

RV COLLEGE OF ENGINEERING® (Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus of V & VI Semesters

2018 SCHEME

ELECTRICAL AND ELECTRONICS ENGINEERING

VISION

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

MISSION

- 1. To deliver outcome based Quality education, emphasizing on experiential learning with the state of the art infrastructure.
- 2. To create a conducive environment for interdisciplinary research and innovation.
- 3. To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- 4. To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- 5. To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

QUALITY POLICY

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

CORE VALUES

Professionalism, Commitment, Integrity, Team Work, Innovation

DEPARTMENT VISION

Attain technical excellence in Electrical and Electronics Engineering through graduate programs and interdisciplinary research related to sustainability in power, energy and allied fields.

DEPARTMENT MISSION

- To provide technical education that combines rigorous academic study and the excitement of innovation enabling the students to engage in lifelong learning
- To establish Centre of Excellence in sustainable electrical energy, smart grids and systems
- To establish tie-ups with industries and institutions of repute and to foster building up of a wide knowledge base to keep in tune with upcoming technologies.
- To motivate commitment of faculty and students to collate, generate, disseminate, persevere, knowledge and to work for the benefit of society.
- To develop simple, appropriate and cost effective inclusive technologies which are instrumental in the up-liftment of the rural society.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **PEO 1.** To provide a strong foundation in Mathematics, Science and Electrical & Electronics Engineering to comprehend, analyze, design, innovate and develop products for real world applications.
- **PEO 2.** To inculcate ethical attitude, effective communication skills, leadership qualities and team spirit for a successful professional career with concern for society.
- **PEO 3.** To provide a holistic academic environment to foster excellence, entrepreneurship and multidisciplinary approach to inculcate an aptitude for research and lifelong learning

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO	Description
PSO1	The B.E. EEE Program must demonstrate knowledge and competence in the application
	of circuit analysis, control systems, field theory, analog and digital electronics, Power
	Electronics, microcontrollers , microprocessors, Signal processing and conditioning,
	computer hardware and software to the design, building , testing, protection and
	operation of electrical machines, power systems, electrical and electronic systems.
PSO2	The B.E. EEE Program must demonstrate knowledge and competence in the application
	of basic sciences, rigorous mathematics and project management techniques in the
	design of complex electrical and electronic systems.
PSO3	The B.E. EEE Program must demonstrate the ability to effectively work in a team,
	communicate correctly and develop an ethical attitude and concern for society and
	environment

Lead Society: Institute of Electrical and Electronics Engineers (IEEE)

Sl. No.	Abbreviation	Meaning
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	SEE	Semester End Examination
5.	PE	Professional Core Elective
6.	GE	Global Elective
7.	HSS	Humanities and Social Sciences
8.	CV	Civil Engineering
9.	ME	Mechanical Engineering
10.	EE	Electrical & Electronics Engineering
11.	EC	Electronics & Communication Engineering
12.	IM	Industrial Engineering & Management
13.	EI	Electronics & Instrumentation Engineering
14.	CH	Chemical Engineering
15.	CS	Computer Science & Engineering
16.	TE	Telecommunication Engineering
17.	IS	Information Science & Engineering
18.	BT	Biotechnology
19.	AS	Aerospace Engineering
20.	РҮ	Physics
21.	CY	Chemistry
22.	MA	Mathematics

ABBREVIATIONS

INDEX

		V Semester	
Sl. No. Course Code		Course Title	Page No.
1.	18HEM51	Intellectual Property Rights and Entrepreneurship	1
2.	18EE52	Electrical Machines-II (Theory & Practice)	4
3.	18TE53	Digital Signal Processing (common to EE, TE, EI) (Theory & Practice)	7
4.	18EE54	Generation Transmission and Distribution	10
5.	18EE55	Minor Project	12
6.	18EE5AX	Group A: Professional Elective (MOOC COURSES)	14-23
7.	18G5BXX	Group B: Global Elective	GE B1-B38

	VI Semester				
SI. No.	Course Code	se Code Course Title			
1	18HEM61	Foundations of Management & Economics	24		
2	18EE62	Power Electronics Applications to drives (Theory & Practice)	26		
3	18EE63	Modern Control Theory (Theory & Practice)	29		
4	18EE64	Power System Analysis-I	32		
5	18EE6CX	Group C: Professional Electives	34-43		
6	18EE6DX	Group D: Professional Electives	44-54		
7	18G6EXX	Group E: Global Electives	GE E1-E35		
8	18HS68	Professional Practice- II(Employability Skills and Professional Development of Engineers)**	55		

RV COLLEGE OF ENGINEERING® (Autonomous Institution Affiliated to VTU, Belagavi) ELECTRICAL AND ELECTRONICS ENGINEERING

	FIFTH SEMESTER CREDIT SCHEME							
Sl.	Course Code	Course Title	BoS	Credi	t Allo	cation	Total	
No.	course coue	course mile	DUD	L	Т	P	Credits	
1	10110151	Intellectual Property Rights and	HSS	3	0	0	3	
1. 18HSI51		Entrepreneurship	пъъ	5	0	0	3	
2	100052	Electrical Machines-II	EE	2	1	1	~	
2. 18EE52		(Theory & Practice)	EE	3	1	1	5	
2	107572	Digital Signal Processing	TT	2	0	1	4	
3.	18TE53	(common to EE, TE, EI) (Theory & Practice)	TE	3	0	1	4	
4.	18EE54	Generation Transmission and Distribution	EE	3	1	0	4	
5.	18EE55	Minor Project	EE	0	0	2	2	
6.	18EE5AX	Elective A (PE)**	EE	3	0	0	3	
7.	18G5BXX	Group B: Global Elective**	Resp.	3	0	0	3	
	10002111	BoS	-					
		Total Number o	f Credits	5			24	
		Total number of Hou	ırs/Week	18	2	10		

	GROUP A: PROFESSIONAL ELECTIVES (MOOC COURSES)					
SI.	Course Code	Course Title	Duration			
No.						
1.	18EE5A1	Design of Photovoltaic system	12 Weeks			
2.	18EE5A2	Digital Image Processing	12 Weeks			
3.	18EE5A3	Fabrication Techniques for MEMs-based sensors: clinical perspective	12 Weeks			
4.	18EE5A4	Microelectronics: Devices to Circuits	12 Weeks			
5.	18CS5A5	The Joy of Computing using Python	12 Weeks			

RV COLLEGE OF ENGINEERING® (Autonomous Institution Affiliated to VTU, Belagavi) ELECTRICAL AND ELECTRONICS ENGINEERING

	S	SIXTH SEMESTER CREDIT	SCH	EMF	C		
Sl.	Course Code	Course Title	BoS	Cred	it Allo	cation	Total
No	Course Coue	Course The	DUS	L	Т	P	Credits
1.	18HEM61	Foundations of Management & Economics	HSS	3	0	0	3
2.	18EE62	Power Electronics Applications to Drives (Theory & Practice)	EE	3	0	1	4
3.	18EE63	Modern Control Theory (Theory & Practice)	EE	3	0	1	4
4.	18EE64	Power System Analysis-I	EE	3	0	0	3
5.	18EE6CX	Elective C (PE)***	EE	3	0	0	3
6.	18EE6DX	Elective D (PE)	EE	3	0	0	3
7.	18G6EXX	Group E: Global Elective**	Resp. BoS	3	0	0	3
8.	18HS68	Professional Practice- II (Employability Skills and Professional Development of Engineers)	HSS	0	0	1	1
		Total Number of	Credits				24
		Total number of Hour	s/Week	21	0	5+1	

	VI Semester GROUP C: PROFESSIONAL ELECTIVES						
Sl.							
No.	No.						
1.	18CS6C1	IoT and Edge Computing					
2.	18EE6C2	Object Oriented Programming with C++					
3.	18EE6C3	ARM Microcontroller and Embedded Systems					
4.	18EE6C4	High Voltage Engineering					
5.	18EE6C5	VLSI Circuit and Design					

	VI Semester GROUP D: PROFESSIONAL ELECTIVES						
Sl. No.	Sl. Course Code Course Title						
1.	18CS6D1	Machine Learning					
2.	18EE6D2	Electric Vehicles					
3.	18EE6D3	Programmable Logic Controller and Supervisory Control & Data Acquisition (PLC And SCADA)					
4.	18EE6D4	Electrical and Electronic Measuring Instruments					
5.	18EE6D5	Fuzzy Logic Control and Applications					

RV College of Engineering – Bengaluru – 59

			V Semester	
			GROUP B: GLOBAL ELECTIVE	
SI.	Dept	Course Code	Course Title	Credits
No.				
			Courses offered by the Departments	
1.	AS	18G5B01	Fundamentals of Aerospace Engineering	03
2.	BT	18G5B02	Nanotechnology	03
3.	CH	18G5B03	Fuel Cell Technology	03
4.	CS	18G5B04	Intelligent Systems	03
5.	CV	18G5B05	Remote Sensing and Geographic Information System	03
6.	EC	18G5B06	Automotive Electronics	03
7.	EE	18G5B07	E-Mobility	03
8.	EI	18G5B08	Smart Sensors & Instrumentation	03
9.	IM	18G5B09	Operations Research	03
10.	IS	18G5B10	Management Information Systems	03
11.	ME	18G5B11	Automotive Mechatronics	03
12.	TE	18G5B12	Telecommunication Systems	03
		Co	urses offered by Science Departments and HSS Board	
13.	PY	18G5B13	Quantum Mechanics of Hetero/Nano Structures	03
14.	PY	18G5B14	Thin Films and Nanotechnology	03
15.	CY	18G5B15	Advances in Corrosion Science and Technology	03
16.	MA	18G5B16	Computational Advanced Numerical Methods	03
17.	MA	18G5B17	Mathematics for Machine Learning	03
18.	HSS	18G5B18	Engineering Economy	03

			VI Semester	
			GROUP E: GLOBAL ELECTIVE	
Sl. No.	Dept	Course Code	Course Title	Credits
			Courses offered by the Departments	·
1.	AS	18G6E01	Aircraft Systems	03
2.	BT	18G6E02	Bio-inspired Engineering	03
3.	CH	18G6E03	Sustainable Technology	03
4.	CS	18G6E04	Graph Theory	03
5.	CV	18G6E05	Disaster Management	03
6.	EC	18G6E06	Wearable Electronics	03
7.	EE	18G6E07	Energy Auditing and Management	03
8.	EI	18G6E08	Virtual Instrumentation & Applications	03
9.	IM	18G6E09	Systems Engineering	03
10.	IS	18G6E10	Introduction to Mobile Application Development	03
11.	ME	18G6E11	Industrial Automation	03
12.	TE	18G6E12	Mobile Network System and Standards	03
		C	ourses offered by Science Departments and HSS Board	
13.	PY	18G6E13	Thin Film Nanodevice Fabrication Technology	03
14.	CY	18G6E14	Chemistry of Advanced Energy Storage Devices for E-Mobility	03
15.	MA	18G6E15	Advanced Statistical Methods	03
16.	MA	18G6E16	Mathematical Modelling	03
17.	HSS	18G6E17	Foundational Course in Entrepreneurship	03

	INTE	LLE	CTUAL PROP		TS AND ENTR	EPREN	EU	RSHIP	
0			40110184	(Theor				100 35	
	urse Code	:	18HSI51		CIE		:	100 M	
	edits: L:T:P	:	3:0:0		SEE		:	100 M	
	tal Hours	:	39L		SEE Du	ration	:	03.00 1	Hours
			ectives: The stud						
1					nd to build the pe	rspectr	ves	on the cor	ncepts and
2			ages in technolog			- f	T	1 1	
2					nt and disclosure	or new	Tec	cnnology a	and to
3			ard innovativenes		ouild strong foun	dations	chil	ls to anab	la startine
5			ng a viable as we			Jations	5811		ie starting
4					long with critical	chille a	nd k	nowledge	tomanao
4			th entrepreneurs.		iong with critical	SKIIIS a	IU K	nowneuge	to manag
	TISKS USSOCIATOR	1 VV I U	in endepreneurs.						
				Unit-I					08 Hrs
Int	roduction: Typ	es of	f Intellectual Pro						
					atent; patentable	and no	n-pa	atentable	invention
					; Biotechnology				
			nt of patents and				•		
					tect Trade secrets	in Indi	a.		
				Unit – II					08 Hr
Tr	ade Marks: Co	ncep	t, function and d	lifferent kinds	and forms of Tra	de mar	ks, I	Registrabl	e and nor
reg	istrable marks.	Regi	istration of Trad	le Mark; Dece	ptive similarity;	Transfe	er o	f Trade N	/lark, EC
Lal	bel, Passing off,	Infri	ingement of Trac	de Mark with (Case studies and l	Remedi	es.		
				Unit –III					09 Hr
					ns Features of In-				cedure fo
	• •				t and Remedies,				
					conferred by cop				
			-		tions and perform	er's rig	hts,	Exceptio	ns of Cop
			Copy Right with						
	A A	•	• •	•	of cyber-crime; 1				nt types o
cył	percrime. Overvi	ew o	of Information Te	0,	2000 and IT Am	endmer	nt A	ct 2008	
-				Unit –IV					07 Hrs
					epreneurship has		d th	e world. I	dentity si
					ore E-cells on Ca				0
					derstand how ord				
					es, and their suc			es. Under	stand hove
					e successful entre				11 /1
					erstand the entrep				
					your own entrep				
•	•		•		irn about the 5				
					fer from each oth				
					pinions about pe				
COL			•		ause communic		ore	akuowii,	such a
					to overcome then		~m~	nunication	and loor
mis	понносяной в	CSL .	i ractices. Under		ortance of listeni				i and lear
mis Co		00**	1 a four body lon		ich as ave contee	tandh	and	hakes to	stranatha
mis Co to 1	listen actively. I		•	0 0	ich as eye contac	t and h	and	shakes to	strengthe
mis Co to I	listen actively. I		n a few body lan cal Application).	0 0	ich as eye contac	t and h	and	shakes to	strengthe

Design Thinking for Customer Delight: - Understand Design Thinking as a problem-solving process. Describe the principles of Design Thinking. Describe the Design Thinking process.

Sales Skills to Become an Effective Entrepreneur: - Understand what customer focus is and how all selling effort should be customer-centric. Use the skills/techniques of personal selling, Show and Tell, and Elevator Pitch to sell effectively.

Managing Risks and Learning from Failures: - Identify risk-taking and resilience traits. Understand that risk-taking is a positive trait. Learn to cultivate risk-taking traits. (Practical Application) Appreciate the role of failure on the road to success, and understand when to give up. Learn about some entrepreneurs/risk-takers. (Practical Application).

Are You Ready to be an Entrepreneur: - Let's ask "WHY" Give participants a real picture of the benefits and challenges of being an entrepreneur. Identify the reasons why people want to become entrepreneurs. Help participants identify why they would want to become entrepreneurs.

Reference Books

- 1. Law Relating to Intellectual Property, Wadehra B L,5th Edition, 2012, Universal Law Pub Co. Ltd.-Delhi, ISBN: 9789350350300
- **2.** Intellectual Property Rights: Unleashing Knowledge Economy, PrabuddhaGanguly, 1st Edition, 2001, Tata McGraw Hill Publishing Company Ltd., New Delhi, ISBN: 0074638602.
- **3.** Intellectual Property and the Internet, Rodney Ryder, 2002, Lexis Nexis U.K., ISBN: 8180380025, 9788180380020.
- **4.** Entrepreneurship, Rajeev Roy, 1st Edition, 2012, Oxford University Press, New Delhi, ISBN: 9780198072638.

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Comprehend the applicable source, scope and limitations of Intellectual Property within the							
	purview of engineering domain.							
CO2:	Knowledge and competence related exposure to the various Legal issues pertaining to							
	Intellectual Property Rights with the utility in engineering perspectives.							
CO3:	Enable the students to have a direct experience of venture creation through a facilitated learning							
	environment.							
CO4:	It allows students to learn and apply the latest methodology, frameworks and tools that							
	entrepreneurs use to succeed in real life.							

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	2	-	1	2	2	-	1
CO2	1	1	-	-	-	3	2	3	1	2	-	1
CO3	-	1	-	-	-	2	1	3	3	3	3	3
CO4	-	1	2	2	3	-	-	-	1	-	2	1

Semester: V									
	ELECTRICAL MACHINES-II								
	(Theory and Practice)								
Course Code	:	18EE52		CIE	:	100+50 Marks			
Credits: L:T:P	:	3:1:1		SEE	:	100+50 Marks			
Total Hours	:	40L+26T+33P		SEE	:	3.00+3.00 Hours			
				Duration					

Course Learning Objectives: The students will be able to

1 Apply the knowledge of basic concepts of DC machines and AC machines analogy.

2 Understand the concepts of principle of operation of DC and synchronous machines.

3 Describe and analyse the operation and construction of common types of AC and DC generators and motors.

4 Evaluate the characteristics of machines by conducting laboratory experiments.

Unit-I	07 Hrs					
D.C. Generator: Armature windings, types, Armature reaction, commutation and Oper	ating					
characteristics.						
Speed control and testing of D.C. Motors: torque equation, types, characteristics. Speed	d control					
of shunt and series motors, starters- DOL starter, soft starter, Direct load test, Swinburg	ne's test,					
Hopkinson's test and retardation test, prediction of losses and efficiency.						
Unit – II	09 Hrs					
Alternators: Principle of operation, constructional features of salient pole and non salient pole						
alternators, concept of distributed and concentrated winding, pitch factor and distributio	n factor,					
EMF equation, Armature reaction, equivalent circuit, Performance of Alternators-	voltage					
regulation by EMF, MMF, ZPF methods of synchronous machine.						
Unit -III	10 Hrs					
Alternators (continued):						
Two reaction Theory of salient pole machines, slip test, power angle characteristic of salient and						
non-salient type. Alternators connected to infinite bus bar, effect of changes of excitation and						
change of input power, synchronizing power, operation of two or more alternators con	nected in					
parallel .						

Synchronous Motors: Principle of operation, power flow equations, torque angle characteristic, effect of field current and load variations, V curves and inverted V curves, starting of synchronous motors, hunting, damper windings, Examples.

Special Machines:

Stepper motor: Principle of operation, variable reluctance, permanent magnet and hybrid stepper motors, characteristics.

Two Phase AC Servomotors: Construction, torque-speed characteristics and applications. **BLDC motors:** Construction, principle of operation, characteristics, features and applications.

Unit –V

Unit –IV

07 Hrs

07 Hrs

Design of DC machines: Specification, Design of Armature core, Design of armature winding, Design of field.

Design of Synchronous machines: Armature Design, Design of salient pole rotor, Design of turbo generator, Problems on specific loading.

EL	ELECTRICAL MACHINES - II LABORATORY							
1	a) No- Load characteristics of a DC shunt generator.							
	b) Load characteristics of a DC shunt generator.							
2	Load test on a DC shunt motor and Series motor.							
3	a) Speed control of DC shunt motor by voltage and field control.							
	b) Load test on series motor.							

4	Swinburne's test on DC shunt motor.
5	Hopkinson's test on DC shunt motor.
6	Retardation test - Electrical braking method.
7	Voltage regulation of alternator by EMF and MMF method.
8	Voltage regulation of alternator by ZPF method.
9	Slip test.
10	V and inverted V curve of synchronous motor.
11	Design of DC machines and synchronous machines using Flux software tool.

Course Outcomes: After completing the course, the students will be able to

CO2: Analyze the various types of machines, their performance and characteristics.

CO3: Conduct suitable test for performance evaluation on DC and Synchronous machines.

CO4: Design of armature and field of DC and synchronous machines.

Reference Books

- 1 Electrical Machinery, P.S.Bimbhra, 7th Edition, 2014, Khanna Publisher, ISBN 10: 8174091734.
- 2 Electric Machinery, Fitzerald Kingsley, 6th edition, 2003, TMH, ISBN 0- 07- 112193- 5.
 3 Performance and Design of AC machines, M G Say, 4th Edition, 2007, Pitman, ISBN: 9788123910277.
- **4** Theory of Alternating Current Machinery, Alexander Langsdorf, 2nd Edition, 2002, McGraw Hill Education, ISBN: 978-0070994232

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	2	2	2	1	1	1	-	2
CO2	2	2	2	2	2	2	2	1	1	1	-	2
CO3	3	2	2	3	2	2	3	1	1	1	-	2
CO4	3	2	1	1	3	2	2	1	1	1	1	2

				Semes	ter: V		
			DIC		L PROCESSING		
				(Theory &	Practice)		
				(Common to 7			
Cou	irse Code	:	18TE53	×	CIE	:	100+50 Marks
Cre	dits: L:T:P	:	3:0:1		SEE	:	100+50 Marks
Tot	al Hours	:	40L+33P		SEE	:	3.00+3.00Hrs
Cou	ırse Learning	; Oł	ojectives: The	e students will	be able to		
1	Explain sign	al p	rocessing ope	rations, features	s of signal processors	and appl	ications of DSP.
2	Analyze the	char	racteristics an	d representatior	ns of systems.		
3	Design & im	plei	nent Analog	and digital filter	·S.		
4	•	^	<u> </u>	discrete-time sy			
				UNIT-I			8 Hrs
LT	Svstems and		Fransforms:		Fransfer Function, Ca	usality ai	
	tems and Syst			•		usuity u	
•	•				tures, Transposed st	ructures	Cascade form and
	allel-Form Str			leet form strue	tures, rransposed su	ructures,	Cuseade Torini and
							40.11
And	log Filtorg	Cho	reatoristics	UNIT-II	sed Analog Filters-I	Duttomuo	th and Chabyshay
	0			•	0		•
					transformation in the		
					tions: Impulse Inva g Impulse Invariance a		
1 ra	iisiormation. 1	Jesi	gn of Digital	IR Filters using	g impulse invariance a		ear fransformation.
				UNIT-III			8 Hrs
					y Selective Filters, Sy		
					, Hamming, Blackmar		
					se FIR filters by fr		
					ase form, Cascade form		
		coef	ficients in FI	R filters, Round	d-off effects in digita	al filters:	Scaling to prevent
ove	rflow.						
D !				UNIT-IV	1.01		7 Hrs
0	0			1	and floating point pro		
					s, Internal architectu		, General purpose
-				•	ta paths, control Regi		ion Compact Dica
					peech Coding and C trocardiography, DTM		
ICCU	nunig system,	mu	errerence can		uocardiography, DTN	vii [*] gener	ation and detection.
				UNIT-V			7 Hrs
Mu	ltirate Digita	l Si	gnal Process	ing: Introduction	on, Up sampling, Dov	wn samp	ling, Interpolation
and	Decimation.	San	pling rate co	nversion (Redu	ction, Increase), Sam	pling rat	te change by non-
inte	ger factor, Mu	Itis	tage Decimati	on, Poly phase	structures and implen	nentation	l.
			C		Ĩ		
				NG LABORAT	TORY		
	periments usi						
1	Linear conv	olut	ion of two giv	ven sequences			
2	Circular cor	vol	ution of two g	given sequences			
3	Autocorrela						
4		tion	and Cross co	rrelation of giv	en sequences and ver	ification	of its properties
4	Computatio			•	en sequences and ver		
4 5	-	n of		Γ of a given seq			

6 Computation of Response of discrete-time systems.

7	Design and implementation of IIR filter. Study of response in time and frequency domains							
8	Design and implementation of FIR filter. Study of response in time and frequency domains							
Exp	eriments using DSP Processor							
9	Linear convolution of two given sequences							
10	Circular convolution of two given sequences							
11	Computation of N- point DFT of a given sequence							
12	Design and implementation of FIR filter for a given specification.							
13	Design and Implementation of Average filter							
14	Generation of Sinusoidal signal using DSP Processor							

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand the fundamental concepts of digital signals, signal processing, DSP processors							
	and filters							
CO2:	Analyze different types of digital signals and filters.							
CO3:	Design, simulation and implementation of digital filters							
CO4 :	Implementation of techniques for signal analysis, signal processing and filter algorithms							

Reference B	ooks
--------------------	------

1	Digital Signal Processing : Principle, Algorithms and Applications, Proakis, 3 rd Edition, 2004, Pearson Education / PHI, ISBN-81-203-1129-9
2	Digital Signal Processing – Fundamentals and Applications, Li Tan, 2008, Elsevier, ISBN: 978-0-12-374090-8
3	Digital Signal Processors: Architecture, Programming and Applications; B. Venkataramani and M. Bhaskar, 2 nd Edition, 2012, McGraw Hill, ISBN:978-0-07-070256- 1.
4	Modern Digital Signal Processing, V.Udayashankara, 2nd Edition, 2012, PHI, ISBN: 978-81-203-4567-6.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

					CO-I	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	3	2	-	-	-	-	-	-	1
CO2	3	2	-	-	2	-	-	-	-	-	-	1
CO3	3	3	2	2	3	-	-	-	2	2	1	2
CO4	3	3	3	2	3	-	-	-	2	2	1	2

Semester:	V
-----------	---

GENERATION TRANSMISSION AND DISTRIBUTION

			(Theory)			
Course Code	:	18EE54		CIE	:	100 Marks
Credits: L:T:P	:	3:1:0		SEE	:	100 Marks
Total Hours	:	39L+24T		SEE Duration	:	3.00 Hours

Co	Course Learning Objectives: The students will be able to					
1	Explain the factors affecting electric power generation, transmission and distribution					
2	Determine the line parameters and use them to develop suitable models to determine					
	transmission efficiency					
3	Describe various insulators, their significance and choose an appropriate insulator for a					
	given system					
4	Analyze AC and DC distribution systems					

Unit-I	07 Hrs
Generation:	
Economic aspects of generation: Demand factor, diversity factor, load factor and capacit	y factor;
Various voltage levels of power transmission. Conventional sources of electrical energy	y, hydel,
thermal, and Nuclear & Diesel electric power stations - Site for location, functional block	diagram
and major components, power generated.	
Power Generation in India – History, Current status, economic outlay	
Unit – II	09 Hrs
Transmission line parameters:	
Introduction, Representation of lines, Types of Conductors, Inductance of a conductor, Inductance of a	
of a single phase two wire system; Flux linkage in composite conductors – concept of C	
GMD; Inductance of three phase lines; Bundled conductors; Transposition of overhe	
Electric field intensity due to infinite line charge; Capacitance of a single phase line, Cap	
of symmetrically and unsymmetrically spaced three phase lines; Skin effect and Proximi	•
Unit -III	10 Hrs
	oduction
Representation of lines, Classification of transmission lines, short transmission line, R	•
end voltage in terms of line and load parameters, General network constraints, A,B,C,D o	constants
for short transmission lines, Medium transmission line.	
Mechanical Design of OverHead Lines: Main components of overhead lines , cu	
configuration, spacing and clearances, Sag and Tension, Calculation of sag and Tension, p	
Unit –IV	07 Hrs
Overhead Line Insulators:	
Introduction: Insulator Materials (ceramic, non-ceramic and Polymeric). Suspensi	
insulators, Strain Insulators, Shackle type insulators, Potential distribution over a s	
suspension insulators, Mathematical expression for voltage distribution, String ef	
Methods of improving string efficiency, Grading of units; Capacitor grading; Guard ring	or static
shielding, methods to combat pollution problems. Commercial insulators	
Corona:	1
Corona formation, Effects of corona, Electric stress, Critical disruptive voltage, Visua	
voltage, Power loss due to corona, Factors affecting corona loss Methods of reducing cor	
Advantages of corona, Disadvantages of corona, Effect of corona on line design	i, Kadio
interference	07 11
Unit –V	07 Hrs
Distribution : Introduction : Primary and secondary distribution, Design considera	
distribution system, Distribution system losses, Factors effecting distribution system	n losses,

Methods for the reduction of line losses, Classification of distribution system, Radial distribution system, DC distribution, Uniformly loaded distribution. Ring Main distribution, AC distribution, Power factor referred to the receiving end, Power factor referred to respective load voltages **Underground Cables** –materials, insulation resistance, Capacitance and inters heath grading, dielectric loss, and location of faults in underground cables.

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Understand the fundamental concepts involved in electric power generation,					
	transmission and distribution.					
CO2:	Compute transmission line parameters and develop suitable models for the lines					
CO3:	Calculate the transmission efficiency and evaluate the impact of corona					
CO4:	Design transmission and distribution systems including the insulators					

Reference Books

Ittit	
1	Electric Power Generation Transmission and Distribution, S.M.Singh, 3 rd Edition, 2010, Prentice Hall of India Publishers, ISBN: -978-81-203-3560-8.
2	Electrical Power Systems, C.L.Wadhwa, , 4 th edition , 2009, Wiley Easten Ltd, ISBN 0-470-21808-8
3	Electrical Power Transmission and Distribution, J.B.Gupta, 2010, S.K.Kataria & Sons Publisher, 2010, 4 th Edition, ISBN 978-0470-40863-6
4	Elements of power System Analysis, W.D.Stevenson,, 4th Edition, 1982, TMH, ISBN-: 9780070665842

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-P	O Map	ping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	1	1	1	1	1	1	2	-	1
CO2	2	2	2	2	1	1	1	1	1	2	-	1
CO3	3	3	2	2	1	1	2	1	1	2	-	1
CO4	3	3	2	2	1	1	2	1	1	2	-	1

Semester: V					
		Μ	IINOR PROJECT		
Course Code	:	18EE55	СІЕ	:	50 Marks
Credits: L:T:P	:	0:0:2	SEE	:	50 Marks
Total Hours	:	26P	SEE Duration	:	2.00 Hours

C	Course Learning Objectives: The students will be able to					
1	Knowledge Application: Acquire the ability to make links across different areas of					
	knowledge and to generate, develop and evaluate ideas and information so as to apply these					
	skills to the project task.					
2	<i>Communication:</i> Acquire the skills to communicate effectively and to present ideas clearly					
	and coherently to a specific audience in both the written and oral forms.					
3	<i>Collaboration:</i> Acquire collaborative skills through working in a team to achieve common					
	goals.					
4	Independent Learning: Learn on their own, reflect on their learning and take appropriate					
	action to improve it.					

Guidelines for Minor Project

- 1. The minor project is to be carried out individually or by a team of two-three students.
- 2. Each student in a team must contribute equally in the tasks mentioned below.
- 3. Each group has to select a current topic that will use the technical knowledge of their program of study after intensive literature survey.
- 4. The project should result in system/module which can be demonstrated, using the available resources in the college.
- 5. The CIE evaluation will be done by the committee constituted by the department. The committee shall consist of respective guide & two senior faculty members as examiners. The evaluation will be done for each student separately.
- 6. The final copy of the report should be submitted after incorporation of any modifications suggested by the evaluation committee.

The minor-project tasks would involve:

- 1. Carry out the Literature Survey of the topic chosen.
- 2. Understand the requirements specification of the minor-project.
- 3. Detail the design concepts as applicable through appropriate functional block diagrams.
- 4. Commence implementation of the methodology after approval by the faculty.
- 5. Conduct thorough testing of all the modules developed and carry out integrated testing.
- 6. Demonstrate the functioning of the minor project along with presentations of the same.
- 7. Prepare a project report covering all the above phases with proper inference to the results obtained.
- 8. Conclusion and Future Enhancements must also be included in the report.

The students are required to submit the report in the prescribed format provided by the department.

Course	Course Outcomes: After completing the course, the students will be able to					
CO 1:	Interpreting and implementing the project in the chosen domain by applying the					
	concepts learnt.					
CO 2:	The course will facilitate effective participation by the student in team work and					
	development of communication and presentation skills essential for being part of any					
	of the domains in his / her future career.					
CO 3:	Appling project life cycle effectively to develop an efficient product.					
CO 4:	Produce students who would be equipped to pursue higher studies in a specialized area					
	or carry out research work in an industrial environment.					

Scheme of Evaluation for CIE Marks:

Evaluation will be carried out in three phases:

Activity	Weightage
Synopsis submission, approval of the selected topic, Problem	10M
definition, Literature review, formulation of objectives,	
methodology	
Mid-term evaluation to review the progress of implementation,	15M
design, testing and result analysis along with documentation	
Submission of report, Final presentation and demonstration	25M
Total	50M
	Synopsis submission, approval of the selected topic, Problem definition, Literature review, formulation of objectives, methodologyMid-term evaluation to review the progress of implementation, design, testing and result analysis along with documentationSubmission of report, Final presentation and demonstration

Scheme of Evaluation for SEE Marks:

Sl. No.	Evaluation Component	Marks
1.	Written presentation of synopsis:	5M
	Write up	
2.	Presentation/Demonstration of the project	15M
3.	Demonstration of the project	20M
4.	Viva	05M
5.	Report	05M
	Total	50M

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	3	2	2	1	2	2	2	2	2	
CO2	3	3	3	3	2	2	1	2	2	2	2	2	
CO3	3	3	3	3	2	2	1	2	2	2	2	2	
CO4	1	1	1	1	1	1	1	2	1	2	1	1	

	Semester: V											
	DESIGN OF PHOTOVOLTAIC SYSTEMS											
	(Group-A: PROFESSIONAL ELECTIVES, MOOC COURSE)											
Cou	rse Code	:	18EE5A1	CIE Marks	:	100						
Credits: L:T:P		:	3:0:0	SEE Marks	:	100						
Tota	l Hours	:	39L	SEE Duratio	n :	Online Exam						
Cou	rse Learning	Obj	ectives: The students	will be able to								
1.	Understand	PV a	arrays and their chara	cteristics								
2.	Estimate ins	solat	ion and PV sizing									
3.	Develop Ma	xim	um Power Tracking I	Point Algorithms								
4.	Demonstrate	e app	olications of PV syste	ms for refrigeration, water pum	oing and	l microgrids						
5.	Determine th	ne li	fe cycle cost of PV sy	stems								

Unit – I	8 Hrs								
Historical perspective, PV cell characteristics, model and equivalent circuit of PV cell, SC and OC									
parameters, cell efficiency, temperature effect, data sheet study, series and parallel connections,									
Simulation and protection of cells in series and parallel, measuring I-V characteristics and PV source									
emulation, insolation and irradiance.									
Unit – II	8 Hrs								
Solar PV geometry, insolation and energy on a horizontal plate and a tilted plate, sunrise and	sunset								
angles, energy plots in octave, atmospheric effects, clearness index, PV panel and battery sizing, PV									
system design									
Unit – III									
MPPT concept, input impedance of Buck, Boost, Buck-Boost converters, simulation in Pspi	ce, MPPT								
algorithms, MPPT for non - resistive loads, simulation PV-Battery connection, charge control	oller								
Unit – IV	8 Hrs								
Slope compensation in battery charger, current control, charge equalization, batteries in para	llel,								
Peltier device, Thermal conduction and convection, Peltier refrigeration, radiation and mass	transport,								
PV for water pumping, Centrifugal and reciprocating pumps, pumped hydro application									
Unit – V	7 Hrs								
Principle of grid connections, PV to grid topologies, d-q axis theory, 1 phase d-q contr	olled grid								
connection, three phase grid connection, SVPWM, Life cycle costing, growth models, LCC examples									

Course	Course Outcomes: After completing the course, the students will be able to										
CO 1:	Evaluate PV characteristics and discuss the effect of various parameters on PV output										
CO 2:	Design the PV system including the batteries										
CO 3:	Develop MPPT algorithms and implement for various converters										
CO 4:	Design applications of PV and determine the Life Cycle Cost.										

Referer	nce Books:									
1.	"Photovoltaic Systems: Analysis and design", AK Mukherjee, Nivedita Thakur, PHI,									
	2011, ISBN 978-81-203-4417-4									
2.	"Solar Photovoltaic : Fundamentals, technologies and applications", Chetan Singh Solanki, PHI, 2015, ISBN : 978-81—203-5111-0									
	Solanki, PHI, 2015, ISBN : 978-81—203-5111-0									
3.	"Solar Electricity Handbook", Green stream publishing, 2019 ISBN 978-19-076-									
	7071-8									

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	1	1	-	1	-	-	-	-		1	1	
CO2	1	1	2	3	2	-	-	-	-		3	2	
CO3	2	2	2	1	2	-	-	-	-		-	1	
CO4	2	2	2	3	2	-	-	-	3		3	2	

				Semester: V									
				TAL IMAGE PROC									
0	(Group-A: PROFESSIONAL ELECTIVES, MOOC COURSE) Course Code : 18EE5A2 CIE Marks : 100												
		:				:	100						
	dits: L:T:P	:	3:0:0		SEE Marks	:	100						
	Total Hours:39LSEE Duration:Online ExamCourse Learning Objectives: The students will be able to												
Cou	rse Learning (Dbj	ectives: The stu	dents will be able to									
1			tion to basic con plor image repres	ncepts and methodol sentation	ogies of Digital Ima	ıge	processing, image						
2	2 Differentiate between the image enhancement and restoration techniques. Enhance the image by various methods in spatial and frequency domain. Perform image restoration using convolution, discrete linear operators, and filters												
3	Perform imag	ge E	Enhancement usi	ng different algorithr	ns suitable particular	app	olications						
4	Perform imag	ge s	egmentation usi	ng different algorithn	ns suitable for variou	s ap	plications.						
5	Apply morph	olo	gical operations	for detection of object	cts of interest								
				Unit – I			8 Hrs						
	duction and signal polation	gna	l digitization, Piz	kel relationship, Cam	era models & imagir	ıg g	eometry, Image						
mer	polation			Unit – II			8 Hrs						
Imag	ge transformation	on											
				Unit – III			8 Hrs						
Imag	ge enhancemen	t I,	Image enhancen	nent II, Image enhanc	ement III								
				Unit – IV			8 Hrs						
Imag	ge restoration I,	Im	age restoration	I & Image registratio	n, Colour image pro	cess	sing						
				Unit – V			7 Hrs						
Imag	ge segmentation	n, N	Iorphological in	age processing, Obje	ect representation, de	scri	ption and						
reco	gnition												

Course	Course Outcomes: After completing the course, the students will be able to										
CO 1:	Understand digital image processing fundamentals: hardware and software, digitization,										
	enhancement and restoration, encoding, segmentation, feature detection										
CO 2:	Analyze various processing techniques for image analysis and Extraction of data										
CO 3:	Ability to apply image processing techniques in both the spatial and frequency (Fourier)										
	domains										
CO 4:	Develop and implement image processing programs in MATLAB/openCV										

Referen	nce Books:
1	Rafael C. Gonzalez and Richard E. Woods, "Digital Image Processing", Pearson Education,
	3 rd Edition, 2009, ISBN: 978-81-317-269-2
2	Milan Sonka, Vaclav Hlavac and Roger Boyle, Digital Image Processing, Analysis and
	Machine Vision, 4 Th Edition, Thomson Publishing Company, <i>ISBN</i> 978-1-4899-3216-7
3	Anil K. Jain, "Fundamentals Of Digital Image Processing", Pearson Education, PHI,
	2001, ISBN-13: 978-0133361650

CO-PO Mapping

RV College of Engineering-Bengaluru-59

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	1	1	1	1	1	2	1	1	1
CO2	2	2	2	2	1	1	1	1	2	1	1	1
CO3	3	3	2	2	2	1	1	1	2	2	1	1
CO4	3	3	3	3	1	1	1	1	2	3	1	1

Semester: V											
Fabrication Techniques for MEMs-based sensors : Clinical Perspective											
(Group-A: PROFESSIONAL ELECTIVES, MOOC COURSE)											
Cou	Course Code:18EE5A3CIE Marks:100										
Cre	dits: L:T:P	:	3:0:0		SEE Marks	:	100				
Tota	Total Hours : 39L SEE Duration : Online Exam										
Cou	rse Learning	Obj	jectives: The stu	dents will be able to							
1.	Understand	the	meaning of sense	ors, exposure to sense	ors and its importance	in	the real world.				
2.	Understand	how	to fabricate son	ne of the sensors used	l for industrial applica	ntio	ns.				
3.	3. Understand and Design the process flow for fabricating sensors for biomedical application.										
4.			ication of micro arch perspective.	fluidic platforms, mic	cro-cantilevers, flexib	le f	force sensors, etc.				

	Unit – I	8 Hrs
Introduc	ction to microengineering devices and its applications. Clean room, contaminants, wa	afer
cleaning	g processes (DI water, RCA, metallic impurities, etc.).	
	Unit – II	8 Hrs
Introduc	ction to the microheater, force sensors, microfluidic devices, its specifications, and	
applicat	ions.	
Masks:	Types of masks, Types of Photoresists, Spin Coaters Lithography process: optical lit	thography
x-ray, ai	nd e-beam lithography, lift-off techniques, soft lithography, Use of resists (spin coatin	ig, positive
and neg	ative photoresists), photoresist pre-baking, exposure, and development.	
	Unit – III	8 Hrs
Etching	: Isotropic/anisotropic, selectivity, wet and plasma assisted etching. Types of v	vafers and
orientati	ions. Techniques of metallization: PVD [(Sputtering - DC, RF and Magnetron), therma
evapora	tion, e-beam evaporation].	
	Unit – IV	8 Hrs
Chemic	al Vapor Deposition: Dielectric films (Plasma Enhance Chemical Vapor Deposition (PECVD))
Atomic	Layer Deposition Understanding and designing the process flow for	fabricating
microen	gineering devices. Process flow for microheater, force sensors, and microfluidic dev	ices.
	Unit – V	7 Hrs
Wafer d	licing and bonding techniques. Microfluidic Chips Process Flow for Fabricating Flex	tible Force
Sensors	and Force Sensors on Silicon, Process Flow for Fabricating VOC sensors, Bioching	os Clinica
Researc	h: Problems and Solutions using Microengineering Device.	
Course	Outcomes: After completing the course, the students will be able to	
CO 1:	Ability to understand microfabrication process Understand sensors used in elect	ronics and
	biomedical areas, Understand Clean Room.	
CO 2:	Understand Microengineering Technology Design the process flow for	fabricating
	microheater required in gas sensors.	· · · ·
CO 3:	Design the process flow for fabricating forces sensors for biomedical application	on. Design
	microheater for gas sensors as per specifications	U

 microheater for gas sensors as per specifications.

 CO 4:
 Design force sensors as per specifications. Understand fabrication of microfluidic platforms, micro-cantilevers, flexible force sensors, inter-digitated electrodes, polymer-glass bonding etc. for clinical research.

Reference Books:1J.D. Plummer, M.D. Deal, P.G. Griffin, Silicon VLSI Technology, Pearson Education, 2001.
S.A. Campbell.2The Science and Engineering of Microelectronic Fabrication, Oxford University Press, 2001.
S.M. Sze (Ed), VLSI Technology, 2nd Edition, McGraw Hill, 1988 Senturia.3S. D., Microsystem Design, Kluwer Academic Publisher, 2001 Madou, M Fundamentals of

	Microfabrication, CRC Press, 1997. Gad-el-Hak.
4	The MEMS Handbook; CRC Press: New York, NY, 2002.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	2	-	-	-	-	-	-	-	-	-	1	
CO2	1	-	1	-	-	-	-	-	-	-	-	1	
CO3	-	2	1	1	-	-	-	-	-	-	-	2	
CO4	1	2	2	-	1	-	-	1	1	1	-	2	

	Semester: V											
	MICROELECTRONICS: DEVICES TO CIRCUITS											
	(Group-A: PROFESSIONAL ELECTIVES, MOOC COURSE)											
Cour	Course Code:18EE5A4CIE Marks:100											
Credits: L:T:P : 3:0:0 SEE Marks : 100												
Tota	l Hours	••	39L		SEE Duration	:	Online Exam					
Cour	rse Learning (Obj	ectives: The stu	dents will be able to								
1.	Understand t	he l	basics of BJT, M	IOS and CMOS								
2.	Acquire know	wle	dge of Amplifie	r and its behaviour in	analog and digital de	sig	n					
3.	3. Explore the operational amplifiers in feedback structures.											
4.	Demonstrate	dig	ital design conc	epts through Combina	tional & Sequential I	Log	gic Design					

Unit – I	8 Hrs							
Bipolar Junction Transistor; Physical Structure and Modes of operation, Operation i	n Active Mode,							
circuit symbols and conventions, BJT as an Amplifier, small circuit model, BJT as a switch and								
Ebers Moll Model, Simple BJT inverter and Second Order Effects, MOS Transistor Basic, MOS								
Parasitic & SPICE Model, CMOS Inverter Basics-I, CMOS Inverter Basics (contd),	Power Analysis,							
SPICE Simulation-I.								
Unit – II	8 Hrs							
Biasing of MOS Amplifier and its behaviour, Multistage and Differential Amplifier,	, s-domain							
analysis, Transfer function, Poles and Zeros, High Frequency Response of CS Configuration,								
Differential Amplifier, Cascade Connection and its Operation								
Unit – III	8 Hrs							
General Feedback structure and properties of negative feedback, Basic Feedback and	d CE							
Amplifier, Frequency Response of CC and SF Configuration, Frequency Response of the								
Differential Amplifier, Cascade Connection and its Operation, Operational Amplifier								
Differential Amplifier, Cascade Connection and its Operation, Operational Amplifier	er 8 Hrs							
Differential Amplifier, Cascade Connection and its Operation, Operational Amplifie Unit – IV	er 8 Hrs ied							
Differential Amplifier, Cascade Connection and its Operation, Operational Amplifie Unit – IV Butterworth and Chebyshev Filters, First and Second Order Filter Functions, Switch	er 8 Hrs ied							
Differential Amplifier, Cascade Connection and its Operation, Operational Amplifie Unit – IV Butterworth and Chebyshev Filters, First and Second Order Filter Functions, Switch Capacitor based filters, Single-Amplifier Biquadratic Filters, Second Order LCR Re	er 8 Hrs ied							
Differential Amplifier, Cascade Connection and its Operation, Operational Amplifie Unit – IV Butterworth and Chebyshev Filters, First and Second Order Filter Functions, Switch Capacitor based filters, Single-Amplifier Biquadratic Filters, Second Order LCR Re Combinational Logic Design-I, II, III & IV	er 8 Hrs ed sonator,							

Course	Outcomes: After completing the course, the students will be able to									
CO 1:	CO 1: To analyse and design electronic circuits in analog domain.									
CO 2:	To analyse and design electronic circuits digital domain.									
CO 3:	To analyse and design electronic circuits discrete domain.									
CO 4:	To analyse and design electronic circuits integrated circuit domain.									

Refer	ence Books:
1.	Fonstad, C. G. <i>Microelectronic Devices and Circuits</i> . New York, NY: McGraw-Hill, 1994. ISBN: 0070214964.
2.	Sedra, A. S., and K. C. Smith. <i>Microelectronic Circuits</i> . 4th ed. New York, NY: Oxford University Press, 1998. ISBN: 0195116631.
3.	Pierret, R. F. <i>Semiconductor Device Fundamentals</i> . Upper Saddle River, NJ: Prentice Hall, 1995. ISBN: 0201543931.
4.	Clifton G. Fonstad, Microelectronic Devices and Circuits. MCGRAW HILL SERIES IN ELECTRICAL AND COMPUTER ENGINEERING, ISBN-13 : 978-0070214965

CO-PO Mapping

RV College of Engineering-Bengaluru-59

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	2	-	-	1	2	-	2	-	1
CO2	1	1	1	1	-	-	-	-	1	-	1	1
CO3	-	1	1	1	-	-	-	-	-	-	1	2
CO4	1	2	2	-	1	-	1	1	1	1	-	2

High-3: Medium-2: Low-1

				Semester: V			
				DF COMPUTING U			
Cour	(C) se Code	dro dro	up-A: PROFE 18CS5A5	SSIONAL ELECTI	VES, MOOC COUE CIE Marks	RSE :	2) 100
	its: L:T:P	•	3:0:0		SEE Marks	•	100
	Hours	:	39L		SEE Duration	:	Online Exam
Cour	se Learning (Obj	ectives: The stu	idents will be able to	1		
1.	Understand v	vhy	Python is a use	ful scripting language	e for developers.		
2.	Learn how to	us	e lists, tuples, ar	d dictionaries in Pytl	non programs.		
3.	Define the str	uct	ure and compor	ents of a Python prog	gram.		
4.	Develop cost	-eff	fective robust ap	plications using the l	atest Python trends a	nd t	echnologies
I				Unit – I			8 Hrs
calcul	lator, Loops a	nd (to Programming!!,Va opscotch once again. in your phone. Unit – II			ionals : Let's go on
	U			ie, Birthday Paradox Count your foreign	•	ogle	8 Hrs e Translate : Speak
				Unit – III			8 Hrs
Ciphe	er : What's the	se		ng : Arrange the book t Analysis : Analyse ame			
	•		¥	Unit – IV			8 Hrs
Lie de Image	etector : No lie e Processing :	s, c Fui	only TRUTH , C n with images	ls or Millions, Rock, alculation of the Area Unit – V Ladders : Down the r	i : Don't measure, Six	deg	grees of separation, 7 Hrs
	Rank : How C	-	-				· · · · · · · · · · · · · · · · · · ·
Cour	se Outcomes:	Af	ter completing	the course, the stud	ents will be able to		
CO 1	: Explore ar	nd a	pply the concep	t of python to solve r	eal world problems.		
CO 2	: Design Cla problem de			relationships among	Classes for various a	opli	cations from
CO 3	: Develop a	ppli	ications using go	oogle translator and g	aming application.		
CO 4	: Implement using pyth		al time applicati	on such as browser a	utomation, NLP, Ima	ge j	processing etc

Referen	ace Books:								
1.	Head First Python, Paul Barry, 10th Edition, 2016, O'Reilly, ISBN 978-9352134823.								
2.	Python Cookbook: Recipes for Mastering Python 3, David Beazley, Brian K. Jones, 9 th Edition, 2017, O'Reilly, ISBN 978-1449340377.								
3.	Python: The Complete Reference, Martin C Brown, 7 th Edition, 2018, McGraw Hill Education, ISBN 978-9387572942.								

	CO-PO Mapping												
CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												PO12	
CO1	2	3	2	1	1	-	-	1	-	-	-	2	
CO2	3	3	2	1	1	-	-	1	-	-	-	2	
CO3	3	3	3	2	1	-	-	2	-	-	-	2	
CO4	3	3	3	2	1	-	-	2	-	-	-	2	

Semester: V								
	FUNDAMENTALS OF AEROSPACE ENGINEERING							
	(GROUP B: GLOBAL ELECTIVE)							
Com	rse Code	:	18G5B01	(Theory)	IE	:	100 Marks	
		-		•		-		
Cred	lits: L:T:P	:	3:0:0			:	100 Marks	
Hours		:	39L	OL SEE]		:	3.00 Hours	
Cou	rse Learning	g O	bjectives: To enable	the students to:				
1 Understand the history and basic principles of aviation								
2	2 Demonstrate and explain foundation of flight, aircraft structures, material, aircraft propulsion							
3	Comprehend the importance of all the systems and subsystems incorporated on an air vehicle							
4	Appraise the significance of all the subsystems in achieving a successful flight							

Unit-I	08 Hrs					
Introduction to Aircraft: History of aviation, International Standard atmosphere, Atmosphere and its						
properties, Temperature, pressure and altitude relationships, Classification of aircrafts, Anatomy of an						
aircraft & Helicopters, Basic components and their functions, Simple Problems on	Standard					
Atmospheric Properties.						
Unit – II	08 Hrs					
Basics of Aerodynamics: Bernoulli's theorem, Centre of pressure, Lift and drag, Type	s of drag,					
Aerodynamic Coefficients, Aerodynamic centre, Wing Planform Geometry, Airfoil nomenclar	ure, Basic					
Aerodynamic characteristics of airfoil, NACA nomenclature, Simple problems on lift and dra	lg.					
Unit -III	07 Hrs					
Aircraft Propulsion: Introduction, Classification of power plants, Gas Turbine Engine: Bray	ton Cycle,					
Principle of operation of turbojet, turboprop, turbofan engines, ramjet and scramjet	Principle of operation of turbojet, turboprop, turbofan engines, ramjet and scramjet engines,					
Comparative merits and demerits of different types Engines.	-					
Unit -IV	09 Hrs					
Introduction to Space Flight: The upper atmosphere, Introduction to basic orbital mechanics, Kepler's						
Laws of planetary motion, Orbit equation, and Space vehicle trajectories.						
Rocket Propulsion: Principles of operation of rocket engines, Rocket Equation, Types of rockets: Solid,						
Liquid and Hybrid Propellant Rockets, Rocket Performance parameters: Thrust, Specific Impulse,						
Exhaust Velocity, Simple Problems on rocket performance.	•					
Unit -V	07 Hrs					
Aerospace Structures and Materials: Introduction, General types of construction, Monocod	jue, Semi-					
Monocoque and Geodesic structures, Structure of Wing and Fuselage and its basic construction	_					
Course Outcomes: At the end of this course the student will be able to:						

Course	Course Outcomes: At the end of this course the student will be able to:						
CO1:	Appreciate and apply the basic principles of aviation						
CO2:	Apply the concepts of fundaments of flight, basics of aircraft structures, aircraft propulsion and						
GO2	aircraft materials during the development of an aircraft						
CO3:	Comprehend the complexities involved during development of flight vehicles.						
CO4 :	Evaluate and criticize the design strategy involved in the development of airplanes						

]	Reference Books								
	-	Introduction to Flight, John D. Anderson, 7th Edition, 2011, McGraw-Hill Education, ISBN							
I	I	9780071086059.							
		Rocket Propulsion Elements, Sutton G.P., 8th Edition, 2011, John Wiley, New York, ISBN:							
2	1118174208, 9781118174203.								

	3	Fundamentals of Compressible Flow, Yahya, S.M, 5 th Edition, 2016, New Age International, ISBN: 8122440223
-		Aircraft structural Analysis, T.H.G Megson, 2010, Butterworth-Heinemann Publications, ISBN:
	4	978-1-85617-932-4

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	3	2	2	-	-	-	1
CO2	2	2	2	3	2	1	1	1	-	-	-	1
CO3	1	-	3	3	-	-	-	-	-	-	-	1
CO4	2	2	3	3	-	2	2	2	-	-	-	1

	Semester: V							
	NANOTECHNOLOGY							
	(GROUP B: GLOBAL ELECTIVE)							
				(Theory)				
Cour	rse Code	:	18G5B02		CIE	:	100 Marks	
Cred	lits: L:T:P	:	3:0:0		SEE	••	100 Marks	
Tota	l Hours	:	39L		SEE Duration	••	3.00 Hours	
Cour	rse Learning ()bj	ectives: The student	ts will be able to				
1	Understand	the	basic knowledge	of nanomaterials a	and the process to	sy	inthesize and	
	characterize t	he	nanoparticles.					
2	Learn about	Na	ano sensors and th	heir applications ir	n mechanical, elect	rica	l, electronic,	
magnetic, chemical fields.								
3 Apply the concept of nanotechnology in sensing, transducing and actuating mechanism.								
4 Design the nanoscale products used in multidisciplinary fields.								
Unit-I 08 Hrs								

Omt-1	UO IIIS				
Introduction to Nanomaterials: History of Nanotechnology, structures and properties of	of carbon				
based, metal based, bio-nanomaterails and hybrids: Bucky Ball, Nanotubes, Diam	ond like				
carbon(DLC), Quantum Dots, Nano Shells, Dendrimers, Nanocarriers, Nanocrystals	s, hybrid				
biological/inorganic, protein & DNA based nanostructures. Nanosafety Issues: Toxicology health					
effects caused by nanoparticles.					
Unit – II	09 Hrs				
Nano Synthesis and Fabrication: Introduction & overview of Nanofabrication: Bottom up and					
Top down approaches using processes like Ball milling, Sol-gel Process, and Chemical Vapour					
deposition (CVD), electrodeposition and various lithography techniques (Hard & Soft litho	deposition (CVD), electrodeposition and various lithography techniques (Hard & Soft lithography).				

Characterization of Nanostructures: Spectroscopy - UV-Visible spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy, X-ray spectroscopy. Electron Microscopy - Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM). Scanning Probe Microscopy - Atomic Force microscopy (AFM), Scanning Tunnel Microscopy (STM).

Unit –III						
Nanosensors: Overview of nanosensors, prospects and market. Types of Nanosensors and their						
applications. Electromagnetic nanosensors: Electronic nose and electronic tongue, Magnetic						
nanosensors. Mechanical nanosensors: Cantilever Nanosensors, Mechanics of CNTs, Biosensors:						
Biosensors in modern medicine.						

 Unit –IV
 07 Hrs

 Micro & Nano-Electromechanical systems and Microfluidics: MEMS/NEMS: Magnetic,

 Chemical and Mechanical Transducers –Sensing and Actuators. Microfluidics: Laminar flow,

 Hagen-Peouiselle equation, basic fluid ideas, Special considerations of flow in small channels,

 mixing, microvalves & micropumps.

Unit –v	U/ Hrs				
Applications of Nanotechnology: Molecular electronics, molecular switches, mechanical cutting					
tools, machine components, magnets, DLC coated grinding wheels. Electrical, electron	nic, solar				
cells, Batteries, fuel cells, Nanofilters. Medical nanotechnology: in Diagnostics, Therapeut	ics, Drug				
delivery and Nanosurgery. Nano in Agriculture- nanopesticides, nanofertilizers etc.					

Course (Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand the structures of nano materials and their properties.							
CO2:	Apply the various synthesis and fabrication methods and interpret the characterization							
	results.							
CO3:	Analyze the working mechanism of nanosensors and transducers and Apply its							
	knowledge in various fields.							
CO4:	Create and evaluate nano Design, Devices and Systems in various disciplines.							

Refere	Reference Books						
	B.S. Murty., P. Shankar., B.Raj, B.B. Rath, and J. Murday, Textbook of Nanosciences and						
1	Nanotechnology, Springer, Co-publication with University Press (India) Pvt. Ltd. VCH,						
	XII.1st Edition, 2013, ISBN- 978-3-642-28030-6.						
	V. K. Khanna, Nanosensors: Physical, Chemical and Biological, CRC press, 1 st Edition,						
2	2013, ISBN 9781439827123 (Unit III).						
2	C. C. Kock., Nanostructured materials, Nanostructured materials, William Andrew						
3	Publishing, 2 nd Edition, 2007, ISBN 0-8155-1534-0.						
	M. Wilson., K. Kannangara., G.Smith., M.Simmons., B. Raguse., Nanotechnology, ,						
4	overseas Press (India) Private Ltd.,1st Edition, 2005,ISBN 81-88689-20-3.						

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	3	2	3	3	-	-	1	2	-
CO2	3	3	3	2	3	3	2	-	2	-	-	-
CO3	3	2	2	2	2	1	1	-	-	-	1	-
CO4	1	2	3	3	3	2	1	-	-	2	-	-

				Semest	er: V				
			F	UEL CELL TE		Y			
(GROUP B: GLOBAL ELECTIVE)									
			((Theo					
Cour	rse Code	:	18G5B03			CIE	:	100 Marks	
Credits: L:T:P		:	3:0:0			SEE	:	: 100 Marks	
Total Hours:39L						SEE Duration	: 3.00 Hours		
Cour	Ŭ			students will be	able to				
1	Recall the concept of fuel cells								
2		Distinguish various types of fuel cells and their functionalities							
3		now the applications of fuel cells in various domains							
4	Understand the characterization of fuel cells								
				Unit-I				07 Hrs	
Intro	oduction – I:			Chit I				07 1115	
		, hist	orical devel	opments, worki	ng principle of	f fuel cell, compo	nent	ts of fuel cell,	
				, fuels for cells		—		,	
				Unit – II	1 1			07 Hrs	
Туре	es of fuel cells	- II:							
Class	ification of fu	a1 aa	11 11 11	fuel cell meleur	ann ala atmalizita	£11111			
	sincation of fu	ler ce	lls, alkaline	fuel cell, polyn	lier electrolyte	fuel cell, phospho	oric	acid fuel cell,	
					•	sadvantages of eac		acid fuel cell,	
					•			07 Hrs	
molte Effic	en carbonate fu iencies, losses	uel ce and	ell, solid oxic kinetics– II	de fuel cell, adva Unit –III II:	antages and dis	sadvantages of eac	h	07 Hrs	
molte Effic Intrin	en carbonate fu iencies, losses asic maximum	ael ce and effi	ell, solid oxid kinetics– II ciency, volta	de fuel cell, adva Unit –III II: aic efficiency,	antages and dis	ency, overall efficiency	h cien	07 Hrs	
molte Effic Intrin losse	en carbonate fu iencies, losses asic maximum s, fuel crosso	ael ce and effi ver a	ell, solid oxid kinetics– II ciency, volta and internal	de fuel cell, adva Unit –III II: aic efficiency, a current, ohmic	antages and dis	sadvantages of eac	h cien	07 Hrs	
molte Effic Intrin losse	en carbonate fu iencies, losses asic maximum	ael ce and effi ver a	ell, solid oxid kinetics– II ciency, volta and internal	de fuel cell, adva Unit –III II: aic efficiency, s current, ohmic	antages and dis	ency, overall efficiency	h cien	07 Hrs cy, activation n losses, and	
molte Effic Intrir losse active	en carbonate fu iencies, losses asic maximum s, fuel crosso ation/electrode	ael ce and effi ver a e/reac	ell, solid oxid kinetics– II ciency, voltand internal ction kinetics	de fuel cell, adva Unit –III II: aic efficiency, a current, ohmic	antages and dis	ency, overall efficiency	h cien	07 Hrs	
molte Effic Intrin losse activa Fuel	en carbonate fu iencies, losses asic maximum s, fuel crosso ation/electrode Cell Characte	ael ce and effi ver a e/reac eristi	kinetics– II kinetics– II ciency, voltand internal ction kinetics	de fuel cell, adva Unit –III II: aic efficiency, z current, ohmic S Unit –IV	antages and dis faradaic efficie losses, mass	ency, overall effic transport/concentr	h cien atic	07 Hrs cy, activation n losses, and 08 Hrs	
molte Effic Intrin losse activa Fuel In-sit	en carbonate fu iencies, losses asic maximum s, fuel crosso ation/electrode Cell Character au characteriza	ael ce and effi ver a e/reac eristi	kinetics– II ciency, voltand internal ction kinetics ccs–IV: I-V curve,	de fuel cell, adva Unit –III II: aic efficiency, a current, ohmic Unit –IV current – volta	antages and dis faradaic efficie losses, mass	ency, overall efficiency	h cien atic	07 Hrs cy, activation n losses, and 08 Hrs	
molta Effic Intrin losse activa Fuel In-sit cyclic	en carbonate fu iencies, losses nsic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry	ael ce and a effi ver a e/reac eristi ation:	kinetics– II kinetics– II ciency, voltand internal ction kinetics cs – IV: I-V curve, ctrochemical	de fuel cell, adva Unit –III II: aic efficiency, z current, ohmic <u>s</u> Unit –IV current – volta impedance spec	antages and dis faradaic efficie losses, mass age measureme ctroscopy	ency, overall effic transport/concentr	h cien ratic	07 Hrs cy, activation n losses, and 08 Hrs measurement,	
molta Effic Intrir losse activa Fuel In-sit cyclia Ex-si	en carbonate fu iencies, losses nsic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriz	ael ce and effi ver a e/reac eristi ation: , elec ation	kinetics– II ciency, voltand internal ction kinetics ccs – IV: I-V curve, ctrochemical techniques	de fuel cell, adva Unit –III II: aic efficiency, z current, ohmic <u>vurrent – volta</u> impedance spece Proton condu	antages and dis faradaic efficie losses, mass age measureme ctroscopy ctivity, flexura	ency, overall effic transport/concentr	h cien ratic	07 Hrs cy, activation n losses, and 08 Hrs measurement,	
molta Effic Intrir losse activa Fuel In-sit cyclia Ex-si	en carbonate fu iencies, losses nsic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriz	ael ce and effi ver a e/reac eristi ation: , elec ation	kinetics– II ciency, voltand internal ction kinetics ccs – IV: I-V curve, ctrochemical techniques	de fuel cell, adva Unit –III II: aic efficiency, current, ohmic Unit –IV current – volta impedance spec Proton conductor	antages and dis faradaic efficie losses, mass age measureme ctroscopy ctivity, flexura	ency, overall effic transport/concentr	h cien ratic	07 Hrs cy, activation on losses, and 08 Hrs measurement, conductivity,	
molta Effic Intrin losse activa Fuel In-sit cyclia Ex-si elect	en carbonate fu iencies, losses isic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characterizi rochemical sur	ael ce and effi ver a eristi tion: , elec ation face	kinetics– II ciency, voltand internal cition kinetics ction kinetics ccs – IV: I-V curve, ctrochemical techniques: area and elec	de fuel cell, adva Unit –III II: aic efficiency, z current, ohmic <u>vurrent – volta</u> impedance spece Proton condu	antages and dis faradaic efficie losses, mass age measureme ctroscopy ctivity, flexura	ency, overall effic transport/concentr	h cien ratic	07 Hrs cy, activation n losses, and 08 Hrs measurement,	
molte Effic Intrir losse activa Fuel In-sit cyclic Ex-si electr Appl	en carbonate fu iencies, losses nsic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriz rochemical sur lications of fue	ael ce a and a effi ver a e/reac eristi ation: a, elec ation face	kinetics– II ciency, voltand internal ction kinetics ction kinetics ctos – IV: I-V curve, ctrochemical techniques: area and elector	de fuel cell, adva Unit –III II: aic efficiency, current, ohmic Unit –IV current – volta impedance spec Proton conductrochemical act Unit –V	antages and dis faradaic efficie losses, mass age measureme ctroscopy ctivity, flexura tivity	ency, overall effic transport/concentr ent, current interru al strength, electri	h cien catio	07 Hrs cy, activation on losses, and 08 Hrs measurement, conductivity, 10 Hrs	
molte Effic Intrir losse activa Fuel In-sit cyclia Ex-si electr Appl Appl	en carbonate fu iencies, losses asic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriza rochemical sur lications of fue	ael ce a and a effi ver a e/reac eristi ation: ation face el cel l cell	ell, solid oxid kinetics– II ciency, voltand internal ction kinetics $\mathbf{cs} - \mathbf{IV}$: I-V curve, ctrochemical techniquess area and elect $\mathbf{ls} - \mathbf{V}$: s in air, road	de fuel cell, adva Unit –III II: aic efficiency, current, ohmic Unit –IV current – volta impedance spec Proton conductrochemical act Unit –V	antages and dis faradaic efficie losses, mass age measureme ctroscopy ctivity, flexura tivity	ency, overall effic transport/concentr	h cien catio	07 Hrs cy, activation on losses, and 08 Hrs measurement, conductivity, 10 Hrs	
molte Effic Intrir losse activa Fuel In-sit cyclia Ex-si electr Appl Appl	en carbonate fu iencies, losses nsic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriz rochemical sur lications of fue	ael ce a and a effi ver a e/reac eristi ation: ation face el cel l cell	ell, solid oxid kinetics– II ciency, voltand internal ction kinetics $\mathbf{cs} - \mathbf{IV}$: I-V curve, ctrochemical techniquess area and elect $\mathbf{ls} - \mathbf{V}$: s in air, road	de fuel cell, adva Unit –III II: aic efficiency, current, ohmic Unit –IV current – volta impedance spec Proton conductrochemical act Unit –V	antages and dis faradaic efficie losses, mass age measureme ctroscopy ctivity, flexura tivity	ency, overall effic transport/concentr ent, current interru al strength, electri	h cien catio	07 Hrs cy, activation on losses, and 08 Hrs measurement conductivity 10 Hrs	
molta Effic Intrir losse activa Fuel In-sit cyclio Ex-si electr Appl Appl Produ	en carbonate fu iencies, losses asic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriza rochemical sur lications of fue uction and stor rse Outcomes	ael ce a and a effi ver a eristi ation: ation: face el cel cell cage o : Aft	ell, solid oxid kinetics– II ciency, voltand internal tion kinetics $\mathbf{cs} - \mathbf{IV}$: I-V curve, trochemical techniquest area and elect $\mathbf{ls} - \mathbf{V}$: s in air, road of hydrogen er completin	de fuel cell, adva Unit –III II: aic efficiency, current, ohmic Unit –IV current – volta impedance spec Proton conductrochemical act Unit –V and rail transpo	antages and dis faradaic efficie losses, mass age measureme ctroscopy ctivity, flexura tivity ort, hydrogen s he students with	ency, overall effic transport/concentr ent, current interru al strength, electri torage, handling an	h cien catio	07 Hrs cy, activation on losses, and 08 Hrs measurement, conductivity, 10 Hrs	
molte Effic Intrir losse activa Fuel In-sit cyclia Ex-si electr Appl Appl Produ	en carbonate fu iencies, losses asic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriza rochemical sur ications of fue uction and stor se Outcomes: Understand	a effi ver a e/reac eristi ation: face el cel cell cell cage o d the	ell, solid oxid kinetics– II ciency, voltand internal ction kinetics $\mathbf{cs} - \mathbf{IV}$: I-V curve, ctrochemical techniquest area and elect $\mathbf{ls} - \mathbf{V}$: s in air, road of hydrogen er completin fundamenta	de fuel cell, adva Unit –III II: aic efficiency, current, ohmic Unit –IV current – volta impedance spec Proton conduction ctrochemical act Unit –V and rail transponder I and rail transponder I and character	antages and dis faradaic efficie losses, mass age measureme ctroscopy ctivity, flexura tivity ort, hydrogen s he students wi	advantages of eac ency, overall effic transport/concentr ent, current interru al strength, electri torage, handling au ill be able to ells	h cien ratic upt ical	07 Hrs cy, activation on losses, and 08 Hrs measurement conductivity 10 Hrs afety issues.	
molta Effic Intrir losse activa Fuel In-sit cyclio Ex-si electr Appl Appl Produ	en carbonate fu iencies, losses asic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriza rochemical sur ications of fue uction and stor se Outcomes: Understand	a effi ver a e/reac eristi ation: face el cel cell cell cage o d the	ell, solid oxid kinetics– II ciency, voltand internal ction kinetics $\mathbf{cs} - \mathbf{IV}$: I-V curve, ctrochemical techniquest area and elect $\mathbf{ls} - \mathbf{V}$: s in air, road of hydrogen er completin fundamenta	de fuel cell, adva Unit –III II: aic efficiency, current, ohmic Unit –IV current – volta impedance spec Proton conduction ctrochemical act Unit –V and rail transponder I and rail transponder I and character	antages and dis faradaic efficie losses, mass age measureme ctroscopy ctivity, flexura tivity ort, hydrogen s he students wi	ency, overall effic transport/concentr ent, current interru al strength, electri torage, handling an	h cien ratic upt ical	07 Hrs cy, activation on losses, and 08 Hrs measurement, conductivity, 10 Hrs afety issues.	
molte Effic Intrir losse activa Fuel In-sit cyclia Ex-si electr Appl Appl Produ	en carbonate fu iencies, losses asic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characteriza rochemical sur ications of fue uction and stor se Outcomes: Understand	a effi ver a e/reac eristi ation: face el cel cell cell cage o d the	ell, solid oxid kinetics– II ciency, voltand internal ction kinetics $\mathbf{cs} - \mathbf{IV}$: I-V curve, ctrochemical techniquest area and elect $\mathbf{ls} - \mathbf{V}$: s in air, road of hydrogen er completin fundamenta	de fuel cell, adva Unit –III II: aic efficiency, current, ohmic Unit –IV current – volta impedance spec Proton conduction ctrochemical act Unit –V and rail transponder I and rail transponder I and character	antages and dis faradaic efficie losses, mass age measureme ctroscopy ctivity, flexura tivity ort, hydrogen s he students wi	advantages of eac ency, overall effic transport/concentr ent, current interru al strength, electri torage, handling au ill be able to ells	h cien ratic upt ical	07 Hrs cy, activation on losses, and 08 Hrs measurement, conductivity, 10 Hrs afety issues.	
molte Effic Intrir losse activa Fuel In-sit cyclia Ex-si electr Appl Appl Produ	en carbonate fu iencies, losses asic maximum s, fuel crosso ation/electrode Cell Characteriza c voltammetry tu characte	ael ce a and a effi ver a e/reac eristi ation: ation: face el cel l cell cage o c Aft d the	ell, solid oxid kinetics– II ciency, voltand internal tion kinetics $\mathbf{cs} - \mathbf{IV}$: I-V curve, trochemical techniques: area and elect $\mathbf{ls} - \mathbf{V}$: s in air, road of hydrogen er completin fundamenta l engineerin	de fuel cell, adva Unit –III II: aic efficiency, current, ohmic Unit –IV current – volta impedance spec Proton condu- ctrochemical act Unit –V I and rail transpo ng the course, t Is and character ng principles to	antages and dis faradaic efficie losses, mass age measureme ctroscopy ctivity, flexura tivity ort, hydrogen s he students w istics of fuel ce distinguish fu	advantages of eac ency, overall effic transport/concentr ent, current interru al strength, electri torage, handling au ill be able to ells	h cien ratic upt ical nd s	07 Hrs cy, activation n losses, and 08 Hrs measurement, conductivity, 10 Hrs afety issues. utional energy	

Reference Books						
1	Fuel Cells – Principles and Applications, Viswanathan and M Aulice Scibioh, 1 st Edition, 2009, Universities Press, ISBN – 13: 978 1420 060287					
1	2009, Universities Press, ISBN – 13: 978 1420 060287					
2	Fuel Cell Systems Explained, James Larminie and Andrew Dicks, 2 nd Edition, 2003, John					
2	Wiley & Sons, ISBN – 978 0470 848579					

3	Fuel Cell Fundamentals, O 'Hayre, R. P., S. Cha, W. Colella, F. B. Prinz, 1 st Edition, 2006, Wiley, New York, ISBN – 978 0470 258439
4	Recent Trends in Fuel Cell Science and Technology, Basu. S, 1 st Edition, 2007, Springer, ISBN – 978 0387 688152

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	-	1	-	1	-	-	-
CO2	2	-	2	-	-	-	-	-	-	-	-	-
CO3	-	3	-	-	-	-	3	-	2	-	-	-
CO4	-	2	2	-	-	-	2	-	3	-	-	2

				Semester: V							
	INTELLIGENT SYSTEMS										
	(GROUP B: GLOBAL ELECTIVE)										
	(Theory)										
Cou	rse Code	:	18G5B04		CIE Marks	:	100 Marks				
Cree	dits: L:T:P	:	3:0:0		SEE Marks	:	100 Marks				
	al Hours	:	39L		SEE Duration	:	3.00 Hours				
Cou	rse Learning	g Obj	ectives: The stu	dents will be able to							
1.	Understand	func	lamental AI con	cepts and current issues.							
2.	Understand	and	apply a range of	AI techniques including sear	ch, logic-based re	easc	oning, neural				
	networks an	nd rea	asoning with une	certain information.							
3.	Recognize	comp	outational proble	ms suited to an intelligent sys	stem solution.						
4.	Identify and	d list	the basic issues	of knowledge representation,	blind and heurist	ic s	earch.				
	1										
				Unit – I			07 Hrs				
Intr	oduction: Th	ne Fo	undations of Ar	tificial Intelligence, History of	of Artificial Intell	ige	nce, The State				
of th	ne Art, Intelli	igent	Agent: Introdu	ction, How Agents Should A	ct, Structure of I	ntel	ligent Agents,				
Prol	blem-solving	: Sol	lving Problems	by Searching Search Strate	egies, Avoiding	Re	peated States,				
Avo	iding Repeate	ed Sta	ates								
				Unit – II			08 Hrs				
Info	rmed Searc	h M	ethods: Best-F	irst Search, Heuristic Funct	tions, Memory	Bou	inded Search,				
	tive Improve		e								
				as Search Problems, Perfect			Person, Games				
Impe	erfect Decisio	ons, A	Alpha-Beta Prun	ing, Games That Include an E	lement of Chance	e					
				Unit – III			08 Hrs				
	wledge Infer										
	0 1			n based system, Frame base	•						
	-		-	ue approach, Fuzzy reasonin			s, Bayes Rule,				
Unce	ertainty Princ	iples	, Bayesian Theo	ry-Bayesian Network-Demps	ter - Shafer theor	y.					
-		~ 1		Unit – IV			08 Hrs				
	0			neral Model of Learning Age			0				
		-		heory, Learning General Log	gical Description	s, \	why Learning				
			Learning Theor	•		т					
			-	Learning in a Known Environme		L	earning in an				
Unk	Unknown Environment, Active Learning in an Unknown Environment										
F	aut Cristana	Com	nonanta Dra-1	Unit – V	ing portaints f-	otor	08 Hrs				
_			-	tion rules, Statistical reason	-						
				vledge, Introspection. Expert	•		-				
-		-	-	Knowledge Acquisition –Met DN, Expert systems shells.	ia kilowieuge, H	curi	istics. Typical				
expe	n systems - r	vi i C	Π , DAKI, AU	Jin, Expert systems shells.							

Course	Course Outcomes: After completing the course, the students will be able to									
CO 1:	Understand and explore the basic concepts and challenges of Artificial Intelligence.									
CO 2:	Analyze and explain basic intelligent system algorithms to solve problems.									
CO 3:	Apply Artificial Intelligence and various logic-based techniques in real world problems.									
CO 4:	Assess their applicability by comparing different Intelligent System techniques									

Reference Books:

AI – A Modern Approach, Stuart Russel, Peter Norvig, 3 rd Edition, 2010, Pearson Education,
ISBN-13: 978-0-13-604259-4
Artificial Intelligence (SIE), Kevin Night, Elaine Rich, Nair B., 3 rd Edition, 2008, McGraw
Hill, ISBN: 9780070087705
Introduction to AI and ES, Dan W. Patterson, Pearson Education, 3rd Edition, 2007, ISBN-
13: 978-0134771007
Introduction to Expert Systems, Peter Jackson, 4th Edition, Pearson Education, 2007, ISBN-
13: 978-8131709337

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	2	2	1	2	-	2	2
CO2	3	3	3	3	3	2	2	1	2	-	2	2
CO3	3	3	3	3	3	2	1	1	2	-	2	2
CO4	3	3	3	3	3	1	2	1	1	1	2	2

			Semester: V				
R	EMOT		ND GEOGRAPHIC II JP B: GLOBAL ELI		YSTI	EM	
			(Theory)				
Course Code : 18G5B05 CIE : 100							
Credits: L:T:P		3:0:0		SEE		100 Marks	
Total Hours		39 L		SEE Duration		3.00 Hours	
Course Learn	ng Ob	jectives: The stu	dents will be able to				
1 Understan	d conc	ept of using pho	ographic data to determ	ine relative position	s of p	ooints.	
2 Study the	nethoo	ls of collection of	land data using Terrest	rial and Aerial cam	era.		
3 Analyze th	e data	gathered from v	rious sensors and interp	oret for various appl	icatio	ons.	
4 Apply the	princip	oles of RS, GIS a	nd GPS in various scope	es of Civil Engineer	ing.		
ł							
			Unit-I			07 Hı	

Unit-I	07 Hrs
Remote Sensing- Definition, types of remote sensing, components of remote sensing, elec	tromagnetic
spectrum, Black body, Atmospheric windows, energy interaction with earth surface feature	es. Spectral
reflectance curve. Platforms and sensors. Sensor resolutions. Types of satellites- Indian	n and other
remote sensing satellites (IRS, IKONS and Landsat). Principle of visual interpretation - key	elements.
Unit – II	08 Hrs
Photogrammetry: Introduction types of Photogrammetry, Advantages Photogrammetry,	Introduction
to digital Photogrammetry.	
Aerial Photogrammetry: Advantages over ground survey methods- geometry of vertical p	hotographs,
scales of vertical photograph. Ground coordination- relief displacement, scale ground co	ordinates –
flight planning.	
Unit –III	08 Hrs
Geographic Information System- Introduction, Functions and advantages, sources of da	ata for GIS.
Database - Types, advantages and disadvantages. Data Analysisoverlay operations, netwo	ork analysis,
spatial analysis. Outputs and map generation.	
GPS- components and working principles.	
Unit –IV	08 Hrs
Applications of GIS, Remote Sensing and GPS: Water Resources engineering and r	nanagement
(prioritization of river basins, water perspective zones and its mapping), Highway and tra	ansportation
(highway alignment, Optimization of routes, accident analysis), Environmental Engine	ering (Geo-
statistical analysis of water quality, rainfall).	
Unit –V	08 Hrs
Applications of GIS, Remote Sensing and GPS: Urban Planning & Management, ur	ban sprawl,
Change detection studies, forests and urban area, agriculture, Disaster Management. La	youts: Dead
and Dedict Cristian Constant	
end, Radial, Grid iron, Circular system.	

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	1: Understand and remember the principle of Remote Sensing (RS) and Geographical Information								
	Systems (GIS) data acquisition and its applications.								
CO2:	Apply RS and GIS technologies in various fields of engineering and social needs								

CO3:	Analyze and evaluate the information obtained by applying RS and GIS technologies.
CO4:	Create a feasible solution in the different fields of application of RS and GIS

Refer	rence Books										
1	Geographic Information System-An Introduction, Tor Bernharadsen, 2009, 3rd Edition, Wiley										
	India Pvt. Ltd. New Delhi, ISBN - 9788126511389.										
2	Principles of Remote sensing and Image Interpretation, Lillesand and Kiefer, 2011, 6th Edition,										
2	John Wiley Publishers, New Delhi, ISBN – 8126532238.										
2	Higher Surveying, Chandra A.M, 2015, 3rd Edition, New age international (P) Ltd,										
3	ISBN: 8122438121										
4	Remote Sensing, Robert A. Schowengerdt, 2009, 3 rd Edition, Elsevier India Pvt Ltd, New Delhi.										
_	Remote Sensing and GIS, Bhatta B, 2011, Oxford University Press, New Delhi,										
3	ISBN - 0198072392										

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	1	-	-	-	-	-	-
CO2	2	1	-	-	1	1	-	-	-	-	-	-
CO3	2	2	1	-	2	1	1	-	-	-	-	1
CO4	2	2	1	-	3	2	2	-	-	-	1	1

	Semester: V									
	AUTOMOTIVE ELECTRONICS									
	(GROUP B: GLOBAL ELECTIVE)									
		1	100	(Theory)		100 3 5 1				
Co	ourse Code	:	18G5B06	CIE Marks	:	100 Marks				
Cr	Credits: L:T:P		3:0:0	SEE Marks	:	100 Marks				
Hours : 39L SEE Duration					ı :	3.00 Hours				
Co	ourse Learning	Ob	jectives: The s	tudents will be able to						
1	Acquire the kn	ow	ledge of autom	otive domain fundamentals, need of Electronics a	nd co	ommunication				
I	interfaces in A	utoi	motive systems							
2	Apply various	typ	es of sensors, a	ctuators and Motion Control techniques in Autom	otive	systems				
3	Understand dig	gital	engine contro	l systems and Embedded Software's and ECU's u	sed	in automotive				
3	systems.									
4	Analyse the co	nce	pts of Diagnost	ics, safety and advances in Automotive electronic	Syst	ems.				

UNIT-I

Fundamentals of Automotive: Evolution and Use of Electronics in Automotive, Automotive Systems, The Engine, Engine Control, Internal Combustion Engines, Spark Ignition Engines and Alternative Engines. Ignition System, Ignition Timing, Drivetrain, Suspensions, Brakes and Steering Systems. **Basics of electronic engine control:** Motivation for Electronic Engine Control, Concept of an Electronic Engine control system, Definition of General terms, Definition of Engine performance terms, Engine mapping, Effect of Air/Fuel ratio, spark timing and EGR on performance, Control Strategy, Electronic Fuel control system, Analysis of intake manifold pressure, Electronic Ignition.

08 Hrs

07 Hrs

08 Hrs

Automotive Sensors and Actuators:

Automotive Control System Applications of Sensors and Actuators,

Sensors: Air Flow Sensor, Engine Crankshaft Angular Position Sensor, Throttle Angle Sensor, Temperature Sensor, Sensors for Feedback Control, Sensors for Driver Assistance System: Radar, Lidar, Video Technology.

Actuators: Solenoids, Piezo Electric Force Generators, Fluid mechanical Actuators, Electric Motors and Switches.

UNIT-III

UNIT-II

Digital Engine Control Systems: Digital Engine control features, Control modes for fuel Control (Seven Modes), EGR Control, Electronic Ignition Control - Closed Loop Ignition timing, Spark Advance Correction Scheme, Integrated Engine Control System.

Vehicle Motion Control: Typical Cruise Control System, Digital Cruise Control System, Digital Speed Sensor, Throttle Actuator, Digital Cruise Control configuration, Cruise Control Electronics (Digital only), Antilock Brake System (ABS), Electronic Suspension System, Electronic Steering Control.

UNIT-IV	08 Hrs
Automotive Communication Systems:	
Automotive networking: Bus systems, Technical principles, network topology. Buses in motor	vehicles:
CAN, Flex Ray, LIN, Ethernet, IP, PSI5, MOST, D2B and DSI.	

Automotive Embedded Software Development

Fundamentals of Software and software development lifecycles. Overview of AUTOSAR methodology and principles of AUTOSAR Architecture.

Diagnostics and Safety in Automotive:

Timing Light, Engine Analyzer, Electronic Control System Diagnostics: Onboard diagnostics, Off-board diagnostics, Expert Systems, Occupant Protection Systems – Accelerometer based Air Bag systems, Case study on ON-BOARD, OFF-BOARD diagnostics.

Advances in Automotive Electronic Systems: Alternative Fuel Engines, Electric and Hybrid vehicles, Fuel cell powered cars, Collision Avoidance Radar warning Systems, Navigation: Navigation Sensors, Radio Navigation, dead reckoning navigation, Video based driver assistance systems, Night vision Systems.

Course	Outcomes: After completing the course, the students will be able to
CO1:	Acquire the knowledge of automotive domain fundamentals, need of Electronics and
	communication interfaces in Automotive systems.
CO2:	Apply various types of sensors, actuators and Motion Control techniques in Automotive
	systems
CO3:	Analyze digital engine control systems and Embedded Software's and ECU's used in
	automotive systems.
CO4:	Illustrate the concepts of Diagnostics, safety and advances in Automotive electronic Systems.

Referen	Reference Books							
1.	Understanding Automotive Electronics, Williams. B. Ribbens, 6th Edition, 2003, Elsevier							
	science, Newness publication, ISBN-9780080481494.							
2.	Automotive Electronics Handbook, Robert Bosch, 2004, John Wiley and Sons, ISBN-							
	0471288357							
3.	Automobile Electrical and Electronic Systems, Tom Denton, 3rd Edition, Elsevier Butterworth-							
	Heinemann. ISBN 0-7506-62190.							
4.	Advanced Automotive Fault Diagnosis, Tom Denton, 2 nd Edition, Elsevier Butterworth-							
	Heinemann. ISBN 0-75-066991-8.							

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	1	-	-	-	1	2	1	-	1
CO2	3	2	1	1	1	-	1	1	1	1	-	1
CO3	3	2	2	2	1	-	1	1	2	1	-	1
CO4	3	2	2	2	-	1	2	1	1	1	-	1

	Semester: V									
	e- MOBILITY									
	(GROUP B: GLOBAL ELECTIVE)									
				(Theory)						
Co	ourse Code	:	18G5B07		CIE	:	100 Marks			
Cr	edits: L:T:P	:	3:0:0		SEE	:	100 Marks			
To	otal Hours	:	39L		SEE Duration	:	3.00 Hours			
Co	Course Learning Objectives: The students will be able to									
1	Understand th	ne b	asics of electric and	hybrid electric vehi	cles, their architectur	e ar	nd modelling.			
2	Explain differ	ent	energy storage tech	nologies used for el	ectric vehicles and th	leir	management			
	system.									
3	Describe vari	ous	electric drives and	its integration with	Power electronic cire	cuit	s suitable for			
	electric vehic	les.								
4	Design EV S	imı	lator through perfo	ormance evaluation	and system optimiz	atio	n techniques			
	and need for t	the	charging infrastruct	ure.						

Unit-I	06 Hrs
Electromobility and the Environment: A Brief History of the Electric Powertrain,	Energy
Sources for Propulsion and Emissions, The Advent of Regulations, Drive Cycles, BE	EV Fuel
Consumption, Range, and mpge, Carbon Emissions for Conventional and Electric Power	ertrains,
An Overview of Conventional, Battery, Hybrid, and Fuel Cell Electric Systems, A Com	parison
of Automotive and Other Transportation Technologies.	_
Vehicle Dynamics: Vehicle Load Forces, Vehicle Acceleration, Simple Drive Cycle for	Vehicle
Comparisons	
Unit – II	09 Hrs
Batteries: Batteries Types and Battery Pack, Lifetime and Sizing Considerations,	Battery
Charging, Protection, and Management Systems, Battery Models, Determining the Co	ell/Pack
Voltage for a Given Output\Input Power, Cell Energy and Discharge Rate.	
Battery Charging: Basic Requirements for Charging System, Charger Architecture	es, Grid
Voltages, Frequencies, and Wiring, Charging Standards and Technologies, SAE J1772, W	Vireless
Charging, The Boost Converter for Power Factor Correction.	
Unit -III	10 Hrs
Battery Management System: BMS Definition, Li-Ion Cells, Li-Ion BMSs, Li-Ion B	atteries,
BMS Options: Functionality, CCCV Chargers, Regulators, Balancers, Protectors, Funct	ionality
Comparison, Technology, Topology.	
BMS Functions: Measurement: Voltage, Temperature, Current, Management: Pro	otection,
Thermal Management, Balancing, Distributed Charging, Evaluation, External Commun	ication:
Dedicated analog and digital wires.	
Unit –IV	07 Hrs
Electric Drivetrain: Overview of Electric Machines, classification of electric machines	used in
automobile drivetrains, modelling of electric machines, Power Electronics, controlling	electric
machines, electric machine and power electronics integration Constraints.	
Unit –V	07 Hrs
EV Simulation: system level simulation, EV simulator, simulator modules, perfo	ormance
evaluation, system optimization.	
EV Infrastructure: Domestic charging infrastructure, Public charging infrast	ructure,
Standardization and regulations, Impacts on power system.	

Course	e Outcomes: After completing the course, the students will be able to						
CO1:	Explain the basics of electric and hybrid electric vehicles, their architecture, technologies						
	and modelling.						
CO2:	Discuss and implement different energy storage technologies used for electric vehicles						
	and their management system.						
CO3:	Analyze various electric drives and its integration techniques with Power electronic						
	circuits suitable for electric vehicles.						
CO4 :	Design EV Simulator for performance evaluation and system optimization and						
	understand the requirement for suitable EV infrastructure.						

Refe	Reference Books						
	Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric						
1	and Fuel Cell Vehicles, John G. Hayes, G. Abas Goodarzi, 1st Edition, 2018, Wiley, ISBN						
	9781119063667.						
2	Battery Management system for large Lithium Battery Packs, Davide Andrea, 1st Edition,						
4	2010, ARTECH HOUSE, ISBN-13 978-1-60807-104-3						
3	Hybrid Vehicles from Components to System, F. BADIN, Ed, 1st Edition, 2013, Editions						
3	Technip, Paris, ISBN 978-2-7108-0994-4.						
1	Modern Electric Vehicle Technology C.C. Chan and K.T. Chau, 1st Edition, 2001, Oxford						
-	university press, ISBN 0 19 850416 0.						

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	2	2	2	3	-	2	-	-	1
CO2	3	3	3	3	3	3	3	-	2	2	1	-
CO3	2	3	3	3	3	2	3	-	2	1	1	-
CO4	3	3	3	3	3	2	3	2	2	-	1	-

	Semester: V									
	SMART SENSORS & INSTRUMENTATION									
	(GROUP B: GLOBAL ELECTIVE)									
	(Theory)									
Course Code		:	18G5B08	CIE	:	100 Marks				
Cred	lits: L:T:P	:	3:0:0	SEE	:	100 Marks				
Tota	l Hours	:	39L	SEE Dura	ation :	3.00 Hours				
Cour	rse Learning	g ()	bjectives: The	students will be able to						
1	Understand	l th	e fundamentals	of transducers and sensors.						
2	Demonstra	te t	he working prir	nciples of different transducers and sensors.						
3	Apply the	prir	nciples of differ	ent type of sensors and transducers on state	of art pr	oblems.				
4	Create a sy	ste	m using approp	riate transducers and sensors for a particula	r applica	tion.				

Unit-I	07 Hrs
Introduction: Definition of a transducer, Block Diagram, Classification of Transducers, A	dvantages
of Electrical transducers.	
Resistive Transducers:	
Potentiometers: Characteristics, Loading effect, and problems.	
Strain gauge: Theory, Types, applications and problems.	
Thermistor, RTD: Theory, applications and problems.	
Unit – II	09 Hrs
Thermocouple: Measurement of thermocouple output, compensating circuits, lead comp	pensation,
advantages and disadvantages of thermocouple.	
LVDT: Principle, Characteristics, Practical applications and problems.	
Capacitive Transducers: Capacitive transducers using change in area of plates, distance	between
plates and change of dielectric constants, Applications of Capacitive Transducers and problem	ns
Unit –III	09 Hrs
Piezo-electric Transducers: Principles of operation, expression for output voltage, Piez	o-electric
materials, equivalent circuit, loading effect, Frequency response and Problems.	
Special Transducers: Hall effect transducers, Thin film sensors, and smart transducers:	Principles
and applications, Introduction to MEMS Sensors and Nano Sensors, Schematic of the	design of
sensor, applications.	
Unit –IV	07 Hrs
Chemical sensors: pH value sensor, dissolved oxygen sensor, oxidation-reduction potenti	al sensor,
Zirconium probe Sensors, Chem FET sensors.	
Photo sensors: Photo resistor, Photodiode, Phototransistor, Photo-FET, Charge coupled devi	.ce.
Tactile sensors: Construction and operation, types.	
Unit –V	07 Hrs
Humidity Sensors and Moisture Sensors: Concept of humidity, Electrical Conductivity	Sensors,
Thermal Conductivity Sensors, Optical Hygrometer, Oscillating Hygrometer.	
IR Sensors: Golay cells, Thermopile, pyroelectric sensor, bolometers, Active Far-Infrared	l Sensors,
Gas flame detectors	

Course	e Outcomes: After completing the course, the students will be able to						
CO1:	Understand the basic principles of different transducers and sensors.						
CO2:	Apply the knowledge of transducers and sensors to comprehend digital instrumentation						
	systems.						
CO3:	Analyze and evaluate the performance of different transducers and sensors for various						
	applications.						
CO4:	Create a system using appropriate transducers and sensors for a particular application.						

Refere	ence Books
1	Jacob Fraden, Handbook of Modern Sensors: Physics, Designs, and Applications, 4th Edition
1	2008, PHI Publication, ISBN: 978-1-4419-6465-6.
2	Clarence W.de Silva, Sensors and Actuators: Control systems Instrumentation, 2013 Edition,
2	CRC Press, ISBN: 978-1-4200-4483-6.
3	A.K. Sawhney, Electrical and Electronic Measurements and Instrumentation, 18th Edition,
3	2008, Dhanpat Rai and Sons, ISBN: 81-7700-016-0.
1	Transducers and Instrumentation, D.V.S. Murthy, 2 nd Edition 2008, PHI Publication, ISBN:
-	978-81-203-3569-1.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks are executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	-	-	-	-	-	-	-	-	-
CO2	2	3	-	-	2	2	-	-	-	-	-	-
CO3	1	2	2	-	1	1	-	-	-	-	-	2
CO4	-	-	-	-	1	1	-	-	-	3	-	1

				Semester: V			
			OI	PERATIONS RESEARCH			
				UP B: GLOBAL ELECTI			
(Theory)							
Cour	rse Code	:	18G5B09	× × /	CIE	:	100 Marks
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks
Tota	l Hours	:	39 L		SEE Duration	:	3.00 Hours
Cour	rse Learning (Dbje	ectives: The stu	idents will be able to			
1	Develop the	ski	lls in the appl	cation of operations resear	rch models for	con	nplex decision-
	making situat	ions	s	-			-
2	Implement th	e m	ethodology and	tools of operations research	to assist decision	n-m	aking.
	1			1			
				UNIT-I			07 Hrs
Intro	oduction: OR	metl	hodology, Defii	ition of OR, Application of	OR to Engineeri	ng	and Managerial
probl	lems, Features	of C	OR models, Lin	itations of OR.			
Line	ar Programm	ing	Definition, Ma	thematical Formulation, Sta	ndard Form, Sol	utio	n Space, Types
	-	-		e, Solution through Graphic			
			•	ad assignments only)	e	,	
10 40		(ue	monstrations a	UNIT-II			10Hrs
Sim	olex Method &	k Se	ensitivity Anal	ysis: Simplex methods, Arti	ficial Stating So	luti	
				nalysis - Graphical sensitiv	-		
	-		-	tput from software packages	• •	-	fulle sensitivity
unury	sis. interpretat	1011	of grupineur ou	UNIT-III		01	10 Hrs
Tran	sportation P	rob	lem:Formulatio	on of transportation mode	el. Basic feasib	le	
	-			hods, Unbalanced transpo			-
	portation prob			n Transportation Problem	-		
probl		1011	is, variants	in multiportution recordin	s, rippiloutions	01	mansportation
•		em	Formulation	of the Assignment problen	n Solution meth	hod	of assignment
-	-			method of assignment problem			-
-	-		raveling Salesm			icu	iou, variants in
•	•		e				
Usag	ge of software t	0015	s to demonstrate	Transportation and Assignment	nent problems		06 11
Droi	oot Managam	mt	Liging Notwork	UNIT-IV Analysis:Network construct	ation Datarmina	tion	06 Hrs
-	-		-				-
		, CI	PM - Elements	of crashing, Usage of softw	are tools to dem	ons	strate N/W flow
probl	lems						
C	- The	1		UNIT-V			06 Hrs
	=		-	son Zero Sum game, Pure st	-		-
-			ne rules of do	minance, solution method	of games with	iou	t saddle point,
Arith	metic method.						
Corre	man Autoomore	A 6	ton 00m-1-4:	the course the stordards	ll he able to		
				the course, the students wi			augh
CO1			ie basic conce	pts of different models	or operations r	ese	arch and then
	application			Models and Assignment M			

CO2:	Build and	solve Transp	portation M	odels and Assignment M	Iodels.
000	D :	. 1	1 1 1 1 1		1

CO3:	Design new simple models, like: CPM, MSPT to improve decision -making and develop
	critical thinking and objective analysis of decision problems.
CO4:	

ſ

1	Operation Research an Introduction, Taha H A, 8th Edition, 2004, PHI, ISBN:0130488089.
2	Operations Research: Principles and Practice, Ravindran, Phillips, Solberg, 2 nd Edition, 2007,
	John Wiley & Sons, ISBN: 8126512563
3	Introduction to Operation Research, Hiller and Liberman, 8th Edition, 2004, Tata McGraw Hill,
	ISBN: 0073017795.
4	Operations Research Theory and Application, J K Sharma, 2 nd Edition, 2003, Pearson Education
	Pvt Ltd, ISBN: 0333-92394-4.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-I	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	3	2	2	-	-	-	1	-	-	1
CO2	-	2	-	-	-	-	-	-	-	1	-	1
CO3	2	-	-	2	2	-	-	1	-	-	-	-
CO4												

			Semester: V				
		MANAGEN	IENT INFORMATION SYS	TEMS			
		(GROU	P B: GLOBAL ELECTIV	E)			
(Theory)							
Course Code	:	18G5B10		CIE	:	100 Marks	
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks	
Total Hours	:	39L		SEE Duration	:	3.00 Hours	
Course Learning	Obje	ectives: The stude	nts will be able to				
1 To understa	nd the	e basic principles	and working of information tec	hnology.			
2 Describe the	role	of information tec	hnology and information syste	ms in business.			
3 To contrast	and c	compare how inter	net and other information techn	ologies support bu	sine	ess processes.	
4 To give an	overa	all perspective of	he importance of application of	of internet technol	ogie	es in business	
administrati							
			Unit-I			08 Hrs	
Information system	ns in '	Global Business	Foday:				
The role of inform	nation	n systems in busi	ness today, Perspectives on	information system	ms,	Contemporar	
approaches to inform	natio	on systems, Hands	on MIS projects. Global E-Bu	siness and Collal	bor	ation: Busines	
process and information	ation	systems, Types of	business information systems	, Systems for colla	aboı	ation and tear	
work, The informati	on sy	stems function in	business. A Case study on E bu	isiness.			
			Unit – II			08 Hrs	
Information System	ns, O	Organizations and	Strategy:				
Organizations and	inforr	mation systems, H	low information systems impa	act organization a	nd	business firms	
Using information s	syster	ms to gain compe	itive advantage, management	issues, Ethical an	d S	ocial issues in	
Information System	ns: U	Understanding eth	cal and Social issues related t	o Information Sys	stem	ns, Ethics in an	
information society,	The	moral dimensions	of information society. A Case	study on business	pla	nning.	
			Unit –III			08 Hrs	
IT Infrastructure a	ınd E					08 Hrs	
		Emerging Techno		tform trends, Cont	emj		
IT infrastructure, In	frastr	Emerging Techno ructure component	logies:		-	porary softwar	
IT infrastructure, In platform trends, M	frastr Ianag	Emerging Techno ructure component gement issues. Se	l ogies: s, Contemporary hardware pla	s: System vulner	abil	porary softwar ity and abuse	
IT infrastructure, In platform trends, N Business value of se	frastr Ianag ecurit	Emerging Techno ructure component gement issues. Se ty and control, Est	logies: s, Contemporary hardware pla curing Information System	s: System vulner	abil	porary softwar ity and abuse	
IT infrastructure, In platform trends, N Business value of se	frastr Ianag ecurit	Emerging Techno ructure component gement issues. Se ty and control, Est	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi	s: System vulner	abil	porary softwar ity and abuse	
IT infrastructure, In platform trends, N Business value of se	frastr Ianag ecurit nation	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV	s: System vulner	abil	porary softwar ity and abuse ology and tool	
IT infrastructure, In platform trends, M Business value of se for protecting inforr Achieving Operation	frastr Ianag ecurit nation	Emerging Techno ructure component gement issues. See ty and control, Est n resources. A cas Excellence and C	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV	s: System vulnera ty and control, Tea	abil chn	porary softwar ity and abuse ology and tool 08 Hrs	
IT infrastructure, In platform trends, M Business value of se for protecting inforr Achieving Operatie Enterprise systems,	frastr Ianag ecurit nation onal I Supp	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas Excellence and C ply chain manage	logies: s, Contemporary hardware pla curing Information Systems ablishing framework for securi e study on cybercrime. Unit –IV ustomer Intimacy:	s: System vulnera ty and control, Tea ner relationship ma	abil chn ana	porary softwar ity and abuse ology and tool 08 Hrs gement (CRM	
IT infrastructure, In platform trends, M Business value of se for protecting inforr Achieving Operation Enterprise systems, systems, Enterprise	frastr Ianag ecurit nation onal I Supp appli	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas Excellence and C ply chain manage ication. E-comme	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV ustomer Intimacy: ment (SCM) systems, Custom	s: System vulnera ty and control, Tea ner relationship ma Goods: E-commerc	abil chn ana ce a	porary softwar ity and abuse ology and tool 08 Hrs gement (CRM nd the internet	
IT infrastructure, In platform trends, M Business value of se for protecting inforr Achieving Operation Enterprise systems, systems, Enterprise	frastr Ianag ecurit nation onal I Supp appli	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas Excellence and C ply chain manage ication. E-comme ad technology, The	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV ustomer Intimacy: ment (SCM) systems, Custom rce: Digital Markets Digital (s: System vulnera ty and control, Tea ner relationship ma Goods: E-commerc	abil chn ana ce a	porary softwar ity and abuse ology and tool 08 Hrs gement (CRM nd the interne	
IT infrastructure, In platform trends, M Business value of so for protecting inform Achieving Operation Enterprise systems, systems, Enterprise E-commerce-busine	frastr Ianag ecurit nation onal I Supp appli	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas Excellence and C ply chain manage ication. E-comme ad technology, The	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV ustomer Intimacy: ment (SCM) systems, Custon rce: Digital Markets Digital (s: System vulnera ty and control, Tea ner relationship ma Goods: E-commerc	abil chn ana ce a	porary softwar ity and abuse ology and tool 08 Hrs gement (CRM nd the interne	
IT infrastructure, In platform trends, M Business value of so for protecting inform Achieving Operation Enterprise systems, systems, Enterprise E-commerce-busine	frastr Ianag ecurit nation onal I Supp appli ss an A Ca	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas Excellence and C ply chain manage ication. E-comme ad technology, The	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV ustomer Intimacy: ment (SCM) systems, Custom rce: Digital Markets Digital G mobile digital platform and r	s: System vulnera ty and control, Tea ner relationship ma Goods: E-commerc	abil chn ana ce a	porary softwar ity and abuse ology and tool 08 Hrs gement (CRM nd the interner Building and E	
IT infrastructure, In platform trends, M Business value of so for protecting inform Achieving Operation Enterprise systems, systems, Enterprise E-commerce-busine commerce web site. Managing Knowle	frastr lanag ecurit nation onal l Supp appli ass an A Ca dge:	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas Excellence and C ply chain manage ication. E-comme ad technology, The ase study on ERP.	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV ustomer Intimacy: ment (SCM) systems, Custom rce: Digital Markets Digital G mobile digital platform and r	s: System vulnera ty and control, Tea ner relationship ma Goods: E-commerc nobile E-commerc	abil chn ana ce a e, H	porary softwar ity and abuse ology and tool 08 Hrs gement (CRM nd the interne Building and E 07 Hrs	
IT infrastructure, In platform trends, M Business value of so for protecting inform Achieving Operation Enterprise systems, systems, Enterprise E-commerce-busine commerce web site. Managing Knowle The knowledge mage	frastr Ianag ecurit nation onal I Supp appli ess an A Ca dge: anage	Emerging Techno ructure component gement issues. Se ty and control, Est n resources. A cas Excellence and C ply chain manage ication. E-comme ad technology, The ase study on ERP.	logies: s, Contemporary hardware pla curing Information System ablishing framework for securi e study on cybercrime. Unit –IV ustomer Intimacy: ment (SCM) systems, Custom rce: Digital Markets Digital (e mobile digital platform and r Unit –V	s: System vulnera ty and control, Tea ner relationship ma Goods: E-commerc nobile E-commerc	abil chn ana ce a e, F	porary softwar ity and abuse ology and tool 08 Hrs gement (CRM nd the interne Building and E 07 Hrs nowledge wor	

Systems as planned organizational change, Overview of systems development.

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Understand and apply the fundamental concepts of information systems.					
CO2:	Develop the knowledge about management of information systems.					
CO3:	Interpret and recommend the use information technology to solve business problems.					
CO4 :	Apply a framework and process for aligning organization's IT objectives with business strategy.					

Reference Books Kenneth C. La

1	Kenneth C. Laudon and Jane P. Laudon: Management Information System, Managing the Digital Firm, Pearson Education, 14 th Global edition, 2016, ISBN:9781292094007.
2	James A. O' Brien, George M. Marakas: Management Information Systems, Global McGraw Hill, 10 th Edition, 2011, ISBN: 978-0072823110.
3	Steven Alter: Information Systems, The Foundation of E-Business, Pearson Education, 4 th Edition, 2002, ISBN:978-0130617736.
4	W.S. Jawadekar: Management Information Systems, Tata McGraw Hill, 2006, ISBN: 9780070616349.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	3	-	-	-	-	-	-	-	1	-	1
CO3	3	3	1	-	2	-	-	-	-	1	-	1
CO4	3	3	2	1	2	-	-	-	-	1	-	1

			V	Semester			
				'E MECHATRONICS			
			`	LOBAL ELECTIVE)		
0		1		Theory)	CIE		100 M
	se Code	:	18G5B11		CIE	:	100 Marks
Cred	its: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours:39 LSEE Duration:3.00 Ho							3.00 Hours
Cour	rse Learning O	bje	ctives: The students will	be able to			
1	Identify vario	us N	Iechatronics systems of a	a modern automobile			
2	Describe how	the	proper quantity/grade of	fuel affects engine perfe	ormance.		
3	Understand B	hara	t-VI / EURO-VI emissio	on norms			
4	Apply the know	wle	dge of engineering and s	cience to analyse the per	rformance of Me	cha	tronics
	system						
5	Analyse vehic	ele s	ub-systems comprising o	f sensors and actuators			

Unit-I	06 Hrs
Automobile Engines	
Classifications of Internal Combustion Engines. Engine nomenclature and mechanics. Mixture	formation
and direct fuel injection - homogeneous and stratified injection. Thermodynamic principles of	Otto and
Diesel cycle. Operation, characteristics and energy yield in a 4-stroke engine. Fuels: Gasoline,	Diesel,
LPG and Natural Gas for automotive applications. Fuel properties- Octane number and Cetane	number.
Unit-II	10 Hrs
Engine Auxiliary Systems:	
Air Intake and Exhaust System (Bharat Stage -VI norms) - Intake manifold, Turbocharger, In	tercooler,
Exhaust manifold, 3-way and oxidation catalytic convertor, Exhaust Gas Recirculation system.	
Common Rail Fuel Injection system- Low pressure and high-pressure fuel systems, Re	turn line,
Quantity control valve, Injectors – solenoid and piezo injectors.	
Unit-III	10 Hrs
Vehicular Auxiliary Systems:	
Vehicle frame and body classification- Hatchback, Sedan, SUV, Coupe, Roadster. Adaptive	Brakes -
Disc and drum brakes, Antilock Braking Systems, ESP, TCS. Wheels and Tyres- Toe-In,	Toe-Out,
Caster and Camber angle. Classification of tyres, Radial, Tubeless.	
Supplemental Restraint System: Active and passive safety, Vehicle structure, Gas generator	and air
bags, Belt Tensioner, Acceleration sensor, Rollover sensor, Seat occupancy recognition.	
Unit-IV	07 Hrs
Principles of motor vehicle electronics - Basic structure of control units, Functions of control	rol units and
On-Board Diagnostic kit.	
Telematics in vehicles – Radio Transmission, Interference and signal processing. Lubrication	and cooling
system- Components, working principle, Properties, Viscosity.	
Unit-V	06 Hrs
Sensors: Oxygen sensors, Crankshaft Angular Position Sensor, Manifold Absolute Pressure Se	ensor,
Coolant Temperature Sensor, Hot Film Mass Air flow Sensor, Throttle Position Sensor.	

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Describe the functions of Mechatronic systems in a modern automobile								
CO2:	Evaluate the performance of an engine by its parameters								
CO3:	Analyse the automotive exhaust pollutants as per emission norms								
CO4:	Demonstrate communication of control modules using a On-Board Diagnostic kit								

Refere	nce Books								
1.	Automotive Technology – A systems approach, Jack Erjavec, 5th Edition, Delamr Cengage								
	Learning, ISBN-13: 978-1428311497								
2.	Automotive Engineering Fundamentals, Richard Stone and Jeffrey K. Ball, 2004,								
	SAE International, ISBN: 0768009871								
3.	Bosch Automotive Handbook, Robert Bosch, 9th Edition, 2004, ISBN: 9780768081527								
4.	Understanding Automotive Electronics, William B Ribbens, 5th Edition, Butterworth-								
	Heinemann, ISBN 0-7506-7008-8								

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30 (Q) + 50 (T) + 20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	-	2	1	2	1	-	-	1	2	3	-	-	
CO2	2	1	2	1	3	-	-	2	2	3	-	-	
CO3	1	2	2	1	2	-	-	2	2	3	-	-	
CO4	1	2	2	1	2	-	-	2	2	1	-	1	

				Semester: V								
			TELECOM	MUNICATION SYS	STEMS							
			(GROUP I	B: GLOBAL ELEC	(TIVE)							
	(Theory)											
Cou	rse Code	:	18G5B12		CIE	:	100 Marks					
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks					
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours					
Cou	rse Learning C	bje	ectives: The student	s will be able to								
1	Represent sch	em	atic of communicati	on system and identif	Ty its components.							
2	Classify satell	ite	orbits and sub-syste	ms for communication	on.							
3	Analyze differ	rent	telecommunication	i services, systems an	d principles.							
4	Explain the ro	le d	of optical communic	ation system and its	components.							
5	Describe the f	eat	ures of wireless tech	nologies and standar	ds							

UNIT-I	06 Hrs
Introduction to Electronic Communication: The Significance of Human Commu	nication,
Communication Systems, Types of Electronic Communication, Modulation and Mult	iplexing,
Electromagnetic Spectrum, Bandwidth, A Survey of Communication Applications.	
The Fundamentals of Electronics: Gain, Attenuation, and Decibels.	
Radio Receivers: Super heterodyne receiver.	
UNIT-II	10 Hrs
Modulation Schemes: Analog Modulation: AM, FM and PM- brief review.	
Digital Modulation: PCM, Line Codes, ASK, FSK, PSK.	
Wideband Modulation: Spread spectrum, FHSS, DSSS.	
Multiple Access: FDMA, TDMA, CDMA.	
UNIT-III	09 Hrs
Satellite Communication: Satellite Orbits, Satellite Communication Systems, Satellite Sub	systems,
Ground Stations, Satellite Applications, Global Positioning System.	
UNIT-IV	07 Hrs
Optical Communication: Optical Principles, Optical Communication Systems, Fiber-Optical	c Cables,
Optical Transmitters and Receivers, Wavelength-Division Multiplexing, Passive Optical Network	vorks.
UNIT-V	07 Hrs
0111-1	
Cell Phone Technologies: Cellular concepts, Frequency allocation, Frequency reuse,	Internet
	Internet
Cell Phone Technologies: Cellular concepts, Frequency allocation, Frequency reuse,	

Cours	Course Outcomes: After completing the course, the students will be able to								
CO1	Describe the basics of communication systems.								
CO2	Analyze the importance of modulation and multiple access schemes for communication								
	systems.								
CO3	Analyze the operational concept of cell phone and other wireless technologies.								
CO4	Justify the use of different components and sub-system in advanced communication systems.								

Ref	erence Books
1	Principles of Electronic Communication Systems, Louis E. Frenzel, 4th Edition, 2016, Tata
	McGraw Hill, ISBN: 978-0-07-337385-0.
2	Electronic Communication Systems, George Kennedy, 3rd Edition, 2008, Tata McGraw Hill,
	ISBN: 0-02-800592-9.
3	Introduction to Telecommunications, Anu A. Gokhale, 2 nd Edition, 2008, Cengage Learning
	ISBN: 981-240-081-8.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	-	1	1	-	-	-	1	-	-	-
CO2	2	1	-	1	1	-	-	-	1	-	-	-
CO3	2	1	-	1	1	-	-	-	2	-	-	-
CO4	1	1	-	1	1	1	-	-	1	-	-	-

· · · · · · · · · · · · · · · · · · ·				Semester: V				
	(QUA	NTUM MECHA	NICS OF HETERO	/NANO STRUCT	JRES	5	
			(GROU	P B: GLOBAL EL	ECTIVE)			
~	~ .	, , ,		(Theory)				. <u>.</u>
	se Code	:	18G5B13		CIE	:	100 M	
	ts: L:T:P Hours	:	3:0:0 39L		SEE SEE Duration	:	100 M 3.00 H	
) Dhie	Sectives: The studen	ts will be able to	SEE Duration	:	5.00 П	lours
	8	÷		chanics in physical pr	coossos os wo rodu	o dir	ansion	
				of low dimensional s				
	-		-					lig.
				l in transport propertie	es of low dimension	ai ma	aterials.	
			heterostructures in		1 (1 ((1	
	-	now	ledge to design and	d develop smart devic	ces and sensors that	runs	on the q	uantum
1	technology.							
				Unit-I				08 Hrs
Dovio	w of Quantu	m M	Iechanics and Soli					U8 Hrs
	-			tainty Principle, grou	n valaaity. Tima in	1	donton	d damam dami
	•	•	•	• • • •		•		•
	•			, Perturbation theory				
	•		•	states and its depend		•		
-		-		ons and holes in b	ands, Effective ma	ass, o	listinct	regimes of
condu	ction and the	imp	ortant parameters c					
			ors and lower dim	Unit – II				08 Hrs
differe (From	ent geometrie 0-Dim to 3 I	es-Sq		l and intra-band pro Friangular and their	cess. Quantum we	lls o	t nanos	
			-	and its effect on band		n Dot		s and wells
). Strained Layers a ects in them.			n Dot		s and wells in Quantum
	tum Nano sti	c eff	-	Unit –III		n Dot		s and wells
Quant Archit Homo Lattice genesi	ecture and w -junction, He e: Kronig Pe as of Quantum As), hot elect	ruct ruct vork etero nney n Tr	ects in them. ures and Quantum ing of n-channel -junction, Hetero-s / Model of a supe ansport: Parallel tr	Unit –III	semiconductor cont on and strain doped ling Approximation nechanism, experim	a Dot nergy act(in Qua of a nenta	nterface) ntum W a super l data(fo	s and wells in Quantum 08 Hrs in details, Vells. Super lattice. The ocus will be
Quant Archit Homo Lattice genesi on Ga.	ecture and w -junction, He e: Kronig Pe as of Quantum As), hot elect	ruct ruct vork etero nney n Tr	ects in them. ures and Quantum ing of n-channel -junction, Hetero-s / Model of a supe ansport: Parallel tr	Unit –III n Transport: MOSFET, metal – s structures. Modulatio er-lattice, Tight Bind cansport : scattering r	semiconductor cont on and strain doped ling Approximation mechanism, experim	a Dot nergy act(in Qua of a nenta	nterface) ntum W a super l data(fo	s and wells in Quantum 08 Hrs) in details, Vells. Super lattice. The ocus will be per lattices:
Quant Archit Homo Lattice genesi on Ga. Stark e	ecture and w -junction, He e: Kronig Pe as of Quantun As), hot elect effect.	c efference ructor vorkie etero nney n Tr trons	ects in them. ures and Quantum ing of n-channel -junction, Hetero-s / Model of a supe ansport: Parallel tr 2. Perpendicular tra	Unit –III n Transport: MOSFET, metal – s structures. Modulatio er-lattice, Tight Bind cansport : scattering r ansport: Resonant tur	semiconductor cont on and strain doped ling Approximation nechanism, experin neling. Electric fiel	a Dot nergy act(in Qua of a nenta	nterface) ntum W a super l data(fo	s and wells in Quantum 08 Hrs 0 in details, Vells. Super lattice. The ocus will be
Quant Archit Homo Lattice genesi on Ga. Stark e Trans Quanti quanti other s of Sta	ecture and w -junction, He e: Kronig Per is of Quantum As), hot elect effect. Sport in Nano ized conducta zed conducta systems. Viol utes of a 2D	c eff ructu vorki etero nney n Tr rrons 	ects in them. ures and Quantum ing of n-channel -junction, Hetero-s Model of a supe ansport: Parallel tr b. Perpendicular tra uctures in electric : Landauer Buttike of devices like qu n of Kirchhoff's ci tem in a magnetic	Unit –III n Transport: MOSFET, metal – s structures. Modulatio er-lattice, Tight Bind cansport : scattering r ansport: Resonant tur Unit –IV c and magnetic fields er transmission form antum point contacts ircuit laws for quantu- c field. Landau qua	semiconductor cont on and strain doped ling Approximation mechanism, experin meling. Electric fiel s: alism, Application s. Aharonov-Bohm um conductors. Cou untization of electro	act(in eact(in Qua of a d effe of fo effec	nterface) ntum W super data(fo ect in su ormalism of in gol o Blocka	s and wells in Quantum 08 Hrs in details, Vells. Super lattice. The ocus will be per lattices: 08 Hrs n to explain d rings and ide. Density
Quant Archit Homo Lattice genesi on Ga. Stark e Trans Quanti quanti other s of Sta	ecture and w -junction, He e: Kronig Per is of Quantum As), hot elect effect. Sport in Nano ized conducta zed conducta systems. Viol utes of a 2D	c eff ructu vorki etero nney n Tr rrons 	ects in them. ures and Quantum ing of n-channel -junction, Hetero-s Model of a supe ansport: Parallel tr b. Perpendicular tra uctures in electric : Landauer Buttike of devices like qu n of Kirchhoff's ci tem in a magnetic	Unit –III n Transport: MOSFET, metal – s structures. Modulatio er-lattice, Tight Bind cansport : scattering r ansport: Resonant tur Unit –IV c and magnetic fields er transmission form nantum point contacts ircuit laws for quantue c field. Landau qua Effect-integer and qua	semiconductor cont on and strain doped ling Approximation mechanism, experin meling. Electric fiel s: alism, Application s. Aharonov-Bohm um conductors. Cou untization of electro	act(in eact(in Qua of a d effe of fo effec	nterface) ntum W super data(fo ect in su ormalism of in gol o Blocka	s and wells in Quantum 08 Hrs in details, Vells. Super lattice. The per lattices: 08 Hrs to explain d rings and ide. Density gnetic field.
Quant Archit Homo Lattice genesi on Ga. Stark e Trans Quanti quanti other s of Sta Shubn	tecture and w -junction, He e: Kronig Pe is of Quantum As), hot elect effect. Sport in Nano ized conducta zed conducta systems. Viol ttes of a 2D ikov-de Haas	c eff ructivork: etero nney n Tr crons str ance lation syst	ects in them. ures and Quantum ing of n-channel -junction, Hetero-s Model of a supe ansport: Parallel tr b. Perpendicular tra uctures in electric : Landauer Buttike of devices like qu n of Kirchhoff's ci tem in a magnetic	Unit –III n Transport: MOSFET, metal – s structures. Modulatio er-lattice, Tight Bind cansport : scattering r ansport: Resonant tur Unit –IV c and magnetic fields er transmission form nantum point contacts ircuit laws for quantu c field. Landau qua Effect-integer and qua Unit –V	semiconductor cont on and strain doped ling Approximation mechanism, experin meling. Electric fiel s: alism, Application s. Aharonov-Bohm um conductors. Cou untization of electro	n Dot nergy act(in Qua of a nenta d effe of fo effec	nterface) ntum W super data(fo ect in su ormalism of in gol o Blocka	s and wells in Quantum 08 Hrs in details, Vells. Super lattice. The ocus will be per lattices: 08 Hrs n to explain d rings and ide. Density

transport devices, Single-electron transistors, Optical properties of Quantum Wells and Superlattices, Quantum Dots and Nano crystals. Quantum confined Stark effect, Stark ladders, Bloch oscillations. Spintronics, transport of spin, spin valve, Giant Maneto-resistance, Spin Injection (Johnson-Silsbee experiments).

Course	e Outcomes: After completing the course, the students will be able to
CO1:	After successful completion of the course the student will be able to identify the different domains
	of application of the concepts of Quantum mechanics in Nano structures, super-lattices and
	Photonics.
CO2:	The student will gain knowledge to understand the crucial physics layers and principles that are at
	the core of nano and meso technology.
CO3:	The student will be able to apply the concepts to solve problems (quantitative and qualitative)
CO4 :	The student can apply the concepts in an interdisciplinary manner and can create new ideas and
	products related to appliances and sensors, that use the said concepts.

Refere	ence Books
1	The Physics of Low Dimensional Semiconductors an introduction, John H Davies, xxx Edition,
1	1998, Cambridge University Press, ISBN: 0-521-48491-X (pbk).
2	Introduction to Quantum Mechanics, David J Griffiths & Darrell F. Schroeter, 3 rd Edition, 2018,
2	Cambridge University Press, ISBN: 978-1107189638
3	Nanotechnology for Microelectronics and Optoelectronics, J.M. Martinez-Duert, R.J. Martin Palma
3	and F. Agullo-Rueda, 1st Edition, 2006, Elsevier Press, ISBN: 9780080456959
4	Electronic Transport in Mesoscopic Systems, Supriyo Datta, 1 st Edition, 1997, Cambridge
4	University Press ISBN: 9780521599436
5	Semiconductor Optoelectronic devices, Pallab Bhattacharya, 2 nd Edition, 1996, Prentice Hall of
5	India, ISBN: 978-0134956565
(Semiconductor Devices, Physics and Technology, S. M. Sze, 2 nd Edition, 2008, Wiley Student
6	Edition, ISBN: 978-8126516810

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	2	1	3	2	2	-	-	-	1	
CO2	3	3	3	2	1	2	1	1	-	-	-	1	
CO3	3	3	3	2	1	1	1	1	-	-	-	1	
CO4	1	2	1	2	1	2	2	1	2	2	-	1	

				Semester: V				
			THIN FILM	IS AND NANOTE	CHNOLOGY			
			(GROU	P B: GLOBAL EI	LECTIVE)			
<u> </u>	~ .	1	100	(Theory)			400.35	
	rse Code	:	18G5B14		CIE	:	100 Marks	
	dits: L:T:P	:	3:0:0 39L		SEE SEE Duration	:	100 Marks	
	al Hours rso Loorning (:)bic	SPL ctives: The students	will be able to	SEE Duration	:	3.00 Hours	
<u>1</u>			asics of thin films st		X 7			
2					y. us techniques and the	air ch	aracterization	
4	methods.	now	ledge of unit time p	reparation by vario	us techniques and the		aracterization	
3		w1	dga to salact the mo	et potential mathe	ls to produce thin fill	me fo	r wonted	
3	applications.	JWIE	uge to select the III	si potential metho	is to produce thin fill	115 10	n wanteu	
4	**	thin	film applications.					
-+	Asses typical	um	min applications.					
				Unit-I			08 H	Hre
Non	ostructures an			0			001	
Type dime Quai	es of nanostru ensional, One d ntum Dots, shel	ictui lime ll st	ructures, Multilayer	nsional nano-struct thin films and sup	tured materials. Carl per lattice clusters. S	bon N ynthe	Nano Tubes (CN esis through Sol	NT) 1 ge
Type dime Quan and	es of nanostru ensional, One d ntum Dots, shel	ictui lime ll st sis.	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic	nsional nano-struct thin films and sup cal-chemical prop	tured materials. Carl	bon N ynthe	Nano Tubes (CN esis through Sol and challenges	NT) l gel s of
Type dime Quar and nanc	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar	lictur lime ll st sis. note	res and properties ensional, Zero-dime ructures, Multilayer Mechanical-physic chnology.	nsional nano-struct thin films and sup	tured materials. Carl per lattice clusters. S	bon N ynthe	Nano Tubes (CN esis through Sol	NT) l ge s of
Type dime Quan and nanc Thir	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar	lime lime ll st sis. note	res and properties ensional, Zero-dime ructures, Multilayer Mechanical-physic chnology.	nsional nano-struct thin films and sup cal-chemical prop Unit – II	tured materials. Carl per lattice clusters. S erties. Current tren	bon N ynthe nds	Vano Tubes (CN esis through Sol and challenges 08 H	NT) 1 ge ⁻ s of Hrs
Type dime Quan and nanc Thir Vac	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nan Film Prepara uum technolog	lime lime ll st sis. note tion y- I	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p	nsional nano-struct thin films and sup cal-chemical prop <u>Unit – II</u> umps and vacuum	tured materials. Carl per lattice clusters. S erties. Current tren measurements, Phys	bon N ynthe nds	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit	NT) 1 ge s of Hrs ition
Type dime Quar and nanc Thir Vac (PV)	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar Film Prepara uum technolog D) Techniques	ictur lime ll st sis. note tion y- I s: E	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum nal evaporation, E	tured materials. Carl per lattice clusters. S erties. Current tren measurements, Phys lectron beam evapo	bon 1 ynthe nds sical S	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode	NT). 1 gei s of Hrs ition
Type dime Quan and nanco Thir Vacu (PV)	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar Film Prepara uum technolog D) Techniques	ictur lime ll st sis. note tion y- I s: E	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF	nsional nano-struct thin films and sup cal-chemical prop <u>Unit – II</u> umps and vacuum nal evaporation, E Sputtering, Magne	tured materials. Carl per lattice clusters. S erties. Current tren measurements, Phys	bon 1 ynthe nds sical S	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering.	NT) 1 gei s of Hrs ition
Type dime Quan and nanc Thir Vac (PV) depc	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar n Film Prepara uum technolog D) Techniques osition. Sputter	ictur lime ll st sis. note tion y- I :: E ring	res and properties nsional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum nal evaporation, E Sputtering, Magne Unit –III	tured materials. Carl per lattice clusters. S erties. Current tren measurements, Phys lectron beam evapo	bon 1 ynthe nds sical S	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode	NT) 1 gei s of Hrs ition
Type dime Quan and nanco Thir Vacu (PV) depo	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar Film Prepara uum technolog D) Techniques osition. Sputter	ictum lime ll st sis. note tion y- I :: E ring	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF nd Growth of Thim	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum nal evaporation, E Sputtering, Magne Unit –III Films:	tured materials. Carl per lattice clusters. S erties. Current tree measurements, Phys lectron beam evapo etron sputtering, and	bon N ynthe nds sical S pration	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H	NT) 1 ge ² s of Hrs ition e arc Hrs
Type dime Quar and nanco Thir Vacu (PV) depo Surf Nucl	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar Film Prepara uum technolog D) Techniques osition. Sputter face Preparatio leation – theoret	ictum lime ll st sis. note tior y- I : E : E : ing on a	res and properties nsional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF nd Growth of Thim and experimental a	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum nal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre	tured materials. Carl per lattice clusters. S erties. Current tree measurements, Phys lectron beam evapo etron sputtering, and p paration & Engineer	bon N ynthe nds sical S pration Ion b	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grov	NT) 1 ge s of Hrs ition e arc Hrs
Type dime Quar and nance Thir Vace (PV) depoe Surf Nucl Clea	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar n Film Prepara uum technolog D) Techniques osition. Sputter face Preparatio leation – theoret ning, Modificat	ictum lime ll st sis. note tion y- I :: E ring on a tical	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF nd Growth of Thim and experimental a Masking & Patterr	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum nal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre ning, Base Coats an	tured materials. Carl per lattice clusters. S erties. Current tree measurements, Phys lectron beam evapo etron sputtering, and i paration & Engineer ad Top Coats. Thin F	bon N ynthe nds sical S oration Ion b ing fo	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grov growth: Sequenc	NT) 1 ge s of <u>Hrs</u> ition e arc <u>Hrs</u> wwth ce of
Type dime Quar and nanco Thir Vacu (PV) depo Surf Nucl Clea thin	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar n Film Prepara uum technolog D) Techniques osition. Sputter face Preparatio leation – theoret ning, Modificat film growth, D	ictur lime ll st sis. note tion y- I :: E ing Dn a tical ion	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF nd Growth of Thim and experimental a Masking & Patterr cts and impurities,	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum nal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre- ting, Base Coats an Effect of Deposition	tured materials. Carl per lattice clusters. S erties. Current tree measurements, Phys lectron beam evapo etron sputtering, and i paration & Engineer ad Top Coats. Thin F on Parameters on fil	bon N ynthe nds sical S oration Ion b ing fo	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grov growth: Sequenc	NT) 1 ge s o <u>Hrs</u> itior e arc <u>Hrs</u> wwth ce of
Type dime Quar and nanco Thir Vacu (PV) depo Surf Nucl Clea thin	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar n Film Prepara uum technolog D) Techniques osition. Sputter face Preparatio leation – theoret ning, Modificat film growth, D	ictur lime ll st sis. note tion y- I :: E ing Dn a tical ion	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm DC sputtering, RF nd Growth of Thim and experimental a Masking & Patterr cts and impurities, Thickness, Surface,	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum hal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre ning, Base Coats an Effect of Deposition Physical, Chemical	tured materials. Carl per lattice clusters. S erties. Current tree measurements, Phys lectron beam evapo etron sputtering, and i paration & Engineer ad Top Coats. Thin F on Parameters on fil	bon N ynthe nds sical S oration Ion b ing fo	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grov growth: Sequence rowth. Properties	NT) 1 ge s or Hrs itior itior e arc Hrs wwth ce of es of
Type dime Quan and nance Thir Vace (PV) depce Surf Nucl Clea thin Thin	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar Film Prepara uum technolog D) Techniques osition. Sputter face Preparatio leation – theoret ning, Modificat film growth, D Films: Adhesio	tion y - I y - I y - I y - I i : E ing on a tical tical	res and properties nsional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Thern : DC sputtering, RF nd Growth of Thin and experimental a Masking & Patterr cts and impurities, Fhickness, Surface,	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum hal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre hing, Base Coats an Effect of Deposition Physical, Chemical Unit –IV	tured materials. Carl per lattice clusters. S erties. Current tree measurements, Phys lectron beam evapo etron sputtering, and i paration & Engineer ad Top Coats. Thin F on Parameters on fil	bon N ynthe nds sical S oration Ion b ing fo	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grov growth: Sequenc	NT) 1 ge s o Hrs ition e ard Hrs wth ce o es o
Type dime Quar and nancc Thir Vacu (PV) depcc Surf Nucl Clea thin Thin	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar n Film Prepara uum technolog D) Techniques osition. Sputter face Preparation leation – theoret ning, Modificat film growth, D n Films: Adhesio racterization o	tion tion y- H ing note ing n a tical ion Defe on, '	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF nd Growth of Thin and experimental a Masking & Patterr cts and impurities, Thickness, Surface,	nsional nano-struct thin films and sup- cal-chemical prop Unit – II umps and vacuum nal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre- ting, Base Coats an Effect of Deposition Physical, Chemical Unit –IV S:	tured materials. Carl per lattice clusters. S erties. Current tree measurements, Phys lectron beam evapo etron sputtering, and i paration & Engineer ad Top Coats. Thin F on Parameters on fil	bon N ynthe nds sical S pration Ion b ing fo iing fo	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grov growth: Sequenc rowth. Properties 08 H	NT) 1 ge s o Hrs ition e ard Hrs wwth ce o es o Hrs
Type dime Quan and nance Thir Vacu (PV) depce Surf Nucl Clea thin Thin Thin Film	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar n Film Prepara uum technolog D) Techniques osition. Sputter face Preparatio leation – theoret ning, Modificat film growth, D n Films: Adhesio racterization o n thickness me	tion y- I tical tical tical tical tical tical tical tical tical tical tical tical tical tical	res and properties insional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm DC sputtering, RF nd Growth of Thim and experimental a Masking & Patterr cts and impurities, Thickness, Surface, min Film Properties rement: Quartz cry	nsional nano-struct thin films and sup cal-chemical prop Unit – II umps and vacuum hal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre ning, Base Coats an Effect of Deposition Physical, Chemical Unit –IV s: stal thickness mo	tured materials. Carl per lattice clusters. S erties. Current tren measurements, Phys lectron beam evapo etron sputtering, and i paration & Engineer and Top Coats. Thin F on Parameters on fill and Mechanical.	bon N ynthe nds sical S oration Ion b ing fo film g lm gr	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grov growth: Sequenc rowth. Properties 08 H r methods. Surf	NT) 1 ge s or Hrs itior e ard Hrs with ce of es of Hrs rface
Type dime Quar and nance Thir Vact (PV) depo Surf Nucl Clea thin Thin Thin Thin Thin Thin Thin	es of nanostru ensional, One d ntum Dots, shel Spray Pyroly oscience and nar Film Prepara uum technolog D) Techniques osition. Sputter face Preparation leation – theoret ning, Modificat film growth, D a Films: Adhesion racterization on thickness met phology and to	tion y- I is: E ing on a tical tical f T asun	res and properties nsional, Zero-dime ructures, Multilayer Mechanical-physic chnology. Methods: Basics of Vacuum p vaporation - Therm : DC sputtering, RF nd Growth of Thim and experimental a Masking & Patterr cts and impurities, Thickness, Surface, in Film Properties rement: Quartz cry raphy by SEM, A	nsional nano-struct thin films and sup- cal-chemical prop Unit – II umps and vacuum nal evaporation, E Sputtering, Magne Unit –III Films: spects. Surface pre- ting, Base Coats an Effect of Deposition Physical, Chemical Unit –IV s: stal thickness mo FM. Film compos	tured materials. Carl per lattice clusters. S erties. Current tren measurements, Phys lectron beam evapo etron sputtering, and i paration & Engineer ad Top Coats. Thin F on Parameters on fil and Mechanical.	bon N ynthe nds sical S ration Ion b ing fo film g lm gr	Vano Tubes (CN esis through Sol and challenges 08 H Vapour Deposit n, and Cathode eam sputtering. 08 H or Thin film grov growth: Sequence owth. Properties 08 H r methods. Surf ctron Spectrosco	NT) l ge s o Hrs ition e ard Hrs with ce o es o Hrs copy

Thin Film Applications:

Band gap Engineering through thin films for electrical and optical applications. Thin Film for energy applications - coating on solar cells, fuel cells, batteries and super capacitors. Thin film thermo electric materials for thermal sensor applications. Thin film coating as protective coating for optical surfaces and as anti-reflection. Thin Film drug delivery and antibacterial surfaces - opportunities and challenges

07 Hrs

Ellipsometry, Raman Spectroscopy. Dielectric and Mechanical properties characterization.

Unit –V

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understand the basic mechanism of surface modification and thin film growth.
CO2:	Attain strong hold on thin film preparation by various techniques and their characterization
	methods.
CO3:	Apply the knowledge to select the most potential methods to produce thin films for wanted
	applications.
CO4:	Detailed knowledge of thin film selection for various applications.

Refere	ence Books
1	Thin Film Phenomenon, K.L.Chopra, 1 st edition, 1969, McGraw-Hill ISBN-13: 978-0070107991.
2	Materials Science of Thin Films, Milton Ohring, 2 nd Edition, Academic Press, 2002, ISBN 978-0-
2	12-524975-1
2	Thin-Film Deposition: Principles and Practice, Donald Smith, 1st edition, 1994, McGraw-Hill
3	College, ISBN-13: 978-0071139137.
4	Handbook of Thin-Film Technology, Hartmut Frey, Hamid R Khan Editors, 1st edition, 2015,
4	Springer, ISBN 978-3-642-05429-7.
	Nanostructures and Thin Films for Multifunctional Applications Technology, Properties and
5	Devices, Ion Tiginyanu, Pavel Topala, Veaceslav Ursaki, 1st edition, 2016, Springer, ISBN 978-3-
	319-30197-6.

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	-	-	-	-	-	-	-	-	2
CO2	3	2	2	2	-	-	-	-	-	-	-	2
CO3	2	3	3	2	-	1	1	1	-	-	-	2
CO4	2	3	3	2	1	2	2	2	2	2	-	2

				Semester	: V			
	4	ADV	VANCES IN C		ENCE AND TECHNOL	OGY	7	
	-			ROUP B: GLOBA				
			X -	(Theory				
Cou	rse Code	:	18G5B15		CIE	:	100 Ma	rks
Cre	dits: L:T:P	:	3:0:0		SEE	:	100 Ma	ırks
Tota	al Hours	:	39L		SEE Duration	:	3.00 Ho	ours
Cou	rse Learning (Dbje	ectives: The stu	dents will be able	0			
1	Understand th	ne fi	Indamental & so	ocio, economic asp	pects of corrosion.			
2	Identify pract	ices	for the prevent	ion and remediatio	n of corrosion.			
3	Analyzing me	etho	dologies for pre	edicting corrosion t	endencies.			
4					nt suitable corrosion contr	ol me	asures.	
-	L'unduce vuil	040	corrosion situat	ions and impremen		01 1110	ubui obi	
				Unit-I				08 Hrs
Intr	oduction to con	rros	ion and its effe					00110
					on, economic losses, In	direct	losses -	Shutdown
					nvironmental damage, I			
			-	•	ustries, corrosion map of	-		CONTOSION
-				-	-			:1 and as
		_			on, chemical processing	indu	stries, o	ii and gas
Indu	stries, pulp and	pap	per plants, corro	sion effect in elect	ronic industry.			I
				Unit – II				08 Hrs
		nic	-	•	pes: Galvanic corrosion, stress corrosion, seas			
corre emb Crev	osion, intergra rittlement, high vice corrosion-r	nic nula tem	series, Pilling- r corrosion, o perature corros nanism of diffe	erosion corrosion sion, bacterial corro rential aeration co	pes: Galvanic corrosion, , stress corrosion, seas osion, corrosion in polyme rrosion, mixed potential	son c er (pla	eracking, astic) mat	hydrogen terials.
corre emb Crev	osion, intergra rittlement, high vice corrosion-r	nic nula tem	series, Pilling-H r corrosion, on perature corros	erosion corrosion sion, bacterial corro rential aeration co s.	, stress corrosion, seas	son c er (pla	eracking, astic) mat	hydrogen erials. lerstanding
corre emb Crev com	osion, intergra rittlement, high vice corrosion-r mon corrosion o	nic nula tem necl of m	series, Pilling-H ar corrosion, on perature corros manism of diffe metals and alloys	erosion corrosion sion, bacterial corro rential aeration co s. Unit –III	, stress corrosion, seas	son c er (pla	eracking, astic) mat	hydrogen terials.
corre emb Crev com	osion, intergra rittlement, high vice corrosion-r mon corrosion o rosion in diffe	nic nula tem necl of m	series, Pilling-H ar corrosion, of aperature corros nanism of diffe netals and alloys t engineering n	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials	, stress corrosion, seas osion, corrosion in polymo rrosion, mixed potential	son c er (pla	eracking, astic) mat	hydrogen erials. lerstanding
corre emb Crev com Corre	osion, intergra rittlement, high vice corrosion-r mon corrosion o rosion in diffe crete structures,	nic nula tem necl of m ren	series, Pilling-H ar corrosion, o perature corros nanism of diffe netals and alloys t engineering n plex, super dupl	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels,	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites.	son c er (pla theor	eracking, astic) mat y for und	hydrogen terials. lerstanding 07 Hrs
corre emb Crev com Corre Corre	osion, intergra rittlement, high vice corrosion-r mon corrosion o rosion in diffe crete structures, rosion in Speci	nic nula tem necl of m ren , duj	series, Pilling-H ar corrosion, o aperature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nic	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium	son c er (pla theor	eracking, astic) mat y for unc	hydrogen terials. lerstanding 07 Hrs oys.
corre emb Crev com Corr Corr Corr The	osion, intergra rittlement, high vice corrosion-r mon corrosion o rosion in diffe crete structures, rosion in Speci rmodynamics	nic nula tem necl of m ren , duj fic l	series, Pilling-H ar corrosion, o perature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nic	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites.	son c er (pla theor	eracking, astic) mat y for unc	hydrogen terials. lerstanding 07 Hrs oys.
corre emb Crev com Corr Corr Corr The	osion, intergra rittlement, high vice corrosion-r mon corrosion o rosion in diffe crete structures, rosion in Speci	nic nula tem necl of m ren , duj fic l	series, Pilling-H ar corrosion, o perature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po	erosion corrosion sion, bacterial corro rential aeration co s. Unit –III naterials lex stainless steels, rosion of Iron, Nic ourbaix diagram	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium	son c er (pla theor	eracking, astic) mat y for unc	hydrogen terials. lerstanding 07 Hrs 0ys. on and its
corre emb Crev com Con Con Con The calce	osion, intergra rittlement, high vice corrosion-r mon corrosion o rosion in diffe crete structures, rosion in Speci rmodynamics ulation for Al, C	nic nula tem necl of m ren fic I of Cu, I	series, Pilling-H ar corrosion, of aperature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe.	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nic	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium	son c er (pla theor	eracking, astic) mat y for unc	hydrogen terials. lerstanding 07 Hrs oys.
corre emb Crev com Corr Corr Corr The calcu	osion, intergra rittlement, high vice corrosion-r mon corrosion o rosion in diffe crete structures, rosion in Speci rmodynamics ulation for Al, C ances in Corro	nic nula tem necl of m ren fic I of Cu, I	series, Pilling-H ar corrosion, of aperature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe.	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u>	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in	son c er (pla theor n and metal	stic) mat stic) mat y for und Super all corrosid	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs
corre emb Crev com Cor Cor Cor The calce Adv	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics ulation for Al, C ances in Corro ciples of corro	nic nula tem necl of m ren fic du ific Cu, l	series, Pilling-H ar corrosion, of aperature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe. n Control n prevention, r	erosion corrosion sion, bacterial corro rential aeration co s. Unit –III naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram Unit –IV naterial selection,	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in the design considerations,	son c er (pla theory n and metal	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment
corrections control co	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics alation for Al, C ances in Corro ciples of corro ease in veloc	nic nula tem necl of m ren fic fic Cu, l of Cu, l	series, Pilling-H ar corrosion, of aperature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe. h Control n prevention, r passivity, res	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u> material selection, moval oxidizer,	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in the design considerations, Inhibitors and passival	a and metal contro	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- - organic
corrections of the correction	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics ulation for Al, C ances in Corro ciples of corro ease in veloc croplating of Co	nic nula tem necl of m ren fic fic Cu, l of Cu, l	series, Pilling-H ar corrosion, of aperature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe. h Control n prevention, r passivity, res	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u> material selection, moval oxidizer,	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in the design considerations,	a and metal contro	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- - organic,
corrections of the correction	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics alation for Al, C ances in Corro ciples of corro ease in veloc	nic nula tem necl of m ren fic fic Cu, l of Cu, l	series, Pilling-H ar corrosion, of aperature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe. h Control n prevention, r passivity, res	erosion corrosion sion, bacterial corro rential aeration co s. Unit –III naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u> material selection, moval oxidizer, Chromium, physic	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in the design considerations, Inhibitors and passival	a and metal contro	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- - organic, ess plating
corrections of the correction of N	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics alation for Al, C ances in Corro ease in veloc croplating of Co ickel.	nic nula tem necl of m ren , duj fic 1 of Cu, 1 Osion Sion Sion	series, Pilling-H ar corrosion, of aperature corros nanism of diffe netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe. h Control n prevention, r passivity, res	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u> material selection, moval oxidizer,	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in the design considerations, Inhibitors and passival	a and metal contro	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- - organic
corrections of N	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics alation for Al, C ances in Corro ease in veloc croplating of Co ickel.	nic nula tem necl of m ren fic 1 of Cu, 1 osion city, oppo	series, Pilling-H ar corrosion, of aperature corros nanism of diffe- netals and alloys t engineering n olex, super dupl Materials: Corr Corrosion: Po Ni and Fe. n Control n prevention, r passivity, rei er, Nickel and O	erosion corrosion sion, bacterial corro rential aeration co s. Unit –III naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram Unit –IV material selection, moval oxidizer, Chromium, physic Unit –V	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in design considerations, Inhibitors and passivat al vapor deposition-sputt	n and metal	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- - organic, ess plating 09 Hrs
corra emb Crev com Con Con Cor The calcu Prin decr elect of N Cor Physical Cor Cor Cor	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics alation for Al, C ances in Corro ciples of corro ease in veloc croplating of Co ickel.	nic nula tem necl of m ren , duj ffic 1 of Cu, 1 Osion Sion Sion Sion Meth	series, Pilling-H ar corrosion, of aperature corros nanism of diffe- netals and alloys t engineering n plex, super dupl Materials: Corr Corrosion: Po Ni and Fe. n Control n prevention, r passivity, res er, Nickel and O	erosion corrosion sion, bacterial corro rential aeration co s. Unit –III naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u> material selection, moval oxidizer, Chromium, physic <u>Unit –V</u> ens, environment,	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in the design considerations, Inhibitors and passival	n and metal	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- - organic ess plating 09 Hrs
corra emb Crev com Con Con Cor The calcu Prin decr elect of N Cor Physical Cor Cor Cor	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics alation for Al, C ances in Corro ciples of corro ease in veloc croplating of Co ickel.	nic nula tem necl of m ren , duj ffic 1 of Cu, 1 Osion Sion Sion Sion Meth	series, Pilling-H ar corrosion, of aperature corros nanism of diffe- netals and alloys t engineering n olex, super dupl Materials: Corr Corrosion: Po Ni and Fe. n Control n prevention, r passivity, rei er, Nickel and O	erosion corrosion sion, bacterial corro rential aeration co s. Unit –III naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u> material selection, moval oxidizer, Chromium, physic <u>Unit –V</u> ens, environment,	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in design considerations, Inhibitors and passivat al vapor deposition-sputt	n and metal	Super all corrosic	hydrogen terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- - organic, ess plating 09 Hrs
corrections of the second seco	osion, intergra rittlement, high vice corrosion-r mon corrosion of rosion in diffe crete structures, rosion in Speci rmodynamics ulation for Al, C ances in Corro ciples of corro case in veloc croplating of Co ickel.	nic nula tem mecl of n ren fic 1 of Cu, 1 of Cu, 1 osion city, oppe	series, Pilling-H ar corrosion, of aperature corros nanism of diffe- netals and alloys tengineering n olex, super dupl Materials: Corr Corrosion: Po Ni and Fe. h Control n prevention, re- passivity, re- er, Nickel and O hods: Specime ray, service test	erosion corrosion sion, bacterial corro rential aeration co s. <u>Unit –III</u> naterials lex stainless steels, rosion of Iron, Nici ourbaix diagram <u>Unit –IV</u> material selection, moval oxidizer, Chromium, physic <u>Unit –V</u> ens, environment, ss.	, stress corrosion, seasosion, corrosion in polymorrosion, mixed potential ceramics, composites. kel, Aluminium, Titanium and its importance in design considerations, Inhibitors and passivat al vapor deposition-sputt	on control on and metal control tors, ering,	Super all corrosid	hydroger terials. lerstanding 07 Hrs oys. on and its 07 Hrs vironment- organic ess plating 09 Hrs Accelerated

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand the causes and mechanism of various types of corrosion							
CO2:	Identify, analyze and interpret corrosion with respect to practical situations.							
CO3:	Apply the knowledge of chemistry in solving issues related to corrosion.							
CO4:	Develop practical solutions for problems related to corrosion.							

Reference Books

1	Corrosion Engineering, M.G, Fontana, 3 rd Edition, 2005, Tata McGraw Hill, ISBN: 978-0070214637.
2	Principles and Prevention of Corrosion, D. A Jones, 2 nd Edition, 1996, Prentice Hall, ISBN: 978-0133599930.
3	Design and corrosion prevention, Pludek, 1978, McMillan, ISBN: 978-1349027897
4	Introduction to metal corrosion, Raj Narain, 1983, Oxford &IBH, ISBN: 8120402995.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	-	-	-	-	-	-	-	1	-	1	
CO2	3	2	2	1	-	-	-	-	-	1	-	1	
CO3	3	3	2	2	2	-	-	-	-	1	-	1	
CO4	3	3	3	3	2	-	-	-	-	1	-	1	

				Semester: V				
		CC	OMPUTATIONA	L ADVANCED NUN	IERICAL METHO	ODS		
	(GROUP B: GLOBAL ELECTIVE)							
	(Theory)							
	rse Code	:	18G5B16		CIE	:	100 Marks	
	dits: L:T:P	:	3:0:0		SEE	:	100 Marks	
	al Hours	:) :/	39L	unta uvill ha ahla ta	SEE Duration	:	3.00 Hours	
	0	•		ents will be able to	1 1 1			
1	-		•	lternative methods to s	solve algebraic and	trans	cendental equations	
-	•		merical techniques		· C. 11			
2		-	_	echniques arising in va			<u> </u>	
3		val	ue and boundary	value problems whi	ich have great sigr	nfica	nce in engineering	
	practice.			1 •	1.1.1.1.1.1	1		
4	·	nce	pts of eigen value	e and eigen vector to c	obtain the critical va	alues	of various physical	
	phenomena.				1 1 0 1			
5				nming language, imp	plementation of alg	gorith	ims and computer	
	programs to s	solve	e mathematical pro	oblems.				
				TT •4 T			07.11	
Alac	hunia and Tua		endental Equatio	Unit-I			07 Hrs	
0			-		ive method Aitken	nrook	Muller method	
			nulation using MA	ce - Fixed point iteration	ive method, Altken	proce	ess, wunter method,	
Chei	bysnev method.	. 511					07 11	
Into	rpolation:			Unit – II			07 Hrs	
	-	e di	fferences Finite d	lifferences of a polyno	mial Divided differ	ence	Newton's divided	
				te interpolation, Spline				
	-				e interpolation - ini	cal, (quadratic and cubic	
spline interpolation. Simulation using MATLAB. Unit –III 08 Hrs								
Differential Equations I:								
Runge-Kutta and Runge-Kutta-Felhberg methods to solve differential equations, Boundary value problems								
(BVPs) - Rayleigh-Ritz method, Shooting method, Differential transform method to solve differential								
			-	ing method, Differen		104 1		
equations. Simulation using MATLAB. Unit –IV 08 Hrs								
Diff	erential Equat	ions	s II:	Cint IV			UO III S	
				blems - Runge-Kutta r	nethod, Milne metho	od. C	ubic spline method.	
			-	ear, Nonlinear differen			-	
				Unit –V			09 Hrs	
Eige	en Value Probl	ems	5:				07 1115	
0				ver method, Inverse	Power method. Bo	ounds	on Eigen values.	
-		-					-	
	Gershgorin circle theorem, Jacobi method for symmetric matrices, Given's method. Simulation using							

MATLAB.

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Identify and interpret the fundamental aspects of different Mathematical concepts and							
	corresponding computational techniques.							
CO2:	Apply the knowledge and skills of computational techniques to solve different types of application							
	problems.							
CO3:	Analyze the physical problem and use appropriate method to solve numerically using							
	computational techniques.							
CO4:	Distinguish the overall mathematical knowledge gained to demonstrate and analyze the problems							
	arising in engineering practice.							

Refere	Reference Books						
1	Numerical methods for scientific and engineering computation, M. K. Jain, S. R. K. Iyengar and R.						
1	K. Jain, 6 th Edition, 2012, New Age International Publishers, ISBN-13: 978-81-224-2001-2.						
2	Numerical Analysis, Richard L. Burden and J. Douglas Faires, 9th Edition, 2012, Cengage						
2	Learning, ISBN-13: 978-81-315-1654-6.						
3	Introductory Methods of Numerical Analysis, S. S. Sastry, 4th Edition, 2011, PHI Learning Private						
5	Ltd., ISBN: 978-81-203-2761-0.						
4	Numerical Methods for Engineers, Steven C. Chapra, Raymond P. Canale, 5th Edition, 2011, Tata						
-	Mcgraw Hill, ISBN-10: 0-07-063416-5.						

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

MATHEMATICS FOR MACHINE LEARNING (GROUP B: GLOBAL ELECTIVE) (Theory) Course Code : 1865B17 CIE : 100 Marks Credits: L:T:P : 3:0:0 SEE : 100 Marks Course Code : 100 Marks Course Learning Objectives: The students will be able to 1 Understand the basic knowledge on the fundamental concepts of linear algebra that form foundation of machine intelligence. 2 Acquire practical knowledge of vector calculus and optimization to understand the machine learn algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of mach learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decis problems. Unit-I 07 Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Compleme Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit - II Vector Calculus and Continuous					Semester: V										
(Theory) Course Code : 100 Marks Credits: L:T:P : 3:0:0 SEE : 100 Marks Course Learning Objectives: The students will be able to SEE Duration : 3:0:0 More SEE Duration : 3:0:0 Acquire practical knowledge on the fundamental concepts of linear algebra that form foundation of machine intelligence. 2 Acquire practical knowledge or techniques. Signamentaria More Set Colspan="2" 3 Use the concepts of probability and distributions to analyze possible applications of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decis problems. <th></th> <th></th> <th></th> <th>MATHEMAT</th> <th></th> <th>E LEARNING</th> <th></th> <th></th>				MATHEMAT		E LEARNING									
Course Code : 18G5B17 CIE : 100 Marks Credits: L:T:P : 30:0 SEE : 100 Marks Total Hours : 39L SEE Duration : 3.00 Hours Course Learning Objectives: The students will be able to SEE Duration : 3.00 Hours Course Learning Objectives: The students will be able to Hours of machine intelligence.				(GROU	P B: GLOBAL ELI	ECTIVE)									
Credits: L:T:P : 3:0:0 SEE : 100 Marks Total Hours : 391 SEE Duration : 3.00 Hours Course Learning Objectives: The students will be able to Indextand the basic knowledge on the fundamental concepts of linear algebra that form foundation of machine intelligence. Acquire practical knowledge of vector calculus and optimization to understand the machine learn algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of mach learning. Analyze the appropriate mathematical techniques for classification and optimization of decis problems. 5 Analyze the appropriate mathematical techniques for classification and optimization of decis problems. Unit-I 07 Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Compleme Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. 07 Hrs Vector Calculus and Continuous Optimization: Orthiz I 07 Hrs Vinit – II 07 Hrs Standardity of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Ba															
Total Hours : 39L SEE Duration : 3.00 Hours Course Learning Objectives: The students will be able to 1 Understand the basic knowledge on the fundamental concepts of linear algebra that form foundation of machine intelligence. Acquire practical knowledge of vector calculus and optimization to understand the machine learnin algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of machine learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decisi problems. Unit-I Of Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complemed Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit -I Of Hrs Vector Calculus and Continuous Optimization Inter I OT Hrs Sign colspan= 2 Unit - II OT Hrs Vector S			-				-								
Course Learning Objectives: The students will be able to 1 Understand the basic knowledge on the fundamental concepts of linear algebra that form foundation of machine intelligence. 2 Acquire practical knowledge of vector calculus and optimization to understand the machine learn algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of mach learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decise problems. Unit-I 07 Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Compleme Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit - II 07 Hrs Vector Calculus and Continuous Optimization Gradients of Matrices, Identities for Computing Gradiert Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. Unit - II Vector Calculus and Continuous Optimization Unit - III 08 Hrs			:												
1 Understand the basic knowledge on the fundamental concepts of linear algebra that form foundation of machine intelligence. 2 Acquire practical knowledge of vector calculus and optimization to understand the machine learn algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of mach learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decis problems. Unit-I Of Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit - II Of Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradiert Brobability and Distributions: Onstruction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit -IV 08 Hrs) Ohid		s will be able to	SEE Duration	•	5.00 Hours							
foundation of machine intelligence. 2 Acquire practical knowledge of vector calculus and optimization to understand the machine learn algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of mach learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decise problems. Of Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit - II Of Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit - II 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradiert Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. Unit -III 08 Hrs <td <="" colspan="2" td=""><td></td><td>6</td><th>•</th><th></th><th></th><td>concepts of linear</td><td>· əla</td><td>ebra that form the</td></td>	<td></td> <td>6</td> <th>•</th> <th></th> <th></th> <td>concepts of linear</td> <td>· əla</td> <td>ebra that form the</td>			6	•			concepts of linear	· əla	ebra that form the					
2 Acquire practical knowledge of vector calculus and optimization to understand the machine learn algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of mach learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decise problems. Unit-I 07 Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complemed Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit - II 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradiert Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. Unit -II 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs <td>I</td> <td></td> <th></th> <th>-</th> <th>n the fundamental</th> <td>concepts of inteal</td> <td>arg</td> <td></td>	I			-	n the fundamental	concepts of inteal	arg								
algorithms or techniques. 3 Use the concepts of probability and distributions to analyze possible applications of mach learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decis problems. 6 Unit-I 07 Hrs 7 Inear Algebra: 7 Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Compleme Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit – II 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradier Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. Unit –III 08 Hrs Probability and Distributions: 08 Hrs Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Unit –IV 08 Hrs	2				or calculus and ontir	nization to understa	nd th	he machine learning							
3 Use the concepts of probability and distributions to analyze possible applications of mach learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decis problems. 6 Unit-I 07 Hrs 7 Linear Algebra: 07 Hrs 8 Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complement 1 Unit – II 07 Hrs Vector Calculus and Continuous Optimization: 1 Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradiert 1 Unit – III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs	2			-	or calculus and optim	inzation to underste	ina u								
learning. 4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decise problems. 6 Unit-I 07 Hrs 1 Linear Algebra: 07 Hrs Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complemed Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradier Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. Unit –III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs	3			<u>^</u>	nd distributions to	analyze possible a	annlia	cations of machine							
4 Apply the concepts of regression and estimation to solve problems of machine learning. 5 Analyze the appropriate mathematical techniques for classification and optimization of decise problems. 6 Unit-I 07 Hrs 1 Linear Algebra: 07 Hrs Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complemed Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradiert Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Unit –IV 08 Hrs	U		leept	s of probability a	nd distributions to	unaryze possible a	ippin	cations of machine							
5 Analyze the appropriate mathematical techniques for classification and optimization of decise problems. 6 Unit-I 07 Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complement Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit – II O7 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradiert Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. Unit –III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV Unit –IV 08 Hrs	4		ncer	ts of regression and	estimation to solve a	problems of machin	e lea	rning							
problems. O7 Hrs Linear Algebra: 07 Hrs Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Compleme Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. 07 Hrs Vector Calculus and Continuous Optimization: 07 Hrs Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradier Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. Unit – III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Unit –IV 08 Hrs	-							-							
Unit-I 07 Hrs Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Compleme Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit – II 07 Hrs Vector Calculus and Continuous Optimization: 07 Hrs Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradier Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization. Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. 08 Hrs Probability and Distributions: 07 Nrs Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Unit –IV 08 Hrs	5	•	чрр	iopriate mathemati	cur teeninques 101 (and the and th	Pun								
Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complement Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit – II 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradient Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization: Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Unit – III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs		Problems.													
Linear Algebra: Review of Vector Spaces-Linear Independence, Basis, Rank and Linear Mappings. Affine Spaces, In Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complement Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit – II 07 Hrs Vector Calculus and Continuous Optimization: 07 Hrs Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradient Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization: Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. 08 Hrs Probability and Distributions: 08 Hrs Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Linear Regression: 08 Hrs				l	Unit-I			07 Hrs							
Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complement Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit – II 07 Hrs Vector Calculus and Continuous Optimization: 07 Hrs Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradiert Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization: Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. 08 Hrs Probability and Distributions: 08 Hrs Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Unit –IV 08 Hrs	Line	ar Algebra:						·							
Inner Product of Functions, Orthogonal Projections, Rotations, Singular Value Decomposition. Unit – II 07 Hrs Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradient Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization: Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Unit –III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. 08 Hrs Unit –IV 08 Hrs	Revi	ew of Vector	Spac	ces-Linear Independ	dence, Basis, Rank a	and Linear Mappin	gs. A	Affine Spaces, Inner							
Unit – II07 HrsVector Calculus and Continuous Optimization:Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing GradientBackpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, OptimizationUsing Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization.Unit –III08 HrsProbability and Distributions:Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule aBayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of VariableInverse Transform.Unit –IV08 HrsLinear Regression:	Prod	ucts, Lengths a	and]	Distances, Angles a	nd Orthogonality. O	rthonormal Basis, (Drtho								
Vector Calculus and Continuous Optimization: Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradient Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Unit –III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs															
Gradients of Vector-Valued Functions, Gradients of Matrices, Identities for Computing Gradient Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Unit –III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs Linear Regression: 08 Hrs	Inner	-		-											
Backpropagation and Automatic Differentiation, Linearization and Multivariate Taylor Series, Optimization Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Unit –III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs Linear Regression:		r Product of Fu	Incti	ons, Orthogonal Pro	jections, Rotations, S nit – II										
Using Gradient Descent, Constrained Optimization and Lagrange Multipliers and Convex Optimization. Unit –III 08 Hrs Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs Linear Regression:	Vect	r Product of Fu	nction	ons, Orthogonal Pro U Continuous Optimi	ojections, Rotations, S nit – II zation:	Singular Value Dec	ompo	osition. 07 Hrs							
Unit –III08 HrsProbability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform.Unit –IV08 HrsLinear Regression:08 Hrs	Vect Grad	r Product of Fu cor Calculus an lients of Vect	nction nd C	ons, Orthogonal Pro U: Continuous Optimiz /alued Functions,	ojections, Rotations, S nit – II zation: Gradients of Matri	Singular Value Dec	ompo Cor	mputing Gradients							
Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs Linear Regression:	Vect Grad Back	r Product of Fu cor Calculus and lients of Vector appropagation and	nd C tor-V	ons, Orthogonal Pro U Continuous Optimi Valued Functions, utomatic Differentia	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a	Singular Value Dec ices, Identities for and Multivariate Ta	Cor Vor S	mputing Gradients Series, Optimization							
Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule a Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs Linear Regression:	Vect Grad Back	r Product of Fu cor Calculus and lients of Vector appropagation and	nd C tor-V	ons, Orthogonal Pro U Continuous Optimi Valued Functions, utomatic Differentia t, Constrained Optim	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization and nization and Lagrang	Singular Value Dec ices, Identities for and Multivariate Ta	Cor Vor S	mputing Gradients Series, Optimization ex Optimization.							
Bayes' Theorem, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variable Inverse Transform. Unit –IV 08 Hrs Linear Regression:	Vect Grad Back Usin	r Product of Fu cor Calculus an lients of Vect cpropagation an g Gradient Des	nd C tor-V nd A scent	ons, Orthogonal Pro U Continuous Optimi Valued Functions, utomatic Differentia t, Constrained Optim	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization and nization and Lagrang	Singular Value Dec ices, Identities for and Multivariate Ta	Cor Vor S	mputing Gradients Series, Optimization ex Optimization.							
Inverse Transform. Unit –IV 08 Hrs Linear Regression:	Vect Grad Back Usin	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Des	nd C tor-V nd A scent	ons, Orthogonal Pro U Continuous Optimi Valued Functions, utomatic Differentia t, Constrained Optim Un butions:	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C	Conve	mputing Gradients Series, Optimization ex Optimization. 08 Hrs							
Unit –IV08 HrsLinear Regression:08	Vect Grad Back Usin Prob	r Product of Fu cor Calculus and lients of Vecto coropagation and g Gradient Des coability and Distruction of a I	nd C tor-V nd A scent istri Prob	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discr	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum	Cor ylor S Conve	mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and							
Linear Regression:	Vect Grad Back Usin Prob Cons Baye	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese pability and Distruction of a I estruction of a I	nd C tor-V nd A scent istri Prob	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discr	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum	Cor ylor S Conve	mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and							
	Vect Grad Back Usin Prob Cons Baye	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese pability and Distruction of a I estruction of a I	nd C tor-V nd A scent istri Prob	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discussion Distribution, C	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum	Cor ylor S Conve	07 Hrs 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables							
	Vect Grad Back Usin Prob Cons Baye Inver	r Product of Fu cor Calculus and lients of Vecto appropagation and g Gradient Dese Dability and Distruction of a H es' Theorem, Conservation of a H rese Transform.	nd C tor-V nd A scent istri Prob	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discussion Distribution, C	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum	Cor ylor S Conve	mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and							
Problem Formulation, Parameter Estimation, Bayesian Linear Regression, Maximum Likelihood	Vect Grad Back Usin Prob Cons Baye Inver	r Product of Fu for Calculus and lients of Vector g Gradient Des pability and Di struction of a I es' Theorem, C rse Transform.	nd C tor-V ad A scent istri istri Gaus	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discussian Distribution, O	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the I nit –IV	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family	Corve	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs							
	Vect Grad Back Usin Prob Cons Baye Inver	r Product of Fu cor Calculus and lients of Vecto appropagation and g Gradient Des Dability and Di struction of a H es' Theorem, O rse Transform.	inction nd C tor-V ad A scent istri istri Gaus	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discussian Distribution, O	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the I nit –IV	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family	Corve	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs							
	Vect Grad Back Usin Prob Cons Baye Inver Line Prob Orthe	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese pability and Distruction of a I estruction of a I estruc	Inctional of the second of the	ons, Orthogonal Pro U: Continuous Optimi: Valued Functions, utomatic Differentia t, Constrained Optim Ui butions: ability Space, Discussian Distribution, O Ui Parameter Estima	pjections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the I nit –IV tion, Bayesian Line	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family	Corve	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs							
•	Vect Grad Back Usin Prob Cons Baye Inver Line Prob Orthe Dens	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Des bability and Distruction of a H es' Theorem, C rse Transform. car Regression lem Formulation ogonal Projector	inction nd C tor-V nd A scent istri istri istri ion, ion, ion, n wi	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, C Un Parameter Estima th Gaussian Mixtu	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models:	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M	Corylor S conve Rule , Cha	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs 08 Hrs hum Likelihood as							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia	Vect Grad Back Usin Prob Cons Baye Inver Line Prob Ortho Dens Gaus	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese oability and Distruction of a H estruction of a H estruc	inction nd C tor-V nd A scent istri istri istri ion, ion, ion, n wi	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, C Un Parameter Estima th Gaussian Mixtu	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models:	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M	Corylor S conve Rule , Cha	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs 08 Hrs hum Likelihood as							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective.	Vect Grad Back Usin Prob Cons Baye Inver Line Prob Ortho Dens Gaus	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese oability and Distruction of a H estruction of a H estruc	inction nd C tor-V nd A scent istri istri istri ion, ion, ion, n wi	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discu- sian Distribution, C Un Parameter Estima th Gaussian Mixtu el, Parameter Learn	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M	Corylor S conve Rule , Cha	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs hum Likelihood as hum, Latent-Variables							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. 09 Hrs	Vect Grad Back Usin Prob Cons Baye Inver Prob Orthe Dens Gaus Persp	r Product of Fu cor Calculus and lients of Vector corpopagation and g Gradient Des oability and Distruction of a H es' Theorem, O rse Transform. ear Regression lem Formulation ogonal Projection sity Estimation ssian Mixture H pective.	inction nd C tor-V nd A scent istri istri Gaus : ion, ion, ion. Mod	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discr sian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Al	Corylor S conve Rule , Cha	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs hum Likelihood as hum, Latent-Variables							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA):	Vect Grad Back Usin Prob Cons Baye Inver Inver Prob Ortho Dens Gaus Persp	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Dese oability and Distruction of a H ess' Theorem, O rse Transform. Car Regression lem Formulation ogonal Projection sity Estimation sian Mixture H pective.	inction nd C tor-V nd A scent istri istri Gaus ion, ion, ion. Mod	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim t, Constrained Optim Un butions: ability Space, Discussian Distribution, O Ui Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the I nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V I Component Analys)	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg	Conve ylor S Conve Rule , Cha laxim	Opsition. O7 Hrs mputing Gradients Series, Optimization Series, Optimization. 08 Hrs ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs num Likelihood as 08 Hrs hum, Latent-Variable 09 Hrs							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation at the setting of the setting of the setting.	Vect Grad Back Usin Prob Cons Baye Inver Inver Prob Ortho Dens Gaus Persp Prob	r Product of Fu cor Calculus and lients of Vector corpopagation and g Gradient Des oability and Distruction of a H es' Theorem, O rse Transform. Car Regression lem Formulation ogonal Projector sity Estimation ssian Mixture H pective.	inction nd C tor-V nd A scent istri istri Prob Gaus :: ion, ion. n wi Mod	ons, Orthogonal Pro U: Continuous Optimiz Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Per	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V I Component Analys spective, Projection	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen	Corve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation a Low-Rank Approximations, PCA in High Dimensions, Key Steps of PCA in Practice, Latent Varia	Vect Grad Back Usin Prob Cons Baye Inver Inver Prob Gaus Persp Dime Prob	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Dese oability and Distruction of a H ess' Theorem, O rse Transform. Car Regression lem Formulatt ogonal Projections sian Mixture H pective. ensionality Re lem Setting, M -Rank Approx	inction nd C tor-V nd A scent istri istri Prob Gaus :: ion, ion. n wi Mod	ons, Orthogonal Pro U: Continuous Optimiz Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Per	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V I Component Analys spective, Projection	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen	Corve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation a Low-Rank Approximations, PCA in High Dimensions, Key Steps of PCA in Practice, Latent Varia Perspective.	Vect Grad Back Usin Prob Cons Baye Inver Inver Prob Gaus Persp Dime Prob Low Persp	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese oability and Distruction of a H ess' Theorem, Of rise Transform. Car Regression lem Formulat ogonal Projections sian Mixture H pective. ensionality Re lem Setting, M -Rank Approx pective.	inction nd C tor-V nd A scent istri istri Prob Gaus istri ion, ion, ion, ion, Mod educ Maxi imat	ons, Orthogonal Pro U: Continuous Optimi: /alued Functions, utomatic Differentia t, Constrained Optimi butions: ability Space, Discr sian Distribution, O Ui Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Per tions, PCA in High	ojections, Rotations, Solution, Internet Solution: Gradients of Matriation, Linearization and Lagrangenit and Lagrangenit and Lagrangenit and Continuous Conjugacy and the Herrice and Continuous Conjugacy and the Herrice Models: The	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen	Corve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation a Low-Rank Approximations, PCA in High Dimensions, Key Steps of PCA in Practice, Latent Varia Perspective. Classification with Support Vector Machines:	Vect Grad Back Usin Prob Cons Baye Inver Prob Orthe Dens Gaus Persp Prob Class	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Des oblity and Distruction of a H es' Theorem, O rse Transform. Car Regression lem Formulat ogonal Projection sity Estimation sian Mixture H pective. ensionality Re lem Setting, M -Rank Approx pective. sification with	inction nd C tor-V nd A scent istri istri Gaus Gaus Caus Caus Caus Caus Caus Caus Caus C	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Persions, PCA in High poport Vector Mach	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I <u>Init –V</u> I Component Analysis spective, Projection n Dimensions, Key mines:	Singular Value Dec aces, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen Steps of PCA in F	Conve ylor S Conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables of Wariables 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and ce, Latent Variable							
Orthogonal Projection. Density Estimation with Gaussian Mixture Models:	Vect Grad Back Usin Prob Cons Baye Inver	r Product of Fu cor Calculus and lients of Vecto appropagation and g Gradient Dese Dability and Distruction of a H es' Theorem, Conservation of a H rse Transform.	nd C tor-V nd A scent istri Prob	ons, Orthogonal Pro U: Continuous Optimis /alued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discussion Distribution, O	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum	Cor ylor S Conve	07 Hrs 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables							
Density Estimation with Caussian Mixture Models.	Vect Grad Back Usin Prob Cons Baye Inver Line Prob Orthe	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese pability and Distruction of a I estruction of a I estruc	Inctional of the second of the	ons, Orthogonal Pro U: Continuous Optimi: Valued Functions, utomatic Differentia t, Constrained Optim Ui butions: ability Space, Discussian Distribution, O Ui Parameter Estima	pjections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the I nit –IV tion, Bayesian Line	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family	Corve	05 ition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs							
Density Estimation with Gaussian Mixture Woulds.	Vect Grad Back Usin Prob Cons Baye Inver Inver Line Prob	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese pability and Distruction of a I estruction of a I estruc	Inctional of the second of the	ons, Orthogonal Pro U: Continuous Optimi: Valued Functions, utomatic Differentia t, Constrained Optim Ui butions: ability Space, Discussian Distribution, O Ui Parameter Estima	pjections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the I nit –IV tion, Bayesian Line	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family	Corve	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs							
•	Vect Grad Back Usin Prob Cons Baye Inver Inver Line Prob Orthe Dens	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Des bability and Distruction of a H es' Theorem, C rse Transform. car Regression lem Formulation ogonal Projector	inction nd C tor-V nd A scent istri istri istri ion, ion, ion, n wi	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, C Un Parameter Estima th Gaussian Mixtu	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models:	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M	Corylor S conve Rule , Cha	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs 08 Hrs hum Likelihood as							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia	Vect Grad Back Usin Prob Cons Baye Inver Line Prob Ortho Dens Gaus	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese oability and Distruction of a H estruction of a H estruc	inction nd C tor-V nd A scent istri istri istri ion, ion, ion, n wi	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, C Un Parameter Estima th Gaussian Mixtu	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models:	Singular Value Dec ices, Identities for and Multivariate Ta ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M	Corylor S conve Rule , Cha	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs 08 Hrs hum Likelihood as							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. 09 Hrs	Vect Grad Back Usin Prob Cons Baye Inver Line Prob Orthe Dens Gaus Persp	r Product of Fu cor Calculus and lients of Vector corpopagation and g Gradient Des oability and Distruction of a H es' Theorem, O rse Transform. ear Regression lem Formulation ogonal Projection sity Estimation ssian Mixture H pective.	inction nd C tor-V nd A scent istri istri Gaus : ion, ion, ion. Mod	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discr sian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Al	Corylor S conve Rule , Cha	07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs hum Likelihood as hum, Latent-Variables							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA):	Vect Grad Back Usin Prob Cons Baye Inver Inver Line Prob Ortho Dens Gaus Persp	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Dese oability and Distruction of a H ess' Theorem, O rse Transform. Car Regression lem Formulation ogonal Projection sity Estimation sian Mixture H pective.	inction nd C tor-V nd A scent istri istri Gaus ion, ion, ion. Mod	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim butions: ability Space, Discr sian Distribution, O U: Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the I nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V I Component Analys)	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA):	Conve ylor S Conve Rule , Cha laxim	Opsition. O7 Hrs mputing Gradients Series, Optimization Series, Optimization. 08 Hrs ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs num Likelihood as 08 Hrs hum, Latent-Variable 09 Hrs							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation at the provide the provided of the p	Vect Grad Back Usin Prob Cons Baye Inver Inver Prob Ortho Dens Gaus Persp Prob	r Product of Fu cor Calculus and lients of Vector corpopagation and g Gradient Des oability and Distruction of a H es' Theorem, O rese Transform. Car Regression lem Formulation ogonal Projector sity Estimation ssian Mixture H pective.	inction nd C tor-V nd A scent istri istri Prob Gaus :: ion, ion. n wi Mod	ons, Orthogonal Pro U: Continuous Optimiz Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Per	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V I Component Analys spective, Projection	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen	Corve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation a Low-Rank Approximations, PCA in High Dimensions, Key Steps of PCA in Practice, Latent Varia	Vect Grad Back Usin Prob Cons Baye Inver Inver Line Prob Gaus Persp Dime Prob	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Dese oability and Distruction of a H ess' Theorem, O rse Transform. Car Regression lem Formulatt ogonal Projections sian Mixture H pective. ensionality Re lem Setting, M -Rank Approx	inction nd C tor-V nd A scent istri istri Prob Gaus :: ion, ion. n wi Mod	ons, Orthogonal Pro U: Continuous Optimiz Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Per	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I (nit –V I Component Analys spective, Projection	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen	Corve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation a Low-Rank Approximations, PCA in High Dimensions, Key Steps of PCA in Practice, Latent Varia Perspective. Perspective	Vect Grad Back Usin Prob Cons Baye Inver Inver Prob Gaus Persp Dime Prob Low Persp	r Product of Fu cor Calculus and lients of Vector propagation and g Gradient Dese pability and Distruction of a H ess' Theorem, Of rise Transform. Car Regression lem Formulat ogonal Projections sian Mixture H pective. ensionality Re lem Setting, M -Rank Approx pective.	inction nd C tor-V nd A scent istri Prob Gaus istri ion, ion, ion, ion, ion, Mod	ons, Orthogonal Pro U: Continuous Optimi: /alued Functions, utomatic Differentia t, Constrained Optimi butions: ability Space, Discr sian Distribution, O Ui Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Per tions, PCA in High	ojections, Rotations, Solution, Internet Solution: Gradients of Matriation, Linearization and Lagrangenit and Lagrangenit and Lagrangenit and Continuous Conjugacy and the Herrice and Continuous Conjugacy and the Herrice Models: The	Singular Value Dec ices, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen	Corve ylor S conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation a Low-Rank Approximations, PCA in High Dimensions, Key Steps of PCA in Practice, Latent Varia Perspective. Classification with Support Vector Machines:	Vect Grad Back Usin Prob Cons Baye Inver Prob Orthe Dens Gaus Persp Prob Cow- Persp Clas	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Des oability and Distruction of a H es' Theorem, O rse Transform. Car Regression lem Formulat ogonal Projection sity Estimation sian Mixture H pective. ensionality Re lem Setting, M -Rank Approx pective. sification with	inction nd C tor-V nd A scent istri istri Gaus Gaus Caus Caus Caus Caus Caus Caus Caus C	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Persions, PCA in High poport Vector Mach	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I <u>Init –V</u> I Component Analysis spective, Projection n Dimensions, Key mines:	Singular Value Dec aces, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen Steps of PCA in F	Conve ylor S Conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables of Wariables 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and ce, Latent Variable							
Gaussian Mixture Model, Parameter Learning via Maximum Likelihood, EM Algorithm, Latent-Varia Perspective. Unit –V 09 Hrs Dimensionality Reduction with Principal Component Analysis (PCA): Problem Setting, Maximum Variance Perspective, Projection Perspective, Eigenvector Computation a Low-Rank Approximations, PCA in High Dimensions, Key Steps of PCA in Practice, Latent Varia Perspective.	Vect Grad Back Usin Prob Cons Baye Inver Inver Prob Orthe Dens Gaus Persp Dime Prob Low- Persp Clas Sepa	r Product of Fu cor Calculus and lients of Vector appropagation and g Gradient Dese oability and Distruction of a H ese' Theorem, O rse Transform. Car Regression lem Formulate ogonal Projections sian Mixture H pective. ensionality Re lem Setting, N -Rank Approx pective. sification with arating Hyperp	inction nd C tor-V nd A scent istri istri ion, ion, ion, ion, Mod educ Aaxi imat a Suj blane	ons, Orthogonal Pro U: Continuous Optimis Valued Functions, utomatic Differentia t, Constrained Optim Un butions: ability Space, Discressian Distribution, O Un Parameter Estima th Gaussian Mixtu el, Parameter Learn U tion with Principal mum Variance Persions, PCA in High poport Vector Mach	ojections, Rotations, S nit – II zation: Gradients of Matri ation, Linearization a nization and Lagrang nit –III rete and Continuous Conjugacy and the H nit –IV tion, Bayesian Line re Models: ning via Maximum I <u>Init –V</u> I Component Analysis spective, Projection n Dimensions, Key mines:	Singular Value Dec aces, Identities for and Multivariate Tag ge Multipliers and C Probabilities, Sum Exponential Family ear Regression, M Likelihood, EM Alg sis (PCA): Perspective, Eigen Steps of PCA in F	Conve ylor S Conve Rule , Cha laxim gorith	Opsition. 07 Hrs mputing Gradients Series, Optimization ex Optimization. 08 Hrs e, Product Rule and ange of Variables of Wariables 08 Hrs hum Likelihood as hum, Latent-Variable 09 Hrs or Computation and ce, Latent Variable							

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Explore the fundamental concepts of mathematics involved in machine learning techniques.						
CO2:	Orient the basic concepts of mathematics towards machine learning approach.						
CO3:	Apply the linear algebra and probability concepts to understand the development of different						
	machine learning techniques.						
CO4:	Analyze the mathematics concepts to develop different machine learning models to solve practical						
	problems.						

Refere	Reference Books							
1	Mathematics for Machine Learning, M. P. Deisenroth, A. A. Faisal and C. S. Ong, 1st Edition,							
1	2020, Cambridge University Press.							
2	Linear Algebra and Learning from Data, Gilbert Strang, 1st Edition, 2019, Wellesley Cambridge							
4	Press, ISBN: 0692196382, 9780692196380.							
3	Introduction to Machine Learning, Ethem Alpaydin, 2 nd Edition, 2010, PHI Publication, ISBN-							
5	978-81-203-4160-9.							
4	The Elements of Statistical Learning, Trevor Hastie, Robert Tibshirani and Jerome Friedman, 2 nd							
4	Edition, 2009, Springer, ISBN: 978-0-387-84857-0, 978-0-387-84858-7.							

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

			V Semester				
			ENGINEERING ECONOMY				
		(0	ROUP B: GLOBAL ELECTIVI	E)			
		I	(Theory)		1	[
Course Code	:	18G5B18		CIE	:	100 Marks	
Course Code	:	18G5B02		SEE	:	100 Marks	
Total Hours	:	39L		SEE Duration	:	03 Hours	
Course Learnin	ng O	bjectives: Stud	lents are expected to				
1. To incul	cate	an understandi	ng of concept of money and its imp	portance in the ev	valu	ation of	
projects.							
2. Analyze	the p	present worth o	f an asset.				
3. Evaluate	the	alternatives ba	sed on the Equivalent Annual Wort	h.			
4. Illustrate	e con	cept of money	and its importance in evaluating th	e projects.			

Unit – I	07 Hrs
Introduction: Principles of Engineering Economy, Engineering Decision- Makers, Engineering	ering and
Economics, Problem solving and Decision making, Intuition and Analysis, Tactics and Strategy.	
Interest and Interest Factors: Interest rate, Simple interest, Compound interest, Cash- flow	diagrams,
Exercises and Discussion.	
Unit – II	07 Hrs
Present worth comparison : Conditions for present worth comparisons, Basic Present worth com	nparisons,
Present worth equivalence, Net Present worth, Assets with unequal lives, infinite lives, Futu	re worth
comparison, Pay – back comparison, Exercises, Discussions and problems.	
Unit – III	07 Hrs
Equivalent annual worth comparisons: Equivalent Annual Worth Comparison methods, Situ	ations for
Equivalent Annual Worth Comparison Consideration of asset life, Comparison of assets with	equal and
unequal lives, Use of sinking fund method, Exercises, Problems.	
Rate of return calculations: Rate of return, Minimum acceptable rate of return, IRR, IRR miscon	nceptions,
Problems.	
Unit – IV	06 Hrs
Replacement Analysis: Replacement studies, replacement due to deterioration, obsolescence, in	adequacy,
economic life for cyclic replacements, Exercises, Problems.	
Break- Even Analysis: Basic concepts, Linear Break- Even analysis, Exercises, Problems.	
Unit – V	06 Hrs
Depreciation: Causes of Depreciation, Basic methods of computing depreciation charges, I	Exercises,
Problems.	
Effects of inflation: Causes, consequences and control of inflation, inflation in economic analysis	8.
Course Outcomes: After going through this course the student will be able to	
CO 1: Explain the time value of money, and how to sketch the cash flow diagram	

	1
CO 2:	Compare the alternatives using different compound interest factors, Select a feasible alternative
	based on the analysis.
CO 3:	Formulate a given problem for decision making

CO 4:	Evaluate alternatives and develop capital budget for different scenarios
	Drandate anternatives and develop capital badget for anterent section

Referen	Reference Books:						
1.	Engineering Economy, Riggs J.L., 5th Edition, Tata McGraw Hill, ISBN 0-07-058670-5						
2.	Engineering Economics, R Panneerselvam, Eastern Economy Edition 2001, PHI, ISBN – 81-						
	203-1743-2.						
3.	Cost Accounting, Khan M Y, 2 nd Edition, 2000, Tata McGraw-Hill, ISBN 0070402248						
4.	Mechanical Estimating & Costing, T.R.Banga, S.C.Sharma, 16th Edition, 2011, Khanna						
	Publishers, ISBN 8174091009						

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	1	1	-	-	-	-	-	-	-	-	1
CO2	2	1	1	-	-	-	-	-	-	-	-	-
CO3	1	1	1	-	1	-	-	-	-	-	-	-
CO4	-	1	2	-	1	1	-	-	-	-	1	-

			V	'I Semester			
		INT		ANAGEMENT & ECONOMIC	S		
			,	THEORY)		1	
Co	urse Code	:	18HEM61	CIE	:	100 Marks	
Credits: L:T:P		:	3:0:0	SEE	:	100 Marks	
Total Hours		: 39L		SEE Duration	:	3.00 Hours	
Co	urse Learning ()bjø	ectives: The students w	rill be able to			
1	Understand the evolution of management thought.						
2	Acquire knowledge of the functions of Management.						
3	Gain basic knowledge of essentials of Micro economics and Macroeconomics.						
4							

Unit-I	07 Hrs
Introduction to Management: Management Functions, Roles & Skills, Management	History –
Classical Approach: Scientific Management & Administrative Theory, Quantitative	Approach:
Operations Research, Behavioral Approach: Hawthorne Studies, Contemporary Approach: S	Systems &
Contingency Theory.Case studies	
Unit – II	09 Hrs
Foundations of Planning: Types of Goals & Plans, Approaches to Setting Goals & Plans	, Strategic
Management Process, Corporate & Competitive Strategies. Case studies	-
Organizational Structure & Design: Overview of Designing Organizational Structu	ire: Work
Specialization, Departmentalization, Chain of Command, Span of Control, Central	ization &
Decentralization, Formalization, Mechanistic & Organic Structures. Case studies	
Unit –III	09 Hrs
Motivating Employees: Early Theories of Motivation: Maslow's Hierarchy of Need	s Theory,
McGregor's Theory X & Theory Y, Herzberg's Two Factor Theory, Contemporary T	heories of
Motivation: Adam's Equity & Vroom's Expectancy Theory. Case studies	
Managers as Leaders: Behavioral Theories: Ohio State & University of Michigan Studies	
Mouton's Managerial Grid, Contingency Theories of Leadership: Hersey & Blanchard's	
Leadership, Contemporary Views of Leadership: Transactional & Transformational Leadership	ship. Case
studies	-
Unit –IV	07 Hrs
Introduction to Economics: Importance of Economics, Microeconomi	cs and
Macroeconomics, Theories and Models to Understand Economic Issues, An Overview of	
Systems.Demand, Supply, and Equilibrium in Markets for Goods and Services,Price El	•
Demand and Price Elasticity of Supply, Elasticity and Pricing, Changes in Income and Prices	Affecting
Consumption Choices, Monopolistic Competition, Oligopoly.	
Unit –V	07Hrs
Essentials of Macroeconomics: Prices and inflation, Exchange rate, Gross domestic proc	luct(GDP)
,components of GDP,the Labor Market,Money and banks,Interest rate,Macroeconomic n	
overview, Growth theory, The classical model, Keynesian cross model, IS-LM-model, Th	
model, The complete Keynesian model, The neo-classical synthesis, Exchange rate determine	nation and
the Mundell-Fleming model	

Refe	Reference Books						
1	Stephen Robbins, Mary Coulter & NeharikaVohra, Management, Pearson Education						
	Publications, 10th Edition, ISBN: 978-81-317-2720-1.						
2	James Stoner, Edward Freeman & Daniel Gilbert Jr, Management, PHI, 6th Edition, ISBN: 81-						
	203-0981-2.						

3	Steven A. Greenlaw ,David Shapiro,Principles of Microeconomics,2nd Edition,ISBN:978-1-947172-34-0
4	Dwivedi.D.N, Macroeconomics: Theory and Policy,McGraw Hill Education; 3rd Edition,2010,ISBN-13: 978-0070091450.
5	Peter Jochumzen, Essentials of Macroeconomics, e-book(<u>www.bookboon.com</u>), 1st Edition., 2010, ISBN:978-87-7681-558-5.

Cours	e Outcomes: After completing the course, the students will be able to
CO1:	Explain the principles of management theory & recognize the characteristics of an organization.
CO2:	Demonstrate the importance of key performance areas in strategic management and design appropriate organizational structures and possess an ability to conceive various organizational dynamics.
CO3:	Select & Implement the right leadership practices in organizations that would enable systems orientation.
CO4:	Understand the basic concepts and principles of Micro economics and Macroeconomics.

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

50% weightage should be given to case studies. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level. **50% weightage should be given to case studies.**

	CO-PO Mapping											
CO/ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3		1			3		3	3	3	3	3
CO2	3	2						1	2	3	2	2
CO3			1			2		2	2	3	3	3
CO4	2		2			3	1	3	2	2	3	3

Semester: VI							
POWER ELECTRONICS FOR DRIVE APPLICATIONS							
(Theory and Practice)							
•	18FF62	CIE	•	100+50 Marks			
•		0112	•	100+50 Marks			
:		~==	:	3.00+3.00 Hours			
	POV : :	POWER ELECTRONIC	POWER ELECTRONICS FOR DRIVE APPLICAT (Theory and Practice) : 18EE62 CIE : 3:0:1 SEE	POWER ELECTRONICS FOR DRIVE APPLICATION (Theory and Practice) : 18EE62 CIE : 3:0:1 SEE			

Course Learning Objectives: The students will be able to

- 1 Analyse the working of power electronic components used in the design of electronic circuits of conversion of electrical energy.
- 2 Apply the strong knowledge base acquired for analyzing and designing electronic circuits that handle the electrical energy efficiently and economically.
- 3 Analyze the power electronic converters used in different power conversion applications
- 4 Make use of the opportunities to work as part of teams on multidisciplinary projects.

Unit-I	08 Hrs
INTRODUCTION TO POWER SEMICONDUCTOR DEVICES:	
Introduction to power electronics, applications of power electronics. Study of switchin	ng devices
(Construction and working) - SCR, MOSFET and IGBT. Static and dynamic charact	eristics of
SCR, MOSFET and IGBT, Turn on methods of SCR, MOSFET and IGBT. Device r	atings and
protection, Parallel operation of MOSFETs	-
Unit – II	10 Hrs
PHASE CONTROLLED CONVERTER CIRCUITS:	
Analysis and performance parameters evaluation of single phase semi converter with an	id without
freewheeling diode and full converter, with pure R, RL and highly inductive load. An	alysis and
performance parameters evaluation of three phase full converter with highly inductive lo	ad and RL
load. Analysis of single phase dual converter.	
Unit -III	09 Hrs
CHOPPERS:	
Analysis and performance evaluation of step down and step up chopper with R &	RL load.
Classification and analysis of choppers (single, two and four quadrant).	
AC-AC CONVERTERS:	
Principle and analysis of on-off control and phase control of Single phase semi and Bi-	lirectional
AC voltage controllers with R and RL load,	
Unit –IV	07 Hrs
INVERTERS:	
Voltage source and Current source inverter. Analysis and performance parameters eva	luation of
single phase VSI and three phase VSI with 180 degree and 120 degree conduction. PW	N f = = = 4 = = 1

single phase VSI and three phase VSI with 180 degree and 120 degree conduction. PWM control of inverters- single pulse width, multiple pulse-width, sinusoidal pulse width and phase-displacement control

APPLICATIONS OF POWER ELECTRONICS TO DRIVES AND POWER SUPPLY SYSTEMS:

DC drives : Control of phase controlled converter fed DC drives, Chopper fed DC drives. AC drives: Performance characteristics, stator voltage control, rotor voltage control, Frequency control,V/f speed control method for induction motor.

Principle of operation of UPS (on line and off line) and Switch Mode power Supply system.

Unit –V

INTRODUCTION OF POWER ELECTRONICS TO DRIVES LABORATORY

1	Static characteristics of SCR, MOSFET and IGBT.
2	UJT and digital firing circuit for a single phase controlled rectifier

06 Hrs

3	Performance parameter Evaluation of Single phase semi and fully controlled converter with					
	R and R-L loads (conventional & Simulation)					
4	Performance parameter Evaluation Three phase fully controlled converter using R load					
	(conventional & Simulation)					
5	Performance parameter Evaluation of Single phase bridge voltage sources inverter connected					
	to R and RL load.(conventional & Simulation)					
6	Speed control of a separately excited DC motor using a MOSFET / IGBT chopper.					
7	Speed control of single phase induction motor using single phase AC voltage controller					
8	V/f method speed control of induction motor.					

Course O	Course Outcomes: After completing the course, the students will be able to				
CO1:	Comprehend the construction and working of Power semiconductor devices				
CO2:	Analyze the basic concepts of conversion of Electrical energy				
CO3:	Evaluate the performance parameters of power electronic converters				
CO4:	Design of gate drive circuits of devices for the given specification				

Reference Books

Kelele	
1	Power Electronics, M.D. singh and K.B. Khanchandani, 2 nd Edition, 1998, TMH,, ISBN-13: 978-0-07-058389-4
2	Power Electronics, Circuit Devices and Applications M. H. Rashid, 4 th Edition, 2013 Pearson Education India, ISBN-13: 978-0133125900
3	Power Electronics, P.S. Bimbhra, 2 nd Edition.1998, Khanna Publishers, ISBN: 978-0-07-154353-8,
4	A Text Book of Power Electronics, S.N Singh, 1 st Edition, 2000, Dhanpat Rai & Co, ISBN: 978-93-86173-072,

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	1	1	3	1	2	1	3	1	1	3
CO2	3	2	1	1	3	2	1	1	2	2	1	3
CO3	3	2	2	2	3	3	2	1	3	2	2	3
CO4	3	2	2	1	3	2	1	1	1	2	2	3

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

Semester: VI							
MODERN CONTROL THEORY							
	(Theory and Practice)						
Course Code	:	18EE63		CIE	:	100+50 Marks	
Credits: L:T:P	:	3:0:1		SEE	:	100+50 Marks	
Total Hours	:	40L+33P		SEE Duration	:	3.00+3.00 Hours	

1	Represent a given system using state model by choosing appropriate state variables and obtain						
	the solution of the state equation and analyse the system						

2 Design state feedback controllers & observers including observer-based controll

3	Perform analysis of nonlinear system using phase plane method, singular points and phase
1	trajectories

4 Analyse the stability of both linear and nonlinear systems using Liapunov method

Unit-I 07 Hrs
State variable analysis: Introduction, concept of state, state variable and state model, state
modelling of linear systems.
State space representation using physical variables, phase variables, phase variable canonical forms
of state model, canonical variables diagonal/ Jordan canonical forms of state model,
Unit – II 10 Hrs
Eigen Values: Derivation of transfer function from state model. Characteristic equation, Eigen
values, Eigen vectors, generalized Eigen vectors, Similarity transformation, transformation of a state
model to diagonal/Jordan canonical form.
Solution of State Model: Solution of state equation, transition matrix and its properties, computation
using Laplace transformation, power series method, similarity transformation, Cayley-Hamilton
method
Unit -III 09 Hrs
Controllability & Observability: Concept of controllability & observability, methods of
determining the same, Relation between controllability, observability & pole zero cancellations.
Stability of Linear Systems: Lyapunov stability criteria, Lyapunov functions, direct method of
Lyapunov for the linear systems
Unit –IV 07 Hrs
Pole placement design techniques: Stability improvements by state feedback, necessary and
sufficient conditions for arbitrary pole placement, state regulator design, and design of state observer.
Unit –V 07 Hrs
Non-Liner Systems: Introduction, behaviour of non-liner system, common physical non-linearity-
saturation, friction, backlash, dead zone, relay, multivariable non-linearity. Phase plane method,
singular points, stability of nonlinear system, limit cycles, construction of phase trajectories.
Stability of Non-linear systems: Construction of Lyapunov functions for nonlinear system by
Stability of Non-linear systems: Construction of Lyapunov functions for nonlinear system by
Stability of Non-linear systems: Construction of Lyapunov functions for nonlinear system by Krasovskii's method
Stability of Non-linear systems: Construction of Lyapunov functions for nonlinear system by Krasovskii's method MODERN CONTROL THEORY LABORATORY EXPERIMENTS
Stability of Non-linear systems: Construction of Lyapunov functions for nonlinear system by Krasovskii's method MODERN CONTROL THEORY LABORATORY EXPERIMENTS 1 Time Response Characteristics of Second Order Systems
Stability of Non-linear systems: Construction of Lyapunov functions for nonlinear system by Krasovskii's method MODERN CONTROL THEORY LABORATORY EXPERIMENTS 1 Time Response Characteristics of Second Order Systems 2 Frequency Response Characteristics of Second Order Systems

- 6 Root Locus Diagram for Given Systems Using MATLAB
- 7 PID Controller for First & Second Order Systems
- 8 Verification of Cross Over Frequencies of a Given Third Order Type One System.

9	Design a of Lag Compensator for a Second Order System for given frequency			
	response specifications and verify the response using MATLAB			
10	Design a of Lead Compensator for a Second Order System for given Frequency Response			
	Specifications and Verify the Response Using MATLAB			
11	Design a PI-PD-PID controller for a given time domain specification for a System			
12	Design of State Feedback Controllers and Observer Based Controllers			

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Explain the concepts of state space, eigen value and Eigen vectors, controllability and					
	observability, pole placement, non-linear systems and Lyapunov stability.					
CO2:	Represent the systems in state space, Response of systems with and without state feedback					
	controllers and observers, Analysis of stability of linear and nonlinear systems					
CO3:	Transform state models to canonical, observable and controllable forms. Asses the need of					
	state feedback controllers and observers, Evaluate the stability of non-linear systems and					
	Liapunov stability criterion.					
CO4:	Design state feedback controllers and observers using pole placement.					

Reference Books

Kelele	IICE DOORS
1	Modern Control Engineering, Katsuhiko Ogata, 5 th Edition, 2003, PHI ISBN 81-7808-579- 8.
2	Digital control & state variable methods, M.Gopal, 2 nd edition, 2003, THM Hill ISBN: 0070483027.
3	Modern Control Systems, Richard C. Dorf, Robert H. Bishop, 12 th Edition,2010, Pearson; ISBN-13: 978-0136024583
4	Automatic control system , Benjamin C. Kuo and Farid Golnaraghi, 8th Edition, 2003, John Wiley and Sons, ISBN 0-471-13476-7.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	2	0	2	1	2	1	1	2
CO2	3	3	2	2	2	0	2	1	2	1	2	2
CO3	3	3	2	2	2	0	2	1	2	1	2	2
CO4	3	3	2	2	2	0	2	1	2	1	2	2

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

Semester: VI										
	POWER SYSTEMS ANALYSIS- I									
	(Theory)									
Course Code	:	18EE64	CIE	:	100 Marks					
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks					
Total Hours	:	40L	SEE Duration	:	3.00 Hours					

Course Learning Objectives: The students will be able to

1 Develop circuit models, single line and impedance diagrams.

2 Analyze power system under symmetrical and unsymmetrical faults.

- **3** Compute transmission loss coefficients and prepare an optimal generation schedule for economic dispatch.
- **4** Develop ALFC model and analyse the characteristics.

	Unit-I	07 Hrs
Repres	sentation of power system components: Circuit models of transmission line, synd	
	les, Transformer and load. One line diagram, impedance and reactance diagram,	
	, per unit impedance diagram of power system. Symmetrical three phase fault	
•	current and the reactances of synchronous machines. Analysis of unbalance	
	ted to balanced three-phase supply, neutral shift.	10445
••••••••	Unit – II	10 Hrs
Symm	etrical components: Resolution of unbalanced phasors into their sym	
-	nents, phase shift of symmetrical components in star-delta transformer bank,	
	of symmetrical components. Sequence impedance and sequence networks of power	
	ts (alternator, transformer and transmission line), sequence networks of power sy	
	Unit -III	09 Hrs
Unsyn	metrical faults: L-G, L-L, L-L-G faults on an alternator with and with	
	ance. Unsymmetrical faults on a power system with and without fault impedanc	
	tor faults, unbalanced operation of Induction motor.	
	Unit –IV	07 Hrs
Econ	omic Operation of Power System	
	ction, performance curves, Economic generation scheduling neglecting losses	Iterative
technic	ues; Economic Dispatch including transmission losses- approximate penalt	y factor,
iterativ	e technique for solution of economic dispatch with losses; Derivation of transmis	sion loss
formul		
	Unit –V	07 Hrs
Load l	Frequency Control:	
Model	ing of power system components like governor, generator, load etc. Complete AL	FC block
	n, load frequency analysis, AGC in single area system and two area system, Tie	
control		
Cours	e Outcomes: After completing the course, the students will be able to	
CO1:	Understand the fundamentals of power system components, faults, syn	nmetrical
	components.	
CO2:	Model and Analyse the power system components to obtain the network equival	ent under
	symmetrical and unsymmetrical faults.	
CO3:	Design a power system optimum generation schedule and monitor transient sta	bility for
-		5

CO4: Derive the load frequency control model and determine the control settings.

specified load condition.

Ref	Reference Books							
1	Power System Analysis, John Grainger and William D. Stevenson, Jr., TMH, 1994, ISBN-0-07-061293-5.							
2	Modern Power System Analysis, I.J Nagrath and D.P.Kothari, 2 nd Edition, 2004,TMH, New Delhi, 1989, ISBN 0-471-15040.							
3	Power System Analysis, Hadi Sadat, 1st Edition, 2002, TMH, ISBN: 978-0-9845438-0-9							
4	Computer Techniques and Models in Power Systems, K.Uma Rao ,1 st Edition , IK International, ISBN 978-8-1-89866402							

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	-	-	2	-	2	-	1	2	-	1
CO2	1	2	-	-	2	-	-	-	2	2	-	1
CO3	2	2	3	3	2	3	3	1	2	2	3	1
CO4	3	3	3	3	1	2	3	1	2	2	3	1

Semester: VI									
IOT AND EDGE COMPUTING									
	(Group C: Professional Elective)								
	(Common to AS, BT, CH, CV, EC, EE, EI, ET, IM, ME)								
Course Code	:	18CS6C1		CIE	:	100 Marks			
Credits: L:T:P	••	3:0:0		SEE	:	100 Marks			
Total Hours	••	39L		SEE Duration	:	3.00 Hours			

Course Learning Objectives: The students will be able to

1 Understand design principles in IoT ,edge ,fog computing and its challenges

2 Identify the Internet Connectivity and its protocols

3 Explore and implement Internet of Things (IoT) and New Computing Paradigms

4 Apply and Analyze the Orchestration and resource management in ioT, 5G, Fog, Edge, and Clouds

Unit-I	08 Hrs
Overview of IoT: Overview of Wireless Sensor Networks, Over	erview of Internet of Things, IoT
Conceptual Framework, IoT Architectural View, Technology Be	ehind IoT, Sources of IoT, M2M
Communication. Design Principles: IoT/M2M Systems Laye	ers and Design Standardization,
Communication Technologies, Data Enrichment, Data Consolida	ation and Device Management at
Gateway Examples of IoT, Ease of Designing and Affordability	_
Unit – II	08 Hrs
Design Principles for Web Connectivity: Introduction, W	Veb Communication Protocols:
Constrained Applications Protocol (CoAP), Lightweight Machine	ine-to-Machine Communication;
Message Communication Protocols: Message Queue Telemetry	Fransport (MQTT)
Unit -III	08 Hrs
Sensor Technologies for IoT Devices, Prototyping con	ncepts, Basics of Embedded
computing, Embedded platforms for prototyping, lot Connected of	levices through Cloud Designing
software for IoT, Prototyping embedded device softwa	are, Case Study& Advanced
IoTApplications:Sensors and sensor Node and interfacing usin	ng any Embedded target boards
(Raspberry Pi / ARM Cortex/ Arduino)- Block diagram, specifica	tions. Internet of Things SMART
Applications	
Unit –IV	08 Hrs
Unit –IV Internet of Things (IoT) and New Computing Paradigms Fog a	and Edge Computing Completing
Unit –IV Internet of Things (IoT) and New Computing Paradigms Fog a the Cloud, Advantages of FEC: SCALE , How FEC Achieve	and Edge Computing Completing es, These Advantages: SCANC
Unit –IV Internet of Things (IoT) and New Computing Paradigms Fog a the Cloud, Advantages of FEC: SCALE , How FEC Achiev 9,Hierarchy of Fog and Edge Computing, Business Models,	and Edge Computing Completing es, These Advantages: SCANC Addressing the Challenges in
Unit –IV Internet of Things (IoT) and New Computing Paradigms Fog a the Cloud, Advantages of FEC: SCALE , How FEC Achieve 9,Hierarchy of Fog and Edge Computing, Business Models, Federating Edge	and Edge Computing Completing es, These Advantages: SCANC Addressing the Challenges in Resources
Unit –IV Internet of Things (IoT) and New Computing Paradigms Fog a the Cloud, Advantages of FEC: SCALE , How FEC Achiev 9,Hierarchy of Fog and Edge Computing, Business Models,	and Edge Computing Completing es, These Advantages: SCANC Addressing the Challenges in Resources
Unit –IV Internet of Things (IoT) and New Computing Paradigms Fog a the Cloud, Advantages of FEC: SCALE , How FEC Achieve 9,Hierarchy of Fog and Edge Computing, Business Models, Federating Edge The Networking Challenge , The Management Challenge, Integr Unit –V	and Edge Computing Completing es, These Advantages: SCANC Addressing the Challenges in Resources rating IoT + Fog + Cloud 07 Hrs
Unit –IV Internet of Things (IoT) and New Computing Paradigms Fog a the Cloud, Advantages of FEC: SCALE , How FEC Achieve 9, Hierarchy of Fog and Edge Computing, Business Models, Federating Edge The Networking Challenge , The Management Challenge, Integr Unit –V Management and Orchestration of Network Slices in 5G, Fog	and Edge Computing Completing es, These Advantages: SCANC Addressing the Challenges in Resources rating IoT + Fog + Cloud 07 Hrs , Edge, and Clouds Introduction
Unit –IV Internet of Things (IoT) and New Computing Paradigms Fog a the Cloud, Advantages of FEC: SCALE , How FEC Achieve 9,Hierarchy of Fog and Edge Computing, Business Models, Federating Edge The Networking Challenge , The Management Challenge, Integr Unit –V	and Edge Computing Completing es, These Advantages: SCANC Addressing the Challenges in Resources rating IoT + Fog + Cloud 07 Hrs , Edge, and Clouds Introduction
Unit –IV Internet of Things (IoT) and New Computing Paradigms Fog a the Cloud, Advantages of FEC: SCALE , How FEC Achieve 9,Hierarchy of Fog and Edge Computing, Business Models, Federating Edge The Networking Challenge , The Management Challenge, Integr Unit –V Management and Orchestration of Network Slices in 5G, Fog	and Edge Computing Completing es, These Advantages: SCANC Addressing the Challenges in Resources rating IoT + Fog + Cloud 07 Hrs , Edge, and Clouds Introduction
Unit –IV Internet of Things (IoT) and New Computing Paradigms Fog a the Cloud, Advantages of FEC: SCALE , How FEC Achieve 9,Hierarchy of Fog and Edge Computing, Business Models, Federating Edge The Networking Challenge , The Management Challenge, Integr Unit –V Management and Orchestration of Network Slices in 5G, Fog ,Background, Network Slicing in 5G , Network Slicing in Sof Slicing Management in Edge and Fog	and Edge Computing Completing es, These Advantages: SCANC Addressing the Challenges in Resources rating IoT + Fog + Cloud 07 Hrs , Edge, and Clouds Introduction tware-Defined Clouds ,Network
Unit –IV Internet of Things (IoT) and New Computing Paradigms Fog a the Cloud, Advantages of FEC: SCALE , How FEC Achieve 9, Hierarchy of Fog and Edge Computing, Business Models, Federating Edge The Networking Challenge , The Management Challenge, Integr Unit –V Management and Orchestration of Network Slices in 5G, Fog , Background, Network Slicing in 5G , Network Slicing in Sof Slicing Management in Edge and Fog Course Outcomes: After completing the course, the students	and Edge Computing Completing es, These Advantages: SCANC Addressing the Challenges in Resources rating IoT + Fog + Cloud 07 Hrs , Edge, and Clouds Introduction tware-Defined Clouds ,Network will be able to
Unit –IV Internet of Things (IoT) and New Computing Paradigms Fog a the Cloud, Advantages of FEC: SCALE , How FEC Achieve 9,Hierarchy of Fog and Edge Computing, Business Models, Federating Edge The Networking Challenge , The Management Challenge, Integr Unit –V Management and Orchestration of Network Slices in 5G, Fog , Background, Network Slicing in 5G , Network Slicing in Sof Slicing Management in Edge and Fog Course Outcomes: After completing the course, the students CO1: Understand and Explore Internet of Things (IoT) with Network	and Edge Computing Completing es, These Advantages: SCANC Addressing the Challenges in Resources rating IoT + Fog + Cloud 07 Hrs , Edge, and Clouds Introduction tware-Defined Clouds ,Network will be able to
Unit –IV Internet of Things (IoT) and New Computing Paradigms Fog a the Cloud, Advantages of FEC: SCALE , How FEC Achieve 9,Hierarchy of Fog and Edge Computing, Business Models, Federating Edge The Networking Challenge , The Management Challenge, Integr Unit –V Management and Orchestration of Network Slices in 5G, Fog Background, Network Slicing in 5G , Network Slicing in Sof Slicing Management in Edge and Fog Course Outcomes: After completing the course, the students C01: Understand and Explore Internet of Things (IoT) with Network	and Edge Computing Completing es, These Advantages: SCANC Addressing the Challenges in Resources rating IoT + Fog + Cloud 07 Hrs , Edge, and Clouds Introduction tware-Defined Clouds ,Network will be able to ew Computing Paradigms like
Unit –IV Internet of Things (IoT) and New Computing Paradigms Fog a the Cloud, Advantages of FEC: SCALE , How FEC Achieve 9,Hierarchy of Fog and Edge Computing, Business Models, Federating Edge The Networking Challenge , The Management Challenge, Integr Unit –V Management and Orchestration of Network Slices in 5G, Fog ,Background, Network Slicing in 5G , Network Slicing in Sof Slicing Management in Edge and Fog Course Outcomes: After completing the course, the students CO1: Understand and Explore Internet of Things (IoT) with Network	and Edge Computing Completing es, These Advantages: SCANC Addressing the Challenges in Resources rating IoT + Fog + Cloud 07 Hrs , Edge, and Clouds Introduction tware-Defined Clouds ,Network will be able to ew Computing Paradigms like

CO3: Apply optimal technology to implement Internet of Things and edge computing applications
 CO4: Design Web Connectivity in IoT and Orchestration of Network Slices in 5G, Fog, Edge, and Cloud

Ref	erence Books							
1	Internet of Things: Architecture and Design Principles, Raj Kamal, 1st Edition, 2017, TMH							
1	Publications, ISBN: 9789352605224.							
2	Fog and Edge Computing: Principles and Paradigms, Rajkumar Buyya, 1 st Edition,							
4	2019, Wiley series on parallel and distributed computing, ISBN: 978-1-119-52498-4.							
3	Internet of Things (A Hands-on-Approach), Vijay Madisetti and Arshdeep Bahga, 1 st							
3	Edition, 2014, VPT, ISBN: 978-0996025515.							
	Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M							
4	Communications, Daniel Minoli, 1st Edition, 2013, Willy Publications, ISBN: 978-1-118-							
	47347-4,							

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	1	2	-	1	-	-	-	-	2
CO2	2	2	2	2	2	1	2	1	1	1	2	2
CO3	3	3	3	3	3	2	2	1	1	1	2	3
CO4	3	3	3	3	3	2	2	1	1	1	2	3

Semester: VI										
OBJECT ORIENTED PROGRAMMING WITH C++										
	(Group C :Professional Elective)									
		10000	CIE		100 10 1					
Course Code	:	18EE6C2	CIE	:	100 Marks					
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks					
Total Hours	:	40L	SEE Duration	:	3.00 Hours					

1	Understand ways of using objects in software development process.

- 2 Appreciate the differences between classes and objects.
- **3** Understanding properties of objects in detail.
- 4 Applying the properties of objects to Electrical Engineering problems

Unit-I	07 Hrs
Introduction : Overview of C++, Sample C++ program, Different data types, operators, ex	pressions,
and statements, arrays and strings, pointers & user defined types Function Components,	argument
passing, inline functions, function overloading, recursive functions.	C
Classes & Objects I: Class Specification, Class Objects, Scope resolution operator	or, Access
members, Defining member functions, Data hiding,	
Unit – II	10 Hrs
Classes & Objects II : Constructors, Destructors, Parameterized constructors, Static data	members.
Friend functions, Passing objects as arguments, Returning objects, Arrays of objects,	Dynamic
objects, Pointers to objects, Copy constructors, Generic functions and classes, Applications	s Operator
overloading using friend functions such as +, -, pre-increment, post-increment, [], overlo	ading <<,
>>.	-
Unit -III	10 Hrs
Inheritance : Base Class, Inheritance and protected members, protected base class inher	itance,
inheriting multiple base classes. Inheritance II: Constructors, Destructors and Inheritance	Passing
parameters to base class constructors, Granting access, Virtual base classes,	-
Pointer ,Virtual function and Polymorphism:	
Pointers, Pointers to object, this pointer, Pointers to derived classes, Virtual function, Pure	Virtual
functions	
	07 Hrs
The C++ I/O System Basics: Old Vs. Modern C++ I/O, Streams, Stream Classes, I	
I/O,Unformatted I/O operations .Creating Manipulators, Managing output with manipulator	ors.
File Handling:	• , 1
Classes for File stream operation, Opening and Closing a File, File modes, File p	
manipulators .updating file .error handling during file operation .Command line a	
Unformatted Binary I/O, get(), Getline() functions, Detecting EOF ignore() peak() putback	() flush(),
Random Access. Namespaces, Conversion Functions Namespaces, The std Namespace.	0.6 11
	06 Hrs
Templates : Introduction ,class templates, class templates with multiple parameters, func	
templates, function templates with multiple parameters. Overloading of template function	.member
function template function. Introduction to standard template library.	
Exception Handling:	oning of
Introduction, Exception handling mechanism, Throw and catching mechanism, Rethr	owing an
exception, specifying an exception.	
Course Outcomes After completing the course the students will be able to	
Course Outcomes: After completing the course, the students will be able to	
CO1: To code solutions in C++	

CO1:	To code solutions in C++
CO2:	Differentiate between procedural, languages and object oriented language.
CO3:	Apply properties of objects to solve problems in Electrical Engineering domain.
CO4:	code the logic of problems in c++ and building software applications

Re	ference Books
1	Object oriented programming ion C++, Rober Laffore, 3 rd Edition, 2003, Galgotia Publications, .ISBN-10: 0672323087;
2	C++ Premier, Stanley B Lippman, 3 rd Edition, 2007, Addison Wesley, ISBN-10: 0321714113
3	C++ Programming Language, Bjarne Stroustruo, , Addison Wesley, 3 rd Edition, 2004 ISBN- 10: 0201543303
4	Object oriented programming in C++, E.Balagurusamy, 3 rd Edition , 2007, Tata Macgraw – Hill Company, ISBN 0-07-049492 –4

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	-	1	-	1	1	-	1	1	1
CO2	2	1	2	1	1	1	-	1	1	2	-	2
CO3	1	1	1	2	2	-	-	1	1	2	-	2
CO4	2	2	3	2	2	1	2	2	2	3	2	1

Semester: VI										
ARM MICROCONTROLLER AND EMBEDDED SYSTEMS										
(Group C :Professional Elective)										
Course Code	:	18EE6C3	CIE	:	100 Marks					
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks					
Total Hours	:	40L	SEE Duration	:	3.00 Hours					
Total Hours	:	40L	SEE Duration	:	3.00 Hou					

Cour	Course Learning Objectives: The students will be able to						
1	Provide the student with the basic understanding of ARM and embedded systems design.						
2	Learn the addressing modes, instructions of ARM, assembler directives and develop the ALP						
	to solve problems.						
3	Develop embedded C programs for microcontrollers and run on the simulator, target board						
	and various interfaced hardware devices.						
4	Use Microcontroller peripheral programming and embedded onboard and external serial						
	protocols to design required embedded systems.						

Unit-I	07 Hrs						
Introduction to Embedded Systems and ARM Processor/Controller							
Introduction, Microprocessor Versus Microcontroller, Definition, Desirable Features & General							
Characteristics of embedded systems, Embedded Systems Vs General Computing Systems, Model							
of an Embedded System, Classification of Embedded Systems. History of the ARM Proce	ssor, The						
ARM Core, The ARM Microcontroller, RISC vs CISC, The Features of ARM Processo	rs, ARM						
Architecture : ISA, Operating Modes, Register Set, Mode Switching, Conditional Flags.							
Programming the ARM processor, ARM Assembly Language: Data Types, Data Alignmeter	nent, and						
Assembly Language Rules							
Unit – II	10 Hrs						
ARM Instruction Set & Assembly Language Programming							
ARM Instruction Set : Data Processing Instructions, Shift and Rotate, Conditional E							
Arithmetic Instructions, Logical Instructions, Compare Instructions, Multiplication,	Division,						
Branch Instructions, Load and Store Instructions.							
Assembly Language Program Development: Assembler Directives , Subroutines/Program Development: Assembler Development: Assembler Development: Assembler Development: Assembler Development: Assembler ,							
	Assembly Language Programs for data transfer, expression evaluation, addition, average						
computation, searching and sorting.							
Unit -III	10 Hrs						
Interfacing and Application Development Using ARM Microcontroller							
Introduction, Block Diagram of MCB 2140 compatible board, Features of the LPC 214X	•						
Internal Block Diagram of LPC 2148, Memory, Memory Map, System Functions, and Intern	al Buses.						
LPC 2148 GPIO and External I/O interfacing Using GPIO Pins.							
Interfacing and Programming (using embedded C) with LEDs, Switches, Seven segment							
LCD, Matrix Keypad, I2C based DAC, Stepper motor, DC Motor, Relay, Opto-isolators	s. Analog						
Interfacing using ADC Channels, interfacing with LDR and Temperature sensor.							
Unit –IV	07 Hrs						
Serial Protocols and Embedded System design using ARM-LPC2148	~						
The Timer Unit, Programming Timers and writing Delay programs, Vectored Interrupt C							
and programming Timers with Interrupts, The Pulse Width Modulation Unit and Programmi							
PWM Channels, UART – Registers, Baud rate calculation, RS-232 interface to PC, Prog	ramming						
Serial Port.							
	06 Hrs						
RTOS and IDE for Embedded System Design:	DOGU						
Operating System basics, Types of operating systems, Task, process and threads (Only Thread with an anamala magnetic Decemption Task scheduling to							
Threads with an example program), Thread preemption, Preemptive Task scheduling ter							
Task Communication, Task synchronization issues – Racing and Deadlock, Concept of B	•						
counting semaphores (Mutex example without any program), How to choose an RTOS, In	negration						
and testing of Embedded hardware and firmware.							

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	CO1: Acquire the knowledge of ARM Architecture and embedded systems.							
CO2:	Develop programs for micro controller based applications in Assembly and Embedded C							
CO3:	Design skills to interfacing different Input / Output devices to ARM.							
CO4:	Explain the need of real time operating system for embedded system applications.							

Reference Books

1	Embedded Systems - An integrated approach, Lyla B. Das, 1st Edition, 2013, Pearson
1	Education, ISBN- 978-81-317-8766-3.
2	ARM system developers guide, Andrew N Sloss, Dominic Symes and Chris Wright, 1st
2	Edition, 2004, Elsevier, Morgan Kaufman publishers, ISBN-1558608745,9781558608740.
2	Embedded Systems, Architecture, Programming and Design, Raj Kamal, 2 nd Edition-
3	Reprint 2011, Tata McGraw-Hill, ISBN-978-0-07-066764-8.
4	Introduction to Embedded Systems, Shibu K V, 2 nd Edition, Tata McGraw Hill Education
4	Private Limited, ISBN-10: 0070678790;

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	3	2	3	1	1	-	3	2	2	2
CO2	3	2	3	2	3	-	-	-	3	2	2	2
CO3	2	2	3	2	3	1	1	-	3	2	2	2
CO4	2	2	3	2	3	1	1	-	3	2	2	2

Semester: VI											
	HIGH VOLTAGE ENGINEERING										
	(Group C :Professional Elective)										
Course Code	:	18EE6C4	CIE	:	100 Marks						
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks						
Total Hours	:	40L	SEE Duration	:	3.00 Hours						
Total Hours	:	4VL	SEE Duration	:	3.00 Hours						

Cour	Course Learning Objectives: The students will be able to						
1	Understand high voltage fundamentals and bring out its relevance to power engineering						
2	Analyse practical techniques to generate and measure high-voltages (DC, AC, inputs) in the						
	laboratories.						
3	Know the breakdown mechanism of gaseous, liquid and solid dielectrics and Design and test						
	High Voltage power apparatus						
4	Obtain in-depth knowledge on characteristics and behavior of dielectrics.						

07 Hrs

Generation of HV AC & HV DC:

HVAC - HV transformer; Cascade connection of transformers units. Resonant circuit -Principle of operation and advantages. Tesla coil. HVDC - Voltage double circuit. Cockcroft-Walton type high voltage DC set. Calculation of Voltage regulation, Ripple and Optimum number of stages for minimum voltage drop.

Generation of Impulse Voltages and Currents:

Introduction to standard Lightning and Switching impulse voltages. Single stage and Multistage impulse generator, Rating of impulse generator, Components of multistage impulse generator. Triggering of impulse generator, Trigatron gap and oscillograph time sweep circuits. Generation of switching impulse voltage. Generation of high impulse current. IEC standards.

Unit – II	10 Hrs
Measurement of High Voltages:	
Electrostatic voltmeter - Principle, construction and limitations. Chubb and Fortes cue me	thod for
HV AC measurement. Generating voltmeter -Principle and construction. Series resistant	ce micro
ammeter for HVDC measurement. Standard sphere gap for measurement of HVAC, HV	'DC and
impulse voltages; Factors affecting the measurements. Potential dividers - Resistance, Cap	oacitance
and Mixed RC potential divider. Surge Current Measurement: Klydanograph and magne	tic links.
Unit -III	10 Hrs
Breakdown Phenomena:	
Gaseous dielectrics: Primary and secondary ionization processes. Townsend's crit	eria for
breakdown. Limitations of the theory. Streamer's theory of breakdown. Space charge	effects.
Cathode processes. Corona discharges. Breakdown in electro-negative gases. Pasche	n's law.
Formative and statistical time lags.	
Breakdown in Solid Dielectrics: Intrinsic, avalanche, thermal & electromechanical modes	
Breakdown of Liquid Dielectrics: Suspended particle theory, electronic breakdown, and o	cavity
and electro-convection breakdown.	
Unit –IV	07 Hrs

Dielectric Measurements:

Parallel and series equivalent circuits. Concept of relaxation & complex dielectric constant. Schering bridge. Earthing and shielding. Wagner's device. Measurement of insulation resistance. Working and use of a megger. Tracking and treeing principles.

Partial Discharges:

Physical basis of partial discharges. Effects of PD. Methods of detection. Straight and balanced methods. Factors affecting the discharge detection.

Over-Voltage Phenomena:

Nature of lightning. Lightning protection schemes. Working principle of lightning arrester.

Unit –V	06 Hrs

High Voltage Insulation.

Insulation Co-Ordination: Classification of overvoltage's and insulations for insulation co-ordination – Characteristics of protective devices, applications, location of arresters – insulation co-ordination in AIS and GIS

Insulation NDT techniques. Dry and wet ac testing. Tests on bushings, transformers, switchgear, cables, capacitors and suspension insulators

Electric Field Based Insulation Design:

Field pattern in homogenous & multiple dielectrics. Concept of equipotential and field lines. Need for stress equalization. Stress control using stress rings, corona shields &screens. Earthing and its importance. Introduction to FDM and FEM

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Understand the practical techniques to generate and measure high-voltages (DC, AC,					
	impulse)					
CO2:	Analyze high voltage testing techniques of Power apparatus and causes of over voltage in					
	Power Systems					
CO3:	Clarify the concepts used for the measurement of high voltages and currents and design					
	corresponding circuits.					
CO4:	Designing the test generator circuits for ac, dc and impulse voltages and currents.					

Reference Books

Kelele	IICE DOOKS
1	High Voltage Engineering Fundamentals, E. Kuffel and W.S. Zaengl, 2 nd Edition 2005, Elsevier, ISBN 9780750636346, 9780080508092.
2	High Voltage Engineering, M.S.Naidu and V Kamaraju, 4th Edition, 2007, TMH, ISBN 0-07-462286-2
3	High Voltage Engineering, C.L.Wadhwa,- New Age Intnl. 4th Edition, 2007, Pvt. Ltd., ISBN : 978-81-224-2152-1
4	EHV AC Transmission Engineering, R.D.Begamudre, 3rd Edition, 1987, Wiley Eastern, ISBN 10: 8122426182

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	-	1	-	1	1	-	1	1	1
CO2	2	1	2	1	1	1	-	2	1	2	-	2
CO3	1	1	1	2	2	-	-	1	1	2	-	1
CO4	2	2	3	2	2	1	2	2	2	3	2	1

Semester: VI									
	VLSI CIRCUIT AND DESIGN								
	(Group C :Professional Elective)								
Course Code	:	18EE6C5	CIE	:	100 Marks				
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks				
Total Hours	:	40L	SEE Duration	:	3.00 Hours				

 Understand the basic principle of MOS transistor and its scaling strategies. Describe combinational logic circuits to design different arithmetic building blocks 	Course Learning Objectives: The students will be able to						
2 Describe combinational logic circuits to design different arithmetic building blocks							
2 Describe combinational logic circuits to design different artifilitetic bundling blocks	•						
3 Learn and compare sequential logic circuits to realize memory architectures and its	control.						
4 Analyze design strategies to develop an application specific integrated circuit.							

Unit-I	07 Hrs
VLSI Design Flow : Specification, Design entry, Functional simulation, planning placem and routing, timing simulation.	nent

MOS Transistor Principle: NMOS and PMOS transistors, Process parameters for MOS and CMOS, Electrical properties of CMOS circuits and device modeling, Scaling principles and fundamental limits, CMOS inverter scaling, propagation delays, Stick diagram, Layout diagrams.

Unit – II10 HrsCMOS Processing Technology: CMOS Technologies, Wafer Formation, photolithography, Well
and Channel Formation, Silicon Dioxide (SiO2), Isolation, Gate Oxide, Gate and Source/Drain
Formations, Contacts and Metallization, Passivation, Methodology, Lambda Design Rules.Designing Combinational Lagis Cinemitas Combinational Lagis Design
Formational Lagis Cinemitas Combinational Lagis Design
Formational Lagis Cinemitas Combinational Lagis Design

Designing Combinational Logic Circuits: Combinational Logic Design, Elmore's constant, Pass transistor Logic, Transmission gates, static and dynamic CMOS design, Power dissipation – Low power design principles.

*To Realize CMOS logic gates using Cadence Software

10 Hrs

Designing Sequential Logic Circuits: Static and Dynamic Latches and Registers, Timing issues, pipelines, clock strategies, Memory architecture and memory control circuits, Low power memory circuits, Synchronous and Asynchronous design.

* To Realize Sequential logic circuit using Cadence Software

Unit –IV	07 Hrs
Designing Arithmetic Building Blocks: Data path circuits, Architectures for ripple carry	y adders,
carry look ahead adders, High speed adders, accumulators, Multipliers, dividers, Barrel	shifters,
speed and area tradeoff.	
Unit –V	06 Hrs
Implementation Strategies ASIC: Full system and Sami system design. Standard call de	aion and

Implementation Strategies – ASIC: Full custom and Semi-custom design, Standard cell design and cell libraries, FPGA building block architectures, FPGA interconnect routing procedures.

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand the basic principle of MOS transistor and its scaling strategies to analyse the							
	impact of fabrication technologies in terms of area, speed, and power.							
CO2:	Analyse combinational logic circuits to design arithmetic building blocks.							
CO3:	Analyse sequential logic circuits to realize memory architectures and its control.							
CO4:	Implement different design strategies to develop an application specific integrated circuit.							

Refere	Reference Books						
1	Digital Integrated Circuits: A Design Perspective, Jan Rabaey, Anantha Chandrakasan,						
	B.Nikolic, Second Edition, 2003, Prentice Hall of India, ISBN-13: 978-0130909961						
2	Application Specific Integrated Circuits, M.J. Smith, 2 nd Edition, 1997, Addisson Wesley,						
4	ISBN -10: 2101500221						
2	CMOS VLSI Design, Neil H.E. Waste, David Harris, Ayan Banerjee, 3rd Edition, 2006,						
3	Pearson Education, ISBN: 0321149017						
4	CMOS Digital Integrated Circuits, Sung MO Kang, Youssef Leblebici, 3rd Edition, 2003,						
4	Tata McGrawHill, ISBN: 0-7923-7246-8						

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	1	1	1	1	2	1	1	1
CO2	2	2	2	3	3	1	1	1	2	1	1	1
CO3	3	3	1	2	2	1	1	1	2	2	1	1
CO4	3	3	3	3	1	1	1	1	2	1	1	1

			Semester: VI		
		MAC	HINE LEARNING		
		(Group D	:Professional Elective)		
	((Common to AS,B'	Γ,CH,CV,EC,EE,EI,ET,IM,ME)		
Course Code	:	18CS6D1	CIE	:	100 Marks
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks
Total Hours	:	39L	SEE Duration	n :	3.00 Hours

Cou	Course Learning Objectives: The students will be able to						
1	Understand the concepts of supervised and unsupervised learning.						
2	Analyze models such as support vector machines, kernel SVM, naive Bayes, decision tree classifier, random forest classifier, logistic regression, K-means clustering and more in Python						
3	Implement and work with state-of-art tools in machine learning						

Unit-I	06 Hrs
Introduction to Machine Learning: Introduction, What is Human Learning?, Types o	
Learning, What is Machine Learning? Types of Machine Learning - Supervised	
Unsupervised learning, Reinforcement learning, Comparison - supervised, unsupervi	sed, and
reinforcement learning, Problems Not To Be Solved Using Machine Learning, Applic	ations of
Machine Learning, State-of-The-Art Languages/Tools In Machine Learning, Issues in	Machine
Learning.	
Preparing to Model: Introduction, Machine Learning Activities, Basic Types of Data in	
Learning, Exploring Structure of Data, Data Quality and Remediation, Data Pre-Processing	
Unit – II	10 Hrs
Modelling and Evaluation: Introduction, Selecting a Model, Training a Model (for Su	
Learning), Model Representation and Interpretability, Evaluating Performance of a	-
Supervised learning - classification, Supervised learning - regression, Unsupervised le	earning –
clustering, Improving Performance of a Model.	
Basics of Feature Engineering, Introduction, Feature Transformation, Feature construction	
Feature extraction, Feature Subset Selection, Issues in high-dimensional data, Key drivers	
selection – feature relevance and redundancy, Measures of feature relevance and red	undancy,
Overall feature selection process, Feature Selection Approaches. Unit -III	10 Hrs
Bayesian Concept Learning: Introduction, Why Bayesian Methods are Important?, Bayes'	
Bayes' Theorem and Concept Learning, Brute-force Bayesian algorithm, Concept of c	
learners, Bayes optimal classifier, Naïve Bayes classifier, Applications of Naïve Bayes of	
Handling Continuous Numeric Features in Naïve Bayes Classifier, Bayesian Belief	Network,
Independence and conditional independence, Use of the Bayesian Belief network in	machine
learning	
Unit –IV	07 Hrs
Supervised Learning : Classification Introduction, Example of Supervised Learning, Class	sification
Model, Classification Learning Steps, Common Classification Algorithms, k-Nearest N	leighbour
(kNN), Decision tree, Random forest model, Support vector machines.	

Super vised Learning : Regression, Introduction, Example of Regression, Common Regression Algorithms, Simple linear regression, Multiple linear regression, Assumptions in Regression Analysis, Main Problems in Regression Analysis, Improving Accuracy of the Linear Regression Model, Polynomial Regression Model, Logistic Regression, Maximum Likelihood Estimation

Unit –V	06 Hrs
Unsupervised Learning, Introduction, Unsupervised vs Supervised Learning, Application	tion of
Unsupervised Learning, Clustering, Clustering as a machine learning task, Different ty	ypes of
clustering techniques, Partitioning methods, K-Medoids: a representative object-based tec	hnique,
Hierarchical clustering, Density-based methods - DBSCAN, Finding Pattern using Asso	ociation
Rule, Definition of common terms, Association rule, The apriori algorithm for association	on rule
learning, Build the apriori principle rules.	

Course	e Outcomes: After completing the course, the students will be able to								
CO1:	Explore and apply the fundamentals of machine learning techniques.								
CO2:	Understand different techniques of data pre processing.								
CO3:	Analyze the strength and weakness of different machine learning models to solve real world problems.								
CO4:	Implement and apply different supervised and unsupervised machine learning algorithms.								
Refere	nce Books								
1	Machine Learning, Amit Kumar Das, Saikat Dutt, Subramanian Chandramouli, Pearson Education India, April 2018 ISBN: 9789389588132.								
2	Introduction to Machine Learning, Ethem Alpaydin, 2 nd Edition, 2010, PHI Publication, ISBN-978-81-203-4160-9.								

3	Practical data science with R, Zumel, N., & Mount, J. 1 st Edition, 2014, Manning Publications, ISBN 9781617291562
	Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence
4	Algorithms, Nikhil Buduma, 1 st Edition, 2016, O'Reilly Publications, ISBN-13: 978-

1491925614.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	2	2	-	-	-	1	1	1	2
CO2	3	3	3	3	3	2	1	1	1	1	1	2
CO3	3	3	3	3	3	1	1	2	3	1	1	3
CO4	3	3	3	3	3	3	1	2	2	1	1	3

Semester: VI						
	ELECTRIC VEHICLES					
		(Group D	:Professional Elective)			
Course Code	:	18EE6D2	CIE	:	100 Marks	
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks	
Total Hours	:	40L	SEE Duration	:	3.00 Hours	

Course Learning Objectives: The students will be able to

1	Understand the basics of electric and hybrid electric vehicles, their architecture and
	modelling.
2	Explain different energy storage technologies used for electric vehicles and their
	management system.
3	Describe various electric drives and its integration with Power electronic circuits suitable for
	electric vehicles.
4	Design and analyze the requirement for model based EVs and need for the charging
	infrastructure.

Unit-I	07 Hrs
Introduction: Sustainable Transportation, A Brief History of HEVs, Architectures of	f HEVs,
Challenges and Key Technology of HEVs.	
Hybridization of the Automobile: Vehicle Basics, Basics of the EV, HEV, Plug-in Hybrid	l Electric
Vehicle (PHEV) and Fuel Cell Vehicles (FCVs).	
Electric Vehicle Modelling: Tractive Effort, Modelling Vehicle Acceleration, Modelling	Electric
Vehicle Range.	
Unit – II	10 Hrs
Batteries: Battery Terminologies: Battery Capacity, Discharge Rate, State of Charge,	State of
Discharge, Depth of Discharge, Cell Discharge Operation, Cell Charge Operation; Le	ead-Acid
Battery, Li-Ion Battery, Li-Polymer Battery, Zinc-Air Battery, Technical Characteristics, P	roblems.
Alternative Energy Sources: Fuel Cells, Fuel Cell Characteristics, Fuel Cell Types	s, Super
Capacitors and Ultra Capacitor, Flywheels.	
Unit -III	10 Hrs
Battery Management System: BMS Definition, Li-Ion Cells, Li-Ion BMSs, Li-Ion Batteri	es, BMS
Options: Functionality, CCCV Chargers, Regulators, Balancers, Protectors, Func	tionality
Comparison, Technology, Topology.	
BMS Functions: Measurement: Voltage, Temperature, Current, Management: Protection,	
Thermal Management, Balancing, Distributed Charging, Evaluation, External Communica Dedicated analog and digital wires.	ition:
Unit –IV	07 Hrs
Electric Drivetrain: Overview of Electric Machines, classification of electric machines	
automobile drivetrains, modelling of electric machines, Power Electronics, controlling	
machines, electric machine and power electronics integration Constraints.	encenne
Unit –V	06 Hrs
Electricity Supply and Infrastructure: Domestic and Industrial Electricity Supply, Infra	
Needed for charging Electric Vehicles, Electricity Supply Rails, Inductive Power Trai	
Moving Vehicles, Battery Swapping.	
Model Based System Design for Electric Vehicle Conversion:	
EV conversion prototyping development, EV conversion ECU design and in-loop testing	g, tuning
and diagnostics.	- 0
Course Outcomes: After completing the course, the students will be able to	

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Explain the basics of electric and hybrid electric vehicles, their architecture, technologies						
	and modelling.						
CO2:	Discuss and implement different energy storage technologies used for electric vehicles						
	and their management system.						

CO3:	Analyze various electric drives and its integration techniques with Power electronic									
	circuits suitable for electric vehicles.									
CO4:	Analyse the requirement for model based EV designs and its infrastructure needs.									
Refere	ference Books									
	Electric Vehicle Technology Explained James Larminie John Lowry 2nd Edition									

1	Electric Vehicle Technology Explained, James Larminie, John Lowry, 2 nd Edition,
1	2012, Wiley Publisher, ISBN:9781119942733.
2	Electric & Hybrid Vehicles –Design Fundamentals, Iqbal Hussain, 2 nd Edition, 2011, CRC
2	Press, ISBN 0-8493-1466-6
2	Battery Management system for large Lithium Battery Packs, Davide Andrea, ARTECH
5	HOUSE 2010, ISBN-13 978-1-60807-104-3
4	Hybrid Vehicles From Components to System, F. BADIN, Editions Technip, 2013, IFP
4	Energies Nouvellers Publication, Paris, ISBN 978-2-7108-0994-4.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	3	2	2	2	2	3	-	2	-	-	1	
CO2	3	3	3	3	3	3	3	-	2	2	1	-	
CO3	2	3	3	3	3	2	3	-	2	1	1	-	
CO4	3	3	3	3	3	2	3	2	2	-	1	-	

Semester: VI									
PROGRAMMABLE LOGIC CONTROLLER AND SUPERVISORY CONTROL & DATA									
	ACQUISITION								
		(PI	C AND SCADA)						
		(Professio	onal Elective: Grou	(p D)					
Course Code	:	18EE6D3		CIE	:	100 Marks			
Credits: L:T:P	Credits: L:T:P : 3:0:0 SEE : 100 Marks								
Total Hours	:	40L		SEE Duration	:	3.00 Hours			

Cour	Course Learning Objectives: The students will be able to							
1	1 Recognize industrial control problems and access suitability of using PLC for control							
2	Understand PLC architecture including timers, counters, sequencers and Programme PLC's							
	using ladder logic							
3	Compare different communication protocol in SCADA systems and integrate with PLC							
4	The ability to select the essential elements and practices needed to develop and implement							
	the Engineering Automation using PLC approach							

Programmable Logic Controllers An Overview:

Programmable Logic Controllers, Parts of a PLC, Principles of Operation, Modifying the Operation, PLCs versus Computers, PLC Size and Application.

Unit-I

PLC Hardware Components:

The I/O Section, Discrete, Analog and Special I/O Modules, Typical Discrete and Analog I/O Module Specifications, The Central Processing Unit(CPU), Memory Design, Memory Types, Programming Terminal Devices, Recording and Retrieving Data, Human Machine Interfaces (HMIs).

Fundamentals of Logic:

Hardwired Logic versus Programmed Logic, Realization of Boolean expressions using Ladder Logic, Programming Word Level Logic Instructions,

Unit – II

Basics of PLC Programming:

Processor Memory Organization, Program Files, Data Files, Program Scan, PLC Programming Languages, Relay-Type Instructions, Instruction Addressing, Branch Instructions, Internal Relay Instructions, Programming Examine If Closed and Examine If Open Instructions, Entering the Ladder Diagram, Modes of Operation.

Developing Fundamental PLC Wiring Diagrams and Ladder Logic Programs :

Electromagnetic Control Relays, Contactors, Motor Starters, Manually Operated Switches, Mechanically Operated Switches, Output Control Devices, Seal-In Circuits, Latching Relays, Converting Relay Schematics into PLC, Ladder Programs, Writing a Ladder Logic Program.

Unit -III	10 Hrs
Timers:	
Mashania 1 Timing Dalam Times Instructions On Dalam Times Instruction Off Dala	

Mechanical Timing Relays, Timer Instructions, On-Delay Timer Instruction, Off-Delay Timer Instruction, Retentive Timer, Cascading Timers.

Counters:

Counter Instructions, Up-Counter, One-Shot Instruction, Down-Counter, Cascading Counters, Incremental Encoder-Counter, Applications, Combining Counter and Timer Functions

Program Control Instructions:

Master Control Reset Instruction, Jump Instruction, Subroutine Functions, Immediate Input and Immediate Output Instructions, Forcing External I/O Addresses, Safety Circuitry, Selectable Timed Interrupt, Fault Routine, Temporary End Instruction, Suspend instruction

07 Hrs

10 Hrs

	Unit –IV	07 Hrs						
Data M	Ianipulation Instructions:	0/1115						
	Anipulation, Data Transfer Operations, Data Compare Instructions, Data Mani	ipulation						
	ms Closed-Loop Control, Math Instructions, Addition Instruction, Subtraction Ins	•						
	lication Instruction Division Instruction.	· · · · · · ,						
Sensor								
Proxim	ity sensors Inductive, capacitive sensors, Photoelectric Sensors and Switches, E	incoders,						
Temper	rature sensors, position and displacement sensors, pressure sensors.							
Output	t Control Devices: Solenoid valve, Relay, Motor control							
	Unit –V	06 Hrs						
SCAD	A System:							
	A System Evolution, SCADA Definition, SCADA System Architecture,							
. .	ations, Redundancy as a Component of SCADA Security, SCADA System D	Desirable						
Propert								
	A Systems and its application:							
	yment of SCADA Systems for various applications. The Basic Refining Process,							
Power	Generation, The Pressurized Water Reactor, Conventional Electric Power Generation	on						
	A Protocols:							
	ion of SCADA Protocols, Overview of the OSI Model, TCP/IP Model. MODBUS							
DNP3 I	Protocol, UCA 2.0 and IEC61850 Standards, Controller Area Network, Ethernet/IP, I	Profibus.						
Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Comprehend the basic concepts of PLC and SCADA systems							
CO2:	Assess the control needs of a process industry and evaluate various options of usin	ng PLC						
	or SCADA							
CO3:	Design and program the PLC to meet a specified control objective							

CO4: Build a complete control system through integration of sensor with PLC and SCADA

Reference Books

Ittiti	chee books
1	Programmable Logic Controllers, Frank D. Petruzella, 4th Edition, 2010, McGraw-Hill
	Education, ISBN 13: 9780073510880
2	Securing SCADA System, Ronald L. Krutz, 3rd Edition, 2010, Wiley Pearson education
2	Publications, <i>JSBN</i> 81-7808-505-4
	Programmable Logic Controllers: Programming Methods and Applications, John R.
3	Hackworth and Frederick D. Hackworth, Jr., 1st Edition, 2003, Pearson/Prentice Hall, ISBN-
	9780130607188.
4	Programmable Logic Controllers, W.Bolton, 4th Edition, 2006, Elsevier Publisher, ISBN-
4	13: 978-0-7506-8112-4

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	1	1	1	-	1	1	1	1	3
CO2	3	3	3	1	3	1	-	1	3	3	1	3
CO3	3	3	3	3	3	3	1	3	3	1	3	3
CO4	3	1	3	3	3	3	3	3	3	3	3	3

Semester: VI									
ELECTRICAL AND ELECTRONIC MEASURING INSTRUMENTS (Professional Elective: Group D)									
				_					
Course Code	:	18EE6D4	CIE	:	100 Marks				
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks				
Total Hours	Total Hours : 40L SEE Duration : 3.00 Hours								
Course Learning	Course Learning Objectives: The students will be able to								

Cour	se Learning Objectives. The students will be able to
1	Understand the errors encountered in measuring instruments
2	To analyze the working of analog and digital measuring instruments, and determine the
	necessary conditions for working of instrument transformers.
3	To implement the working principles of signal generators used in the laboratories.
4	To distinguish and describe various transducers and display devices used in instrumentation.

Unit-I	07 Hrs
Introduction to measuring Instruments:	
Measurement systems and characteristics, classification of instruments as Analog and	Digital
meters, principles of Analog and Digital meters, Errors in Measurement and their Analysis.	
Measuring Instruments (AC and DC):	
Introduction, ammeter, voltmeter, wattmeter (dynamometers type), energy's meter (in	nduction
type).Multi-range voltmeter, extending voltmeter range. AC voltmeter using Rectifiers – H	
and full wave, Peak responding and True RMS voltmeters, ammeters.	
Unit – II	10 Hrs
Digital Instruments:	
Introduction, Electronic counter, Visual Readout systems, Gate generator, Logic circuits,	A/D and
D/A converters, Universal counter, Modes of Operation of Universal counter, Digital Vo	oltmeter,
Digital Multi Meter, Digital LCR meter, Digital Energy meter-Introduction, Functions and	Errors
Unit -III	10 Hrs
Introduction, Kelvins Double Bridge, Wheatstones Bridge, A.C.Bridges of Class1-Maxwells Desauty's Bridge-Grover's modification of Desauty's Bridge, Grover's series inductance Schering bridge, Wein Bridge, Bruckmann's modification of schering bridge, universal im bridge Instrument Transformers: Construction and theory of instrument transformers, ratio and phase angle errors of C.T. a including derivation and Numerical problems.	e bridge, pedance and P.T.
Unit –IV	07 Hrs
 Signal Generators and Analyzers: Introduction, Fixed and variable AF oscillator, Standard signal generator, Laboratory typ generator, AF sine and Square wave generator, Function generator, Square and Pulse ge Analog and Digital storage oscilloscope. Display Devices: Digital display system, classification of display, Display devices, LEDs, LCD 	
Unit –V	06 Hrs
Sensors :Different Types of Sensors- Temperature Sensors, Proximity Sensor, Acceleron	
Sensor (Infrared Sensor), Pressure Sensor, Light Sensor, Ultrasonic Sensor, Smoke, Alcohol Sensor-Principle of working and limitations	
Transducers: Introduction, Electrical transducers, Selecting a transducer, Resistive tra	
Resistive position transducer, Strain gauges, Resistance thermometer, Thermistor, In	
transducer, Differential output transducers and LVDT, capacitive transducer, Phot	
transducer, Photovoltaic transducer, Temperature transducers-RTD, Thermocouple, Piezo	electric
transducer.	

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	CO1: Define the different measuring network parameters and understand the measuring					
	techniques in analog and digital systems.					
CO2: Analyze the different methods of implementation in the working of measuring instrument						
	and compare the end results.					
CO3:	Asses the performance of different measuring instruments.					
CO4:	Plan and design various measuring instruments for their innovation.					

Reference Books

Kelele	IICE DOOKS
1	Electronic Instrumentation and Measurements , David A Bell, 2 nd Edition, 2006, PHI,, ISBN 10: 0132499541
2	Modern electronic instrumentation and measuring techniques, Cooper D & A D Helfrick, 1998, PHI, ISBN-8120307526
3	Electronics & electrical measurements, A K Sawhney, 9th edition, 2010, Dhanpat Rai & sons, ISBN-10: 8177001000
4	Electronic Instrumentation, H. S. Kalsi, 2 nd Edition, 2004, TMH, ISBN-9780074621868

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
CO1	1	1	2	1	-	2	2	1	-	2	-	
CO2	2	2		2	2	3	1		1	1		2
CO3	3	1	1	3	2	2	2	3	1	1	2	1
CO4	1	2	3	3	1	2	2		3	2	2	3

Semester: VI											
FUZZY LOGIC CONTROL AND APPLICATIONS											
	(Professional Elective: Group D)										
Course Code		18EE6D5	CIE		100 Marks						
	÷			÷							
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks						
Total Hours	:	40L	SEE Duration	:	3.00 Hours						
-											

Course Learning Obje	ectives: The students will be able to
Course Learning Obje	cuves. The students will be able to

1 Gain knowledge of fundamental concepts in Fuzzy Logic and expert systems

2 Illustrate fuzzy sets and fuzzy logic as mathematical models.

- 3 Analyse and compare the performance of different fuzzy controls.
- **4** Adopt fuzzy logic based techniques for various applications.

Unit-I	07 Hrs

Introduction to Fuzzy Logic:

The case for Imprecision, Perspective; utility and limitations of fuzzy systems, fuzzy Sets and membership, Chance versus Fuzziness, Classical Sets, Operations on Classical Sets, Properties of Classical Sets, Fuzzy Sets, Fuzzy Set Operations, Properties of Fuzzy Sets, Non interactive Fuzzy Sets, Alternative Fuzzy Set Operations,

Fuzzy Relations

Fuzzy Cartesian product, Fuzzy Relations, Cardinality of Fuzzy Relations, Operations on Fuzzy Relations, Properties of Fuzzy Relations and Composition of fuzzy relation, Fuzzy Tolerance and equivalence Relations.

Unit – II					
Features of the Membership Function, Various Forms of Fuzzification Lambda-cuts f	or fuzzy				

relations, Defuzzification to Scalars.

Defuzzification methods - center of gravity, center of mass, height, center of largest area, first of maxima, middle of maxima, comparison and evaluation of defuzzification methods. Illustrative Examples.

Unit -III	10 Hrs				
Fuzzy systems : Fuzzy Control from an Industrial Perspective, Knowledge Based System for					
Process Control, Knowledge Based Controllers (KBCs), Knowledge Representation in	n KBCs.				
Fuzzy Implication, Approximate reasoning-Linguistic variables, fuzzy propositions, fuzzy i					
then-else statements, inference rules, rule of inference, representing a Set of Rules - Mamdani Vs					
Godgel, Properties of a set of rules, illustrative Examples					
	07 Um				

	nrs
Fuzzy Knowledge Base Controller (FKBC): Design Parameters, Structure of FKBC, Rule B	ase,
Data Base, Inference Engine, Choice of Fuzzification Procedure; Nonlinear Fuzzy Contr	ol -
Introduction, Control Problem, FKBC as a Nonlinear Transfer Element	

Types of FKBC- PID FKBC, sliding mode FKBC, Sugeno FKBC, Illustrative Examples.

Unit –V									
Adaptive Fuzzy	Control:	Introduction,	Design	and	Performance	Evaluation,	The	Main	
Approaches to Design.									

Fuzzy Logic Applications: in power systems, flight control, Aerospace, industrial drives and smart lighting systems-case studies

Course Outcomes: After completing the course, the students will be able to							
CO1:	Explore and Understand basic concepts of all types of fuzzy sets, fuzzy relations and						
	their operations						

CO2:	Analyse and select appropriate Fuzzification and defuzzification method in respective
	real time applications
CO3:	Design fuzzy systems, FKBC and solve complex problems using various fuzzy
	techniques.
CO4:	Apply an adaptive control as appropriate for a given typical application.

Reference Books

1	Fuzzy logic with engineering applications, Timothy J Ross, 3rd Edition, 2004, John Wiley and Sons, ISBN: 978-0-470-74376-8
2	An Introduction to Fuzzy Control, D Driankov, H Hellendoorn, M Reinfrank, 1 st Edition 1996, Narosa Publishing House Reprint, ISBN 978-81-7319-069-8.
3	Fuzzy Sets and Fuzzy Logic-Theory and Applications, George J. Klir, Bo Yuan, 1 st Edition, 2008, Prentice Hall, ISBN: 81-203-0695-3.
4	Research Papers on Fuzzy Logic applications in engineering and case studies

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	2	-	-	-	1	1	-	2
CO2	3	3	3	3	3	1	1	-	1	1	1	2
CO3	3	3	3	3	3	1	1	1	1	1	1	2
CO4	3	3	3	3	3	1	1	1	1	1	1	2

	Semester: VI						
	AIRCRAFT SYSTEMS						
			(GROI	UP E: GLOBAL ELECTIV	VE)		
				(Theory)			
Cou	rse Code	:	18G6E01	С	IE	:	100 Marks
Credits: L:T:P			3:0:0	SI	EE	••	100 Marks
Hours		:	39L	SI	EE Duration		3.00 Hours
Cou	rse Learning O	bje	ectives: To ena	ble the students to:			
1	List the variou	is s	ystems involve	d in the design of an aircraft			
2 Demonstrate the technical attributes of all the subsystems of an aircraft							
3							
4	Demonstrate t	he i	integration of the	he systems with the airplane			

Unit-I	07Hrs
Flight Control Systems: Primary and secondary flight controls, Flight control linkage	e system,
Conventional Systems, Power assisted and fully powered flight controls.	
Unit – II	10Hrs
Aircraft Hydraulic & Pneumatic Systems: Components of a typical Hydraulic system, W	orking or
hydraulic system, Power packs, Hydraulic actuators. Pneumatic system and components, Use	e of bleed
air, Landing gear and braking, Shock absorbers-Retraction mechanism.	
Unit -III	08Hrs
Aircraft Fuel Systems: Characteristics of aircraft fuel system, Fuel system and its con	mponents,
Gravity feed and pressure feed fuel systems, Fuel pumps-classification, Fuel control unit.	
Unit -IV	07Hrs
Environmental Control Systems: Air-conditioning system, vapour cycle system, de-icing	and anti-
icing system, Fire detection- warning and suppression. Crew escape aids.	
Engine Systems: Engine starting sequence, Starting and Ignition systems, Engine oils and lubricating system.	l a typical
	a typical 07Hrs
lubricating system.	07Hrs
lubricating system. Unit -V	07Hrs
lubricating system. Unit -V Aircraft Instruments : Instruments displays, panels & layouts, Instrumentation grouping, N	07Hrs Vavigation

sensing, stall warning, Mach warning, altitude alerting system.

Course Outcomes:

At the end of this course the student will be able to :

CO1:	Categorise the various systems required for designing a complete airplane
CO2:	Comprehend the complexities involved during development of flight vehicles.
CO3:	Explain the role and importance of each systems for designing a safe and efficient flight vehicle
CO4 :	Demonstrate the different integration techniques involved in the design of an air vehicle

Reference Books

	Introduction to Flight, John D. Anderson, 7 th Edition, 2011, McGraw-Hill Education, ISBN 9780071086059.
2	Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration, Moir, I. and Seabridge, A.,3 rd Edition, 2008, Wiley Publications, ISBN- 978-0470059968

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	3	2	2	-	-	-	1
CO2	2	3	3	3	1	1	1	1	-	-	-	1
CO3	2	2	3	3	1	-	-	-	-	-	-	2
CO4	3	3	3	3	1	2	1	2	-	-	-	1

Semester: VI BIO INSPIRED ENGINEERING (GROUP E: GLOBAL ELECTIVE)							
Соц	rse Code	:	18G6E02	(Theory)	CIE	:	100 Marks
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks
Tota	l Hours	:	39 L		SEE Duration	:	3.00 Hours
Cou	rse Learning ()bj	ectives: The studen	ts will be able to			
1	To familiarize	e er	igineering students	with basic biologica	l concepts		
2	Utilize the si	mil	arities noted in nat	ture for a particular	problem to bring i	nsp	iration to the
	designer.			_		_	
3	Explain appli	cat	ions such as smart	structures, self-heali	ng materials, and ro	bot	ics relative to
	their biologic	al a	inalogs		-		
4	To gain an u	nde	rstanding that the d	esign principles from	m nature can be tran	islat	ed into novel
	devices and st	truc	ctures.	_			

Unit-I	08 Hrs
Introduction to biological systems: General and Special biomolecules, Plant, an	imal and
microbial cell types, Somatic and Sensory system. Plant process - Photosynthesis. Neural	networks,
Neuron models-Signal encoding architecture, Synaptic plasticity-Supervised, unsuper	vised and
reinforcement learning, Evolution of artificial neural networks-Hybrid neural systems	with case
study Harvesting Desert Fog.	
Unit – II	08 Hrs
Introduction to Biomimetics: Introduction to micro architectural aspects. Structures and	l physical
functions of biological composites of engineering – related case study: Camera from eyes	, clothing
designs and hooks from Velcro Criteria for future materials design and processing. Con	mputation
Cellular systems: Cellular automata - modelling with cellular systems with cellular s	systems –
artificial life – analysis and synthesis of cellular systems: Nature's Water Filter.	
Unit –III	08 Hrs
Engineering of synthetic organs: Growth, development and principle of artificial skins	s, hearing
aids, artificial limbs, artificial lungs and artificial lever. Implants-working principle of pa	acemaker,
Breast Implants, Artificial Eye Lenses, Blood sugar monitoring, artificial heart. Appl	ication of
Spine Screws, Rods and Artificial Discs, Metal Screws, Pins, Plates and Rods	
Unit –IV	07 Hrs
Biosimilars: Introduction, characteristics and bioequivalence. Criteria for Bioequivalence.	uivalence,
Development of Biosimilars, Statistical Methods for Assessing Biosimilarity, I	ssues on
Immunogenicity Studies, Regulatory Requirements, Stability Analysis of Biosimilar	Products,
Challenges involved in Biosimilars.	
Unit –V	08 Hrs
Biomechatronics: Introduction to MEMS based devices, Evolution of behavioural	systems,
learning in behavioural systems – co evolution of body and control. Behaviour in cognitiv	ve science
and artificial intelligence. Biological inspiration for robots, Robots as biological mo	
robotics behaviour, Application of sleek scale of shark skin.	
Course Outcomest After completing the course the students will be able to	

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Remember and explain the concepts of biological and physiological processes						
CO2:	Elucidate the basic principles for design and development of biological systems.						
CO3:	Differentiate biological phenomena to support inspiration for visual and conceptual design problems						

CO4:	Develop technical solutions to customer needs by utilizing a variety of bio-inspiration
	techniques.

Reference Books

MUICIC	LICC DOORS
1	Yoseph Bar-Cohen. Biomimetics: Biologically Inspired Technologies D. Floreano and C. Mattiussi, "Bio-Inspired Artificial Intelligence", CRC Press, 2018. ISBN: 1420037714, 9781420037715.
	Bououdina, Mohamed. Emerging Research on Bioinspired Materials Engineering. IGI
2	
_	Global, 2016. ISBN: 1466698128, 9781466698123.
	Christopher H. M. Jenkins. Bio-Inspired Engineering. Momentum Press, 2011. ISBN:
3	1606502255, 9781606502259.
	Göran Pohl, Werner Nachtigall. Biomimetics for Architecture & Design: Nature -
4	
-	Analogies – Technology. Springer, 2019. ISBN: 3319191209, 978331919120

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks**.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover the entire unit having the same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	-	1	3	2	-	1	1	1	-
CO2	3	3	2	3	2	-	1	2	-	1	2	-
CO3	2	2	2	3	3	3	2	2	-	1	2	2
CO4	2	2	3	3	2	-	1	2	1	-	-	-

			Semester: VI			
		SUSTA	AINABLE TECHNO	DLOGY		
		(GROU	P E: GLOBAL ELE	CTIVE)		
			(Theory)			
Course Code	:	18G6E03		CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	39L		SEE Duration	:	3.00 Hours
Course Learning	; Obj	ectives: The stud	ents will be able to			
			epts related to interact	tion of industrial and e	ecolo	gical systems
		•	life cycle assessment.			
			t methodology using a		es.	
4 Use concep	ts of s	systems-based, tr	ans-disciplinary appro	bach to sustainability.		
			TT •4 T			
Introduction to a			Unit-I			08 Hrs
Introduction to s		•	pts and Life Cycle	Analysis Matarial	flor	v and west
		•	ects, Character of Env	-	110	w and wast
management, enc	mea		Unit – II	inoninentai i robieniis		07 Hrs
Environmental I)ata (Collection and L	CA Methodology:			07 111
			es, Statistical Analys	sis of Environmenta	l D	ata, Commo
			CA Methodology. – Go			,
•			Unit –III			08 Hrs
Life Cycle Assess	smen	t:				·
			cle Interpretation, LCA	A Benefits and Drawb	acks	
Wet Biomass Ga						
			ck for biogas generation			
-	•	0	ctors affecting bio-dia		1 of	biogas plants
Floating drum pla	nt and	a fixed dome plai	nt their advantages and Unit –IV	d disadvantages.		08 Hrs
Design for Susta	nahi	1:4	Unit –I v			
0		•	ental Design for Susta	inahility		
Dry Biomass Ga			chiai Design for Susta	maomry.		
v			rmal gasification of bi	iomass. Classification	of g	asifiers. Fixe
bed systems:		,	0	,	0	,
•			Unit –V			08 Hrs
Case Studies:						
	r Org	anics Treatment	Plant, Bio-methanatic	on, Bioethanol produc	tion.	Bio fuel from
water hyacinth.						
		<u> </u>	he course, the studer			
			challenges facing the	-	and	systems-base
approach	es req	uired to create su	stainable solutions fo	r society.		
CO2: Identify	oroble	ems in sustainab	ility and formulate a	ppropriate solutions	based	l on scientifi
research,	applie	ed science, social	and economic issues.			
	~ ~		stems-based, trans-dis		susta	inability
11 2		•	ns based on scientific			÷
	- upp			- research, applied s		e, social all

]	Refere	nce Books									
	1	Sustainable	Engineering	Principles	and	Practice,	Bavik	R	Bhakshi,	2019,	Cambridge
	I	University F	ress, ISBN - 9	9781108333	726.						

economic issues.

	Environmental Life Cycle Assessment, Olivier Jolliet, Myriam Saade-Sbeih, Shanna Shaked,
2	Alexandre Jolliet, Pierre Crettaz, 1st Edition, CRC Press, ISBN: 9781439887660.
2	Sustainable Engineering: Drivers, Metrics, Tools, and Applications, Krishna R. Reddy,
3	Claudio Cameselle, Jeffrey A. Adams, 2019, John Wiley & Sons, ISBN-9781119493938

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	-	-	-	-	-	1	-	1
CO4	3	3	3	3	-	-	-	-	-	1	-	1

	Semester: VI							
	GRAPH THEORY							
	(GROUP E: GLOBAL ELECTIVE)							
			(Theory)					
Course Code	:	18G6E04		CIE Marks	:	100 Marks		
Credits: L:T:P	:	3:0:0		SEE Marks	:	100 Marks		
Total Hours	:	39L		SEE Duration	:	3.00 Hours		

Cour	se Learning Objectives: The students will be able to
1	I understand the basics of smark the same and their requires a moment

Cour		ing Ob	jeen co.	Incs	luucin	9 WH						
1	Understa	and the	basics of	graph	theory	and	their	various	prope	erties.		
0	37 11	1.1	•	1	1.	1	.1	1.1	1		•	11

2

- Model problems using graphs and to solve these problems algorithmically. Apply graph theory concepts to solve real world applications like routing, TSP/traffic control, 3 etc.
- Optimize the solutions to real problems like transport problems etc., 4

UNIT-I	07 Hrs
Introduction to graph theory	
Introduction, Mathematical preliminaries, definitions and examples of graphs, degree	es and regular
graphs, sub graphs, directed graphs, in degrees and out degrees in digraphs.	C
Basic concepts in graph theory	
Paths and cycles, connectivity, homomorphism and isomorphism of graphs, connectivity	y in digraphs.
UNIT-II	09 Hrs
Graph representations, Trees, Forests	·
Adjacency matrix of a graph, Incidence matrix of a graph, Adjacency lists, Trees and	d properties of
trees, Characterization of trees, Centers of trees, Rooted trees, Binary threes, Spann	ning trees and
forests, Spanning trees of complete graphs, An application to electrical networks, I	Minimum cos
spanning trees.	
UNIT-III	09 Hrs
Fundamental properties of graphs and digraphs	•
Bipartite graphs, Eulerian graphs, Hamiltonian graphs, Hamiltonian cycles in wei	ighted graphs
Eulerian digraphs.	0 0 1
Planar graphs, Connectivity and Flows	
Embedding in surfaces, Euler's formula, Characterization of planar graphs, Kuratow	ski's theorem
Dual of a planar graphs.	
UNIT-IV	07 Hrs
Matchings and Factors	
Min-Max theorem, Independent sets and covers, Dominating sets, maximum bipartite m	atching.
Coloring of graphs	
The chromatic number of a graph, Results for general graphs, The chromatic polynom	ial of a graph
Basic properties of chromatic polynomial, chordal graphs, powers of graphs, Edge color	ing of graphs
UNIT-V	07Hrs
Graph algorithms	
Graph connectivity algorithms, Breadth first search and Depth first search, Shortest pa	ath algorithms
Dijikstra's shortest path algorithm, Minimum cost spanning tree algorithms, Algorithm	•
and Prim's.	
Course Outcomes: After completing the course, the students will be able to	
CO1. Understand and explore the basics of graph theory.	

Course	Course Outcomes: After completing the course, the students will be able to							
CO1.	Understand and explore the basics of graph theory.							
CO2.	Analyse the significance of graph theory in different engineering disciplines							
CO3.	Demonstrate algorithms used in interdisciplinary engineering domains.							
CO4.	Evaluate or synthesize any real world applications using graph theory.							

Reference	Books

1.	Introduction to graph theory, Douglas B. West, 2 nd Edition, 2001, PHI, ISBN- 9780130144003,
	ISBN-0130144002.
2.	Graph Theory, Modeling, Applications and Algorithms, Geir Agnarsson, Raymond Greenlaw,
	Pearson Education, 1 st Edition, 2008, ISBN- 978-81-317-1728-8.
3.	Introduction to Algorithms, Cormen T.H., Leiserson C. E, Rivest R.L., Stein C., 3rd Edition,
	2010, PHI, ISBN:9780262033848

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	-	-	-	-	-	-	1	1	-	-
CO2	2	3	2	1	-	-	-	-	2	2	-	1
CO3	2	2	3	2	-	-	-	-	2	2	-	1
CO4	2	2	3	2	-	1	-	-	2	2	-	1

			Semester: VI												
DISASTER MANAGEMENT (GROUP E: GLOBAL ELECTIVE) (Theory)															
									Course Code	:	18G6E05	()	CIE	•	100 Marks
									Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	39L		SEE Duration	:	3.00 Hours									
Course Learning	Ob	jectives: The stu	dents will be able to		_	1									
1 Study the env	viror	nmental impact of	of natural and manmad	e calamities											
2 Learn to anal	yze	and assess risk i	nvolved due to disaster	rs.											
		ole of public part													
4 Learn the ma	nage	ement tools and	mitigation techniques.												
			Unit-I			08 Hrs									
Natural disasters				111 .1 1											
			Hazards- floods, land												
			ients, harmful gases, B												
			tivities. Preparation of Post disaster plans. Re												
organization and a			-	ner camp organizatio	II. N	ole of voluntary									
organization and a	inte	u torees during (Unit – II			07 11									
Diale analysis and			Unit – 11			07 Hrs									
Risk analysis and			alysis. Analytical te	abriques and tools	of	rick accomment									
			k characterization. Ris												
emergency respon					. 1010	inagomoni, i ii ii									
			Unit –III			08 Hrs									
Environmental In	npa	ct Assessment (
			ciples of EIA. Regula	atory framework in I	ndia	. Environmental									
inventory. Base lin				-											
			Unit –IV			08 Hrs									
Assessment and M	Met	hodologies													
		0	es, Socio economic an	d cultural environment	ntal	assessment. EIA									
			list approaches. Econo												
EIA. Public partic	cipa	tion in environn	nental decision makin	g. Procedures for rev	iewi	ng EIA analysis									
and statement. Dec	cisic	on methods for e	valuation of alternative	es.											
			Unit –V			08 Hrs									
Disaster Mitigati	on a	nd Managemer													
e		0	management, tools an	d techniques, primary	and	l secondary data									
•			ies-Earthquake hazard			•									
			andslides-causes and			-									
			ement, Cyclones and			-									
Regional and glob	al d	isaster mitigation	n.	-		_									
Course Outcome	s: A	fter completing	g the course, the stude	ents will be able to											
			f disasters and manage		ter s	ituation.									
CO1 Estimate and computing to high by conducting the right opposement and Environmental															

CO4: Analyze and evaluated the impact of measures adopted to mitigate the impacts.

Refer	Reference Books							
1	Environmental Impact Analysis Hand Book, John G Rau and David C Wooten, Edition: 2013, ISBN: 978-0070512177.							
2	Introduction to environmental Impact assessment, John Glasson, RikiTherivel, Andrew Chadwick, Edition: 2012, Research Press, ISBN:000-0415664705.2005, Reliance Publishing House, New Delhi.							
3	Natural Disaster Reduction, Girish K Mishrta, G C Mathew (eds), Edition, 2005, Reliance Publishing House, New Delhi,							
4	Remote Sensing and Image Interpretation, Thomas M. Lillisand and R.W. Keifer, 6 th Edition, 2002, John Wiley, ISBN:9780470052457.							

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	1	1	-	-	1	1	-	-	-	-	-
CO2	-	2	1	-	-	2	1	1	-	-	-	-
CO3	-	2	1	-	-	2	1	3	-	-	-	-
CO4	-	1	1	-	-	3	2	1	-	-	-	-

			Sen	nester: VI		
			WEARABLI	E ELECTRONICS		
			(GROUP E: GI	LOBAL ELECTIVE)		
			(7)	Theory)		
Cou	rse Code	:	18G6E06	CIE	:	100 Marks
Credits: L:T:P		:	3:0:0	SEE	:	100 Marks
Tota	al Hours	:	39L	SEE Duration	:	3.00 Hours
Cou	rse Learning	Obj	ectives: The students will	be able to		
1	Explain the t	ypes	and application of wearab	le sensor.		
2	Describe the	wor	king of sensitivity, conduc	tivity and energy generation in wear	abl	e devices.
3	Explain the v	varic	us facets of wearable appli	cation, advantage & challenges.		
4	Understand of	liffe	rent testing and calibration	in wearable devices.		

Unit-I	08 Hrs
Introduction: world of wearable (WOW), Role of wearable, The Emerging Concept of	Big Data, The
Ecosystem Enabling Digital Life, Smart Mobile Communication Devices, Attributes	of Wearables,
Taxonomy for Wearables, Advancements in Wearables, Textiles and Clothing, Applications	s of Wearables.
[Ref 1: Chapter 1.1]	

Unit – II 08 Hrs Wearable Bio and Chemical Sensors: Introduction, System Design, Microneedle Technology, Sampling Gases, Types of Sensors, Challenges in Chemical Biochemical Sensing, Sensor Stability, Interface with the Body, Textile Integration, Power Requirements, Applications: Personal Health, Sports Performance, Safety and Security, Case studies. [Ref 1: Chapter 2.1]

Unit –III	07 Hrs				
Smart Textile: Conductive fibres for electronic textiles: an overview, Types of conductive fibre					
Applications of conductive fibres, Bulk conductive polymer yarn, Bulk conductive polymer ya					
Techniques for processing CPYs, Wet-spinning technique, Electrospinning technique, case	studies, Hands				
on project in wearable textile: Solar Backpack, LED Matrix wallet. [Ref 2: Chapter 1,2] &. [Ref 3: Chapter					
6,9]					
Unit –IV	08 Hrs				

	00 1115				
Energy Harvesting Systems: Introduction, Energy Harvesting from Temperature Gradient,					
Thermoelectric Generators, Dc-Dc Converter Topologies, Dc-Dc Converter Design for Ult	tra-Low Input				
Voltages, Energy Harvesting from Foot Motion, Ac-Dc Converters, Wireless Energy Trans	smission,				
Energy Harvesting from Light, Case studies. [Ref 1: Chapter 4.1]					

Unit –V	08 Hrs							
Wearable antennas for communication systems: Introduction, Background of textile antennas, Design								
rules for embroidered antennas, Integration of embroidered textile surfaces onto polymer substrates,								
Characterizations of embroidered conductive, textiles at radio frequencies, RF p	erformance of							
embroidered textile antennas, Applications of embroidered antennas. [Ref 2: Chapter 10]								

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Describe the different types and wearable sensors, textile, energy harvesting systems and antenna						
CO2:	Analysis measurable quantity and working of wearable electronic devices.						
CO3:	Determine & interpret the outcome of the wearable devices and solve the design challenges						
CO4:	Analyse and Evaluate the wearable device output parameter in real time scenario or given problem						
	statement.						

Refer	rence Books
1	Wearable Sensors: Fundamentals, Implementation and Applications, Edward Sazonov, Michael R.
l	Neuman Academic Press, 1 st Edition, 2014, ISBN-13: 978-0124186620.
2	Electronic Textiles: Smart Fabrics and Wearable Technology, Tilak Dias, Woodhead Publishing;
2	1 st Edition, ISBN-13: 978-0081002018.
2	Make It, Wear It: Wearable Electronics for Makers, Crafters, and Cosplayers, McGraw-Hill
3	Education, 1st Edition, ISBN-13: 978-1260116151.
	Flexible and Wearable Electronics for Smart Clothing: Aimed to Smart Clothing, Gang Wang,
4	Chengyi Hou, Hongzhi Wang, Wiley, 1st Edition, ISBN-13: 978-3527345342
_	Printed Batteries: Materials, Technologies and Applications, Senentxu Lanceros-Méndez, Carlos
5	Miguel Costa, Wiley, 1st Edition, ISBN-13: 978-1119287421

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	-	-	-	-	-	-		-	-
CO2	3	2	2	3	-	-	-	2	2		-	-
CO3	2	2	3	3	-	-	-	2	2		-	-
CO4	3	3	3	3	2	3	2	3	3	3	2	3

	Semester: VI									
	ENERGY AUDITING AND MANAGEMENT									
	(GROUP E: GLOBAL ELECTIVE)									
				(Theory)		_				
Co	ourse Code	:	18G6E07		CIE	:	100 Marks			
Cr	Credits: L:T:P		3:0:0		SEE		100 Marks			
To	otal Hours	:	39L		SEE Duration	:	3.00 Hours			
Co	ourse Learning	g O	bjectives: The stud	ents will be able to						
1	Understand th	ne r	eed for energy audi	t, energy manageme	nt and the concepts	of t	ooth.			
2	Explain Proce	esse	es for energy audit o	of electrical systems.						
3	3 Design and develop processes for energy audit of mechanical systems.									
4	Prepare the fo	orm	at for energy audit of	of buildings and ligh	ting systems.					

Unit-I							
Types of Energy Audit and Energy-Audit Methodology: Definition of Energy Audit,	Types of Energy Audit and Energy-Audit Methodology: Definition of Energy Audit, Place of						
Audit, Energy – Audit Methodology, Financial Analysis, Sensitivity Analysis, Project F	inancing						
Options, Energy Monitoring and Training.							
Survey Instrumentation: Electrical Measurement, Thermal Measurement, Light Measurement, Light Measurement, Light Measurement, Light Measurement, Light Measurement, Light Measurement, Measurement, Light M	urement,						
Speed Measurement, Data Logger and Data Acquisition System,							
Energy Audit of a Power Plant: Indian Power Plant Scenario, Benefit of Audit, Types of							
Power Plants, Energy Audit of Power Plant.							
Unit – II	10 Hrs						
Electrical Load Management: Electrical Passiag Electrical Load Management, Variable	•						

Electrical-Load Management: Electrical Basics, Electrical Load Management, Variable-Frequency Drives, Harmonics and its Effects, Electricity Tariff, Power Factor, Transmission and Distribution Losses.

Energy Audit of Motors: Classification of Motors, Parameters related to Motors, Efficiency of a Motor, Energy Conservation in Motors, BEE Star Rating and Labelling.

Energy Audit of Pumps, Blowers and Cooling Towers: Pumps, Fans and Blowers, Cooling Towers

Unit -III 10 Hrs
Energy Audit of Boilers: Classification of Boilers, Parts of Boiler, Efficiency of a Boiler, Role
of excess Air in Boiler Efficiency, Energy Saving Methods.
Energy Audit of Furnaces: Parts of a Furnace, classification of Furnaces, Energy saving
Measures in Furnaces, Furnace Efficiency
Energy Audit of Steam-Distribution Systems :S team as Heating Fluid, Steam Basics,
Requirement of Steam, Pressure, Piping, Losses in Steam Distribution Systems, Energy
Conservation Methods
Unit –IV 07 Hrs
Unit –IV 07 Hrs Compressed Air System: Classification of Compressors, Types of Compressors, Compressed
Compressed Air System: Classification of Compressors, Types of Compressors, Compressed
Compressed Air System : Classification of Compressors, Types of Compressors, Compressed Air – System Layout, Energy – Saving Potential in a Compressed – Air System.
Compressed Air System : Classification of Compressors, Types of Compressors, Compressed Air – System Layout, Energy – Saving Potential in a Compressed – Air System. Energy Audit of HVAC Systems: Introduction to HVAC, Components of Air – Conditioning

Unit –V06 HrsEnergy Audit of Lighting Systems: Fundamentals of Lighting, Different Lighting Systems,
Ballasts, Fixtures (Luminaries), Reflectors, Lenses and Louvres, Lighting Control Systems,
Lighting System Audit, Energy Saving Opportunities.06 Hrs

Energy Audit Applied to Buildings: Energy – Saving Measures in New Buildings, Water Audit, Method of Audit, General Energy – Savings Tips Applicable to New as well as Existing Buildings.

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Explain the need for energy audit, prepare a flow for audit and identify the instruments							
	needed.							
CO2:	Design and perform the energy audit process for electrical systems.							
CO3:	Design and perform the energy audit process for mechanical systems							
CO4 :	Propose energy management scheme for a building							

Reference Books

INCIG	LICHCE DOORS
1	Handbook of energy audit, Sonal Desai, Kindle Edition, 2015, McGraw Hill Education, ISBN: 9339221346, 9789339221348
2	Energy management handbook, Wayne C Turner and Steve Doty, 6 th Edition, 2015, CRC Press, ISBN: 0-88173-542-6
3	Energy management, Sanjeev Singh and Umesh Rathore, 1 st Edition, 2016, Katson Books, ISBN 10: 9350141019, ISBN 13: 9789350141014
4	Energy audit of building systems, Moncef Krarti, 2 nd Edition, 2010, CRC Press ISBN: 9781439828717

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO										PO10	PO11	PO12
CO1	2	2	2	2	1	2	3	2	1	1	1	2
CO2	3	3	2	2	2	2	3	2	1	1	2	2
CO3	3	3	2	2	2	2	3	2	1	1	2	2
CO4	3	3	2	2	2	2	3	3	1	1	2	2

				Semester: VI						
	VIRTUAL INSTRUMENTATION & APPLICATIONS									
	(GROUP E: GLOBAL ELECTIVE)									
		1	ſ	(Theory)						
	rse Code	:	18G6E08		CIE	:	100 Marks			
	dits: L:T:P	:	3:0:0		SEE	:	100 Marks			
	al Hours	:	39L		SEE Duration	:	3.00 Hours			
		<u> </u>	v	e students will be able to						
1				e between conventional and graph	ical programmin	g				
2				and virtual instrument.	6.1.4	•••	• • • • • •			
3	Analyzing LabVIEW	the	e dasies of dat	a acquisition and learning the conc	epts of data acqu	151t	tion with			
4		ר <u>א</u> ד	real time annl	cation using myRIO and myDAQ	programming co	nce	ents			
-	Developing	<u>,</u> u	icar time appi	ication using mytero and myDrig	programming ee					
				Unit-I			07 Hrs			
Basi	c of Virtual	Inst	rumentation,	Introduction to Lab VIEW, Comp	onents of LabVI	EW	V and Labels.,			
Cont	troller, Indic	cato	rs data type	s, wiring tool, debugging tools	, Creating Sub-	Vis	s, Boolean, -			
Mec	hanical actio	n- s	witch, and la	ch actions, Enum, Text, Ring, Typ	e Def, Strict Typ	e E	Def.			
				Unit – II			09 Hrs			
For	Loop, While	Lo	op , Shift reg	sters, stack shift register, feedbac	k node, and tunn	el,	elapsed time,			
				mula node, Sequence structures, L			^			
				Unit –III			09 Hrs			
Arra	ys and cluste	ers,	Visual displa	y types- graphs, charts, XY graph,	Introduction to	Stri				
	-		-	cal examples, File Formats, File I/C			-			
	0		, ,1	Unit –IV	, ,	1	07 Hrs			
Desi	gn Pattern-	Pro	oducer-Consu	mer Model, Event Structure Mo	odel, Master-Sla	ve	Model, State			
	•			n using Semaphore, Introduction to						
		-		ssistants, Analysis Assistants, I	· •					
			-	ured it as Virtual labs, Counters, L						
)	<u> </u>	Unit –V			07 Hrs			
Sign	al Processing	y A	pplication- Fo	purier transforms, Power spectrum,	Correlation met	hoc				
-				on using myRIO, Communication			-			
	e			re myRIO for speed control of D	·					
			•	and onboard sensors. Develop	•		• •			
~ ~	isition and p			and onboard sensors. Develop.	ment of control		, stem, mage			
acqu	instruori and p		coome							

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Remember and understand the fundamentals of Virtual Instrumentation and data Acquisition.							
CO2:	Apply the theoretical concepts to realize practical systems.							
CO3:	Analyze and evaluate the performance of Virtual Instrumentation Systems.							
CO4 :	Create a VI system to solve real time problems using data acquisition.							

	Reference Books									
	1	Jovitha Jerome, Virtual instrumentation Using LabVIEW,4th Edition, 2010, PHI Learning								
1	I	Pvt.Ltd , ISBN: 978-8120340305								

2	Sanjay Gupta & Joseph John, Virtual Instrumentation Using LabVIEW, 2 nd Edition, 2017, Tata McGraw Hill Publisher Ltd, ISBN : 978-0070700284
2	Tata McGraw Hill Publisher Ltd, ISBN : 978-0070700284
2	Lisa. K. Wills, LabVIEW for Everyone, 2 nd Edition, 2008, Prentice Hall of India, , ISBN :
3	978-013185672
	Garry Johnson, Richard Jennings, LabVIEW Graphical Programming, , 4thEdition , 2017,
4	McGraw Hill Professional, ISBN: 978-1259005336

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks are executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	-	-	-	-	-	1	1	-	1
CO2	1	3	2	1	2	-	-	-	1	1	-	1
CO3	2	2	3	3	3	-	-	-	1	1	-	2
CO4	1	2	2	3	3	1	0	2	3	2	1	2

	Semester: VI								
	SYSTEMS ENGINEERING								
			(GROUP I	E: GLOBAL ELECT	IVE)				
				(Theory)		1	1		
Cou	rse Code	:	18G6E09	CI	E	:	100 Marks		
Crec	lits: L:T:P	:	3:0:0	SE	E	:	100 Marks		
Total Hours		:	39 L	SE	SEE Duration		3.00 Hours		
Cou	rse Learning (Obje	ectives:						
1.	Understand th	he L	ife Cycle of System	IS.					
2.	Explain the re	ole	of Stake holders and	their needs in organiz	ational system	ıs.			
3.	Develop and	Doc	cument the knowled	ge base for effective s	ystems engine	ering	g processes.		
4.									
5.	Create the fra	me	works for quality pro	ocesses to ensure high	reliability of s	syste	ems.		

UNIT-I	06 Hrs
System Engineering and the World of Modem System: What is System Engineering?, Or	rigins of
System Engineering, Examples of Systems Requiring Systems Engineering, System Eng	ineering
viewpoint, Systems Engineering as a Profession, The power of Systems Engineering, problem	s.
Structure of Complex Systems: System building blocks and interfaces, Hierarchy of C	Complex
systems, System building blocks, The system environment, Interfaces and Interactions.	
The System Development Process: Systems Engineering through the system Life Cycle, Evol	utionary
Characteristics of the description of the sector of the sector of the sector of the description of the sector of t	

Characteristics of the development process, The system engineering method, Testing throughout system development, problems.

UNIT – II10 HrsSystems Engineering Management: Managing systems development and risks, Work breakdownstructure (WBS), System Engineering Management Plan (SEMP), Risk Management, Organization ofSystems Engineering, Systems Engineering Capability Maturity Assessment, Systems Engineeringstandards, Problem.

Needs Analysis: Originating a new system, Operations analysis, Functional analysis, Feasibility analysis, Feasibility definition, Needs validation, System operational requirements, problems.

Concept Exploration: Developing the system requirements, Operational requirements analysis, Performance requirements formulation, Implementation concept exploration, Performance requirements validation, problems.

UNIT – III10 HrsConcept Definition: Selecting the system concept, Performance requirements analysis, Functional
analysis and formulation, Concept selection, Concept validation, System Development planning,
System Functional Specifications, problems10 Hrs

Advanced Development: Reducing program risks, Requirements analysis, Functional Analysis and Design, Prototype development, Development testing, Risk reduction, problems.

UNIT – IV	07 Hrs
Engineering Design: Implementing the System Building blocks, requirements analysis, Fu	nctional
analysis and design, Component design, Design validation, Configuration Management, proble	ems.
Integration and Evaluation: Integrating, Testing and evaluating the total system, Test plan	ning and
preparation, System integration, Developmental system testing, Operational test and eva	aluation,
problems.	
LINIT – V	06 Hrs

Production: Systems Engineering in the factory, Engineering for production, Transition from development to production, Production operations, Acquiring a production knowledge base, problems.

Operations and support: Installing, maintenance and upgrading the system, Installation and test, Inservice support, Major system upgrades: Modernization, Operational factors in system development, problems.

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand the Life Cycle of Systems.							
CO2:	Explain the role of Stake holders and their needs in organizational systems.							
CO3:	Develop and Document the knowledge base for effective systems engineering processes.							
CO4:	Apply available tools, methods and technologies to support complex high technology systems.							
CO5:	Create the frameworks for quality processes to ensure high reliability of systems.							

Reference Books:

-	
1.	Systems Engineering – Principles and Practice, Alexander Kossoaikoff, William N Sweet, 2012,
	John Wiley & Sons, Inc, ISBN: 978-81-265-2453-2
2.	Handbook of Systems Engineering and Management, Andrew P. Sage, William B. Rouse, 1999,
	John Wiley & Sons, Inc., ISBN 0-471-15405-9
3.	General System Theory: Foundation, Development, Applications, Ludwig von Bertalanffy, 1973,
	Penguin University Books, ISBN: 0140600043, 9780140600049.
4.	Systems Engineering and Analysis, Blanchard, B., and Fabrycky, W., 5th edition, 2010, Prentice
	Hall, Saddle River, NJ, USA

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	1	-	-	-	-	-	1
CO2	-	2	3	-	1	-	-	1	-	-	2	-
CO3	-	3	-	-	-	2	2	1	-	3	2	-
CO4	-	-	2	1	-	-	-	-	-	-	-	-
CO5	1	1	-	2	-	1	2	-	3	-	-	-

			S	emester: VI			
	I	NTI	RODUCTION TO MOBI	LE APPLICATION I	DEVELOPMEN	JT	
			(GROUP E: C	GLOBAL ELECTIV	'E)		
		_		(Theory)			<u></u>
	e Code	:	18G6E10		CIE	:	100 Marks
	ts: L:T:P	:	3:0:0		SEE	:	100 Marks
Total]		:	39L		SEE Duration	:	3.00 Hours
			ctives: The students will b		1 1		
1	-		e knowledge on essentials		<u>^</u>		
2			e basic and advanced featu				
3	-		lls in designing and buildi		÷ .		rm.
4		-	nd publish innovative mot			•	
5	Comprehen	d th	e knowledge on essentials	of android application	development.		
			T	•			00.11
TA	1 4*		Un	it-I			08 H
	luction:		. 1 . 1	1° (° T (1		1 т	/ 11° A 1
		-	systems and smart phone				-
	-		oid app project, deploying			JIL	Jesign: Building
•			, Layouts, Views and Reso		•	• • • •	Intende Tredit
			The Activity Lifecycle,		-		
-		ng s	upport libraries, The And	droid Studio Debugger	, Testing androi	ld a	ipp, The Andro
Suppo	rt Library.		T T •/				
I. ann a			Unit	; – II			08 H
	experience:	T	anut Controlo Monuo Co	man Naviation Dear	lan Wiener Deliel		1
			nput Controls, Menus, Sch		-		-
	-		Themes, Material Design,	Providing Resources in	or Adaptive Lay	outs	s, resulig app (
Tesun	g the User Inte	eria		TTT			00 11
Work	ing in the bac	lzar	Unit	-111			08 H
	0	0	vncTask and Async Task	Loader Connect to th	a Internet Bree	daa	st Docoivors
-			heduling and optimizing				
	Ferring Data E	-	v , v	background tasks - Iv	otifications, Sen	Cut	ning Alarins, a
1141151			Unit	IV			08 H
All ah	out data:			- I V			00 11
		ting	s, Storing Data, Shared Pro	eferences Ann Setting	s Storing data us	sinc	sol ite - SOL
		-	e. Sharing data with conten		-	-	
			s and Debugging, Displayi		-		os and Fragmer
-		-	ogramming: Internet, E	÷ •	-	-	
			web pages and maps, con				
		-	d services, Sensors.	municating with SND		aun	
301 1100	lo - Location (Jase		t V			07 H
			Uni	t - V			1 U/ H
Hardy	vare Sunnort	8					0711
	ware Support			curity Firebase and A	dMob Publish	and	

Form Factors, Using Google Services.

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Comprehend the basic features of android platform and the application development process.
	Acquire familiarity with basic building blocks of Android application and its architecture.
CO2:	Apply and explore the basic framework, usage of SDK to build Android applications incorporating
	Android features in developing mobile applications.
CO3:	Demonstrate proficiency in coding on a mobile programming platform using advanced Android
	technologies, handle security issues, rich graphics interfaces, using debugging and troubleshooting
	tools.
CO4:	Create innovative applications, understand the economics and features of the app marketplace by
	offering the applications for download.

Refere	ence Books
1	Android Programming, Phillips, Stewart, Hardy and Marsicano, Big Nerd Ranch Guide, 2 nd Edition,
1	2015, ISBN-13 978-0134171494
2	Android Studio Development Essentials - Android 6, Neil Smyth, 2015, Createspace Independent
2	Publishing Platform, ISBN: 9781519722089
3	Android Programming – Pushing the limits, Eric Hellman, 2013, Wiley, ISBN-13: 978-1118717370
4	Professional Android 2 Application Development, Reto Meier, Wiley India Pvt.Ltd 1st Edition,
4	2012, ISBN-13: 9788126525898
=	Beginning Android 3, Mark Murphy, Apress Springer India Pvt Ltd, 1st Edition, 2011, ISBN-13:
5	978-1-4302-3297-1
(Android Developer Training - https://developers.google.com/training/android/
6	Android Testing Support Library - https://google.github.io/android-testing-support-library/

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	3	-	-	-	-	-	-	2
CO2	3	-	-	-	3	-	-	-	-	-	1	2
CO3	-	3	3	-	3	-	1	-	-	2	1	3
CO4	3	3	3	1	3	2	1	2	2	1	1	3

	Semester: VI						
	INDUSTRIAL AUTOMATION						
	(GROUP E: GLOBAL ELECTIVE) (THOERY)						
Cour	se Code	:	18G6E11	CIE	:	100 Marks	
Cred	its: L:T:P	:	3:0:0	SEE	:	100 Marks	
Total Hours : 39 L SEE Duration :		:	3.00 Hours				
Cou	rse Learning (Dbj	ectives: The students will	be able to			
1	Identify the v	ario	ous types of Actuators, ser	nsors and switching devices us	sed in	n industrial	
	automation.						
2	Understand	the	fundamentals of CNC, PL	C and Industrial robots.			
3	Describe the	fun	ctions of hardware compo	nents for automation			
4	Prepare simp	le n	anual part programs for C	CNC and Ladder logic for PLO	С.		
5	Demonstrate	the	ability to develop suitable	e industrial automation system	is usi	ng all the concepts	

Unit-I	06 Hrs
Overview of Automation in Industry	
Basic kinds of Industrial type equipment, automation and process control, mechanization vs au	tomation.
continuous and discrete control, basic elements of an automated system, advanced automation	functions,
levels of automation, basic automation circuits.	
Unit-II	10 Hrs
Sensors and Industrial Switching elements.	
Sensor terminology, Classification of sensors and transducers, Limit switch, Temperature s	ensors,
Light sensors, position sensors, inductive and capacitive proximity sensors, optical encoders,	Relays,
Solenoids, moving part logic elements, fluidic elements, timers, comparisons between sw	vitching
elements.	
Industrial Automation Synthesis	
Introductory principles, basic automation examples, meaning of the electrical and mechanical	latch,
automation circuits with sensors, design regulations and implementation.	
Unit-III	10 Hrs
Logical Design of Automation Circuits	
Postulates and theorems of Boolean algebra, Classical state diagrams, state diagrams with sens	ors, step
by step transition due to discrete successive signal, state diagram with time relays, compone	nts state
diagram method, state diagrams and minimum realisations, sequential automation s	systems,
Applications - Bi directional lead screw movable worktable with two speeds, Palindromic mo	ovement
of a worktable with memory.	
Elements of electro pneumatic actuation	
Basic elements of pneumatic system, pneumatic cylinders, Symbolic representations of pneum	atic and
electrical switching devices, Indirect control of double acting cylinders, memory control	circuit,
cascading design, automatic return motion, quick exhaust valve circuit, and cyclic operat	ion of a
cylinder, pressure sequence valve and time delay valve circuits. Automatic return motion, Se	parating
similar balls, Stamping device.	
Unit-IV	06 Hrs
Numerical Control and Robotics	·
Numerical control, components of CNC, classification, coordinate systems, motion control str	ategies,
	-

Numerical control, components of CNC, classification, coordinate systems, motion control strategies, interpolation, NC words, Simple part programming for turning, milling and drilling. Components of the robot, base types, grippers, Configurations and simple programming using VAL.

Unit-V	07 Hrs

Programmable logic control systems

Internal structure, principles of operation, latching, ladder diagrams, programming instructions, types of timers, forms of counters, writing simple ladder diagrams from narrative description and Boolean logic. Programming exercises on motor control in two directions, traffic control, cyclic movement of cylinder, conveyor belt control, alarm system, sequential process, and continuous filling operation on a conveyor.

Course	Outcomes: After completing the course, the students will be able to
CO1:	Recall and Illustrate the application of sensors actuators, switching elements and inspection
	technologies in industrial automation.
CO2:	Build the circuit diagrams for fluid power automation, Ladder diagrams for PLC and
	identify its application areas.
CO3:	Evaluate CNC part programs for 2D complex profiles, perform machining and turning
	centres interfaced with Robots.
CO4:	Develop a suitable industrial automated system integrating all of the above advanced
	automation concepts

Referen	ce Books
1.	Stamatios Manesis, George Nikolakopoulos, 'Introduction to Industrial Automation', CRC Press, 2018, ISBN - 978-1-4987-0540-0
	TTESS, 2010, ISBN - 978-1-4987-0540-0
2.	David W. Pessen, 'Industrial automation; Circuit design and components', Wiley India, 1st
	Edition, 2011, ISBN -13-978-8126529889.
3.	Joji P, 'Pneumatic Controls', Wiley India, 1st Edition, ISBN – 978–81–265–1542–4.
4.	Petruzella, Frank D, Programmable logic controllers, McGraw-Hill, 4th Edition, 2013, ISBN-
	13: 978-0-07-351088-0

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30 (Q) + 50 (T) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	2	2	-	3	1	-	-	-	1	-	1
CO2	2	2	3	2	2	-	-	-	1	2	-	1
CO3	2	2	3	3	2	-	-	-	-	2	-	-
CO4	3	3	3	2	2	-	-	-	-	2	-	1

				Semester: VI		
				ETWORK SYSTEM AND STANDA ROUP E: GLOBAL ELECTIVE) (Theory)	RDS	
Cou	rse Code	:	18G6E12	CIE	:	100 Marks
Crec	lits: L:T:P	:	3:0:0	SEE	:	100 Marks
Hrs/	Week	:	40L	SEE Duration	:	3.00 Hrs
Cou	rse Learning	; Ol	ojectives: The	students will be able to	·	
1	Understand the perform		•	ciples of cellular communication and	factors that	t might degrade
2	Describe the	e se	cond-Generati	on pan-European digital mobile cellula	communi	cation standards.
3	Analyze the	30	G cellular techr	ologies including GPRS and UMTS.		
4	Compare th	e ez	kisting and fut	are trends in Wireless technologies.		

Unit-I	07 Hrs
Principle of Cellular Communication: Cellular Terminology, Cell Structure and Cluster, F	requency
Reuse Concept, Cluster size and System Capacity, Method of Locating Co-channel cells, F	requency
Reuse distance, Co-channel Interference and Signal Quality, Co-channel interference F	eduction
Methods.	
Unit – II	08 Hrs
Basic Cellular system: Consideration of components of a cellular system- A basic cellular	r system
connected to PSTN, Main parts of a basic cellular system, Operation of a Cellular	system,
Performance criteria- Voice quality, Trunking and Grade of Service, Spectral Efficiency of	f FDMA
and TDMA systems.	
Unit –III	09 Hrs
Second generation Cellular Technology: GSM: GSM Network Architecture, Identifiers	s used in
GSM System, GSM channels, Authentication and Security in GSM, GSM Call Procedu	re, GSM
Hand-off Procedures.	
IS-95: Forward Link, Reverse Link, Soft-handover in IS-95.	
Unit –IV	08 Hrs
3G Digital Cellular Technology: GPRS: GPRS technology, GPRS Network Architectur	e, GPRS
signalling, Mobility Management in GPRS.	
UMTS: UMTS Network Architecture, UMTS Interfaces, UMTS Air Interface Specification	s, UMTS
Channels.	
Unit –V	08 Hrs
Wireless Personal Area Networks: Network architecture, components, Bluetooth,	Zigbee,
Applications. Wireless Local Area networks: Network Architecture, Standards, Application	
rippileutons, i in cless Locul in cu networks, i termore cleare, standards, i ippileuton	s.

architecture, Protocol stack.

Course	e Outcomes: After completing the course, the students will be able to
CO1	Describe the concepts and terminologies for Cellular Communication.
CO2	Analyze the Architecture, Hand-off and Security aspects in 2G and 3G Networks.
CO3	Compare the performance features of 2G and 3G Cellular Technologies.
CO4	Analyze and Compare the architectures of various Wireless technologies and standards.

Reference Books

Keitt	
1	Wireless Communications, T.L. Singal, 2 nd Reprint 2011, Tata McGraw Hill Education
1	Private Limited, ISBN: 978-0-07-068178-1.
2	Wireless and Mobile Networks Concepts and Protocols, Dr.Sunil Kumar S Manvi, 2010,
2	Willey India Pvt. Ltd., ISBN: 978-81-265-2069-5.
3	Wireless Communication, Upena Dalal, 1 st Edition, 2009, Oxford higher Education,
5	ISBN-13:978-0-19-806066-6.
4	Wireless Communications Principles and practice, Theodore S Rappaport, 2 nd Edition,
4	Pearson, ISBN 97881-317-3186-4.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-I	PO Map	ping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	-	2	-	-	-		-	-	
CO2	3	2	3	-	2	-	-	-	2	-	-	
CO3	3	3	-	2	2	-	-	-	2	-	-	3
CO4	3	2	2	-	2	-	-	-	2	-	-	3

				Semester: VI			
	r	ΓH		EVICE FABRICAT		GY	7
			(GROU)	P E: GLOBAL ELE	CTIVE)		
C	<u> </u>	1	19C/(E12	(Theory)	CHE	1	100 10
	rse Code	:	18G6E13		CIE	:	100 Marks
	lits: L:T:P	:	3:0:0		SEE	:	
	l Hours	:	39L		SEE Duration	:	3.00 Hours
-	<u> </u>		ctives: The students				
1			ing of vacuum and r		C (1) C'1 1		
2	-	_	-	nd characterization o		ostri	uctures
3	U 11 1		<u> </u>	for desired application			
4	Fabricate and	Eva	aluate thin film nand	devices for advanced	d applications		
				Unit-I			08 Hrs
Vacu	um Technolog	gy:					
Intro	duction (KTG,	cla	ssification of Vacu	um), Gas transport a	nd pumping, Q-rate	e ca	lculation, Basics of
Vacu	um - Principles	s of	different vacuum pu	umps: Rotary, Roots,	Diffusion, Turbo mo	olec	ular, and Cryogenic
	-		-	pump (TSP); differe			• •
				and Penning gauges.	I I G , H		
cone	ept of cupuoli			Unit – II			08 Hrs
Subs	strate Surfaces	&]	Thin Film Nucleation				00 1115
Aton	nic view of sub	stra	te surfaces, Thermo	odynamic aspects of	nucleation, Kinetic	pro	cesses in nucleation
				tion and growth (Brie		•	
Defe	cts in Thin Fil	ms:					

0-D (point defects), 1-D (line defects), 2&3-D (grain boundaries, stacking faults, crystal twins, voids and precipitates), strain mismatch, Ion implantation defects (Amorphization), Effects of defects on the film (Electrical resistivity, PN junction leakage current, diffusion, Mechanical stress), defect propagation in films

08 Hrs

Fabrication Techniques

Chemical Approaches: Electro Spinning and spin coating routes, Pulsed electro-chemical vapor deposition (PECVD)

Unit –III

Physical Approaches: Metalorganic chemical vapor deposition (MOCVD), Atomic Layer Deposition (ALD) - pulsed laser deposition, Arc plasma deposition.

Lithography: Photo/FIB techniques, Etching process: Dry and Wet etching

Unit –IV07 HrsCharacterization TechniquesSurface morphology measurements: Kelvin-probe Force Microscopy (KFM), Surface X-ray Diffraction(SXRD), Vacancy type defects and interfacial surface chemistry: Positron Annihilation LifetimeSpectroscopy (PALS), Angle Resolved X-ray Photoelectron spectroscopy (ARXPS) Point, line defects,grain boundary studies: Transmission Electron microscopy (TEM), UV Visible Spectroscopy (UV-Vis)Unit –V08 HrsSilicon wafer fabrication – Wafer to cell formation - I-V characteristics and spectral response of c-Si solarcells. Factors limiting the efficiency, Differences in properties between crystalline silicon and amorphous(a-Si) siliconThin Film Solar Cells: Principle of multi-junction cells, Structure and fabrication of GaInP/GaAs/Ge triplejunction solar cell - Cell configuration – techniques used for the deposition of each layer- cellcharacteristics, optical efficiency measurements (brief)

Thin film Nano Biosensor: Biosensors and nanotechnology, Basic biosensor architecture, Biosensor

(receptor/antigen) recognition element, Biosensor transducer (electrochemical, optical, thermal, mass), Glucowatch TM, Examples in cancer detection

Field Effect Transistors: Overview, Basic Structure, I-V Characteristics, Lateral transport of electrons in different regions of transistors.

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Choose the right choice of material for the desired application
CO2:	Improve the desired nanostructures and their properties
CO3:	Fabricate appropriate Nanodevices
CO4:	Optimize the nanodevice fabrication process for repeatability.

Refere	ence Books
1	Solid State Physics, Ashcroft & Mermin, 2 nd Edition, Brooks/Cole, 1976, ISBN-13: 978-
1	0030839931
2	Nanotechnology for photovoltaics, Loucas Tsakalakos, 1st Edition, 2010, ISBN 9781420076745.
2	Microfabrication for Industrial Applications, Regina Luttge, 1st Edition, William Andrew,2011,
3	ISBN: 9780815515821.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-]	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	-	-	-	-	-	-		-	2
CO2	3	2	2	2	-	-	-	-	-		-	2
CO3	2	3	3	2	2	1	1	1	-	1	-	2
CO4	2	3	3	2	2	2	2	2	2	2	-	2

					Semeste	er: VI					
	CHEMIS	TRY	OF AD	VANCE	D ENERGY S		E DEVICES I	FOR E	2-N	IOBILIT	Y
				(GRO	OUP E: GLOB	BAL ELEC	CTIVE)				
					(Theo			r			
	e Code	:	18G6E	14			CIE		:	100 Mar	
	ts: L:T:P	:	3:0:0				SEE		:	100 Mar	
Total]			39L				SEE Duration	n	:	3.00 Hou	irs
					ents will be abl dvanced storag						
					e devices for E	0					mina
			<u> </u>							•	
V	vehicles.				mistry to ana		•				ric/nybri
4 I	Develop kno	owled	lge of bat	ttery mar	nagement syste	em and recy	cling of stora	ge dev	vice	es.	
			~	~	Unit-I						07 Hrs
		0	•	•	ns in Electric						
-			-	•	es and sustaina	-			-		
	-				on. Vehicle pe				-		
			•	•••	and power re	•	ts for various	HEV	S	and EVs	Vehicle
Fundar	mentals of b	attery	y technol	ogy in hy	ybrid vehicles.						
					Unit – II						08 Hrs
Advan	ced Lithiu	m ior	a Battery	7 Techno	logy for Floot	twig wohigh	0.0.0				
				Ittimo	hogy for Elect	uric-venicio	es:				
Basic of	concepts of	lithiu	•		vanced Lithiun			y: Cel	1 c	onstructio	n, batter
	-		um batter	ries, Adv		n batteries	for E-mobilit	•			
compo	nents, prin	ciple	um batter of oper	ries, Adv ration, e	vanced Lithiun	n batteries rication, el	for E-mobilit ectrolytes, ba	attery	m	odules an	d packs
compo Constr	nents, prin	ciple king	um batter of oper and futur	ries, Adv ration, e re applica	vanced Lithiun electrode fabri	n batteries rication, el	for E-mobilit ectrolytes, ba	attery	m	odules an	d packs
compo Constr	nents, prinuction, wor	ciple king	um batter of oper and futur	ries, Adv ration, e re applica	vanced Lithiun electrode fabri	n batteries rication, el	for E-mobilit ectrolytes, ba	attery	m	odules an	d packs
compo Constr sulfide	nents, prinuction, wor	ciple king olid-s	um batter of oper and futur tate batte	ries, Adv ration, e re applica pries.	vanced Lithium electrode fabri ations of Li-po Unit –III	n batteries rication, el	for E-mobilit ectrolytes, ba	attery	m	odules an	nd packs y, Li-iro
compo Constr sulfide Future	nents, prin uction, worl cells and so e Scope in n	ciple king blid-s	um batter of oper and futur tate batte	ries, Adw ration, e re applica pries. Batterie	vanced Lithium electrode fabri ations of Li-po Unit –III	n batteries rication, el olymer batt	for E-mobilit ectrolytes, ba eries, Li-S ba	attery ttery, 1	m Li-	odules an Air batter	nd packs y, Li-iro 08 Hrs
compo Constr sulfide Future Limita	nents, prin uction, work cells and so e Scope in r tions of lit	ciple king blid-s blid-s	um batten of oper and futur tate batte Lithium batteries	ries, Adv ration, e re applica eries. Batterie s. Const	vanced Lithium electrode fabri ations of Li-po Unit –III es:	n batteries rication, el olymer batt	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a	attery ttery, 1	m Li-	odules an Air batter	nd packs y, Li-iro 08 Hrs n-Lithiur
compo Constr sulfide Future Limita batterie	e Scope in r tions of lit	ciple king blid-s blid-s non- l hium batte	um batter of oper and futur tate batte Lithium batteries ry, Magr	ries, Adv ration, e re applica eries. Batterie s. Const nesium b	vanced Lithiun electrode fabri ations of Li-po Unit –III es: ruction, comp	n batteries rication, el olymer batt ponents, we Metal Hyd	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery,	attery ttery, 1 pplicat Zebra	m Li-	odules an Air batter	d packs y, Li-iro 08 Hrs n-Lithiur dium an
compo Constr sulfide Future Limita batterie iron-ba	e Scope in r tions of littes: Sodium- ased batteri	ciple king blid-s blid-s hium batte es, 1	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp pattery, Nickel tteries. Advan	n batteries rication, el olymer batt ponents, we Metal Hyd nced batter	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans	attery ttery, 1 pplicat Zebra	m Li- Lion	odules an Air batter ns of Nor ells, Vana n: Ni-MH	d packs y, Li-iro 08 Hrs n-Lithiur dium an
compo Constr sulfide Future Limita batterie iron-ba	e Scope in r tions of littes: Sodium- ased batteri	ciple king blid-s blid-s hium batte es, 1	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp pattery, Nickel tteries. Advan ntages and app	n batteries rication, el olymer batt ponents, we Metal Hyd nced batter	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans	attery ttery, 1 pplicat Zebra	m Li- Lion	odules an Air batter ns of Nor ells, Vana n: Ni-MH	nd packs y, Li-iro 08 Hrs n-Lithiur dium an l battery
compo Constr sulfide Future Limita batterie iron-ba horizon	e Scope in r tions of littes: Sodium- ased batteri	ciple king blid-s non- l hium batte es, l b-Aci	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro d batterie	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp battery, Nickel tteries. Advan ntages and app Unit –IV	n batteries rication, el olymer batt ponents, we Metal Hyd nced batter	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans	attery ttery, 1 pplicat Zebra	m Li- Lion	odules an Air batter ns of Nor ells, Vana n: Ni-MH	nd packs y, Li-iro 08 Hrs n-Lithiur dium an l battery
compo Constr sulfide Future Limita batterid iron-ba horizon	e Scope in r tions of littes: Sodium- ased batteri ntal plate Pt	ciple king blid-s bon- hium batte es, 1 b-Acie	um batter of oper and futur tate batter Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp pattery, Nickel tteries. Advan ntages and app Unit –IV ices:	n batteries rication, el olymer batt ponents, we Metal Hyd need batter plications of	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium l	pplicat Zebra Sportat	m Li- ion ior es.	odules an Air batter ns of Nor ells, Vana n: Ni-MH	d packs y, Li-iro 08 Hrs n-Lithiur dium an battery 08 Hrs
compo Constr sulfide Futuro Limita batterio iron-ba horizon Chemi Introdu	e Scope in r tions of litters sed batterint ntal plate Pt istry of Alter action to su	ciple king blid-s blid-s non- hium batte es, I b-Acid ernat per c	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora apacitor,	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material	vanced Lithium electrode fabri ations of Li-po Unit –III es: rruction, comp pattery, Nickel tteries. Advan ntages and app Unit –IV ices: I characteristic	n batteries rication, el olymer batt ponents, we Metal Hyd need batter plications of	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium l ction, workin	pplicat zebra sportat batterio	ma Li- ion ior es. ap	odules an Air batter ns of Nor ells, Vana n: Ni-MH	nd packs y, Li-iro 08 Hrs n-Lithiur dium an l battery 08 Hrs of Supe
compo Constr sulfide Future Limita batteric iron-ba horizon Chemi Introdu capacit	e Scope in r tions of littes: Sodium- ased batteri ntal plate Pt istry of Alter action to su tors and Ul	ciple king blid-s blid-s blid-s blid-s bli	um batter of oper and futur tate batter Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora apacitor, apacitor	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E m	vanced Lithium electrode fabri ations of Li-po Unit –III es: rruction, comp battery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double	n batteries rication, el olymer batt ponents, we Metal Hyd need batter plications of cs. Constru le layer Su	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium ction, workin per capacitors	pplicat Zebra sportat batterio g and s, Aqu	ion ion ior es. ap	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super	d packs y, Li-iro 08 Hrs n-Lithiur dium an battery 08 Hrs of Supe capacitor
compo Constr sulfide Futuro Limita batterio iron-ba horizon Chemi Introdu capacit organio	e Scope in retions of littles: Sodium- ased batteri ntal plate Ptroving and Ulicons and Ul	ciple king blid-s blid-s non-l hium batte es, l b-Acie ernat per c tra ca er ca	um batter of oper and futur tate batter Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora apacitor, apacitors,	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E me asymmet	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp battery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa	n batteries fication, el olymer batt ponents, we detal Hyd need batter blications of cs. Constru le layer Su acitors and	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium l ction, workin per capacitors Ultra capacito	pplicat pplicat Zebra sportat batterio g and s, Aqu	ma Li- Lion ion es. ap ieo dva	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super a anced batt	nd packs y, Li-iro 08 Hrs n-Lithiur dium an l battery 08 Hrs of Supe capacitor ery-supe
compo Constr sulfide Future Limita batteric iron-ba horizon Chemi Introdu capacit organic capacit	e Scope in retions of litters: Sodium- ased batterintal plate Ptrivial plate Ptrivial plate Ptrivial plate and units of a superior of the second seco	ciple king blid-s blid-s non-l hium batte tra ca er cap for la	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora apacitor, apacitor, pacitors, rge vehic	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E ma asymmet	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp battery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa tery-Fuel cell h	n batteries rication, el olymer batt ponents, we Metal Hyd need batter plications of es. Constru le layer Su acitors and hybridizatio	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium ction, workin per capacitors Ultra capacito on for transpor	g and sports. Aquors. A	me Li- ion ior es. ap ieo dv: ap	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super a anced batt oplications	n-Lithiur dium an battery 08 Hrs of Supe capacitor ery-supe , Battery
compo Constr sulfide Future Limita batterie iron-ba horizon Chemi Introdu capacit organie capacit	e Scope in retions of litters: Sodium- ased batterintal plate Ptrivial plate Ptrivial plate Ptrivial plate and units of a superior of the second seco	ciple king blid-s blid-s non-l hium batte tra ca er cap for la	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora apacitor, apacitor, pacitors, rge vehic	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E ma asymmet	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp pattery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa tery-Fuel cell h	n batteries rication, el olymer batt ponents, we Metal Hyd need batter plications of es. Constru le layer Su acitors and hybridizatio	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium ction, workin per capacitors Ultra capacito on for transpor	g and sports. Aquors. A	me Li- ion ior es. ap ieo dv: ap	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super a anced batt oplications	d packs y, Li-iro 08 Hrs n-Lithiur dium an l battery 08 Hrs of Supe capacitor ery-supe , Battery energy.
compo Constr sulfide Futuro Limita batterio iron-ba horizon Chemi Introdu capacit organic capacit Solar C	nents, prin uction, work cells and so e Scope in r tions of litt es: Sodium- ased batteri ntal plate Pt istry of Alte uction to su tors and Ul c based supe tor hybrids f	ciple king blid-s blid-s on- l hium batte es, l b-Acie es, l b-Acie ernat per c tra ca for la coltaic	um batter of oper and futur tate batter Lithium batteries ry, Magr Ni-Hydro d batteries ive Stora apacitor, apacitor, apacitors, rge vehic c) hybridi	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E me asymmet cles, Batt ization, a	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp battery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa tery-Fuel cell h	n batteries rication, el olymer batt ponents, we Metal Hyd need batter plications of es. Constru le layer Su acitors and hybridizatio	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium ction, workin per capacitors Ultra capacito on for transpor	g and sports. Aquors. A	me Li- ion ior es. ap ieo dv: ap	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super a anced batt oplications	d packs y, Li-iro 08 Hrs n-Lithiur dium an l battery 08 Hrs of Supe capacitor ery-supe , Battery energy.
compo Constr sulfide Future Limita batterid iron-ba horizon Chemi Introdu capacit organid capacit Solar C Batter	nents, prin uction, work cells and so e Scope in r tions of litt es: Sodium- ased batteri ntal plate Pt istry of Alte uction to su tors and Ul c based supe tor hybrids f Cell (Photov	ciple king blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid-s blid	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora apacitor, apacitor, apacitors, rge vehic c) hybridi	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E me asymmet cles, Batt ization, a	Vanced Lithium electrode fabri ations of Li-po Unit –III es: rruction, compositery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa tery-Fuel cell h and advanced e Unit –V	n batteries rication, el olymer batt bonents, we Metal Hyd need batter blications of cs. Constru le layer Su acitors and hybridizatio	for E-mobilit ectrolytes, ba eries, Li-S ba orking and ap dride Battery, ries for trans f non-lithium l ection, workin per capacitors Ultra capacito on for transpor age devices fo	g and s, Aquors, Aquor	me Li- Li- ior es. ap leo dva ap	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super anced batt plications o of solar o	d packs y, Li-iro 08 Hrs n-Lithiur dium an battery 08 Hrs of Supe capacitor ery-supe , Battery energy. 08 Hrs
compo Constr sulfide Future Limita batterie iron-ba horizon Chemi Introdu capacit organic capacit Solar C Batter Battery	e Scope in retions of littles: Sodium- ased batteri ntal plate Ptroving and Ulic based superior of Alteriant intal plate Ptroving and Ulic based superior of the corn hybrids for Cell (Photov y Maintena	ciple king blid-s blid-s non- bhium batte es, 1 b-Acid es, 1 b-Acid ernat per c tra ca for la coltaic ance a ent Sy	um batter of oper and futur tate batte Lithium batteries ry, Magr Ni-Hydro d batterie ive Stora apacitor; apacitor; c) hybridi and Recy ystems (E	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E me asymmet cles, Batt ization, a ycling: BMS), Fu	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp pattery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa tery-Fuel cell h and advanced e Unit –V	n batteries fication, el olymer batt bonents, we detal Hyd need batter blications of cs. Constru le layer Su acitors and hybridizations energy stors	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium l ection, workin per capacitor Ultra capacitor age devices fo anagement sys	pplicat Zebra sportat batterio g and s, Aqu ors. A rtation or back	me Li- Lion ion es. ap eo dva ap -up	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super anced batt pplications o of solar of ancel solar of ancel solar of	d packs y, Li-iro 08 Hrs n-Lithium dium and battery 08 Hrs of Supe capaciton ery-supe , Battery energy. 08 Hrs
compo Constr sulfide Future Limita batteric iron-ba horizon Chemi Introdu capacit organic capacit Solar C Battery Battery	e Scope in re- tions of litters: Sodium- ased battering tal plate Pterson istry of Alters istry of Alters istr	ciple king blid-s blid-s non-l hium batte es, l b-Acie er cap for la oltaic ance a ent Sy Viana	um batter of oper and futur tate batter batteries ry, Magr Ni-Hydro d batteries ive Stora apacitor, apacitor, coacitors, rge vehic c) hybridi	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E ma asymmet cles, Batt ization, a ycling: BMS), Fu Passive o	Vanced Lithium electrode fabri ations of Li-po Unit –III es: rruction, compositery, Nickel tteries. Advan ntages and app Unit –IV ices: I characteristic obility: Double tric super capa tery-Fuel cell h and advanced e Unit –V undamentals of cooling – PCN	n batteries rication, el olymer batt bonents, we Metal Hyd need batter blications of cs. Constru le layer Su acitors and hybridizatio energy stors f battery ma M systems,	for E-mobilit ectrolytes, ba eries, Li-S ba orking and ap dride Battery, ries for trans f non-lithium l ction, workin per capacitors Ultra capacito on for transpor age devices fo anagement sys	g and sportat g and s, Aquors. A rtation or back stems a ng – L	me Li- Lion ior es. ap ieo dv: ap ieo dv: ap	odules an Air batter Air batter ans of Nor ells, Vana n: Ni-MH plications us super anced batt pplications o of solar of solar of ancel solar of ancel solar of ancel solar of	d packs y, Li-iro 08 Hrs n-Lithiur dium an battery 08 Hrs of Supe capaciton ery-supe , Battery energy. 08 Hrs
compo Constr sulfide Future Limita batterie iron-ba horizon Chemi Introdu capacit organic capacit Solar C Battery Battery Battery	e Scope in retions of littles: Sodium- ased batteri ntal plate Ptr istry of Alteriation to su tors and Ulic based superior to su tors and Ulic classed superior to su tor hybrids f Cell (Photov y Maintena y Management y Recycling	ciple king blid-s blid-s non-l hium batte es, l b-Acid ernat per c tra ca for la coltaic ance a coltaic ance a for la	um batter of oper and futur tate batter batteries ry, Magr Ni-Hydro d batteries ive Stora apacitor, apacitor, c) hybridi and Recy ystems (E gement: 1 hnologies	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E me asymmet cles, Batt ization, a ycling: BMS), Fu Passive o s: Techn	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, compositery, Nickel tteries. Advan ntages and app Unit –IV ices: I characteristic obility: Double tric super capa tery-Fuel cell h and advanced e Unit –V undamentals of cooling – PCN pology and eco	n batteries rication, el olymer batt ponents, we Metal Hyd need batter blications of cs. Constru le layer Su acitors and hybridizatio energy stora f battery ma M systems, onomic asp	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium l ection, workin per capacitor Ultra capacitor age devices fo anagement sys Active coolin pects of batter	pplicat Zebra sportat batterio g and s, Aqu ors. A rtation or back stems a ng – L ry recy	me Li- Li- ior es. ap eo dv: ap -up -up -up	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super anced batt plications o of solar of l controls. uids & air ing. Envir	d packs y, Li-iro 08 Hrs n-Lithiur dium an l battery 08 Hrs of Supe capacitor ery-supe , Battery energy. 08 Hrs
compo Constr sulfide Future Limita batterie iron-ba horizon Chemi Introdu capacit organic capacit Solar C Batter Battery Battery safety	e Scope in retions of littles: Sodium- ased batteri ntal plate Ptr istry of Alteriation to su tors and Ulic based superior to su tors and Ulic classed superior to su tor hybrids f Cell (Photov y Maintena y Management y Recycling	ciple king blid-s blid-s non- bhium batte es, 1 b-Acid ernat per c tra ca for la coltaid ent Sy Mana recy	um batter of oper and futur tate batter Lithium batteries ry, Magr Ni-Hydro d batteries ive Stora apacitor apacitor, apacitor, apacitors, rge vehic c) hybridi and Recy ystems (E gement: hnologies cling pro	ries, Adv ration, e re applica eries. Batterie s. Const nesium b ogen bat es. Advar age Devi material for E me asymmet cles, Batt ization, a ycling: BMS), Fu Passive o s: Techn ocess. Re	vanced Lithium electrode fabri ations of Li-po Unit –III es: ruction, comp pattery, Nickel tteries. Advan ntages and app Unit –IV ices: l characteristic obility: Double tric super capa tery-Fuel cell h and advanced e Unit –V undamentals of cooling – PCN ology and ecc egulations and	n batteries rication, el olymer batt ponents, we Metal Hyd need batter blications of cs. Constru le layer Su acitors and hybridizatio energy stora f battery ma M systems, onomic asp	for E-mobilit ectrolytes, ba eries, Li-S ba orking and a dride Battery, ries for trans f non-lithium l ection, workin per capacitor Ultra capacitor age devices fo anagement sys Active coolin pects of batter	pplicat Zebra sportat batterio g and s, Aqu ors. A rtation or back stems a ng – L ry recy	me Li- Li- ior es. ap eo dv: ap -up -up -up	odules an Air batter ns of Nor ells, Vana n: Ni-MH plications us super anced batt plications o of solar of l controls. uids & air ing. Envir	d packs y, Li-iro 08 Hrs n-Lithiur dium an l battery 08 Hrs of Supe capacitor ery-supe , Battery energy. 08 Hrs

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understanding the fundamentals of advanced batteries, super capacitors and fuel cells for electric
	vehicles.
CO2:	Applying the chemistry knowledge used for hybridization of various energy storage and conversion
	devices for vehicle electrification.
CO3:	Analyses of battery management, safety, global market trends for large format batteries.
CO4:	Evaluation of efficiency of a battery with respect to cost, environmental safety, material, energy
	consumption, reuse and recycling.

Refere	ence Books
1	Battery reference book, T. R. Crompton., 3rd edition, NEWNES Reed Educational and Professional
1	Publishing Ltd 2000, ISBN: 07506 4625 X.
2	Batteries for Electric Vehicles, D. A. J. Rand, R. Woods, and R. M. Dell, Society of Automotive
2	Engineers, Warrendale PA, 2003. ISBN 10: 0768001277.
2	Lithium Batteries, Science and Technology, GA. Nazri and G. Pistoa, Kluwer Academic Publisher,
3	2003, ISBN 978-0-387-92675-9.
4	Battery Technology Handbook, H. A. Kiehne, Marcel Dekker, NYC, 2003. ISBN: 0824742494
4	9780824742492.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	-	-	2	-	-	-	-	1	-	1		
CO2	3	3	2	2	2	-	-	-	1	1	-	1		
CO3	2	2	3	3	2	-	-	-	3	1	2	1		
CO4	3	3	2	3	2	-	-	-	2	1	3	1		

				Semester: VI					
			ADVANCE	ED STATISTICAL	METHODS				
			(GROU	P E: GLOBAL ELE	ECTIVE)				
				(Theory)	ſ	-	ſ		
	rse Code	:	18G6E15		CIE	:	100 Marks		
	lits: L:T:P	:	3:0:0		SEE				
	ll Hours	:	39L		SEE Duration	:	3.00 Hours		
			ctives: The student		-1: C'				
1				basic knowledge on	classification and re	egres	ssion trees that form		
			analyzing data.						
2		-	•	and conjoint analysis	· ·				
3		-		analysis and factor	analysis which hav	ve g	reat significance in		
	engineering p	ract	ice.						
4	Demonstrate	the p	practical importance	e of regression and lo	glinear models.				
				Unit-I			07 Hrs		
Clas	sification and	Reg	ression Trees:						
			-	orical or Quantitative	-	ion [Frees, Classification		
Trees	s, Stopping Ru	les, l	Pruning and Cross-V	Validation, Loss func	tions, Geometry.				
				Unit – II			07 Hrs		
Clus	ster Analysis:								
Intro	duction, Types	s of	Clustering, Correlat	tions and Distances,	Hierarchical Cluster	ring,	Partitioning via K-		
mear	ns, Additive Tr	ees.							
				Unit –III			08 Hrs		
Conj	joint Analysis:	:							
Intro	duction, Addit	tive	Tables, Multiplicat	tive Tables, Comput	ting Table Margins	bas	sed on an Additive		
Mod	el, Applied Co	njoii	nt Analysis.	-					
		0	•	Unit –IV			08 Hrs		
Disc	riminant Anal	ysis	and Factor Analys	sis:			Ι		
Intro	duction, Linea	r Di	scriminant Model,	Linear discriminant	function, Discrimi	nant	analysis, Principal		
				nponents versus Fact			•		
	1 /			Unit –V	5 / 11		09 Hrs		
Logi	stic Regressio	n an	d Loglinear Mode				•> 115		
	0		0	ogit, Conditional Lo	git. Discrete Choice	e Lo	git. Stepwise Logit.		
	ng a Loglinear	-	-				5, Step Logit,		
1 1111	is a Dogiment	.,100							
Сош	rse Outcomes	Aft	er completing the	course, the students	will be able to				
CO1			1 0	of statistical methods		ielde	engineering		
CO2	1			statistical techniques					
002	· Apply the R	110 %	reuge and skins of	statistical techniques	to understand valio	usiy	pes of analysis.		

CO3:	Analyze the appropriate statistical techniques to solve the real-world problem and to optimize the
	solution.
CO4.	Distinguish the overall knowledge goined to demonstrate the problems origing in many prestical

CO4: Distinguish the overall knowledge gained to demonstrate the problems arising in many practical situations.

Refere	ence Books
1	Statistics I, SYSTAT 10.2, ISBN 81-88341-04-5.
2	Nonparametric Statistical Inference, Gibbons J., D., and Chakraborti, S., 4 th Edition, 2003, Marcel Decker, New York. ISBN: 0-8247-4052-1.

3	Applied Statistics and Probability for Engineers, Douglas C. Montgomery and George C. Runger, 6 th Edition, 2014, John Wiley & Sons, ISBN: 13 9781118539712, ISBN (BRV):9781118645062.
4	An Introduction to Multivariate Analysis, T. W. Anderson, 3 rd Edition, 2003, John Wiley & Sons, New Jersey, ISBN: 0-471-36091-0.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	-	1	-	-	-	-	-	-	-	2		
CO2	3	2	1	-	-	-	-	-	-	-	-	2		
CO3	2	3	2	2	-	-	-	-	-	-	-	1		
CO4	3	3	1	2	1	-	-	-	-	-	-	3		

				Semester:	VI		
			MA	THEMATICAL			
			(GRO		L ELECTIVE)		
~	~ .		10000	(Theory			400.7.7.7
	rse Code	:	18G6E16		CIE	:	100 Marks
	dits: L:T:P	:	3:0:0		SEE	:	100 Marks
	al Hours):)::	39L	lanta mill ha ahla t	SEE Duration	:	3.00 Hours
	0			lents will be able t		1:	
1	· ·				lge of mathematical mode	nng.	
2		-	-	ess models arising			
3	Apply the copractice.	once	epts of modelin	ig of nano liquid	s which have great sigr	iifica	nce in engineering
4	Demonstrate	the	practical impor	tance of graph th	eoretic models, variationa	ıl pro	blem and dynamic
	programming	5 .					
				Unit-I			07 Hrs
Eler	nentary Mathe	ema	tical Modeling:				
Basi	c concepts. Re	al v	world problems,	(Science and En	gineering), Approximatio	n of	the problem, Steps
	-		-		l, Logistic model, Model		
		-	-	•	blems), Chemical reaction		
				0 01	trical circuits (LCR).	1, DI	ug ubsorption from
0100		011 0	a projectile, et	Unit – II	inear chedits (LCK).		07 Hrs
Dia	crete Process	Ма	dolar	0mt – 11			07 1115
				T . 1			1 1 1 1 1
			-		discrete models-simple of		-
		diff	erence equation	is in economics,	finance, population dyna	amics	s and genetics and
prob	ability theory.						
Mod	leling of Nano			Unit –III			08 Hrs
		_	_				•
	o liquids-Basic	_	_		of nano liquids-Buongio	rno]	•
Nan	•	c co	oncepts, Mathem	natical modeling			Model (Two phase
Nan mod	lel): Relative in	c co mpo	oncepts, Mathem ortance of the n	natical modeling anoparticle transp	of nano liquids-Buongio	vatio	Model (Two phase n equation for two
Nan mod	lel): Relative in	c co mpo	oncepts, Mathem ortance of the n	natical modeling anoparticle transp	of nano liquids-Buongio ort mechanisms. Conser	vatio	Model (Two phase n equation for two
Nan mod phas	lel): Relative in se nano liquids:	c co mpo The	oncepts, Mathem ortance of the n e Continuity equa	natical modeling anoparticle transp ation, Momentum	of nano liquids-Buongio ort mechanisms. Conser	vatio	Model (Two phase n equation for two
Nan mod phas Gra	el): Relative in se nano liquids: ph Theoretic N	c co mpo The Mod	oncepts, Mathem ortance of the n e Continuity equa	natical modeling anoparticle transp ation, Momentum Unit –IV	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equa	vation.	Model (Two phase n equation for two 08 Hrs
Nan mod phas Gra Mat	lel): Relative in se nano liquids: ph Theoretic M hematical mod	c co mpo The Mod eling	oncepts, Mathem ortance of the n e Continuity equa lels: g through graph	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equa	vation.	Model (Two phase n equation for two 08 Hrs
Nan mod phas Gra Mat	lel): Relative in se nano liquids: ph Theoretic M hematical mod	c co mpo The Mod eling	oncepts, Mathem ortance of the n e Continuity equa lels: g through graph	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equa	vation.	Model (Two phase n equation for two 08 Hrs cted graphs, signed
Nan mod phas Gra Mat grap	el): Relative in se nano liquids: ph Theoretic M hematical mod hs and weighte	c co mpo The Mod eling d gr	oncepts, Mathem ortance of the n e Continuity equa lels: g through graph raphs. Problems	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equa	vation.	Model (Two phase n equation for two 08 Hrs
Nan mod phas Gra Mati grap Var	el): Relative in se nano liquids: ph Theoretic M hematical mod hs and weighte iational Proble	c co mpo The VIod eling d gr	oncepts, Mathem ortance of the n e Continuity equa lels: g through graph aphs. Problems	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V rogramming:	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equa ns of undirected graphs, pplications.	vation. tion. direc	Model (Two phase n equation for two 08 Hrs cted graphs, signed 09 Hrs
Nan mod phas Gra Mati grap Var Opti	el): Relative in se nano liquids: ph Theoretic N hematical mod hs and weighte iational Proble mization princ	c co mpo The Mod eling d gr em a ciple	e Continuity equates of the n continuity equations of the	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V rogramming: ues, Mathematica	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equa	vation. tion. direc	Model (Two phase n equation for two 08 Hrs cted graphs, signed 09 Hrs
Nan mod phas Gra Mati grap Var Opti	el): Relative in se nano liquids: ph Theoretic N hematical mod hs and weighte iational Proble mization princ	c co mpo The Mod eling d gr em a ciple	oncepts, Mathem ortance of the n e Continuity equa lels: g through graph aphs. Problems	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V rogramming: ues, Mathematica	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equa ns of undirected graphs, pplications.	vation. tion. direc	Model (Two phase n equation for two 08 Hrs cted graphs, signed 09 Hrs
Nan mod phas Gra Mat grap Var Opti prog	el): Relative in se nano liquids: ph Theoretic M hematical mod hs and weighte iational Proble mization princ gramming, Prob	c co mpo The Mod elin, d gr em a ciple	oncepts, Mathem ortance of the n e Continuity equa- lels: g through graph aphs. Problems y and Dynamic Pr es and techniqu s with engineerin	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V rogramming: nes, Mathematica ng applications.	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equants of undirected graphs, pplications.	vation. tion. direc	Model (Two phase n equation for two 08 Hrs cted graphs, signed 09 Hrs
Nan mod phas Gra Mat grap Var Opti prog	el): Relative in se nano liquids: ph Theoretic M hematical mod has and weighte iational Proble mization prince gramming, Prob	c co mpo The Mod elin, d gr em a ciple isiple isiple	encepts, Mathem ortance of the n e Continuity equa elels: g through graph raphs. Problems and Dynamic Pr es and techniqu s with engineerin ter completing t	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V rogramming: nes, Mathematica ng applications.	of nano liquids-Buongio port mechanisms. Conser equation and Energy equa ns of undirected graphs, pplications.	direc	Model (Two phase n equation for two 08 Hrs cted graphs, signed 09 Hrs plem and dynamic
Nan mod phas Gra Mati grap Var Opti prog Cou	iel): Relative in se nano liquids: ph Theoretic M hematical mod hs and weighte iational Proble mization prince gramming, Prob irse Outcomes: i: Explore the	v co mpo The Mod elin, d gr em a ciple lem : Aft	oncepts, Mathem ortance of the n e Continuity equa- lels: g through graph aphs. Problems of and Dynamic Pr es and techniqu s with engineerin ter completing to adamental conce	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V rogramming: nes, Mathematica ng applications.	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equants of undirected graphs, pplications.	direct prot	Model (Two phase n equation for two 08 Hrs cted graphs, signed 09 Hrs blem and dynamic
Nan mod phas Gra Mat grap Var Opti prog	iel): Relative in se nano liquids: ph Theoretic M hematical mod hs and weighte iational Proble mization prince gramming, Prob irse Outcomes: i: Explore the	v co mpo The Mod elin, d gr em a ciple lem : Aft	oncepts, Mathem ortance of the n e Continuity equa- lels: g through graph aphs. Problems of and Dynamic Pr es and techniqu s with engineerin ter completing to adamental conce	natical modeling anoparticle transp ation, Momentum Unit –IV ns-Models in tern with engineering a Unit –V rogramming: nes, Mathematica ng applications.	of nano liquids-Buongio port mechanisms. Conser equation and Energy equa ns of undirected graphs, pplications.	direct prot	Model (Two phase n equation for two 08 Hrs cted graphs, signed 09 Hrs blem and dynamic
Nan mod phas Gra Mati grap Var Opti prog Cou	 Relative in se nano liquids: ph Theoretic Mematical modules and weighte iational Problection princet gramming, Problection I: Explore the analysis. 	c co mpo The Mod elin, d gr em a ciple iem a ciple iem a ciple	oncepts, Mathem ortance of the n e Continuity equa- lels: g through graph aphs. Problems v and Dynamic Pr es and techniqu s with engineerin ter completing to idamental concep- wledge and skill	hatical modeling anoparticle transp ation, Momentum Unit –IV hs-Models in tern with engineering a Unit –V rogramming: hes, Mathematica ing applications. the course, the stup pts of mathematica is of discrete and	of nano liquids-Buongio ort mechanisms. Conser equation and Energy equants of undirected graphs, pplications.	direct prob	Model (Two phase n equation for two 08 Hrs eted graphs, signed 09 Hrs olem and dynamic lds engineering. nd various types of

Refere	ence Books
1	Mathematical Modeling, J. N. Kapur, 1st Edition, 1998, New Age International, New Delhi, ISBN:
1	81-224-0006-X.
2	Case studies in mathematical modeling, D. J. G. James and J. J. Mcdonald, 1981, Stanly Thames,
2	Cheltonham, ISBN: 0470271779, 9780470271773.
2	Modeling with difference equations, D. N. Burghes, M. S. Borrie, Ellis Harwood, 1981, ISBN 13:
3	9780853122869.
	Mathematical Modeling: Models, Analysis and Applications, Sandip Banerjee, 2014, Chapman and
4	Hall/CRC Textbook, ISBN 9781439854518.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	-	1	-	-	-	-	-	-	-	2		
CO2	3	2	1	-	-	-	-	-	-	-	-	2		
CO3	2	3	2	2	-	-	-	-	-	-	-	1		
CO4	3	3	1	2	1	-	-	-	-	-	-	3		

			(GI	ROUP E: GLOBAL ELECTIVE)		
C	C. I.	<u> </u>	190/17	(Theory)		100 Marila
	urse Code edits: L:T:P	:	18G6E17 3:0:0	CIE Marks		
-		:		SEE Mark SEE Durat		10010101
	al Hours		39L	SEE DUrat	ion :	3.00 Hour
	urse Learning		,			1.1
1		•		er their innate flow, entrepreneurial style, and id	entify p	problems
	worth solving	the	reby becoming	entrepreneurs		
2	To handhold p	arti	cipants on lean	methodology to craft value proposition and get	ready v	with lean
	canvas					
3	To create solu	tion	demo by cond	ucting customer interviews and finding problem	-solutio	on fit for
	building Minin	nun	n Viable Produ	ct (MVP)		
4	e			cost structure, pricing, revenue types and impor	tance o	of adopting
-	_	_	to build good to		curree o	udopung
_		-			1 •	1 / 1
		ipan	its build a stron	g brand and identify various sales channels for t	neir pro	oducts and
5	services					
5	— 1	nan	ts through basi	cs of business regulations and other legal terms	along-v	with
5 6	To take partici	pun	U			

Unit-I	08 Hrs
Self-Discovery and Opportunity Discovery	
Finding the Flow; Effectuation; Identifying the Effectuation principles used in activities; Id	lentifying
Problem Worth Solving; Design Thinking; Brainstorming; Presenting the Identified proble	ms; Identifying
the Entrepreneurial Style.	
Unit – II	08 Hrs
Customer, Solution and Lean Methodology	
Customers and Markets; Segmentation and Targeting; Identifying Jobs, Pains, and Gains a	nd Early
Adopters; Crafting Value Proposition Canvas (VPC); Presenting VPC; Basics of Business	Model and
Lean Approach; Sketching the Lean Canvas; Risks and Assumptions; Presenting Lean Car	ivas.
Unit – III	07 Hrs
Problem-Solution Fit and Building MVP	
Blue Ocean Strategy - Plotting the Strategy Canvas; Four Action Framework: Eliminate-R	educe-Raise-
Create Grid of Blue Ocean Strategy; Building Solution Demo and Conducting Solution Int	erviews;
Problem-Solution Fit; Building MVP; Product-Market Fit; Presenting MVP.	
Unit – IV	07 Hrs
Financial Planning & Team Building	
Cost Structure - Estimating Costs; Revenues and Pricing: Revenue Streams, Revenue Type	es, Identifying
Secondary Revenue Streams, Estimating Revenue and Price; Profitability Checks; Bootstra	apping and
Initial Financing; Practising Pitch; Shared Leadership; Hiring and Fitment, Team Role and	
Responsibilities.	
Unit – V	09 Hrs
Marketing, Sales, Regulations and Intellectual Property	
Positioning and Branding; Channels; Sales Planning; Project Management; Basics of Busin	1000

Regulations; How to Get Help to Get Started; Patents, Trademark, Licensing, Contracts; Common Legal mistakes, Types of Permits, Tax Registration Documents, Compliance; Infringement and Remedies, Ownership and Transfer.

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Showcase the ability to discern distinct entrepreneurial traits				
CO2	Know the parameters to assess opportunities and constraints for new business ideas				
CO3	Understand the systematic process to select and screen a business idea				
CO4	Design strategies for successful implementation of ideas				
CO5	Create Business Model and develop Minimum Viable Product				

Refer	Reference Books:					
1	Running Lean: Iterate from Plan A to a Plan That Works. O'Reilly Media, Maurya, A., 2012.					
2	Entrepreneurship. Roy, R., 2012. Oxford University Press					
3	Intellectual Property Law in India. Gupta, T. S., 2011. Kluwer Law International					
	Flow: The Psychology of Optimal Experience. Czikszentmihalyi, M., 2008. Harper Perennial					
4	Modern Classics					
5	Effectuation: Elements of Entrepreneurial Expertise. Sarasvathy, S. D., 2009. Edward Elgar					
5	Publishing Ltd.					

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	2	-	1	2	2	-	1
CO2	1	1	-	-	-	3	2	3	1	2	-	1
CO3	-	1	-	-	-	2	1	3	3	3	3	3
CO4	-	1	2	2	3	-	-	-	1	-	2	1

VI Semester							
	Professional Practice – II						
	Employability Skills and Professional Development of Engineers						
Co	urse Code	16HS68		CIE Marks: 50			
Credits: L:T:P		0:0:1		SEE Marks: 50			
Hours:		18 Hrs/Semester		CIE Duration: 02 Hrs			
Co	urse Learning	Objectives: The students	will be able to				
1	1 Improve qualitative and quantitative problem solving skills.						
2	2 Apply critical and logical thinking process to specific problems.						
2	Ability to verbally compare and contrast words and arrive at relationships between concepts, based						
3	3 on verbal reasoning.						
4	Applying good mind maps that help in communicating ideas as well as in technical documentation						

V Semester	
UNIT-I	
Aptitude Test Preparation- Importance of Aptitude tests, Key Components, Quantitative Aptitude – Problem Solving, Data Sufficiency, Data Analysis - Number Systems, Math Vocabulary, fraction decimals, digit places etc. Reasoning and Logical Aptitude, - Introduction to puzzle and games organizing information, parts of an argument, common flaws, arguments and assumptions. Analytical Reasoning, Critical Reasoning.	06 Hrs
UNIT-II	
Verbal Analogies - What are Analogies, How to Solve Verbal Analogies & developing Higher Vocabulary, Grammar, Comprehension and Application, Written Ability. Non- Verbal Reasoning, Brain Teasers. Creativity Aptitude. Group Discussion- Theory &Evaluation : Understanding why and how is the group discussion conducted, The techniques of group discussion, Discuss the FAQs of group discussion, body language during GD.	06 Hrs
UNIT-III.A	•
Resume Writing- Writing Resume, how to write effective resume, Understanding the basic essentials for a resume, Resume writing tips Guidelines for better presentation of facts.	06 Hrs
VI Semester	
UNIT-III.B	
Technical Documentation - Introduction to technical writing- Emphasis on language difference between general and technical writing, Contents in a technical document, Report design overview & format Headings, list & special notes, Writing processes, Translating technical information, Power revision techniques, Patterns & elements of sentences, Common grammar, usage & punctuation problems.	06 Hrs
UNIT-IV	
Interview Skills -a) Personal Interviews , b) Group Interviews , c) Mock Interviews - Questions asked & how to handle them, Body language in interview, Etiquette, Dress code in interview, Behavioral and technical interviews, Mock interviews - Mock interviews with different Panels. Practice on stress interviews, technical interviews, General HR interviews etc.	06 Hrs
UNIT-V	
Interpersonal Relations - Optimal Co-existence, Cultural Sensitivity, Gender sensitivity Adapting to the Corporate Culture- Capability & Maturity Model, Decision Making Analysis, Brain Storm. Adapting to the Corporate Culture.	06 Hrs

Course	Course Outcomes: After completing the course, the students will be able to				
CO1:	Inculcate employability skill to suit the industry requirement.				
CO2:	Analyze problems using quantitative and reasoning skills				
CO3:	Exhibit verbal aptitude skills with appropriate comprehension and application.				
CO4:	Focus on Personal Strengths and Competent to face interviews and answer				

Reference Books 1. The 7 Habits of Highly Effective People, Stephen R Covey Free Press, 2004 Edition, ISBN: 0743272455 2. How to win friends and influence people, Dale Carnegie General Press, 1st Edition, 2016, ISBN: 9789380914787 3. Crucial Conversation: Tools for Talking When Stakes are High, Kerry Patterson, Joseph Grenny,

Ron Mcmillan 2012 Edition, McGraw-Hill Publication ISBN: 9780071772204
4. Ethnus, Aptimithra: Best Aptitude Book ,2014 Edition, Tata McGraw Hill ISBN: 9781259058738

Scheme of Continuous Internal Examination and Semester End Examination

Phase	Activity	Weightage
Phase I	CIE will be conducted during the 5 th semester and evaluated for 50 marks.	50%
V Sem	The test will have two components. The Quiz is evaluated for 15 marks and	
	second component consisting of questions requiring descriptive answers is	
	evaluated for 35 marks. The test & quiz will assess the skills acquired through	
	the training module.	
	SEE is based on the test conducted at the end of the 5 th semester The test will	
	have two components a Quiz evaluated for 15 marks and second component	
	consisting of questions requiring descriptive answers is evaluated for 35	
	marks.	
Phase II	During the 6 th semester a test will be conducted and evaluated for 50 marks.	50%
VI Sem	The test will have two components a Short Quiz and Questions requiring	
	descriptive answers. The test & quiz will assess the skills acquired through	
	the training module.	
	SEE is based on the test conducted at the end of the 6 th semester The test will	
	have two components. The Quiz evaluated for 15 marks and second	
	component consisting of questions requiring descriptive answers is evaluated	
	for 35 marks	
Phase III	At the end of the VI Sem Marks of CIE (5 th Sem and 6 th Sem) is consolidated	for 50 marks
At the	(Average of Test1 and Test 2 (CIE 1+CIE2)/2.	
end of VI	At the end of the VI Sem Marks of SEE (5 th Sem and 6 th Sem) is consolidated	for 50 marks
Sem	(Average of CIE 1 and CIE 2 (CIE 1+CIE2)/2.	