatings, cavity resonance, grounding of shields				09 Hrs			
			Unit-III				
Grounding: Safety grounds, signal grounds, single point ground systems, multiple ground systems, functional ground layout. Practical low frequency grounding, hard ware grounds, single ground reference for a circular amplified shields, grounding of cable shields, ground loops. Low frequency analysis of common mode choke, high frequency analysis of common mode choke, differential amplifiers, shields grounding at high frequencies, guard shields and guarded meters Unit-IV					09 Hrs		
EMI Circuit Se	lecti	on And Meas	urement: Definition of EM	I filter parameter,	EM	[filter	09 Hrs
 EMI Circuit Selection And Measurement: Definition of EMI filter parameter, EMI filter origination loss EMI Filter Design: EMI Filter Design for Insertion Loss, Calculation of Worst – case Insertion Loss, Design Method for Mismatched Impedance Condition, Design Method for EMI Filters with Common – Mode Choke Coils, Damped EMI Filters and Lossy Filter Elements, HF Characteristics of Noise Filter Circuit Elements, EMI Filter Layout. 							
			Unit-V				_
Testing for Susceptibility to Power Line Disturbances : Surge Voltages in AC Power Mains, EMC Tests per IEC Specifications, Other EMS Test Methods. Reduction Techniques for internal EMI : Conductive Noise Coupling, Electromagnetic Coupling, Electromagnetic Coupling Reduction Methods, Wiring Layout Methods to Reduce EMI Coupling, PCB Design Considerations.				09 Hrs			
Course Outcomes: After completing the course, the students will be able to CO1: Describing the. Problems of noise by handling noise in shields, ground wires and protective sheaths.							

CO2	Analyzing the cause of problems clearly and comparing the objectiveness between external and				
	internal noise in equipment and reduce its noise content.				
CO3	: Evaluating different technologies to handle noise in systems and assessing the total losses wit				
	respect to circuits				
CO4	: Designing the circuits with different materials to counteract the noise in both hardware and				
	software problems.				
Refe	Reference Books				
1	Noise reduction techniques in electronics systems, Henry .W. Ott, 3 rd Edition, 2015, John Wi				
1	publication, ISBN: 978-0-470-18930-6.				

Electrostatic Damage in Electronics: Devices and Systems, William D Greason, 1986, 4th Edition, 2

	John Wiley and sons INC, ISBN:978-0471915394
3	Electromagnetic compatibility in Power Electronics, Laszlo Tihanyi, 1 st Edition,1995, Newnes publications, ISBN-0-7803-0416-0
4	Electromagnetic Compatibility in Power Electronics, Eric Laboure, Bertrand Revol, Francois Costa, 1 st Edition, 2014, Wiley Publisher:, ISBN: 9781848215047

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks**.

Semester End Evaluation (SEE); Theory (100 Marks)

PWM TECHNIQUES FOR CONVERTERS							
	(Elective Group C: Core Elective)						
Course Code	:	18MPE2C2		CIE Marks	:	100	
Credits: L:T:P	:	4:0:0		SEE Marks	••	100	
Hours	:	45 L		SEE Duration	:	3 Hrs	

Unit-I	
Introduction to pulse width modulation (PWM)- Overview of converters and control	09 Hrs
methods. Purpose of PWM control of converters, Fourier series, Harmonic voltages and their	
effects. Basic PWM techniques: Triangle-comparison based PWM: single pulse. Multiple	
pulse, SPWM, modified SPWM and phase displacement techniques, Third harmonic injection	
PWM (THIPWM), Bus-clamping PWM	
Unit-II	1
Advanced PWM Techniques: Hysteresis band current control PWM, Harmonic Cancellation	09 Hrs
techniques Concept of space vector, Conventional space vector PWM and bus-clamping PWM,	
Advanced bus-clamping PWM, Comparison of PWM techniques, Voltage and frequency control	
of single phase and three-phase inverters.	
Unit-III	
Analysis of line current ripple: Transformation from stationary reference frame to synchronously revolving dq reference frame, Volt-second balance and instantaneous error voltage, Calculation of RMS line current ripple, Space vector-based hybrid PWM for reduced line current ripple. Analysis of dc link current, Average and RMS values of dc link current. Analysis of torque ripple: Calculation of harmonic torques and RMS torque ripple, Hybrid PWM techniques to reduce ripple torque.	09 H rs
Unit-IV	
Loss Calculations: Practical devices in converters, calculation of switching and conduction loss, PWM techniques for reduced switching loss compensation for dead time and DC voltage regulation. Effect of inverter dead-time: Effect of dead-time with continuous modulation and	09 Hrs
discontinuous modulation.	
Unit-V	1
Over modulation - Per-phase approach to over modulation, Space vector approach to over	09 Hrs
modulation, A perspective from the synchronously revolving d-q reference frame.	57 III ,
PWM for multilevel inverters , Extension of sine-triangle modulation to three-level inverters,	
Extension of conventional space vector modulation to three-level inverters,	

Course Outcomes: After completing the course, the students will be able to				
CO1:	Analyze basic concepts of PWM control method.			
CO2:	Analyze basic and explore advance PWM methods for inverters and converters.			
CO3:	Evaluate performance parameters like current ripple, torque ripple and losses			
CO4:	Design a PWM controller for a given application.			

Reference Books					
1	Power Electronics: Converter, Applications and Design, Mohan, Undeland and Robbins, 3 rd Edition,				
I	2011, Wiley India, ISBN-13: 9781848003170				
2	NPTEL materials on 'Pulse width Modulation for Power Electronic Converters'				
2	Fundamentals of Power Electronics, Erickson R W, Chapman Hall, 1st Edition, 1997, Springer				
3	Publisher, ISBN 0-412-08541-0				
4	Power electronics-Principles and Applications, Joseph Vithyahil, , 2017, McGraw Hill Education,				
	ISBN 9780070702394				

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks**.

Semester End Evaluation (SEE); Theory (100 Marks)

USP CONTROLLERS FOR POWER CONVERTERS (Elective Group C: Core Elective) Course Code : 18MPE2C3 CIE Marks: 10 Credits: L:T:P : 4:0:0 SEE Marks Hours : 45L SEE Duration Unit-I INTRODUTION TO DIGITAL CONTROLLER: Digital Signal Controller (controller with a DSP engine): Architecture and real time programming in Asset Embedded C. Communication Board level: SPI, I2C, System level: RS 232, CAN, N Introduction to different semiconductor memories: RAM, ROM, NVRAM etc. applications. Flash Program Memory, Data EEPROM Memory Unit-II INTRODUCTION TO MICROCHIP DSPIC30F4011 Device overview: Block diagram, I/O pin Descriptions. CPU Architecture: Core Overview, Programmers Model, DSP Engine. Memory Organization: Program Address Space, Data Address Space, Address Generated Unit-III Interrupt: Interrupt priority, Interrupt Sequence, External Interrupt Request I/O Ports: Parallel I/O ports, Configuring Analog port pins Timer Modules, Timer Gate Operation, Timer Pre-scaler, Timer Interrupt	A mic mbly a MODB	: : and US			
Course Code : 18MPE2C3 CIE Marks: 10 Credits: L:T:P : 4:0:0 SEE Marks Hours : 45L SEE Duration Unit-I INTRODUTION TO DIGITAL CONTROLLER: Digital Signal Controller (A see Duration) Unit-I INTRODUTION TO DIGITAL CONTROLLER: Digital Signal Controller (A see Duration) Controller with a DSP engine): Architecture and real time programming in Asset Embedded C. Communication Board level: SPI, I2C, System level: RS 232, CAN, M RTU on RS 485. Introduction to different semiconductor memories: RAM, ROM, NVRAM etc. applications. Flash Program Memory, Data EEPROM Memory Unit-II INTRODUCTION TO MICROCHIP DSPIC30F4011 Device overview: Block diagram, I/O pin Descriptions. CPU Architecture: Core Overview, Programmers Model, DSP Engine. Memory Organization: Program Address Space, Data Address Space, Address Generate Unit-III Interrupt: Interrupt priority, Interrupt Sequence, External Interrupt Request I/O Ports: Parallel I/O ports, Configuring Analog port pins	A mic mbly a MODB	: : and US	100 3 Hrs 09 Hrs		
Credits: L:T:P : 4:0:0 SEE Marks Hours : 45L SEE Duration Unit-I INTRODUTION TO DIGITAL CONTROLLER: Digital Signal Controller (A controller with a DSP engine): Architecture and real time programming in Asset Embedded C. Communication Board level: SPI, I2C, System level: RS 232, CAN, N RTU on RS 485. Introduction to different semiconductor memories: RAM, ROM, NVRAM etc. applications. Flash Program Memory, Data EEPROM Memory Unit-II INTRODUCTION TO MICROCHIP DSPIC30F4011 Device overview: Block diagram, I/O pin Descriptions. CPU Architecture: Core Overview, Programmers Model, DSP Engine. Memory Organization: Program Address Space, Data Address Space, Address Generate Unit-III Interrupt: Interrupt priority, Interrupt Sequence, External Interrupt Request I/O Ports: Parallel I/O ports, Configuring Analog port pins	A mic mbly a MODB	: : and US	100 3 Hrs 09 Hr		
Hours Image: state SEE Duration Unit-I INTRODUTION TO DIGITAL CONTROLLER: Digital Signal Controller (A controller with a DSP engine): Architecture and real time programming in Asset Embedded C. Communication Board level: SPI, I2C, System level: RS 232, CAN, N RTU on RS 485. Introduction to different semiconductor memories: RAM, ROM, NVRAM etc. applications. Flash Program Memory, Data EEPROM Memory Unit-II INTRODUCTION TO MICROCHIP DSPIC30F4011 Device overview: Block diagram, I/O pin Descriptions. CPU Architecture: Core Overview, Programmers Model, DSP Engine. Memory Organization: Program Address Space, Data Address Space, Address Generate Unit-III Interrupt: Interrupt priority, Interrupt Sequence, External Interrupt Request JO Ports: Parallel I/O ports, Configuring Analog port pins	A mic mbly a MODB and th	ro- and US	3 Hrs 09 Hr		
Unit-I Unit-I INTRODUTION TO DIGITAL CONTROLLER: Digital Signal Controller (A controller with a DSP engine): Architecture and real time programming in Asset Embedded C. Communication Board level: SPI, I2C, System level: RS 232, CAN, N RTU on RS 485. Introduction to different semiconductor memories: RAM, ROM, NVRAM etc. applications. Flash Program Memory, Data EEPROM Memory Unit-II INTRODUCTION TO MICROCHIP DSPIC30F4011 Device overview: Block diagram, I/O pin Descriptions. CPU Architecture: Core Overview, Programmers Model, DSP Engine. Memory Organization: Program Address Space, Data Address Space, Address Generate Unit-III Interrupt: Interrupt priority, Interrupt Sequence, External Interrupt Request I/O Ports: Parallel I/O ports, Configuring Analog port pins	A mic mbly a MODB	ero- and US	09 Hr		
INTRODUTION TO DIGITAL CONTROLLER: Digital Signal Controller (A controller with a DSP engine): Architecture and real time programming in Asset Embedded C. Communication Board level: SPI, I2C, System level: RS 232, CAN, N RTU on RS 485. Introduction to different semiconductor memories: RAM, ROM, NVRAM etc. applications. Flash Program Memory, Data EEPROM Memory Unit-II INTRODUCTION TO MICROCHIP DSPIC30F4011 Device overview: Block diagram, I/O pin Descriptions. CPU Architecture: Core Overview, Programmers Model, DSP Engine. Memory Organization: Program Address Space, Data Address Space, Address Generate Unit-III Interrupt: Interrupt priority, Interrupt Sequence, External Interrupt Request I/O Ports: Parallel I/O ports, Configuring Analog port pins	mbly a MODB [*] and th	and US			
INTRODUTION TO DIGITAL CONTROLLER: Digital Signal Controller (A controller with a DSP engine): Architecture and real time programming in Asset Embedded C. Communication Board level: SPI, I2C, System level: RS 232, CAN, N RTU on RS 485. Introduction to different semiconductor memories: RAM, ROM, NVRAM etc. applications. Flash Program Memory, Data EEPROM Memory Unit-II INTRODUCTION TO MICROCHIP DSPIC30F4011 Device overview: Block diagram, I/O pin Descriptions. CPU Architecture: Core Overview, Programmers Model, DSP Engine. Memory Organization: Program Address Space, Data Address Space, Address Generate Unit-III Interrupt: Interrupt priority, Interrupt Sequence, External Interrupt Request I/O Ports: Parallel I/O ports, Configuring Analog port pins	mbly a MODB [*] and th	and US			
controller with a DSP engine): Architecture and real time programming in Asser Embedded C. Communication Board level: SPI, I2C, System level: RS 232, CAN, M RTU on RS 485. Introduction to different semiconductor memories: RAM, ROM, NVRAM etc. applications. Flash Program Memory, Data EEPROM Memory Unit-II INTRODUCTION TO MICROCHIP DSPIC30F4011 Device overview: Block diagram, I/O pin Descriptions. CPU Architecture: Core Overview, Programmers Model, DSP Engine. Memory Organization: Program Address Space, Data Address Space, Address Generate Unit-III Interrupt: Interrupt priority, Interrupt Sequence, External Interrupt Request I/O Ports: Parallel I/O ports, Configuring Analog port pins	mbly a MODB [*] and th	and US			
Embedded C. Communication Board level: SPI, I2C, System level: RS 232, CAN, N RTU on RS 485. Introduction to different semiconductor memories: RAM, ROM, NVRAM etc. applications. Flash Program Memory, Data EEPROM Memory Unit-II INTRODUCTION TO MICROCHIP DSPIC30F4011 Device overview: Block diagram, I/O pin Descriptions. CPU Architecture: Core Overview, Programmers Model, DSP Engine. Memory Organization: Program Address Space, Data Address Space, Address Generate Unit-III Interrupt: Interrupt priority, Interrupt Sequence, External Interrupt Request I/O Ports: Parallel I/O ports, Configuring Analog port pins	MODB and th	US			
RTU on RS 485. Introduction to different semiconductor memories: RAM, ROM, NVRAM etc. applications. Flash Program Memory, Data EEPROM Memory Unit-II INTRODUCTION TO MICROCHIP DSPIC30F4011 Device overview: Block diagram, I/O pin Descriptions. CPU Architecture: Core Overview, Programmers Model, DSP Engine. Memory Organization: Program Address Space, Data Address Space, Address Generate Unit-III Interrupt: Interrupt priority, Interrupt Sequence, External Interrupt Request I/O Ports: Parallel I/O ports, Configuring Analog port pins	and th				
applications. Flash Program Memory, Data EEPROM Memory Unit-II INTRODUCTION TO MICROCHIP DSPIC30F4011 Device overview: Block diagram, I/O pin Descriptions. CPU Architecture: Core Overview, Programmers Model, DSP Engine. Memory Organization: Program Address Space, Data Address Space, Address Generate Unit-III Interrupt: Interrupt priority, Interrupt Sequence, External Interrupt Request I/O Ports: Parallel I/O ports, Configuring Analog port pins					
Unit-II INTRODUCTION TO MICROCHIP DSPIC30F4011 Device overview: Block diagram, I/O pin Descriptions. CPU Architecture: Core Overview, Programmers Model, DSP Engine. Memory Organization: Program Address Space, Data Address Space, Address Generate Unit-III Interrupt: Interrupt priority, Interrupt Sequence, External Interrupt Request I/O Ports: Parallel I/O ports, Configuring Analog port pins	or Unit				
INTRODUCTION TO MICROCHIP DSPIC30F4011 Device overview: Block diagram, I/O pin Descriptions. CPU Architecture: Core Overview, Programmers Model, DSP Engine. Memory Organization: Program Address Space, Data Address Space, Address Generate Unit-III Interrupt: Interrupt priority, Interrupt Sequence, External Interrupt Request I/O Ports: Parallel I/O ports, Configuring Analog port pins	or Unit				
Device overview: Block diagram, I/O pin Descriptions. CPU Architecture: Core Overview, Programmers Model, DSP Engine. Memory Organization: Program Address Space, Data Address Space, Address Generate Unit-III Interrupt: Interrupt priority, Interrupt Sequence, External Interrupt Request I/O Ports: Parallel I/O ports, Configuring Analog port pins	or Unit				
CPU Architecture: Core Overview, Programmers Model, DSP Engine. <u>Memory Organization: Program Address Space, Data Address Space, Address Generate</u> <u>Unit-III</u> Interrupt: Interrupt priority, Interrupt Sequence, External Interrupt Request I/O Ports: Parallel I/O ports, Configuring Analog port pins	or Unit		09 Hr		
Memory Organization: Program Address Space, Data Address Space, Address Generate Unit-III Interrupt: Interrupt priority, Interrupt Sequence, External Interrupt Request I/O Ports: Parallel I/O ports, Configuring Analog port pins	or Unit				
Unit-III Interrupt: Interrupt priority, Interrupt Sequence, External Interrupt Request I/O Ports: Parallel I/O ports, Configuring Analog port pins		to.			
Interrupt: Interrupt priority, Interrupt Sequence, External Interrupt Request I/O Ports: Parallel I/O ports, Configuring Analog port pins		.5			
I/O Ports: Parallel I/O ports, Configuring Analog port pins			09 Hr		
			•> 111		
Capture and Compare Modules: Capture Event mode, Capture Operation, Comp	are mo	ode	;		
block diagram, compare interrupts					
Unit-IV					
Motor Control PWM Module: Block Diagram, Duty cycle comparison, complementation	ary PW	/ M	09 Hr		
Operation, Dead-Time generators, PWM output and polarity control					
Communication Modules: SPI, UART and CAN Modules: Operating function de	scripti	on,	(
UART module overview, transfer of data ad error handling through UART					
ADC Module: Functional block diagram, conversion operation, configuring analog programming ADC module, connecting with a DAC chip.	port pi	ins,			
Unit-V					
System Integration (taking an example of a buck converter) (Block Diagram Appr	oach)		09 Hrs		
Control of Buck-Boost DC-DC converter; DSP based control of dual converter fed dc n			U M		
DSP Based Control of Stepper Motors: Introduction, the Principle of Hybrid Stepp		tor.			
The Stepper Motor Drive System, The Implementation of Stepper Motor Control System					
DSP					
Course Outcomerse After completing the course the students will be able to					
Course Outcomes: After completing the course, the students will be able toCO1:Comprehend different peripherals and architecture & operation of DSP core pr					
CO2: Analyze the functions of peripherals	0000550	<u>'</u>			
CO3: Develop program and demonstrate execution to evaluate the performance of control tech					
CO4: Design suitable control technique for the implementation of DSP to the drives	<u>/////////////////////////////////////</u>		inique		
Design surdice control definique for the implementation of DST to the drives					
Reference Books					
	Microchip Datasheets, Family reference manual, C30 compiler user guide, 2006.				
2 Digital Signal Processing:, Steven W Smith, 2 nd Edition, 1999, California Te ISBN 0-9660176-7-6	chnica	1 F	ublishing		
Digital Signal Processing and Applications with theC6713 and C6416 DSK by Ru	ulph C	has	saing, 1 st		
3 Edition, 2005, A John Wiley & Sons, Inc., Publication, ISBN: 9780471690078,					
ISBN: 9780471704072 DSP Based Electromechanical Motion Control, Hamid A. Toliyat, Steven G. and					

4 DSP Based Electromechanical Motion Control, Hamid A. Toliyat, Steven G. and Campbell., 1st Edition, 2004, CRC Press. ISBN 9780849319181

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

Semester: II						
	CONVERTERS FOR SOLAR AND WIND SYSTEMS (Elective Group D: Core Elective)					
Course Code	:	18MPE2D1	CIE Marks: 100	:	100	
Credits: L:T:P	:	4:0:0	SEE Marks: 100	:	100	
Hours	:	45 L	SEE Duration: 3Hrs	:	3 Hrs	

Unit-I Introduction: Wind power development, photovoltaic power development, the grid converter – **09 Hrs** the key element in grid integration of WT and PV systems. Power Converters for Solar Energy Systems: Review of various DC-DC converter (buck, boost, buck-boost, Cuk and SEPIC) and inverter (VSI & CSI) topologies, selection of inverter, inverter structures derived from H-bridge topology, inverter structures derived from NPC topology, typical PV inverter structures, three-phase PV inverters, introduction to control structures Unit-II Solar Charge Controllers- Need for Balance of Systems (BoS), function and working of 09 Hrs charge controller, types of charge controllers, features of charge controller, typical specifications of PWM charge controller. Grid Requirements for PV: Introduction, international regulations, Indian grid code for PV integration, response to abnormal grid conditions, power quality, anti-islanding requirements, a grid interactive PV system - phase, frequency matching and voltage consideration - operation of a grid interactive inverter - protection against islanding and reverse power flow - AC modules- introduction to EMI filters and their design. The IEEE Standard 929-2000 for Power Transfer from Inverter to Grid and its issues, requirements of IEC 61727. **Unit-III** Grid Synchronization in Power Converters: Grid synchronization techniques for single-phase **09 Hrs** systems, phase detection based on in-quadrature signals, PLLs based in in-quadrature signals and adaptive filtering, the SOGI frequency-locked loop. Power Converters for WECS: Three phase AC voltage controllers- AC-DC-AC converters, Grid-Interactive Inverters-matrix converters. Standalone operation of fixed and variable speed wind energy conversion system, Grid connection Issues, Grid integrated PMSG and SCIG Based WECS. **Unit-IV** Grid Converter Structures for Wind Turbine Systems: Introduction, Indian grid code for 09 Hrs wind integration, WTS power configurations, grid power converter topologies, WTS control, connection issues- wind farm and its accessories, and grid related problems - generator control performance, improvements. Unit-V Grid Synchronization in Three-Phase Power Converters - the three-phase voltage vector 09 under grid faults, the synchronous reference frame PLL under unbalanced and distorted, grid Hrs conditions, the Decoupled Double Synchronous Reference Frame PLL (DDSRF-PLL), The Double Second-Order Generalized Integrator FLL (DSOGI-FLL).

Course Outcomes: After completing the course, the students will be able to					
CO1:	Understand the basics of power electronic converters and their integration to the grid				
CO2:	Analyze the system to select the proper converter, controller and the filter for the systems.				
CO3:	Analysis of controllers appropriate for the PV and wind system integration.				
CO4:	Design a grid-connected PV and Wind Energy system that complies with the various standards.				

Reference Books

IGrid converters for photovoltaic and wind power systems, Teodorescu Remus, Marco Liserre, and
Pedro Rodriguez, Vol. 29., 2011, John Wiley & Sons, ISBN 0470057513, 9780470057513

2	Photovoltaic Systems: Analysis and Design, Mukerjee AK, Thakur N., 1 st Edition, 2011, PHI Learning Pvt. Ltd., ISBN 8120344170, 9788120344174
3	Wind Electrical Systems, S. N. Bhadra, D. Kastha, & S. Banerjee, 7 th Edition, 2005, Oxford University Press, ISBN 0195670930, 9780195670936
	University Press, ISBN 0195670930, 9780195670936
	The IEEE Standard 929-2000 for Power Transfer from Inverter to Grid, and The IEC 61727

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. Total CIE is 20+50+30=100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

Semester: II						
	HYBRID ELECTRIC VEHICLES					
		(El	ective Group D: Core Elective)			
Course Code	:	18MPE2D2	CIE Marks	:	100	
Credits: L:T:P	:	4:0:0	SEE Marks	:	100	
Hours	:	45L	SEE Duration	:	3 Hrs	

Unit-I			
Introduction: Sustainable Transportation, A Brief History of HEVs, Why EVs Emerged and	09 Hrs		
Failed, Architectures of HEVs, Interdisciplinary Nature of HEVs, State of the Art of HEVs,			
Challenges and Key Technology of HEVs. Vehicle Basics, Basics of the EV, HEV, Plug-In			
Hybrid Electric Vehicle (PHEV) and Fuel Cell Vehicles (FCVs).			
HEV & PHEV Fundamentals: Vehicle Model, Vehicle Performance, EV Powertrain			
Component Sizing, Series Hybrid Vehicle, Parallel Hybrid Vehicle, PHEV Architectures,			
Equivalent Electric Range of Blended PHEVs, Fuel Economy of PHEVs, Power Management of			
PHEVs, Component Sizing of EREVs, Component Sizing of Blended PHEVs, Vehicle-to-Grid			
Technology.			
Unit-II Motor Drives and Converters for HEVs: A review of AC and DC Motor Drives used in HEV.	09 Hrs		
Regenerative braking; EV, HEV and PHEV battery chargers.	09 1115		
Traction Motors: Design, Sizing, Thermal Analysis and Modeling.			
Series and Parallel Hybrid Drive Train Design:Operation Patterns, Control Strategies, Sizing			
of the Major Components, Power Rating Design of the Traction Motor, Power Rating Design of			
the Engine/Generator, Design of PPS, Design Example.			
Unit-III	<u>.</u>		
Batteries, Ultracapacitors, Fuel Cells, and Controls: Different batteries for EV, Battery	09 Hrs		
Characterization, Comparison of Different Energy Storage Technologies for HEVs, Battery			
Charging Control, Charge Management of Storage Devices, Flywheel Energy Storage System,			
Hydraulic Energy Storage System, Fuel Cells and Hybridization of Energy Storages.			
Unit-IV			
Management of Energy Storage Systems in EV, HEV and PHEV:Design and Sizing of ESS,	09 Hrs		
Battery Cell Balancing, Battery Management, Management of Vehicle to Grid (V2G), Thermal			
Management. Modeling and Simulation of Electric and Hybrid Vehicles: Fundamentals of Vehicle system			
modelling, HEV Modeling with ADVISOR, Physics based Modeling and other modelling			
techniques.			
Unit-V	<u> </u>		
HEV Component Sizing and Design Optimization: Global Optimization Algorithms for HEV	09 Hrs		
Design, Model-in-the-Loop Design Optimization Process, Parallel HEV Design Optimization			
Example, Series HEV Design Optimization Examples and Conclusion.			
Vehicle Power Management: Fundamentals of HIL and SIL, Components in HIL and SIL,			
Advantages of HIL and SIL, Data Acquisition, Monitoring and Control units, Global			
Description and Analysis for a Vehicle Power Management System.	<u> </u>		
Course Outcomes: After completing the course, the students will be able to			
CO1: Understand the basics of electric and hybrid electric vehicles, their architecture, technological electric vehicles, their architecture, technological electric vehicles, the second electric vehicles are the second electric v	ogies and		
from the manufacture			

COI.	onderstand the basics of electric and hybrid electric venicies, then are intecture, technologies and
	fundamentals.
CO2:	Analyze and Evaluate suitable Power Electronics and Electric Propulsion System required for
	HEVs.
CO3:	Design the different storage technologies appropriate for the required propulsion type using
	modeling techniques.
CO4:	Design and Implement the HEV propulsion system by comparing different optimization and

	energy management techniques.
Referen	nce Books

Itere	cience books
1	Hybrid Electric Vehicle: Principles and Applications with Practical Perspectives, Mi Chris, Masrur A., and Gao D.W., 1 st Edition, 2011, Wiley Publisher, ISBN :0-824-77653-5
	A., and Gao D.W., 1st Edition, 2011, Wiley Publisher, ISBN:0-824-77653-5
2	Hybrid electric and Fuel Cell Vehicles, Ehsani Mehrdad, GaoYimin, E. Gay Sebastien, Emadi Ali, Modern Electric, 1 st Edition, 2005, CRC Press, , ISBN: <i>0</i> -8493-3154-4
4	
2	Vehicle Power Management Modeling, Control and Optimization, Zhang Xi, Mi Chris, 1st Edition,
3	Vehicle Power Management Modeling, Control and Optimization, Zhang Xi, Mi Chris, 1 st Edition, 2011, Springer Publisher, ISBN: 978-0-85729-735-8
4	
4	Hybrid Electric Vehicles Energy Management Strategies, Onori, Simona, Serrao , Lorenzo, Rizzoni, Giorgio, 1 st Edition, 2016, Springer Brief Publisher, ISBN 978-1-4471-6781-5

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks**.

Semester End Evaluation (SEE); Theory (100 Marks)

Semester: II							
	FLEXIBLE AC TRANSMISSION SYSTEM (FACTS)						
	(Elective Group D: Core Elective)						
Course Code	:	18MPE2D3		CIE Marks	:	100	
Credits: L:T:P	:	4:0:0		SEE Marks	:	100	
Hours	:	45 L		SEE Duration	:	3 Hrs	

Unit-I					
Introduction to facts: Review of basics of power transmission networks-control of power flow	09 Hrs				
in AC transmission line- Analysis of uncompensated AC Transmission line Passive reactive					
power compensation: Effect of series and shunt compensation at the mid-point of the line on					
power transfer- Need for FACTS controllers- types of FACTS controllers.					
Unit-II					
Static var compensator (svc) Configuration of SVC- voltage regulation by SVC- Modeling of	09 Hrs				
SVC for load flow analysis- Modeling of SVC for stability studies-Design of SVC to regulate					
the mid-point voltage of a SMIB system- Applications: transient stability enhancement and					
power oscillation damping of SMIB system with SVC connected at the mid-point of the line.					
Thyristor controlled series capacitors (TCSC) - Concepts of Controlled Series Compensation -					
Operation, modeling, analysis and control of TCSC.					
Unit-III					
Voltage source converter based facts controllers: Static synchronous	09 Hrs				
compensator(STATCOM)- Static synchronous series compensator(SSSC)- Operation of					
STATCOM and SSSC-Power flow control with STATCOM and SSSC- Modeling of					
STATCOM and SSSC for power flow and transient stability studies; of Unified Power Flow					
Controllers(UPFC) - Modeling, Operation and control.					
Unit-IV					
Static Voltage and Phase Angle Regulators: Power flow control, TCVR and TCPAR,	09 Hrs				
improvement of transient stability with these.					
GCSC _ operation, modeling and analysis. Comparison with TCSC					
IPFC – Block diagram, operation and comparison with UPFC					
Unit-V					
Controllers and their co-ordination: Location of FACTS devices, Controller interactions –	09 Hrs				
SVC-SVC interaction - co-ordination of multiple controllers using linear control techniques -					

Course Outcomes: After completing the course, the students will be able to								
CO1:	Understand the model and describe operation of different FACTS devices.							
CO2:	Select and anlyze FACTS device for a given system.							
CO3:	Design controller for various FACTS devices							
CO4:	Implement the techniques for the interaction between different FACTS devices and HVDC links							

Refe	rence Books
1	Thyristor – Based FACTS Controllers for Electrical Transmission Systems, Mohan Mathur, R., Rajiv. K. Varma, 1 st Edition, 2002, IEEE press and John Wiley & Sons, Inc, ISBN:978-0-471-
2	20643-9. FACTS Controllers in Power Transmission and Distribution, K.R.Padiyar, Reprint, 2008, New Age International (P) Ltd. Publishers, New Delhi, ISBN : 978-81-224-3989-2
3	Flexible AC Transmission System, A.T.John, 1 st Edition, 1999, Institution of Electrical and Electronic Engineers (IEEE), ISBN: 978-0-85296-771-3
4	Understanding FACTS Concepts and Technology of Flexible AC Transmission System, NarainG.Hingorani, Laszio. Gyugyl, 1 st Edition, 2001, Wiley-IEEE Press, ISBN : 978-81-224-3887-2

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

	Semester: II							
	BUSINESS ANALYTICS							
			(Group G: Global Elective))				
Course Code:	:	18CS2G01		CIE Marks	:	100		
Credits: L:T:P	:	3:0:0		SEE Marks	:	100		
Hours	:	36L		SEE Duration	:	3 Hrs		

Unit-I				
Business analytics: Overview of Business analytics, Scope of Business analytics, Business	08 Hrs			
Analytics Process, Relationship of Business Analytics Process and organization, competitive				
advantages of Business Analytics.				
Statistical Tools: Statistical Notation, Descriptive Statistical methods, Review of probability				
distribution and data modelling.				
Unit-II				
Trendiness and Regression Analysis: Modelling Relationships and Trends in Data, simple	07 Hrs			
Linear Regression. Important Resources, Business Analytics Personnel, Data and models for				
Business analytics, problem solving, Visualizing and Exploring Data, Business Analytics				
Technology.				
Unit-III				
Organization Structures of Business analytics, Team management, Management Issues,	07 Hrs			
Designing Information Policy, Outsourcing, Ensuring Data Quality, Measuring contribution of				
Business analytics, Managing Changes. Descriptive Analytics, Predictive Analytics, Predicative				
Modelling, Predictive analytics analysis.				
Unit-IV				
Forecasting Techniques: Qualitative and Judgmental Forecasting, Statistical Forecasting	08 Hrs			
Models, Forecasting Models for Stationary Time Series, Forecasting Models for Time Series				
with a Linear Trend, Forecasting Time Series with Seasonality, Regression Forecasting with				
Casual Variables, Selecting Appropriate Forecasting Models.				
Unit-V				
Decision Analysis: Formulating Decision Problems, Decision Strategies with and without	07 Hrs			
Outcome, Probabilities, Decision Trees, The Value of Information, Utility and Decision Making.				

Course Outcomes: After completing the course, the students will be able to								
CO1:	Explore the concepts, data and models for Business Analytics.							
CO2:	Analyze various techniques for modelling and prediction.							
CO3:	Design the clear and actionable insights by translating data.							
CO4:	Formulate decision problems to solve business applications							

Reference Books

1	Business analytics Principles, Concepts, and Applications FT Press Analytics, Marc J. Schniederjans, Dara G. Schniederjans, Christopher M. Starkey, 1 st Edition, 2014, ISBN-13: 978-0133989403, ISBN-10: 0133989402							
2	The Value of Business Analytics: Identifying the Path to Profitability, Evan Stubs, 1 st Edition, 2014 John Wiley & Sons, ISBN:9781118983881							
3	Business Analytics, James Evans, 2 nd Edition, 2015, Pearsons Education, ISBN-13:978-0321997821ISBN-10:0321997824							
4	Predictive Business Analytics Forward Looking Capabilities to Improve Business, Gary Cokins and Lawrence Maisel, 1 st Edition, 2013, Wiley Publisher, ISBN-13: 978-1118175569.							

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for

conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

				Semester: II			
	INDUSTRIAL & OCCUPATIONAL HEALTH AND SAFETY (Group G: Global Elective)						
Cour	rse Code	:	18CV2G02	(Group G. Global Elective)	CIE Marks: 100	:	100
Cred	lits: L:T:P	:	3:0:0		SEE Marks: 100	:	100
Hou	rs	:	36L		SEE Duration	:	3 Hrs
Cou	rse Learning (Obj	ectives:	!			
1	To understan	d tł	ne Industrial ar	d Occupational health and safe	ty and its importance.		
2	To understan	d tł	ne different ma	terials, occupations to which the	e employee can expose	ed to	•
3	To know the	cha	racteristics of	materials and effect on health.			
4	To evaluate t	he	different proce	sses and maintenance required i	in the industries to avo	id ac	cidents.
				Unit-I			
Indu	strial safety:	A	ccident, cause	s, types, results and control,	mechanical and ele	ctric	al 07 Hr
hazai	rds, types, cau	ises	and preventive	ve steps/procedure, describe sa	lient points of factori	ies a	ct
1948	for health and	l sa	fety, wash rooi	ns, drinking water layouts, ligh	t, cleanliness, fire, gua	rdin	g,
press	sure vessels, e	etc,	Safety color	codes. Fire prevention and fi	refighting, equipmer	nt ar	nd
meth	ods.			_			
				Unit-II			
Occu	pational hea	lth	and safety: I	ntroduction, Occupational heal	lth: a definition, Inter	actio	on 07 Hr
between work and health, Interaction between work and health, Health hazards, Unemployment,							
Health, workplace, economy and sustainable development, Work as a factor in health						th	
promotion. Health protection and promotion activities in the workplace: National governments,						s,	
Management, Workers, Workers' representatives and unions, Communities, Occupational health							
professionals. Potential health hazards: Air contaminants, Chemical hazards, Biological hazards,							
	Physical hazards, Ergonomic hazards, Psychosocial factors, Accident factors. Evaluation of						
	health hazards: Exposure measurement techniques, Interpretation of findings recommended						
				ards: Engineering controls,			

Unit-III

Administrative controls. Occupational diseases: Definition, Characteristics of occupational

Unit-III						
Hazardous Materials characteristics and effects on health: Introduction, Chemical Agents,	08 Hrs					
Organic Liquids: Introduction, Glycol Ethers (Cellosolve, Methyl Cellosolve, and Butyl						
Cellosolve) Esters: (Ethyl, Butyl, Amyl, and Cellosolve Acetates), Ketones (Acetone, Methyl						
Ethyl ketone, and Methyl Isobutyl Ketone), Aromatics (Toluene, Benzene, Xylene, Phenol,						
Styrene and Isocyanates), Polyaromatics (Chlorinated Compounds), Halogenated Hydrocarbons						
(Trichloroethylene, Trichloroethylene, Trichloroethane, Perchloroethylene, Methylene Chloride,						
Chloroform and Fluorocarbons), Alkyl Nitrites (Dimethylformamide), Aldehydes						
(Formaldehyde).Gases: Introduction, Boron (Boron Trichloride, Diborane and Boron						
Tribromide), Metal Hydrides (Arsine and Germane), Asphyxiants (Simple Asphyxiants, Carbon						
Monoxide and Cyanides), Silicon (Silane, Dichlorosilane, Trichlorosilane and Chlorosilane),						
Phosphine, Phosgene, Nitrogen Oxides and Ozone. Metals and Metallic Compounds:						
Introduction, Lead, Gallium, Indium and Antimony, Cadmium, Yttrium, Silver, Beryllium,						
Platinum, Gold, Tantalum, Mercury, Nickel, Arsenic, Tellurium, Tin, Barium, Cobalt.						
Particulates and Fibers: Introduction, Resin Dust, Fibrous Glass, Silica, Portland Cement, Mica.						
Acids, Alkalies and Oxidizers: Introduction, Sulfuric Acid, Chromium Acids, Hydrogen						
Fluoride (Hydrofluoric Acid), Sodium Hydroxide, Hydrogen Peroxide. General Manufacturing						
Materials: Epoxy Resin Systems, Flux Fumes, Cutting Fluids, Nonacid etches, Fluoride						
Compounds, Phosphorus Compounds, Hexamethly Disilazane, Chemical Combined Effects,						
Chemical Substitutes, Allergens, Carcinogens, Mutagens, Reproductive Hazards, Sensitizers and						
Teratogens, Recommended Chemical Exposure Limits. Physical Agents: Electromagnetic and						
particulate Radiation, Microwave and Radio Frequency Radiation, Particulate Radiation,						
Infrared Radiation, Laser Radiation, Ultraviolet Radiation, X-Radiation, Noise and Vibration,						

diseases, Prevention of occupational diseases.

Temperature and Pressure, Carcinogenicity, Mutagenicity and Teratogenicity. Ergonomic Stresses: Stress-Related Health Incidents, Eyestrain, Repetitive Motion, Lower Back Pain, Video Display Terminals.

Unit-IV	
Wear and Corrosion and their prevention: Wear- types, causes, effects, wear reduction methods, lubricants-types and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.	07 Hrs
Unit-V	
 Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, over hauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets, Program and schedule of preventive maintenance. Repair cycle concept and importance. 	07 Hrs

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Explain the Industrial and Occupational health and safety and its importance.					
CO2:	Demonstrate the exposure of different materials, occupational environment to which the					
	employee can expose in the industries.					
CO3:	Characterize the different type materials, with respect to safety and health hazards of it.					
CO4:	Analyze the different processes with regards to safety and health and the maintenance required in					
	the industries to avoid accidents.					

Reference Books

Ittit	Tence Dooks
1	Maintenance Engineering Handbook, Higgins & Morrow, 4th Edition, 1988, McGraw-Hill Publisher,
	ISBN 13: 9780070432017
2	Maintenance Engineering Principles, Practices & Management, H. P. Garg, 2009, S. Chand and
	Company, New Delhi,. ISBN:9788121926447
3	Fundamental Principles of Occupational Health and Safety, Benjamin O. ALLI, 2 nd
	Edition, 2008, International Labour Office – Geneva: ILO, ISBN 978-92-2-120454-1
4	Foundation Engineering Handbook, 2008, Winterkorn, Hans, Chapman & Hall London.
	ISBN:8788111925428.

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks**.

Semester End Evaluation (SEE); Theory (100 Marks)

Semester: II							
	MODELING USING LINEAR PROGRAMMING						
	(Group G: Global Elective)						
Course Code	:	18IM2G03	CIE Marks	:	100		
Credits: L:T:P	:	3:0:0	SEE Marks	:	100		
Hours	:	36L	SEE Duration	:	3 hrs		

Unit-I				
Linear Programming: Introduction to Linear Programming problem				
Simplex methods: Variants of Simplex Algorithm – Use of Artificial Variables				
Unit-II				
Advanced Linear Programming : Two Phase simplex techniques, Revised simplex method	07 Hrs			
Duality: Primal-Dual relationships, Economic interpretation of duality				
Unit-III				
Sensitivity Analysis: Graphical sensitivity analysis, Algebraic sensitivity analysis - changes in				
RHS, Changes in objectives, Post optimal analysis - changes affecting feasibility and optimality				
Unit-IV				
Transportation Problem: Formulation of Transportation Model, Basic Feasible Solution using	08 Hrs			
North-West corner, Least Cost, Vogel's Approximation Method, Optimality Methods,				
Unbalanced Transportation Problem, Degeneracy in Transportation Problems, Variants in				
Transportation Problems.				
Unit-V				
Assignment Problem: Formulation of the Assignment problem, solution method of assignment	07 Hrs			
problem-Hungarian Method, Variants in assignment problem, Travelling Salesman Problem				
(TSP).				

Course	Course Outcomes: After completing the course, the students will be able to				
CO1:	Explain the various Linear Programming models and their areas of application.				
CO2:	Formulate and solve problems using Linear Programming methods.				
CO3:	Develop models for real life problems using Linear Programming techniques.				
CO4:	Analyze solutions obtained through Linear Programming techniques.				

Refe	erence Books
1	Operation Research An Introduction, Taha H A, 8th Edition, 2009, PHI, ISBN: 0130488089
2	Principles of Operations Research – Theory and Practice, Philips, Ravindran and Solberg, 2 nd Edition, 2000, John Wiley & Sons (Asia) Pvt Ltd, ISBN 13: 978-81-265-1256-0
3	Introduction to Operation Research, Hiller, Liberman, Nag, Basu, 9 th Edition, 2012, Tata McGraw Hill ISBN 13: 978-0-07-133346-7
4	Operations Research Theory and Application, J K Sharma, 4 th Edition, 2009, Pearson Education Pvt Ltd, ISBN 13: 978-0-23-063885-3

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks**.

Semester End Evaluation (SEE); Theory (100 Marks)

		Semo	ester: II			
PROJECT MANAGEMENT						
	(Group G: Global Elective)					
Course Code	:	18IM2G04	CIE Marks		100	
Credits: L:T:P	:	3:0:0	SEE Marks	:	100	
Hours	:	36L	SEE Duration	:	3 Hrs	

Unit-I	
Introduction: Project Planning, Need of Project Planning, Project Life Cycle, Roles,	07 Hrs
Responsibility and Team Work, Project Planning Process, Work Breakdown Structure (WBS),	
Introduction to Agile Methodology	
Unit-II	
Capital Budgeting: Capital Investments: Importance and Difficulties, phases of capital	07 Hrs
budgeting, levels of decision making, facets of project analysis, feasibility study - a schematic	
diagram, objectives of capital budgeting	
Unit-III	
Project Costing: Cost of Project, Means of Finance, Cost of Production, Working Capital	08 Hrs
Requirement and its Financing, Profitability Projections, Projected Cash Flow Statement,	
Projected Balance Sheet, Multi-year Projections, Financial Modelling, Social Cost Benefit	
Analysis	
Unit-IV	
Tools & Techniques of Project Management: Bar (GANTT) chart, bar chart for combined	07 Hrs
activities, logic diagrams and networks, Project evaluation and review Techniques (PERT)	
Critical Path Method (CPM), Computerized project management	
Unit-V	
Project Management and Certification: An introduction to SEI, CMMI and project	07 Hrs
management institute USA – importance of the same for the industry and practitioners. PMBOK	
6 - Introduction to Agile Methodology, Themes / Epics / Stories, Implementing Agile.	
Domain Specific Case Studies on Project Management: Case studies covering project	
planning, scheduling, use of tools & techniques, performance measurement.	

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Explain project planning activities that accurately forecast project costs, timelines, and quality.						
CO2:	Evaluate the budget and cost analysis of project feasibility.						
CO3:	Analyze the concepts, tools and techniques for managing projects.						
CO4:	Illustrate project management practices to meet the needs of Domain specific stake holders from multiple sectors of the economy (i.e. consulting, government, arts, media, and charity organizations						

Refe	erence Books
1	Project Planning Analysis Selection Financing Implementation & Review, Prasanna Chandra, 8 th Edition, 2010, Tata McGraw Hill Publication, ISBN-10: 9789332902572
2	A Guide to the Project Management Body of Knowledge (PMBOK Guide), 5 th Edition, 2013, Project Management Institute, ISBN: 9781628251845,
3	Project Management A System approach to Planning Scheduling & Controlling, Harold Kerzner, 11 th Edition, 2013, John Wiley & Sons Inc., ISBN 978
4	Project Management – Planning and Controlling Techniques, Rory Burke, 4 th Edition, 2004, John Wiley & Sons, ISBN-10: 0958239150

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks**.

Semester End Evaluation (SEE); Theory (100 Marks)

Semester: II						
	ENERGY MANAGEMENT					
	(Group G: Global Elective)					
Course Code	:	18CH2G05		CIE Marks	:	100
Credits: L:T:P	:	3:0:0		SEE Marks	:	100
Hours	:	36L		SEE Duration	:	3 Hrs

Unit-I	
Energy conservation: Principles of energy conservation, Energy audit and types of	08 Hrs
energy audit, Energy conservation approaches, Cogeneration and types of cogeneration,	
Heat Exchangers and classification.	
Unit-II	
Wet Biomass gasifiers: Introduction, Classification of feedstock for biogas generation, Biomass conversion technologies: Wet and dry processes, Photosynthesis, Biogas generation, Factors affecting bio-digestion, Classification of biogas plants, Floating drum plant and fixed dome plant their advantages and disadvantages.	07 Hrs
Unit-III	
Dry Biomass Gasifiers : Biomass energy conversion routes, Thermal gasification of biomass, Classification of gasifiers, Fixed bed systems: Construction and operation of up draught and down draught gasifiers.	07 Hrs
Unit-IV	
Solar Photovoltaic : Principle of photovoltaic conversion of solar energy, types of solar cells and fabrication. Wind Energy: Atmospheric circulations, classification, factors influencing wind, wind shear, turbulence, wind speed monitoring, Betz limit, WECS: classification, characteristics, and applications	07 Hrs
Unit-V	
Alternative liquid fuels: Introduction, Ethanol production: Raw materials, Pre-treatment, Conversion processes with detailed flow sheet. Gasification of wood: Detailed process, Gas purification and shift conversion, Biofuel from water hyacinth.	07 Hrs

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understand the use alternate fuels for energy conversion
CO2:	Develop a scheme for energy audit
CO3:	Evaluate the factors affecting biomass energy conversion
CO4:	Design a biogas plant for wet and dry feed

Reference Books

,
ion,
ition,

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for

conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

			Semester: II			
			INDUSTRY 4.0			
			(Group G: Global Elective)			
Course Code	:	18ME2G06		CIE Marks	:	100
Credits: L:T:P	:	3:0:0		SEE Marks	:	100
Hours	:	36L		SEE Duration	:	3 Hrs

Unit-I	
Introduction: Industrial, Internet, Case studies, Cloud and Fog, M2M Learning and Artificial	07 Hrs
Intelligence, AR, Industrial Internet Architecture Framework (IIAF), Data Management.	
Unit-II	
The Concept of the IIoT: Modern Communication Protocols, Wireless Communication	07 Hrs
Technologies, Proximity Network Communication Protocols, TCP/IP, API: A Technical	
Perspective, Middleware Architecture,	
Unit-III	r
Data Analytics in Manufacturing: Introduction, Power Consumption in manufacturing,	08 Hrs
Anomaly Detection in Air Conditioning, Smart Remote Machinery Maintenance Systems with	
Komatsu, Quality Prediction in Steel Manufacturing.	
Internet of Things and New Value Proposition, Introduction, Internet of Things Examples, IoTs	
Value Creation Barriers: Standards, Security and Privacy Concerns.	
Advances in Robotics in the Era of Industry 4.0, Introduction, Recent Technological	
Components of Robots, Advanced Sensor Technologies, Artificial Intelligence, Internet of	
Robotic Things, Cloud Robotics.	
Unit-IV	
Additive Manufacturing Technologies and Applications: Introduction, Additive	07 Hrs
Manufacturing (AM) Technologies, Stereo lithography, 3DP, Fused Deposition Modeling,	
Selective Laser Sintering, Laminated Object Manufacturing, Laser Engineered Net Shaping,	
Advantages of Additive Manufacturing, Disadvantages of Additive Manufacturing.	
Advances in Virtual Factory Research and Applications, The State of Art, The Virtual Factory	
Software, Limitations of the Commercial Software	
Unit-V	07 11
Augmented Reality: The Role of Augmented Reality in the Age of Industry 4.0, Introduction,	07 Hrs
AR Hardware and Software Technology, Industrial Applications of AR, Maintenance,	
Assembly, Collaborative Operations, Training. Smart Factories: Introduction, Smart factories in action, Importance, Real world smart factories,	
The way forward.	
A Roadmap: Digital Transformation, Transforming Operational Processes, Business Models,	
Increase Operational Efficiency, Develop New Business Models.	
mercase operational Efficiency, Develop New Dusiness models.	

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Understand the opportunities, challenges brought about by Industry 4.0 for benefits of					
	organizations and individuals					
CO2:	Analyze the effectiveness of Smart Factories, Smart cities, Smart products and Smart services					
CO3:	Apply the Industrial 4.0 concepts in a manufacturing plant to improve productivity and profits					
CO4:	Evaluate the effectiveness of Cloud Computing in a networked economy					

Reference Books

1	Industry 4.0; The Industrial Internet of Things, Alasdair Gilchrist, 1 st Edition, 2016, Apress Publisher, ISBN-13: 978-1-4842-2046-7
2	Industry 4.0: Managing The Digital Transformation, Alp Ustundag • Emre Cevikcan, 1 st Edition, 2018, Springer, ISBN 978-3-319-57869-9
3	Designing the industry - Internet of things connecting the physical, digital and virtual worlds, Ovidiu Vermesan and Peer Friess, 1 st Edition, 2016, Rivers Publishers, ISBN 978-87-93379-81-7

4 The concept Industry 4.0- An Empirical Analysis of Technologies and Applications in Production Logistics, Christoph Jan Bartodziej, 1st Edition, 2017, Springer Gabler, ISBN 978-3-6581-6502-4

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks**.

Semester End Evaluation (SEE); Theory (100 Marks)

			Semester: II			
	ADVANCED MATERIALS					
	(Group G: Global Elective)					
Course Code	:	18ME2G07	CIE Marks	:	100	
Credits: L:T:P	:	3:0:0	SEE Marks	:	100	
Hours	:	36L	SEE Duration	:	3 Hrs	

Unit-I	
Classification and Selection of Materials: Classification of materials. Properties required in	07 Hrs
Engineering materials, Criteria of selection of materials. Requirements / needs of advance	
materials.	
Unit-II	<u>.</u>
Non Metallic Materials: Classification of n on metallic materials, Rubber : Properties, processing and applications .Plastics : Thermosetting and Thermoplastics, Applications and properties. Ceramics : Properties and applications. Adhesives: Properties and applications. Optical fibers : Properties and applications. Composites : Properties and applications.	07 Hrs
Unit-III	
High Strength Materials : Methods of strengthening of alloys, Materials available for high strength applications, Properties required for high strength materials, Applications of high strength materials	08 Hrs
Unit-IV	
Low & High Temperature Materials Properties required for low temperature applications, Materials available for low temperature applications, Requirements of materials for high temperature applications, Materials available for high temperature applications, Applications of low and high temperature materials.	07 Hrs
Unit-V	
Nanomaterials: Definition, Types of nanomaterials including carbon nanotubes and nanocomposites, Physical and mechanical properties, Applications of nanomaterials	07 Hrs

Course	Course Outcomes: After completing the course, the students will be able to		
CO1:	Describe metallic and non metallic materials		
CO2:	Explain preparation of high strength Materials		
CO3:	Integrate knowledge of different types of advanced engineering Materials		
CO4:	Analyze problem and find appropriate solution for use of materials.		

Reference Books

1	The Science & Engineering of Materials, Donald R. Askeland, and Pradeep P. Fulay, 5 th Edition, 2006, Thomson, ISBN-13-978-0534553968
2	Nanotechnology, Gregory L. Timp, 1999th Edition, mm Springer, 1999 ISBN-13: 978-0387983349
3	Material Science and Metallurgym, Dr. VD Kodgire and Dr. S V Kodgire, 42 nd Edition, 2018, Everest Publishing House ISBN NO: 81 86314 008
4	Processing and Fabrication of Advanced Materials, N Bhatnagar, T S Srivatsan, Vol I, 2008, IK International, ISBN: 978819077702

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. Total CIE is 20+50+30=100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

			Semester: II		
COMPOSITE MATERIALS SCIENCE AND ENGINEERING					
(Group G: Global Elective)					
Course Code	:	18CHY2G08	CIE Marks	:	100
Credits: L:T:P	:	3:0:0	SEE Marks	:	100
Hours	:	36L	SEE Duration	:	3 Hrs

UNIT – I **07 Hrs** INTRODUCTION TO COMPOSITE MATERIALS Fundamentals of composites - need for composites - Enhancement of properties - Classification based on matrix- Polymer matrix composites (PMC), Metal matrix composites (MMC), Ceramic matrix composites (CMC) - Constituents of composites, Interfaces and Interphases, Distribution of constituents, Types of Reinforcements, Particle reinforced composites, Fibre reinforced composites. Fiber production techniques for glass, carbon and ceramic fibers Applications of various types of composites. UNIT – II POLYMER MATRIX COMPOSITES (PMC) **08 Hrs** Polymer resins – Thermosetting resins, Thermoplastic resins & Elastomers, Reinforcement fibres-Types, Rovings, Woven fabrics. PMC processes - Hand Layup Processes, Spray up processes - Compression Moulding - Injection Moulding - Resin Transfer Moulding -Pultrusion - Filament winding - Injection moulding. Glass fibre and carbon fibre reinforced composites (GFRP & CFRP). Laminates- Balanced Laminates, Symmetric Laminates, Angle Ply Laminates, Cross Ply Laminates. Mechanical Testing of PMC- Tensile Strength, Flexural Strength, ILSS, Impact Strength- As per ASTM Standard. Applications of PMC in aerospace, automotive industries. UNIT – III CERAMIC MATRIX COMPOSITES AND SPECIAL COMPOSITES **07 Hrs** Engineering ceramic materials - properties - advantages - limitations - monolithic ceramics need for CMC - ceramic matrix - various types of ceramic matrix composites- oxide ceramics non oxide ceramics - Aluminium oxide - silicon nitride - reinforcements - particles- fibreswhiskers. Sintering – Hot pressing – Cold Isostatic Pressing (CIPing) – Hot isostatic pressing (HIPing). applications of CMC in aerospace, automotive industries- Carbon /carbon composites - advantages of carbon matrix - limitations of carbon matrix carbon fibre - chemical vapour deposition of carbon on carbon fibre perform. Sol-gel technique- Processing of Ceramic Matrix composites. UNIT – IV METAL MATRIX COMPOSITES 07 Hrs Characteristics of MMC, various types of metal matrix composites alloy vs. MMC, advantages of MMC, limitations of MMC, Reinforcements – particles – fibres. Effect of reinforcement – volume fraction – rule of mixtures. Processing of MMC – powder metallurgy process – diffusion bonding - stir casting - squeeze casting, a spray process, Liquid infiltration In-situ reactions-Interface-measurement of interface properties- applications of MMC in aerospace, automotive industries. UNIT – V POLYMER NANO COMPOSITES 07 Hrs Introduction and Significance of polymer Nano composites. Intercalated And Exfoliated Classification of Nano fillers- nanolayers, nanotubes, nanoparticles. Nanocomposites. Preparation of Polymer Nano composites by Solution, In-situ Polymerization and melt mixing techniques. Characterization Of polymer nanocomposites- XRD, TEM, SEM and AFM. Mechanical and Rheological properties of Polymer Nano composites. Gas barrier, Chemical-

Resistance, Thermal and Flame retardant properties of polymer nanocomposites. Optical properties and Biodegradability studies of Polymer nanocomposites, Applications of polymer

nanocomposites.

Course	Course Outcomes: After completing the course, the students will be able to				
CO1:	Understand the purpose and the ways to develop new materials upon proper combination of				
	known materials.				
CO2:	Identify the basic constituents of a composite materials and the list the choice of materials available				
CO3:	Will be capable of comparing/evaluating the relative merits of using alternatives for important engineering and other applications.				
CO4:	Get insight to the possibility of replacing the existing macro materials with nanomaterials.				

Referen	ce Books:
1	Composite Materials Science and Engineering, Krishan K Chawla, 3 rd Edition, 2012 Springer- verlag Gmbh, ISBN: 9780387743646, 0387743642
2	The Science Engineering of Materials, K Balani, Donald R Askeland, 6 th Edition, 2010, Cengage, ISBN: 9788131516416
3	Polymer Science and Technology, Joel R Fried, 2 nd Edition, 2003, Prentice Hall, ISBN: 9780137039555
4	Nanomaterials and nanocomposites, Rajendra Kumar Goyal, 1st Edition, 2017, CRC Press-
	Taylor & Francis, ISBN: 9781498761666, 1498761666

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

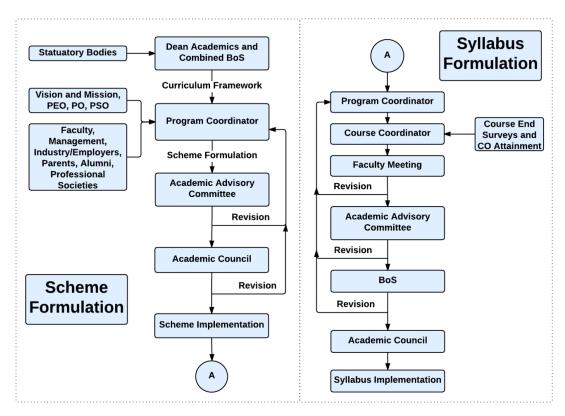
Semester: II						
	PHYSICS OF MATERIALS					
		(Group G: Gl	lobal Elective)			
Course Code:	:	18PHY2G09		CIE Marks	:	100
Credits: L:T:P:	:	3:0:0		SEE Marks	:	100
Hours :	:	36L		SEE Duration	:	3 Hrs

Unit – I	
CRYSTAL STRUCTURE ; Symmetry elements-seven crystals systems-Reciprocal lattice- Packing fraction, Lattice Vibration-Brillouin zones, Analysis of Crystal structure using XRD, Thermal properties.	Hrs
Unit – II	
Mossotti Relation-Ferro electricity-Piezoelectricity-Properties of Dielectric in alternating fields- The complex Dielectric Constant and Dielectric Loss, Polarizability as a function of frequency- Complex dielectric constant of non-polar solids-Dipolar relaxation, Applications.	Hrs
Unit – III	
MAGNETIC MATERIALS: Dia and Paramagnetic materials-Quantum theory of paramagnetic materials-Paramagnetic susceptibility of conduction electrons-Ferro-anti ferromagnetic materials-Superconductors and Applications.	Hrs
Unit – IV	
SEMICONDUCTING MATERIALS: Semiconductor-Direct and Indirect bonding 7 H characteristics-Importance of Quantum confinement-quantum wires and dots-Ferro electric semiconductors-applications-Polymer semiconductors-Photo conductive polymers, Applications.	Hrs
Unit – V	
Martensitia Transformation functional properties-processing-texture and its nature.	Hrs
Course Outcomes: After going through this course the student will be able to	
CO1: Analyse crystals using XRD technique.	
CO2: Explain Dielectric and magnetic materials.	
CO3: Integrate knowledge of various types of advanced engineering Materials.	
CO4: Use materials for novel applications.	
Reference Books:	
1 Solid State Physics, S O Pillai, 2015, New Age International Publishers, ISBN 10-8122436978.	3.
2 Introduction to Solid State Physics, C.Kittel, Seventh Edition, 2003, John Wiley & Sons, 9971-51-180	
3 Material Science, Rajendran V and Marikani, 2013, Tata McGraw Hill, ISBN 10-007132871.	
4 The Science and Engineering of Materials, Askeland, Fulay, Wright, Balanai, 6 th Edition, Cengage Learning, ISBN-13:978-0-495-66802-2	a, 2012

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks**.

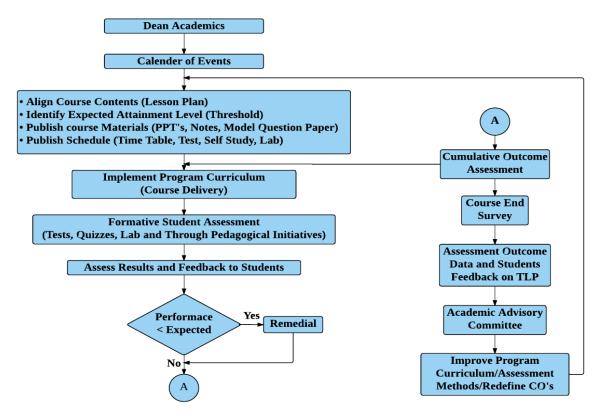
Scheme of Semester End Examination (SEE) for 100 marks:

			ADVA	Semester: II NCED STATISTICAL METI	HODS		
<u> </u>	A 1		101/070/10	(Group G: Global Elective)			100
Course		:	18MT2G10		CIE Marks: 100	:	100
Credits:	L:T:P	:	3:0:0		SEE Marks: 100	:	100
Hours		:	36L		SEE Duration: 3Hr	:	3 Hrs
				Unit-I			
Samnlin	g Technic	11166.		0111-1			07 Hrs
			cents of rando	m sampling from finite and in	nfinite nonulations S	imnle	
			-	d without replacement). Expec		-	
	nean and p		-	a without replacement). Expec			-
sample n		лоро		Unit-II			
Estimati	0 n •			0111-11			07 Hrs
		Istime	ntor and estima	e, Criteria for good estimates -	- unbiasedness consist	ency	
	-			noment's estimation and maxi		•	
	-		•	mator (no proofs), Confidence			
_			on proportion.	mator (no proors); confidence		mean	
(large sa	inpic), pop	Julati		Unit -III			
Tests of	Hypothes	sic.		Clint -III			07Hrs
	• -		Inference Form	nulation of the problems with e	vamnles		0/1115
				and alternative hypothesis, Te	•	~~~~~	
-	-		• -		• • • • •		
-			fiance of norm	al population (one sample and	two samples), Chi sq	uareo	L
test for g	oodness o	1 III.		TI 14 TX7			
Lincor S	tatistical	Mod	olsı	Unit -IV			07 Hrs
				One way ANOVA and two	way ANOVA model	0.000	
			• •	One way ANOVA and two	•	s-one	
observati	on per cel	li, mu	Itiple but equal	number of observation per cell	l.		
I incon I	Regression			Unit -V			08 Hrs
	e		on Estimation	of population Droportion of	of logat agreeme action	otomo	
-	-			of parameters, Properties of	-		
				ate data, Multiple linear regre			
				on and plausibility of serial	dependence, sourc	es of	Ι
				auto correlated variables.			
	1			the course, the students will b			and trues
CO1:	-		-	indamental concepts of sampl nodels and linear regression ar			
CO2:	· · ·		•	kills of simple random samp ANOVA, linear and multiple li	6	and	alternativ
CO3:	-			em to establish statistical/math nd optimize the solution.	nematical model and	use a	ppropriat
CO4:	Distingu	ish th	e overall math	ematical knowledge gained to o	demonstrate the proble	ems o	f samplin

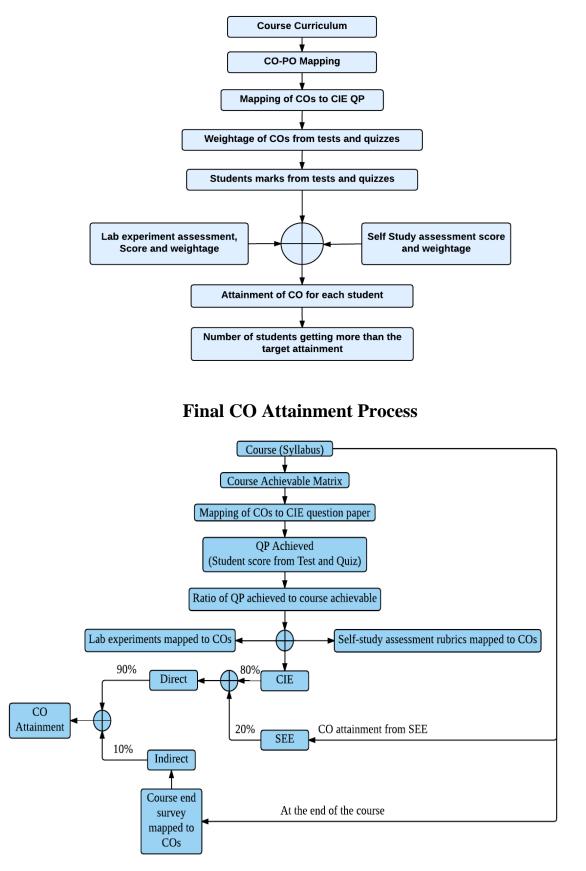

Reference Books:

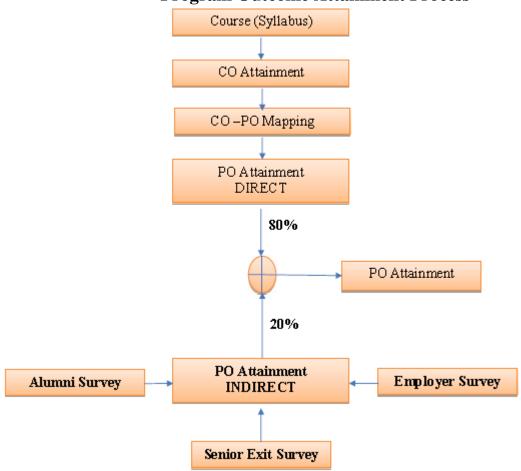
1 Fundamentals of Statistics, A. M. Goon, M. K. Gupta and B. Dasgupta, Vol. I and Vol. II, 3rd Edition,

	1968, World Press Private Limited, ISBN-13: 978-8187567806.
2	Applied Statistics and Probability for Engineers, D. C. Montgomery and G. C. Runger,, 3rd Edition,
	2003, John Wiley & Sons, Inc, ISBN 0-471-20454-4.
3	Fundamentals of Mathematical Statistic - A Modern Approach, S.C. Gupta, V.K. Kapoor, 10th
	Edition, 2000, S Chand Publications, ISBN 81-7014-791-3.
4	Regression Analysis: Concepts and Applications, F. A. Graybill and H. K. Iyer, Belmont, 1st Edition,
	1994, Calif.: Duxbury Press, ISBN-13: 978-0534198695.


CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks**.

Semester End Evaluation (SEE); Theory (100 Marks)




Curriculum Design Process

Academic Planning And Implementation

Process For Course Outcome Attainment

Program Outcome Attainment Process

PROGRAM OUTCOMES (PO)

- M. Tech. in Power Electronics graduates will be able to:
- **PO1:** Able to independently carry out research /investigation and development work to solve practical problems in **Power Electronics**
- PO2: Able to write and present a substantial technical report/document
- **PO3:** Able to demonstrate a degree of mastery over **power electronics** at a level higher than the requirements in bachelor program of Electrical Engineering
- PO4: Integrate Power Electronics with other domains to facilitate collaborative inter-disciplinary research
- **PO5** : Acquire professional integrity and ethics, understand the responsibility for sustainable development of the society
- **PO6 :** Understand and demonstrate management skills, assess and evaluate the economic feasibility , work effectively as a leader and a team member.