

RV COLLEGE OF ENGINEERING®

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Scheme and Syllabus of III & IV Semesters (Autonomous System of 2018 Scheme)

Master of Technology (M.Tech) in POWER ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING **R.V.COLLEGE OF ENGINEERING**

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Scheme and Syllabus of III & IV Semesters (Autonomous System of 2018 Scheme)

Master of Technology (M.Tech) in POWER ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Department Vision

Attain technical excellence in Electrical and Electronics Engineering through graduate programs and interdisciplinary research related to sustainability in power, energy and allied fields.

Department Mission

- To provide technical education that combines rigorous academic study and the excitement of innovation enabling the students to engage in lifelong learning
- To establish Centre of Excellence in sustainable electrical energy, smart grids and systems
- To establish tie-ups with industries and institutions of repute and to foster building up of a wide knowledge base to keep in tune with upcoming technologies.
- To motivate commitment of faculty and students to collate, generate, disseminate, persevere, knowledge and to work for the benefit of society.
- To develop simple, appropriate and cost effective inclusive technologies which are instrumental in the up-liftment of the rural society.

Sl. No.	Abbreviation	Meaning
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	SEE	Semester End Examination
5.	CE	Professional Core Elective
6.	GE	Global Elective
7.	HSS	Humanities and Social Sciences
8.	CV	Civil Engineering
9.	ME	Mechanical Engineering
10.	EE	Electrical and Electronics Engineering
11.	EC	Electronics & Communication Engineering
12.	IM	Industrial Engineering & Management
13.	EI	Electronics & Instrumentation Engineering
14.	СН	Chemical Engineering
15.	CS	Computer Science & Engineering
16.	TE	Telecommunication Engineering
17.	IS	Information Science & Engineering
18.	BT	Biotechnology
19.	AS	Aerospace Engineering
20.	PHY	Physics
21.	CHY	Chemistry
22.	MAT	Mathematics

ABBREVIATIONS

		INDEX	
		III Semester	
Sl. No.	Course Code	Course Title	Page No.
1.	18 MPE31	PLC and SCADA	1
2.	18 MPE3EX	Elective 5	4
3.	18 MPE33	Internship	10
4.	18 MPE34	Dissertation Phase I	12
		GROUP A: CORE ELECTIVES	
1.	18 MPE 3E1	Digital System Design	4
2.	18 MPE 3E2	High Voltage DC Transmission	6
3.	18 MPE 3E3	Nano materials and Devices	8

		IV Semester	
Sl. No.	Course Code	Course Title	Page No.
1.	18MPE41	Dissertation Phase II	14
2.	18MPE42	Technical Seminar	16

R V COLLEGE OF ENGINEERNG, BENGALURU-560 059 (Autonomous Institution Affiliated to VTU, Belagavi) DEPARTMENT OF ELECTRICAL ENGINEERING M.Tech in POWER ELECTRONICS

		THIRD SEMES	FER CRE	DIT SCH	EME		
SI.	Course				Credit A	llocation	
No.	Code	Course Title	BoS	L	Т	Р	Total Credits
1	18 MPE31	PLC and SCADA	EE	4	0	1	5
2	18 MPE3EX	Elective 5	EE	4	0	0	4
3	18 MPE33	Internship	EE	0	0	5	5
4	18 MPE34	Dissertation Phase I	EE	0	0	5	5
5	18 MPE31	PLC and SCADA	EE	4	0	1	5
6	18 MPE3EX	Elective 5	EE	4	0	0	4
	To	tal number of Credits	•	8	0	11	19
	Total	Number of Hours / Week		8	0	11	19

		III Semester
		GROUP E: CORE ELECTIVES
Sl. No.	Course Code	Course Title
1.	18 MPE 3E1	Digital System Design
2.	18 MPE 3E2	High Voltage DC Transmission
3.	18 MPE 3E3	Nano materials and Devices

		FOURTH SEMES	STER CRI	EDIT SC	HEME		
SI.	Course				Credit A	llocation	
No.	Code	Course Title	BoS	L	Т	Р	Total Credits
1	18MPE41	Dissertation Phase II	EE	0	0	20	20
2	18MPE42	Technical Seminar	EE	0	0	2	2
	Та	otal number of Credits		0	0	22	22
	Total	Number of Hours / Week		0	0	22	22

			Semester: III		
Progra	m]	Logic Contro		ion	
			· · · · · · · · · · · · · · · · · · ·		
			(Theory and Practical)		-
rse Code	:	18MPE31	CIE Marks	:	100+50
lits: L:T:P	:	4:0:1	SEE Marks	:	100+50
l Hours	:	50L+16P	SEE Duration	:	3+3Hrs
rse Learning	Ob	jectives (CL	0):		
Recognize in	ndu	strial control	problems and access suitability of using PLC for a	con	trol.
Understand PLC architecture including timers, counters, sequencers and Programme PLC's					
using ladder	log	gic.			
Compare di	ffer	ent communi	cation protocol in SCADA systems and integrate	wit	h PLC.
Select the es	sen	tial elements	and practices needed to develop and implement th	ne	
Engineering	Au	tomation usi	ng PLC approach.		
	rse Code lits: L:T:P l Hours rse Learning Recognize in Understand using ladder Compare dif Select the es	rse Code:lits: L:T:P:l Hours:rse Learning ObRecognize induUnderstand PLCusing ladder logCompare differedSelect the essen	rse Code:18MPE31lits: L:T:P:4:0:1l Hours:50L+16Prse Learning Objectives (CLRecognize industrial controlUnderstand PLC architectureusing ladder logic.Compare different communiSelect the essential elements	Program Logic Controller and Supervisory Control & Data Acquisit (PLC and SCADA) (Theory and Practical) CIE Marks Isome Code : 18MPE31 SEE Marks Isome Code : 50L+16P SEE Duration reaction Code : 50L+16P SEE Duration SEE Learning Objectives (CLO): Recognize industrial control problems and access suitability of using PLC for or 0. Understand PLC architecture including timers, counters, sequencers and Programs using ladder logic. Compare different communication protocol in SCADA systems and integrate	Program Logic Controller and Supervisory Control & Data Acquisition (PLC and SCADA) (Theory and Practical) See Code : 18MPE31 CIE Marks : 18MPE31 SEE Marks : 18MPE31 SEE Marks : 18MPE31 SEE Marks : 19MOrs : 50L+16P SEE Marks : 19MOrs : 50L+16P SEE Duration : See Learning Objectives (CLO): Recognize industrial control problems and access suitability of using PLC for con Understand PLC architecture including timers, counters, sequencers and Programm using ladder logic. Compare different communication protocol in SCADA systems and integrate wit Select the essential elements and practices needed to develop and implement the

Unit-I	10 Hrs
Programmable Logic Controllers An Overview:	
Programmable Logic Controllers , Parts of a PLC , Principles of Operation, Mode	ifying the
Operation, PLCs versus Computers, PLC Size and Application.	
PLC Hardware Components:	
The I/O Section, Discrete, Analog and Special I/O Modules, Typical Discrete and A	nalog I/O
Module Specifications, The Central Processing Unit(CPU), Memory Design, Memo	ry Types,
Programming Terminal Devices, Recording and Retrieving Data, Human Machine	Interfaces
(HMIs)	
Unit – II	10 Hrs
Fundamentals of Logic:	
The Binary Concept, AND, OR, NOT and XOR Function, Boolean Algebra, Develop	ing Logic
Gate circuits, from Boolean Expressions, Producing the Boolean Equation for a Given L	ogic Gate
Circuit, Hardwired Logic versus Programmed Logic, Programming Word Lev	vel Logic
Instructions,	
Basics of PLC Programming:	
Processor Memory Organization, Program Files, Data Files, Program Scan, PLC Pro-	gramming
Languages, Relay-Type Instructions, Instruction Addressing, Branch Instructions, Inter	nal Relay

Processor Memory Organization, Program Files, Data Files, Program Scan, PLC Programming Languages, Relay-Type Instructions, Instruction Addressing, Branch Instructions, Internal Relay Instructions, Programming Examine If Closed and Examine If Open Instructions, Entering the Ladder Diagram, Modes of Operation.

Ladder Diagram, Modes of Operation.	
Unit -III	10 Hrs
Developing Fundamental PLC Wiring Diagrams and Ladder Logic Programs :	
Electromagnetic Control Relays, Contactors, Motor Starters, Manually Operated	Switches,
Mechanically Operated Switches, Output Control Devices, Seal-In Circuits, Latchin	g Relays,
Converting Relay Schematics into PLC, Ladder Programs, Writing a Ladder Logic	Program,
Directly from a Narrative Description	-
Programming Timers:	
Mechanical Timing Relays, Timer Instructions, On-Delay Timer Instruction, Off-Del	lay Timer
Instruction, Retentive Timer, Cascading Timers.	
Interfacing with different sensors:	
Proximity sensors Inductive, capacitive sensors, Photoelectric Sensors and S	Switches,
Encoders, Temperature sensors, position and displacement sensors, pressure sensor	ors.
Unit –IV	09 Hrs
Programming Counters:	
Counter Instructions, Up-Counter, One-Shot Instruction, Down-Counter, Cascading	Counters,
Incremental Encoder-Counter, Applications, Combining Counter and Timer Functions	
Program Control Instructions:	
Master Control Reset Instruction, Jump Instruction, Subroutine Functions, Immediate	Input and

Immediate Output Instructions, Forcing External I/O Addresses, Safety Circuitry, Selectable Timed Interrupt, Fault Routine, Temporary End Instruction, Suspend instruction. **Data Manipulation Instructions:**

Data Manipulation, Data Transfer Operations, Data Compare Instructions, Data Manipulation Programs Closed-Loop Control, Math Instructions, Addition Instruction, Subtraction Instruction, Multiplication Instruction Division Instruction.

SCADA System:

Unit –V

09 Hrs

History of Critical Infrastructure Directives, SCADA System Evolution, Definitions and Basic Architecture, SCADA Evolution, SCADA Definition, SCADA System Architecture, SCADA Applications, Redundancy as a Component of SCADA Security, SCADA System Desirable Properties.

SCADA Systems and its application:

Employment of SCADA Systems for various applications. (The Basic Refining Process, Nuclear Power Generation, The Boiling Water Reactor, The Pressurized Water Reactor, Conventional Electric Power Generation, Water Purification System, Crane Control)

SCADA Protocols:

Evolution of SCADA Protocols, Overview of the OSI Model, TCP/IP Model. MODBUS Model, DNP3 Protocol, UCA 2.0 and IEC61850 Standards, Controller Area Network, Device Net, Control Net, Ethernet/IP, Profibus.

UNIT VI Lab Component

PLC & AUTOMATION LAB

Unit-VI Lab Component

- 1. Simulation and verification of operation of relays, switches and pushbuttons using PLC(Usage of Digital I/o Modules)
- 2. PLC Program on concept of latching and interlocking
- 3. Interfacing of different Proximity sensors like Capacitive, inductive and infrared sensors to PLC.
- 4. Speed control of dc motor using PLC(Usage of Analog I/O Modules)
- 5. Programs on Timers and Counters.
- 6. Simulation and verification of Starting of Three Phase induction Motors Via Star-Delta Starter.
- 7. Verification of pneumatic applications using PLC.
- 8. Speed control of ac servo motor using programmable logic controller.
- 9. PLC program on Tank filling device simulator(Using Universal Simulator)
- 10. PLC program on Selective band switch (Using Universal Simulator)
- 11. Experiments on HMI or SCADA
- 12. Open Ended Experiment (to be Designed Executed by Students)

Course	Outcomes: After completing the course, the students will be able to
CO1:	Understand the basic concepts of PLC and SCADA systems.
CO2:	Assess the control needs of a process industry and evaluate various options of using PLC or SCADA
CO3:	Design and program the PLC to meet a specified control objective
CO4:	Build a complete control system through integration of sensor with PLC.

Reference Books

1	Programmable Logic Controllers, Frank D. Petruzella, 4 th Edition, 2010 McGraw-Hill Publisher, ISBN 13: 9780073510880
2	Securing SCADA System, Ronald L. Krutz, 1 st Edition, 2015, Wiley Publications, ISBN-10: 9788126557349.
3	Programmable Logic Controllers, W.Bolton, 4 th Edition, 2006, Elsevier ISBN-13: 978-0-7506- 8112-4
4	Programmable Logic Controllers: Programming Methods and Applications, John R. Hackworth and Frederick D. Hackworth, Jr., 1 st Eidtion, 2004, Pearson/Prentice Hall, ISBN-9780130607188.

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks**.

Scheme of Continuous Internal Evaluation (CIE) for Practicals: (50 Marks)

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150

Theory (100 Marks) + Practical (50 Marks) = Total Marks (150)

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit.

Scheme of Semester End Examination (SEE); Practical (50 Marks)

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

			Γ	IGITAL SYSTEM DESIGN				
			(El	ctive Group E: Core Elective)				
Cou	irse Code	:	18MPE3E1	CIE Marks	:	100		
Cre	dits: L:T:P	:	4:0:0	SEE Marks	:	100		
Tot	al Hours:	:	50L	SEE Duration	:	3Hrs		
Cou	rse Learning O	bje	ctives (CLO):					
1	Compare meth	odo	logies and solv	e problems in sequential and combinational circuits				
2	Analyse digita	l ci	cuits and syste	ns using ASM charts and Design digital circuits usin	ıg			
	programmable	programmable logic devices and FPGAs						
	Acquiring-dep	th k	nowledge of in	put/output modules, their timing parameters and the				
3	interfacing		-					
	Read data shee	ets o	of PLDs , analy	e them and select appropriate device for a given				
4	Application							

Unit-I	10 Hrs			
Review of Digital Logic Design Fundamentals: Development and evolution digital devices, design and				
verification tools. Abstraction levels of digital system design. Designing of combinational circuits. Design				
of sequential circuits- Finite State machine; mealy and moore machines. Sequential packages;				
Unit – II	10 Hrs			
Design Development flow : Overview of PLDs and EDA Software: Introduction of PLDs, generation	ral FPGAs			
devices, Overview of the hardware platform, EDA Tools: Integrated software Environment, c				
design project and HDL codes, test-bench and perform the RTL simulation, RTL Design w				
Combinational circuits design and verification, regular sequential circuits and components, F				
machine(FSM), Finite State Machine with Datapath (FSMD) code development of FSM	D- design			
examples, CPU design, Algorithmic state machine charts (ASM), code conversion of ASM				
Unit –III	10 Hrs			
Input / Output Modules: UART: Introduction, UART receiving subsystem, Over	sampling			
procedure, Baud rate generator, UART receiver, Interface circuit, UART transmitting su	ıbsystem,			
Overall UART system, Complete UART core, example circuits. PS2: Introduction, PS2	receiving			
subsystem, Device-to-host communication protocol, Design and code, PS2 keyboard s	can code,			
example circuits. External SRAM: Introduction, Specification of SRAM, Architectur	al Block			
diagram, Timing parameters, Timing requirement, Design ASMD chart, Timing analysis				
Unit –IV	10 Hrs			
Customized Hardware and Software: Special-purpose FSMD, general-purpose micro	controller,			
embedded microcontrollers. Xilinx'sPico Blaze Overview: Overview of Pico Blaze, Internal Ar	chitecture,			
Development flow, Instruction set, Programming model, Instruction format, Interfacing,	Interrupt			
handling, KCPSM3 directives Pico Blaze Assembly Code Development: Development tools	- Xilinx's			
KCPSM3 and PBlazeIDE - Assembler directives, useful code constructs, control structure,	subroutine			
development, example programme and their verification through PBlaze IDE				
Unit –V	10 Hrs			
FPGA Implementation of Digital Circuits: Constraint files development, synthesis and imple	mentation			
of HDL codes. Generation and downloading of the configuration file to a PLD device;				
microcontroller implementation: Picoblaze use in HDL design flow, implementation of programmed				
processor, development of SOPC.				
Course Outcomes: After completing the course, the students will be able to				

Course	Outcomes: After completing the course, the students will be able to
CO1:	Formulate and solve problems in Sequential and combinational circuits
CO2:	Design digital circuits using HDL
CO3:	Implement digital systems using FPGA
CO4:	Develop design flow for SOPC

Refere	ence Books
1	Digital Design, Mano M. M. and Ciletti M. D., 4thEdition, 2008. Pearson Education, ISBN:9788131714508
2	Digital Systems Design Using VHDL, Charles H Roth Jr., 2 nd Edition 1998, PWS Publishing Company, <i>ISBN</i> -13: 978-0-495-66776-6, <i>ISBN</i> : 0-495-66776-5
3	The Design Warrior's Guide to FPGAs – Devices, Tools and Flows, Maxfield C. M., 1 st Edition, 2004, Newnes. ISBN-13: 978-0750676045, ISBN-10: 0750676043
4	Fundamentals of Digital Logic with VHDL Design, Brown S. and Vranesic Z., 3 rd Edition., 2008, Tata McGraw-Hill Publishing Company Limited., ISBN:9781259025976

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks**.

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit.

				VOLTAGE DC TRANSMISSION		
Co	urse Code	:	(Ele 18MPE3E2	ctive Group E: Core Elective) CIE Marks		100
	edits: L:T:P	•	4:0:0	SEE Marks	•	100
Total Hours:		:	50L	SEE Duration	:	3Hrs
Co	urse Learning O	bje	ctives (CLO):			
1	Understand the modern trends in long distance DC transmission and related issues					
2	Analyze the control strategies and the importance of reactors in DC transmission system					
3	Analyze the reactive power control requirement for stable operation of the system					
4	Design the DC reactor and converter control circuits for HVDC system					

Unit-I	10 Hrs
HVDC Power Transmission Technology: Historical sketch, existing HVDC projects,	
Classification of HVDC links, Components of HVDC transmission system, Comparison of	
AC and DC Transmission, Application of DC Transmission, Modern trends in DC	
Transmission, Ground Return- advantages and disadvantages. Choice of converter	
configuration.	
Unit – II	10 Hrs
HVDC CONVERTER: Introduction to line commutated converter, analysis of six and	
twelve pulse converter without overlap. Effect of smooting reactor,. Two and three level	
voltage source converter, pulse width modulation. Analysis of converter two and three, three	
and four valve conduction. Conduction modes. 12 pulse detailed analysis	
Unit –III	10 Hrs
CONTROL OF CONVERTERS AND HVDC LINK: Converter control characteristics,	
firing angle control, CEA control, Starting and stopping of DC link, Power control, frequency	
control. Reactive power control, tap changer control. Control of voltage source converter.	
CONVERTER FAULTS AND PROTECTION:	
Converter faults, protection against over voltages, over currents in converter station.	
Surge arrester. Protection agains faults in voltage source converter.	
Unit –IV	10 Hrs
SMOOTHING REACTOR AND DC LINE:	
Smooting reactors, effects of corona loss, DC line insulators, Transient over voltages in DC	
line, protection in DC line. Detection and protection of faults, DC breakers.	
REACTIVE POWER CONTROL:	
Reactive power control in steady state and transient state. Sources of Reactive power,	
SVC and STATCOM.	
Unit –V	10 Hrs
POWER FLOW ANALYSIS IN AC/DC SYSTEM:	
Introduction to DC system model, procedure, inclusion of constraints, Power flow analysis	
under dynamic conditions, power flow with VSC based HVDC system.	
Introduction to stability concepts, analysis of voltage stability in asynchronous AC/DC	
system.	
MULTI TERMINAL DC SYSTEM: Introduction, types, control and protection.	
Course Outcomes: After completing the course, the students will be able to	

Course Outcomes: After completing the course, the students will be able to		
CO1:	Understand the importance of modern long distance transmission technology, and related	
	issues.	
CO2:	Analyze the control of converter and faults in the system	
CO3:	Evaluate the power control in AC/DC systems and its modeling.	
CO4 :	Design DC reactor, filters and transmission line as per the specifications.	

Refere	ence Books
1	Direct current Transmission, Kimbark E.W. Vol 1, Wiley Interscience,1971. ISBN 0471475807, 9780471475804
2	High Voltage Direct Current Power Transmission system- Technology and Systems Interactions, Padiyar K R , 1992, Wiley Eastern Ltd, ISBN-13: 978-1906574772
3	High voltage direct current transmission, Arrillage, 1 st Edition, 1983, Peter pregrinus Ltd., London, ISBN 0906048974, 9780906048979
4	High voltage direct current power transmission, Adamson C Hingorani N G, Grraway ltd, London, 1960.

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks**.

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit.

				LS AND DEVICES		
Cor	ırse Code	:	18MPE3E3	E: Core Elective) CIE Marks	•	100
	dits: L:T:P	:	4:0:0	SEE Marks	:	100
Total Hours:		:	50L	SEE Duration	:	3Hrs
Cou	ırse Learning (Dbje	ctives (CLO):	·		•
1	Understand the basic concepts of Nanotechnology					
2	Familiarize with the properties of nanomaterials and their applications					
3	3 Expose to nanoelectronic devices and their applications					
4	Synthesize and characterize nano materials					

Unit-I	10 Hrs
ntroduction: Nanotechnology : Background and definition of nanotechnology – Types of nano	materials
Aicrostructure – Properties – Application in different fields – Reliability issues of MEMS/NEMS	S. Atomi
onding in solids: Metallic, Ionic, Covalent, Co-ordination/dative bonds; Vande	
nteractions/Electrostatic interactions: Ion pair interactions, solvent effects, Ion-dipole and dipole	e – dipol
nteractions, Hydrogen bonding - hydrophobic interactions. MO theory for simple molecules , S	Size effec
f Nanomaterials: Size, shape, density, melting point, wet ability, specific surface area, solid st	
ransformation and band gap variation - Quantum confinement, Effect of strain on band gap in uantum dots.	n epitaxia
Unit – II	10 Hrs
Bonding in Nanostructures : Graphene , Fullerenes , Carbon nanotubes , Bonding in armcha	air, zigza
nd chiral structures , n-m=3q rule , Inorganic nanotubes: Silica nanotubes, boron nitride n	anotubes
anotubes of dichalcogenides and nanotubes of metal oxides, Reactivity on nano	osurfaces
Functionalization of carbon nanotubes and Graphene.	
Unit –III	10 Hrs
Nanoscale MOSFETs: Challenges in miniaturization, quantum effects, thin oxides, random	m dopan
luctuations, tunneling and subthreshold currents, power density, hot electron effects, fundament	
f MOS operations, MODFET (Modulation Doped FET), GaN based HEMT (High Electron	Mobilit
Field Effect Transistors).	
Unit –IV	10 Hrs
Molecular Nanoelectronics: Molecular nanowires, organic LEDs, organic FETs, carbon nano	
rapheme based FETs, Silicon nanowire based FETs, Nano-bioelectronics : DNA based b	
rotein based biosensors, materials for biosensor applications, quantum dot based bioimaging, D	NA base
ogic and computing elements	
Unit –V	10 Hrs
ynthesis and characterization of Nanomaterials : Nanomaterials synthesis and applications,	
	synthesis

Course	Course Outcomes: After completing the course, the students will be able to		
CO1:	Explain structure and bonding of Nanomaterials		
CO2:	Demonstrate knowledge of nano electronic devices and its applications		
CO3:	Synthesize and characterize nano materials		
CO4:	Use nano materials for industrial applications.		

Refer	Reference Books		
1	Materials Science, M.S.Vijaya, G.Rangarajan, 1 st Edition, 2014, Published by McGraw Hill Education (2014) ISBN: 9780070534698		
2	Materials Science and Engg., V.Ragavan, 1 st Edition, 2015, Published by Prentice-Hall of India Pvt.Ltd, ISBN-10: 9788120350922		
3	Nanoelectronics- principles and devices, M. Dragoman and D. Dragoman, 2 nd Edition, 2008, Artech House publishers, ISBN-9781596933682.		
4	Introduction to Nanotechnology, Charles P. Poole and Frank J. Owens, 1 st Edition, 2003, John Wiley & Sons. ISBN-13: 978-0471079354.		

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks**.

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit.

Course Co d	<u> </u>		INTERNSHIP			100
Course Code Credits	:	18MPE33 L:T:P	0:0:5	CIE Marks SEE Marks	:	100
	:		0:0:5		:	100
Hours/week	:			SEE Duration	:	3 Hrs
Course Learn	ing	<u>GUIDELI</u> Objectives (CLO):	NES FOR INTE	KNSHIP		
The students si						
		process of applying engi	neering knowled	ge to produce produce	t and p	rovide
services.			-		•	
		portance of management an				
· · · ·		e importance of team work, professional ethics for lifel	·	vironment and sustaina	able solu	tions.
(4) IIIDIDE Val	iues,	professional ethics for mer	ong learning.			
1) The durat	ion o	of the internship shall be for	or a period of 8 w	veeks on full time basi	is betwe	en II semeste
		d beginning of III semester	•			
		ust submit letters from the		specifying his / her na	me and t	he duration o
		on the company letter head				
	-	st be related to the field of s		•	which t	he student ha
enrolled.				1 0		
4) Students	unde	rgoing internship training	are advised to	report their progress	and su	bmit periodi
		ts to their respective guides		1 1 0		1
	-	to make a presentation		hip activities in from	t of the	departmenta
		d only upon approval of t		-		-
		d copy of the internship fir	•	•		• •
		e industry / organization ca	-	-	-	-
industry /	-			~ rr		
•	U	all be printed on bond pap	er – 80GSM, bad	ck to back print, with	soft bind	ling – A4 siz
-		ng and times new roman for		F,		8
	-	nat of the internship final re		follows		
		Page	r			
		icate from College				
		cate from Industry / Organ	ization			
		owledgement				
		e				
	ynop					
		of Contents		• • • •	D 1	
	-	er 1 - Profile of the Or	•	•		
		ess Partners, Financials, Ma	-	Concerns, Profession	al Practi	ces,
	-	er 2 - Activities of the Depa			-	
		er 3 – Tasks Performed – su				
	-	er 4 – Reflections – Highli	ght specific tech	nical and soft skills that	at you ac	equired during
	ntern	•				
•R	efere	ences & Annexure				
Course Outco					_	
		n the internship the student				
		eering and management pr				

CO4: Imbibe the practice of professional ethics and need for lifelong learning.

1. Scheme of Continuous Internal Evaluation (CIE):

A committee comprising of the Head of the Department / Associate Dean, Associate Professor, Assistant Professor and Guide would review the presentation and the progress reports in two phases. The evaluation criteria shall be as per the rubrics given below:

Scheme for Semester End Evaluation (SEE):

The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.

(1) Explanation of the application of engineering knowledge in industries	35%
(2) Ability to comprehend the functioning of the organization/ departments	20%
(3) Importance of resource management, environment and sustainability	25%
(4) Presentation Skills and Report	20%

Dissertation Phase 1							
Course	Code	:	18MPE34		CIE Marks	:	100
Credits		:	L:T:P	0:0:5	SEE Marks	:	100
Hours		:	10		SEE Duration	:	3 Hours
			bjectives:				
The stuc	lents shal	l be	e able to				
			nethod of applying enginee			ems.	
			ng and management princip				
			od verbal presentation and				
4. Iden	tify and s	solv	ve complex engineering pro		ofessionally prescribed s	tanda	urds.
				JUIDELINES			
	5 1 5		will have to be carried out				
2. Each student has to select a contemporary topic that will use the technical knowledge of their							
program of specialization.							
	3. Allocation of the guides preferably in accordance with the expertise of the faculty.						
	r J T T T						
	from the Head of the Department.						
	5. The standard duration of the project is for 16 weeks, however if the guide and the evaluation						
	committee of the department, after the assessment feel that the work is insufficient and it has to be						
	extended, then the student will have to continue as per the directions of the guide and the committee.6. It is mandatory for the student to present his/her work in one of the international conferences or						
						ional	conferences or
publish the research finding in a reputed unpaid journal with impact factor.							
Course Outcomes:							
Ũ	After going through this course the students will be able to CO1: Conceptualize, design and implement solutions for specific problems.						
CO1:			e i				
CO2: CO3:			ate the solutions through pr			0.000	*
			ect and resource manageme				115
UU4:	CO4: Synthesize self-learning, sustainable solutions and demonstrate life-long learning						

Scheme of Continuous Internal Examination (CIE)

Evaluation will be carried out in THREE Phases. The evaluation committee will comprise of: guide, two senior faculty members, one industry member and Head of the Department.

Phase	Activity	Weightage
4 th week	Topic approval along with Synopsis	20%
8 th week	Literature survey with Problem Statement	20%
12 th week	Motivation and Objectives	20%
15 th week	Preliminary report for the approval of selected topic along with methodology.	40%

CIE Evaluation shall be done with marks distribution as follows:

• Selection of the topic	10%
• Literature review and framing of objectives	25%
• Defining the brief methodology along with the	
algorithm development/experimental setup	25%
• Presentation	20%
• Report writing	20%

Scheme for Semester End Evaluation (SEE):

The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.

1.	Brief write-up about the project	5%
2.	Formulation of Project Objectives & Methodology	20%
3.	Presentation	25%
4.	Report	20%
5.	Viva Voce	30%

			Diss	ertation Phase	II		
Course	Code	:	18MPE41		CIE Marks	:	100
Credits		:	L:T:P	0:0:20	SEE Marks	:	100
Hours/V	Veek	:	40		SEE Duration	:	3 Hours
Course l	Learnin	g O	bjectives:				
The stude							
			nethod of applying engined	· ·	A A	ems.	
			ng and management princip		0 1 5		
			od verbal presentation and				
4. Ident	tify and	solv	e complex engineering pro		ofessionally prescribed	stand	ards.
				GUIDELINES			
			ll have to be done by only				
			to select a contemporary	topic that will u	se the technical knowle	edge (of their program
-	ecializat						
			guides preferably in accor				
			be carried out on-campus of Department.	or in an industry	or an organization with	h pric	r approval fror
			ation of the project is for 1	6 weeks howey	ver if the guide and the	evalu	ation committe
of the department, after the assessment feel that the work is insufficient and it has to be extended, then the student will have to continue as per the directions of the guide and the committee.							
6. It is mandatory for the student to present his/her work in one of the international conferences or publish							
the research finding in a reputed unpaid journal with impact factor.							
Course (*			
After goi	ng throu	ıgh	this course the students wi	ll be able to			
CO1:	Concept	tuali	ize, design and implement	solutions for spe	ecific problems.		
CO2:	Commu	nica	ate the solutions through pr	esentations and	technical reports.		
aaa	Apply p	roje	ect and resource manageme	ents skills, profes	ssional ethics, societal c	once	ms
CO3:	Synthes						

Evaluation will be carried out in THREE Phases. The evaluation committee will comprise of: guide, two senior faculty members, one industry member and Head of the Department.

Phase II	Activity	Weightage
5 th week	Review and refinement of Objectives and methodology.	20%
10 th week	Mid-term progress review shall check the compliance with the objectives and methodology presented in Phase I, review the work performed.	40%
15 th week	Oral presentation, demonstration and submission of project report. Outcome and publication	40%

CIE Evaluation shall be done with marks distribution as follows:

10%
25%
25%
20%
20%

Scheme for Semester End Evaluation (SEE):

The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.

1.	Brief write-up about the project	5%
2.	Formulation of Project Objectives & Methodology	20%
3.	Experiments / Analysis Performed; Results & Discussion	25%
4.	Report	20%
5.	Viva Voce	30%

	TECHNICAL SEMINAR					
Course Code	:	18MPE42		CIE Marks	:	50
Credits	:	L:T:P	0:0:2	SEE Marks		50
Hours/Week	:	4		SEE Duration		30 min

Course Learning Objectives (CLO):

The students shall be able to:

- (1) Understand the technological developments in their chosen field of interest
- (2) Explain the scope of work and challenges in the domain area
- (3) Analyze these engineering developments in the context of sustainability and societal concerns.
- (4) Improve his/her presentation skills and technical report writing skills

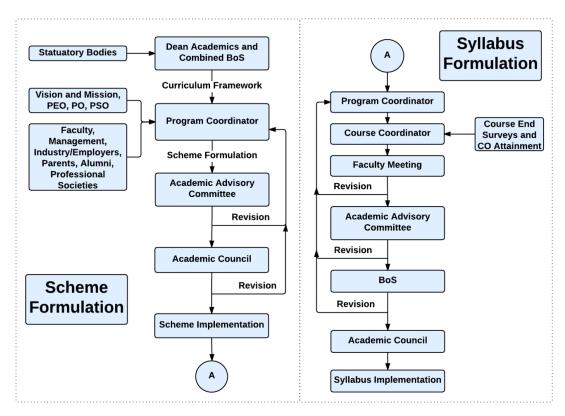
GUIDELINES

- 1) The presentation will have to be done by individual students.
- 2) The topic of the seminar must be in one of the thrust areas with in-depth review and analysis on a current topic that is relevant to industry or on-going research.
- 3) The topic could be an extension or complementary to the project
- 4) The student must be able to highlight or relate these technological developments with sustainability and societal relevance.
- 5) Each student must submit both hard and soft copies of the presentation.

Course Outcomes:

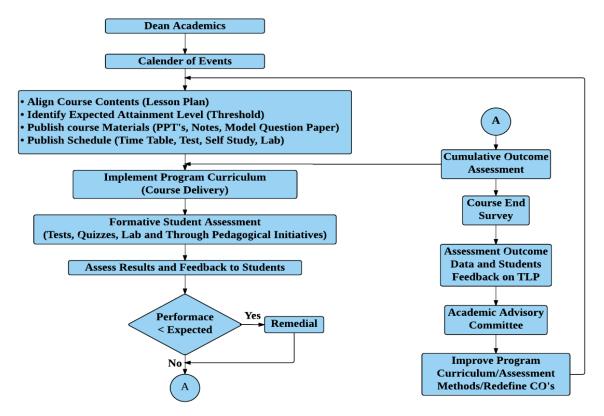
After going through this course the student will be able to:

- CO1: Identify topics that are relevant to the present context of the world
- CO2: Perform survey and review relevant information to the field of study.
- CO3: Enhance presentation skills and report writing skills.
- CO4: Develop alternative solutions which are sustainable

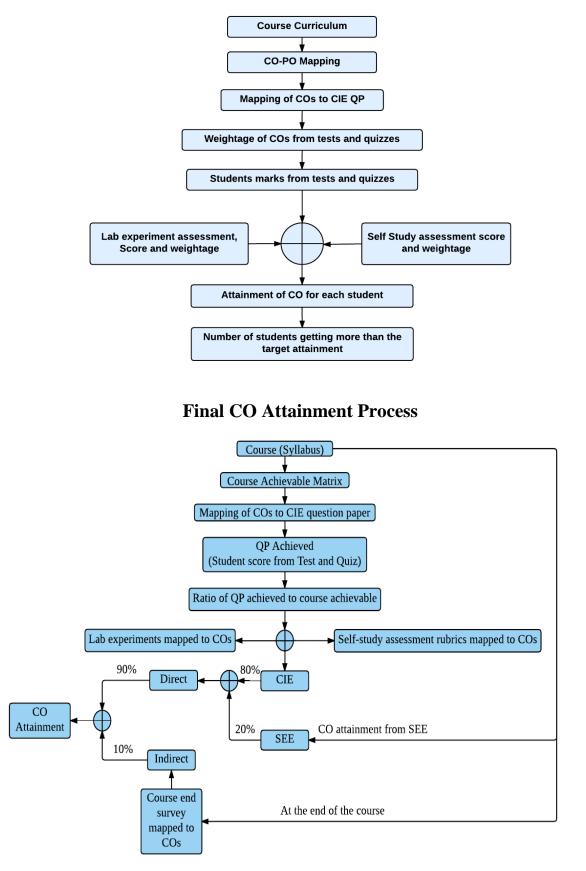

2. Scheme of Continuous Internal Evaluation (CIE): Evaluation would be carried out in TWO phases. The evaluation committee shall comprise of Head of the Department / Associate Dean, Associate Professor, Assistant Professor and Guide. The evaluation criteria shall be as per the rubrics given below:

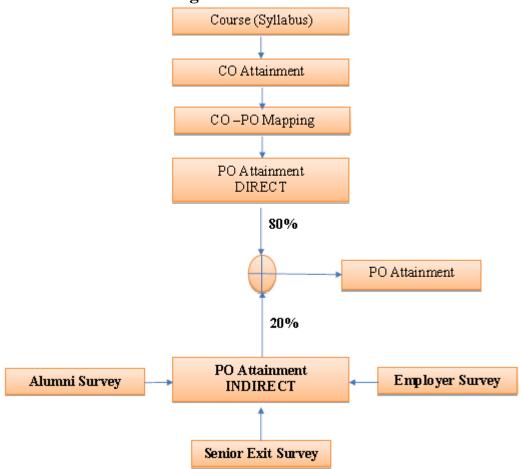
Scheme for Semester End Evaluation (SEE):

The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.


Rubrics for Evaluation:

1)	Topic – Technical Relevance, Sustainability and Societal Concerns	15%
2)	Review of literature	25%
3)	Presentation Skills	35%
4)	Report	25%




Curriculum Design Process

Academic Planning And Implementation

Process For Course Outcome Attainment

Program Outcome Attainment Process

PROGRAM OUTCOMES (PO)

- M. Tech. in Power Electronics graduates will be able to:
- **PO1:** Able to independently carry out research /investigation and development work to solve practical problems in **Power Electronics**
- PO2: Able to write and present a substantial technical report/document
- **PO3:** Able to demonstrate a degree of mastery over **power electronics** at a level higher than the requirements in bachelor program of Electrical Engineering
- PO4: Integrate Power Electronics with other domains to facilitate collaborative inter-disciplinary research
- **PO5:** Acquire professional integrity and ethics, understand the responsibility for sustainable development of the society
- **PO6:** Understand and demonstrate management skills, assess and evaluate the economic feasibility , work effectively as a leader and a team member.