

R.V.COLLEGE OF ENGINEERING

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus for V & VI Semesters

2016 SCHEME

ELECTRICAL AND ELECTRONICS ENGINEERING

Department Vision

Attain technical excellence in Electrical and Electronics Engineering through graduate programs and interdisciplinary research related to sustainability in power, energy and allied fields.

Department Mission

- To provide technical education that combines rigorous academic study and the excitement of innovation enabling the students to engage in lifelong learning
- To establish Centre of Excellence in sustainable electrical energy, smart grids and systems
- To establish tie-ups with industries and institutions of repute and to foster building up of a wide knowledge base to keep in tune with upcoming technologies.
- To motivate commitment of faculty and students to collate, generate, disseminate, persevere, knowledge and to work for the benefit of society.
- To develop simple, appropriate and cost effective inclusive technologies which are instrumental in the up-liftment of the rural society.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **PEO 1.** To provide a strong foundation in Mathematics, Science and Electrical & Electronics Engineering to comprehend, analyze, design, innovate and develop products for real world applications.
- **PEO 2.** To inculcate ethical attitude, effective communication skills, leadership qualities and team spirit for a successful professional career with concern for society.
- **PEO 3.** To provide a holistic academic environment to foster excellence, entrepreneurship and multidisciplinary approach to inculcate an aptitude for research and lifelong learning

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO	Description
PSO1	The B.E. EEE Program must demonstrate knowledge and competence in the application of circuit analysis, control systems, field theory, analog and digital electronics, Power Electronics, microcontrollers, microprocessors, Signal processing and conditioning, computer hardware and software to the design, building, testing, protection and operation of electrical machines, power systems, electrical and electronic systems.
PSO2	The B.E. EEE Program must demonstrate knowledge and competence in the application of basic sciences, rigorous mathematics and project management techniques in the design of complex electrical and electronic systems.
PSO3	The B.E. EEE Program must demonstrate the ability to effectively work in a team, communicate correctly and develop an ethical attitude and concern for society and environment.

Lead Society: Institute Of Electrical And Electronics Engineers (IEEE)

R.V.COLLEGE OF ENGINEERING (Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus for V & VI Semesters

2016 SCHEME

ELECTRICAL AND ELECTRONICS ENGINEERING

SL. NO.	ABBREVIATION	MEANING
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	CS	Computer Science and Engineering
5.	CV	Civil Engineering
6.	CHY	Chemistry
7.	EC	Electronics and Communication Engineering
8.	EE	Electrical and Electronics Engineering
9.	ES	Engineering Science
10.	HSS	Humanities and Social Sciences
11.	ME	Mechanical Engineering
12.	PHY	Engineering Physics
13.	SEE	Semester End Examination
14.	MAT	Engineering Mathematics
15.	PCE	Professional Core Elective
16.	GE	Global Elective

ABBREVIATIONS

INDEX

	V Semester							
Sl. No.	Course		Course Title					
	Code							
1.	16HSI51	Intellectual Pr	operty Rights and Entrepreneurship	1				
2.	16EE52	Digital Signal	Processing	4				
3.	16EE53	Electrical Mac	hines Analysis-II	7				
4.	16EE54	Generation Tra	ansmission Distribution	10				
5.	16EE55	H.V Engineeri	ng	12				
	GROUP A: PROFESSIONAL CORE ELECTIVES							
1.	16EE5A1	Digital Imag	e Processing	15				
2.	16EE5A2	Object Orien	ted Programming with C++	17				
3.	16EE5A3	Embedded S	ystems	19				
4.	16EE5A4	Alternate En	ergy Sources	21				
	GROUP B: GLOBAL ELECTIVES							
Sl. No.	Course	Host Dept	Course Title	Page No.				
	Code							
1.	16G5B01	BT	Bioinformatics	23				
2.	16G5B02	СН	Fuel Cell Technology	25				
3.	16G5B03	CV	Geoinformatics	27				
4.	16G5B04	CSE	Graph Theory	29				
5.	16G5B05	ECE	Artificial Neural Networks & Deep Learning	31				
6.	16G5B06	EEE	Hybrid Electric Vehicles	33				
7.	16G5B07	IEM	Optimization Techniques	35				
8.	16G5B08	E&I	Sensors & Applications	36				
9.	16G5B09	ISE	Introduction To Management Information	39				
	1	ISE	Same for the second sec					
			Systems					
10.	16G5B10	ME	Industrial Automation	41				
10. 11.	16G5B10 16G5B11	ME TCE	Industrial Automation Telecommunication Systems	41 43				
10. 11. 12.	16G5B10 16G5B11 16G5B12	ME TCE MAT	Systems Industrial Automation Telecommunication Systems Computational Advanced Numerical Methods	41 43 45				

	VI Semester						
Sl. No.	Course Code	Course Title	Page No.				
1.	16HEM61	Foundations of Management & Economics	49				
2.	16EE62	Power Systems Analysis - I	51				
3.	16EE63	Power Electronics 5					
4.	16EE64	Modern Control Theory	56				
	(GROUP C: PROFESSIONAL CORE ELECTIVES	•				
1.	16EE6C1	VLSI Circuit and Design	59				
2.	16EE6C2	FLC and Applications	61				
3.	16EE6C3	Utilization of Electrical Power	63				
4.	16EE6C4	H.V.D.C Power Transmission	65				
GROUP D: PROFESSIONAL CORE ELECTIVES							
1.	16EE6D1	Computer organization	67				
2.	16EE6D2	Design and analysis of Algorithms	69				
3.	16EE6D3	Discrete Control System	71				
4.	16EE6D4	Power Quality And RPM	73				
		GROUP E: GLOBAL ELECTIVES					
1.	16G6E01	Bioinspired Engineering	75				
2.	16G6E02	Green Technology	77				
3.	16G6E03	Solid Waste Management	79				
4.	16G6E04	Introduction to Web Programming	81				
5.	16G6E05	Automotive Electronics	83				
6.	16G6E06	Industrial Electronics	85				
7.	16G6E07	Project Management	87				
8.	16G6E08	Virtual Instrumentation					
9.	16G6E09	Introduction to Mobile Application Development 9					
10.	16G6E10	Automotive Engineering	93				
11.	16G6E11	Mobile Network System and Standards	95				
12.	16G6E12	Applied Partial Differential Equations	97				
13.	16G6E13	Aircraft Systems	99				

R V COLLEGE OF ENGINEERNG, BENGALURU-560 059 (Autonomous Institution Affiliated to VTU, Belagavi) DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

FIFTH SEMESTER CREDIT SCHEME								
SI.	Course	Course Title POS			Credit A	llocation		Total
No.	Code	Course Title	BOS	L	Т	Р	S	Credits
1.	16HSI51	Intellectual Property Rights and Entrepreneurship	HSS	2	0	0	0	2
2.	16EE52	Digital Signal Processing	EEE	3	0	1	1	5
3.	16EE53	Electrical Machines Analysis-II	EEE	3	0	1	1	5
4.	16EE54	Generation Transmission Distribution	EEE	3	1	0	0	4
5.	16EE55	H.V Engineering	EEE	3	0	0	0	3
6.	16EE5AX	Elective A (PE)	EEE	3	0	0	0	3
7.	16GB5XX	Elective B (GE)	Respecti ve BOS	3	0	0	1	4
	Tot	al number of Credits						26
	Total N	Number of Hours / Week		20	2	4	12**	26
		SIXTH SEM	ESTER	CREDIT	SCHEM	Έ		
Sl.	Course	Course Title		Credit Allocation				Total
No.	Code	ode Course Thic	_ 0.0	L	Т	Р	S	Credits
1.	16HEM61	Foundation of Management and Economics	HSS	2	0	0	0	2
2.	16EE62	Power Systems Analysis - I	EEE	3	1	0	0	4
3.	16EE63	Power Electronics	EEE	3	0	1	1	5
4.	16EE64	Modern Control Theory	EEE	3	0	1	1	5
5.	16EE6CX	Elective C (PE)	EEE	3	0	0	1	4
6.	16EE6DX	Elective D (PE)	EEE	4	0	0	0	4
7.	16GE6XX	Elective E (GE)	Respec tive BOS	3	0	0	0	3
8.	16HSE68	Professional Practice-III Employability Skills and Professional Development of Engineers	HSS	0	0	1	0	1
	Tota	al number of Credits				-		28
	Total N	umber of Hours / Week		22	2	4	12**	28

** Non-contact hours

V Sem							
GROUP A: PROFESSIONAL CORE ELECTIVES							
Sl. No.	Course Co	ode	Course Title	Credits			
1.	16EE5A	1 Digital Im	age Processing	3			
2.	16EE5A	2 Object Ori	ented Programming with C++	3			
3.	16EE5A	3 Embedded	Systems	3			
4.	16EE5A	4 Alternate I	Energy Sources	3			
		GRO	OUP B: GLOBAL ELECTIVES				
Sl. No.	Host Dept	Course Code	Course Title	Credits			
1.	BT	16G5B01	Bioinformatics	4			
2.	СН	16G5B02	Fuel Cell Technology	4			
3.	CV	16G5B03	Geoinformatics	4			
4.	CSE	16G5B04	Graph Theory	4			
5.	ECE	16G5B05	Artificial Neural Networks & Deep Learning	4			
6.	EEE	16G5B06	Hybrid Electric Vehicles	4			
7.	IEM	16G5B07	Optimization Techniques	4			
8.	E&I	16G5B08	Sensors & Applications	4			
9.	ISE	16G5B09	Introduction To Management Information Systems	4			
10.	ME	16G5B10	Industrial Automation	4			
11.	TCE	16G5B11	Telecommunication Systems	4			
12.	MAT	16G5B12	Computational Advanced Numerical Methods	4			
13.	AE	16G5B13	Basics of Aerospace Engineering	4			

VI Sem							
	GROUP C: PROFESSIONAL CORE ELECTIVES						
Sl. No.	Sl. No. Course Code Course Title		Credits				
1.	16EE6C1	VLSI Circuit and Design	4				
2.	16EE6C2	FLC and Applications	4				
3.	16EE6C3	Utilization of Electrical Power	4				
4.	16EE6C4	H.V.D.C Power Transmission	4				
	GRO	UP D: PROFESSIONAL CORE ELECTIVES					
1.	16EE6D1	Computer organization	4				
2.	16EE6D2	Design and analysis of Algorithms	4				
3.	16EE6D3	Discrete Control System	4				
4.	16EE6D4	Power Quality And RPM	4				

GROUP E: GLOBAL ELECTIVES							
Sl. No.	Host Dept	Course Code	Course Title	Credits			
1.	BT	16G6E01	Bioinspired Engineering	3			
2.	СН	16G6E02	Green Technology	3			
3.	CV	16G6E03	Solid Waste Management	3			
4.	CSE	16G6E04	Introduction to Web Programming	3			
5.	ECE	16G6E05	Automotive Electronics	3			
6.	EEE	16G6E06	Industrial Electronics	3			
7.	IEM	16G6E07	Project Management	3			
8.	E&I	16G6E08	Virtual Instrumentation	3			
9.	ISE	16G6E09	Introduction to Mobile Application Development	3			
10.	ME	16G6E10	Automotive Engineering	3			
11.	TCE	16G6E11	Mobile Network System and Standards	3			
12.	MAT	16G6E12	Applied Partial Differential Equations	3			
13.	AE	16G6E13	Aircraft Systems	3			

	V	SEMESTER					
	INTELLECTUAL PROPERTY	Y RIGHTS AND ENT	FREPRENEURSHIP				
		(Theory)					
(Common to AE, CSE, ECE, EEE, ISE, TE)							
Cou	rse Code: 16HSI51		CIE Marks: 100				
Crec	lits: L:T:P:S: 3:0:0:0		SEE Marks: 100				
Hou	rs: 36L		SEE Duration: 03Hrs				
Cou	rse Learning Objectives: The students	will be able to					
1	To build awareness on the various form	s of IPR and to build th	he perspectives on the con	cepts and			
1	to develop the linkages in technology in	nnovation and IPR.					
2	To equip students on the need to protect	their own intellectual v	works and develop ethical	standards			
-	governing ethical works.						
3	To motivate towards entrepreneurial can	reers and build strong f	oundations skills to enable	e starting,			
5	building and growing a viable as well a	s sustainable venture.					
4	Develop an entrepreneurial outlook ar	nd mind set along wit	h critical skills and know	vledge to			
-	manage risks associated with entrepren	eurs.					
		Unit-I					
Intro	oduction: Types of Intellectual Property,	WIPO, WTO, TRIPS.		07 Hrs			
Pate	nts: Introduction, Scope and salient fear	tures of patent; patent	able and non-patentable				
inver	ntions, Patent Procedure - Overview, Tra	insfer of Patent Rights	; Biotechnology patents,				
prote	ection of traditional knowledge, Infringen	nent of patents and ren	nedy, Case studies				
Trac	le Secrets: Definition, Significance, Too	ls to protect Trade sect	rets in India.				
		Unit-II					
Trac	le Marks: Concept, function and differen	nt kinds and forms of T	Trade marks, Registrable	04 Hrs			
and r	non-registrable marks. Registration of tra-	de mark; Deceptive sin	nilarity; Assignment and				
trans	mission; ECO Label, Passing off; Offen	ces and penalties.					
Infri	ngement of trade mark with Case studies						
		Unit-III					
Indu	strial Design: Introduction, Protecti	on of Industrial De	esigns, Protection and	09 Hrs			
Requ	irements for Industrial Design. Procedur	e for obtaining Design	Protection, Revocation,				
Infri	ngement and Remedies, Case studies						
Copy	Right: Introduction, Nature and scope	e, Rights conferred by	copy right, Copy right				
prote	ection, transfer of copy rights, right of broa	ad casting organization	s and performer's rights,				
Case	Studies.	C 1 .					
Intel	lectual property and cyberspace: Emer	gence of cyber-crime;	Grant in software patent				
and C	Copyright in software; Software piracy; I	Data protection in cybe	rspace				
T (1 1 1.1 11	00.11			
Intro	duction to Entrepreneurship – Learn	how entrepreneurship	has changed the world.	08 Hrs			
	iny six entrepreneurial myths and uncov	er the true facts. Expl	lore E-cells on Campus				
Liste	en to Some Success Stories: - Global leg	ends Understand now (ordinary people become				
SUCC	essiul global entrepreneurs, their journey	ys, their challenges, ai	their success stories.				
onderstand now ordinary people from their own countries have become successful							
Characteristics of a Successful Entrepreneur Understand the entrepreneurial journey and							
learn the concept of different entrepreneurial styles. Identify your own entrepreneurship style							
hase	ton your personality traits strengths and	weaknesses. Learn at	out the 5M Model each				
of th	he five entrepreneurial styles in the m	odel and how they	differ from each other				
Com	municate Effectively. Learn how inco	orrect assumptions and	d limiting our opinione				
abou	t people can negatively impact our com	munication Identify t	he harriers which cause				
com	nunication breakdown such as miscomm	unication and noor lie	tening and learn how to				
over	come them.	iunication and pool its	coning, and rearn now to				
Com	munication Best Practices. Understand	the importance of lis	tening in communication				
and 1	and learn to listen actively. Learn a few body language cues such as eve contact and						

hand	shakes to strengthen communication. (Practical Application)					
	Unit-V					
Desi	gn Thinking for Customer Delight: - Understand Design Thinking as a problem-	08 Hrs				
solv	solving process. Describe the principles of Design Thinking. Describe the Design Thinking					
proc	process.					
Sale	s Skills to Become an Effective Entrepreneur: - Understand what is customer focus					
and	how all selling effort should be customer-centric. Use the skills/techniques of personal					
selli	ng, Show and Tell, and Elevator Pitch to sell effectively.					
Mar	aging Risks and Learning from Failures: - Identify risk-taking and resilience traits.					
Und	erstand that risk-taking is a positive trait. Learn to cultivate risk-taking traits. (Practical					
App	lication) Appreciate the role of failure on the road to success, and understand when to					
give	up. Learn about some entrepreneurs/risk-takers. (Practical Application).					
Are	You Ready to be an Entrepreneur: - Let's ask "WHY" Give participants a real picture					
of th	e benefits and challenges of being an entrepreneur. Identify the reasons why people want					
to be	ecome entrepreneurs. Help participants identify why they would want to					
becc	me entrepreneurs.					
Cou	se Outcomes: After completing the course, the students will be able to					
CO1	: Comprehend the applicable source, scope and limitations of Intellectual Property w	vithin the				
	purview of engineering domain.					
CO ₂	: Knowledge and competence related exposure to the various Legal issues perta	aining to				
	Intellectual Property Rights with the utility in engineering perspectives.					
CO3	: Enable the students to have a direct experience of venture creation through a facilitated	l learning				
	environment.					
CO4	: It allows students to learn and apply the latest methodology, frameworks and t	ools that				
	entrepreneurs use to succeed in real life.					
Refe	rence Books					
1.	Law Relating to Intellectual Property, Wadehra B L.5 th Edition, 2012, Universal Law Pub	Co. Ltd				
	Delhi, ISBN: 9789350350300					
2.	2. Intellectual Property Rights: Unleashing Knowledge Economy, Prabuddha Ganguly, 1 st Edition.					
	2001, Tata McGraw Hill Publishing Company Ltd., New Delhi, ISBN: 0074638602.	,				
3.	Intellectual Property and the Internet, Rodney Ryder, 2002, Lexis Nexis U.K., ISBN: 818	0380025,				
	9788180380020.					
4.	Entrepreneurship, Rajeev Roy, 1st Edition, 2012, Oxford University Press, New Delh	ni, ISBN:				
	9780198072638.					

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	3	3	-	3	1	2	-	3
CO2	1				3	3	3	3	1	2	-	3
CO3	-	3	2	-	-	2	2	3	3	3	3	3
CO4	-	3	2	-	-	3	3	3	3	3	3	3

Low-1 Medium-2 High-3

	Semester: V					
	DIGITAL SIGNAL PROCESSING (Theory and Practice)					
Course Code: 16EE52 CIE Marks: 100+50						
Credits: L:T:P:S: 3:0:1:1 SEE Marks: 100						
Hou	rs: 36L	SEE Duration: 3Hrs				
Cou	rse Learning Objectives:					
1	1 Apply frequency domain techniques to discrete time signals.					
2	2 Implementation of various FFT algorithms.					
3	3 Design various types of digital filters.					
4	Realize different forms of digital fi	lters and analyze DSP processor architecture.				

Unit-I			
Frequency Domain Sampling: DFT, frequency domain sampling and reconstruction of	07 Hrs		
discrete time signals, DFT as a linear transformation			
Properties of DFT: Periodicity, linearity, symmetry, frequency shift, and time shift			
properties, parseval's theorem. Linear and circular convolution			
Unit – II			
Linear filtering methods based on DFT: Linear filtering using DFT, filtering of long data	07 Hrs		
sequences			
Fast Fourier Transform Algorithms: Introduction, decimation in time algorithm, first			
decomposition, number of multiplications, computational efficiency, decimation in			
frequency algorithm.			
Unit -III			
Design of IIR Digital filters: Introduction, Impulse invariant and bilinear transformations,	07 Hrs		
analog filters-Butterworth & Chebyshev, design of Digital Butterworth & Chebyshev, and			
frequency transformations, Realization of IIR filters, block diagram and SFGs (signal flow			
graphs) direct form, parallel form, cascade form.			
Unit –IV			
Design of FIR Digital filters:	08 Hrs		
Introduction, windowing techniques, rectangular window, modified rectangular window,			
Hanning window, Hamming window, Blackman window, Kaiser Window, frequency			
sampling technique, Realization of FIR systems – direct form, linear phase forms.			
Unit –V			
DSP – Architecture:	07 Hrs		
Introduction to Programmable DSPs: Multiplier Accumulator(MAC), Modified bus			
structures & memory access schemes in P-DSPs, multiple access memory, multi-ported			
memory, VLIW architecture, pipelining, special addressing modes in P-DSP, on chip			
peripherals			
Architecture of 11v1S320C5X: Bus structure, central arithmetic logic unit, registers, flags,			
memory and peripherals			

DIG	DIGITAL SIGNAL PROCESSING LABORATORY				
Expe	Experiments using MATLAB				
1	Verification of sampling Theorem				
2	Impulse Response of a given system				
3	Linear convolution of two given sequence				
4	Circular convolution of two given sequence				

5	Autocorrelation and Cross correlation of a given sequences and verification of its properties			
6	Solving a difference equation			
7	Computation of N- point DFT of a given sequence and to plot magnitude and phase spectrum.			
8	Design and implementation of IIR filter			
9	Design and implementation of FIR filter			
Expe	Experiments using DSP Processor			
10	Linear convolution of two given sequence			
11	Circular convolution of two given sequence			
12	Computation of N- point DFT of a given sequence and to plot magnitude and phase spectrum.			
13	Design and implementation of FIR filter for a given specification.			
14	Noise : add noise above 3khz and the remove; interference suppression using 400 Hz tone			
15	Real time applications using DSP (Dc Motor controls stepper motor control etc.)			

Course Outcomes: After completing the course, the students will be able to Understand the fundamental concepts of digital signals, signal processing, DSP processors and CO1: filters CO2: Analyze different types of digital signals and filters. Design, simulation and implementation of digital filters **CO3: CO4**: Implementation of techniques for signal analysis and signal processing and filter algorithms on DSP processors **Reference Books** Digital Signal Processing : Principle, Algorithms and Applications, Proakis, 3rd Edition, 1. 2004, Pearson Education / PHI, ISBN-81-203-1129-9 Digital Signal Processors, B. Venkataramani, M. Bhaskar, 6th Edition, 2004, Tata McGraw 2. Hill, ISBN-13: 978-0070702561 Introduction to Digital Signal Processing, Johnny R. Johnson, 2002, PHI, ISBN-81-203-0760-3. Digital Signal Processing , Salivahanan, Vallavaraj, Gnanapriya, 2nd Edition, 2010, Tata 4. McGraw Hill, , ISBN: 0-07-066924-4

Continuous Internal Evaluation (CIE): Total marks: 100+50=150

Theory – 100 Marks

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total CIE for theory is 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory (50 Marks)

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	2	0	0	1	1	1	0	1
CO2	3	2	3	1	1	0	0	0	2	1	0	0
CO3	3	3	3	2	3	1	0	1	1	1	1	1
CO4	3	3	3	2	3	1	0	0	2	1	1	0

	Semester: V						
	ELECTRICAL MACHINES ANALYSIS-II						
	(Theory & Practice)						
Cou	rse Code: 16EE53	CIE Marks: 100+50					
Cree	dits: L:T:P:S: 3:0:1:1	SEE Marks: 100+50					
Hours: 36L SEE Duration: 03Hrs+03H		SEE Duration: 03Hrs+03Hrs					
Cou	Course Learning Objectives: The students will be able to						
1	Apply the knowledge of	basic concepts of DC machines and AC machines analogy					
2	2 Evaluating the concepts of principle of operation of machine technology.						
3 Design and compare the different types of windings and circuits of d c and synchronous		different types of windings and circuits of d c and synchronous					
machines and evaluating the characteristics of machines by conducting laboratory experience							
4	Describe and analyse the	e operation and construction of common types of AC and DC					
	generators and motors						

Unit-I					
D.C. Generator : Constructional features, EMF equation, Armature windings, types,	07 Hrs				
Armature reaction, commutation and Operating characteristics					
Speed control and testing of D.C. Motors:, torque equation, types, characteristics. Speed					
control of shunt and series motors, starters- three point starter, Direct load test,					
Swinburne's test, Hopkinson's test and retardation test, prediction of losses and efficiency.					
Unit-II					
Alternators: Principle of operation, advantages of stationary armature, constructional	08 Hrs				
features of salient pole and non salient pole alternators, concept of distributed and					
concentrated winding, pitch factor and distribution factor, EMF equation, Armature reaction,					
equivalent circuit, Performance of Alternators- voltage regulation by EMF, MMF,					
ZPF and ASA methods of synchronous machine					
Unit-III					
Two reaction theory of salient pole machines, slip test, power angle characteristic of salient	07 Hrs				
and non salient type. Alternators connected to infinite bus bar, effect of changes of excitation					
and change of input power, synchronizing power, operation of two or more alternators					
connected in parallel and active and reactive load sharing.					
Synchronous Motors: Principle of operation, power flow equations, torque angle					
characteristic, effect of field current and load variations					
Unit-IV					
V curves and inverted V curves, starting of synchronous motors, hunting, damper windings,	07 Hrs				
synchronous condensers and applications Examples					
Special Machines:					
Stepper motor: Principle of operation, variable reluctance, permanent magnet and hybrid					
stepper motors, characteristics.					
Two Phase AC Servomotors: Construction, torque-speed characteristics and applications					
brushless dc motors: important features and applications.					
Unit-V					
Design of DC machines: Rotor Design :Specification, Design of Armature core , Design of	07 Hrs				
armature winding ,Design of commutator Major design problem					
Design of Synchronous machines: Armature Design, Design of salient pole rotor, Design					
of turbo generator.					

LAB	SORATORY EXPERIMENTS
1	No- Load characteristics of a DC shunt generator.
2	Speed control of DC shunt motor by Armature voltage control and field current control.
3	Voltage regulation of alternator by EMF and MMF method
4	Load Test and Swinburne's test on DC shunt motor
5	Ward Leonard method of Speed control of DC motor
6	V and inverted V curve of synchronous motor
7	Slip Test on a three phase salient pole alternator
8	Retardation test - Electrical braking method
9	Voltage regulation of alternator by ZPF and ASA method
10	Hopkinson's Test on DC shunt motor
11	Experiments on Design of Machines using Fluxgen Software

Cours	e Outcomes: After completing the course, the students will be able to
CO1	Understand and describe the operation of different DC and synchronous machines
CO2	Analyze the various types of machines , their performance and characteristics
CO3	Evaluate, assess and compare the working characteristics ,speed control of different DC and synchronous machine
CO4	Design suitable tests for performance evaluation of DC and synchronous machines.
Refer	ence Books
1.	Electric Machinery, Fitzerald Kingsley, 6th Edition, 2003, TMH, ISBN 0-07-112193-5.
2.	Performance and Design of AC machines, M G Say, 4 th Edition, 2006, Pitman,, <i>ISBN</i> -9788123910277.
3.	Electrical Machines, I.J. Nagrath & D.P.Kothari, 4 th Edition, 2006, Tata McGraw Hills, <i>ISBN</i> : 10: 1856497941.
4.	Electrical Machinery, P.S.Bimbhra, 8th Edition, 2008, Khanna publishers, ISBN-10: 8174090568

Continuous Internal Evaluation (CIE): Total marks: 100+50=150 Theory – 100 Marks

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total CIE for theory is 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150

Theory – 100 Marks

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	2	2	2	1	1	1	-	2
CO2	2	2	2	2	2	2	2	1	1	1	-	2
CO3	3	2	2	3	2	2	3	1	1	1	-	2
CO4	3	2	1	1	3	2	2	1	1	1	1	2

		Semester: V					
	GENERAT	TION TRANSMISSION AND DIS (Theory)	STRIBUTION				
Cou	ourse Code: 16EE54 CIE Marks: 100						
Cre	Credits: L:T:P:S: 3:1:0:0 SEE Marks: 100						
Hou	rs: 36L+24T		SEE Duration: 03Hrs				
Cou	rse Learning Objectives:	The students will be able to					
1	Understand the economic	c aspects of power generation.					
2	Explain the block diagram	m and function of all components of	f various types of power ge	eneration			
_	Compute parameters of	the transmission lines and develop	n various models for the	lines and			
3	calculate the efficiency of	of transmission.	p various models for the	intes and			
4	Understand different type Analyze and design distr	es of insulators and design the gradi ibution networks for AC and DC	ng schemes for the insulate	ors and			
		Unit-I					
Gen	eration:			07 Hrs			
Eco	nomic aspects of generatio	on: Demand factor, diversity factor,	load factor and capacity				
facto	or; Various voltage levels	of power transmission. Conventio	onal sources of electrical				
ener	gy, hydel, thermal, and N	luclear & Diesel electric power stat	tions – Site for location,				
Tunc		Inajor components, power generated.	•				
Tra	nsmission line narameter	e.		08 Hrs			
Intro	duction. Representation of	ines. Inductance of a conductor. Ind	fluctance of a single phase	00 1113			
two	wire system: Flux linkag	e in composite conductors – conc	ept of GMR and GMD:				
Indu	ctance of three phase lin	nes; Bundled conductors; Transpos	sition of overhead lines;				
Elec	tric field intensity due to in	nfinite line charge; Capacitance of a	a single phase line,				
Capa	acitance of symmetrically a	and unsymmetrically spaced three ph	nase lines; Skin effect and				
Prox	imity effect						
		Unit-III					
Perf	ormance of Short	and Medium Transmission	h Lines: Introduction	07 Hrs			
: Re	presentation of lines, Cla	assification of transmission lines,	short transmission line,				
Rece	erving end voltage in term	is of line and load parameters, Gen	eral network constraints,				
A,B	C,D constants for short tra	ansmission lines, Medium transmiss	sion line. Performance of				
long	lines, Depresentation of a	rgent series, regulation, Equivalent	circuit representation of				
I long lines, Kepresentation of a long line by π -equivalent, Performance of a long line by T equivalent APCD constants of combined networks							
Tep	esentation of a long line b.	Unit-IV	combined networks.				
Ove	rhead Line Insulators.			07 Hrs			
Intro	duction. Insulator Materia	als (ceramic non-ceramic and Poly	(meric) Suspension type	07 1115			
insu	lators, Strain Insulators, Sl	hackle type insulators. Potential dis	tribution over a string of				
susp	suspension insulators. Mathematical expression for voltage distribution. String efficiency.						
Met	Methods of improving string efficiency, Grading of units; Capacitor grading; Guard ring or						
stati	static shielding, methods to combat pollution problems. Commercial insulators						
Cor	ona:						
Core	ona formation, Effects of	corona, Electric stress, Critical di	isruptive voltage, Visual				
criti	cal voltage, Power loss due	to corona, Factors affecting corona	loss Methods of reducing				
coro	na loss, Advantages of cor	rona, Disadvantages of corona, Effec	ct of corona on				
line	design, Radio interference.						

Unit-V	
Distribution : Introduction : Primary and secondary distribution, Design considerations in	07 Hrs
distribution system, Distribution system losses, Factors effecting distribution system losses,	
Methods for the reduction of line losses, Classification of distribution system, Radial	
distribution system, DC distribution, Uniformly loaded distribution. Ring Main distribution,	
AC distribution, Power factor referred to the receiving end, Power factor referred to	
respective load voltages, Underground Cables -materials, insulation resistance, Capacitance	
and inters heath grading, dielectric loss, and location of faults in underground	
cables.	

Cours	e Outcomes: After completing the course, the students will be able to			
CO1	Understand the fundamental concepts involved in electric power generation, transmission and			
	distribution.			
CO2	Compute transmission line parameters, develop suitable models for the lines and determine			
	the efficiency of transmission.			
CO3	Explain the application of different insulators and design the grading scheme for the insulators			
CO4	Design AC and DC distribution systems			
Reference Books				
1.	Electric Power Generation Transmission and Distribution, S.M.Singh, 3rd edition, 2010			
	Prentice Hall of India Ltd. ISBN-978-81-203-3560-8			
2.	Electrical Power Systems, C.L.Wadhwa, 4th edition 2009 Wiley Easten Ltd, ISBN 0-470-			
	21808-8.			
3.	Electrical Power Transmission and Distribution, J.B.Gupta, S.K.Kataria & Sons, 4th edition			
	2010, ISBN 978-0470-40863-6			
4.	Elements of Power System Analysis, W.D.Stevenson, 4th Edition, TMH, 1982, ISBN-:			
	9780070665842			

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	1	1	1	1	1	1	2	-	1
CO2	2	2	2	2	1	1	1	1	1	2	-	1
CO3	3	3	2	2	1	1	2	1	1	2	-	1
CO4	3	3	2	2	1	1	2	1	1	2	-	1

	Semester: V						
	HIGH VOLTAGE ENGINEERING						
		(Theory)					
Co	urse Code: 16EE55		CIE Marks: 100				
Cre	edits: L:T:P: 3:0:0:0		SEE Marks: 100				
Ho	urs: 36L		SEE Duration: 03 Hours				
Cou	rse Learning Objectives:	The students will be able to					
1	Understand high voltage	fundamentals and bring out its relev	vance to power engineering.				
2	Analyse practical technic	ques to generate and measure high-	voltages (DC, AC, inputs) in the				
4	laboratories.						
3	2 Know the breakdown mechanism of gaseous, liquid and solid dielectrics and Design and test						
5	⁵ High Voltage power apparatus						
4	Obtain in-depth knowled	ge on characteristics and behavior of	of dielectrics.				

Unit-I					
Introduction:	07 Hrs				
Introduction to HV technology, Advantages of transmitting electrical power at high voltages					
Need for generating high ac, dc and impulse voltages in a lab. Important applications of high					
voltage.					
Generation of HV AC & HV DC:					
HVAC - HV transformer; Need for cascade connection and working of transformers units					
connected in cascade. Series resonant circuit -Principle of operation and advantages. Tesla					
coil. HVDC - Voltage double circuit. Cockcroft-Walton type high voltage DC set.					
Calculation of Voltage regulation, Ripple and Optimum number of stages for minimum					
voltage drop.					
Generation of Impulse Voltages and Currents:					
Introduction to standard Lightning and Switching impulse voltages. Analysis of single stage					
and Multistage impulse generator working on Marx principle. Rating of impulse generator.					
Components of multistage impulse generator. Triggering of impulse generator by three					
electrode gap arrangement, Tigerton gap and oscillograph time sweep circuits. Generation of					
switching impulse voltage. Generation of high impulse current. IEC					
Measurement of High voltages:	UO HIS				
method for HV AC measurement Concreting voltmeter. Principle and construction Series					
registance micro ammeter for HVDC measurement. Stendard sphere gap for measurement of					
HVAC HVDC and impulse voltages: Eactors affecting the measurements. Potential					
dividers - Resistance Canacitance and Mixed RC potential divider Surge Current					
Measurement: Klydanograph and magnetic links					
Unit-III					
Breakdown Phenomena:	07 Hrs				
Gaseous dielectrics: Primary and secondary ionization processes. Townsend's criteria for	07 1115				
breakdown, Limitations of the theory. Streamer's theory of breakdown. Space charge effects.					
Cathode processes, Corona discharges, Breakdown in electro-negative gases, Paschen's law.					
Formative and statistical time lags.					
Breakdown in Solid Dielectrics: Intrinsic, avalanche, thermal & electromechanical modes.					
Breakdown of Liquid Dielectrics: Suspended particle theory, electronic breakdown, and					
cavity and electro-convection breakdown					

Unit-IV					
Dielectric Measurements:	07 Hrs				
Parallel and series equivalent circuits. Concept of relaxation & complex dielectric constant.					
Schering bridge. Earthing and shielding. Wagner's device. Measurement of insulation					
resistance. Working and use of a megger. Tracking and treeing principles.					
Partial Discharges:					
Physical basis of partial discharges. Effects of PD. Methods of detection. Straight and					
balanced methods. Factors affecting the discharge detection.					
Over-Voltage Phenomena:					
Nature of lightning. Lightning protection schemes. Working principle of lightning arrester.					
Unit-V					
High Voltage Insulation.	09 Hrs				
Insulation Co-Ordination: Classification of overvoltage's and insulations for insulation co-					
ordination - Characteristics of protective devices, applications, location of arresters -					
insulation co-ordination in AIS and GIS					
Insulation NDT techniques. Dry and wet ac testing. Tests on bushings, transformers,					
switchgear, cables, capacitors and suspension insulators					
Electric Field Based Insulation Design:					
Field pattern in homogenous & multiple dielectrics. Concept of equipotential and field lines.					
Need for stress equalization. Stress control using stress rings, corona shields &screens.					
Earthing and its importance. Introduction to FDM and FEM					
Lurunng and its importance. Introduction to i Divi and i Livi					

Cours	e Outcomes: After completing the course, the students will be able to
CO1	Understand the practical techniques to generate and measure high-voltages (DC, AC, impulse).
CO2	Analyze high voltage testing techniques of Power apparatus and causes of over voltage in
	Power Systems.
CO3	Clarify the concepts used for the measurement of high voltages and currents and design corresponding circuits.
CO4	Designing the test generator circuits for ac, dc and impulse voltages and currents.
Refer	ence Books
1.	High Voltage Engineering Fundamentals, E. Kuffel and W.S. Zaengl, 2 nd Edition 2005,
	Elsevier, ISBN 9780750636346, 9780080508092.
2.	High Voltage Engineering, M.S.Naidu and V Kamaraju, 4 th Edition, 2007 TMH, <i>ISBN</i> 0-07-462286-2.
3.	High Voltage Engineering, C.L.Wadhwa, 4th Edition, 2007 New Age Intnl. Pvt. Ltd. ISBN :
	978-81-224-2152-1, Reprint 2017
4.	EHV AC Transmission Engineering, R.D.Begamudre, 3 rd Edition, 1987, Wiley Eastern, <i>ISBN</i> 10: 8122426182

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I,

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	-	1	-	1	1	-	1	1	1
CO2	2	1	2	1	1	1	-	2	1	2	-	2
CO3	1	1	1	2	2	-	-	1	1	2	-	1
CO4	2	2	3	2	2	1	2	2	2	3	2	1

IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Semester: V								
	DIGITAL IMAGE PROCESSING							
	(Group A: Professional Core Elective)							
Cou	rse Code: 16EE5A1	CIE Mai	:ks: 100					
Crec	lits: L:T:P:S: 3:0:0:0	SEE Ma	rks: 100					
Hou	rs: 36L	SEE Dur	ation: 03Hrs					
Cou	rse Learning Objectives:	The students will be able to						
1	1 Get an introduction to basic concepts and methodologies of Digital Image processing, image formation and color image representation							
2	 Differentiate between the image enhancement and restoration techniques. Enhance the image by various methods in spatial and frequency domain. Perform image restoration using convolution discrete linear operators and filters 							
3	Perform image segmenta	tion using different algorithms suitable for va	rious application	ıs.				
4	4 Perform shape analysis and texture analysis in various environments. Apply morphological operations for detection of objects of interest.							
	Unit-I							
Digi	tal Image Fundamentals			07 Hrs				

Fundamentals of Image Processing, Applications of Image Processing, Components of an				
Image Processing System, Image Formation and Representation				
Unit-II				
Image Enhancement & Restoration	08 Hrs			
Introduction, Distinction between image enhancement and restoration, Spatial Image				
Enhancement Techniques, Histogram-based Contrast Enhancement, Frequency Domain				
Methods of Image Enhancement, Noise Modelling, Image Restoration, Image				
Reconstruction by Other Methods				
Unit-III	•			
Image Segmentation	07 Hrs			
Preliminaries, Edge, Line, and Point Detection, Edge Detector, Image Thresholding	r S			
Techniques, Region Growing, Waterfall algorithm for segmentation, Connected componen	I			
labelling, Document Image segmentation				
Unit-IV				
Recognition of Image Patterns	07 Hrs			
Decision Theoretic Pattern Classification, Bayesian Decision Theory, Nonparametric				
Classification, Linear Discriminant Analysis, Unsupervised Classification Strategies -				
clustering, K-Means Clustering Algorithm, Syntactic Pattern Classification, Syntactic				
Inference				
Unit-V				
Texture and Shape Analysis	07 Hrs			
Introduction, Gray Level Co-occurrence Matrix, Texture Classification using Fractals, Shape				
Analysis, Region Based Shape Descriptors,				
Morphological image processing				
Preliminaries, Dilation and Erosion, Opening and Closing, the Hit-or-Miss Transformation,				
Some Basic Morphological Algorithms				
Course Outcomes: After completing the course, the students will be able to				
CO1 Understand digital image processing fundamentals: hardware and software, d	gitization,			
enhancement and restoration, encoding, segmentation, feature detection				
CO2 Analyze various processing techniques for image analysis and Extraction of data				
CO3 Ability to apply image processing techniques in both the spatial and frequency (Fourie	r) domains			
CO4 Develop and implement image processing programs in MATLAB				

Refer	ence Books								
1	Image Processing-Principles and Applications, Tinku Acharya, Ajoy K. Ray Aug 2005 John								
	Wiley & Sons, Inc., ISBN-13 978-0-471-71998-4								
2	Digital Image Processing, Rafael C. Gonzalez and Richard E. Woods, 3rd Edition, 2001,								
	Pearson Education. ISBN-13: 978-0131687288 .								
3	Fundamentals Of Digital Image Processing, Anil K. Jain, 3rd Edition, 2001. Pearson								
	Education, PHI, ISBN, 0133361659,								
4	Digital Image Processing and Analysis, Chanda and D. Dutta Majumdar, 2003 PHI, ISBN 0-								
	444-51616-6								

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	2	0	0	1	1	1	0	1
CO2	3	2	3	1	1	0	0	0	2	1	0	0
CO3	3	3	3	2	3	1	0	1	1	1	1	1
CO4	3	3	3	2	3	1	0	0	2	1	1	0

	Semester – V							
	OBJECT ORIENTED PROGRAMMING WITH C++							
	()	Group A: Professional Core Elect	ive)					
Cou	rse Code: 16EE5A2		CIE Marks: 100					
Crec	lits: L:T:P:S: 3:0:0:0		SEE Marks: 100					
Hours: 36L			SEE Duration: 3Hrs					
Cou	rse Learning Objectives: 7	The students will be able to						
1	Understand ways of using	objects in software development pr	ocess.					
2	2 Appreciate the differences between classes and objects.							
3	3 Understanding properties of objects in detail.							
4	Applying the properties of	f objects to Electrical Engineering p	roblems					

Unit-I

Unit-I					
Introduction: Overview of C++, Sample C++ program, Different data types, operators,	06Hrs				
expressions, and statements, arrays and strings, pointers & user defined types Function					
Components, argument passing, inline functions, function overloading, recursive functions					
Unit-II					
Classes & Objects I: Class Specification, Class Objects, Scope resolution operator, Access	07 Hrs				
members, Defining member functions, Data hiding, Constructors, Destructors, Parameterized					
constructors, Static data members.					
Unit-III					
Classes & Objects II: Friend functions, Passing objects as arguments, Returning objects,	07 Hrs				
Arrays of objects, Dynamic objects, Pointers to objects, Copy constructors, Generic functions					
and classes, Applications Operator overloading using friend functions such as +, -					
, pre-increment, post-increment, [] etc., overloading <<, >>.					
Unit-IV					
Inheritance I: Base Class, Inheritance and protected members, protected base class	07 Hrs				
inheritance, inheriting multiple base classes. Inheritance II: Constructors, Destructors and					
Inheritance, Passing parameters to base class constructors, Granting access, Virtual base					
classes					
Unit-V					
The C++ I/O System Basics: Old Vs. Modern C++ I/O. Streams. Stream Classes. Formatted	09 Hrs				
I/O. Overloading << and >>. Creating Manipulators, File Classes, Opening and Closing a					
File Text Files Unformatted Binary I/O get() Getline() functions Detecting EOF ignore()					
peak() putback() flush(). Random Access, I/O Status, Customized I/O and Files, Namespaces,					
Conversion Functions Namespaces The std Namespace Creating Conversion Functions					
const Member Functions and mutable Volatile Member Functions Explicit Constructors					
Array-Based I/O Dynamic Arrays Binary I/O with Array-Based					
Streams, Differences between C and C++., Introduction to STL					

After c	After completing the course, the students will be able to							
CO1:	To code solutions in C++							
CO2:	Differentiate between procedural, languages and object oriented language.							
CO3:	Apply properties of objects to solve problems in Electrical Engineering domain.							
CO4:	code the logic of problems in c++ and building software applications							
Referen	Reference Books							
1.	Object oriented programming ion C++, Rober Laffore, Galgotia Publications, 3rd Edition, 2003							
	The Waite group's". <i>ISBN</i> -10: 0672323087;							
2.	C++ Premier, Stanley B Lippman, 3rd Edition,2007, Addison Wesley, <i>ISBN</i> -10:							

	0321714113
3.	C++ Programming Language, Bjarne Stroustruo, , Addison Wesley, 3 rd Edition, 2004. <i>ISBN</i> -10: 0201543303
4.	Object oriented programming in C++, E.Balagurusamy, "Tata Macgraw – Hill Company. 2007,3rd Edition, <i>ISBN</i> 0 - 07 - 049492. –4

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	-	1	-	1	1	-	1	1	1
CO2	2	1	2	1	1	1	-	1	1	2	-	2
CO3	1	1	1	2	2	-	-	1	1	2	-	2
CO4	2	2	3	2	2	1	2	2	2	3	2	1

	Semester: V							
	EMBEDDED SYSTEMS							
	(Group A: Professional Core Elective)							
Cou	rse Code: 16EE5A3	CIE Marks: 100						
Cree	lits: L:T:P:S: 3:0:0:0	SEE Marks: 100						
Hou	rs: 36L	SEE Duration: 3Hrs						
Cou	rse Learning Objectives:							
1	Understand the Hardward	e technologies of Embedded Systems and designing.						
2	Know the Software techn	ologies of Embedded Systems and designing.						
3	3 Analyze the few important practical aspects of Embedded System Design.							
Unit-I								

Embedded Computing; Introduction, complex systems and microprocessors; embedded	08 Hrs						
computers, characteristics of embedded computing applications, challenges in embedded							
computing system design. Systems design process; requirements, specifications,							
architecture design, formalisms for system design; structural description, behavioural							
description.							
Unit-II							
Instruction Sets; Computer Architecture, Assembly Language ARM Processor - processor	07 Hrs						
and memory organization, data operations, flow of control. Programming with ARM							
processor - on µVision IDE from Keil, TI C55x DSP - processor and memory organization,							
addressing modes, data, operations, flow of control							
Unit-III							
Program Design and Analysis: Components for embedded programs, models of programs,	06 Hrs						
assembly, linking and loading, basic compilation techniques, program optimization, program-							
level performance analysis, software performance optimization, program-level energy and							
power analysis, analysis and optimization of program size, program validation and testing.							
Design example: software modem							
Unit-IV							
Processes and Operating Systems: Multiple tasks and multiple processes, multirate systems	07 Hrs						
early multitasking technologies: co routines ,context switching co-operative multitasking pre-							
emptive real-time operating systems, priority based scheduling, IPC ,rate monolithic							
scheduling, earliest deadline first scheduling, mechanisms, power management and							
optimization for processes.							
Unit-V							
Embedded Systems and Networks ;Distributed Embedded Architecture, Why distributed,	08 Hrs						
network abstraction, hardware and software architecture ,message passing programming							
Networks for Embedded Systems, The I2C BUS, The CAN Bus, Ethernet, Internet.							
Automotive Networks, Avionics, Sensor Networks, Design Example: Elevator Controller							
4 Design the components of embedded system							
Course Outcomes: After completing the course, the students will be able to							
CO1: Understand About The Embedded System As A Whole And Its Hardware And	Software						
Components.							
CO2: Analyze Popular CPU Architectures Used In Embedded Systems Such As ARM	And DSP						
Processor Architectures And Corresponding Assembly Language Programming.							
CO3: Design Embedded Software Design, Modelling And Underlying Real Time Operating	System						
Technologies	-						
CO4: Evaluate High Level Design Of An Embedded System From Both Hardware And	Software						
Perspective.							

Refere	nce Books							
1.	Computers as Components - Principles of Embedded Computing System Design, Wolf,							
	Wayne, Second Edition, 2009, Morgan-Kaufmann, ISBN:978-0-12-374397-8							
2.	ARM System-on-chip Architecture ,Steve Furber, Second Edition, 2007, Pearson, ISBN-10:							
	0201675196							
3.	Real- Time Concepts for Embedded Systems ,Qing LI ,Caroline Yao, 2011 , Elsevier							
	,ISBN:978-93-80501-98-7							
4.	An Embedded Software Primer ,Davi E simon, 2006, Pearson education . ISBN:81-7758-							
	154-6							

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	3	1	-	-	1	1	2	1
CO2	2	3	3	2	2	1	-	-	1	1	2	2
CO3	1	2	2	1	3	1	-	-	1	1	2	2
CO4	2	2	2	2	3	-	-	-	-	1	2	2

Semester: V								
	1	ALTERNATE ENERGY SOURCES						
Cou	() rso Codo: 16FF514	Group A: Professional Core Elective)	0					
Cree	lite Loue: IOLESA4	SFF Marks: 10	0					
Hou	rs. 361	SEE Marks. 10 SFE Duration:	3Hrs					
Cou	rse Learning Objectives: '	The students will be able to	51115					
1. Explain the concepts of various forms of Renewable Energy								
2.	Conduct market survey ar	ad perform economic analysis for PV systems.						
	Compare and select from	h different types of renewable energy sources for h	oth dom	estic and				
3. industrial applications.								
4	Assess the potential of R	enewable Energy sources at a geographical location	and des	ign the				
4.	solar PV System for a spe	cified Energy demand		-				
		Unit-I						
Introduction to Solar Energy : Solar radiation at the earth's surface – solar radiation measurements – estimation of average solar radiation – solar thermal flat plate collectors – concentrating collectors – solar thermal applications – heating, cooling, desalination, drying, cooking, etc. – solar thermal electric power plant – principle of photovoltaic conversion of solar energy, types of solar cells – Photovoltaic applications: battery charger, domestic lighting, street lighting, water pumping etc.– solar PV power plant – Net metering concept								
		Unit-II						
Solar cell array system analysis and performance prediction- Shadow analysis: reliability solar cell array design concepts, PV system design – design process and optimization – detailed array design – storage autonomy – maximum tracking – centralized and decentralized SPV systems – standalone – hybrid and grid connected system – System installation – operation and maintenances – field experience – PV market analysis and								
		Unit-III						
Wind Energy: Nature of the wind – power in the wind – factors influencing wind – wind data and energy estimation – wind speed monitoring – wind resource assessment – Betz limit – site selection – wind energy conversion devices – classification, characteristics, applications – offshore wind energy – Hybrid systems – safety and environmental aspects – wind energy potential and installation in India.								
Bio-	Energy :			07 Hrs				
Biomass resources and their classification - Biomass conversion processes - Thermo chemical conversion - direct combustion – biomass gasification - pyrolysis and liquefaction - biochemical conversion - anaerobic digestion - types of biogas Plants - applications - alcohol production from biomass – bio diesel production – Urban waste to energy conversion - Biomass energy programme in India.								
Oce ther - geo - Fu	an energy resources - princ mal power plants - ocean wa othermal energy - geotherm el cell – principle of workin	ciple of ocean thermal energy conversion (OTEC) - we energy conversion - tidal energy conversion – small al power plants – hydrogen production and storage ag - various types - construction and applications.	ocean hydro	U/ Hrs				

Course Outcomes: After completing the course, the students will be able to								
CO1:	Analyse and compare different energy sources and challenges in their implementation.							
CO2:	Assess and evaluate potential for different energy resources at a given location.							
CO3:	Design small scale PV systems for a given specification.							
CO4:	Conduct market survey and evaluate scope for implementation of renewable energy technologies.							

Reference Books

1.	Solar Photo voltatics – Fundamentals, Technologies and Applications , Chetan SinghSolanki,
	2nd Edition, PHI Learning Private limited, 2011, , ISBN-10: 8120343867.
2.	Non-Conventional sources of energy, G.D.Rai,2nd Edition,: Khanna Publishers, 2010,ISBN
	81-297-0277-0.
3.	Non-Conventional Energy Resources, B.H.Khan, 3rd Edition, Tata McGraw Hill Publishers
	2009, ISBN-10:0471226939.
4.	Wind power Technology, Earnest, Joshua, 2nd Edition, 2013, PHI Learning Publishers, ISBN-
	13: 978-8120347786.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	3	1	3	2	3	2	3	2	1	3
CO2	1	1	-	2	2	1	-	-	2	3	-	-
CO3	1	2	1	2	1	2	3	3	1	2	1	-
CO4	3	1	-	2	2	3	-	3	2	1	2	3

	Semester: V								
	BIOINFORMATICS								
	(Group B: Global Elective)								
Cou	rse Code: 16G5B01		CIE Marks: 100						
Credits :L:T:P:S: 4:0:0:0			SEE Marks: 100						
Hou	rs:04		SEE Duration: 3Hrs						
Cou	rse Learning Objectives:								
1	Understand the underlying te	chnologies of Bioinformatics an	d Programming						
2	Explore the various algorithms	behindthecomputationalgenomi	ics and proteomic structural						
	bioinformatics, modeling and	simulation of molecular system	IS.						
3	Applythetoolsandtechniques	thatareexclusivelydesignedasda	taanalyticstoinvestigate						
	the significant meaning hidden behind the high throughput biological data.								
4	Analyze and evaluate the outco	ome of tools and techniques emplo	oyed in the processes of						
	biological data preprocessing and data mining.								

Unit-I

Unit-I					
Biomolecules: Introduction to Biomolecules. Structure, Types and Functions of	09 Hrs				
Carbohydrates, Lipids, Nucleic Acids and Proteins. Genetic code, Codon degeneracy, Genes					
and Genomes. Bioinformatics & Biological Databases: Introduction to Bioinformatics,					
Goals, Scope, Applications in biological science and medicine. Biological databases -					
Sequence, structure, Special Databases and applications - Genome, Microarray, Metabolic					
pathway, motif, and domain databases. Mapping databases - genome wide					
maps. Chromosome specific human maps.					
Unit – II					
Sequence Alignment: Introduction, Types of sequence alignments - Pairwise and Multiple	09 Hrs				
sequence alignment, Alignment algorithms (Needleman & Wunch, Smith & Waterman and					
Progressive global alignment). Database Similarity Searching- Scoring matrices -					
BLOSSUM and PAM, Basic Local Alignment Search Tool (BLAST), and FASTA. Next					
Generation Sequencing – Alignment and Assembly. Molecular Phylogenetics:					
Introduction, Terminology, Forms of Tree Representation. Phylogenetic Tree Construction					
Methods - Distance-Based & Character-Based Methods and Phylogenetic Tree evaluation.					
Unit -III					
Predictive methods: Predicting secondary structure of RNA, Protein and Genes –					
algorithms to predict secondary structure of RNA, Protein and Gene. Prediction of Tertiary					
structure of Protein, Protein identity and Physical properties of protein. Molecular Modeling					
and Drug Designing: Introduction to Molecular Modeling. Methods of Molecular Modeling					
and Force Fields used in Molecular Modeling. Drug designing process					
- deriving Pharmacophore, Receptor Mapping, Estimating Receptor-Ligand interactions					
and Molecular Docking.					
Unit –IV					
Perl: Introduction to Perl, writing and executing a Perl program. Operators, Variables and	09 Hrs				
Special variables. Data Types – Scalar, Array and Associative array. Regular Expressions					
(REGEX), Components of REGEX - Operators, Metacharacters and Modifiers. Subroutines					
- types of functions, defining and calling functions in Perl, calling function - call by value					
and call by reference. Object Oriented Programming in Perl-Class and object,					
Polymorphism, inheritance and encapsulation. Perl Package – writing and calling package.					
Perl Module –writing and calling module.					
Unit –V	<u> </u>				
BioPerl: Introduction to BioPerl, BioPerl Modules, Applications of BioPerl – Sequence	09 Hrs				
retrieval from Database and submission of sequence to online Database, Indexing and					

accessing local databases, Transforming formats of database record, Sequence alignments BioPerl and Sequence Analysis - Pair wise and Multiple sequence alignment, Restriction mapping. Identifying restriction enzyme sites, acid cleavage sites, searching for genes and other structures on genomic DNA, Parsing BLAST and FASTA results. BioPerl and phylogenetic analysis, BioPerl and Phylogenetic tree manipulation, creating graphics for Sequence display and Annotation.

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understand the Architecture and Schema of online databases including structure of records in these
	databases.
CO2:	Explore the Mind crunching Algorithms, which are used to make predictions in Biology, Chemical
	Engineering, and Medicine.
CO3:	Apply the principles of Bioinformatics and Programming to the problems related to process
	simulation and process engineering in Biological system.
CO4:	Use Bioinformatics tools and Next Generation Technologies to model and simulate biological
	phenomenon.

Reference Books

Refere	ALCE DOORS
1	T. Christiansen, B. D. Foy, L. Wall, J. Orwant, Programming Perl: Unmatched power for text processing and scripting, O'Reilly Media, Inc., 4 th Edition, 2012, ISBN-13:978-0596004927
2	B.Haubold, T. Weihe, Introduction to Computational Biology: An Evolutionary Approach, new age publishers, Paperback Edition, 2009, ISBN-13: 978-8184890624
3	C. Bessant, I. Shadforth, D. Oakley, Building Bioinformatics Solutions: with Perl, R and MySQL, Oxford University Press, 1st edition, 2009, ISBN
4	D. C. Young. Computational Drug Design: A Guide for Computational and Medicinal Chemists Wiley-Interscience, 1st edition, 2009, ISBN-13: 978-0470126851.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO N	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	3	2	3	3	-	-	1	2	-
CO2	3	3	3	2	3	3	2	-	2	-	-	-
CO3	3	2	2	2	2	1	1	-	-	-	1	-
CO4	1	2	3	3	3	2	1	-	-	2	-	-

	Semester: V						
	FUEL CELL TECHNOLOGY (Group B: Global Elective)						
Cou	rse Code: 16G5B02	CII	E Marks: 100				
Cree	Credits: L:T:P:S:: 4:0:0:0 SEE Marks: 100						
Hou	Hours: 45L SEE Duration: 3Hrs						
Cour	Course Learning Objectives: The students will be able to						
1	Recall the concept of fuel cells						
2	Distinguish various types of fuel cells and their functionalities						
3	3 Know the applications of fuel cells in various domains						
4	Understand the characterization of fuel cells						

UNIT-I Introduction: Fuel cell definition, historical developments, working principle of fuel cell, 09Hrs components of fuel cell, EMF of the cell, Fuel Cell Reactions, fuels for cells and their properties. UNIT-II Fuel Cell Types: Classification of fuel cells, alkaline fuel cell, polymer electrolyte fuel cell, 09Hrs phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel cell, advantages and disadvantages of each. UNIT-III Fuel Cell Reaction Kinetics: activation kinetics, open circuit voltage, intrinsic maximum 09Hrs efficiency, voltage efficiency, Faradaic efficiency, overall efficiency, over-voltages and Tafel equation. **UNIT-IV** Fuel Cell Characterization: current - voltage curve, in-situ characterization, current -09Hrs voltage measurement, current interrupt measurement, cyclic voltammetry, electrochemical impedance spectroscopy and ex-situ characterization techniques. **UNIT-V** Applications of Fuel Cells: applications of fuel cells in various sectors, hydrogen 09 Hrs production, storage, handling and safety issues.

Cou	rse Outcomes: After completing the course, the students will be able to
1	Understand the fundamentals and characteristics of fuel cells
2	Apply chemical engineering principles to distinguish fuel cells from conventional energy systems
3	Analyze the performance of fuel cells using different characterization techniques
4	Evaluate the possibility of integrating fuel cell systems with conventional energy systems

Refe	erence Books
1.	Fuel Cells – Principles and Applications, Viswanathan and M Aulice Scibioh, 1 st Edition, 2009, Universities Press, ISBN – 13: 978 1420 060287
2.	Fuel Cell Systems Explained, James Larminie and Andrew Dicks, 2 nd Edition, 2003, John Wiley & Sons, ISBN – 978 0470 848579
3.	Fuel Cell Fundamentals, O 'Hayre, R. P., S. Cha, W. Colella, F. B. Prinz, 1 st Edition, 2006, Wiley, New York, ISBN – 978 0470 258439
4.	Recent Trends in Fuel Cell Science and Technology, Basu. S, 1 st Edition, 2007, Springer, ISBN – 978 0387 688152

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO - PO Mapping

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	2	-	-	-	-	-	1	-	1	-	-	-
CO 2	2	-	2	-	-	-	-	-	-	-	-	-
CO 3	-	3	-	-	-	-	3	-	2	-	-	-
CO 4	-	2	2	-	-	-	2	-	3	-	-	2

	Semester: V					
	GEOINFORMATICS					
	(Group B: Global Elective)					
Cou	Course Code:16G5B03 CIE Marks: 100					
Hrs/	Hrs/Week: L:T:P:S: 4:0:0:0 SEE Marks: 100					
Cree	Credits: 48L SEE Duration: 3Hrs					
Cour	rse Learning Objectives: The students wil	ll be able to				
1	1 To understand concept of using photographic data to determine relative positions of points					
2	To study the use of electromagnetic energy for acquiring qualitative and quantitative land					
4	² information					
3	3 To analyze the data gathered from various sensors and interpret for various applications					
4	To understand the various applications	of RS_GIS and GPS				

UNIT-I Remote Sensing- Definition, types of remote sensing, components of remote sensing, 10 Hrs Electromagnetic Spectrum, Black body, Atmospheric windows, energy interaction with earth surface features. spectral reflectance curve- physical basis for spectra reflectance curve, false color composite. Platforms and sensors. Sensor resolutions. Types of satellites-Indian and other remote sensing satellites (IRS, IKONS and Landsat). Concept of image interpretation and analysis - Principle of visual interpretation, recognition elements. Fundamentals of image rectification. Digital Image classification - supervised and unsupervised UNIT-II Photogrammetry, 10 Hrs **Photogrammetry:** Introduction Advantages of types of Photogrammetry, Introduction to digital Photogrammetry. Locating points from two phases determination of focal length. Aerial Photogrammetry: Advantages over ground survey methods - geometry of vertical phographs, scales of vertical photograph. Ground coordination- relief displacement, scale ground coordinates - flight planning **UNIT-III** Geographic Information System- Introduction, Functions and advantages, sources of data 10 Hrs for GIS. Database - Types, advantages and disadvantages. Data Management -Transformation, Projection and Coordinate systems. Data input methods, Data Analysis.overlay operations, network analysis, spatial analysis. Outputs and map generation. Introduction to GPS- components and working principles **UNIT-IV** Applications of GIS, Remote Sensing and GPS: Case studies on Water Resources **09 Hrs** engineering and management (prioritization of river basins, water perspective zones and its mapping), Case studies on applications of GIS and RS in highway alignment, Optimization of routes, accident analysis, Environmental related studies. Case studies on applications of GIS and RS in Disaster Management (Case studies on post disaster management - Earthquake and tsunami and pre disaster management - Landslides and

UNIT-V	
Applications of GIS, Remote Sensing and GPS: Land use land cover (LULC) mapping.	09 Hrs
Case studies on infrastructure planning and management- Case studies on urban sprawl.	
Change detection studies – case studies on forests and urban area. Case studies on	
agriculture. Applications of geo-informatics in natural resources management: Geo	
Technical case Studies, site suitability analysis for various applications.	

floods) Urban Planning & Management - mapping of zones, layouts and infrastructures.

Cou	irse Outcomes: After completing the course, the students will be able to
1	Understand the principle of Remote Sensing (RS) and Geographical Information Systems (GIS)
	data acquisition and its applications.
2	Apply RS and GIS technologies in various fields of engineering and social needs.
3	Analyze and evaluate the information obtained by applying RS and GIS technologies.
4	Create a feasible solution in the different fields of application of RS and GIS.

Reference Books

1.	Geographic Information System-An Introduction, Tor Bernharadsen, 3 rd Edition, Wiley India
	Pvt. Ltd. New Delhi, 2009.
2.	Principles of Remote sensing and Image Interpretation, Lillesand and Kiefer, 5th Edition, John
	Wiley Publishers, New Delhi, 2007.
3.	Remote Sensing and GIS, Bhatta B, Oxford University Press, New Delhi, 2008
4.	Remote Sensing, Robert A. Schowengerdt, 3 rd Edition, Elsevier India Pvt Ltd, New Delhi,
	2009

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	1	-	-	-	-	-	-
CO2	2	1	-	-	1	1	-	-	-	-	-	-
CO3	2	2	1	-	2	1	1	-	-	-	-	1
CO4	2	2	1	-	3	2	2	-	-	-	1	1

Low-1 Medium-2 High-3

Semester: V							
GRAPH THEORY							
(Group B: Global Elective)							
Course Code:16G5B04	CIE Marks: 100						
Credits: L:T:P:S: 4:0:0:0	SEE Marks: 100						
Hours: 45L	SEE Duration: 3 Hrs						

Course Learning Objectives: The students will be able to					
1	Understand the basics of graph theory and their various properties.				
2	Model problems using graphs and to solve these problems algorithmically.				
3	Apply graph theory concepts to solve real world applications like routing, TSP/traffic control, etc.				
4	Optimize the solutions to real problems like transport problems etc.,				

UNIT-I

UNIT-I				
Introduction to graph theory	09 Hrs			
Introduction, Mathematical preliminaries, definitions and examples of graphs, degrees and				
regular graphs, sub graphs, directed graphs, in degrees and out degrees in digraphs.				
Basic concepts in graph theory				
Paths and cycles, connectivity, homomorphism and isomorphism of graphs, connectivity				
in digraphs.				
UNIT-II				
Graph representations, Trees, Forests	09 Hrs			
Adjacency matrix of a graph, Incidence matrix of a graph, Adjacency lists, Trees and				
properties of trees, Characterization of trees, Centers of trees, Rooted trees, Binary threes,				
Spanning trees and forests, Spanning trees of complete graphs, An application to electrical				
networks, Minimum cost spanning trees.				
UNIT-III				
Fundamental properties of graphs and digraphs	09 Hrs			
Bipartite graphs, Eulerian graphs, Hamiltonian graphs, Hamiltonian cycles in weighted				
graphs, Eulerian digraphs.				
Planar graphs, Connectivity and Flows				
Embedding in surfaces, Euler's formula, Characterization of planar graphs, Kuratowski's				
theorem, Dual of a planar graphs.				
UNIT-IV				
Matchings and Factors	09 Hrs			
Min-Max theorem, Independent sets and covers, Dominating sets, maximum bipartite				
matching.				
Coloring of graphs				
The chromatic number of a graph, Results for general graphs, The chromatic polynomial				
of a graph, Basic properties of chromatic polynomial, chordal graphs, powers of graphs,				
Edge coloring of graphs				
UNIT-V				
Graph algorithms	09Hrs			
Graph connectivity algorithms, Breadth first search and Depth first search, Shortest path				
algorithms. Dijikstra's shortest path algorithm. Minimum cost spanning tree algorithms.				
Algorithm of Kruskal's and Prim's.				
Course Outcomes: After completing the course, the students will be able to				
CO1. Understand and explore the basics of graph theory.				
CO2. Analyse the significance of graph theory in different engineering disciplines				
CO3. Demonstrate algorithms used in interdisciplinary engineering domains.				
CO4. Evaluate or synthesize any real world applications using graph theory.				
Ref	erence Books			
-----	---			
1.	Introduction to graph theory, Douglas B. West, 2 nd Edition, 2001, PHI, ISBN- 9780130144003,			
	ISBN-0130144002.			
2.	Graph Theory, modeling, Applications and Algorithms, Geir Agnarsson, Raymond Greenlaw,			
	Pearson Education, 1 st Edition, 2008, ISBN- 978-81-317-1728-8.			
3.	Introduction to Algorithms ,Cormen T.H., Leiserson C. E, Rivest R.L., Stein C., 3rd Edition,			
	2010,PHI, ISBN:9780262033848			

CIE is executed by way of quizzes (Q), tests (\hat{T}) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	-	-	-	-	-	-	1	1	-	-
CO2	2	3	2	1	-	-	-	-	2	2	-	1
CO3	2	2	3	2	-	-	-	-	2	2	-	1
CO4	2	2	3	2	-	1	-	-	2	2	-	1

	Semester: V										
	ARTIFICIAL NEURAL NETWORKS & DEEP LEARNING										
	(Group B: Global Elective)										
Cou	rse Code: 16G5B05		CIE Marks: 100								
Crea	lits: L:T:P:S: 4:0:0:0		SEE Marks: 100								
Hou	rs: 46L		SEE Duration: 3Hrs								
Cou	rse Learning Objectives: 7	The students will be able to									
1	Define what is Neural Ne	etwork and model a Neuron and Ex	press both Artificial Intelligence								
1	and Neural Network										
2	Analyze ANN learning, Error correction learning, Memory-based learning, Hebbian learning.										
4	Competitive learning and Boltzmann learning										
	Implement Simple perce	ption, Perception learning algorith	hm, Modified Perception learning								
3	algorithm, and Adaptive l	inear combiner, Continuous percept	ion, learning in continuous								
	perception.										
	Analyze the limitation of	Single layer Perceptron and Develop	p MLP with 2 hidden layers,								
4	Develop Delta learning ru	le of the output layer and Multilayer	feed forward neural network with								
	continuous perceptions,										

UNIT-I						
Introduction to Neural Networks: Neural Network, Human Brain, Models of Neuron,	08 Hrs					
Neural networks viewed as directed graphs, Biological Neural Network, Artificial neuron,						
Artificial Neural Network architecture, ANN learning, analysis and applications, Historical						
notes.						
UNIT-II						
Learning Processes: Introduction, Error correction learning, Memory-based learning,	10 Hrs					
Hebbian learning, Competitive learning, Boltzmann learning, credit assignment problem,						
learning with and without teacher, learning tasks, Memory and Adaptation.						
UNIT-III						
Single layer Perception: Introduction, Pattern Recognition, Linear classifier, Simple	10 Hrs					
perception, Perception learning algorithm, Modified Perception learning algorithm, Adaptive						
linear combiner, Continuous perception, Learning in continuous perception. Limitation of						
Perception.						
UNIT-IV						
Multi-Layer Perceptron Networks: Introduction, MLP with 2 hidden layers, Simple layer	10 Hrs					
of a MLP, Delta learning rule of the output layer, Multilayer feed forward neural network						
with continuous perceptions, Generalized delta learning rule, Back propagation algorithm						
UNIT-V						
Introduction to Deep learning: Neuro architectures as necessary building blocks for the DL	08 Hrs					
techniques, Deep Learning & Neocognitron, Deep Convolutional Neural Networks,						
Recurrent Neural Networks (RNN), feature extraction, Deep Belief Networks, Restricted						
Boltzman Machines, Autoencoders, Training of Deep neural Networks, Applications and						
examples (Google, image/speech recognition)						

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Model Neuron and Neural Network, and to analyze ANN learning, and its applications.							
CO2:	Perform Pattern Recognition, Linear classification.							
CO3:	Develop different single layer/multiple layer Perception learning algorithms							
CO4:	Design of another class of layered networks using deep learning principles.							

Ref	erence Books
1.	Neural Network- A Comprehensive Foundation, Simon Haykins, 2 nd Edition, 1999, Pearson
	Prentice Hall, ISBN-13: 978-0-13-147139-9
2.	Introduction to Artificial Neural Systems, Zurada and Jacek M, 1992, West Publishing Company,
	ISBN: 9780534954604
3.	Learning & Soft Computing, Vojislav Kecman, 1st Edition, 2004, Pearson Education, ISBN:0-
	262-11255-8
4.	Neural Networks Design, M T Hagan, H B Demoth, M Beale, 2002, Thomson Learning, ISBN-
	10: 0-9717321-1-6/ ISBN-13: 978-0-9717321-1-7

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	2	-	-	-	-	1	-	1
CO4	3	3	3	3	2	-	-	-	-	1	-	1

	Semester: V										
	HYBRID ELECTRIC VEHICLES										
(Group B: Global Elective)											
Course Code : 16G5B06 CIE Marks : 100											
Credits : L:T:P:S 4:0:0:0 SEE Marks : 100											
Hou	rs : 45L	SEE Duration : 3Hrs									
Cou	rse Learning Objectives: The students	will be able to,									
1	Explain the basics of electric and h	hybrid electric vehicles, their architecture, technologies and									
1	fundamentals.										
2	Explain plug – in hybrid electric vehi	Explain plug – in hybrid electric vehicle architecture, design and component sizing and the power									
2	electronics devices used in hybrid electric vehicles.										
Analyze various electric drives suitable for hybrid electric vehicles and Different energy											
technologies used for hybrid electric vehicles and their control.											
4	Demonstrate different configurations	s of electric vehicles and its components, hybrid vehicle									
	configuration by different techniques, s	sizing of components and design optimization and energy									
	management.										

Unit-I							
Introduction: Sustainable Transportation, A Brief History of HEVs, Why EVs Emerged and	07 Hrs						
Failed, Architectures of HEVs, Interdisciplinary Nature of HEVs, State of the Art of HEVs,							
Challenges and Key Technology of HEVs.							
The best from a field of the Anna beller Mathia Davies Device of the EM Device of the HEM Device of							
Hybridization of the Automobile: Vehicle Basics, Basics of the EV, Basics of the HEV, Basics of							
Plug-In Hybrid Electric Vehicle (PHEV), Basics of Fuel Cell Vehicles (FCVs).							
Unit-II							
HEV Fundamentals: Introduction Vahiala Model Vahiala Derformance EV Dewartrain	10 Hrs						
FIEV Fundamentals: Infounction, venicle iviouel, venicle Feitormance, EV Fowertram	101115						
Component Sizing, Series Hybrid Vehicle, Parallel Hybrid Vehicle, Wheel Slip Dynamics.							
Plug-in Hybrid Electric Vehicles: Introduction to PHEVs, PHEV Architectures, Equivalent							
Electric Range of Blended PHEVs, Fuel Economy of PHEVs, Power Management of PHEVs,							
Component Sizing of EREVs, Component Sizing of Blended PHEVs, Vehicle-to-Grid Technology.							
¥7. 1/ ¥¥¥							
Unit-III							
Power Electronics in HEVs: Power electronics including switching, AC-DC, DC-AC conversion,	10 Hrs						
electronic devices and circuits used for control and distribution of electric power, Thermal							

Batteries, Ultracapacitors, Fuel Cells, and Controls: Introduction, Different batteries for EV, Battery Characterization, Comparison of Different Energy Storage Technologies for HEVs, Battery Charging Control, Charge Management of Storage Devices, Flywheel Energy Storage System, Hydraulic Energy Storage System, Fuel Cells and Hybrid Fuel Cell Energy Storage System and Battery Management System.

Unit-IV

Electric Machines and Drives in HEVs: Introduction, BLDC motors, Induction Motor Drives,10HrsPermanent Magnet Motor Drives, Switched Reluctance Motors, Doubly Salient Permanent Magnet10HrsMachines, Design and Sizing of Traction Motors, Thermal Analysis and Modelling of Traction10HrsMotors. (only functional treatment to be given)10Hrs

Management of HEV Power Electronics.

Unit-V	
Integration of Subsystems: Matching the electric machine and the internal combustion engine	08Hrs
(ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage	
technology, Communications, supporting subsystems.	
Energy Management Strategies: Introduction to energy management strategies used in hybrid and	
electric vehicle, classification of different energy management strategies, comparison of different	
energy management strategies, implementation issues of energy strategies.	
Course Outcomes: After completing the course, the students will be able to	

Cou	irse Outcomes: After completing the course, the students will be able to
1	Explain the basics of electric and hybrid electric vehicles, their architecture, technologies and fundamentals.
2	Evaluate the performance of electrical machines and power electronics converters in HEVs.
3	Analyse the different energy storage devices used for hybrid electric vehicles, their technologies and
	control and select appropriate technology
4	Design and evaluate the sizing of subsystem components and Energy Management strategies in HEVs.
Ref	erence Books:
1.	Hybrid Electric Vehicle: Principles and Applications with Practical Perspectives, Mi Chris, Masrur
	A.and Gao D.W. Wiley Publisher, 1 st Edition, 2011, ISBN:0-824-77653-5
2.	Ali, Modern Electric, Hybrid electric and Fuel Cell Vehicles, Ehsani Mehrdad, Gao Yimin, E. Gay
	Sebastien, Emadi CRC Press, 1st Edition, 2005, ISBN: 0-8493-3154-4.
3.	Modern Electric Vehicle Technology, Chan, C.C., Chau, K.T. Oxford University Press, 2001, ISBN 0
	19 850416 0.
4.	Hybrid Electric Vehicles: Energy Management Strategies, Simona Onori, Lorenzo Serrao, Giorgio
	Rizzoni, ISBN: 978-1-4471-6779-2.

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks):

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO/ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	2	1	1	3	1	-	1	-	2
CO2	3	3	2	2	3	-	3	-	2	1	2	1
CO3	2	3	2	2	2	2	3	1	1	1	-	1
CO4	3	3	3	3	3	1	3	3	3	3	1	3

V Semester					
OPTIMIZATION TECHNIQUES					
(Group B:Global Elective)					
Course Code · 16G5B07 CIF Marks · 100					
Credits : L: T: P: S:4:0:0:0 SEE Marks : 100					
Hours : 44L SEE Duration : 03 Hrs					
Course Learning Objectives: The students will be able to					
1. To understand the concepts behind optimization techniques.					
2. To explain the modeling frameworks for solving problems using optimization techniques.					
3. To design and develop optimization models for real life situations.					
4. To analyze solutions obtained using optimization methods.					
5. To compare models developed using various techniques for optimization.					
UNIT – I					
Introduction: OR Methodology, Definition of OR, Application of OR to Engineering and	09 Hrs				
Managerial problems, Features of OR models, Limitations of OR.					
Linear Programming: Definition, Mathematical Formulation, Standard Form, Solution					
Space, Types of solution – Feasible, Basic Feasible, Degenerate, Solution through Graphical					
Method. Problems on Product Mix, Blending, Marketing, Finance, Agriculture and					
Personnel.					
Simplex methods: Variants of Simplex Algorithm – Use of Artificial Variables.					
UNIT – II					
Duality and Sensitivity Analysis: Graphical sensitivity analysis, Algebraic sensitivity	09 Hrs				
analysis - changes in RHS, Changes in objectives, Primal-Dual relationships, Economic					
interpretation of duality, Post optimal analysis - changes affecting feasibility and					
optimality, Revised simplex method					
	00 11				
Fransportation Problem: Formulation of Transportation Model, Basic Feasible Solution using North West corner. Least Cost Vegel's Approximation Method. Optimality Methods	08 Hrs				
Unbalanced Transportation Problem Degeneracy in Transportation Problems. Variants in					
Transportation Problems					
Assignment Problem: Formulation of the Assignment problem solution method of					
assignment problem-Hungarian Method. Variants in assignment problem. Travelling					
Salesman Problem (TSP).					
UNIT – IV					
Queuing Theory: Queuing system and their characteristics, The M/M/I Queuing system,	09Hrs				
Steady state performance analyzing of M/M/1 queuing models. Introduction to M/M/C and					
M/Ek/1 queuing models					
Game Theory: Introduction, Two person Zero Sum game, Pure strategies, Games without					
saddle point - Arithmetic method, Graphical Method, The rules of dominance					
UNIT – V	09 Hrs				
Markov chains: Definition, Absolute and n-step transition probabilities, Classification of the					
states, Steady state probabilities and mean return times of ergodic chains, First passage times	,				
Absorbing states. Applications in weather prediction and inventory management. Over view	,				
of OR software's used in practice.					

Course Outcomes: After going through this cou	rse the student will be able to
---	---------------------------------

CO1 Understand the various optimization models and their areas of application.

CO2 Explain the process of formulating and solving problems using optimization methods.

CO3 Develop models for real life problems using optimization techniques.

CO4 Analyze solutions obtained through optimization techniques.

CO5 Create designs for engineering systems using optimization approaches.

Reference Books:

1.	Operation Research An Introduction, Taha H A, 8th Edition, 2009, PHI, ISBN: 0130488089.
2.	Principles of Operations Research - Theory and Practice, Philips, Ravindran and Solberg, 2nd
	Edition, 2000, John Wiley & Sons (Asia) Pte Ltd, ISBN 13: 978-81-265-1256-0
3.	Introduction to Operation Research, Hiller, Liberman, Nag, Basu, 9th Edition, 2012, Tata McGraw
	Hill, ISBN 13: 978-0-07-133346-7
4.	Operations Research Theory and Application, J K Sharma, 4th Edition, 2009, Pearson Education Pvt
	Ltd, ISBN 13: 978-0-23-063885-3.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2											
CO2	2	2		1	1							
CO3							1	1				
CO4	2		3		1							
CO5			2			1						1

	V Semester					
	SENSO	RS & APPLICATIONS				
	(Grou	ıp B: Global Elective)				
Cou	rse Code:16G5B08	CIE Marks: 100				
Crec	lits/Week: L:T:P:S:4:0:0:0	SEE Marks: 100				
Hours:44L SEE Duration: 3Hrs						
Cou	Course Learning Objectives: The students will be able to					
1	Impart the principles and working 1	modes of various types of Resistive, Inductive,	Capacitive,			
	Piezoelectric and Special transducers.					
2	2 Give an idea about the applications of various transducers and selection criteria of a transducer fo					
	a particular application.					
3	Give an insight into the static and dy	namic characteristics of different orders of instru	ments.			
4	Describe different data conversion te	chniques and their applications.				

UNIT-I	
Introduction: Definition of a transducer, Block Diagram, Active and Passive Transducers,	09 Hrs
Advantages of Electrical transducers.	
Resistive Transducers: Potentiometers: Characteristics, Loading effect, and problems.	
Strain gauge: Theory, Types, applications and problems.	
Thermistor, RTD: Theory, Applications and Problems.	
UNIT-II	
Thermocouple: Measurement of thermocouple output, compensating circuits, lead	10 Hrs
compensation, advantages and disadvantages of thermocouple.	
LVDT: Characteristics, Practical applications and problems.	
Capacitive Transducers: Capacitive transducers using change in area of plates, distance	
between plates and change of dielectric constants, Applications of Capacitive Transducers	
and problems.	
UNIT-III	
Piezo-electric Transducers: Principles of operation, expression for output voltage, Piezo-	10 Hrs
electric materials, equivalent circuit, loading effect, and Problems.	
Special Transducers: Hall effect transducers, Thin film sensors, and smart transducers:	
Principles and applications, Introduction to MEMS Sensors and Nano Sensors, Schematic	
of the design of sensor, applications.	
UNIT-IV	
Chemical sensors: pH value sensor, dissolved oxygen sensor, oxidation-reduction potential	08 Hrs
sensor.	
Light sensors: Photo resistor, Photodiode, Phototransistor, Photo-FET, Charge coupled	
device.	
Tactile sensors: Construction and operation, types.	
UNIT-V	
Data Converters: Introduction to Data Acquisition System, types of DAC, Binary Weighted	07 Hrs
DAC, R-2R ladder DAC, DAC-0800, Types of ADC, Single Slope ADC and Dual-slope	
integrated type ADC, Flash ADC, 8-bit ADC-0808, Programmable Gain Amplifier.	

Course	Outcomes: After completing the course, the students will be able to
CO1:	Remember and understand the basic principles of transducers and smart sensors.
CO2:	Apply the knowledge of transducers and sensors to comprehend digital instrumentation
	systems.
CO3:	Analyze and evaluate the performance of different sensors for various applications.
CO4:	Design and create a system using appropriate sensors for a particular application

Referen	nce Books
1	Electrical and Electronic Measurements and Instrumentation, A.K. Sawhney, 18th Edition,
	2008, Dhanpat Rai and Sons, ISBN: 81-7700-016-0.
2	Sensor systems: Fundamentals and applications, Clarence W.de Silva, 2016 Edition, CRC
	Press, ISBN: 9781498716246.
3	Transducers and Instrumentation, D.V.S. Murthy, 2 nd Edition 2008, PHI Publication, ISBN:
	978-81-203-3569-1.
4	Introduction to Measurement and Instrumentation, Arun K. Ghosh, 3rd Edition, 2009, PHI,
	ISBN: 978-81-203-3858-6.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-P	O MAI	PPING					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	-	-	-	-	-	-	-	-	-
CO2	2	3	-	-	2	2	-	-	-	-	-	-
CO3	1	2	2	-	1	1	-	-	-	-	-	2
CO4	-	-	-	-	1	1	-	-	-	3	-	1

		Semester: V			
	INTRODUCTION TO	MANAGEMENT IN	FORMATION SYSTEMS		
Ca	(Group B: Global Elec	tive)		
	urse Code: 16G5B09		CIE Marks: 100		
	edits: L:1:P:S: 4:0:0:0		SEE Marks: 100		
	urse Learning Objectives: The s	tudanta will be able to	SEE Duration: SHI'S		
1	To understand the basic principle	s and working of inform	nation technology		
2	Describe the role of information	technology and informa	tion systems in husiness		
3	To contrast and compare how	internet and other int	formation technologies suppo	rt husiness	
5	processes	internet and other in	tormation technologies suppo	n business	
4	To give an overall perspective of	the importance of appli	cation of internet technologies	in	
-	business administration.	and map of the of the pro-			
		UNIT I			
Information Systems in Global Business Today: The role of information systems in business today, Perspectives on information systems, Contemporary approaches to information systems, Hands-on MIS projects. Global E-Business and Collaboration : Business process and information systems, Types of business information systems, Systems for collaboration and team work, The information systems function in business.				09 Hrs	
		UNIT II			
Information Systems, Organizations and Strategy: Organizations and information systems, How information systems impact organization and business firms, Using information systems to gain competitive advantage, management issues, Ethical and Social issues in Information Systems : Understanding ethical and Social issues related to Information Systems, Ethics in an information society, The moral dimensions of information society. A Case study on business planning.					
	UNIT III				
IT cor tren abu cor cyt	IT Infrastructure and Emerging Technologies : IT infrastructure, Infrastructure 09 Hrs components, Contemporary hardware platform trends, Contemporary software platform trends, Management issues. Securing Information Systems: System vulnerability and abuse, Business value of security and control, Establishing framework for security and control, Technology and tools for protecting information resources. A case study on cybercrime.				
		UNIT IV			
Achieving Operational Excellence and Customer Intimacy: Enterprise systems, Supply Chain Management (SCM) systems, Customer relationship management (CRM) systems, Enterprise application. E-commerce: Digital Markets Digital Goods: E- commerce and the internet, E-commerce-business and technology, The mobile digital platform and mobile E-commerce, Building and E-commerce web site. A Case study on ERP.09 I				09 Hrs	
		UNIT V			
Ma kno En inte Sys	maging Knowledge: The knowledge management system, H bwledge management system, H hancing Decision Making: Decision elligence in the enterprise. Busines stems: Systems as planned organiz	wledge management Knowledge work syste ion making and informa ss intelligence constitue cational change, Overvie	landscape, Enterprise-wide ems, Intelligent techniques. tion systems, Business ncies. Building Information ew of systems development.	09 Hrs	

Course	Outcomes: After completing the course, the students will be able to
CO1:	Understand and apply the fundamental concepts of information systems.
CO2:	Develop the knowledge about management of information systems.
CO3:	Interpret and recommend the use information technology to solve business problems.
CO4:	Apply a framework and process for aligning organization's IT objectives with business strategy.

Referen	ice Books
1	Management Information System, Managing the Digital Firm, Kenneth C. Laudon and Jane
	P. Laudon, 14 th Global Edition, 2016, Pearson Education, ISBN:9781292094007
2	Management Information Systems, James A. O' Brien, George M. Marakas, 10 th Edition, 2011,
	Global McGraw Hill, ISBN: 978-0072823110
3	Information Systems The Foundation of E-Business, Steven Alter, 4 th Edition, 2002, Pearson
	Education, ISBN:978-0130617736
4	W.S. Jawadekar, Management Information Systems, Tata McGraw Hill, 2006, ISBN:
	9780070616349

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	1	-	-	-	1	-	-	1	-
CO2	1	2	-	1	-	-	-	1	-	-	1	-
CO3	-	-	3	2	2	-	-	1	-	1	1	-
CO4	-	-	2	1	-	-	-	1	-	1	1	-

Semester: V					
	INDUS	STRIAL AUTOMAT	ION		
(Group B: Global Elective)					
Cou	rse Code: 16GB510		CIE Marks: 100		
	11ts: L:1:P:S : 4:0:0:0		SEE Marks: 100		
Hou	rs: 44L	ahavid ha ahla tar	SEE Duration: 3 Hrs		
	Identify types of actuators, sensors and	silouid be able to:	industrial automation		
Indentify types of actuators, sensors and switching devices for industrial automation					
2	Linderstand fundamentals of CNC PL	autic and Flieumatic s	ystems		
4	Define switching elements and sensors	which are interfaced i	n an automation system		
5	Describe functions of Industrial switch	ing elements and Inspe	ection technologies for automation	n	
6	Select sensors to automatically detect n	notion of actuators	certon technologies for untoinario.		
7	Develop manual part programs for CN	C and Ladder logic for	PLC		
8	Develop suitable industrial automation	systems using all the a	above concepts		
			T		
		UNIT-I			
Auto	omation in Production Systems:			08 Hrs	
Man	ufacturing support systems, Automatic	on principles and stra	ategies, Levels of Automation,		
Prod	uction Concepts and Mathematical mode	els, Numericals			
Automated Production Lines:					
Fundamentals, Applications, Analysis with no storage, Analysis with storage buffer, Numericals					
UNIT-II					
Switching theory and Industrial switching elements					
Bina	ry elements, binary variables, Basic log	gic gates, Theorems of	of switching algebra, Algebraic		
Floo	tromachanical relays Moving part logi	nougn maps, Logic	lements Timers Comparisons		
betw	een switching elements Numericals	e elements, Fuldie e	iements, Timers, Comparisons		
Indu	strial Detection Sensors and Actuator	¢:			
Intro	duction. Limit switches. Reed switches	s. Photoelectric senso	rs- methods of detection. Hall		
effec	et sensors, Inductive proximity sensors, C	apacitive proximity se	nsors, Pneumatic back pressure		
sens	ors, Absolute encoder, Incremental encod	ler, Pressure switches	and temperature switches; their		
work	ing principles and applications, Brushles	ss DC motors, Stepper	motors and		
Serv	o motors				
		UNIT-III			
Hyd	raulic Control circuits			10 Hrs	
Com	ponents, Symbolic representations, C	Control of Single a	nd Double Acting Cylinder,		
Rege	nerative Circuit application, Pump unlo	ading circuit, Double	Pump Hydraulic System, speed		
conti	ol circuits, accumulator circuits				
Com	nnanc Control Circuits	ISO 5500 Indirect co	ntrol of double acting cylinders		
mem	ory control circuit cascading design aut	tomatic return motion	quick exhaust valve		
circuit, and cyclic operation of a cylinder, pressure sequence valve and time delay valve circuits					
UNIT-IV					
Introduction to CNC					
Numerical control, components of CNC, classification, coordinate systems, motion control strategies,					
interpolation, programming concepts					
Indu	istrial Robotics				
Com	ponents of Robots, base types, classification	ation of robots, end of	f arm tooling, robot precision of		
mov	ement, programming, justifying the use o	of a robot, simple num	ericals		
		UNIT-V			
Prog	rammable logic control systems			10 Hrs	
Diffe	erence between relay and PLC circuits. P	LC construction prince	ciples of operation latching		

ladder diagrams, programming instructions, types of timers, forms of counters, writing simple ladder diagrams from narrative description and Boolean logic.

Programming exercises on PLC with Allen Bradley controller

Programming exercises on motor control in two directions, traffic control, annunciator flasher, cyclic movement of cylinder, can counting, conveyor belt control, alarm system, sequential process, and continuous filling operation on a conveyor.

Cou	irse Outcomes: After completing the course, the students will be able to
1	Illustrate applications of sensors actuators, switching elements and inspection technologies in industrial
	automation
2	Build circuit diagrams for fluid power automation, Ladder diagrams for PLC and identify its application
	areas
3	Evaluate CNC programs for 2D complex profiles performed on machining and turning centres interfaced
	with Robots
4	Develop suitable industrial automated system integrating all of the above advanced automation concepts

Ref	erence Books						
1.	Industrial automation - Circuit design and components, David W. Pessen, 1st Edition, 2011, Wiley India,						
	ISBN -13-978-8126529889						
2.	Pneumatic Controls, Joji P, 1st Edition, Wiley India, ISBN – 978–81–265–1542–4						
3.	Fluid Power with Applications, Anthony Esposito, 7th Edition, 2013, ISBN						
	- 13; 978- 9332518544						
4.	Automation, Production systems and Computer Integrated Manufacturing, Mikell P. Groover, 3rd						
	Edition, 2014, ISBN – 978–81–203–3418–2						

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3				2	1	2	1			1	2
CO2	1		2	3	2	2	2			2		
CO3		1		2	1					2		
CO4			3	2	2	1		2	2	3	2	2

	Semester: V						
	TELECOMMUNICATION SYSTEMS						
	(Group B: Global Elective)						
Cou	rse Code: 16G5B11	(CIE Marks: 100				
Cree	lits: L:T:P:S: 4:0:0:0	S	SEE Marks: 100				
Hours: 46L SEE Duration: 03Hrs							
Cou	rse Learning Objectives: The students	s will be able to					
1	Represent schematic of communication system and identify its components.						
2	Classify satellite orbits and sub-systems for communication.						
3	3 Analyze different telecommunication services, systems and principles.						
4	4 Explain the role of optical communication system and its components.						
5	Describe the features of wireless technologies and standards.						

		1
		· ·
	N I I	
~		

Introduction to Electronic Communication: The Significance of Human Communication,	09 Hrs		
Communication Systems, Types of Electronic Communication, Modulation and			
Multiplexing, Electromagnetic Spectrum, Bandwidth, A Survey of Communication			
Applications.			
The Fundamentals of Electronics: Gain, Attenuation, and Decibels.			
UNIT-II			
Modulation Schemes: Analog Modulation: AM FM and PM- brief review	10 Hrs		
Digital Modulation: PCM Line Codes ASK FSK PSK and OAM Wideband	10 1115		
Medulation: Spread spectrum EUSS DSSS			
Moldination: Spieau Spectrum, FHSS, DSSS.			
Multiplexing and Multiple Access Techniques: Frequency division multiplexing, Time			
division multiplexing			
Multiple Access: FDMA, TDMA, CDMA, Duplexing.			
UNIT-III			
Satellite Communication:	09 Hrs		
Satellite Orbits, Satellite Communication Systems, Satellite Subsystems, Ground Stations,			
Satellite Applications, Global Positioning System.			
UNIT-IV			
Optical Communication : Optical Principles, Optical Communication Systems, Fiber-Optic	09 Hrs		
Cables, Optical Transmitters and Receivers, Wavelength-Division			
Multiplexing, Passive Optical Networks.			
UNIT-V			
Cell Phone Technologies: Cellular concepts, Frequency allocation, Frequency reuse.	09 Hrs		
Advanced Mobile Phone System (AMPS)			
Digital Cell Phone Systems: 2G 2.5G 3G and 4G cell phone systems Advanced Cell			
Phones.			
Wireless Technologies: Wireless LAN, PANs and Bluetooth, ZigBee and Mesh Wireless			
Networks, WiMAX and Wireless Metropolitan-Area Networks.			
Course Outcomes: After completing the course, the students will be able to			

Course	Course Outcomes: After completing the course, the students will be able to						
CO1	Describe the basics of communication systems.						
CO2	Analyze the importance of modulation and multiple access schemes for communication systems.						
CO3	Compare different telecommunication generations, wired and wireless communication.						
CO4	Justify the use of different components and sub-system in advanced communication systems.						

Ref	erence Books
1.	Principles of Electronic Communication Systems, Louis E. Frenzel, 3 rd Edition, 2008, Tata McGraw Hill, ISBN: 978-0-07-310704-2.
2.	Electronic Communication Systems, Roy Blake, 2 nd Edition, 2002, Thomson/Delamar, ISBN: 978-81-315-0307-2.
3.	Electronic Communication Systems, George Kennedy, 3 rd Edition, 2008, Tata McGraw Hill ISBN: 0-02-800592-9.

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1		1	1				1			
CO2	2	1		1	1				1			
CO3	2	1		1	1				2			
CO4	1	1		1	1	1			1			

	Semester: V							
	COMPUTATIONAL ADVANCED NUMERICAL METHODS							
	(Group B: Global Elective)							
Cou	rse Code:16G5B12		CIE Marks: 100					
Crea	lits: L:T:P:S: 4:0:0:0		SEE Marks: 100					
Hours: 44L			SEE Duration: 3Hrs					
Cou	rse Learning Objectives:							
1	Adequate exposure to learn	n alternative methods and ana	alyze mathematical problems to					
	determine the suitable numer	rical techniques.						
2	Use the concepts of interpol	lation, eigen value problem tec	hniques for mathematical problems					
	arising in various fields.							
3	3 Solve initial value and boundary value problems which have great significance in engineering							
	practice using ordinary differential equations.							
4	Demonstrate elementary pro	ogramming language, implemen	ntation of algorithms and computer					
	programs to solve mathematical problems.							

Unit-I	
Algebraic and Transcendental equations:	08 Hrs
Roots of equations in engineering practice, Polynomials and roots of equations, Fixed point	
iterative method, Aitken's process, Muller's method, Chebychev method.	
Unit – II	
Interpolation:	08 Hrs
Introduction to finite differences, Finite differences of a polynomial, Divided differences	
and Newton's divided difference interpolation formula, Hermite interpolation, Spline	
interpolation-linear, quadratic and cubic spline interpolation.	
Unit -III	
Ordinary Differential Equations:	09 Hrs
Solution of second order initial value problems-Runge-Kutta method, Milne's method,	
Boundary value problems (BVP's)-Shooting method, Finite difference method for linear	
and nonlinear problems, Rayleigh-Ritz method.	
Unit –IV	
Eigen value problems:	09 Hrs
Eigen values and Eigen vectors, Power method, Inverse Power method, Bounds on Eigen	
values, Greschgorin circle theorem, Jacobi method for symmetric matrices, Givens method.	
Unit –V	
Computational Techniques:	10 Hrs
Algorithms and Matlab programs for Fixed point iterative method, Aitken's-process,	
Muller's method, Chebychev method, Newton's divided difference method, Hermite	
interpolation, Spline interpolation, Power method, Inverse Power method, Runge-Kutta	
method, Milne's method, Shooting method, Rayleigh-Ritz method, Jacobi method and	
Givens method.	

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Identify and interpret the fundamental concepts of polynomial equations, Interpolation, Eigen
	value problems, Differential equations and corresponding computational techniques.
CO2:	Apply the knowledge and skills of computational techniques to solve algebraic and
	transcendental equations, Ordinary differential equations and eigen value problems.
CO3:	Analyze the physical problem and use appropriate method to solve roots of equations,
	Interpolating the polynomial, Initial and boundary value problems, Eigen value problems
	numerically using computational techniques.
CO4:	Distinguish the overall mathematical knowledge gained to demonstrate and analyze the
	problems of finding the roots of equations, Interpolation, Differential equations, Eigen value

	problems arising in engineering practice.
Refere	ence Books
	Numerical methods for scientific and engineering computation, M. K. Jain, S. R. K. Iyengar
1	and R. K. Jain, New Age International Publishers, 6th Edition, 2012, ISBN-13: 978-81-224-
	2001-2.
2	Numerical Analysis, Richard L. Burden and J. Douglas Faires, Cengage Learning, 9th Edition,
2	2012, ISBN-13: 978-81-315-1654-6.
2	Introductory Methods of Numerical Analysis, S. S. Sastry, PHI Learning Private Ltd., 4th
- 3	Edition, 2011, ISBN: 978-81-203-2761-0.
4	Numerical Methods for Engineers, Steven C Chapra, Raymond P Canale, Tata Mcgraw Hill,
4	5 th Edition, 2011, ISBN-10: 0-07-063416-5.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

	Semester: V					
BASICS OF AEROSPACE ENGINEERING						
	(Group B: Global Elective)					
Course Code: 16G5B13		CIE Marks: 100				
Credits: L:T:P:S: 4:0:0:0		SEE Marks: 100				
Hours: 44L		SEE Duration: 3Hours				

Course Learning Objectives:

To enable the students to:

ſ

- 1 Understand the history and basic principles of aviation
- 2 Demonstrate and explain foundation of flight, aircraft structures, material, aircraft propulsion
- 3 Comprehend the importance of all the systems and subsystems incorporated on a air vehicle
- 4 Appraise the significance of all the subsystems in achieving a successful flight

Unit-I

Introduction to Aircraft : History of aviation, International Standard atmosphere, Atmosphere and its properties, Temperature, pressure and altitude relationships, Classification of aircrafts, Anatomy of an aircraft & Helicopters, Basic components and their functions. Introduction to Unconventional and Autonomous Air vehicles	08 Hrs		
the relievent of the one of the o			
Unit – 11			
Basics of Aerodynamics : Bernoulli's theorem, Aerodynamic forces and moments on an Airfoil, Lift and drag, Types of drag, Centre of pressure and its significance, Aerodynamic centre, Aerodynamic Coefficients, Wing Planform Geometry, Airfoil nomenclature, Basic characteristics of airfoils, NACA nomenclature, Simple problems on lift and drag.			
Unit -III			
Aircraft Propulsion : Introduction, Classification of powerplants, Piston Engine: Types of reciprocating engines, Principle of operation of turbojet, turboprop and turbofan engines, Introduction to ramjets and scramjets, Comparative merits and demerits of different types Engines.	07 Hrs		

Unit -IV

Introduction to Space Flight : History of space flight, Evolution of Indian Space					
Technology, The upper atmosphere, Introduction to basic orbital mechanics, some basic					
concepts, Kepler's Laws of planetary motion, Orbit equation, Space vehicle trajectories. 08					
Rocket Propulsion : Principles of operation of rocket engines, Classification of Rockets,					
Types of rockets.					
Unit -V					
Aerospace Structures and Materials : Introduction, General types of construction,					

Monocoque, Semi-Monocoque and Geodesic structures, Typical wing and fuselage	
structure; Metallic and non-metallic materials for aircraft application. Use of aluminum	07 Hrs
alloy, titanium, stainless steel and composite materials, Low temperature and high	
temperature materials.	

Cou	irse Outcomes:
At t	he end of this course the student will be able to :
1	Appreciate and apply the basic principles of aviation
2	Apply the concepts of fundaments of flight, basics of aircraft structures, aircraft propulsion and
2	aircraft materials during the development of an aircraft
3	Comprehend the complexities involved during development of flight vehicles.
4	Evaluate and criticize the design strategy involved in the development of airplanes

Ref	erence Books
1	John D. Anderson, Introduction to Flight, 7 th Edition, 2011, McGraw-Hill Education, ISBN 9780071086059.
2	Sutton G.P., Rocket Propulsion Elements, 8 th Edition, 2011, John Wiley, New York, ISBN:1118174208, 9781118174203.
3	Yahya, S.M, Fundamentals of Compressible Flow, 5 th Edition, 2016, New Age International, ISBN: 8122440223
4	T.H.G Megson, Aircraft structural Analysis, 2010, Butterworth-Heinemann Publications, ISBN: 978-1-85617-932-4

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-I	PO Maj	oping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1
												2
CO1	3	3	3	1	1	3	2	2				1
CO2	2	2	2	3	2	1	1	1				1
CO3	1		3	3								1
CO4	2	2	3	3		2	2	2				1

VI SEMESTER
FOUNDATIONS OF MANAGEMENT AND ECONOMICS
(Theory)

(Common to AE, CSE, ECE, EEE, ISE, TE)

Course Code: 16HEM61CIE Marks: 50Credits: L:T:P:S: 2:0:0:0SEE Marks: 50Hours: 23LSEE Duration: 02HrsCourse Learning Objectives: The students will be able to1Understand the evolution of management thought.2Acquire knowledge of the functions of Management.3Gain basic knowledge of essentials of Micro economics and Macroeconomics.

4 Understand the concepts of macroeconomics relevant to different organizational contexts.

UNIT-I

0111-1							
Introduction to Management: Management Functions, Roles & Skills, Management Histo	ry 04 Hrs						
- Classical Approach: Scientific Management & Administrative Theory, Quantitati	ve						
Approach: Operations Research, Behavioural Approach: Hawthorne Studies,							
Contemporary Approach: Systems & Contingency Theory.							
UNIT-II							
Foundations of Planning: Types of Goals & Plans, Approaches to Setting Goals & Pla	ins, 02 Hrs						
Strategic Management Process, Corporate & Competitive Strategies.							
Organizational Structure & Design: Overview of Designing Organizational Structure:	03 Hrs						
Work Specialization, Departmentalization, Chain of Command, Span of Contra	rol,						
Centralization & Decentralization, Formalization, Mechanistic & Organic Structures.							
UNIT-III							
Motivating Employees: Early Theories of Motivation: Maslow's Hierarchy of Needs Theorem	ory, 03 Hrs						
McGregor's Theory X & Theory Y, Herzberg's Two Factor Theory, Contemporary Theory	ries						
of Motivation: Adam's Equity & Vroom's Expectancy Theory.							
Managers as Leaders: Behavioural Theories: Ohio State & University of Michigan Studie	s, 03 Hrs						
Blake & Mouton's Managerial Grid, Contingency Theories of Leadership: Hersey	&						
Blanchard's Situational Leadership, Contemporary Views of Leadership: Transactional &							
Transformational Leadership.							
UNIT-IV							
Introduction to Economics: Concept of Economy and its working, basic problems of	an 04 Hrs						
Economy, Market mechanism to solve economic problems, Government and the economy,							
Essentials of Micro Economics: Concept and scope, tools of Microeconomics, themes	of						
microeconomics, Decisions: some central themes, Markets: Some central themes, Uses of							
Microeconomics.							
UNIT-V							
Essentials of Macroeconomics: Prices and inflation, Exchange rate, Gross domest	ic 04 Hrs						
product(GDP), components of GDP, the Labour Market, Money and banks, Interest rate	te,						
Macroeconomic models- an overview, Growth theory, The classical model, Keynesian cro	'SS						
model, IS-LM-model, The AS-AD-model, The complete Keynesian model, The neo- classic	al						
synthesis, Exchange rate determination and the Mundell-Fleming model							
Course Outcomes: After completing the course, the students will be able to							
CO1: Explain the principles of management theory & recognize the characteristics of an	organization.						
CO2: Demonstrate the importance of key performance areas in strategic management	it and design						
appropriate organizational structures and possess an ability to conceive various organi							
dynamics.							
CO3: Select & Implement the right leadership practices in organizations that would en	able systems						
orientation.							
CO4: Understand the basic concepts and principles of Micro economics and Macroecon	omics						

1

Refe	erence Books
1.	Management, Stephen Robbins, Mary Coulter & Neharika Vohra, 10 th Edition, 2001, Pearson
	Education Publications, ISBN: 978-81-317-2720-1.
2.	Management, James Stoner, Edward Freeman & Daniel Gilbert Jr, 6 th Edition, 1999, PHI, ISBN:
	81-203-0981-2.
3.	Microeconomics, Douglas Bernheim B & Michael D Whinston, 5 th Edition, 2009, TMH Pub. Co.
	Ltd, ISBN: 13:978-0-07-008056-0.
4.	Macroeconomics: Theory and Policy, Dwivedi.D.N, 3rd Edition, 2010, McGraw Hill Education;
	ISBN-13: 978-0070091450.
5.	Essentials of Macroeconomics, (www.bookboon.com), Peter Jochumzen, 1 st Edition. 2010, e-
	book, ISBN:978-87-7681-558-5.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 05 marks adding up to 15 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 25 marks each and the sum of the marks scored from three tests is reduced to

30. The marks component for Assignment is 05. The total marks of CIE are 50.

Semester End Evaluation (SEE); Theory (50 Marks)

SEE for 50 marks are executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 10 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 08 marks adding up to 40 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1											
CO2	1		2	2			1			2	2	
CO3	1							2	2	2	1	
CO4	1	2				2						2

	Semester: VI							
	POWER SYSTEMS ANALYSIS- I							
		(Theory)						
Cou	rse Code: 16EE62		CIE Marks: 100					
Cree	lits: L:T:P:S: 3:1:0:0		SEE Marks: 100					
Hou	rs: 36L+24T		SEE Duration: 3Hrs					
Cou	rse Learning Objectives:							
1.	Obtain circuit models in p reactance diagrams and D	ower systems and develop one line istinguish between different reactan	diagram and hence impedance and ces in synchronous machines.					
2.	Analyze power system un on fault levels.	der symmetrical faults and analyze	the effect of limiting impedances					
3.	3. Apply symmetrical component transformation technique to unbalanced phasors and analyze unsymmetrical faults using symmetrical components							
4.	4. Study the economic generation schedule aspects with and without transmission losses and evaluate the loss coefficients for a given system to estimate the transmission losses.							
Unit-I								

	Unit-I						
Repres	entation of power system components: Circuit models of transmission line,	08 Hrs					
synchro	synchronous machines, Transformer and load. One line diagram, impedance and reactance						
diagram	n, Per unit system, per unit impedance diagram of power system.						
Symme	trical three phase faults: Short-Circuit current and the reactances of synchronous						
machine	es. Analysis of unbalanced loads connected to balanced three-phase supply, neutral						
shift. D	esign of breaker capacity						
C		07.11					
Symme	etrical components: Resolution of unbalanced phasors into their symmetrical	07 Hrs					
compon	for the summetrical components in star-delta transformer bank, power in						
terms o	I symmetrical components.						
Sequen	ce impedance and sequence networks of power system elements (alternator	07 Hrs					
transfor	mer and transmission line) sequence networks of power systems	07 1115					
Unsvm	metrical faults: L-G L-L L-G faults on an alternator with and without fault						
impeda	nce						
	Unit-IV						
Unsym	metrical faults on a power system with and without fault impedance. Open conductor	07 Hrs					
faults, u	inbalanced operation of Induction motor.						
	Unit-V						
Econo	mic Operation of Power System	07 Hrs					
Intoduc	tion, performance curves, Economic generation scheduling neglecting losses Iterative						
techniq	ues; Economic Dispatch including transmission losses- approximate penalty factor,						
iterative	e technique for solution of economic dispatch with losses; Derivation of transmission						
loss for	mula						
Course	Outcomes: After completing the course, the students will be able to						
CO1:	Understand the fundamentals of power system components, faults, symmetrical comp	onents					
	and application of breaker for protection.						
CO2:	Model the power system components to obtain the network equivalent under symmet	rical					
	and unsymmetrical faults.						
CO3:	Analyze system for symmetrical and unsymmetrical faults.						
CO4:	Design a power system optimum generation schedule and monitor transient stability f	for					
	specified load condition						

Refere	nce Books
1.	Elements of power System Analysis, W.D.Stevenson, 4th Edition, TMH,1982, ISBN-13:
	9780070665842, 978-0070665842.
2.	Modern Power System Analysis, I.J Nagrath and D.P.Kothari, 2 nd Edition, 2004, TMH, New
	Delhi, 1989,ISBN 0-471-15040.
3.	Power System Analysis, Hadi Sadat, 1st Edition, 2002, TMH,ISBN: 978-0-9845438-0-9
4.	Computer Techniques and Models in Power Systems, K.Uma Rao ,1st Edition , IK
	International, ISBN 978-8-1-89866402

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	-	-	2	-	2	-	1	2	-	1
CO2	1	2	-	-	2	-	-	-	2	2	-	1
CO3	2	2	3	3	2	3	3	1	2	2	3	1
CO4	3	3	3	3	1	2	3	1	2	2	3	1

Semester: VI								
POWER ELECTRONICS								
(Theory & Practice)								
Cou	rse Code: 16EE63		CIE Marks: 150					
Cree	lits: L:T:P:S: 3:0:1:1		SEE Marks: 150					
Hou	Hours: 36L SEE Duration: 3Hrs+3Hrs							
Cou	rse Learning Objectives:	The students will be able to						
1	1 Explain the working of power electronic components used in design of electronic circui conversion and control of electrical energy.							
2	Analyze the power electronic converters used in different power conversion applications							
3	3 Use basic concepts of practical design and working of electronic circuits for conversion electrical energy control.							
4	Evaluate the performance	e parameters of converters.						
5	Make use of the opportun	nities to work as part of teams on m	ultidisciplinary projects.					
		TT •4 T						
Tradas	duction To Domon Comis			00 II				
Introduction to power Semiconductor Devices: Introduction to power electronics, Study of switching devices (Construction and working) - Power Diodes, SCR, TRIAC, MOSFET, IGBT, Static and dynamic characteristics of Power Diode, SCR, MOSFETs, IGBT. Series and parallel operation of devices and their protection.								
		Unit-II						
Gate Drives and Commutation: Gate drive circuits of SCRs, MOSFETs, IGBTs, microprocessor based firing of SCR (block diagram), Isolation of base and gate drives, Commutation techniques: Load commutation (Class A), Resonant-Pulse commutation (class B), impulse commutation (class D), Line Commutation (class F), complementary commutation								
		Unit-III						
Converter circuits : Principle of phase controlled converter operation, Single phase semi converter and full converter with R load, highly inductive load and RL load, finding input power factor, Three phase full converter with R load, RL load.								
		Unit-IV						
Choppers: Principle of step down chopper, Step-down chopper with RL load, Principle of step-up chopper, Chopper Classification (single, two and four quadrant) choppers. AC-AC Converters: Principle of on-off control and phase control, Single phase Bi- directional controllers with resistive loads, Principle of cyclo-converter operation, single phase cyclo-								
Unit-V								
Inve Intro curre singl cont	erters: oduction to inverter. Operation to source, bridge inverter le pulse width, multiple pul rol. Three-phase Inverters-	ating principle and performance pa , Voltage control of Single-Phase es-width, and sinusoidal pulse width 180 degree and 120 degree conduct	rameters, voltage source, Inverters, PWM method- n and phase- displacement ion.	07 Hrs				

	Power Electronics Lab
1.	Static characteristics of SCR
2.	Static characteristics of MOSFET and IGBT.
3.	Design and rig up SCR turn-on circuit using synchronized UJT relaxation oscillator.
4.	Design and rig up digital firing circuit for a single phase controlled rectifier.
5.	Single phase full wave rectifier using R and R-L loads(conventional & Simulation)
6.	Design & rig up an improved Series inverter (conventional & Simulation)
7.	Single phase full bridge parallel inverter connected to R load.(conventional & Simulation)
8.	Complementary commutation (conventional & Simulation)
9.	Auxiliary commutation (conventional & Simulation)
10.	Speed control of a separately excited DC motor using a MOSFET / IGBT chopper
11.	Output voltage and current characteristics of Single phase IGBT based Inverter with R and R-L
	load.
12.	Speed control of single phase induction motor using AC voltage controller
Cours	se Outcomes: After completing the course, the students will be able to
CO1:	Comprehend the construction and working of Power semiconductor devices.
CO2:	Analyze the basic concepts of controlling and conversion of Electrical energy.
CO3:	Implement the different power electronic circuits and evaluate their performance.
CO4:	Design Power converter topologies to suit the desired performance.
Refer	ence Books
1.	Power Electronics, M.D. singh and K.B. Khanchandani, 3 RD Edition,1998, TMH, <i>ISBN</i> -13:
2	978-0070585894 Bower Electronics, Circuit Devices and Applications, M. H. Bashid, 7 th Edition 2007, DHI
2.	<i>ISBN</i> -13: 978-0131011403.
3.	A Text Book of Power Electronic, S.N Singh, 2 nd Edition, 2000, Dhanpat Rai & Co, <i>ISBN:</i> 9780070583894,
4.	Power Electronics, P.S. Bimbhra, 2nd Edition. 1998, Khanna Publishers, <i>ISBN</i> 10: 8174092153

Continuous Internal Evaluation (CIE): Total marks: 100+50=150

Theory – 100 Marks

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total CIE for theory is 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150 Theory – 100 Marks

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	1	1	3	1	2	1	3	1	1	3
CO2	3	2	1	1	3	2	1	1	2	2	1	3
CO3	3	2	2	2	3	3	2	1	3	2	2	3
CO4	3	2	2	1	3	2	1	1	1	2	2	3

	Semester: VI							
	MODERN CONTROL THEORY							
		(Theory & Practice)						
Cou	rse Code: 16EE64		CIE Marks: 150					
Crea	lits: L:T:P:S: 3:0:1:1		SEE Marks: 150					
Hours: 36L			SEE Duration: 3Hrs+3Hrs					
Cou	rse Learning Objectives:	The students will be able to						
1	Represent a given system	using state model by choosing	proper state variables.					
2	Obtain the solution of th	e state equation and analyze th	e system using Eigen values and Eigen					
2	vectors.							
3	Design state feedback co	ntrollers & observers including	observer based controllers.					
	Perform analysis of nor	nlinear system using phase pla	ne method, singular points and phase					
4	trajectories							
5	Analyse the stability of b	oth linear and nonlinear system	s using Liapunov method.					

Unit-I					
State variable analysis: Introduction, concept of state, state variable and state model, state	07 Hrs				
modelling of linear systems.					
State space representation using physical variables, phase variables, phase variable canonical					
forms of state model, canonical variables diagonal/ Jordan canonical forms of state model,					
Derivation of transfer function from state model.					
Unit-II					
Characteristic equation, Eigen values, Eigen vectors, generalized Eigen vectors, Similarity	08 Hrs				
transformation, transformation of a state model to diagonal/Jordan canonical form.					
Solution of state equation, transition matrix and its properties, computation using Laplace					
transformation, power series method, similarity transformation, Cayley-Hamilton method					
Unit-III	-				
Controllability & Observability: Concept of controllability & observability, methods of	07 Hrs				
determining the same, Relation between controllability, observability & pole zero					
cancellations.					
Stability: Liapunov stability criteria, Liapunov functions, direct method of Liapunov and the					
linear system,					
Unit-1v	07.11				
Pole placement design techniques: Stability improvements by state feedback, necessary	07 Hrs				
and sufficient conditions for arbitrary pole placement, state regulator design, and design of					
state observer.					
¥1::4 ¥7					
	05.11				
Non-Liner Systems: Introduction, Behaviour of non-liner system, common physical non-	07 Hrs				
linearity-saturation, friction, backlash, dead zone, relay, multivariable non-linearity. Phase					
plane method, singular points, stability of nonlinear system, limit cycles, construction of					
phase trajectories. Hurwitz criterion and Liapunov's direct method, construction of Liapunov					
functions for nonlinear system by Krasovskii's method.					
	1				

	LABORATORY EXPERIMENTS
1.	Time Response Characteristics of Second Order Systems
2.	Frequency Response Characteristics of Second Order Systems
3.	Root Locus Diagram for Given Systems Using MATLAB
4.	Bode Plots and Polar Plots for Given Systems Using MATLAB
5.	P I D Controller for First & Second Order Systems
6.	Frequency Response of a Lead-Lag Network
7.	Design and Verification of Lead & Lag Networks for a given Frequency Response
	Specifications
8.	Verification of Cross Over Frequencies of A Given Third Order Type One System.
9.	Design a of Lag Compensator for a Second Order System for given frequency response
	specifications and verify the response using MATLAB
10.	Design a of Lead Compensator for a Second Order System for given Frequency Response
	Specifications and Verify The Response Using MATLAB
11.	Design a PI-PD-PID controller for a given time domain specification for a System Using
	MATLAB
12.	Design of State Feedback Controllers Using MATLAB
Cours	a Outcomest After completing the course the students will be able to

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Explain the concepts of state space, eigen value analysis, controllability and observability, pole
	placement, non linear systems and Liapunov stability
CO2:	Analyze and obtain state space models, solution of state equation, state feedback controllers
	and observers, stability of nonlinear systems using phase plane and Liapunov method.
CO3:	Evaluate eigen values to transform state models to canonical, observable and controllable
	forms. Asses the need of state feedback controllers and observers, stability of nonlinear
	systems and Liapunov stability criteria.
CO4:	Design state feedback controllers and observers using pole placement.
1	

Reference Books

1.	State space analysis of control system, Katsuhiko ogata, Prentice hall inc, 2005, ISBN: 0-13-034281-5.
2.	Modern Control Engineering, Katsuhiko Ogata, PHI 2003, ISBN 81-7808-579-8.
3.	Automatic control system, Benjamin C. Kuo and Farid Golnaraghi,-8th edition, john Wiley and
	Sons 2003,ISBN 0-471-13476-7.
4.	Digital control & state variable methods, M.Gopal, 2 nd edition, THM Hill 2003, ISBN:
	0070483027.

Continuous Internal Evaluation (CIE): Total marks: 100+50=150

Theory – 100 Marks

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total CIE for theory is 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150 Theory – 100 Marks

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

						(CO-PO) Map	ping						
CO/P	PO	PO	РО	PO1	PO1	PO1	PSO	PSO	PSO						
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	3	3	3	2	1	1	0	2	1	0	0	3	3	1
CO2	3	3	2	2	2	0	0	0	1	1	0	0	3	3	1
CO3	3	3	1	2	2	0	0	0	1	1	0	0	3	3	1
CO4	3	3	3	3	3	0	0	1	1	1	0	0	3	3	1

	Semester: V							
	VLSI CIRCUIT AND DESIGN							
	(Group C: Professional Core Elective)						
Cou	rse Code: 16EE6C1	CIE Marks: 100						
Cree	lits: L:T:P:S: 3:0:0:1	SEE Marks: 100						
Hours: 36L		SEE Duration: 03 Hrs						
Cou	rse Learning Objectives:	The students will be able to						
Analyze the impact of fabrication technologies: Methods for optimizing the are		prication technologies: Methods for optimizing the area, speed, and						
	power of circuit layouts.							
2	2 Understand different VLSI process technologies to design and optimize combinational circuit.							
3	3 Design MOS Combinational & sequential system by considering specifications.							
4	Design various subsystems through the layers which are produced by the MOS Processing.							
4	Design various subsyster	is unough the layers which are produced by the MOS Processing.						

Cours	Course Outcomes: After completing the course, the students will be able to					
CO1	Understand transistor circuits and its impact on VLSI circuits design.					
CO2	Apply the design rules for parameters such as speed, area & power.					
CO3	Design fundamental combinational and sequential circuits.					
CO4	Design VLSI blocks using various architectures.					

Refer	ence Books								
1.	Neil H.E. Waste, David Harris, Ayan Banerjee, "CMOS VLSI Design", Pearson Education,								
	3 rd Edition, 2006,ISBN: 0321149017								
2.	Sung MO Kang, Youssef Leblebici, "CMOS Digital Integrated Circuits"; Tata McGrawHill,								
	3 rd Edition, ISBN: 0-7923-7246-8								
3.	Douglas. A. Pucknell, Kamaran Eshraghian, "Basic VLSI Design", PHI, 3 rd Edition								
	2010,ISBN: 0-321-26977-2								
4.	John P. Uyemura, "Introduction to VLSI Circuits & Systems", Wiley India Edition, 2007,								
	ISBN: 978-81-265-0915-7								

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	1	1	1	1	2	1	1	1
CO2	2	2	2	3	3	1	1	1	2	1	1	1
CO3	3	3	1	2		1	1	1	2	2	1	1
CO4	3	3	3	3	1	1	1	1	2	1	1	1

	Semester: VI							
	FUZZY LOGIC CONTROL AND APPLICATIONS							
	(Group C: Professional Core Elective)							
Cou	Course Code: 16EE6C2 CIE Marks: 100							
Credits: L:T:P:S: 3: 0:0:1			SEE Marks: 100					
Hou	rs: 36L		SEE Duration: 3Hrs					
Cou	Course Learning Objectives: The students will be able to							
1	1 Understand the basic concepts of Fuzzy Logic, Fuzzy rules and expert systems.							
2	2 Apply fuzzy concepts and build fuzzy rules for a given application.							
3	3 Assess and compare the performance of different fuzzy controls.							
4	Design a complete FKBC for a given application and Make use of the opportunities to work as							
4								

part of teams on multidisciplinary projects.

Unit-I **Basics of Fuzzy Logic:** A Historical Perspective; utility and limitations of fuzzy systems, 07 Hrs fuzzy Sets and membership, Chance versus Fuzziness, Classical Sets, Operations on Classical Sets, Properties of Classical Sets, Fuzzy Sets, Fuzzy Set Operations, Properties of Fuzzy Sets, Non interactive Fuzzy Sets, Alternative Fuzzy Set Operations, Fuzzy Relations, Cardinality of Fuzzy Relations Operations on Fuzzy Relations, Properties of Fuzzy Relations ,Fuzzy Cartesian Product and composition Unit-II Fuzzy relations and Operations : Fuzzy Tolerance and Equivalence Relations , Value 08 Hrs Assignments - Cosine Amplitude, Max-Min Method, Features of the Membership Function , Various Forms of Fuzzification Defuzzification to Crisp Sets - center of gravity, center of mass, height, center of largest area, first of maxima, middle of maxima, comparison and evaluation of defuzzification methods . Illustrative Examples. **Unit-III** Fuzzy control : Fuzzy Control from an Industrial Perspective, Knowledge Based System for 07 Hrs Process Control, Knowledge Based Controllers (KBCs), Knowledge Representation in KBCs. Fuzzy Implication, Approximate reasoning-Linguistic variables, fuzzy propositions,

 fuzzy if-then-else statements, inference rules, rule of inference, representing a Set of Rules

 – Mamdani Vs Godgel, Properties of a set of rules, illustrative Examples..

 Unit-IV

 Fuzzy Knowledge Base Controller (FKBC): Design Parameters, Structure of FKBC, Rule

 07 Hrs

Base, Data Base, Inference Engine, Choice of Fuzzification Procedure; Nonlinear Fuzzy Control -Introduction, Control Problem, FKBC as a Nonlinear Transfer Element Types of FKBC- PID FKBC, sliding mode FKBC, Sugeno FKBC, Illustrative Examples.

Unit-V

Adaptive Fuzzy Control: Introduction, Design and Performance Evaluation, The Main **07 Hrs** Approaches to Design.

Fuzzy Logic Applications : Applications in power systems, flight control and forecasting (To be taken from papers)

Course Outcomes: After completing the course, the students will be able to

CO1	Perform operations on fuzzy sets and compare with crisp sets.
CO2	Choose appropriate Fuzzification and defuzzification method in a real-world context.
CO3	Develop Fuzzy rules for a given application
CO4	Design a FKBC and an adaptive control as appropriate for a given application.

Refer	ence Books
1.	Fuzzy logic with engineering applications", Timothy J Ross, John Wiley and Sons, 2004,3rd
	Edition, ISBN: 978-0-470-74376-8
2.	An Introduction to Fuzzy Control", D Driankov, H Hellendoorn, M Reinfrank, 2001, Narosa
	Publishing House Reprint, ISBN 81-7319-069-0.
3.	First course on fuzzy theory and applications", Kwang H Lee, 2005, Springer, ISBN :
	9783540229889.
4.	Mathematics of fuzzy sets and fuzzy logic, Bede Barnabas, 2013, Springer, ISBN 978-3-642-
	35221-8

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-l	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	2	-	-	-	1	1	-	2
CO2	3	3	3	3	3	1	1	-	1	1	1	2
CO3	3	3	3	3	3	1	1	1	1	1	1	2
CO4	3	3	3	3	3	1	1	1	1	1	1	2

		Semester: VI				
	UTILIZATION OF ELECTRICAL POWER					
	(Gi	roup C: Professional Core Elective)				
Cou	rse Code: 16EE6C3	CIE Marks: 100				
Cree	lits: L:T:P:S: 3:0:1:1	SEE Marks: 100				
Hours: 36L		SEE Duration: 3Hrs				
Cou	Course Learning Objectives:					
Upo	Upon successful completion of the course, students should be able to:					
1	Comprehend various electr	rical utilities like heating, welding, lighting, electrolytic process and				
1	electric traction.					
2	Analyze the concepts of var	rious types of heating, welding and electrolytic process.				
2	Apply the laws of illumination and lighting calculation and to solve the illustrative examples					
3	for the design of lighting schemes.					
1	Classify various types of lighting schemes, and electric motors for traction and Understand					
⁴ and analyze concepts of hybrid vehicles and energy storage systems						

Unit-I	
Illumination: Terminologies of illumination, Laws of illumination, lighting schemes and	07 Hrs
design procedure for lighting calculation. Factory lighting, flood lighting, street lighting,	
construction and working of incandescent, fluorescent, vapor, CFL and LED lamps.	
Introduction to electronic ballasts. Star rating concept of energy efficient utilities.	
Unit-II	
Heating and Welding: Sources of heat for heating and welding, Methods of electric of	07 Hrs
heating, resistance ovens, induction heating, dielectric heating, eddy current heating,	
heating of buildings. Types of electric welding, resistance and arc welding, control device	
and welding equipment, power supply requirements for heating and welding process.	
Unit-III	
Electric Traction: Systems of electric traction- mono rails, metro trains- speed time curves,	07 Hrs
mechanics of train movement, tractive effort, power and energy output from driving axels,	
train movement and energy consumption specific energy, factors affecting	
specific energy consumption, co-efficient of adhesions.	
Unit-IV	
Traction Motors and control: Selection of traction motors, control of traction motors,	07 Hrs
energy saving by series parallel control, Types of electric braking, Introduction to	
locomotives with 3-phase induction motor.	
Unit-V	
Electrolytic Process: Fundamental principles, extraction, refining of metals, electroplating.	08 Hrs
Factors affecting electro deposition process, power supply for electrolytic process.	
Introduction to Electric and Hybrid Vehicles: Introduction to hybrid electric propulsion	
systems with an emphasis on application to different vehicles architectures including plug-	
in hybrids and fuel cell hybrids. Overview of energy storage systems (batteries and super-	
capacitors).	

Cours	e Outcomes: After completing the course, the students will be able to
CO1	Describe the various methods and types of heating, welding, lighting and traction systems and
	electrolytic process.
CO2	Analyze, evaluate and compare different types of heating, welding, lighting and traction systems.
CO3	Evaluate the amount of power required for heating, welding, lighting and traction systems.
CO4	Design simple heating, lighting and traction systems.

Refer	ence Books
1.	J B Guptha, "Utilization of Electric power & Electric Traction", S K Ktharia &Sons, 6th Edition,
	2007,ISBN : 8188458554, 9788188458554
2.	Mehrdad, Ehsani, Yimin Gao, Sahastien.E.Gay, Ali Emadi, "Modern Electric, Hybrid Electric
	and Fuel Cell Vehicles"- CRC Press, 2009. ISBN 9781420053982
3.	John M. Miller, Propulsion Systems for Hybrid Vehicles, IEE Power and Energy Series 45,
	2004 ISBN, 0863413366, 9780863413360.

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	-	1	1	2	1	1	1	1	-	1
CO2	2	2	1	2	-	-	1	1	1	1	-	1
CO3	3	3	3	2	2	1	1	1	1	1	-	1
CO4	3	3	3	2	1	1	2	1	1	1	2	2

	Semester: VI						
	H.V.D.C POWER TRANSMISSION						
	(Group C: Professional Core Elective)						
Cou	rse Code: 16EE6C4		CIE Marks: 100				
Credits: L:T:P:S: 3:0:0:1			SEE Marks: 100				
Hours: 36L + 4S			SEE Duration: 3Hrs				
Cou	Course Learning Objectives: The students will be able to						
1.	1. To have a comprehensive knowledge of modern trend in transmission system.						
2.	2. Understand the importance of HVDC transmission.						
2	2 Suitable converter circuit for long distance transmission and to have a comprehensive						
knowledge of modern trend in transmission system							
4	Control and protection of HVDC systems and to design DC reactors and Analyze multi termin						
4.	4. HVDC systems.						

HVDC systems.

Unit-I

Unit-I	
HVDC System Configuration and Components: Historical sketch, existing HVDC	07 Hrs
projects, Classification of HVDC links, Components of HVDC transmission system,	
Comparison of AC and DC Transmission, Application of DC Transmission, Modern trends	
in DC Transmission, Ground Return- advantages and disadvantages	
Unit-II	
Converter Circuits: Valve Characteristics, Properties of converter circuits, assumptions,	07 Hrs
single phase, three phase converters, pulse number, additional six pulse converter circuits,	
choice of best circuits for HV DC circuits, Twelve pulse cascade of two bridges.	
Unit-III	
Analysis of The Bridge Converter: Analysis with grid control but no overlap, Analysis with	08 Hrs
grid control and with overlap less than 60 deg, complete characteristics of rectifier,	
Inversion, Series and parallel arrangements of Valves.	
Unit-IV	
Control of HVDC Converters and Systems: Grid control, basic means of control, power	07 Hrs
reversal, limitations of manual control, constant current versus constant voltage, desired	
features of control, actual control characteristics, Voltage dependent current order limit	
(VDCOL), constant -minimum -Ignition -angle control, constant current control, constant -	
extinction –angle control, stability of control.	
Unit-V	
Mis Operation of Converters: Bypass valves, short circuit on a rectifier, causes of	07 Hrs
commutation failure.	
Protection: General, DC reactor, Surge Arrestors, voltage oscillations and valve dampers,	
current oscillations and anode dampers, DC line oscillations and line dampers, clear line	
faults and reenergizing the line, DC line protection.	

Course	Outcomes: After completing the course, the students will be able to
CO1:	Understand the basic concepts of HVDC, converter circuits, bridge converter, control of HVDC converters and miss operation of converters.
CO2:	Analyze HVDC links, transmissions, converters and their controls and protection along with normal operation of converters.
CO3:	Evaluate AC and DC Transmissions, converters and control and protection of HVDC Converters and Systems.
CO4:	Design multi terminal HVDC links and its control like angle control, constant current control, constant –extinction –angle control, stability of control.
Refere	nce Books
--------	--
1.	High voltage direct current power transmission, Adamson C Hingorani N G, Grraway ltd,
	London, 1960.2 nd Edition, Reprint 2007,2014 ISBN 10: 0852969414,.
2.	Direct current Transmission, Kimbark E.W, Volume 1, Wiley, ISBN : 0471475807,
	9780471475804, 1971.
3.	High voltage direct current transmission, Arrillaga, Peter pregrinus, London, 0906048974
	9780906048979, 1983.
4.	High Voltage Direct Current Transmission, Padiyar K R, Wiley Eastern Ltd, New
	Delhi,1990.4th Edition, Reprint 2009, ISBN: 978-1-118-84666-7. 4.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	1	0	1	3	1	2	1	1	1
CO2	2	2	2	3	1	1	2	1	2	1	1	1
CO3	3	3	2	2	0	1	2	0	1	1	1	1
CO4	3	3	3	0	1	1	2	0	1	1	1	1

	Semester – VI					
	COMPUTER ORGANIZATION					
	(Group D: Professional Core Elec	tive)				
Cou	rse Code: 16EE6D1	CIE Marks: 100				
Cree	lits: L:T:P:S: 4:0:0:0	SEE Marks: 100				
Hou	rs: 48	SEE Duration: 3Hrs				
Cou	rse Learning Objectives: The students will be able to	<u>.</u>				
1	Identify the major hardware components of a computer syste	m.				
2	2 Perform arithmetic operation with different data types.					
3	3 Compare different addressing modes and instruction format. Appreciate need for RISC and CISC processors and different architectures suitable for them.					
4	4 Analyze and compare performance of different memory structures and Understand the concept of sampling theorem					
1						
	Unit-I					
Intro Men	oduction: Computer Components, Functions, Interconnection mory System Overview, Cache Memory Principles, Casiderations, Internal Memory Characteristics and Design (Cache memory Design				

Considerations, Internal Memory Characteristics and Design (e.g. DRAM), External Memory (e.g. Magnetic Disk), RAID. Arithmetic and Logic Unit, Data Representation-Fixed point & Floating Point Representation (i.e. IEEE-754) . Unit-II Input/output: I/O Modules, Programmed I/O, Interrupt driven I/O, DMA, Instruction Sets – Characteristics and Functions: Types of operands, Data Types, Type of Operations, Instruction Sets – Addressing modes and Formats: Addressing, Addressing modes, Instruction formats Intel x86 will be an example.

Instruction formats intel x86 will be an example.	
Unit-III	
Processor Structure and Function: Processor and Register Organization, Instruction Cycle,	10 Hrs
Instruction pipelining, Micro operations and Micro Instructions, Control Unit Design: Micro-	
programmed Control, Hardwired Control, Structure of an Operating System	
Unit-IV	

Process Scheduling: Basic concepts in CPU scheduling, and algorithms, Process	09 Hrs
Synchronization, various mechanisms to ensure the orderly execution of cooperating	
processes that share logical address space. Critical section problem and various software	
and hardware solutions, Memory Management & Virtual Memory, various ways of managing	
the memory, hardware support understand virtual memory systems.	
Unit-V	
Processor Organization: RISC and CISC Architectures, Instruction Pipelining, Register	09 Hrs

Optimization, RISC Pipelining, Pipeline Conflict/Hazards and Efficiency Issues, Intel's x86 Pipelining. Micro Operations, Design Concepts, Hardwired and Micro-Programmed Control Design Issues, Micro Instruction Sequencing Methods.

Course Outcomes: After completing the course, the students will be able to				
CO1:	Understand and explain basic architecture of processors/o devices and memory devices.			
CO2:	Execute micro instructions and develop assembly program			
CO3:	Compare, select and justify hardwired versus software control for a given application.			
CO4:	Design simple ALU structure with suitable delays.			

Refere	nce Books
1.	Computer Organization & Architecture, Stallings William, Education, 8 th Edition 2010
	Pearson.ISBN-13: 978-0-13-607373-4
2.	Computer Architecture – A Quantitative Approach, T2: J. Hennessy and D. Patterson. 1 st
	Edition 1990.ISBN 13: 978-0-12-370490-0
3.	Operating Systems – Internals and Design Principles. William Stallings, 1 st Edition 2001.
	Prentice Hall of India, ISBN-13: 978-0-13-230998-1
4.	Operating Systems Concepts, A. Silberschatz, Abraham, 8th Edition 2008. Wiley ISBN-
	13:b978-0-13-230938-

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	1	1	3	1	2	1	0	1	1	3
CO2	3	2	1	1	3	2	1	1	0	2	1	3
CO3	3	2	2	2	3	3	2	1	0	2	2	3
CO4	3	2	2	1	3	2	1	1	0	2	2	3

	Semester – VI				
	DESIGN & ANALYSIS OF ALGORITHMS				
	()	Froup D: Professional Core Electiv	ves)		
Cou	rse Code: 16EE6D2		CIE Marks: 100		
Credits: L:T:P:S: 4:0:0:0			SEE Marks: 100		
Hours: 45L			SEE Duration: 3Hrs		
Cou	Course Learning Objectives: The students will be able to				
1	1 Expressing the logic of solution to a problem as an algorithm				
2	2 Applying mathematical formulations to practical Electrical Engineering problems.		gineering problems.		
3	3 Evaluating the time and space complexities of a problem.				
4	4 Finding the efficient solution out of a group of available solutions				

nit-I

Introduction: Notion of Algorithm, Review of Asymptotic Notations, Mathematical	07 Hrs	
Analysis of Non-Recursive and Recursive Algorithms Brute Force Approaches: Introduction,		
Selection Sort and Bubble Sort, Sequential Search and Brute Force String Matching		
Unit-II		
Divide and conquer: Divide and Conquer: General Method, Binary Search, Merge Sort,	08 Hrs	
Quick Sort and its performance.		
Unit-III		
The greedy method: The General Method, Knapsack Problem, Job Sequencing with	10 Hrs	
Deadlines, Minimum-Cost Spanning Trees: Prim's Algorithm, Kruskal's Algorithm; Single		
Source Shortest Paths		
Unit-IV		
Dynamic programming: The General Method, Warshall's Algorithm, Floyd's Algorithm	10 Hrs	
for the All-Pairs Shortest Paths Problem, Single-Source Shortest Paths: General Weights,		
0/1 Knapsack, The Traveling Salesperson problem.		
Unit-V		
decrease-and-conquer approaches and trees:	10 Hrs	
Introduction, Insertion Sort, Depth First Search and Breadth First Search, Basic definition of		
trees, Binary trees and its characteristics, Prefix, post fix, in fix traversals. Heap properties,		
Heap sort.		
Course Outcomes: After completing the course, the students will be able to		
CO1: The student will be in a position to convert logic into efficient algorithm.		

Course	outcomes. The completing the course, the students will be usic to
CO1:	The student will be in a position to convert logic into efficient algorithm.
CO2:	Able to evaluate the time and space complexity of a problem.
CO3:	Apply algorithms to solve Electrical Engineering problems.
CO4:	Able to find efficient algorithms if all probable algorithms are available.

Refe	erence Books
1.	Introduction to The Design & Analysis of Algorithms, Anany Levitin, 2 nd Edition, Pearson
	Education, 2007. ISBN:0-7803-030
2.	Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronal L. Rivest,
	CliffordStein: 3 rd Edition, PHI, 2010. ISBN:13-978-026203
3.	Fundamentals of Computer Algorithms, Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran 2 nd
	Edition, Universities Press, 2007. ISBN :13-978-092930
4	Data structures and their Algorithms, Harry R Lewis, Lary D,1 st Edition, Bear Books Publications,
	2013. ISBN-13: 978-0673397362

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping															
CO/DO	PO	PSO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	1	1	1	1	1	-	2	2	-	1	2	2	1
CO2	2	2	2	2	1	1	1	-	2	1	-	1	1	2	-
CO3	3	3	2	3	3	1	1	-	2	2	-	1	1	1	1
CO4	3	3	2	3	3	1	1	-	2	1	-	1	2	2	2

	Semester: VI							
	DISCRETE CONTROL SYSTEMS (Group D: Professional Core Elective)							
Cou	rse Code: 16EE6D3		CIE Marks: 100					
Cree	lits: L:T:P:S: 4:0:0:0		SEE Marks: 100					
Hours: 48L			SEE Duration: 03Hrs					
Cou	rse Learning Objectives:	The students will be able to	· ·					
1	Represent discrete systems using difference equations, transfer functions and state-space models.							
2	Apply sampling and reconstruction processes to signals and systems and Design and synthesis digital controllers using both classical methods and state space methods							
3	Represent the realization of digital filters /controllers/compensators using the direct and standard programming methods.							
4	Perform analysis for tran closed-loop linear time-in space methods.	sient and steady-state response nvariant, discrete-time control	s, and for stability of open-loop and systems using both classical & state					

Unit-I

Discrete-time system representations: Signal representation, Starred transform, use of convolution integral in obtaining the Z-transform. Impulse Sampling and data hold. Modelling discrete-time systems by linear difference equations and pulse transfer functions. Discrete time model of its subsystems, reconstruction the original signals from sampled signals, realization of digital controllers and digital filters.

Unit-II

Mapping between the s-plane and the z-plane, transient and steady state response analysis of	10 Hrs				
digital control systems, Dead beat response at sampling instants, stability analysis of closed					
loop systems in the z-plane, Jury's stability test, Use of bilinear transformation and					
extension of Routh-Hurwitz criterion for stability,					
Unit-III					
Root locus plot. Digital PID controller design based on root locus, Frequency response of	10 Hrs				
discrete time system, Bode plots, and frequency response based design of compensators,					
analytical design method, Implementation					
Unit-IV					
STATE SPACE ANALYSIS: State space representation of discrete time systems, Different	09 Hrs				
types of state models of discrete time systems, solution of discrete time state space equations,					
pulse transfer functions matrix, discretization of continuous time state space equations,					
Liapunov stability analysis, Use of Liapunov's stability theorems for stability analysis of					
discrete data control systems.					
Unit-V					
POLE PLACEMENT DESIGN OF CONTROLLERS AND OBSERVERS:	10 Hrs				
Controllability, observability, useful transformations in state space analysis and design,					
design of state feedback controllers via pole placement, design of full and reduced order state					
observers and design of servo systems using pole placement technique.					

Cours	e Outcomes: After completing the course, the students will be able to
CO1	Obtain models (both transfer and function state space) of discrete-time systems and to analyze
	the resulting models.
CO2	Identify, formulate and solve discrete control engineering problems, use the techniques, tools
	and skills related to discrete signals, computer, science and modern discrete control engineering
	in engineering practice
CO3	Design digital filters (compensators) for SISO systems based upon root-locus and frequency
	domain methods.
CO4	Apply modern controller design methodologies including state feedback for the design of
	controllers and observers.

Refer	ence Books
1.	Discrete-Time Control Systems, Kutsuhiko Ogata ,2nd Edition, 2003, Pearson Education, .ISBN-10: 0130342815 • ISBN-13: 9780130342812.
2.	Digital Control and State Variable Methods, M. Gopal, 4th Edition, 2012 TMH
3.	Modern Control System, Richard C. Dorf, Robert H. Bishop, 11 th Edition, 2008, Pearson Education, ISBN 13: 9780132270298
4.	Digital Control of Dynamic Systems, Franklin G F, Powell J D and Workman M L, 3 rd Edition, 1998 Addison Wesley, ISBN-13: 978-0201820546

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	3	2	-	-	-	-	-	1	2
CO2	2	2	I	I	2	-	-	-	1	2	1	2
CO3	2	3	3	2	2	-	-	-	1	2	1	2
CO4	3	3	3	-	2	-	-	-	1	2	1	2

	Semester: VI								
	POWER QUALITY AND RPM								
		Group D: Professional Core Elec	ctive)						
Cou	rse Code: 16EE6D4		CIE Marks: 100						
Cree	lits: L:T:P:S: 4:0:0:0		SEE Marks: 100						
Hou	Hours: 48L		SEE Duration: 03Hrs						
Cou	rse Learning Objectives:	The students will be able to	·						
1	Understand the concept of	f Power Quality							
2	Identify power quality an	d EMC standards							
3	3 Analyze power quality standards								
4	Analyze and design corre	ective measures for transients							

5 Design filters to control the harmonics to maintain power quality.

Unit-I					
Overview of Power Quality and Power Quality Standards:	09 Hrs				
Power Quality, Voltage Quality, Overview of Power Quality phenomena, Power Quality					
and Electromagnetic Compatibility standards					
Unit-II					
Definitions and standard classes of power quality problems, CBEMA and ITI curves, Sources of sag, assessment and evaluation of PQ, transients and their causes, flicker, monitoring of PQ	09 Hrs				
Unit -III					
Voltage Sags-Equipment Behaviour: Computers and Consumer Electronics, Adjustable- Speed AC Drives, Adjustable Speed DC Drives, Other sensitive loads like directly fed induction and synchronous motors	10Hrs				
Unit -IV					
Mitigation of Interruptions and voltage sags: Overview of mitigation methods, Power System-Redundancy through switching, Power System-Redundancy through parallel operation	10Hrs				
Unit -V					
Fundamentals of Harmonics : Harmonic Distortion, Voltage versus current Distortion, Harmonics versus Transients, Power quantities under Non -sinusoidal conditions, sources and effects of Harmonic Distortion, Interharmonics, power spectrum analyser and harmonic analyzer, passive filters for harmonic elimination, active filters	10Hrs				

Cours	e Outcomes: After completing the course, the students will be able to
CO1	Understand the concepts of power quality, interruptions and harmonics
CO2	Analyze PQ issues in a system
CO3	Evaluate different techniques for mitigation of PQ problems
CO4	Design solutions to improve PQ for a given system
Refer	ence Books
1.	Math H.J,Bollen, Understanding Power Quality Problems-Voltage Sags and Interruptions, IEEE Press, Standard Publishers Distributors, 2001, ISBN 81-86308-84-9
2.	Roger c Dugan, Mark F. McGranaghan "Electrical power systems quality "Third Edition,
	TaTa-McGraw-Hill2012 ISBN-13; 978-1-25-900557-2.
3.	P. Kundur, 'Power System Stability and Control', TMH, 5th reprint, 2008, ISBN-13; 978-0-07-
	063515

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	1	1	1	1	1	1	2	-	1
CO2	2	2	2	2	1	1	1	1	1	2	-	1
CO3	3	3	2	2	1	1	2	1	1	2	-	1
CO4	3	3	2	2	1	1	2	1	1	2	-	1

	Semester: VI								
	BIOINSPIRED ENGINEERING								
	(Group E: G	lobal Elective)							
Cou	rse Code: 16G6E01	CIE Marks: 100							
Cree	lits: L:T:P:S: 3:0:0:0	SEE Marks: 100							
Hou	rs: 36L	SEE Duration: 3Hrs							
Cou	rse Learning Objectives:								
1	To familiarize engineering students with bas	ic biological concepts							
2	Utilize the similarities noted in nature for a	particular problem to bring inspiration to the desi	gner.						
3	Explain applications such as smart structure	es, self-healing materials, and robotics relative	to						
	their bio logical analogs								
4	To gain an understanding that the design pr	nciples from nature can be translated into novel							
	devices and structures and an appreciation for	r how biological systems can be engineered by hu	uman						
	design								
	Unit-I								
Intro	oduction to Biology: Biomolecules-Proteins,	carbohydrates, lipids and Nucleic acids. 06 I	Irs						
Cell	types- Microbial, plant, animal, Organ sys	tem- Circulatory, digestive, respiratory,	ļ						

excretory and nervous system. Sense organs. Plant process- Photosynthesis.08 HrsUnit – IIIntroduction to Biomimetics: Wealth of invention in nature as inspiration for human
innovation: Mimicking and inspiration of nature- synthetic life. Nature as a model for
structure and tools: Biological clock, honey comb as strong light weight structure. Materials
and processes in biology- Spider web, honey bee as a multi-material producer, fluorescent
materials in fire flies. Bird and insect as source of inspiring flight. Robotics as
beneficiary for biomimetic technologies.08 HrsUnit -IIIBiological materials in Engineering mechanisms: Introduction, Comparison of biological
and synthetic materials: Silk processing and assembly by insects and spiders- High
performance fibers from nature, Seashells- High performance organic and inorganic08 Hrs

performance fibers from nature, Seashells- High performance organic and inorganic				
composites from nature. Shark skin- Biological approaches to efficient swimming via control				
of fluid dynamics, Muscles- Efficient biological conversion from chemical to mechanical				
engineering.				
Unit –IV				
Biological inspired process and products: Artificial neural networks, genetic algorithms,				
medical devices. Biosensors. Plant as Bioinspirations: Energy efficiency, Biomimetic super				
hydrophobic surfaces- lotus leaf effect. Bionic leaf and Photovoltaic cells.				

Unit –VImplants in Practice: Artificial Support and replacement of human organs-Introduction,
Artificial kidney, liver, blood, lung, heart, skin and pancreas. Total joint replacements-
Visual prosthesis -artificial eye. Sense and sensors: Artificial tongue and nose, Biomimetic
echolation. Limitations of organ replacement systems.07 Hrs

Course	Course Outcomes: After completing the course, the students will be able to				
CO1:	Remember and explain the fundamentals of Biology				
CO2:	Describe the basic principles of design in biological systems.				
CO3:	Differentiate biological phenomena to support inspiration for visual and conceptual design				
	problems				
CO4:	Create engineered solutions to customer needs utilizing a variety of bio-inspiration techniques.				

Refere	ence Books
1	Jenkins, C.H. Bioinspired Engineering, NY: Momentum press, 2012 ISBN: 97816066502259
2	C.C.Chatterjee, Human Physiology Volume 1 (11th Edition), 2016, ISBN 10: <u>8123928726</u> / ISBN 13: <u>9788123928722</u>
3	Yoseph Bar-Cohen, Biomimetics: Biologically Inspired technologies, 2005, CRC press, ISBN: 9780849331633
4	Donald Voet, Charlotte W. Pratt. Principles of Biochemistry: International Student Version. Wiley John and Sons, 2012. ISBN: 1118092449.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	1	1	1	1	1	1	1	2
CO2	2	1	2	1	1	1	1	1	1	1	1	2
CO3	3	3	3	2	1	1	1	1	1	1	1	3
CO4	3	3	3	1	1	1	1	1	1	1	1	2

	Semester: VI				
	GREEN TECHNOLOGY				
	(Group E: Globa	l Elective)			
Cou	rse Code: 16G6E02	CIE Marks: 100			
Crec	lits: L:T:P:S: 3:0:0:0	SEE Marks: 100			
Hou	rs: 36L	SEE Duration: 3Hrs			
Cou	Course Learning Objectives:				
1	Learn the tools of green technology				
2	Know various forms of renewable energy				
3	Study the environmental consequences of energy	conversation			
4	Understand energy audits and residential energy	audit			
5	Understand the application of green technology in	n various industries			

Unit-I	
Current Practices and Future Sustainability: Need for green technology, fundamentals of	07 Hrs
energy and its impact on society and the environment, the mechanics, advantages and	
disadvantages of renewable energy sources, energy conservation and audits, zero waste	
technology, life cycle assessment, extended product responsibility, concept of atom	
economy, tools of Green technology	
Cleaner Production: Promoting cleaner production, benefits and obstacles of cleaner	
production, cleaner production technologies.	
Unit – II	
Solar Radiation and Its Measurement: Solar constant, solar radiation at the earth's surface,	08 Hrs
solar radiation geometry, solar radiation measurements	
Applications of Solar Energy: Introduction, solar water heating, space-heating (or solar	
heating of buildings), space cooling (or solar cooling of building), solar thermal electric	
conversion, agriculture and industrial process heat, solar distillation, solar pumping, solar	
cooking	
Geothermal Energy: Resource identification and development, geothermal power	
generation systems, geothermal power plants case studies and environmental impact	
assessment.	
Unit -III	
Energy From Biomass (Bio-Energy): Introduction, biomass conversion technologies, wet	07 Hrs
Processes, dry Processes, biogas generation, factors affecting biodigestion, types of biogas	
plants (KVIC model & Janata model), selection of site for biogas plant	
Bio Energy (Thermal Conversion): Methods for obtaining energy from biomass, thermal	
gasification of biomass, classification of biomass gasifiers, chemistry of the gasification	
process, applications of the gasifiers.	
Unit –IV	
Wind Energy: Introduction, basic components of WECS (Wind Energy Conversion	07 Hrs
system), classification of WEC systems, types of wind machines (Wind Energy Collectors),	
horizontal-axial machines and vertical axis machines.	
Ocean Thermal Energy: OTEC-Introduction, ocean thermal electric conversion (OTEC),	
methods of ocean thermal electric power generation, open cycle OTEC system, the closed or	
Anderson, OTEC cycle, Hybrid cycle	
Energy from lides : Basic principles of tidal power, components of tidal power plants,	
operation methods of utilization of tidal energy, advantages and limitations of tidal power	
generation	

Unit –V	
Hydrogen, Hydrogen Energy: Introduction, methods of hydrogen production (principles	07 Hrs
only), storage transportation, utilization of hydrogen gas, hydrogen as alternative fuel for	
motor vehicle, safety and management, hydrogen technology development in India	
Application of Green Technology: Electronic waste management, bioprocesses, green	
composite materials, green construction technology	
Sustainability of industrial waste management: Case studies on cement industry, iron and	
steel industry, petroleum sectors, marble and granite industry, sugar industry	

Course	Course Outcomes: After completing the course, the students will be able to				
CO1:	Recall the fundamentals of various forms of energy				
CO2:	Explain the principles of various forms of renewable energy				
CO3:	Apply the concept of zero waste, atom economy for waste management				
CO4:	Create a waste management plan incorporating tools of green technology in various industries				

Reference Books

1	Non-Conventional Energy Sources, G.D.Rai, 5 th Edition, 2016, Khanna Publications, ISBN: 8174090738
2	Renewable Energy-Power for a Sustainable Future, Edited by Godfrey Boyle, 3 rd Edition, 2012, Oxford University Press, ISBN: 9780199545339
3	Energy Systems and Sustainability: Power for a Sustainable Future, Godfrey Boyle, Bob Everett, and Janet Ramage, 2 nd Edition, 2012, Oxford University Press, ISBN: 0199593744
4	Renewable Energy resources, John Twidell and Tony Weir, 3 rd Edition, 2015, Routledge publishers, ISBN:0415584388

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

		Semester: VI				
	SOLID	WASTE MANAGEM	IENT			
Com	(Gro	oup E: Global Electiv	(e) CHE Market 100			
Coul	Course Code:16G6E03 CIE Marks: 100					
How	nts: L:1:1:5: 5:0:0:0		SEE Marks: 100 SEE Duration: 3Hrs			
Com	rse Learning Objectives: The students	will be able to	SEE Duration. SHIS			
Cou	Impart the knowledge of present me	thods of solid waste	management system and to a	nalvze the		
1	drawbacks.	chous of solid waste	management system and to a	inaryze the		
2	Understand various waste management	statutory rules.				
2	Analyze different elements of solid	waste management, o	lesign and develop recycling	options for		
3	biodegradable waste by composting.	C C		^		
4	Identify hazardous waste, e-waste, plas	tic waste and bio medi	cal waste and their management	systems.		
		UNIT-I				
Intro	oduction: Land Pollution. Scope and in	nportance of solid wa	ste management. Present solid	08 Hrs		
wast	e disposal methods. Merits and demeri	ts of open dumping,	feeding to hogs, incineration,			
pyro	lysis, composting, sanitary landfill. D	Definition and function	onal elements of solid waste			
mana	agement.	1.1				
Sour	ces: Sources of Solid waste, types of	solid waste, composit	tion of municipal solid waste,			
gene Coll	ration rate, Numerical Problems.	colid wester Collecti	on of solid wasta convises and			
Colle	ma Municipal Solid wasta (Managamat	solid waste: Collection	on or solid waste- services and			
Site	visit to collection system	it and Handling) 2000	Tules with 2016 amendments.			
She visit to conection system.						
Composting Aerobic and anaerobic composting - process description process microbiology 08 Hrs				08 Hrs		
Vermicomposting, Site visit to compost plant, Numerical problems.				00 1115		
	r 8,	, I				
Sani	Sanitary land filling: Definition, advantages and disadvantages, site selection, methods, reaction					
occurring in landfill- Gas and Leachate movement, Control of gas and leachate movement, Site						
visit	visit to landfill site.					
		UNIT-III				
Haza	ardous waste management: Definitions	, Identification of haz	ardous waste, Classification of	06 Hrs		
haza	rdous waste, onsite storage, collection, tr	ansfer and transport, p	processing, disposal, hazardous			
wast	e (Management and handling) rules 2008	with amendments. Sit	e visit to hazardous landfill site			
D'a	madical magta managements Classifies	UNII-IV		06 H.		
dian	medical waste management: Classifica	wests (Management of	aste, conection, transportation,	UO HIIS		
amer	amondmonte. Site vigit to hospital to see the collection and transportation system and visit to					
biom	edical waste incineration plant	oncetion and transport	ation system and visit to			
UNIT-V						
E-ws	aste management: Definition Component	nts. Materials used in r	nanufacturing electronic goods	06 Hrs		
Recy	cling and recovery integrated approach	E- waste (managemen	t and handling) rules 2011 Site	50 1115		
visit	visit to e- waste processing facility. Plastic waste management: Manufacturing of plastic with					
norm	norms. Plastic waste management. Plastic manufacture, sale & usage rules 2009 with					
amer	amendments.					

Cou	urse Outcomes: After completing the course, the students will be able to
1	Understand the existing solid waste management system and to identify their drawbacks.
2	Analyze drawbacks in the present system and provide recycling and disposal options for each type of waste.
3	Distinguish Hazardous waste, Biomedical waste, E waste and to provide scientific management system.
4	Evaluate and monitor the Biomedical waste, Hazardous waste, E waste, Plastic and Municipal waste
	management as per the rules laid by Ministry of Environment & Forest.

Re	ference Books
1.	Integrated Solid Waste Management : Engineering principles and management issues George
	Tchobanoglous, Hilary Theisen, Samuel A Vigil, published by M/c Graw hill Education.
	Indian edition 2014. ISBN – 13: 978- 9339205249, ISBN-10 : 9339205243
2.	Environmental Engineering, Howard S Peavy, Donald R Rowe and George Tchobanoglous, Tata
	Mcgraw Hill Publishing Co ltd., 2013, ISBN-13 9789351340263.
3.	Electronic waste management, R.E. Hester, Roy M Harrison,, Cambridge, UK, RSC
	Publication, 2009, ISBN 9780854041121
4.	Municipal Solid waste (Management & Handling Rules) 2000. Ministry of Environment &
	Forest Notification, New Delhi, 25th Sept 2000 and 2016 amendments.
5.	Hazardous waste (management, handling) rules 2008. Ministry of Environment and Forest
	Notification, New Delhi, 25th February 2009.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping	

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	1	-	-	-	-	-	-
CO2	2	1	-	-	1	1	-	-	-	-	-	-
CO3	2	2	1	-	2	1	1	-	-	-	-	1
CO4	2	2	1	-	3	2	2	-	-	-	1	1

Semester :VI

INTRODUCTION TO WEB PROGRAMMING (Group F: Clobal Electiva)							
Cou	rse Code:16G6E04	CIE Marks: 100					
Cree	dits: L:T:P:S: 3:0:0:0	SEE Marks: 100					
Hou	rs: 36L	SEE Duration: 3 Hrs	5				
Cou	rse Learning Objectives: The students	will be able to					
1 Understand the basic concepts used in web programming.							
2	Learn the definitions and syntax of diff	erent web technologies.					
3	Utilize the concepts of JavaScripts, XM	IL and PHP.					
4	Design and develop web pages which a techniques such as CSS,XML and Java	are quick, easy and well-presented using differ a Scripts.	ent				
		UNIT-I					
Introduction to Web Concepts Fundamentals of Web, HTML 5 - Core HTML attributes, headings, paragraphs and breaks, divisions and centering, quotations, preformatted text, lists, horizontal rules, block-level elements, text-level elements.XHTML – 1: Internet, WWW, Web Browsers and Web Servers, URLs, MIME, HTTP, Security, the Web Programmers Toolbox. XHTML: Basic syntax, Standard structure, Basic text markup, Images, Hypertext Links.XHTML (continued): Lists, Tables, Forms, Frames.							
		IINIT_II					
Case	pading Style Sheets (CSS).	0111-11	00 Hrs				
value forms, Font properties, List properties, Color, Alignment of text, The box model, Background images, The and <div> tags, Conflict resolution. The Basics of JavaScript: Overview of JavaScript; Object orientation and JavaScript; General syntactic characteristics; Primitives, operations, and expressions; Screen output and keyboard input; Control statements</div>							
		UNIT-III					
UNIT-III JavaScript (continued): Object creation and modification; Arrays; Functions; Constructor; Pattern matching using regular expressions; Errors in scripts. JavaScript and HTML Documents: The JavaScript execution environment; The Document Object Model; Element access in JavaScript; Events and event handling; Handling events from the Body elements, Button elements, Text box and Password elements; The DOM 2 event model; The navigator object; DOM tree traversal and modification.							
	UNIT-IV						
UNIT-IV Dynamic Documents with JavaScript: Introduction to dynamic documents; Positioning elements; Moving elements; Element visibility; Changing colors and fonts; Dynamic content; Stacking elements; Locating the mouse cursor; Reacting to a mouse click; Slow movement of elements; Dragging and dropping elements. Introduction to PHP: Origins and uses of PHP; overview of PHP; General syntactic characteristics; Primitives, Operations and Expressions; Output; Control statements; Arrays; Functions; Pattern							

UNIT-V						
XML:	05 Hrs					
Introduction; Syntax; Document structure; Document Type definitions; Namespaces; XML						
schemas; Displaying raw XML documents; Displaying XML documents with CSS; XSLT						
Style sheets; XML processors; Web services.						

Course Outcomes: After completing the course, the students will be able to								
CO1.	Understand and explore internet related concepts that are vital for web development.							
CO2.	Apply HTML tags for designing static web pages and forms using Cascading Style Sheet.							
CO3.	Utilize the concepts of XML, JavaScripts along with XHTML for developing web pages.							
CO4.	Design and develop web based applications using JavaScripts, CSS, XHTML, PHP and XML.							

Ref	erence Books
1.	Programming the World Wide Web – Robert W. Sebesta, 7th Edition, 2013, Pearson Education,
	ISBN-13:978-0132665810
2.	Web Programming Building Internet Applications, Chris Bates, 3rd Edition, , 2006, Wiley India,
	ISBN : 978-81-265-1290-4
3.	Internet & World Wide Web How to H program, M. Deitel, P.J. Deitel, A. B. Goldberg, 3rd
	Edition,2004, Pearson Education / PHI, ISBN-10: 0-130-89550-4
4.	Thomas A Powell, The Complete Reference to HTML and XHTML, 4th Edition, 2003, Tata
	McGraw Hill publisher. ISBN: 978-0- 07-222942- 4.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	2	-	1	1	1	-	-	-	-	1
CO2	-	-	2	-	1	1	-	-	-	-	-	-
CO3	-	-	-	-	2	-	-	-	2	-	-	2
CO4	-	-	3	-	2	-	-	-	2	-	-	2

Semester: VI								
AUTOMOTIVE ELECTRONICS								
(Group E: Global Elective)								
Course Code: 16G6E05 CIE Marks: 100								
Crea	lits: L:T:P:S: 3:0:0:0		SEE Marks: 100					
Hou	SEE Duration: 3Hrs							
Cou	rse Learning Objectives: The students	will be able to						
1	Understand the application of principle	s of sensing technolog	y in automotive field					
2	2 Apply control systems in the automotive domain							
3	3 Understand automotive specific communication protocols / techniques							
4	Analyze fault tolerant real time embedded systems							

L'NIT.I							
Power Train Engineering and Fundamentals of Automotive: Fundamentals of Petrol	08 Hrs						
diesel and gas engines, electric motors and control systems. Basic Automotive System,							
System Components, Evolution of Electronics in Automotive. Alternators and charging.							
battery technology Ignition systems Working principles of various electronic components							
and accessories used in Automotive. Developments in existing engine forms and							
alternatives Hybrid designs (solar nower electric/gasoline LPG CNG fuel cells) Basic							
Transmission systems							
UNIT-II	<u> </u>						
Sensor Technologies in Automotive: In-vehicle sensors: Working principles	07 Hrs						
Characteristics limitations and use within the automotive context of the following:	07 1115						
Temperature sensing e.g. coolant air intake Position sensing e.g. crankshaft throttle plate							
Pressure sensing e g. coolant, an intake. I osition sensing e.g. crankshart, unotice plate.							
Collision Velocity sensing e.g. manifold, exhaust unreferritar, tyre. Distance sensing e.g. anti-							
transmission. Vibration consing a.g. Airbags flow consing and massurament a.g. fuel							
injection Interfacing principles: Operation topologies and limitations of all sensors covered							
in the above to in vehicle processing or communications nodes. Use of Actuators: Types							
working principle. Characteristics, limitations and use within the automotive context							
of each type							
	<u> </u>						
UNIT-III Automotive Control Systemat Control system anneach in Automotive Analysis a Divital							
Automotive Control Systems: Control system approach in Automotive. Analog and Digital	07 H IS						
control methods, stability augmentation, control augmentation. Transmission control, System							
components and functions. Cruise control, traction control, actuator finiting, wind-up, gain							
scheduling, adaptive control. Special Control Schemes: venicle braking fundamentals,							
Antilock systems. Variable assist steering and steering control. Controls for Lighting. Wipers,							
Air conditioning /heating. Remote keyless Entry and Anti- theft System, Emission Course-							
system control. Control techniques used in hybrid system. Electronic Engine control: Motion							
equations, modeling of linear and non-linear systems, numerical methods, system responses							
Objective of Electronic Engine control. Spark Ignition and Compression Ignition Engines							
and their electronic controls. Engine management testing: Engine management system							
strategies and implementation. Simulation and implementation methods. Methods of							
improving engine performance and							
efficiency. Model Based Development (MBD) Technology. AUTOSAR: Objectives and							
Architecture.							
UNIT-IV							
Automotive Communication Systems: Communication interface with ECU's: Interfacing	07 Hrs						
techniques and interfacing with infotainment gadgets. Relevance of internet protocols, such							
as TCP/IP for automotive applications. Wireless LANs standards, such as Bluetooth,							
IEEE802.11x. Communication protocols for automotive applications. Automotive Buses:							
Use of various buses such as CAN, LIN, Flex Ray. Recent trends in automotive buses (Such							
as OBDI1. MOST, IE, IELI.I, D2B and DSI). Application of Telematics in							
Automotive: Global Positioning Systems (GPS) and General Packet Radio Service (GPRS),							

for use in an automotive environment. Vehicle to Vehicle Communication Higher End Technology: Comparative Study and applications of ARM Cortex-Ascries/M-scries. ARM 9 and ARM11.

UNIT-V

Diagnostics and Safety in Automotive: Fundamentals of Diagnostics: Basic wiring system07 Hrsand Multiplex wiring system. Preliminary checks and adjustments, Self-Diagnostic system.Fault finding and corrective measures. Electronic transmission checks and Diagnosis,
Diagnostic procedures and sequence. On board and off board diagnostics in
Automotive. Safety in Automotive: Safety norms and standards. Passenger comfort and
security systems. Future trends in Automotive Electronics.07 Hrs

Course Outcomes: After completing the course, the students will be able to

- CO1: Acquire the knowledge of automotive domain fundamentals and need of electronics in Automotive systems
- **CO2:** Apply various sensors and actuators for Automotive applications

CO3: Analyze different control systems and communication interfaces used in automotive systems.

CO4: Evaluate the performance of telematics Diagnostics and safety norms in Automotive Systems.

Reference Books

1.	Understanding Automotive Electronics, Williams. B. Ribbens, 6th Edition, 2003, Elsevier science,							
	Newness publication, ISBN-9780080481494.							
2.	Automotive Electronics Handbook, Robert Bosch, 2004, John Wiley and Sons,							
3.	Automotive Embedded Systems Handbook, Nicolas Navet, F Simonot-Lion, Industrial							
	Information Technology Series, CRC press.							
4.	Automotive Control Systems Engine, Driveline and vehicle, Uwekiencke and lars Nielsen,							

Springer, 2nd Edition, 2005, ISBN 0-387-95368X

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	1	-	-	1	-	-	-	-	1
CO2	3	2	2	1	-	1	-	-	-	1	-	1
CO3	3	2	2	1	-	1	-	-	2	-	1	1
CO4	3	1	2	1	2	1	-	-	1	-	-	-

	Semester – VI					
INDUSTRIAL ELECTRONICS						
		(Group E: Global Elective)				
Cours	se Code:16G6E06		CIE Marks: 100			
Credi	its: L:T:P:S: 3:0:0:0		SEE Marks: 100			
Hours	s: 36L		SEE Duration: 3Hrs			
Cours	se Learning Objectives: 7	The students will be able to				
1	Explain the working of the devices used in power electronic circuits in industrial applications					
2	2 Analysing and designing power electronic circuits which handle the electrical energy efficiently and economically and Identify the typical practical problems with industrial exposure acquired					
3	3 Use basic concepts of design and working of electronic circuits for conversion and control of electrical energy.					
4	4 Apply the knowledge to work as part of teams on multidisciplinary projects and to discuss industrial problems with regard to application of Power Electronics.					

Unit-I	
Power semi-conductor Devices and static characteristics:	08 Hrs
Construction, working & characteristics of MOSFET, SCR, IGBT. Comparison of Power	
BJT, MOSFET, SCR, IGBT. Turn on methods of Power BJT, MOSFET and IGBT. Design	
of R, R-C, and UJT (pulse train) Gate triggering methods of SCR.	
Unit-II	
Thyristor Dynamic characteristics, Specifications and Protection:	07 Hrs
Gate characteristics of SCR, Dynamic characteristics of SCR. Design of Snubber circuit	
for SCR, Line Commutation and Forced Commutation circuits with design, Gate protection & overvoltage protection of SCR.	
Unit-III	
Converters:	06 Hrs
Single Phase Controlled Convertor- Full wave Half and Fully controlled line commutated	
bridge converters, Derivation of average load voltage and current. Three phase converters -	
Six pulse converters- with R load- Active inputs to the convertors with and without	
Freewheeling diode, Derivation of average load voltage and current.	
Converter applications:	
Industrial Applications of Half and Fully controlled converters to DC drives (Control of DC	
drives)	
Unit-IV	
Choppers – Step down, Step up Chopper, Step up/Down Chopper, Time ratio control and	07 Hrs
Current limit control strategies –Derivation of load voltage and currents with R, RL of Step	
down, Step up Chopper, Step up/Down Chopper – load voltage expression.	
Application of choppers to subway cars, Industrial drives, battery operated vehicles.	
Unit-V	
Classification of Choppers and Applications:	08 Hrs
Type A, Type B, Type C, Type D, Type E choppers and their industrial Applications, AC	
Chopper –phase control type.	
Inverters – Single phase inverter – Basic series inverter – Basic parallel Capacitor inverter,	
bridge inverter(single phase) - Voltage control techniques for inverters Pulse width	
modulation techniques. – UPS-online, offline (Principle of operation only	

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Understand the comprehensive working of different devices and their applications.					
CO2:	Analyze the application of skills in controlling and conversion of electrical energy.					
CO3:	Evaluate and distinguish the performance of converters and inverters.					
CO4:	Ability to implement their knowledge and skills in design of applications.					

Ref	erence Books
1.	Power Electronics, M. D. Singh & K. B. Kanchandhani, Tata Mc Graw – Hill Publishing company,
	ISBN : 978-0-07-058389-4, 2008
2.	Power Electronics : Circuits, Devices and Applications, M. H. Rashid, Prentice Hall of India, 2 nd
	Edition, ISBN : 0131228153, 9780131228153, 2004
3.	Power Electronics, P.C. Sen, Tata McGraw-Hill Publishing, ISBN: 978-0-07-462400-5, 2008.
4	Power Electronics P S Bimbra P.S Bimbra ,Khanna Publication ,ISBN:978-7409-279-3,5th Edition.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

						CC)-PO	Марр	ing						
	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO						
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2	2	1	2	2	1	1	2	0	1	3	2	2
CO2	3	2	2	3	3	0	1	0	0	0	2	1	3	2	2
CO3	3	2	2	3	2	2	0	1		0	1	2	3	2	2
									0						
CO4	3	3	3	3	2	3	2	0	1	0	0	1	3	3	3

	Semester: VI			
PROJECT MANAGEMENT				
(Group E: Global Elective)				
Course Code : 16G6E07	CIE Marks : 100			
Credits : L: T: P: S:3:0:0:0 SEE Marks : 100				
Hours: 33L	SEE Duration : 03 Hrs			
Course Learning Objectives: The stude	nts will be able to			
1. To understand the principles and comp	onents of project management.			
2. To appreciate the integrated approach t	o managing projects.			
3. To explain the processes of managing p	project cost and project procurements.			
T T	Jnit – I			
Introduction: What is project, what is pro	pject management, relationships among portfolio	06 Hrs		
management, program management, pro	oject management, and organizational project			
management, relationship between proje	ect management, operations management and			
organizational strategy, business value, ro	ble of the project manager, project management			
body of knowledge.				
	NIT – II			
Organizational influences & Project li	ife cycle: Organizational influences on project	08 Hrs		
management, project state holders & gove	rnance, project team, project life cycle.			
Project Integration Management: Develop project charter, develop project management				
plan, direct & manage project work, mon	itor & control project work, perform integrated			
change control, close project or phase.				
U				
Project Scope Management: Project so	cope management, collect requirements define	07 Hrs		
scope, create WBS, validate scope, contro	l scope.			
Project Time Management: Plan sche	dule management, define activities, sequence			
activities, estimate activity resources, estim	nate activity durations, develop schedule, control			
schedule.				
U	NIT – IV			
Project Cost management: Project Cost	management, estimate cost, determine budget,	06 Hrs		
control costs.				
Project Quality management: Plan quali	ty management, perform quality assurance,			
control quality.				
	$\mathbf{N}\mathbf{I} = \mathbf{V}$			
Project Risk Management: Plan risk man	nagement, identify risks, perform qualitative risk	06 Hrs		
D	s, plan fisk resources, control fisk.			
procurements control procurements close	procurement			
procurements, control procurements, close	procurement.			
Course Outcomers After asing themesh	this source the student will be able to			
Course Outcomes: After going through	this course the student will be able to			
CO1 Understand the concepts, tools and t	techniques for managing large projects.			

CO2 Explain various sub processes in the project management frameworks.

CO3 Analyze and evaluate risks in large and complex project environments.

CO4 Develop project plans for various types of organizations.

Reference Books:

- A Guide to the Project Management Body of Knowledge(PMBOK Guide), Project Management Institute, 5th Edition, 2013, ISBN: 978-1-935589-67-9
- 2. Project Planning Analysis Selection Financing Implementation & Review, Prasanna Chandra, 7th Edition, 2010, Tata McGraw Hill Publication, ISBN 0-07-007793-2.
- 3. Project Management A System approach to Planning Scheduling & Controlling, Harold Kerzner, 10th Edition, 2009, CBS Publishers and Distributors, ISBN 047027806.
- 4. Strategic Project Management Made Simple: Practical Tools for Leaders and Teams, Terry Schmidt, 1st Edition, 2009, John Wiley & Sons, ISBN: 978-0470411582

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2											
CO2	2	2		1	1							
CO3							1	1				
CO4	2		3		1							

	VI Semester				
	VIRTUAL INSTRUMENTATION				
		Group E: Global Elec	ctive)		
Cours	e Code:16G6E08		CIE Marks: 100		
Credi	ts/Week: L:T:P:S: 3:0:0:0		SEE Marks: 100		
Hours	Hours: 35L SEE Duration: 3Hrs				
Cours	Course Learning Objectives: The students will be able to				
1	1 Understand the difference between conventional and graphical programming, basic data acquisition				
	concepts.				
2	2 Differentiate the real time and virtual instrument.				
3	3 Develop ability for programming in LabVIEW using various data structures and program structures.				
4	4 Analyze the basics of data acquisition and learning the concepts of data acquisition with LabVIEW.				

UNIT-I

Graphical Programming Environment:	06 Hrs			
Basic of Virtual Instrumentation, Conventional and Graphical Programming. Introduction to				
LabVIEW, Components of LabVIEW and Labels.				
Fundamentals: Data Types, Tool Pallets, Arranging Objects, Color Coding, Code Debugging,				
Context Help, Creating Sub-VIs Boolean, Mechanical action- switch, and latch actions, String data				
types, enum, ring, Dynamics.				
UNIT-II				
Fundamentals of Virtual Instrumentation Programming:	09 Hrs			
For Loop, While Loop, shift registers, stack shift register, feedback node, and tunnel.				
Timing function : Timing VI, elapsed time, wait function.				
Case structures, formula node, Sequence structures, Arrays and clusters, visual display types- graphs,				
charts, XY graph. Local and Global variables.				
UNIT-III				
Error Handling- error and warning, default error node, error node cluster, automatic and manual	08 Hrs			
error handling.				
String Handling: Introduction. String Functions. LabVIEW String Formats. File				
Input/ Output: Introduction, File Formats, File I/O Functions and file Path functions.				
Design patterns: Producer/consumer, event handler, derived design pattern. Oueued message				
handler. Producer/consumer (events). Producer/consumer (state machine).				
UNIT-IV				
Data Acquisition: Introduction to data acquisition Analog Interfacing Connecting signal to board				
Analog Input/output techniques digital I/O counters NI-DAOmy tasks	00 1115			
DAO Hardware configuration: Introduction Measurement and Automation Explorer DAO				
Assistants Analysis Assistants				
Interfacing Instruments: GPIB and RS232: Introduction RS232 Vs GPIB Handshaking GPIB				
Interfacing RS232C/RS485 Interfacing and VISA				
INIT.V				
Advanced Tonics In LabVIFW: Use of analysis tools and application of VI: Fourier transforms	06 Hrs			
Power spectrum Correlation methods windowing & filtering Inter-Process Communication	00 111 3			
Notifier Semanhore Data Sockets				
Simulation of systems using VI. Development of Control system Image acquisition and				
processing				
processing.				

Course Outcomes: After completing the course, the students will be able to					
CO1:	Remember and Understand the fundamentals of Virtual Instrumentation and data Acquisition.				
CO2:	Apply the theoretical concepts to realize practical systems.				

CO3:	Analyze and evaluate the performance of Virtual Instrumentation Systems.
CO4:	Create a VI system to solve real time problems using data acquisition.

Refere	ence Books
1	Virtual instrumentation Using LabVIEW, Jovitha Jerome, 4 th Edition, 2010, PHI Learning Pvt. Ltd.,
	ISBN: 978-812034035.
2	Virtual Instrumentation Using LabVIEW, Sanjay Gupta & Joseph John, 2 nd Edition, New Delhi,
	2010, Tata McGraw Hill Publisher Ltd., ISBN: 978-0070700284
3	LabVIEW for Everyone: Graphical Programming made easy and fun, Jeffrey Travis, Jim Kring, 3rd
	Edition, 2006, Prentice Hall,ISBN: 978-0131856721.
4	Data Acquisition using LabVIEW, Behzad Ehsani, 1st Edition, 2017, Packt Publishing, ISBN: 978-
	1782172161.

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO MAPPING												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	1	2	-	-	-	2	2	-	1
CO2	1	1	1	1	2	-	-	-	2	2	-	1
CO3	1	-	1	1	2	-	-	-	2	2	-	1
CO4	2	1	1	2	3	-	-	-	2	2	-	2

	Semester: VI							
INTRODUCTION TO MOBILE APPLICATION DEVELOPMENT								
(Group E: Global Elec	tive)						
Course Code: 16G6E09		CIE Marks: 100						
Credits: L:T:P:S: 3:0:0:0		SEE Marks: 100						
Hours: 36L		SEE Duration: 3Hrs						
Course Learning Objectives: The s	tudents will be able to							
I Learn Android application develo	opment platform for mo	bile devices and use it.						
2 Understand mobile application at	chitecture and its comp	onents.	•					
3 Define Android specific program	nming concepts such a roviders	as activities, intents, fragment	s, services,					
4 Describe sensors like motion	sensors environmental	sensors and positional sen	sors: most					
commonly embedded in Android	devices along with thei	r application programming inte	erface					
	UNIT I							
Overview of Software platforms ar	nd Development: Mobi	le OS: Android development	07 Hrs					
platform and tools, Programming	g language, Emulator	, SDK and Development						
Environments								
Creating Applications and Activitie	s: Introducing the Appli	cation Manifest File; Creating						
Applications and Activities; Architect	ture Patterns (MVC); A	ndroid Application						
Lifecycle.								
	UNIT II							
User Interface Design: Fundamental	Android UI Design; Intr	roducing Layouts; Introducing	07 Hrs					
Fragments.								
Intents and Broadcasts : Introduci	ng Intents; Creating	Intent Filters and Broadcast						
Receivers.								
Detaless and Contant Drastilans			07 11					
Database and Content Providers:	Introducing Android D	atabases; Introducing SQLite;	0/Hrs					
Using Content Providers: Case Study	s Will SQLife Database	s; Creating Coment Providers;						
Using Content Floviders, Case Study		int Flovidels.						
Lagation Based Services Telephon	v and SMS: Using Lo	action Record Services: Using	AQ Ura					
the Emulator with Location-Based	Services: Selecting	a Location Provider: Using	00 1115					
Proximity Alerts: Using the Geocode	er Example Man-base	d activity: Hardware Support						
for Telephony. Using Telephony: Introducing SMS and MMS								
ΙΝΙΤ V								
UNIT Y Handware Support and Daviage (AUDIO, VIDEO, AND USING THE CAMEDA). 07 Has								
Ising Sensors and the Sensor Manager: Monitoring a Davido's Movement and Orientation								
Introducing the Environmental Sensors: Playing Audio and Video: Using								
Audio Effects: Using the Camera: Re	cording Video							
Course Outcomes: After completing	g the course. the stude	nts will be able to						
	course outcomes, and completing the course, the students will be able to							

CO1:	Assess the basic framework and usage of SDK to build GUI and apply advanced						
	technologies in developing Android mobile applications.						
CO2:	Differentiate techniques for persisting user data, such as shared preferences, traditional file systems (internal and external storage), and SQLite database						
CO3:	Articulate the communication programming features and capabilities of Android platforms.						
CO4 :	Design and create innovative, sophisticated mobile applications using Android platform.						

Refe	erence Books
1.	Professional Android 4 Application Development, Reto Meier, WROX Press, 2012, Wiley
	Publishing, ISBN: 9781118102275
2.	Android Application Development: Programming with the Google SDK, John Lombardo, Blake
	Meike, Rick Rogers and Zigurd Mednieks, 2009, O'Reilly Media, Inc. ISBN: 9788184047332
3.	Hello Android, Introducing Google's Mobile Development Platform, Ed Burnette, 3 rd Edition,
	Pragmatic Programmers, LLC.ISBN: 9781934356562
4.	Android Studio Development Essentials - Android 6, Neil Smyth, 2015, Createspace Independent
	Publishing Platform, ISBN: 9781519722089

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	-	3	-	-	-	-	-	-	2
CO2	3	3	3	-	3	1	-	-	-	2	-	2
CO3	-	3	3	-	3	2	-	-	-	2	1	3
CO4	3	3	3	2	3	2	2	2	2	2	1	3

	Semester: VI								
	AUTOMOTIVE ENGINEERING								
		(Group E: Global Elective)							
Cou	rse Code: 16G6E10	CIE Marks: 100							
Crea	lits: L:T:P:S 3:0:0:0	SEE Marks: 100							
Hou	rs: 36L	SEE Duration: 3Hrs							
Cou	Course Learning Objectives: The students will be able to								
1	Identify the different su	p-systems in automobiles.							
2	Describe the functions of	f each of the sub-systems and its effect.							
3	3 Discuss fuel injection, transmission, braking, steering, suspension, air intake and exhaust systems.								
4	Explain the importance	of selection of suitable sub-system for a given performance requirement.							

UNIT-I

UNIT-1					
Automobile Engines 06 Hrs					
Classifications of Internal Combustion Engines based on no. of cylinders, Arrangement of					
cylinders, Type of fuel and no. of strokes. Engine construction and nomenclature.					
Thermodynamic principles of Otto and Diesel cycle. Operation in a 4 stroke engine. Direct					
and indirect injection. Combustion stages in engines. Fuels: Gasoline, Diesel, LPG and					
Natural Gas For automotive applications. Fuel properties- Octane number and Cetane					
number. Pollutants and Emission norms- Regulated pollutants and its effects.					
Regulations as per emission norms.					
UNIT-II					
Engine Auxiliary Systems: 08 Hrs					
AirIntake and Exhaust System- Working principle of Air filters. Intake manifold					
Turbocharger Intercooler Exhaust manifold Catalytic convertor Exhaust Gas					
Recirculation system Muffler					
Cooling system- Components working principle. Coolant					
Lubrication system- Components, Properties of lubricating oil Viscosity numbers					
Fuel system- Working principle of Fuel Injection Pump Injector Nozzle Fuel filter					
Working of ignition system Battery Immobilizer					
UNIT-III					
Transmission: 08 Hrs					
Clutch-Classification and working Gear box-Classification Working of sliding mesh and					
Synchromesh transmission Automatic transmission Propeller shaft Differential assembly					
and rear ayle. Working Wheels and Tyres. Wheel alignment and balancing classification					
of tyres Radial Tubeless					
UNIT.IV					
Vahicular Auviliary Systems:					
Suspension Front and rear suspension working. Types of springs					
Brake Classification and Components Disc and drum brakes Hydraulic parking brake					
Front and rear wheel brokes. Antilock Broking Systems					
Steering, components and operation of power steering					
Vahiala frame and body classification. Hatabback, Sadan, SUV					
Sofety systems Dessing sofety systems Asting sofety systems Dringials of Electronic					
Safety systems- Passive safety systems, Active safety systems- Principle of Electronic					
Stability Program, Air bags, Crash testing methods.					
UNII-V Demonstrations of Automobile Statemer Engineering					
Demonstrations of Automobile Systems: Engine performance measurement in terms of 06 Hrs					
multi cylinder engine. Production and properties of biodiscal					

Cou	Course Outcomes: After completing the course, the students will be able to							
1	Describe the different types of automotive systems. (L1-L2)							
2	Construct the Valve Timing Diagram for multi-cylinder engines. (L3)							
3	Detect the automotive exhaust pollutants using gas analyzer. (L4)							
4	Evaluate the performance of engines by determining Brake Power. (L6)							

Reference Books

1.	Automotive Engineering Fundamentals, Richard Stone and Jeffrey K. Ball, 2004, SAE
	International, ISBN: 0768009871
2.	Bosch Automotive Handbook, Robert Bosch, 9th Edition, 2004, ISBN: 9780768081527.

3.	Automotive Engineering e-Mega Reference, David Crolla Butterworth-Heinemann 1 st Edition
	, 2009, ISBN: 9781856175784.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1		1			2		2			1
CO2		2										
CO3		2	1			2		1			2	1
CO4	2	2	1	1	1	1	2	1	1	2	2	

	Semester: VI							
	MOBILE NETWORK SYSTEMS AND STANDARDS							
	(Group E: Global Elective)							
Cou	Course Code: 16G6E11 CIE Marks: 100							
Cree	dits: L:T:P:S: 3:0:0:0		SEE Marks: 100					
Hou	Hours: 34L SEE Duration: 03Hrs							
Cou	rse Learning Objectives: The student	s will be able to						
1	Understand land mobile concepts, radio link design and cellular network.							
2	Compare the standards of WPAN, WLAN and WMAN.							
3	Analyze WPAN, WLAN and WMAN standards and their architecture.							
4	Design and demonstrate wireless netw	orks for various appli	rations					

UNIT-I

Cellular Wireless Networks: Principles of cellular Networks, cellular system					
components and Operations, channel assignment, Attributes of CDMA in cellular	06 Hrs				
system.					
UNIT-II					
Second generation Cellular Networks: GSM architecture, IS-95, GPRS, EDGE.	08 Hrs				
UNIT-III					
Third generation cellular systems: WCDMA, IMT 2000 and LTE, Convergence in	06 Hrs				
the network.					
UNIT-IV					
Wireless Personal Area Networks: Network architecture, components,	08 Hrs				
Applications, Zigbee, Bluetooth.					
Wireless Local Area networks: Network Architecture, Standards, Applications.					
UNIT-V					
Wireless Metropolitan Area Networks: IEEE 802.16 standards, advantages, WMAN					
Network architecture, Protocols, Applications.	06 Hrs				
·					

	Course Outcomes: After completing the course, the students will be able to
CO1	Describe the architectures and characteristics of different mobile networks. (L1- L2)
CO2	Apply the Network standards to a suitable application (L3)
CO3	Analyze the operation of various network technologies and standards (L4)
CO4	Evaluate the performance of various network technologies (L5)

Refere	ence Books								
1	Wireless Communication, Upena Dalal, 1 st Edition, 2009, Oxford higher Education,								
	ISBN-13:978-0-19-806066-6.								
2	Wireless and Mobile Networks Concepts and Protocols, Dr. sunil Kumar s Manvi, 2010, Willey								
	India Pvt. Ltd., ISBN: 978-81-265-2069-5.								
3	Wireless Communications Principles and practice, Theodore S Rappaport, 2 nd Edition,								
	Pearson, ISBN 97881-317-3186-4.								

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of

the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2		2			2		2		1
CO2	3	3	2		2			2		2		1
CO3	3	3	3		2			2		2		2
CO4	3	3	3		3			2		2		2

Semester: VI							
APPLIED PARTIAL DIFFERENTIAL EQUATIONS							
(Group)	E: Global Elective)						
se Code:16G6E12	CIE Marks: 100						
its: L:T:P:S: 3:0:0:0	SEE Marks: 100						
rs: 35L	SEE Duration: 3Hrs						
se Learning Objectives:							
Adequate exposure to learn basics of partial differential equations and analyze mathematical							
problems to determine the suitable analytical technique.							
2 Use analytical techniques and finite element technique for the solution of elliptic, parabolic and							
hyperbolic differential equations.							
3 Solve initial value and boundary value problems which have great significance in engineering							
practice using partial differential equations.							
4 Identify and explain the basics of partial differential equations and use the same to analyze the							
behavior of the system.							
	S APPLIED PARTIAL (Group) (Gro						

T I					
Unit-I					
Partial Differential Equations of first order:	07 Hrs				
Introduction to formation of partial differential equations, Cauchy problem, Orthogonal					
surfaces, First order non-linear partial differential equations-Charpit's method,					
Classification and canonical forms of partial differential equations.					
Unit – II					
Elliptic Differential Equations:	07 Hrs				
Derivation of Laplace and Poisson equation, Separation of variable method, Dirichlet					
problem, Neumann problem, Solution of Laplace equation in cylindrical and spherical					
coordinates.					
Unit -III					
Parabolic Differential Equations:	07 Hrs				
Formation and solution of Diffusion equation, Dirac-Delta function, Separation of variable					
method, Solution of Diffusion equation in cylindrical and spherical coordinates.					
Unit –IV					
Hyperbolic Differential Equations:	07 Hrs				
Formation and solution of one dimensional wave equation, D'Alembert's solution,					
vibrating string, Forced vibration, Periodic solution of one dimensional wave equation in					
cylindrical and spherical coordinates, Vibration of Circular membrane.					
Unit –V					
Numerical solutions of Partial Differential Equations:	07 Hrs				
Finite difference method for Elliptic, Parabolic and Hyperbolic partial differential equations,					
Introduction to the finite element method-simple problems.					

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Identify and interpret the fundamental concepts of formation and solution of parabolic,
	hyperbolic and elliptic differential equations using analytical and numerical methods.
CO2:	Apply the knowledge and skills of analytical and numerical methods to solve the
	parabolic, nhyperbolic and elliptic differential equations arising in the field of science and
	engineering.
CO3:	Analyze the physical problem to establish mathematical model and use appropriate method to
	solve and optimize the solution using the appropriate governing equations.
CO4:	Distinguish the overall mathematical knowledge to demonstrate and analyze the solution of
	parabolic, hyperbolic and elliptic differential equations arising in practical situations.

Г

Refere	ence Books
1	Partial Differential Equations, K. Sankara Rao, Prentice-hall of India, 3 rd Edition, 2012, ISBN: 978-81-203-3217-1.
2	Advanced Engineering Mathematics, Erwin Kreyszig, Wiley, 10 th Edition, 2016, ISBN: 978- 81-265-5423-2.
3	Numerical methods for scientific and engineering computation, M K Jain, S. R. K. Iyengar, R. K. Jain, New Age International Publishers, 6 th Edition, 2012, ISBN-13: 978-81-224-2001-2.
4	An Introduction to the finite element method, J. N. Reddy, McGraw Hill, 3 rd Edition, 2005, ISBN 13: 9780072466850

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

	Semester: VI	
	AIRCRAFT SYSTEMS	
	(Group E: Global Elective)	
Course Code: 16G6B13		CIE Marks: 100
Credits: L:T:P:S: 3:0:0:0		SEE Marks: 100
Hours: 36L		SEE Duration: 3Hrs

Course Learning Objectives:

To enable the students to:

- 1 List the various systems involved in the design of an aircraft
- 2 Demonstrate the technical attributes of all the subsystems of an aircraft
 - 3 Explain the significance of each systems and its subsystems for developing an airplane
- 4 Demonstrate the integration of the systems with the airplane

Unit-I	
Flight Control Systems : Primary and secondary flight controls, Flight control linkage	07 Urs
system, Conventional Systems, Power assisted and fully powered flight controls.	0/1115
Unit – II	
Aircraft Hydraulic & Pneumatic Systems : Components of a typical Hydraulic system,	
Working or hydraulic system, Power packs, Hydraulic actuators. Pneumatic system and	00 Ung
components, Use of bleed air, Landing gear and braking, Shock absorbers-Retraction	00 1115
mechanism.	
Unit -III	
Aircraft Fuel Systems : Characteristics of aircraft fuel system, Fuel system and its	
components, Gravity feed and pressure feed fuel systems, Fuel pumps-classification, Fuel	07 Hrs
control unit.	

Unit -IV	
Environmental Control Systems : Air-conditioning system, vapour cycle system, de- icing and anti-icing system, Fire detection- warning and suppression. Crew escape aids. Engine Systems : Engine starting sequence, Starting and Ignition systems, Engine oils and a typical lubricating system.	07 Hrs
Unit -V	
Aircraft Instruments : Instruments displays, panels & layouts, Instrumentation grouping, Navigation instruments, Radio instruments, Hydraulic and Engine instruments. Air Data Instruments : Basic air data system and probes, Mach meter, Air speed indicator, Vertical speed indicator, Barometric pressure sensing, Altimeter, Air data alerting system- angle of attack sensing, stall warning, Mach warning, altitude alerting system.	07 Hrs

Course Outcomes: At the end of this course the student will be able to : 1 Categorise the various systems required for designing a complete airplane 2 Comprehend the complexities involved during development of flight vehicles. 3 Explain the role and importance of each systems for designing a safe and efficient flight vehicle 4 Demonstrate the different integration techniques involved in the design of an air vehicle

Reference Books

1	John D. Anderson, Introduction to Flight, 7 th Edition, 2011, McGraw-Hill Education, ISBN 9780071086059.
2	Moir, I. and Seabridge, A., Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration, 3 rd Edition, 2008, Wiley Publications, ISBN- 978-0470059968

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1
												2
CO1	3	3	3	1	1	3	2	2				1
CO2	2	3	3	3	1	1	1	1				1
CO3	2	2	3	3	1							2
CO4	3	3	3	3	1	2	1	2				1

	Semester: VI						
	PROFESSIONAL PRACTICE – III						
EMPLOYABILITY SKILLS AND PROFESSIONAL DEVELOPMENT OF ENGINEERS							
Co	urse Code: 16HS68	CIE Marks: 50					
Credits: L:T:P:S: 0:0:1:0		SEE Marks: NA					
Но	urs: 18 Hrs	CIE Duration: 02 Hrs					
Course Learning Objectives: The students will be able to							
1	Improve qualitative and quantitative problem solving skills.						
2	Apply critical and logical thinking process to specific problems.						
2	Ability to verbally compare and contrast words and arrive at relationships between concepts, based						
3	on verbal reasoning.						
4	Applying good mind maps that help in communicating ideas as well as in technical documentation						

V Semester									
UNIT-I									
Aptitude Test Preparation- Importance of Aptitude tests, Key Components, Quantitative Aptitude – Problem Solving, Data Sufficiency, Data Analysis - Number Systems, Math Vocabulary, fraction decimals, digit places etc.	06 Hrs								
Reasoning and Logical Aptitude, - Introduction to puzzle and games organizing information,									
parts of an argument, common flaws, arguments and assumptions. Analytical Reasoning, Critical Reasoning.									
UNIT-II									
Verbal Analogies - What are Analogies, How to Solve Verbal Analogies & developing Higher Vocabulary, Grammar, Comprehension and Application, Written Ability. Non- Verbal Reasoning, Brain Teasers. Creativity Aptitude. Group Discussion- Theory &Evaluation : Understanding why and how is the group discussion conducted, The techniques of group discussion, Discuss the FAQs of group discussion, body language during GD.	06 Hrs								
UNIT-III.A									
Resume Writing- Writing Resume, how to write effective resume, Understanding the basic essentials for a resume, Resume writing tips Guidelines for better presentation of facts.	06 Hrs								
VI Semester									
UNIT-III.B									
Technical Documentation - Introduction to technical writing- Emphasis on language difference between general and technical writing, Contents in a technical document, Report design overview & format Headings, list & special notes, Writing processes, Translating technical information, Power revision techniques, Patterns & elements of sentences, Common grammar, usage & punctuation problems.	06 Hrs								
UNIT-IV									
Interview Skills -a) Personal Interviews , b) Group Interviews , c) Mock Interviews - Questions asked & how to handle them, Body language in interview, Etiquette, Dress code in interview, Behavioral and technical interviews, Mock interviews - Mock interviews with different Panels. Practice on stress interviews, technical interviews, General HR interviews etc.	06 Hrs								
UNIT-V									
Interpersonal Relations - Optimal Co-existence, Cultural Sensitivity, Gender sensitivity Adapting to the Corporate Culture- Capability & Maturity Model, Decision Making Analysis, Brain Storm. Adapting to the Corporate Culture.									
Course Outcomes: After completing the course, the students will be able to									
--	---	--	--	--	--	--	--	--	--
COI	Inculcate employability skill to suit the industry requirement.								
CO2	2: Analyze problems using quantitative and reasoning skills								
CO3	Exhibit verbal aptitude skills with appropriate comprehension and application.								
CO4	Focus on Personal Strengths and Competent to face interviews and answer								
Reference Books									
1.	The 7 Habits of Highly Effective People, Stephen R Covey Free Press, 2004 Edition, ISBN								
	0743272455								
2.	How to win friends and influence people, Dale Carnegie General Press, 1st Edition, 2016, ISBN:								
	9789380914787								
3.	Crucial Conversation: Tools for Talking When Stakes are High, Kerry Patterson, Joseph Grenny, Rom								
	Acmillan 2012 Edition, McGraw-Hill Publication ISBN: 9780071772204								
4.	Aptimithra: Best Aptitude Book ,Ethnus,2014 Edition, Tata McGraw Hill ISBN: 9781259058738								

Scheme of Continuous Internal Examination (CIE)

Evaluation of CIE will be carried out in TWO Phases.

Phase	Activity	Weightage							
Ι	Test 1 is conducted in V Sem for 50 marks (15 Marks Quiz and 35 Marks	50%							
	Descriptive answers) after completion of Unit-1, Unit-2 and Unit -3.A for 18								
	hours of training sessions.								
II	Test 2 is conducted in VI Sem for 50 marks ((15 Marks Quiz and 35 Marks	50%							
	Descriptive answers) after completion of Unit -3B, Unit - 4 and Unit-5 for 18								
	hours of training sessions.								
	At the end of the VI sem Marks of Test 1 and Test 2 is consolidated for 50 marks (Average of								
	Test1 and Test 2 (T1+T2/2). The grading is provided by the Coe. The final CIE marks is								
	scrutinized by the committee comprising of HSS- Chairman, Training Co-ordinator, respective								
	department Staff Placement co-ordinator before submitting to CoE.								

SEE: NA

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1					1		1	1	1	2	1
CO2	1	2	2					1	2	1	2	1
CO3			3			1		2	1	2	1	
CO4						1	3	1	1	1	1	

Low-1 Medium-2 High-3

Curriculum Design Process

Academic Planning and Implementation

PROCESS FOR COURSE OUTCOME ATTAINMENT

Final CO Attainment Process

Program Outcome Attainment Process

Guidelines for Fixing Targets

• The target may be fixed based on last 3 years' average attainment

PROGRAM OUTCOMES (POs)

1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.

2. **Problem analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet t h e specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.

4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.

6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with t h e society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.