

RV COLLEGE OF ENGINEERING

(An Autonomous Institution Affiliated to VTU, Belagavi)
Approved by AICTE, New Dehi, Accredited By NBA, New Dehi

RV Vidyaniketan Post, 8th Mile, Mysuru Road, Bengaluru--560 059.

Bachelor of Engineering (B.E)

ELECTRICAL & ELECTRONICS ENGINEERING

(2018 Scheme)

III & IV Semester

ACADEMIC YEAR 2020-2021

RV COLLEGE OF ENGINEERING

(An Autonomous Institution Affiliated to VTU, Belagavi) RV Vidyaniketan Post, 8th Mile, Mysuru Road, Bengaluru- -560 059.

2020 Ranked 70th in Engineering Category

One of the most preferred Technical Institutions

PROGRAMS OFFERED

B.E. Programs AS, BT, CH, CS, CV, EC, EE, EI, ET, IM, IS, ME.

M. Tech (16), MCA, M.Sc. (Engg.)

Ph.D. Programs: All Departments are recognized as

Research Centres by VTU

Best NCC Institution for Karnataka & Goa Directorate for the year 2017-19

Five RVCE Alumni cleared civil Services Exam in 2019-20

Ranked in top 10 Pvt. College in the country by various magazines

Ranked 3rd in Sports & **Cultural Activities** under VTU (2018-19)

Accredited

by

NBA

Use of ICT in Teaching Learning Process QEE e-Journals

(55 Course) e-Books NPTEL 9.300-Enral led 68th place in the country

(Jul-Oct-2019)

Wikispace

MODES

SWAYAM

MOODLE

Patents Conference **Publications** Filed Publications 936 1275 **Patents Patents** Published Granted

Holistic development of students through NCC, NSS Cultural activities, Community service & Sports.

Established Centre of Excellence in Macroelectronics & Internet of things

MoUs: 96+with Industries / Academic Institutions in India & abroad

Executed more than Rs. 40 crores worth sponsored research projects & consultancy works since 3 Years

UPSC Results (2019): RVCE - Alumni

Rahul Sharanappa Shankanur Name

Rank 17 Branch: ECE Batch 2012

Raghavendra Name

Rank 739 Branch : 2012 Batch

Harshavardhana B.J. Name

Rank 352 Branch: **CSE** 2015 Batch

Human Resource

Faculty with Industrial

Visiting Adjunct Faculty 07

Total Number of

Faculty with

Faculty Pursuing Ph.D. 122

Technical & Admin Staff 225

RVCE - Greaves Cotton Ltd Centre of excellence in e-mobility

RV COLLEGE OF ENGINEERING®

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus of III & IV Semesters

2018 SCHEME

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

Department Vision

Attain technical excellence in Electrical and Electronics Engineering through graduate programs and interdisciplinary research related to sustainability in power, energy and allied fields.

Department Mission

- To provide technical education that combines rigorous academic study and the excitement of innovation enabling the students to engage in lifelong learning
- To establish Centre of Excellence in sustainable electrical energy, smart grids and systems
- To establish tie-ups with industries and institutions of repute and to foster building up of a wide knowledge base to keep in tune with upcoming technologies.
- To motivate commitment of faculty and students to collate, generate, disseminate, persevere, knowledge and to work for the benefit of society.
- To develop simple, appropriate and cost effective inclusive technologies which are instrumental in the up-liftment of the rural society.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **PEO 1.** To provide a strong foundation in Mathematics, Science and Electrical & Electronics Engineering to comprehend, analyze, design, innovate and develop products for real world applications.
- **PEO 2.** To inculcate ethical attitude, effective communication skills, leadership qualities and team spirit for a successful professional career with concern for society.
- **PEO 3.** To provide a holistic academic environment to foster excellence, entrepreneurship and multidisciplinary approach to inculcate an aptitude for research and lifelong learning

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO	Description
PSO1	The B.E. EEE Program must demonstrate knowledge and competence in the application of circuit analysis, control systems, field theory, analog and digital electronics, Power Electronics, microcontrollers, microprocessors, Signal processing and conditioning, computer hardware and software to the design, building, testing, protection and operation of electrical machines, power systems, electrical and electronic systems.
PSO2	The B.E. EEE Program must demonstrate knowledge and competence in the application of basic sciences, rigorous mathematics and project management techniques in the design of complex electrical and electronic systems.
PSO3	The B.E. EEE Program must demonstrate the ability to effectively work in a team, communicate correctly and develop an ethical attitude and concern for society and environment.

Lead Society: Institute of Electrical and Electronics Engineers (IEEE)

ABBREVIATIONS

Sl. No.	Abbreviation	Meaning		
1.	VTU	Visvesvaraya Technological University		
2.	BS	Basic Sciences		
3.	CIE	Continuous Internal Evaluation		
4.	SEE	Semester End Examination		
5.	CE	Professional Core Elective		
6.	GE	Global Elective		
7.	HSS	Humanities and Social Sciences		
8.	CV	Civil Engineering		
9.	ME	Mechanical Engineering		
10.	EE	Electrical & Electronics Engineering		
11.	EC	Electronics & Communication Engineering		
12.	IM	Industrial Engineering & Management		
13.	EI	Electronics & Instrumentation Engineering		
14.	СН	Chemical Engineering		
15.	CS	Computer Science & Engineering		
16.	ET	Electronics and Telecommunication Engineering		
17.	IS	Information Science & Engineering		
18.	BT	Biotechnology		
19.	AS	Aerospace Engineering		
20.	PY	Physics		
21.	CY	Chemistry		
22.	MA	Mathematics		

INDEX

	III Semester				
Sl. No.	Sl. No. Course Code Course Title				
1.	18MA31B	Discrete and Integral Transforms	1		
2.	18BT32A	Environmental Technology	3		
3.	18EE33	Analog Electronic Circuits (common to EE, EI & ET)	5		
4.	18EC34	Analysis & Design of Digital Circuits (Common EC, EE, ET, EI)	8		
5.	18ET35	Principles of Electromagnetic Fields (Common to EC,EE & ET)	11		
6.	18EE36	Network Analysis (Common EC, EE, ET)	13		
7.	18DMA37	Bridge Course: Mathematics	15		
8.	18HS38	Kannada Course	K1		

	IV Semester			
Sl. No.	Course Code	Course Title	Page No.	
1.	18MA41B	Linear Algebra, Statistics and Probability Theory	19	
2.	18EC42	Engineering Materials (Common to EC,EE, ET & EI)	21	
3.	18EE43	Electrical Machines-I	23	
4.	18EI44	Microprocessor and Microcontroller (Common to EC,EE, ET & EI)	26	
5.	18ET45	Signals and Systems (Common to EC,EE, EI & ET)	29	
6.	18EE46	Control Systems	31	
7.	18EE47	Design Thinking lab		
8.	18DCS48	Bridge Course: C Programming	33	
9.	18HS49	Professional Practice-II Communication Skills	36	

	THIRD SEMESTER CREDIT SCHEME						
Sl.	Course Code	Course Title	BoS		it Allo	•	Total
No.	course coue	Course Title	Dos	L	T	P	Credits
1.	18MA31B*	Discrete and Integral Transforms	MA	4	1	0	5
2.	18BT32A**	Environmental Technology	BT	2	0	0	2
3.	18EE33	Analog Electronic Circuits (common to EE, EI & ET)	EE	4	0	1	5
4.	18EC34	Analysis & Design of Digital Circuits (Common EC, EE, ET & EI)	EC	4	0	1	5
5.	18ET35	Principles of Electromagnetic Fields (Common to EC, EE & ET)	ET	3	0	0	3
6.	18EE36	Network Analysis (Common EC, EE & ET)	EE	3	0	0	3
7.	18DMA37***	Bridge Course: Mathematics	MA	2	0	0	0
8.	18HS38V	Kannada Course: aadalitha kannada (18HS38A) / vyavaharika kannada (18HS38V)	HSS	1	0	0	1
	To	otal Number of Credits		21	1	2	24
	Total number of Hours/Week			21+2***	2	5	

*Engineering Mathematics - III

Sl.No	COURSE TITLE	COURSE CODE	PROGRAMMES
1.	Linear Algebra, Laplace Transform and	18MA31A	CS & IS
	Combinatorics		
2.	Discrete and Integral Transforms	18MA31B	EC, EE, EI & ET
3.	Engineering Mathematics -III	18MA31C	AS, BT, CH, CV, IM & ME

**

Sl. No	COURSE TITLE	COURSE CODE	PROGRAMMES
1.	Environmental Technology	18BT32A	EE, EC, EI, CS, ET & IS
2.	Biology for Engineers	18BT32B	BT & AS
3.	Engineering Materials	18ME32	ME, CH &IM

*** Bridge Course: Audit course for lateral entry diploma students

Sl.No	COURSE TITLE	COURSE CODE	PROGRAMS
1	Bridge Course Mathematics	18DMA37	AS,BT,CH,CV,EC,EE,EI,IM,ME& ET
2	Bridge Course C Programming	18DCS37	CS & IS

There are two text books prescribed by VTU for the kannada Course:

- 1. Samskruthika Kannada (AADALITHA KANNADA-18HS38A);
- 2. Balake Kannada (VYAVAHARIKA KANNADA-18HS38V);

The first text book is prescribed for the students who know kannada to speak, read and write (KARNATAKA STUDENTS). The second text book is prescribed for the students who do not understand the kannada language(NON KARNATAKA Students)

	FOURTH SEMESTER CREDIT SCHEME						
Sl.				Credit	Alloca	tion	Total
No	Course Code	Course Title	BOS	L	T	P	Credits
1.	18MA41B*	Linear Algebra, Statistics and Probability Theory	MA	4	1	0	5
2.	18EC42**	Engineering Materials (Common to EC, EE, ET & EI)	EC	2	0	0	2
3.	18EE43	Electrical Machines-I	EE	3	0	1	4
4.	18EI44	Microprocessor and Microcontroller (Common to EE, EE, ET & EI)	EI	3	0	1	4
5.	18ET45	Signals and Systems (Common to EC, EE, EI & ET)	ET	3	1	0	4
6.	18EE46	Control Systems (Common to EE & EI)	EE	3	0	0	3
7.	18EE47	Design Thinking lab	EE	0	0	2	2
8.	18DCS48***	Bridge Course: C Programming	CS	2	0	0	0
9.	18HS49	Professional Practice-II Communication Skills	HSS	0	0	1	1
	Total N	Number of Credits		18	2	5	25
	Total nur	mber of Hours/Week		18+2***	4	4+1	

*ENGINEERING MATHEMATICS – IV

Sl.No	COURSE TITLE	COURSE CODE	PROGRAMMES
1.	Graph Theory, Statistics and Probability Theory	18MA41A	CS&IS
2.	Linear Algebra, Statistics and Probability Theory	18MA41B	EC, EE, EI& ET
3.	Engineering Mathematics -IV	18MA41C	AS, CH, CV& ME

**

Sl.No	COURSE TITLE	COURSE CODE	PROGRAMMES
1.	Engineering Materials	18EC42	EC,EE,EI & ET
2.	Biology for Engineers	18BT42B	CS & IS
3.	Environmental Technology	18BT42A	CV, ME, IM,CH, BT &AS

*** Bridge Course: Audit course for lateral entry diploma students

Sl.No	COURSE TITLE	COURSE CODE	PROGRAMMES
1	Bridge Course Mathematics	18DMA48	CS&IS
2	Bridge Course C Programming	18DCS48	AS,BT,CH,CV,EC,EE,EI,IM,ME & ET

Note: Internship to be taken up during the vacation period after the $\mathbf{4}^{\text{th}}$ semester

• Bridge Course C programming will have 1 hour theory in lab

	Semester: III							
	DISCRETE AND INTEGRAL TRANSFORMS							
				(Theory)				
			(COMMO	N TO EC, EE, EI & ET)				
Cou	rse Code	:	18MA31B	CIE	:	100 Marks		
Credits: L:T:P		:	4:1:0	SEE	:	100 Marks		
Total Hours		:	52L+26T	SEE Duration	:	3.00 Hours		
Cou	rse Learning O	bje	ectives:					
1	Understand t	he	existence and basi	c concepts of Laplace, Fourier and z -	traı	nsforms.		
2	2 Demonstrate the concepts of Laplace transform to solve ordinary differential equations.							
3	3 Analyze the concept of periodic phenomena and develop Fourier series.							
4	4 Solve difference equations, interpret the physical significance of solutions.							
5								

Unit-I	10 Hrs
--------	--------

Laplace Transform:

Existence and uniqueness of Laplace transform (LT), transform of elementary functions, region of convergence. Properties - linearity, scaling, s - domain shift, differentiation in the s - domain, division by t, differentiation and integration in the time domain. LT of special functions - Periodic functions (square wave, saw-tooth wave, triangular wave, full & half wave rectifier), Heaviside unit step function, unit impulse function, t - shift property. Relevant MATLAB commands to develop additional insight into the concepts.

Unit – II 11 Hrs

Inverse Laplace Transform:

Definition, properties, evaluation using different methods. Convolution theorem (without proof), problems. Application to solve ordinary linear differential equations. Relevant MATLAB commands to develop additional insight into the concepts.

Unit -III 11 Hrs

Fourier Series:

Introduction, periodic function, even and odd functions. Dirichlet's conditions, Euler's formulae for Fourier series, complex Fourier series, problems on time periodic signals (square wave, half wave rectifier, saw-tooth wave and triangular wave), Fourier sine series, Fourier cosine series. Relevant MATLAB commands to develop Fouries series of functions.

Unit –IV 10 Hrs

Fourier Transform:

Fourier integral theorem, complex Fourier transform, Fourier sine transform, Fourier cosine transform, properties - linearity, scaling, time-shift and modulation. Convolution theorem (without proof), problems. Parseval's identity. Relevant MATLAB commands to develop additional insight into the concepts.

Unit –V 10 Hrs

Z-Transform:

Introduction, z - transform of standard functions, Region of convergence, properties - linearity, scaling, shifting theorem, initial and final value theorems. Inverse z - transform using power series and partial fraction expansions, convolution theorem (without proof), problems. Application to solve difference equations arising in communication and control systems. Relevant MATLAB commands to develop additional insight into the concepts.

Course	Course outcomes: On completion of the course, the student should have acquired the ability to					
CO1:	Understand the significance of fundamental concepts of transforms, inverse transforms					
	and periodic phenomena.					
CO2:	Demonstrate the properties of transforms and inverse transforms, graphical					
	representation of various wave forms.					
CO3:	Evaluate transforms of special functions, develop Fourier series of various type of					
	functions.					
CO4:	Apply transform techniques to solve differential equations and difference equations					

	occurring in engineering problems.						
Refer	Reference Books						
1	Higher Engineering Mathematics, B.S. Grewal, 44 th Edition, 2015, Khanna Publishers, ISBN: 978-81-933284-9-1.						
2	A Text Book of Engineering Mathematics, N.P. Bali & Manish Goyal, 7 th Edition, 2010,Lakshmi Publications, ISBN: 978-81-7008-992-6.						
3	Advanced Engineering Mathematics, Erwin Kreyszig, 9 th Edition, 2007, John Wiley & Sons, ISBN: 978-81-265-3135-6.						
4	Signals and systems, Simon Haykins and Barry Van Veen, 2 nd Edition, 2003, John Wiley & Sons, ISBN: 9971-51-239-4.						

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1
O	1	2	3	4	5	6	7	8	9	0	1	2
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	2	-	-	-	-	1	-	1
CO4	3	3	3	3	2	-	-	-	-	1	-	1

High-3: Medium-2: Low-1

	Semester: III							
ENVIRONMENTAL TECHNOLOGY (Theory)(Common to EC,EE,ET&EI)								
Cou	rse Code	:	18BT32A	CIE	:	50 Marks		
Credits: L:T:P		:	2:0:0	SEE	:	50 Marks		
Total Hours		:	27L	SEE Duration	:	1.5Hours		
Course Learning Objectives:								
1 Understand the various components of environment and the significance of the sustainability of healthy environment.								
2 Recognize the implications of different types of the wastes produced by natural and anthropogenic activity.								
3 Learn the strategies to recover the energy from the waste.								
4								

Unit-I 06 Hrs

Introduction: Environment - Components of environment, Ecosystem. Impact of anthropogenic activities on environment (agriculture, mining and transportation), Environmental education, Environmental acts & regulations, role of non-governmental organizations (NGOs), EMS: ISO 14000, Environmental Impact Assessment. Environmental auditing.

Unit – II 06 Hrs

Environmental pollution: Air pollution – point and non point sources of air pollution and their controlling measures (particulate and gaseous contaminants). Noise pollution, Land pollution (sources, impacts and remedial measures).

Water management: Water conservation techniques, water borne diseases & water induced diseases, arsenic & fluoride problems in drinking water and ground water contamination, advanced waste water treatment techniques.

Unit -III 06 Hrs

Waste management, Solid waste management, e waste management & biomedical waste management – sources, characteristics & disposal methods. Concepts of Reduce, Reuse and Recycling of the wastes. **Energy** – Different types of energy, conventional sources & non-conventional sources of energy, solar energy, hydro electric energy, wind energy, Nuclear energy, Biomass & Biogas Fossil Fuels, Hydrogen as an alternative energy.

Unit –IV 05 Hrs

Environmental design: Principles of Environmental design, Green buildings, green materials, Leadership in Energy and Environmental Design (LEED), soilless cultivation (hydroponics), organic farming, use of biofuels, carbon credits, carbon foot prints, Opportunities for green technology markets, carbon sequestration.

Unit –V 04 Hrs

Resource recovery system: Processing techniques, materials recovery systems, biological conversion (composting and anaerobic digestion). Thermal conversion products (combustion, incineration, gasification, pyrolysis, use of Refuse Derived Fuels). Case studies of Biomass conversion, e waste.

Course	ourse outcomes: On completion of the course, the student should have acquired the ability to					
CO1:	Identify the components of environment and exemplify the detrimental impact of					
	anthropogenic activities on the environment.					
CO2:	Differentiate the various types of wastes and suggest appropriate safe technological methods					
	to manage the waste.					
CO3:	Aware of different renewable energy resources and can analyse the nature of waste and					
	propose methods to extract clean energy.					
CO4:	Adopt the appropriate recovering methods to recover the essential resources from the wastes					

for reuse or recycling.

Refere	Reference Books						
1	Environmental Science, G. Tyler Miller, Scott Spoolman, 15th edition, 2012, Publisher: Brooks Cole, ISBN-13: 978-1305090446 ISBN-10: 130509044						
2	Environment Management., Vijay Kulkarni and T. V. Ramachandra 2009. TERI Press; ISBN: 8179931846, 9788179931844						
3	Environmental Engineering and Management, Suresh K. Dhameja 2010, Publisher:S.K. Kataria and sons . ISBN-10: 8185749450, ISBN-13: 978-8185749457.						
4	Environmental Systems Engineering, Linvil Gene Rich, 2003. McGraw-Hill; ISBN: 9780070522503						

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for experiential learning is 10. The total marks of CIE are 100.

The total CIE for theory is 15(Q)+30(T)+05(EL) = 50 marks

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	-	-	1
CO2	3	2	-	-	-	-	-	-	-	-	-	1
CO3	1	2	2	-	-	-	-	-	-	-	-	1
CO4	-	1	1	3	-	-	-	-	-	-	-	1

High-3: Medium-2: Low-1

	Semester: III						
	ANALOG ELECTRONIC CIRCUITS						
				(Theory & Practi	ice)		
				(Common to EE, ET	C & EI)		
Cou	rse Code	:	18EE33		CIE		100 + 50 Marks
Cred	lits: L:T:P	:	4:0:1		SEE	:	100 + 50 Marks
Tota	l Hours	:	50L+33P		SEE Duration	:	3.00+3.00Hours
Cou	rse Learning	Obj	ectives:				
1	To study an	d un	derstand the v	various biasing methods	s and ac models f	or tr	ansistors
2	2 To study different parameters and basic circuits of op-amps						
3	3 To design signal generation circuits, wave shaping circuits and active filters using Op-amps.						
4							

Unit-I 09 Hrs

Transistors Biasing: fixed bias and voltage divider bias. Bias stabilization, stability factor, Thermal runaway

BJT AC Analysis: Amplification in AC Domain, BJT Modelling- r_e model and Hybrid Equivalent Model for CE and CC configurations

MOSFET-Structure and characteristics, voltage divider bias for depletion and enhancement type MOSFETs

Unit – II 11 Hrs

Frequency response of BJT Amplifiers: General frequency considerations, Normalization process, low frequency analysis, high frequency response

Power Amplifiers: Series fed and Transformer coupled class A, class B and class AB amplifiers, IC TS472 power amplifier, heat sink for power amplifiers

Feedback Amplifiers: Characteristics of Feedback, Feedback Topologies, Analysis of series-series and series-shunt Feedback Amplifiers

Unit -III 11 Hrs

Operational amplifier: Internal Structure of Op-Amps, Parameters and Characteristics of Practical Op-Amps.

OP-AMPS Applications: Basic applications, Instrumentation amplifier, AC amplifier, V to I & I to V converters, Opamp circuits using diode, Sample & Hold

Schmitt trigger - regenerative comparator, Astable & mono - stable multi- vibrators.

Wave form generator: Square wave generator, Triangular wave generator and saw tooth-wave generator.

Unit –IV 10 Hrs

Active Filters

Comparison of Active and Passive filters. Butterworth filters(Butterworth function for n=2 and n=3), First order low and high pass filter, Second order Low and high pass filters, Butterworth second order low pass filters. Band pass filter (wide-band and narrow band), Band reject filters (wide-band and narrow band) and All-pass filter.

Oscillators: Principles of oscillators, Phase shift oscillator, Quadrature Oscillator, Three phase oscillator, Wein Bridge Oscillator

Unit –V 09 Hrs

Analog IC's And Applications: Voltage controlled oscillators-NE/SE-566, 555 Timer-functional block diagram, monostable and astable multivibrators and its applications, Digital to analog converters-R-2R ladder, weighted resistor D/A converters, IC D/A converters, Analog to digital converters-successive approximation A/D converter and IC A/D converter.

Voltage Regulators: Discrete Voltage Regulator, IC Voltage Regulators (IC 78XX, 79XX, LM317)

Lab Experiments:

- 1.RC coupled amplifier.
- 2.MOSFET Characteristics
- **3.** a. Design of inverting amplifier, non-inverting amplifier, integrator using IC 741 b. Basics of PSPICE
- **4.**Study the working of half wave and full wave Precision Rectifiers using operational amplifier IC741
- 5. Design and implementation of peak detector and clamming circuit
- **6.** Design and implement a Schmitt trigger circuit for given UTP & LTP using op-amp.
- **7.**Design and implementation square and ramp wave generators for given frequency using operational amplifier IC 741
- **8.**Design and simulation of First order High pass filter, Low pass filter, wide Band Pass filter and wide Band reject filter for the given pass band gain and cut-off frequency and plot the frequency response.
- **9.**a. Design and implement a Astable multivibrator for a given frequency and duty cycle using NE555 Timer.
 - b. Design of Monostable multivibrator for a given frequency using NE555 timer
- **10.** Realization of 4 bit DAC using R-2R ladder network and asynchronous decade Counter IC 7490.
- 11. Design of Voltage Regulator using IC 7900

Design of analog circuits using PSPICE

- 12. Schmitt trigger circuit for given UTP & LTP
- **13.** First order High pass filter, Low pass filter, wind Band Pass filter and wide Band reject filter for the given pass band gain and cut-off To plot the frequency response.
- **14.** Generation of ramp wave for a given frequency using NE555 timer. Implement FSK modulator using IC 555.

Course	Course outcomes: On completion of the course, the student should have acquired the ability to					
CO1:	Understand and Remember the basic fundamentals of transistor biasing and operational					
	amplifiers					
CO2:	Analyze the performance of Op-amp and build simple circuits using op-amps					
CO3:	Apply the concepts to design various applications of op-amps					
CO4:	Design a complete analog electronic system using various analog IC's for a specific					
	application.					

Refere	ence Books
1	Electronic Devices and Circuits theory, Robert L. Boylestead, Louis Nashelsky, 11th Edition, 2009, Pearson. ISBN-10: 0-495-66772-2
2	Microelectronics circuits Analysis and Design, M.H Rashid, 2 nd Edition, 2011, Thomson, ISBN:0-534-95174-0
3	Microelectronics circuits, Sedra & Smith, 5 th Edition, 2004, Publisher: Oxford University Press, <i>ISBN</i> -13: 978-0195338836
4	Microelectronics,, Millman & Grabel: 2 nd Edition, 2011, Publisher: Mcgraw Hill <i>ISBN13:9780074637364</i> .

Continuous Internal Evaluation (CIE): Total marks: 100+50=150 Theory – 100 Marks

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. The total CIE for theory is 100.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) + 10(T) + 10(IE) = 50 Marks.

Semester End Evaluation (SEE): Total marks: 100+50=150 Theory – 100 Marks

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	1	1	-	1	-	1	1	-	1	1	1		
CO2	2	1	2	1	1	1	-	2	1	2	-	2		
CO3	1	1	1	2	2	-	-	-	1	2	-	1		
CO4	2	2	3	2	3	1	2	-	2	3	2	1		

High-3: Medium-2: Low-1

	Semester: III											
	ANALYSIS & DESIGN OF DIGITAL CIRCUITS											
	(Theory & Practice)											
			(Com	mon to EC, EE, ET	& EI)							
Cou	rse Code	:	18EC34		CIE	:	100 + 50 Marks					
Cred	lits: L:T:P	:	4:0:1		SEE	:	100 + 50 Marks					
Tota	l Hours	:	50L+33P		SEE Duration	:	3.00+3.00 Hours					
Cou	rse Learning C)bje	ectives:									
1			ous types of logic sions, simplificati	families, explain the on techniques	concept logic funct	ion	s, SOP, POS and					
2				ional circuit building oders, Arithmetic Cir								
3	3 Implement different sequential circuits using various flip flops to realize state machines for given timing behavior.											
4	Analyze processequential circ		0	d design arithmetic &	& logic unit by usin	ıg c	ombinational &					

Unit-I	09 Hrs
OIIIt-I	02 1113

Digital Integrated Circuits: Digital IC Logic Families: Transistor-Transistor Logic (Totem pole TTL), Emitter Coupled Logic (ECL), Complementary MOS (CMOS) Logic.

Characteristics and Performance Parameters of CMOS Inverter: Introduction, Propagation delay, Sourcing, Sinking, Fan-in, Fan-out, V_{IH}, V_{OH}, V_{IL}, V_{OL} and corresponding currents, Noise margin, Power dissipation, power consumption, power-delay product as a figure of merit. Simplification Techniques: 5-

variable K-Map, Quine-McClusky Minimization, Numerical Examples.

Unit – II 11 Hrs

Combinational Circuits Design and Analysis:

Parallel Adder/Subtractor using IC 7483, Decoders, Encoders, Multiplexers and De-Multiplexers, Priority

encoder and Magnitude comparator, Arithmetic circuits and code converters using Multiplexers and Decoders, Concepts of ripple carry and carry look ahead adders, BCD adder.

Unit -III 11Hrs

Sequential Circuits Design and Analysis-I: Introduction, Latches and Flip Flops, Triggering of Flip Flops, Flip Flop Excitation Tables, Flip-Flop conversions, Registers, Shift Registers and Various Operations, Ring counters, Johnson counters, Ripple Counters.

Unit –IV 10 Hrs

Sequential Circuits Design and Analysis II: Introduction, FSM (Melay and Moore), Analysis of Clocked Sequential Circuits, State table and Reduction, Design of synchronous Counters, Programmable counters. Design with State Equations, Sequence generators, PRBS generator and Sequence detectors.

Unit –V 09 Hrs

Design of a Processor Unit:

Introduction, Processor Organization, Arithmetic Logic Unit, Design of Arithmetic Unit, Design of Logic unit, Design of Arithmetic and Logic unit, Status Register, Design of Shifter, The Complete Processor unit and op-code generation.

Laboratory Experiments for Practice:

Note:

- a) Out of ten experiments, for seven experiments manual will be provided. Each of these would also include practice experiments. Last three experiments are case studies and are compulsory.
- b) Practice questions: Students should prepare and design in advance and practice in the lab.

List of Experiments:

- 1. a) Realization of Binary Adder and Subtractor using universal gates and IC-7483.
- b) Practice Question: (i) Design a parallel binary subtractor to get actual difference based on the value of C_{OUT} . (ii) Design incrementor and decrementor circuits using **IC-74LS83**
 - 2. a) Arithmetic circuits- Realize the given Boolean expressions using MUX/DEMUX using IC-74LS153, IC-74LS139.
 - b) Practice Question: Realize FA/FS using MUX/DEMUX.
 - 3. a) Code convertors i) Binary to Gray ii) Excess-3 to Binary
 - b) Practice Question (i) Binary to excess-3 using IC-74LS83 (ii) Binary to Gray using Decoder
 - 4. a) Design a two-bit magnitude comparator using logic gates.
 - b) Drive the LED Display using IC-74LS47.
 - c) Practice Question: Design an n-bit comparator using **IC-74LS85** (make use of cascading facility).
 - 5. a) Design a Master-Slave JK-FF using NAND gates. Also design D-FF and T-FF using same. Observe the waveform using CRO.
 - b) Practice Question: Observe the race around condition using Master alone.
 - 6. a) Realization of asynchronous mod-n counter using IC-74LS90, IC-74LS93.
 - b) Using IC-74LS95 perform SISO, SIPO, PISO, PIPO, Shift left operations.
 - c) Design ring and Johnson counter using IC-74LS95
 - d) Practice Question: Design mod-99 counter using IC-74LS90.
 - 7. a) Design of synchronous up/down counter using IC-74LS76.
 - b) Design a synchronous counter to count given sequence
 - c) Using pre-settable counters IC-74LS192/LS193 perform mod-n counts.
 - d) Practice Question: Design Mod-n counter using above mentioned IC's.
 - 8. Design a priority encoder for driving Flash ADC and hexadecimal number conversion.
 - 9. Using IC-74LS192/LS193, drive the LED display.
 - 10. Design control logic for any two specified ALU operation.

Course or	utcomes: On completion of the course, the student should have acquired the ability to
CO1:	Apply the knowledge of digital electronics to construct combinational and sequential subsystems useful for digital system designs.
CO2:	Develop a solution to real-life problems based on the knowledge of digital electronics.
CO3:	Demonstrate the engineering solutions using methodology obtained through extensive research with the help of modern engineering tools owing to the ethical responsibilities.
CO4:	Analyze and update the earned knowledge for obtaining sustainable solutions for technological enhancements in the field of digital electronics.

Refer	ence Books
1	Digital Logic and Computer Design, M. Morris Mano, 13th Impression, 2011, Pearson Education Inc., ISBN: 978-81-7758-409-7.
2	Fundamentals of Logic Design, Charles H. Roth (Jr.), 4th Edition, 1992, West publications, ISBN-13: 978-0-314-92218-2.
3	Digital Fundamentals, Thomas Floyd, 11 th Edition, 2015, Pearson Education India, ISBN 13: 978-1-292-07598-3.
4	Digital Principle and Design, Donald D. Givone, Edition illusfree, 2007, McGRaw Hill, ISBN 0071195203, 978007119520
5	Digital Principles and Applications, Albert Paul Malvino and Donald P Leach, 7Th Edition,
	2011, Tata McGraw Hill Education Private Limited, ISBN (13 digit): 978-0-07-014170-4 and
	ISBN (10 digit): 0-07-014170-3

Continuous Internal Evaluation (CIE): Total marks: 100+50=150 Theory -100 Marks

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. The total CIE for theory is 100.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks. The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) + 10(T) + 10(IE) = 50 Marks.

Semester End Evaluation (SEE): Total marks: 100+50=150 Theory -100 Marks

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	1	1	1	-	-	-	-	2	1	3		
CO2	3	2	3	2	3	3	2	2	2	2	1	2		
CO3	3	3	3	3	3	3	3	3	3	2	3	3		
CO4	3	3	3	3	1	3	-	-	-	1	1	3		

High-3: Medium-2: Low-1

	Semester: III										
	PRINCIPLES OF ELECTROMAGNETIC FIELDS										
				(Theory)							
			(Com	mon to EE, EC, ET)							
Cou	Course Code : 18ET35 CIE : 100 Marks										
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks				
Tota	l Hours	:	40L		SEE Duration	:	3.00 Hours				
Cou	rse Learning C	bje	ectives:								
1	Apply knowle	dge	e of mathematics, sc	ience, and engineering	g basics to the analys	sis a	and design of				
	electrical systems involving electric and magnetic fields as well as electromagnetic waves.										
2											
3	Develop and o	lesi	gn mathematical mo	odels of communication	on channels						

Unit-I 08 Hrs

Electrostatics 1: Coulomb's law, illustrative examples, Electric Field Intensity, Applications (field due to Line charge distribution, Surface charge distribution- Sheet, Circular ring, disk), Illustrative examples. Flux, flux density, Gauss's Law, Divergence Theorem(qualitative treatment), Application of Gauss's Law (Field due to Continuous Volume Charge, Line Charge, Sheet Charge, Metal Sphere, Spherical shell) Illustrative examples.

Unit – II 09 Hrs

Electrostatics-2: Electric Potential, Relation between E and V, Applications (Field and potential due to Line charge distribution, Surface charge distribution- sheet), Energy Density in an Electric Field, Illustrative examples. Boundary Conditions (dielectric-dielectric, dielectric-conductor), Poisson's and Laplace's Equations, Applications of Laplace's and Poisson's Equations (Different capacitors), Illustrative examples.

Unit -III 09 Hrs

Magneto Static Fields-1: Current, Current density, Biot -Savart Law, Applications (Infinite linear conductor, current carrying in loop, solenoid), Magnetic Flux and Flux Density, Ampere's Circuital Law, Stroke's theorem (qualitative treatment), Applications (Infinite line current, sheet current, coaxial transmission line), Problems.

Unit –IV 07 Hrs

Magneto Static Fields-2: Magnetic potentials, Magnetic energy, Magnetic Boundary Conditions, Force due to magnetic fields(Charged particle, Current element), Lorentz Force equation.

Maxwell's Equations: Introduction, Faraday's Law, Transformer and Motional EMFs, Displacement Current, Maxwell's Equations in Final Forms, Time-Varying Potentials, Time-Harmonic Fields, Illustrative examples

Unit –V 07 Hrs

Electromagnetic Waves: Introduction, Waves in General, Wave Propagation in Lossy Dielectrics, Plane Waves in Lossless Dielectrics, Plane Waves in Free Space, Plane Waves in Good Conductors, Power and the Poynting Vector, Numericals Reflection and transmission: Normal incidence and oblique incidence. Illustrative examples.

Course	Course outcomes: On completion of the course, the student should have acquired the ability to								
CO1:	CO1: Understand the basic concepts of electric fields, magnetic fields and electromagnetic waves.								
CO2:	Apply the basic concepts to solve complex problems in electric fields, magnetic fields and								
	electromagnetic waves.								
CO3:	Analyze different charge and current configurations to derive the electromagnetic field								
	equations								
CO4 :	Design simple solutions for applications in electric and electronic circuits, electrical machines								
	and communication systems.								

Refer	ence Books
1	Principles of Electromagnetics, Matthew N O Sadiku, 4th edition, 2007, Oxford University Press, JSBN: 9780198062295, 019806229X
2	Field and Wave Electromagnetics, David K. Cheng, 2 nd Edition, 1989, Pearson Education Asia, Indian Reprint 2001, ISBN: 9789332535022/9788177585766, 8177585762
3	Electro magnetics with Applications, John Krauss and Daniel A. Fleisch, William C Brown Pub, 5th Edition, 1999. ISBN-13: 978-0072899696
4	Engineering Electromagnetics, William H. Hayt Jr. and John A. Buck, 6 th Edition, 2001, Tata McGraw Hill, ISBN-13: 978-0071202299

Continuous Internal Evaluation (CIE): Total marks: 100 Theory – 100 Marks

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. The total CIE for theory is 100.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE): Total marks: 100 Theory – 100 Marks

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping														
CO/PO	CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12														
CO1	3	2	-	-	-	-	-	-	-	1	-	1			
CO2	2	2	2	1	-	-	-	-	-	1	-	1			
CO3	1	3	2	2	2	-	-	-	-	1	-	1			
CO4	2	3	3	3	2	-	-	-	-	1	-	1			

High-3: Medium-2: Low-1

	Semester: III												
	NETWORK ANALYSIS (Common to EE, EC & ET)												
Com	rse Code	:	18EE36		CIE	:	100 Marks						
	lits: L:T:P	:	3:0:0		SEE	:	100 Marks						
Tota	l Hours	:	40L		SEE Duration	:	3.00 Hours						
Cou	rse Learning ()bje	ectives:										
1	Apply knowled electrical circ			ience, and engineering	g to the analysis and	des	sign of						
2				olve networks and co	mplex networks using	g ne	etwork						
	theorems and	cor	ncept of dot conventi	ion used in practice.									
3				to balanced three-ph	ase supply and under	staı	nd the						
	concept of neutral shift.												
4	Find the time	cor	nstants, initial and fin	nal values, and comp	lete responses for RL	C c	ircuits under						
	ac and do excitations												

3	Analyze unbalanced loads connected to balanced three-phase supply and understand the concept of neutral shift.	e
4	Find the time constants, initial and final values, and complete responses for RLC circui ac and dc excitations.	ts under
	Unit-I	08 Hrs
Prac	tical sources, source transformation, source shifting, Loop and Node analysis with linear	
depe	endent and independent sources for DC and AC networks. Principle of duality.	
	Unit – II	08 Hrs
Netv	work Theorems:	
Supe	erposition, Reciprocity, Thevenin's, Norton's, Maximum Power transfer and Millman's the	heorems.
Dot	convention: Analysis of coupled circuits, problems on the above, series and parallel circ	cuits.
	Unit -III	08 Hrs
Poly	phase Circuits: Analysis of unbalanced loads connected to balanced three-phase supply	, neutral
shift	. Two port networks: Z, Y, ABCD and Hybrid parameters, their inter relationship and no	umerical
prob	lems	
	Unit –IV	08 Hrs
Reso	onance in Networks: Series and parallel resonance, Q-factor, Bandwidth. Response by v	arying
f, L,	C.	•
Tra	nsient Behavior and Initial Conditions: Behavior of circuit elements under switching c	onditions
	their representation. Evaluation of initial and final conditions in R-L, R-C and R- L-C	
	OC and AC excitations.	
	Unit –V	08 Hrs

Laplace Transformation and Applications: Definition, Laplace and inverse Laplace transforms of standard functions, shifting theorem. Waveform synthesis, initial and final value theorems. Impulse function, Convolution theorem, Network functions of single port & two port networks-Driving point

& transfer functions (immetence function).

Course	Course outcomes: On completion of the course, the student should have acquired the ability to					
CO1:	CO1: Understand the basic concepts of circuits, theorems, three phase unbalanced circuits and					
	waveform synthesis.					
CO2:	Apply the basic concepts and solve circuits with DC or AC excitation and coupled circuits using theorems and transformations					
CO3:	Compare the steady state and transient response of a circuit through application of inverse					
	transformation and shifting theorems					
CO4:	Design and implement a circuit as per the given specifications and constraints.					

Refere	Reference Books							
1	Network Analysis, M.E Van Valkenberg, , 3 rd Edition, Reprint 2002, PHI, <i>ISBN</i> 81-7808-729-42.							
2	Engineering Circuit Analysis, Hayt, Kemmerly and Durbin, 6 th Edition, 2002,TMH, <i>ISBN</i> -10: 0071122273.							
3	Electric circuits, Joseph Edminister and Mahmood Nahvi, 3 rd Edition,2001, TMH, ISBN:0074635913							

Network Theory, K Channa Venkatesh, D Ganesh Rao, 1st Edition, Pearson Education, 2012, ISBN-13 - 978813173231197

Continuous Internal Evaluation (CIE): Total marks: 100 Theory -100 Marks

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. The total CIE for theory is 100.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE): Total marks: 100

Theory – 100 Marks

4

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	1	1	1	1	-	2	2	-	1
CO2	2	2	2	2	1	1	1	-	2	1	-	1
CO3	3	3	2	2	2	1	1	-	2	2	-	1
CO4	3	3	2	1	1	1	1	-	2	1	-	1

High-3: Medium-2: Low-1

	Semester: III								
	MATHEMATICS								
	Bridge Course								
			(COMN	ION TO ALL BRAN	CHES)				
Cou	rse Code	:	18DMA37		CIE	:	50 Marks		
Cred	lits: L:T:P	:	2:0:0		SEE	:	50 Marks		
Aud	lit Course				SEE Duration	:	2.00 Hours		
Cou	rse Learning C)bje	ectives:						
1	1 Understand the concept of functions of several variables, types of derivatives involved with these functions and its applications, approximate a function of single variable in terms of infinite series.								
2	Acquire concept Cartesian coord			scalar fields and differen	tial calculus of vector	funct	ions in		
3	3 Explore the possibility of finding approximate solutions using numerical methods in the absence of analytical solutions of various systems of equations.								
4	4 Recognize linear differential equations, apply analytical techniques to compute solutions.								
5	5 Gain knowledge of multiple integrals and their applications.								
6	Use mathemati	cal	IT tools to analyze	and visualize the above c	oncepts.				

Unit-I	05 Hrs
D'00 4' 1 C 1 1	

Differential Calculus:

Taylor and Maclaurin series for function of single variable. Partial derivatives – Introduction, simple problems. Total derivative, composite functions. Jacobians – simple problems.

Unit – II 05 Hrs

Vector Differentiation:

Introduction, simple problems in terms of velocity and acceleration. Concepts of gradient, divergence – solenoidal vector function, curl – irrotational vector function and Laplacian, simple problems.

Unit -III 06 Hrs

DIFFERENTIAL EQUATIONS

Higher order linear differential equations with constant coefficients, solution of homogeneous equations - Complementary functions. Non homogeneous equations –Invers differential operator Methods of finding particular integral based on input function (force function).

Unit –IV 05 Hrs

NUMERICAL METHODS

Solution of algebraic and transcendental equations – Intermediate value property, Newton-Raphson method. Solution of first order ordinary differential equations – Taylor series and 4th order Runge-Kutta methods. Numerical integration – Simpson's 1/3rd, 3/8th and Weddle's rules. (All methods without proof).

Unit –V 05 Hrs

MULTIPLE INTEGRALS

Evaluation of double integrals, change of order of integration. Evaluation of triple integrals. Applications – Area, volume and mass – simple problems.

Course	Course outcomes: On completion of the course, the student should have acquired the ability to								
CO1:	Understand the concept of partial differentiation, double integrals, vector								
	differentiation, solutions of higher order linear differential equations and requirement								
	of numerical methods.								
CO2:	Solve problems on total derivatives of implicit functions, Jacobians, homogeneous								
	linear differential equations, velocity and acceleration vectors.								
CO3:	Apply acquired knowledge to find infinite series expansion of functions, solution of								
	non-homogeneous linear differential equations and numerical solution of equations.								
CO4:	Evaluate triple integrals, area, volume and mass, different operations using del								

operator on scalar and vector point functions, numerical solution of differential equations and numerical integration.

Refere	ence Books
1	B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 44 th Edition, 2015, ISBN: 978-81-933284-9-1.
2	Higher Engineering Mathematics, B.V. Ramana, 11 th Edition, 2010, Tata McGraw-Hill, ISBN: 978-0-07-063419-0.
3	N.P. Bali & Manish Goyal, A Text Book of Engineering Mathematics, Lakshmi Publications, 7 th Edition, 2010, ISBN: 978-81-31808320.
4	Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, 10 th Edition, 2016, ISBN: 978-0470458365.

Continuous Internal Evaluation (CIE); Theory (50 Marks)

CIE is executed by way of quizzes (Q) and tests (T). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. The two tests are conducted for 30 marks each and the sum of the marks scored from two tests is reduced to 30. **Total CIE** is 20(Q) + 30(T) = 50 Marks.

Semester End Evaluation (SEE); Theory (50 Marks)

SEE for 50 marks is executed by means of an examination. The Question paper for the course consists of five main questions, one from each unit for 10 marks adding up to 50 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Semester: III VYAVAHARIKA KANNADA (Common to all branches) **Course Code** 18HS38V CIE 50 Marks Credits: L:T:P : 1:0:0 SEE : 50 Marks Total Hours CIE Duration 16Hrs 90 Minutes Course Learning Objectives of Vyavaharika Kannada: The students will be able to Motivate students to learn Kannada language with active involvement. Learn basic communication skills in Kannada language (Vyavaharika Kannada). 2 Importance of learning local language Kannada. 3 VYAVAHARIKA KANNADA (BALAKE Kannada) (to those students who does not know Kannada) Unit-I 4Hrs **Parichaya(Introduction):** Necessity of learning local language, Tips to learn the language with easy methods, Hints for correct and polite conversation, History of kannada language. Unit - II 4Hrs Kannada alphabtets and Pronunciation: Kannada aksharmale, Kannada stress letters (vattakshara), Kannada Khagunitha, Pronunciation, memorisation and usage of the Kannada letters. Unit – III 4Hrs Kannada vocabulary for communication: Singular and Plural nouns, Genders, Interrogative words, Antonyms, Inappropriate pronunciation, Number system, List of vegetables, Fractions, Menu of food items, Names of the food items, words relating to time, words relating to directions, words relating to human's feelings and emotion, Parts of the human body, words relating to relationship. Unit -IV 4Hrs **Kannada Grammar in Conversations:** Nouns, Pronouns, Use of pronouns in Kannada sentences, Adjectives and its usage, Verbs, Adverbs, Conjunctions, Prepositions, Questions constructing words, Simple communicative sentences in kannada. Activities in Kannada, Vocabulory, Conversation. Course Outcomes: After completing the course, the students will be able to Usage of local language in day today affairs. Construction of simple sentences according to the situation. Usage of honorific words with elderly people. Easy communication with everyone. **Reference Books:** Vyavaharika Kannada patyapusthaka, L. Thimmesh, and V. Keshavamurthy, Visveshvaraya University, Belgaum. Kannada Kali, K. N. Subramanya, S. Narahari, H. G. Srinivasa Prasad, S. Ramamurthy and S. Sathyanarayana, 5th Edition, 2019, RV College of Engineering Bengaluru.

Spoken Kannada, Kannada Sahithya Parishat, Bengaluru.

ವ್ಯಾವಹಾರಿಕ ಕನ್ನಡ (Kannada Version)	
ಅಧ್ಯಾಯ $-\mathbf{I}$	4Hrs
ಸ್ಥಳೀಯ ಅಥವಾ ಪ್ರಾದೇಶಿಕ ಭಾಷಾ ಕಲಿಕೆಯ ಅವಶ್ಯಕತೆ, ಭಾಷಾ ಕಲಿಕೆಯ ಸುಲಭ ವಿಧಾನಗಳು, ಸಂಭಾಷಣೆಗಾಗಿ ಸುಲಾ ಕನ್ನಡ ಭಾಷೆಯ ಇತಿಹಾಸ.	ನ ಸೂಚ್ಯಗಳು
ಅಧ್ಯಾಯ – II	4Hrs
ಕನ್ನಡ ಅಕ್ಷರಮಾಲೆ ಹಾಗೂ ಉಚ್ಛಾರಣೆ:	
ಕನ್ನಡ ಅಕ್ಷರಮಾಲೆ, ಒತ್ತಕ್ಷರ, ಕಾಗುಣಿತ, ಉಚ್ಚಾರಣೆ, ಸ್ವರಗಳು ಉಚ್ಚಾರಣೆ, ವ್ಯಂಜನಗಳ ಉಚ್ಚಾರಣೆ.	
ಅಧ್ಯಾಯ $-\mathbf{III}$	4Hrs

ಸಂಭಾಷಣೆಗಾಗಿ ಕನ್ನಡ ಪದಗಳು:

ಏಕವಚನ, ಬಹುವಚನ, ಲಿಂಗಗಳು (ಸ್ತ್ರೀಲಿಂಗ, ಪುಲ್ಲಿಂಗ) ಪ್ರಶ್ನಾರ್ಥಕ ಪದಗಳು, ವಿರುದ್ಧಾರ್ಥಕ ಪದಗಳು, ಅಸಮಂಜಸ ಉಚ್ಚಾರಣೆ, ಸಂಖ್ಯಾ ವ್ಯವಸ್ಥೆ, ಗಣಿತದ ಚಿಹ್ನೆಗಳು, ಭಿನ್ನಾಂಶಗಳು.

ತರಕಾರಿಗಳ ಹೆಸರುಗಳು, ತಿಂಡಿಗಳ ಹೆಸರುಗಳು, ಆಹಾರಕ್ಕೆ ಸಂಬಂಧಿಸಿದ ಪದಗಳು, ಕಾಲ/ಸಮಯಕ್ಕೆ ಸಂಬಂಧಿಸಿದ ಪದಗಳು, ದಿಕ್ಕುಗಳ ಹೆಸರುಗಳು, ಭಾವನೆಗೆ ಸಂಬಂಧಿಸಿದ ಪದಗಳು, ಮಾನವ ಶರೀರದ ಭಾಗಗಳು, ಸಂಬಂಧದ ಪದಗಳು, ಸಾಮಾನ್ಯ ಸಂಭಾಷಣೆಯಲ್ಲಿ ಬಳಸುವಂತಹ ಪದಗಳು.

4Hrs

ಅಧ್ಯಾಯ -IV

ಸಂಭಾಷಣಯಲ್ಲ	ಕನ್ನಡ ಬಳಕ:					
ನಾಮಪದಗಳು,	ಸರ್ವನಾಮಗಳು,	ನಾಮವಿಶೇಷಣಗಳು,	ಕ್ರಿಯಾಪದಗಳು,	ಕ್ರಿಯಾವಿಶೇಷಣಗಳು,	ಕನ್ನಡದಲ್ಲಿ	ಸಂಯೋಜನೆಗಳು,
ಉಪಸರ್ಗಗಳು,	ಪ್ರಶ್ನಾರ್ಥಕ ಪದಗಳು	, ವಿಚಾರಣೆಯ / ವಿಚಾ	ರಿಸುವ / ಬೇಡಿಕೆಂ	ಯ ವಾಕ್ಯಗಳು. ಕನ್ನಡದಲ್ಲ	ಲ್ಲಿ ಚಟುವಟಿಕೆ	ಗಳು,
ಶಬ್ಧಕೋಶ, ಸಂ	ುಭಾಷಣೆ.					

ವ್ಯವಹಾರಿಕ ಕನ್ನಡದ ಕಲಿಕಾ ಫಲಿತಾಂಶಗಳು : CO1: ನಿತ್ಯ ಜೀವನದಲ್ಲಿ ಆಡುಭಾಷೆಯ ಬಳಕೆ. CO2: ಸಂದರ್ಭ, ಸನ್ನಿವೇಶಕ್ಕನುಗುಣವಾಗಿ ಸರಳ ಕನ್ನಡ ವಾಕ್ಯಗಳ ಬಳಕೆ. CO3: ಗೌರವ ಸಂಬೋಧನೆಯ ಬಳಕೆ. CO4: ಇತರರೊಡನೆ ಸುಲಭ ಸಂವಹನ.

ಆಧಾರ	ಪುಸ್ತಕಗಳು :
1	ವ್ಯವಹಾರಿಕ ಕನ್ನಡ ಪಠ್ಯಪುಸ್ತಕ, ಎಲ್.ತಿಮ್ಮೇಶ್ ಮತ್ತು ವಿ.ಕೇಶವಮೂರ್ತಿ, ಪ್ರಸಾರಾಂಗ, ವಿಶ್ವೇಶ್ವರಯ್ಯ ತಾಂತ್ರಿಕ ವಿದ್ಯಾಲಯ, ಬೆಳಗಾಂ.
2	ಕನ್ನಡ ಕಲಿ, ಕೆ.ಎನ್.ಸುಬ್ರಹ್ಮಣ್ಯಂ, ಎನ್.ಎಸ್.ನರಹರಿ, ಎಚ್.ಜಿ.ಶ್ರೀನಿವಾಸ 'ಪ್ರಸಾದ್, ಎಸ್.ರಾಮಮೂರ್ತಿ ಮತ್ತು ಎಸ್.ಸತ್ಯನಾರಾಯಣ, 2ನೇ ಮುದ್ರಣ 2019, ರಾ.ವಿ.ತಾಂತ್ರಿಕ ಮಹಾವಿದ್ಯಾಲಯ, ಬೆಂಗಳೂರು.
3	ಮಾತನಾಡುವ ಕನ್ನಡ, ಕನ್ನಡ ಸಾಹಿತ್ಯ ಪರಿಷತ್, ಬೆಂಗಳೂರು.

Continuous Internal Evaluation (CIE); (50 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Activity. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks and the sum of the marks scored from two quizzes is reduced to 10. The two tests are conducted for 50 marks each and the sum of the marks scored from two tests is reduced to 30. The marks component for Activity is 10. Total CIE is 10(Q) + 30(T) + 10(A) = 50 Marks.

Semester End Evaluation (SEE); Theory (50 Marks)

SEE for 50 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of only objective type questions for 40 marks covering the complete syllabus. Part – B consists of essay type questions for 10 marks.

				Semester: III			
				AADALITHA KANNA	ADA		
				(Common to all branc	hes)		
Cours	se Code	:	18HS38A	,	CIE	:	50 Marks
Credi	ts: L:T:P	:	1:0:0		SEE	:	50 Marks
Total	Hours	:	16Hrs		CIE Duration	:	90 Minutes
				ಆಡಳಿತ ಕನ್ನಡ (ಕನ್ನಡಿಗರಿಗಾ	ስ ስ)		
ಆಡಳಿತ	ಭಾಷಾ ಕಲಿಕೆಯ	ಉ	ದ್ದೇಶಗಳು: ವಿದ್ಯಾ	_{ತಿ} ರ್ಥಿಗಳಲ್ಲಿ			
1	ಆಡಳಿತ ಕನ್ನಡದ	<u>ಪ</u>	ರಿಚಯ ಮಾಡಿಕೆ	ೂಡುವುದು.			
2	ಕನ್ನಡ ಭಾಷೆಯ	ವಾ	್ಯಕರಣದ ಬಗ್ಗೆ ಆ	ಶಿರವು ಮೂಡಿಸುವುದು.			
3	ಕನ್ನಡ ಭಾಷಾ	ಒ	- ುರಹದಲ್ಲಿ ಕಂಡ	ಶುಬರುವ ದೋಷಗಳು ಹಾಗೂ ಅಾ	ವುಗಳ ನಿವಾರಣೆ ಮತ್ತು	ಲೇ	ಖನ ಚಿಹ್ನೆಗಳನ
	್ನ ಪರಿಚಯಿಸುವುದ				ے		٩
4	ಸಾಮಾನ್ಯ ಅರ್ಜಿ	-ಗಳು	, ಸರ್ಕಾರಿ ಮತ	ು __ ಅರೆಸರ್ಕಾರಿ ಪತ್ರ ವ್ಯವಹಾರದ ಬಗ್ಗೆ	ಅರಿವು ಮೂಡಿಸುವುದು.		
5	ಭಾಷಾಂತರ, ಪ್ರ	ಬಂದ	್ಸ'ರಚನೆ, ಕನ್ನಡ	ಭಾಷಾಭ್ಯಾಸ ಮತ್ತುಆಡಳಿತ ಕನ್ನಡದ	ಪದಗಳ ಪರಿಚಯ ಮಾಡಿಕೆ	ಾಡು	ವುದು.
			~				
				 ಅಧ್ಯಾಯ –I			4Hrs
,, ,,	<u></u>	<u>~</u> →					71115
~	ರಾಷೆ – ಸಂಕ್ಷಿಪ್ತ				·		
				ದ.ರಾ.ಬೇಂದ್ರೆ (ಕವಿ), ಬೆಲ್ಜಿಯ ಹಾಡು (ಣಗಳು, ಆಡಳಿತ ಭಾಷೆಯ ಪ್ರಯೋಜನ	ω δ	رد)	
	ಧಾಷಾನ್ನಡ, ಆ		e weadon of	•	J1190.		4 Hrs
	<u> ಕನ್ನೊಸವಾಸ</u>	<u>, , , , , , , , , , , , , , , , , , , </u>	<u>ೆ ೧೩ ಕನೆ ೧೩ ಕನ್</u>	ಅಧ್ಯಾಯ –II ಕು ಮತ್ತು ಅವುಗಳ ನಿವಾರಣೆ:			4 1118
	• (•,			ನ ಮತ್ತು ಅವುಗಳ ನವಾರಣ. ಗುವ ಲೋಪದೋಷಗಳು ಅಥವಾ ಸಾಧ	ನುರೂಪಗಳ ಬಳಕೆ ಅಲಾ ಪಾ	nca =	かまっ
				ಗಿರಿಐ ಲೋಪದುಣಿಷಗಳು, ಲೇಖನ ಚಿಕ ಗುವ ಲೋಪದೋಷಗಳು, ಲೇಖನ ಚಿಕ			
				ಲ್ಲಿ ಅನುಸರಿಸಬೇಕಾದ ಇನ್ನಿತರಕ್ರಮ, ಲೇ			
				non ed. III			411
				ಅಧ್ಯಾಯ –III			4Hrs
ಪತ್ರ ವ್ಯ ಪತ್ರಾವಕ		₹ 云	ವಹಾರ ಆಡಲಿತ	ಪತ್ರಗಳು, ಅರ್ಜಿಯ ವಿವಿಧ ಬಗೆಗಳು	ನುತ್ತು ನಾದಗಿಸಲು		
<u>ವ</u> ಿಸ್ತಾಹೀ	<u> </u>	, w	<u> </u>	ಅಧ್ಯಾಯ –IV	ചാല് ബാധാന്യം.		4Hrs
ಪಬಂದ	ಸಂಕಿಪ ಪಬಂ	ನರಬ	ಕನೆ ಮತ್ತು ಭಾಷಾ	•			71115
_	w, –		_	೦೦೦. ಏಕರಣಾವ್ಯಯಗಳು, ಸಮಾನಾರ್ಥಕ ಪ	ದಗಳು. ನಾನಾರ್ಹಗಳು. ವಿ	ರುದ	ಪದಗಳು. ತತಮ
	Ψ			್ಧಸಮೂಹಕ್ಕೆ ಒಂದು ಶಬ್ದ, ಅನ್ಯದೇಶೀಯ		4	~
4	ಕನ್ನಡದ ಕಲಿಕಾ		•••	φ + - φ, - (₈ (8	.,		
	~		ವ್ಯಾಕರಣದ ಬಳ	ਝਰੇ.			
	ಕನ್ನಡದಲ್ಲಿ ಪ		-				
	-			ು ಬಗ್ಗೆ ಆಸಕ್ತಿ ಮೂಡುವುದು.			
	 ಪುಸ್ತಕಗಳು :	-	<u> </u>				
• -	_	್ಷಡ	ಪಠ್ಯಪುಸಕ, ಎಲ	್.ತಿಮ್ಮೇಶ್ ಮತ್ತು ವಿ.ಕೇಶವಮೂರ್ತಿ,	ಪ್ರಸಾರಾಂಗ, ವಿಶೇಶರಯ್ಯ	ತಾ	ಂತ್ರಿಕ ವಿದ್ಯಾಲಯ
1	ಬೆಳಗಾಂ.	ξ	- ₅ - <u>5</u> -5,	e			<u></u>
	1						

ಎಸ್.ಸತ್ಯನಾರಾಯಣ, 2ನೇ ಮುದ್ರಣ 2019, ರಾ.ವಿ.ತಾಂತ್ರಿಕ ಮಹಾವಿದ್ಯಾಲಯ, ಬೆಂಗಳೂರು.

ಕನ್ನಡ ಅನುಭವ, ಕೆ.ಎನ್.ಸುಬ್ರಹ್ಮಣ್ಯಂ, ಎನ್.ಎಸ್.ನರಹರಿ, ಎಚ್.ಜಿ.ಶ್ರೀನಿವಾಸಪ್ರಸಾದ್, ಎಸ್.ರಾಮಮೂರ್ತಿ ಮತ್ತು

2

Continuous Internal Evaluation (CIE); (50 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Activity. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks and the sum of the marks scored from two quizzes is reduced to 10. The two tests are conducted for 50 marks each and the sum of the marks scored from two tests is reduced to 30. The marks component for Activity is 10. Total CIE is 10(Q) + 30(T) + 10(A) = 50 Marks.

Semester End Evaluation (SEE); Theory (50 Marks)

SEE for 50 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 10 marks covering the complete syllabus. Part - B is for 40 marks. It consists of simple grammar and essay type questions.

	Semester: IV								
	LINEAR ALGEBRA, STATISTICS AND PROBABILITY THEORY								
	(Theory) (Common to EC, EE, EI & ET)								
Cou	rse Code	:	18MA41B		CIE	:	100 Marks		
Cred	lits: L:T:P	:	4:1:0		SEE		100 Marks		
Tota	l Hours	••	52L+26T		SEE Duration	:	3.00 Hours		
Cou	rse Learning O	bj	ectives: The studen	ts will be able to					
1	Understand th	e b	asics of Linear Alge	bra and Probability tl	heory.				
2	Demonstrate t	he	concepts of linear tr	ansformation, orthog	onality and factorizat	tion	of matrices.		
3		wl	edge of the statistica	l analysis and theory	of probability in the	stu	dy of		
	uncertainties.								
4				to solve random phys	sical phenomena and	imp	olement		
	* * *		bution models.						
5	Use mathemat	tica	1 IT tools to analyze	and visualize the abo	ove concepts.				

Unit-I	10	H
Umit-1	10	

Linear Algebra – I: Vector spaces, subspaces, linear dependence, basis, dimension, four fundamental subspaces. Rank and nullity theorem (without proof). Linear transformations- projection, rotation and reflection matrices, matrix representation, kernel and image of a linear transformation.

Unit – II 11 Hrs

Linear Algebra – II: Orthogonal and orthonormal bases, Gram-Schmidt process, QR- factorization, Eigen values and Eigen vectors (recapitulation). Diagonalization of a matrix (symmetric matrices), singular value decomposition. SVD applied to digital image processing (using MATLAB).

Unit –III 11 Hrs

Statistics: Central moments, mean, variance, coefficients of skewness and kurtosis in terms of moments. Curve fitting by method of least squares, fitting of curves – Polynomial, exponential and power functions. Correlation and linear regression analysis –problems. Simulation using MATLAB.

Unit –IV 10 Hrs

Probability: Basic concepts and Baye's rule. Random variables - Discrete and continuous, probability mass function, probability density function, cumulative density function, mean, variance - problems. Joint probability distribution function - Discrete and continuous, covariance, correlation and problems related to applications. Simulation using MATLAB.

Unit –V 10 Hrs

Probability Distributions: Discrete and continuous distributions - Binomial, Poisson, Exponential and Normal. Sampling theory - Sampling, sampling distributions, standard errors, student's t-distribution, chi-square distribution as a test of goodness of fit, problems. Simulation using MATLAB.

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Understand the fundamental concepts of linear algebra, probability and sampling theory.						
CO2:	Solve the problems of vector spaces, linear transformation, measures of statistical data, curve						
	fitting and functions of random variables.						
CO3:	Apply the acquired knowledge to solve the problems on factorization of a matrix, correlation,						
	regression, probability and sampling distributions.						
CO4:	Evaluate decomposition of a matrix and estimate goodness of fit of problems occurring in						
	engineering applications.						

Ref	Perence Books:
1	Linear Algebra and Its Applications, Gilbert Strang, 4 th Edition, 2006, Cengage Learning India Edition, ISBN: 81-315-0172-8.
2	Higher Engineering Mathematics, B.S. Grewal, 44 th Edition, 2015, Khanna Publishers, ISBN: 978- 81-933284-9-1.
3	Schaum's Outline of Linear Algebra, Seymour Lipschutz and Marc Lipson, 5 th Edition, 2012, McGraw Hill Education, ISBN-978-0-07179456-5.
4	Introduction to Probability and Statistics, S. Lipschutz and Schiller (Schaum's outline series), ISBN: 978-0-07-176249-6.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	-	-	1
CO2	3	2	-	-	-	-	-	-	-	-	-	1
CO3	1	2	2	-	-	-	-	-	-	-	-	1
CO4	-	1	1	3	-	-	-	-	-	-	-	1

High-3: Medium-2: Low-1

Semester: IV									
	ENGINEERING MATERIALS								
	(Theory)								
(COMMON TO EC, EE, EI & ET)									
Course Code			18EC42	CIE	:	50 Marks			
Cred	lits: L:T:P	:	2:0:0	SEE	:	50 Marks			
Tota	l Hours	••	27L	SEE Duratio	n :	2.00 Hours			
Cou	rse Learning C	bje	ectives:						
1	Understand th	e n	naterial classification	n and categorizes material related to	various e	electronic			
	properties								
2	Understand fa	bri	cation & characteriz	ation techniques and nanomaterial g	rowth				
3	Understand th	e n	naterial electronics t	ransport and applications in electron	ics indus	try			
4	Understand to	the	e extend electronic d	levices based on novel and emerging	materia	ls			

Understand fabrication & characterization techniques and nanomaterial growth						
3 Understand the material electronics transport and applications in electronic						
4 Understand to the extend electronic devices based on novel and emerging i	materials					
Unit-I	05 Hrs					
Introduction: Classification and Properties of Materials, Materials Used in Elect	trical and Electronic					
Industries, Requirements and Future Developments of Electronic Materials						
Unit – II						
Classical Theory of Electrical Conduction and Conducting Material						
(Temperature Coefficient of Resistivity) and Matthiessen's Rule, Traditional Cla	assification of Metals,					
Insulators and Semiconductors, Drude's Free Electron Theory, Hall Effect, Wie	edemann-Franz Law,					
Resistivity of						
Alloys, Nordheim's Rule, Resistivity of Alloys and Multiphase Solids						
Unit -III	05 Hrs					
Thin Film Electronic Materials: Techniques for Preparation of Thin Films, Thi	n Film Conducting					
Materials, Thin Film Resistors, Transparent and Conductive Thin Films, Thin Fil	m Magnetic					
Materials						
Unit –IV	05 Hrs					
Organic Electronic Materials: Conducting Polymers, charge carriers, Character	rization of					
Organic Electronic Materials: Conducting Polymers, charge carriers, Character conducting polymers, Semiconducting Organic Materials, Organic Superconduct						
conducting polymers, Semiconducting Organic Materials, Organic Superconduct						
conducting polymers, Semiconducting Organic Materials, Organic Superconduct Piezoelectric						

(Quantum Dots & CNT only), Micro-/Nano-devices Using Nanostructured Materials: CNT transistor, Single electron transistor

Course	Course outcomes: On completion of the course, the student should have acquired the ability to						
CO1:	Explain electronics material classification, different physical properties and to the extend						
	device applications.						
CO2:							
	material and assess material parameters for practical requirement.						
CO3:	Summarize various fabrication, characterization and synthesis techniques for the electronic						
	nanomaterials and thin film growth.						
CO4:	Identify and calculate material parameters including electrical conductivity, resistivity,						
	magnetic and optical properties for real-time electronic applications.						

Refere	Reference Books							
1	Introduction to Electronic Materials for Engineers, Wei Gao & Zhengwei Li, Nigel Sammes, 2 nd Edition, World Scientific Publishing Co. Pvt. Ltd, ISBN:9789814293693							
2	Principles of Electronic Materials and Devices, S O Kasap, 3 rd Edition, 2017, McGraw Hill Education, ISBN-13: 978-0070648203							
3	Electronic Properties of Materials, Rolf E. Hummel, 4th edition, 2011, Springer, ISBN-13: 978-1489998415							

Continuous Internal Evaluation (CIE); Theory (50 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 05 marks adding up to 15 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 25 marks each and the sum of the marks scored from three tests is reduced to 30. The marks component for experiential learning is 05. The total marks of CIE are 50. Total CIE is 20(Q) + 30(T) = 50 Marks.

Semester End Evaluation (SEE); Theory (50 Marks)

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 10 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 8 marks adding up to 40 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	1	2	-	-	-	-	2
CO2	3	2	-	-	-	1	2	-	-	-	-	2
CO3	3	3	2	-	-	1	2	-	-	-	-	2
CO4	3	3	2	2	-	2	2	-	-	-	-	2

High-3: Medium-2: Low-1

Semester: III VYAVAHARIKA KANNADA (Common to all branches) **Course Code** 18HS38V CIE 50 Marks Credits: L:T:P : 1:0:0 SEE : 50 Marks Total Hours CIE Duration 16Hrs 90 Minutes Course Learning Objectives of Vyavaharika Kannada: The students will be able to Motivate students to learn Kannada language with active involvement. Learn basic communication skills in Kannada language (Vyavaharika Kannada). 2 Importance of learning local language Kannada. 3 VYAVAHARIKA KANNADA (BALAKE Kannada) (to those students who does not know Kannada) Unit-I 4Hrs **Parichaya(Introduction):** Necessity of learning local language, Tips to learn the language with easy methods, Hints for correct and polite conversation, History of kannada language. Unit - II 4Hrs Kannada alphabtets and Pronunciation: Kannada aksharmale, Kannada stress letters (vattakshara), Kannada Khagunitha, Pronunciation, memorisation and usage of the Kannada letters. Unit – III 4Hrs Kannada vocabulary for communication: Singular and Plural nouns, Genders, Interrogative words, Antonyms, Inappropriate pronunciation, Number system, List of vegetables, Fractions, Menu of food items, Names of the food items, words relating to time, words relating to directions, words relating to human's feelings and emotion, Parts of the human body, words relating to relationship. Unit -IV 4Hrs **Kannada Grammar in Conversations:** Nouns, Pronouns, Use of pronouns in Kannada sentences, Adjectives and its usage, Verbs, Adverbs, Conjunctions, Prepositions, Questions constructing words, Simple communicative sentences in kannada. Activities in Kannada, Vocabulory, Conversation. Course Outcomes: After completing the course, the students will be able to Usage of local language in day today affairs. Construction of simple sentences according to the situation. Usage of honorific words with elderly people. Easy communication with everyone. **Reference Books:** Vyavaharika Kannada patyapusthaka, L. Thimmesh, and V. Keshavamurthy, Visveshvaraya University, Belgaum. Kannada Kali, K. N. Subramanya, S. Narahari, H. G. Srinivasa Prasad, S. Ramamurthy and S. Sathyanarayana, 5th Edition, 2019, RV College of Engineering Bengaluru.

Spoken Kannada, Kannada Sahithya Parishat, Bengaluru.

ವ್ಯಾವಹಾರಿಕ ಕನ್ನಡ (Kannada Version)					
ಅಧ್ಯಾಯ $ {f I}$					
ಸ್ಥಳೀಯ ಅಥವಾ ಪ್ರಾದೇಶಿಕ ಭಾಷಾ ಕಲಿಕೆಯ ಅವಶ್ಯಕತೆ, ಭಾಷಾ ಕಲಿಕೆಯ ಸುಲಭ ವಿಧಾನಗಳು, ಸಂಭಾಷಣೆಗಾಗಿ ಸುಲಾ ಕನ್ನಡ ಭಾಷೆಯ ಇತಿಹಾಸ.	ನ ಸೂಚ್ಯಗಳು				
ಅಧ್ಯಾಯ – II	4Hrs				
ಕನ್ನಡ ಅಕ್ಷರಮಾಲೆ ಹಾಗೂ ಉಚ್ಛಾರಣೆ:					
ಕನ್ನಡ ಅಕ್ಷರಮಾಲೆ, ಒತ್ತಕ್ಷರ, ಕಾಗುಣಿತ, ಉಚ್ಚಾರಣೆ, ಸ್ವರಗಳು ಉಚ್ಚಾರಣೆ, ವ್ಯಂಜನಗಳ ಉಚ್ಚಾರಣೆ.					
ಅಧ್ಯಾಯ $-\mathbf{III}$	4Hrs				

ಸಂಭಾಷಣೆಗಾಗಿ ಕನ್ನಡ ಪದಗಳು:

ಏಕವಚನ, ಬಹುವಚನ, ಲಿಂಗಗಳು (ಸ್ತ್ರೀಲಿಂಗ, ಪುಲ್ಲಿಂಗ) ಪ್ರಶ್ನಾರ್ಥಕ ಪದಗಳು, ವಿರುದ್ಧಾರ್ಥಕ ಪದಗಳು, ಅಸಮಂಜಸ ಉಚ್ಚಾರಣೆ, ಸಂಖ್ಯಾ ವ್ಯವಸ್ಥೆ, ಗಣಿತದ ಚಿಹ್ನೆಗಳು, ಭಿನ್ನಾಂಶಗಳು.

ತರಕಾರಿಗಳ ಹೆಸರುಗಳು, ತಿಂಡಿಗಳ ಹೆಸರುಗಳು, ಆಹಾರಕ್ಕೆ ಸಂಬಂಧಿಸಿದ ಪದಗಳು, ಕಾಲ/ಸಮಯಕ್ಕೆ ಸಂಬಂಧಿಸಿದ ಪದಗಳು, ದಿಕ್ಕುಗಳ ಹೆಸರುಗಳು, ಭಾವನೆಗೆ ಸಂಬಂಧಿಸಿದ ಪದಗಳು, ಮಾನವ ಶರೀರದ ಭಾಗಗಳು, ಸಂಬಂಧದ ಪದಗಳು, ಸಾಮಾನ್ಯ ಸಂಭಾಷಣೆಯಲ್ಲಿ ಬಳಸುವಂತಹ ಪದಗಳು.

4Hrs

ಅಧ್ಯಾಯ -IV

ಸಂಭಾಷಣಯಲ್ಲ	ಕನ್ನಡ ಬಳಕ:					
ನಾಮಪದಗಳು,	ಸರ್ವನಾಮಗಳು,	ನಾಮವಿಶೇಷಣಗಳು,	ಕ್ರಿಯಾಪದಗಳು,	ಕ್ರಿಯಾವಿಶೇಷಣಗಳು,	ಕನ್ನಡದಲ್ಲಿ	ಸಂಯೋಜನೆಗಳು,
ಉಪಸರ್ಗಗಳು,	ಪ್ರಶ್ನಾರ್ಥಕ ಪದಗಳು	, ವಿಚಾರಣೆಯ / ವಿಚಾ	ರಿಸುವ / ಬೇಡಿಕೆಂ	ಯ ವಾಕ್ಯಗಳು. ಕನ್ನಡದಲ್ಲ	ಲ್ಲಿ ಚಟುವಟಿಕೆ	ಗಳು,
ಶಬ್ಧಕೋಶ, ಸಂ	ುಭಾಷಣೆ.					

ವ್ಯವಹಾರಿಕ ಕನ್ನಡದ ಕಲಿಕಾ ಫಲಿತಾಂಶಗಳು : CO1: ನಿತ್ಯ ಜೀವನದಲ್ಲಿ ಆಡುಭಾಷೆಯ ಬಳಕೆ. CO2: ಸಂದರ್ಭ, ಸನ್ನಿವೇಶಕ್ಕನುಗುಣವಾಗಿ ಸರಳ ಕನ್ನಡ ವಾಕ್ಯಗಳ ಬಳಕೆ. CO3: ಗೌರವ ಸಂಬೋಧನೆಯ ಬಳಕೆ. CO4: ಇತರರೊಡನೆ ಸುಲಭ ಸಂವಹನ.

ಆಧಾರ	ಪುಸ್ತಕಗಳು :
1	ವ್ಯವಹಾರಿಕ ಕನ್ನಡ ಪಠ್ಯಪುಸ್ತಕ, ಎಲ್.ತಿಮ್ಮೇಶ್ ಮತ್ತು ವಿ.ಕೇಶವಮೂರ್ತಿ, ಪ್ರಸಾರಾಂಗ, ವಿಶ್ವೇಶ್ವರಯ್ಯ ತಾಂತ್ರಿಕ ವಿದ್ಯಾಲಯ, ಬೆಳಗಾಂ.
2	ಕನ್ನಡ ಕಲಿ, ಕೆ.ಎನ್.ಸುಬ್ರಹ್ಮಣ್ಯಂ, ಎನ್.ಎಸ್.ನರಹರಿ, ಎಚ್.ಜಿ.ಶ್ರೀನಿವಾಸ 'ಪ್ರಸಾದ್, ಎಸ್.ರಾಮಮೂರ್ತಿ ಮತ್ತು ಎಸ್.ಸತ್ಯನಾರಾಯಣ, 2ನೇ ಮುದ್ರಣ 2019, ರಾ.ವಿ.ತಾಂತ್ರಿಕ ಮಹಾವಿದ್ಯಾಲಯ, ಬೆಂಗಳೂರು.
3	ಮಾತನಾಡುವ ಕನ್ನಡ, ಕನ್ನಡ ಸಾಹಿತ್ಯ ಪರಿಷತ್, ಬೆಂಗಳೂರು.

Continuous Internal Evaluation (CIE); (50 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Activity. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks and the sum of the marks scored from two quizzes is reduced to 10. The two tests are conducted for 50 marks each and the sum of the marks scored from two tests is reduced to 30. The marks component for Activity is 10. Total CIE is 10(Q) + 30(T) + 10(A) = 50 Marks.

Semester End Evaluation (SEE); Theory (50 Marks)

SEE for 50 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of only objective type questions for 40 marks covering the complete syllabus. Part – B consists of essay type questions for 10 marks.

				Semeste	r: III			
				AADALITHA	KANNADA			
				(Common to a	ll branches)			
Cours	e Code	:	18HS38A			CIE	:	50 Marks
Credi	ts: L:T:P	:	1:0:0			SEE	:	50 Marks
Total :	Hours	:	16Hrs			CIE Duration	:	90 Minutes
				ಆಡಳಿತ ಕನ್ನಡ (ಕ	ಕನ್ನಡಿಗರಿಗಾಗಿ)			
ಆಡಳಿತ	ಭಾಷಾ ಕಲಿಕೆಯ	ಉ	ದ್ದೇಶಗಳು: ವಿದಾ	್ಯರ್ಥಿಗಳಲ್ಲಿ				
1	ಆಡಳಿತ ಕನ್ನಡದ	ಶ ಪ	ರಿಚಯ ಮಾಡಿಕೆ	ೂಡುವುದು.				
2 7	ಕನ್ನಡ ಭಾಷೆಯ	ವಾ	್ಯಕರಣದ ಬಗ್ಗೆ ಆ	೨ರಿವು ಮೂಡಿಸುವುದು.				
3 1	ಕನ್ನಡ ಭಾಷಾ	<u>۔</u> د	ುರಹದಲ್ಲಿ ಕಂಡ	ಕುಬರುವ ದೋಷಗಳು	ಹಾಗೂ ಅವುಗಳ	ನಿವಾರಣೆ ಮತ್ತು	ಲೇ,	ಖನ ಚಿಹ್ಮೆಗಳನ
	ಕನ್ನಡ ಭಾಷಾ ಬರಹದಲ್ಲಿ ಕಂಡುಬರುವ ದೋಷಗಳು ಹಾಗೂ ಅವುಗಳ ನಿವಾರಣೆ ಮತ್ತು ಲೇಖನ ಚಿಹ್ನೆಗಳನ್ನು ಪರಿಚಯಿಸುವುದು.							
4 7	ಸಾಮಾನ್ಯ ಅರ್ಜಿಗಳು, ಸರ್ಕಾರಿ ಮತ್ತುಅರೆಸರ್ಕಾರಿ ಪತ್ರ ವ್ಯವಹಾರದ ಬಗ್ಗೆ ಅರಿವು ಮೂಡಿಸುವುದು.							
5 8	ಭಾಷಾಂತರ, ಪ್ರಬಂದ, ರಚನೆ, ಕನ್ನಡ ಭಾಷಾಭ್ಯಾಸ ಮತ್ತುಆಡಳಿತ ಕನ್ನಡದ ಪದಗಳ ಪರಿಚಯ ಮಾಡಿಕೊಡುವುದು.							
			٠,	<u> </u>	<u> </u>			
				es por si				4Hrs
 		د ٦		ಅಧ್ಯಾಯ –I				41118
~	ಾಷೆ – ಸಂಕ್ಷಿಪ್ತ			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
				ದ.ರಾ.ಬೇಂದ್ರೆ (ಕವಿ), ಬೆಲ್ಟಿ		–ಸಿದ್ದಲಂಗಯ್ಯ (ಕಪ)	
ಆಡಿಕಿತ	ಭಾಷಕನ್ನಡ, ಆ	- CO		ಕ್ಷಣಗಳು, ಆಡಳಿತ ಭಾಷೆಯ				4 77
				ಅಧ್ಯಾಯ -II	.			4 Hrs
				ಳು ಮತ್ತು ಅವುಗಳ ನಿವಾರಣ ಸಾವ್ಯ ಬೆಂಬಸನೆ ಎಂಸಸಭು		ರ ಣ ೧೩೮೨ - ೩೩೩ - ೩	~ -	٠, ـ,
				ಗುವ ಲೋಪದೋಷಗಳು ಾಗುವ ಲೋಪದೋಷಗಳು,				
				ಲ್ಲಿ ಅನುಸರಿಸಬೇಕಾದ ಇನ್ನಿ				
				ಅಧ್ಯಾಯ –III				4Hrs
ಪತ್ರ ವ್ಯಾ								
ಪ್ರಸ್ತಾವನ	5– ಖಾಸಗಿ ಪ <u>ತ್</u> ರ	್ರವ್ಯ	ವಹಾರ, ಆಡಳತ	ಶ ಪತ್ರಗಳು, ಅರ್ಜಿಯ ವಿವಿ	ಾಧ ಬಗಗಳು ಮತ್ತು ಸ	ಮಾದರಿಗಳು.		417
	<u> </u>		ــــــــــــــــــــــــــــــــــــــ	ಅಧ್ಯಾಯ -IV				4Hrs
_	<u>-</u>		ಕನೆ ಮತ್ತು ಭಾಷಾ ತಿನ್ನಡಿಸಲು ಸಾವ		<u></u>		۔ ہے۔	
	Ψ			ಯಕರಣಾವ್ಯಯಗಳು, ಸಮಾ ಎಸಸಾ ಎಸ್. ಎಸ್. ಸಮಾ			4	బదగళు, తిత్తమ
4	•• –			್ಧಸಮೂಹಕ್ಕೆ ಒಂದು ಶಬ್ಧ,	ಅನ್ಯದೀಶೀಯ ಪದಗ		ಳು. 	
	ಕನ್ನಡದ ಕಲಿಕಾ L ಕನ್ನಡ ಉನಪ			,				
	ಕನ್ನಡ ಬರಹ ಕನ್ನಡದಲ್ಲಿ ಪ		ವ್ಯಾಕರಣದ ಬಳ ುರೆಯುವಿಕೆ	ਚ ∪.				
	-			ಯ ಬಗ್ಗೆ ಆಸಕ್ತಿ ಮೂಡುವು	ದು			
CO2.	عربي منسو		\sim \sim \sim \sim \sim \sim \sim		····			
		<i>σ</i> ω	ಕಲ					
	ಪುಸ್ತಕಗಳು :							
	_			್.ತಿಮ್ಮೇಶ್ ಮತ್ತು ವಿ.ಕೇ		ಾಂಗ, ವಿಶ್ವೇಶ್ವರಯ್ಯ	ತಾ	ಂತ್ರಿಕ ವಿದ್ಯಾಲಯ

ಎಸ್.ಸತ್ಯನಾರಾಯಣ, 2ನೇ ಮುದ್ರಣ 2019, ರಾ.ವಿ.ತಾಂತ್ರಿಕ ಮಹಾವಿದ್ಯಾಲಯ, ಬೆಂಗಳೂರು.

ಕನ್ನಡ ಅನುಭವ, ಕೆ.ಎನ್.ಸುಬ್ರಹ್ಮಣ್ಯಂ, ಎನ್.ಎಸ್.ನರಹರಿ, ಎಚ್.ಜಿ.ಶ್ರೀನಿವಾಸಪ್ರಸಾದ್, ಎಸ್.ರಾಮಮೂರ್ತಿ ಮತ್ತು

2

Continuous Internal Evaluation (CIE); (50 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Activity. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks and the sum of the marks scored from two quizzes is reduced to 10. The two tests are conducted for 50 marks each and the sum of the marks scored from two tests is reduced to 30. The marks component for Activity is 10. Total CIE is 10(Q) + 30(T) + 10(A) = 50 Marks.

Semester End Evaluation (SEE); Theory (50 Marks)

SEE for 50 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 10 marks covering the complete syllabus. Part - B is for 40 marks. It consists of simple grammar and essay type questions.

Semester: IV									
ELECTRICAL MACHINES- I									
(Theory & Practice)									
Course Code		:	18EE43		CIE	:	100+50 Marks		
Credits: L:T:P		:	3:0:1		SEE	:	100+50 Marks		
Total Hours		:	40L+33P		SEE Duration	:	3.00+3.00Hours		
Course Learning Objectives:									
1	Apply the theory of electromagnetism in analyzing electrical machines.								
2	Describe the construction, characteristics and operation of the transformers and induction								
	machines.								
3	Develop and analyze the equivalent circuit model of transformers and induction motors to								
	evaluate their performance characteristics at different loading conditions.								
4	Design and estimate the physical dimensions of the machine in relation to the output.								

Unit-I 08 Hrs

Theory Of Transformer: Principle, Types of transformer, Equivalent circuit, Phasor diagram, Losses, Predetermination of efficiency & regulation, Tap changing transformers, All day efficiency, Causes of failure of transformers.

Auto Transformers: Applications, advantages & limitations.

Unit – II 09 Hrs

Industrial Tests: H.V.Flash test, Sumner's test.

Parallel Operation: Polarity test, load sharing of transformers in parallel.

3-Phase Transformers: Y: Y, Y: Δ , Δ : Y, and Δ : Δ , open delta connection, Scott connection, phasor diagrams. Harmonics in transformers.

Unit -III 09 Hrs

Induction Machine:

Production of rotating magnetic field, operation on no-load and load, phasor diagram, Power flow diagram- calculation of HP, torque, efficiency and power factor. Torque – slip characteristics, Maximum torque,

Performance of Induction Motors: No load and blocked rotor tests, equivalent circuit, circle diagram, Cogging and crawling

Unit –IV 07 Hrs

Method of starting induction motors. Speed control of induction motor by pole changing method, stator voltage control and Rotor resistance control.

Single Phase Induction Motors:

Double field revolving theory, Starting methods and type of motors, Single phase series motors, repulsion motors. Induction Generator :principle of working ,isolated induction generator, Advantages ,Limitations and applications of Induction Generator

Unit –V 07 Hrs

Main dimensions of Transformers:

Design on main dimensions, Design of windings, Design of insulations, Design of core sections(single phase, Three phase), problems.

Main dimensions of Induction motors:

Design on specifications, Stator design, Rotor Design(Single phase, Three phase), problems.

Laboratory Experiments

- 1. SC, OC test on 1 phase transformer. Predetermination of efficiency & regulation from equivalent circuit. Verification of efficiency & regulation by load test at UPF.
- 2. Sumpner's test
- 3. Parallel operation of two dissimilar 1phase transformers.
- 4. Connection of 3 single phase transformers in star star, star-delta etc. and determination of efficiency & voltage relationship for balanced direct loading.
- 5. Scott connection-for balanced and unbalanced loads.
- 6. Load test on 3phase Induction motor performance evaluation from Equivalent circuit and

- Circle Diagram. Speed control of 3 phase induction motor stator voltage & rotor resistance control.
- 7. Load test on 1-phase Induction motor. Change the serial number and include one more test.
- 8. Load test on Induction generator to draw a plot of output versus speed.

Course	Course outcomes: On completion of the course, the student should have acquired the ability to								
CO1:	Understand the operation of transformers and induction motors.								
CO2:	Analyze the performance characteristics of Transformer and Induction motors.								
CO3:	Evaluate, assess and compare the operation of machines at different loadings.								
CO4:	Design the various parts of the machine by changing different parameters in steps to obtain								
	maximum output								

Refere	ence Books
1	Performance and Design of A.C. Machines, M. G. Say, C.B.S. Publishers.3 rd Edition, 2005, I SBN-10: 8123910274
2	Electrical Machines, Ashfaq Hussain, ,.3 rd Edition, 2017, Dhanpatrai and Co, ISBN-9788177001662
3	A Course in Electrical Machine Design, A.K. Sawhney, Danpat Rai and Co, 2001, ISBN 007-709610
4	Principles of Electrical Machine Design, R.K Agarval, S.K Kotari and sons, 3rd Edition 2007. SBN 10: 9380027125 / ISBN 13: 9789380027128.

Continuous Internal Evaluation (CIE):

Total marks: 100+50=150 Theory – 100 Marks

CIE is executed by way of quizzes (Q), tests (T) and experiential learning(EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. The total CIE for theory is 100.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) + 10(T) + 10(IE) = 50 Marks.

Theory - 100 Marks

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	2	2	-	2	2	1	1	-	1	2	-	2			
CO2	3	2	2	2	1	2	1	-	2	2	2	3			
CO3	1	2	1	3	2	2	-	1	1	2	2	1			
CO4	2	2	3	2	1	1	2	-	1	2	-	2			

High-3: Medium-2: Low-1

	Semester: IV												
	MICROPROCESSOR & MICROCONTROLLER												
	(Theory & Practice)												
	(Common to EC, ET, EE & EI)												
Cou	rse Code	:	18EI44		CIE	:	100 + 50 Marks						
Cred	lits: L:T:P	:	3:0:1		SEE	:	100 + 50 Marks						
Tota	l Hours	:	39L+33P		SEE Duration	:	03+03 Hours						
Cou	rse Learning C)bje	ectives:										
1	1 0		implement, and debu	ig simple microproc	essor-based appli	icati	ions using the Intel						
	8086 architect	ture).										
2	Understand &	: Aı	nalyze the architectu	re of 8051 microcon	ntroller								
3	Use software	dev	elopment tools to as	semble, test and del	bug the programs	by	using breakpoints,						
	single-steppin	g, 1	monitoring the chang	ges in register/memo	ory contents, on a	har	rdware platform or						
	on an emulator.												
4	4 Apply assembly directives and assembly language to implement flow control (sequential,												
	conditional ar	ıd i	terative).										
5	Design and in	terf	ace the external con	nponents of micropi	rocessor and micro	oco	ntroller						

Unit-I 07 Hrs

MPU Organization: Instruction set Architectures, Harvard & Von-Neuman Architectures, Micro programmed & Hardwired Control unit, Floating Point & Fixed-Point Processor, Endianness, Intel's 8086 architecture, Pin groups, Functioning, Segmentation, Address generation, Stack, Interrupts.

Unit – II 09 Hrs

8086 Assembly Language Programming: Addressing Modes of 8086, Instruction Format, Program Development Tools, Assembler Directives, Instruction Set of 8086: Data Transfer Instructions, Arithmetic Instructions, Bit Manipulation Instructions, Branching Instructions, Processor Control Instructions, String Instructions, Macros, Procedures, Assembly Language Programming Examples

Unit -III 09 Hrs

Hardware of 8051 Microcontrollers: Introduction to Embedded system, Microcontroller, Comparison of Microprocessor and Microcontroller, Intel MCS 51 family, Architecture and Pin Functions of 8051 Microcontroller, CPU Organization, Program Counter, Timing and Machine Cycles, Internal Memory Organization, Registers, Stack, Input/ Output Ports, Counters and Timers, Interrupts, Power Saving Modes.

Unit –IV 07 Hrs

8051 Microcontroller Based System Design: I/O Port Programming, Programming timers, Asynchronous Serial Data Communication, Interrupt Service Routines. Programming in C, Inline Assembly, Interfacing DAC, Interfacing Matrix Keyboard and Seven Segment Displays, Interfacing ADC in polled mode & Interrupt Mode, Interfacing LCD.

Unit –V 07 Hr

Peripheral Based Systems Clock generator(8284), Memory Devices, Address Decoding, Interfacing Memory, I/O sub System: Busy wait, DMA, Interrupt Driven, Memory Maps, I/O Port address decoding, Introduction to 8255, Interfacing 8255 with 8086, Interrupt Based IO Design.

Practical: Processor & Controller Lab:

Experiments with 8086 Assembly using MASM

- 1. Data Transfer Programs: Block Moves & Exchange (With & Without Overlap) with &without String Instructions.
- 2. Arithmetic Operations: Addition, Multiplication & Division on 32-Bit Data.
- 3. a) Code Conversions: Use XLAT Instruction to Convert Binary to BCD, Input from Keyboard & Display Result on the Console.

- b) ASCII Operations: Addition, Subtraction, Multiplication
- 4. a) Search for a Key in an Array of Elements using Linear Search, Binary Search. Find Efficiency in each case.
- b) Sort an Array Using Bubble Sort & Selection Sort. Find Efficiency in each case. Interfacing experiments with 8051 C using Keil software
 - 5. Illustrate the interfacing of LCD and LED with variant of 8051 Microcontroller using C language.
 - 6. Implement the interfacing of stepper motor and DC Motor with variant of 8051 Microcontroller using C programming language.
 - 7. Implement the interfacing of ADC with variant of 8051 Microcontroller using Clanguage.
 - 8. Write a C program to interface 4 x 4 keypad with variant of 8051 Microcontroller.
 - 9. Write a C program to interface DAC and Elevator with variant of 8051 Microcontroller
 - 10. Design 8051 based system to measure the frequency of TTL waveform. Design 8051 based system for automatic controlling of light.

Course	Course outcomes: On completion of the course, the student should have acquired the ability to								
CO1:	Interpret the architecture, instruction set, memory organization and addressing modes of the microprocessors and microcontrollers.								
CO2:	Analyze pin functions / ports for implementing peripheral interfaces with microprocessors and microcontrollers.								
CO3:	Apply the knowledge of microprocessor and microcontroller for implementing assembly language/C programming.								
CO4 :	Engage in assignment to understand, formulate, design and analyze problems to be realized on embedded processors.								

Refere	nce Books
1	Micro-Processors and Interfacing-Programming & Hardware, Douglas Hall, TMH, 2 nd Edition, 2002, ISBN-10-0070601674
2	The Intel Micro-processors, Architecture, Programming and Interfacing, Barry B. Brey, Pearson Education, 6 th Edition, 2008, ISBN-10: 0135026458
3	The 8051 Microcontroller Architecture, Programming & Applications, Kenneth J. Ayala, Thomson Learning, 2 nd Edition, 2004. Publisher: Cengage Learning; ISBN-13: 978-1401861582
4	The 8051 Microcontroller and Embedded Systems, Muhammad A Mazidi, 2 nd Edition, 2009, Pearson Education, ISBN: 13: 978-0131194021

Continuous Internal Evaluation (CIE): Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(O) + 50(T) + 20(EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) + 10(T) + 10(IE) = 50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

	CO-PO Mapping														
CO/PO	CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12														
CO1	3	2	2	2	-	-	-	-	-	1	-	1			
CO2	3	2	2	1	-	-	-	-	-	1	-	1			
CO3	3	3	3	2	2	-	-	-	-	1	-	1			
CO4	3	3	3	3	2	1	1	2	1	2	1	3			

High-3: Medium-2: Low-1

	Semester: IV												
	SIGNALS AND SYSTEMS												
	(Theory)												
			(Comm	on to EE, EC & ET)									
Cou	rse Code	:	18ET45		CIE	:	100 Marks						
Cred	lits: L:T:P	:	3:1:0	\$	SEE	:	100 Marks						
Tota	l Hours	:	39L+26T	\$	SEE Duration	:	3.00 Hours						
Cou	rse Learning C)bje	ectives:										
1	Express a sign	nal	and a system in both	time and frequency do	omains and develop	a n	nathematical						
	process to mig	grat	e between the two re	epresentations of the sa	me entity								
2	Analyze a cor	npl	ex signal in terms of	basic signals in contin	uous and discrete ti	ime	flavours.						
3	3 Define discrete-time signals and systems, and express the differences with their continuous-												
	time analogy.												
4	Understand th	e c	omputation of FFT a	algorithm in linear filter	ring & correlations								

Unit-I 08 Hrs

Introduction to Signals and System Definition of Signals, Classification of Signals, Basic Operations on Signals: Operations Performed on the Independent and Dependent Variable, Precedence Rule, Elementary Signals. Definition of Systems, System Viewed as Interconnection of Operations, Properties of Systems.

Unit – II 08 Hrs

Time domain representations of Linear Time Invariant Systems: Convolution Sum, Convolution Sum Evaluation Procedure, Convolution Integrals, Convolution Integrals Evaluation Procedure, Interconnections of LTI System, Relations between LTI System Properties and the Impulse Response, step response, Difference Equation Representation of LTI System and Solving Difference Equations.

Unit -III 08 Hrs

Applications of Fourier Representations to Mixed Signal classes: Review of Fourier representation of signals, Introduction to DTFS and DTFT, Introduction, Fourier Transform Representations of periodic signals, Convolution and multiplication with Mixtures of periodic and Non-Periodic signals, Fourier Transform representation of discrete time signals, sampling Concept.

Unit –IV 08 Hrs

The Discrete Fourier transform - Its properties and Applications: Frequency domain Sampling and Reconstruction of Discrete time signals, DFT, DFT as a linear Transformation, Relationship of DFT to other transforms. Properties of DFT: Periodicity, Linearity and Symmetry properties,

Multiplication of two DFTs and circular convolution, additional DFT properties. Linear filtering methods based on the DFT: Use of DFT in linear filtering, Filtering of long data sequences.

Unit –V 07 Hrs

Efficient computation of DFT - FFT Algorithms: Direct computation of DFT, Radix-2 FFT Algorithms and Implementation of FFT Algorithms, Applications of FFT algorithms, Efficient computation of DFT of two real sequences, Efficient computation of DFT of a 2N - point real sequence.

Course	Course outcomes: On completion of the course, the student should have acquired the ability to								
CO1:	Understand representation of basic signals, LTI system and its response in time and								
	frequency domains.								
CO2:	Apply various mathematical operations on signals.								
CO3:	Analyze both continuous and discrete time systems in time, frequency and z-domains								
CO4:	Design simple signal conditioning systems								

Refere	ence Books
1	Signals and Systems, Simon Haykin and Barry Van Veen, 2nd Edition, 2008. John Wiley & Sons, ISBN: 13: 978-0471164746
2	Digital Signal Processing, Proakis G & Dimitris G. Manolakis, PHI, 4 th Edition, 2007, ISBN: 13: 978-8131710005
3	Signals and Systems, V Oppenheim, Alan Willsky and A Hamid Nawab, Alan, 2 nd Edition, 2006, Pearson Education Asia/ PHI, ISBN 10: 0138147574
4	Digital Signal Processing A Practical Approach, Emmanuel C. Ifeachar, Barrie E. Jervis, 2 nd Edition., 2001, Pearson Education, ISBN: 13: 978-0201596199

Continuous Internal Evaluation (CIE): Total marks:

100 Theory - 100 Marks

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. The total CIE for theory is 100.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE): Total marks:

100 Theory – 100 Marks

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	2	2	1	1	1	1	1	-	2	2	-	1			
CO2	2	2	2	2	1	1	1	-	2	1	-	1			
CO3	3	3	2	2	2	1	1	-	2	2	-	1			
CO4	3	3	2	1	1	1	1	-	2	1	-	1			

High-3: Medium-2: Low-1

			Se	emester: IV									
	CONTROL SYSTEMS												
	(Theory)												
			(Comm	on to EE & EI)									
Cou	rse Code	:	18EE46	CIE	:	100 Marks							
Cre	dits: L:T:P	:	3:0:0	SEE	:	100 Marks							
Tota	d Hours	:	40L	SEE Duration	:	3.00 Hours							
Cou	rse Learning C)bj	ectives:										
1	Acquire the k	nov	vledge of classical contr	rol system analysis techniques, system	res	ponse and							
	performance of	cha	racteristics			_							
2	Develop math	nem	atical model and simula	ate single-input single-output linear sys	sten	ns							
3													
	and frequency domain methods to meet desired needs												
4	Express the et	ffec	ts of PID controllers an	d compensators on the system perform	anc	e							

Unit-I	08 Hrs
Unit-1	08 Hrs

Introduction:

Definitions, Classification of control systems open loop and closed loop, linear and nonlinear, time variant and time invariant, continuous and discrete time systems. Block diagram of a typical closed loop control system showing the basic structure and different terminologies .

Modeling and Representation Of Control System:

The transfer function concept, transfer function of simple electrical networks, different forms of transfer functions, transfer function of a closed loop system, block diagrams and signal flow graphs. Masons gain formula. Modeling of mechanical translational and rotational systems and their electrical analog, gear trains, modeling of a.c &d.c servomotors.

Unit – II 09 Hrs

Time Response of Feedback Control Systems:

Standard test signals, step response of first and second order systems, time domain specifications. Type and order of the system, Steady state error and static error constants. Effect of feedback on sensitivity. **Stability Analysis:**

Concept of stability, types of stability, Routh Hurwitz criterion, relative stability analysis.

Unit -III 09 Hrs

Root Locus:

Introduction, concept of magnitude and angle criterion, construction of root loci, root contours. Effect of adding a pole/zero to the system.

Introduction to frequency domain:

Frequency domain specifications, concept of phase margin and gain margin, correlation between time and frequency response.

Unit –IV 07 Hrs

Frequency Domain Analysis:

Introduction to frequency domain plots. Polar plots, Principle of argument, Nyquist plots and Nyquist stability criterion. Bode plots, stability analysis using Bode diagrams.

Unit –V 07 Hrs

Controllers and Compensators:

Basic control actions P, PI, PD and PID controllers and their effects on the dynamic and static behavior of the system. Lag, lead and lead-lag compensators, realization using RC networks. Design of controllers (PID) using Root locus and compensators (lag-lead) using bode plots.

Course	Course outcomes: On completion of the course, the student should have acquired the ability to							
CO1:	Comprehend the different types of control systems and their building blocks							
CO2:	Analyze the different systems by means of their transfer function							
CO3:	Evaluate the performance of systems and assess their stability							
CO4:	Design the system or compensator for the desired performance parameters							

Refere	ence Books
	Control System Engineering, J Nagarath and I.J.Nagarath and M Gopal, 5 th edition, 2007,
1	New age international publishers, ISBN: 81-224-1775-2M.Gopal, "Control systems -
	Principles and design", TMH,2 nd edition,2006, ISBN: 0071231277, 9780071231275
2	K.Ogata, "Modern control engineering", Pearson education, 2004, 4 th edition. ISBN: 1-317-
2	1887-2
2	Modern Control Systems, R.C. Dorf and R.H.Bishop, 12th Edition,2010, Addison Wesley,
3	ISBN 13: 978-0136024583
4	Automatic Control Systems, Kuo B.C 9 th Edition, 2014, ., Prentice Hall of India Ltd., New
4	Delhi, ISBN- 13: 978-8126552337

Continuous Internal Evaluation (CIE): Total marks: 100 Theory – 100 Marks

CIE is executed by way of quizzes (Q), tests (T) and experiential Learning(EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. The total CIE for theory is 100.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE): Total marks: 100 Theory – 100 Marks

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	1	1	1	1	-	2	2	-	1
CO2	2	2	2	2	1	1	1	-	2	1	-	1
CO3	3	3	2	2	2	1	1	-	2	2	-	1
CO4	3	3	2	1	1	1	1	-	2	1	-	1

High-3: Medium-2: Low-1

	Semester: IV								
	Design Thinking Lab								
Cou	rse Code	:	18EE47	(CIE	:	50 Marks		
Cred	lits: L:T:P	:	0:0:2	S	SEE	:	50 Marks		
Hou	rs	:	26P	S	SEE Duration	:	02 Hours		
Cou	rse Learning O	bje	ectives: To ena	ble the students to:					
	Knowledge A	App	olication: Ac	quire the ability to make	links across	dif	ferent areas of		
1	knowledge a	nd	to generate,	develop and evaluate ideas	and informati	ion	so as to apply		
	these skills to	o pi	rovide solution	ns of societal concern					
2	Communicat	tior	: Acquire the	skills to communicate effe	ectively and to	pre	esent ideas		
4	clearly and c	ohe	erently to a sp	ecific audience in both the	written and ora	īl fo	orms.		
3	Collaboratio	n:	Acquire colla	porative skills through worl	king in a team	to	achieve		
3	common goals.								
4	Independent	Le	earning: Lear	n on their own, reflect on th	neir learning an	d t	ake		
4	appropriate action to improve it.								

Guidelines for Design Thinking Lab:

- 1. The Design Thinking Lab (DTL) is to be carried out by a team of two-three students.
- 2. Each student in a team must contribute equally in the tasks mentioned below.
- 3. Each group has to select a theme that will provide solutions to the challenges of societal concern. Normally three to four themes would be identified by the by the department
- 4. Each group should follow the stages of Empathy, Design, Ideate, prototype and Test for completion of DTL.
- 5. After every stage of DTL, the committee constituted by the department along with the coordinators would evaluate for CIE. The committee shall consist of respective coordinator & two senior faculty members as examiners. The evaluation will be done for each student separately.
- 6. The team should prepare a Digital Poster and a report should be submitted after incorporation of any modifications suggested by the evaluation committee.

The Design Thinking lab tasks would involve:

- 1. Carry out the detailed questionnaire to arrive at the problem of the selected theme. The empathy report shall be prepared based on the response of the stake holders.
- 2. For the problem identified, the team needs to give solution through thinking out of the box innovatively to complete the ideation stage of DTL
- 3. Once the idea of the solution is ready, detailed design has to be formulated in the Design stage considering the practical feasibility.
- 4. If the Design of the problem is approved, the team should implement the design and come out with prototype of the system.
- 5. Conduct thorough testing of all the modules in the prototype developed and carry out integrated testing.
- 6. Demonstrate the functioning of the prototype along with presentations of the same.
- 7. Prepare a Digital poster indicating all the stages of DTL separately. A Detailed project report also should be submitted covering the difficulties and challenges faced in each stage of DTL.
- 8. Methods of testing and validation should be clearly defined both in the Digital poster as well as the report.

The students are required to submit the Poster and the report in the prescribed format provided by the department.

Course	Outcomes: After completing the course, the students will be able to
CO 1:	Interpreting and implementing the empathy, ideate and design should be implemented by
	applying the concepts learnt.
CO 2:	The course will facilitate effective participation by the student in team work and
	development of communication and presentation skills essential for being part of any of
	the domains in his / her future career.
CO 3:	Appling project life cycle effectively to develop an efficient prototype.
CO 4:	Produce students who would be equipped to pursue higher studies in a specialized area
	or carry out research work in an industrial environment.

Scheme of Evaluation for CIE Marks:

Evaluation will be carried out in three phases:

Phase	Activity	Weightage
I	Empathy, Ideate evaluation	10M
II	Design evaluation	15M
III	Prototype evaluation, Digital Poster presentation and report submission	25M
	Total	50M

Scheme of Evaluation for SEE Marks:

Sl. No.	Evaluation Component	Marks
1.	Written presentation of synopsis: Write up	5M
2.	Presentation/Demonstration of the project	15M
3.	Demonstration of the project	20M
4.	Viva	05M
5.	Report	05M
	Total	50M

					CO-l	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	Н	Н	Н	M	M	L	M	M	M	M	M
CO2	Н	Н	Н	Н	M	M	L	M	M	M	M	M
CO3	H	H	Н	Н	M	M	L	M	M	M	M	M
CO4	L	L	L	L	L	L	L	M	L	M	L	L

				Semester: IV				
			C P	PROGRAMMING				
				Bridge Course				
			(Con	nmon to all				
			bran	ches)				
Cou	rse Code	:	18DCS48		CIE	:	50 Marks	
Cred	lits: L:T:P	:	2:0:0		SEE	:	50 Marks	
Aud	it Course				SEE Duration	:	2.00 Hours	
Cou	rse Learning C	bje	ectives: The student	ts will be able to				
1	Develop arith	nm	etic reasoning and	analytical skills to	apply knowledge o	f ba	asic concepts	
	of programn	ing	g in C.	•			-	
2	2 Learn basic principles of problem solving through programming.							
3								
4	Solve comple	k pi	roblems using C prog	gramming.				

Unit-I 04 Hrs

Introduction to Reasoning, Algorithms and Flowcharts:

Skill development – Examples related to Arithmetical Reasoning and Analytical Reasoning. Fundamentals of algorithms and flowcharts

Introduction to C programming:

Basic structure of C program, Features of C language, Character set, C tokens, Keywords and Identifiers, Constants, Variables, Data types.

Unit – II 04 Hrs

Handling Input and Output Operations

Formatted input/output functions, Unformatted input/output functions with programming examples using different input/output functions.

Operators and Expressions

Arithmetic operators, Relational operators, Logical Operators, Assignment operators, Increment and decrement operators, Conditional operators, Bit-wise operators, Arithmetic expressions. Evaluation of expressions, Precedence of arithmetic operators, Type conversion in expressions, Operator precedence and associativity.

Unit -III 06 Hrs

Programming Constructs

Decision Making and Branching

Decision making with 'if' statement, Simple 'if' statement, the 'if...else' statement, nesting of 'if...else' statements, The 'else if' ladder, The 'switch' statement, The '?:' operator, The 'goto' statement. Decision making and looping The while statement, The do while statement, The 'for' statement, Jumps in loops.

Unit –IV 06 Hrs

Arrays

One dimensional arrays, Declaration of one dimensional arrays. Initialization of one dimensional arrays, Two dimensional arrays, Initializing two dimensional arrays.

Character Arrays and Strings

Declaring and Initializing String Variables, Reading Strings from Terminal, Writing strings to screen, String handling functions.

Unit –V 08 Hr

User-defined functions

Need for User Defined Functions, Definition of functions, Return values and their types, Function calls, Function declaration. Examples.

Introduction to Pointers: Introduction, Declaration and initialization of pointers. Examples Structures and Unions: Introduction, Structure and union definition, Declaring structure and union variables, Accessing structure members. Example programs.

				I	aborato	rv Com	ponent			
1.	Familia	rizatio	n with p					ept of na	ming the	e program files,
										code.(Example
			ing the d							r
2.										program by compiling
	the C-co					8	r			
3.	Implement C Program to demonstrate the working of operators and analyze the output.									
4.	Simple computational problems using arithmetic expressions and use of each operator									
			ing to in	npleme	ntation (of a Co	mmercia	ıl calcul	ator wi	th appropriate
	message									
			alues fro							
			ll the ari							
			e errors a					1	· c:	1 1 1 701
5.										ve-decimal places. The
										e. If the discriminate is
	negative	e, then	the root	s are co	mpiex co	onjugate	–b /∠a ±	-V-D1/ Z	a.	
		a)	The p	rogram	should a	ccent th	e values	of a. b a	nd c fro	m the keyboard.
		b)								ninates with
		,		riate m				1 6		
		c)				0 but b	≠ 0 and	the root	is $-c/b$.	The program prints
			out the	root wi	th approj	oriate m	essage a	nd the p	rogram t	erminates.
		d)								sponding roots.
										e message.
6a.			am to pri		multipli					1.0
	1	2	3	4	5	6	7	8	9	10
		4	6	8	10	12	14	16	18	20
	3 4	6 8	9	12	15	18	21	24	27	30
	5	10	12 15	16 20	20 25	24 30	28 35	32 40	36 45	40 50
	3	10	13	20	23	30	33	40	43	30
	Write a	C pros	gram to g	generate	the patt	erns usi	ng for lo	ops.		
		_	print * if	-	_		C	1		
	1	,	•			,				
	**									
	333									

6b.	55555									
7a.		C prog	gram to f	and the	Greatest	commo	n diviso	r(GCD)	and Lea	st common multiplier(
7b.	LCM)	Cara	aram to	nnut o s	numbar a	and obse	k whath	or the m	ımbor io	nalindroma or not
8.										palindrome or not. nat reads N integer
0.										ble sort technique.
9.			lemonstr							1
	a) Rea	ad the	sizes of t	wo mat	rices and	d check	the comp	atibility	for mul	tiplication.
				te mess	age if th	e condit	ion is no	t satisfie	ed and a	sk user to re-enter
	the size									
			nput mati					_		
										out matrix.
10.	_		ns develo	op a C p	rogram	to perfo	m the fo	ollowing	tasks b	y parameter passing
	concept			c ·						
			d a string				-4 m - 1' '	Lasa an		
11 1			ate mess						1:1.	C
11a.1	Write a	C pro	gram to f	and the	iength o	ithe stri	ng witho	out using	library	function.

1b.	Write a program to enter a sentence and print total number of vowels.								
12.	Design a structure 'Complex' and write a C program to perform the following operations:								
	i.Reading a complex number.								
	ii.Addition of two complex numbers.								
	iii.Print the result								
13.	Create a structure called student with the following members student name, rollno, and a								
	structure with marks details in three tests. Write a C program to create N records and								
	a) Search on roll no and display all the records.								
	b) Average marks in each test.								
	c) Highest marks in each test								

Course	Course outcomes: On completion of the course, the student should have acquired the ability to						
CO1:	Understand and explore the fundamental computer concepts and basic programming						
	principles like data types, input/output functions, operators, programming constructs and user						
	defined functions.						
CO2:	Analyze and Develop algorithmic solutions to problems.						
CO3:	Implement and Demonstrate capabilities of writing 'C' programs in optimized, robust and						
	reusable code.						
CO4:	Apply appropriate concepts of data structures like arrays, structures implement programs for						
	various applications.						

Refere	Reference Books					
1	Programming in C, P. Dey, M. Ghosh, First Edition, 2007, Oxford University press, ISBN (13): 9780195687910.					
2	The C Programming Language, Kernighan B.W and Dennis M. Ritchie, Second Edition, 2005, Prentice Hall, ISBN (13): 9780131101630.					
3	H. Schildt, Turbo C: The Complete Reference, Mcgraw Hill Education, 4th Edition, 2000, ISBN-13: 9780070411838.					
4	Understanding Pointers in C, Yashavant P. Kanetkar, 4 th edition, 2003, BPB publications, ISBN-13: 978-8176563581.					
5	C IN DEPTH, S.K Srivastava, Deepali Srivastava, 3 rd Edition, 2013, BPB publication, ISBN 9788183330480					

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for experiential learning is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	-	1	-	-	-	1	-	-	1
CO2	3	3	3	2	2	-	-	-	1	-	-	1
CO3	3	3	3	-	-	-	-	-	2	2	1	2
CO4	3	3	3	-	-	-	1	-	2	2	1	2

High-3: Medium-2: Low-1

Semester: III and IV							
	PROFESSIONAL PRACTICE						
			- I CO	MMUNICATION			
				SKILLS			
(Common to all Programmes)							
Course Code		:	18HS49		CIE		50
Credits: L:T:P		:	0:0:1		SEE	:	50
Total Hours		:	18 hrs /Semester		SEE Duration	:	2 Hours
Course Learning Objectives: The students will be able to							
1 Understand their own communication style, the essentials of good communication and develop							
	their confidence to communicate effectively.						
2	2 Manage stress by applying stress management skills.						
3	Ability to give contribution to the planning and coordinate Team work.						
4	Ability to make problem solving decisions related to ethics.						

III Semester 6 Hrs

Communication Skills: Basics, Method, Means, Process and Purpose, Basics of Business Communication, Written & Oral Communication, Listening.

Communication with Confidence & Clarity- Interaction with people, the need the uses and the methods, Getting phonetically correct, using politically correct language, Debate & Extempore.

6 Hrs

Assertive Communication- Concept of Assertive communication, Importance and applicability of Assertive communication, Assertive Words, being assertive.

Presentation Skills- Discussing the basic concepts of presentation skills, Articulation Skills, IQ & GK, How to make effective presentations, body language & Dress code in presentation, media of presentation.

6 Hrs

Team Work- Team Work and its important elements Clarifying the advantages and challenges of team work Understanding bargains in team building Defining behaviour to sync with team work Stages of Team Building Features of successful teams.

IV Semester 6 Hrs

Body Language & Proxemics - Rapport Building - Gestures, postures, facial expression and body movements in different situations, Importance of Proxemics, Right personal space to maintain with different people.

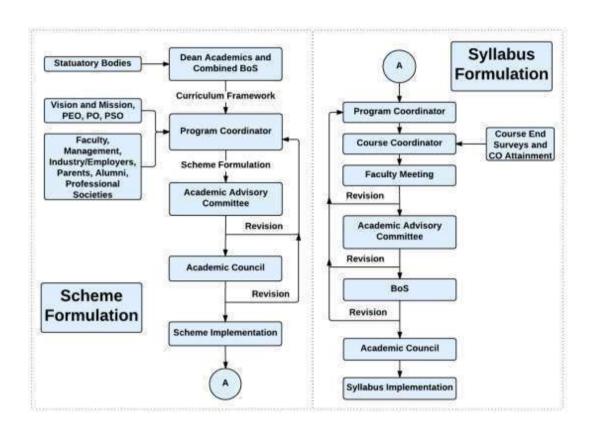
6 Hrs

Motivation and Stress Management: Self-motivation, group motivation, leadership abilities, Stress clauses and stress busters to handle stress and de-stress; Understanding stress - Concept of sound body and mind, Dealing with anxiety, tension, and relaxation techniques. Individual Counseling & Guidance, Career Orientation. Balancing Personal & Professional Life-

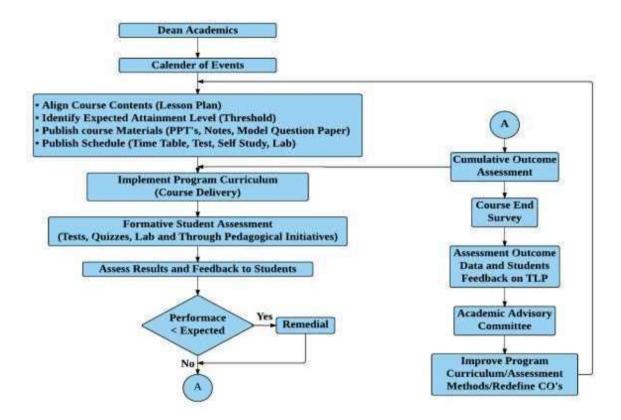
6 Hrs

Professional Practice - Professional Dress Code, Time Sense, Respecting People & their Space, Relevant Behaviour at different Hierarchical Levels. Positive Attitude, Self Analysis and Self-Management.

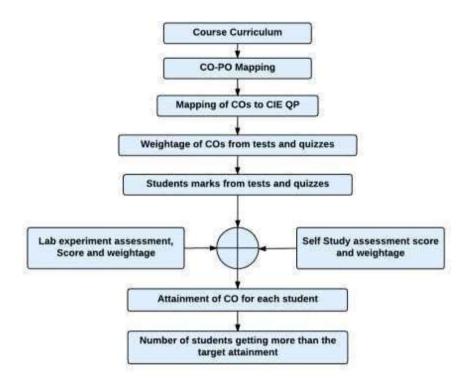
Professional Ethics - values to be practiced, standards and codes to be adopted as professional engineers in the society for various projects. Balancing Personal & Professional Life

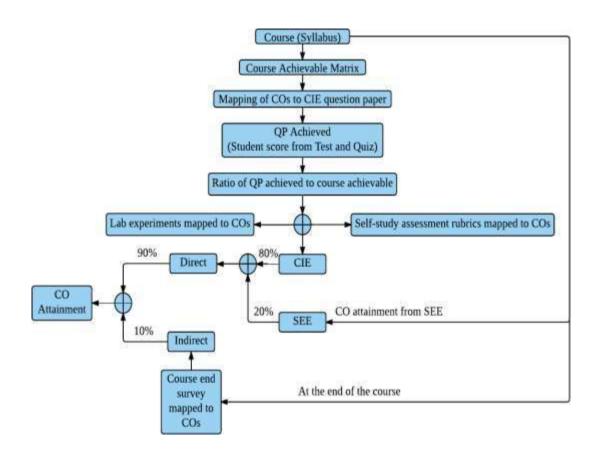

Course Outcomes: After completing the course, the students will be able to					
CO1:	Inculcate skills for life, such as problem solving, decision making, stress management				
CO2:	Develop leadership and interpersonal working skills and professional ethics.				
CO3:	Apply verbal communication skills with appropriate body language.				
CO4:	Develop their potential and become self-confident to acquire a high degree of self				

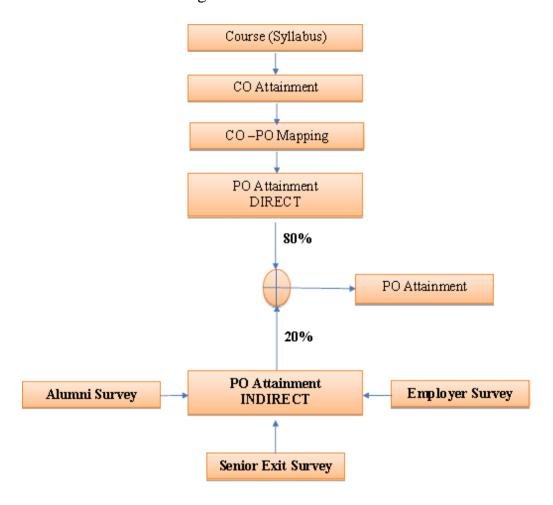
Ref	Reference Books				
1.	The 7 Habits of Highly Effective People, Stephen R Covey, Free Press, 2004 Edition, ISBN: 0743272455				
2.	How to win friends and influence people, Dale Carnegie, General Press, 1 st Edition, 2016, ISBN: 9789380914787				
3.	Crucial Conversation: Tools for Talking When Stakes are High, Kerry Patterson, Joseph Grenny, Ron Mcmillan, McGraw-Hill Publication, 2012 Edition, ISBN: 9780071772204				
4.	Aptimithra: Best Aptitude Book, Ethnus, Tata McGraw Hill, 2014 Edition, ISBN: 9781259058738				


Scheme of Continuous Internal Examination and Semester End Examination

Phase	Activity	Weightage
Phase I	CIE will be conducted during the 3 rd semester and evaluated for 50 marks.	50%
III Sem	The test will have two components. The Quiz is evaluated for 15 marks and	
	second component consisting of questions requiring descriptive answers is	
	evaluated for 35 marks. The test & quiz will assess the skills acquired through	
	the training module.	
	SEE is based on the test conducted at the end of the 3 rd semester The test will	
	have two components a Quiz evaluated for 15 marks and second component	
	consisting of questions requiring descriptive answers is	
	evaluated for 35 marks.	
Phase II	During the 4 th semester a test will be conducted and evaluated for 50 marks.	50%
IV Sem	The test will have two components a Short Quiz and Questions requiring	
	descriptive answers. The test & quiz will assess the skills acquired through	
	the training module.	
	SEE is based on the test conducted at the end of the 4 th semester The test will	
	have two components. The Quiz evaluated for 15 marks and second	
	component consisting of questions requiring descriptive answers is	
	evaluated for 35 marks	
Phase III	At the end of the IV Sem Marks of CIE (3 rd Sem and 4 th Sem) is consolidated a	for 50 marks
At the	(Average of Test1 and Test 2 (CIE 1+CIE2)/2.	
end of IV	At the end of the IV Sem Marks of SEE (3 rd Sem and 4 th Sem) is consolidated	for 50 marks
Sem	(Average of CIE 1 and CIE 2 (CIE 1+CIE2)/2.	


Curriculum Design Process


Academic Planning and Implementation


Process for Course Outcome Attainment

Final CO Attainment Process

Program Outcome Attainment Process

PROGRAM OUTCOMES (POs)

- 1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.
- 2. Problem analysis: Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.
- 4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.
- 6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. Communication: Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long learning: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Innovative Clubs of RVCE

1	Ashwa Racing	Ashwa Mobility Foundation (AMF) is a student R&D platform that designs and fabricates Formula theme race cars and future mobility solutions to tackle urban transportation problems.
2	Astra Robites	Team involved in the design, fabrication and building application specific robots.
3	Coding Club	To facilitate students the skills, confidence, and opportunity to change their world using coding and help them become successful in GSoC, ACM-ICPC, and other recognized coding competitions.
4	Entrepreneurship Development Cell	E-Cell is a student run body that aims to promote entrepreneurship by conducting workshops, speaker sessions and discussions on business and its aspects. We possess a mentor board to help startups grow.
5	Frequency Club	Team aims at contributing in both software and hardware domains mainly focusing on Artificial Intelligence, Machine Learning and it's advances.
6	Garuda	Design and development of supermileage urban concept electric car. Indigenous development of E-mobility products.
7	Jatayu	Build a low cost Unmanned Aerial Vehicle capable of Autonomous Navigation, Obstacle Avoidance, Object Detection, Localization, Classification and Air Drop of a package of optimum weight.
8	Solar Car	Build a roadworthy solar electric vehicle in order to build a green and sustainable environment.
9	Team Antariksh	Team Antariksh is a Space Technology Student Club whose goal is to understand, disseminate and apply the engineering skills for innovation in the field of Space technology. designing Nano-Satellite payload for ISRO PS4 Orbital platform, RVSAT-1 along with developing experimental rockets of various altitude.
10	Team Chimera	Building a Formula Electric Car through Research and Development in E-Mobility. Electrifying Formula Racing.
11	Helios Racing	Team involved in design, manufacturing and testing of All-Terrain Vehicles and other supportive tasks for the functioning of the team. Participating in BAJA competitions organized by SAE in India and the USA.
12	Team Hydra	Developing autonomous underwater vehicles and use it for various real world applications such as water purification, solid waste detection and disposal etc.
13	Team Krushi	Develop low cost equipments, which help farmers in cultivating and harvesting the crops. Use new technology applications to reduce the labour time hand cost for farmers. Aims at developing implants for Tractors.
14	Team vyoma	Design, fabrication and testing of radio controlled aircrafts and research on various types of unmanned aerial vehicles.
15	Team Dhruva	Organizing activities like quizzes based on astronomy. Stargazing and telescope handling sessions. Construction of a standard observatory. working on small projects with organizations like ICTS, IIA, ARIES etc.
16	Ham club	To popularize Amateur Radio as a hobby among students, alongside exploring technical innovations in the communications domain. Intended to provide human capital for service to the nation at times of natural calamities.

NCC

NSS

"Not me but you"

"Education through

Community Service &

Community Service through education"

Cultural Activity Teams

- 1. AALAP (Music club)
- 2. DEBSOC (Debating society)
- 3. CARV (Dramatics club)
- 4. FOOTPRINTS (Dance club)
- 5. QUIZCORP (Quizzing society)
- 6. ROTARACT (Social welfare club)
- 7. RAAG (Youth club)
- 8. EVOKE (Fashion team)
- 9. f/6.3 (Photography club)
- 10. CARV ACCESS (Film-making club)

Leadership in Technical Education, Interdisciplinary Research & Innovation, with a Focus on sustainable and Inclusive Technologies.

MISSION

- To deliver outcome based Quality Education, emphasizing on experiential learning with state of the art infrastructure.
- To create a conducive environment for interdisciplinary research and innovation.
- To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- To focus on technologies that are sustainable and inclusive, benefitting all sections of the society.

