Go, change the world

RV Educational Institutions[®] RV College of Engineering[®]

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Bachelor of Engineering (B.E) Scheme and Syllabus of VII & VIII Semesters

2018 SCHEME

CIVIL ENGINEERING 2021-2022

VISION

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

MISSION

- 1. To deliver outcome based Quality education, emphasizing on experiential learning with the state of the art infrastructure.
- 2. To create a conducive environment for interdisciplinary research and innovation.
- 3. To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- 4. To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- 5. To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

QUALITY POLICY

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

CORE VALUES

Professionalism, Commitment, Integrity, Team Work, Innovation

RV COLLEGE OF ENGINEERING[®]

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus of VII& VIII Semesters

2018 SCHEME

DEPARTMENT OF CIVIL ENGINEERING

DEPARTMENT VISION

Excel in Education, Research and Consultancy in Civil Engineering with emphasis on Sustainable Development

DEPARTMENT MISSION

- Disseminating and integrating the knowledge of civil Engineering and allied fields
- Enhancing industry-institute interaction leading to interdisciplinary research.
- Imbibing wide-range of skills in cutting-edge technology for sustainable development.
- Motivate entrepreneurship and professional ethics to serve the society.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **PEO1.** Successfully address technological and managerial challenges.
- PEO2. Professionally design and execute Civil Engineering projects.
- **PEO3.** Pursue advanced education, research and continue life-long learning process to remain active professionals.
- PEO4. Play key roles in addressing societal needs through interdisciplinary approach.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO	Description
PSO1	Apply knowledge of fundamental aspects to analyze and design civil engineering structures.
PSO2	Provide sustainable solutions to civil engineering problems.
PSO3	Employ codal provisions to arrive at comprehensive solutions to address societal needs
PSO4	Exhibit communication and teamwork skills.

Lead Society: American Society of Civil Engineers (ASCE)

Sl. No.	Abbreviation	Meaning
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	SEE	Semester End Examination
5.	PE	Professional Elective
6.	GE	Global Elective
7.	HSS	Humanities and Social Sciences
8.	CV	Civil Engineering
9.	ME	Mechanical Engineering
10.	EE	Electrical & Electronics Engineering
11.	EC	Electronics & Communication Engineering
12.	IM	Industrial Engineering & Management
13.	EI	Electronics & Instrumentation Engineering
14.	СН	Chemical Engineering
15.	CS	Computer Science & Engineering
16.	TE	Telecommunication Engineering
17.	IS	Information Science & Engineering
18.	BT	Biotechnology
19.	AS	Aerospace Engineering
20.	PY	Physics
21.	СҮ	Chemistry
22.	MA	Mathematics

ABBREVIATIONS

VII Semester					
Sl. No.	Course Code	Course Title	Page No.		
1.	18HS71	Constitution of India and Professional Ethics	1		
2.	18CV72	Geotechnical Engineering	3		
3.	18CV73	Extensive Survey project	6		
4.	18CV74	Internship	8		
5.	18CV7F1	Pre Stressed Concrete	10		
6.	18CV7F2	Pavement Materials and Design	12		
7.	18CV7F3	Industrial Waste Water Treatment	14		
8.	18CV7F4	Hydraulic Structures	16		
9.	18CV7F5	Alternative Building Materials	18		
10.	18CV7G1	Advanced Design of RCC Structures	20		
11.	18CV7G2	Transportation Engineering	22		
12.	18CV7G3	Environmental Impact Assessment	24		
13.	18CV7G4	Ground Water Hydrology	26		
14.	18CV7G5	Valuation Engineering	28		
15.	18G7H01	Unmanned Aerial Vehicles	30		
16.	18G7H02	Bioinformatics	32		
17.	18G7H03	Industrial Safety And Risk Management	34		

18.	18G7H04	Web Programming	36
19.	18G7H05	Solid Waste Management and Statutory Rules	38
20.	18G7H06	Image Processing And Machine Learning	40
21.	18G7H07	Renewable Energy Sources and Storage Systems	42
22.	18G7H08	MEMs & Applications	44
23.	18G7H09	Project Management	46
24.	18G7H10	Cyber Forensics And Digital Investigations	48
25.	18G7H11	Robotics And Automation	50
26.	18G7H12	Space Technology And Applications	52
27.	18G7H13	Introduction To Astrophysics	54
20	18071114	Materials For Advanced Technology And Spectroscopic	56
20.	100/1114	Characterization	
29.	18G7H15	Applied Psychology For Engineers	58
30.	18G7H16	Advanced Course In Entrepreneurship	60

VIII Semester							
Sl. No.	Course Code	Course Title	Page No.				
1.	18CVP81	Major Project	61				

RV COLLEGE OF ENGINEERING®

(Autonomous Institution Affiliated to VTU, Belagavi)

	SEVENTH SEMESTER CREDIT SCHEME							
Sl.	Course Code	Course Title	BoS	Credit Allocation			Total	
No.				L	Т	Р	Credits	
31.	18HS71	Constitution of India and Professional Ethics	HSS	3	0	0	3	
32.	18CV72	Geotechnical Engineering	CV	3	1	1	5	
33.	18CV73	Extensive Survey project	CV	0	0	4	4	
34.	18CV74	Internship*	CV	0	0	2	2	
35.	18CV7FX	Elective F (PE)	CV	3	0	0	3	
36.	18CV7GX	Elective G (PE)	CV	3	0	0	3	
37.	18G7HXX	Elective H (OE)	3	0	0	3		
	Total Number of Credits151723							
	Total number of Hours/Week15211.5							

CIVIL ENGINEERING

Note:

* Internship to be carried out by students during 6th Semester vacation and evaluation is done during 7th Semester.

	EIGHT SEMESTER CREDIT SCHEME							
SI. Course Code Course Title BoS Credit Allocation							Total	
No.	eouise eoue		200	L	Т	Р	Credits	
1.	18CVP81	Major Project	CV	0	0	16	16	
Total Number of Credits					0	16	16	
	Total number of Hours/Week					32		

	VII Semester						
	PROFESSIONAL ELECTIVES (GROUP F)						
Sl. No.	Sl. No. Course Code Course Title Credits						
1.	18CV7F1	Pre Stressed Concrete	3				
2.	18CV7F2	Pavement Materials and Design	3				
3.	18CV7F3	Industrial Waste Water Treatment	3				
4.	18CV7F4	Hydraulic Structures	3				
5.	18CV7F5	Alternative Building Materials	3				

	VII Semester						
	PROFESSIONAL ELECTIVES (GROUP G)						
Sl. No.	Sl. No. Course Code Course Title Credits						
1.	18CV7G1	Advanced Design of RCC Structures	3				
2.	18CV7G2	Transportation Engineering	3				
3.	18CV7G3	Environmental Impact Assessment	3				
4.	18CV7G4	Ground Water Hydrology	3				
5.	18CV7G5	Valuation Engineering	3				

	VII Semester					
		0	PEN ELECTIVES (GROUP H)			
Sl. No.	BoS	Course Code	Course Title	Credits		
1	AS	18G7H01	Unmanned Aerial Vehicles	3		
2	BT	18G7H02	Bioinformatics	3		
3	CH	18G7H03	Industrial Safety And Risk Management	3		
4	CS	18G7H04	Web Programming	3		
5	CV	18G7H05	Solid Waste Management and Statutory Rules	3		
6	EC	18G7H06	Image Processing And Machine Learning	3		
7	EE	18G7H07	Renewable Energy Sources and Storage Systems	3		
8	EI	18G7H08	MEMs & Applications	3		
9	IM	18G7H09	Project Management	3		
10	IS	18G7H10	Cyber Forensics And Digital Investigations	3		
11	ME	18G7H11	Robotics And Automation	3		
12	TE	18G7H12	Space Technology And Applications	3		
13	PY	18G7H13	Introduction To Astrophysics	3		
14	OV	19071114	Materials For Advanced Technology And	2		
14	CI	160/114	Spectroscopic Characterization	5		
15	HSS	18G7H15	Applied Psychology For Engineers	3		
16	HSS	18G7H16	Advanced Course In Entrepreneurship	3		

	Semester: VII						
		CC	ONSTITUTION	OF INDIA AND PRO	FESSIONAL ETH	ICS	
				(Theory)			
			(0	Common to All Progra	ams)		
Cou	rse Code	:	18HS71		CIE	:	100 Marks
Cree	dits: L:T:P	:	3:0:0		SEE	:	100 Marks
Tota	Total Hours:39LSEE Duration:3 Hours						
Cou	rse Learning ()bj	ectives: The stude	ents will be able to			
1	Apply the kn	owl	edge of constituti	onal literacy to become	e aware of the funda	men	tal rights and duties
	in their role a	s Ei	ngineers.				
2	Understandin	g o	f ethical and lega	al aspects of advertising	ng, consumer proble	ems	and their redressal
	mechanism re	elate	ed to product and	service standards.			
3	Discuss the k	now	vledge of substanti	ive Labor law and to de	velop skills for legal	reas	soning and statutory
	interpretations.						
4	Evaluate indi	vidu	ual role, responsib	ilities and emphasize o	n professional/ engir	ieeri	ng ethics in shaping
	professions.						

Unit - I	10 Hrs				
Indian Constitution- Salient features of Indian Constitution ,Preamble to the Constitution	of India;				
Provisions Relating to Citizenship in India- at the Commencement of the Constitution and Later	with latest				
amendments, Modes of Acquisition and Termination of Citizenship of India. Scope & Extent of Fun	ndamental				
Rights-Articles 14-32 with case studies; Right to Information Act, 2005 with Case studies.					
Unit – II	10 Hrs				
Directive Principles of State Policy- Significance of Directive Principles of State Policy, Fun	ndamental				
Duties in the Constitution of India; Union Executive- President and State Executive- Governor; H	Parliament				
& State Legislature; Council of Ministers; Anti-defection law; Union and State Judiciary; E	mergency				
provisions; Elections, Administrative tribunals. Human Rights & Human Rights Commission.					
Unit –III	06 Hrs				
Consumer Protection Law - Definition and Need of Consumer Protection; Consumer Rights	under the				
Consumer Protection Act, 2019; Unfair Trade Practice, Defect in goods, Deficiency in services	s; Product				
liability and Penal Consequences, False and Misleading Advertisement, E-Commerce, Alterna	te dispute				
Redress mechanism; Redresses Mechanisms under the Consumer Protection Act, 2019.					
An overview of Indian Penal Code 1860 (Law Of Crimes)					
Unit – IV	06 Hrs				
Introduction to Labour Legislations - Industrial Relation, Labour Problem and Labour Policy	/ in India;				
Labour Welfare and Social Security- Factories Act, 1948, Sexual Harassment of Women at V	Norkplace				
(Prevention, Prohibition and Redressal) Act, 2013; the Child Labour (Prohibition and Regulation).	Act, 1986,				
Maternity Benefit (Amendment) Act, 2017; Industrial Dispute Act, 1947, Reference of Disputes to	to Boards,				
Courts or Tribunals.					
Unit –V	07 Hrs				
Scope and aims of engineering ethics (NSPE Code of Ethics), Responsibility of Engineers, Impediments to					
responsibility. Honesty, Integrity and reliability, Risks, Safety and Liability in Engineering. Corporate Social					
Responsibility. Statutory Provision regarding prohibition and prevention of Ragging.					
Course Outcomes: After completing the course, the students will be able to					

004150	
CO1	Demonstrate the citizen's fundamental Rights, duties & consumer responsibility capability and to
	take affirmative action as a responsible citizen.

CO2	Identify the conflict management in legal perspective and judicial systems pertaining to professional											
	environment, strengthen the ability to contribute to the resolve of human rights & Ragging issues											
	and problems through investigative and analytical skills.											
CO3	Understanding process of ethical and moral analysis in decision making scenarios and inculcate											
	ethical behavior as a trait for professional development.											
CO4:	Apply the knowledge to solve practical problems with regard to personal issues & business											
	Enterprises.											

Refe	rence Books
1	Dr. J. N Pandey, Constitutional Law of India, Central Law Agency, 2020 edition
2	Avtar Singh: Law of Consumer Protection: Principles and Practice, Eastern Book Company, 5 th Edition, 2015, ISBN -13:978-9351452461
3	S.C. Srivastava: Industrial Relation and Labour Laws, Vikas Publishing House, 6 th Edition, 2012, ISBN: 9789325955400
4	Jr. Charles E Harris, Michael. S. Pritchard and Michael J Rabins, Engineering Ethics, Wadsworth Cengage Learning, 5 th Edition, 2009, ISBN-978-0495502791

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping															
CO/PO	CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12														
CO1	3	2	-	-	-	-	-	-	-	1	-	1			
CO2	3	2	2	1	-	-	-	-	-	1	-	1			
CO3	3	3	2	2	-	-	-	-	-	1	-	1			
CO4	3	3	3	3	-	-	-	-	-	1	-	1			

Semester: VII												
GEOTECHNICAL ENGINEERING												
(Theory & Practice)												
Cou	lite. I .T.P	•	3.1.1		SFF	•	100+50 Marks					
Tota	Hours	•	30I ±26T±33P		SEE SFE Duration	•	3+3 Hours					
Course Learning Objectives: The students will be able to												
1	Understand th	e in	portance of sub-soi	l exploration soil bet	naviour upon subject	ed t	o loading conditions					
and concept of types of foundation in practice.												
2	2 Familiarize the students in the field of foundation Engineering by applying the concept of soil											
	behaviour asso	ocia	ted with sub-structu	ire.								
3	Interpret the in	ives	stigated soil data and	l load distribution pat	tern and suggest sui	able	e type of foundation.					
4	Evaluate the s	stab	ility of sub-soil con	dition including slop	bes and subjected to	loa	ding conditions and					
	design parame	eters	s required for sub-st	ructure design.								
				PART-A			0.11					
C *4	T / · /•		l	J nit-I			8 Hrs					
Site	Investigation :		6 11	Dl f '1 '			. Due a mana a march a 1.					
of	auction, Purpos	se o	and donth of horoho	Phases of soll invest	igation, Soli Exploration	ation of a	ampling Field tests					
of exploration, Number and depth of boreholes, soil sampling -samplers and methods of sampling, Field tests-												
penetration tests, geophysical methods, an overview of ground improvement techniques.												
pene Stab	ility of Slones.	-	<i>,</i>		inprovement teening	ues.						
pene Stab	ility of Slopes:	and	causes of slope fail	ures Infinite slopes	Slope stability analy	cic h	w Method of Slices-					
pene Stab Intro Bish	oility of Slopes: oduction, Types op's method. Ja	and	causes of slope fail	ures, Infinite slopes, S	Slope stability analy	sis t heti	by Method of Slices-					
pene Stab Intro Bish slope	oility of Slopes: oduction, Types op's method, Ja es.	and nbu	causes of slope faile 's method, Slope an	ures, Infinite slopes, s alysis by stability cha	Slope stability analy arts, Role of geosynt	sis t heti	by Method of Slices- cs in stabilization of					
pene Stab Intro Bish slope	bility of Slopes: oduction, Types op's method, Ja es.	and nbu	causes of slope fail s method, Slope an	ures, Infinite slopes, S alysis by stability changes	Slope stability analy arts, Role of geosynt	sis t heti	by Method of Slices- cs in stabilization of 7 Hrs					
pene Stab Intro Bish slope Stre	bility of Slopes: bduction, Types op's method, Ja es. ss Distribution	and nbu	causes of slope failu 's method, Slope an Un Soil Mass:	ures, Infinite slopes, s alysis by stability cha nit – II	Slope stability analy arts, Role of geosynt	sis t heti	by Method of Slices- cs in stabilization of 7 Hrs					
pene Stab Intro Bish slope Stre Intro	bility of Slopes: aduction, Types op's method, Ja es. ss Distribution aduction, Boussi	and nbu in s	causes of slope faile 's method, Slope an Un Soil Mass: q's analysis, isobar a	ures, Infinite slopes, S alysis by stability cha nit – II and pressure bulb, Ve	Slope stability analy arts, Role of geosynt	sis theti	by Method of Slices- cs in stabilization of 7 Hrs on horizontal plane					
pene Stab Intro Bish slope Stre Intro and	bility of Slopes: oduction, Types op's method, Ja es. ss Distribution oduction, Boussi on vertical line,	and nbu in s nes	causes of slope fails 's method, Slope an Un Soil Mass: q's analysis, isobar a ertical stress under u	ures, Infinite slopes, S alysis by stability chan nit – II and pressure bulb, Ve niformly loaded circu	Slope stability analy arts, Role of geosynt ertical stress distribu	sis theti	y Method of Slices- cs in stabilization of 7 Hrs on horizontal plane load, vertical stress					
pene Stab Intro Bish slope Stre Intro and due	bility of Slopes: oduction, Types op's method, Ja es. ss Distribution oduction, Boussi on vertical line, to line load, Ur	and nbu in s nes , Ve	causes of slope failu 's method, Slope an Un Soil Mass: q's analysis, isobar a ertical stress under u rmly loaded rectang	ures, Infinite slopes, S alysis by stability cha nit – II and pressure bulb, Ve niformly loaded circu gular area, equivalen	Slope stability analy arts, Role of geosynt ertical stress distribu ular area and under s t point load method	tion strip	oy Method of Slices- cs in stabilization of 7 Hrs on horizontal plane load, vertical stress ewmark's influence					
stre Stre Stre Intro and due chart	bility of Slopes: oduction, Types op's method, Ja es. ss Distribution oduction, Boussi on vertical line, to line load, Ur t, Westergaard a	and nbu in s nes , Ve nifo	causes of slope fail 's method, Slope an Un Soil Mass: q's analysis, isobar ertical stress under u rmly loaded rectang ysis, comparison of	ures, Infinite slopes, S alysis by stability cha nit – II and pressure bulb, Vo niformly loaded circu gular area, equivalen Boussinesq and Wes	Slope stability analy arts, Role of geosynt ertical stress distribu ular area and under s t point load methoo tergaard theories.	tion tion	by Method of Slices- cs in stabilization of 7 Hrs on horizontal plane load, vertical stress ewmark's influence					
stre Stre Bish slope Stre Intro and due chart	bility of Slopes: oduction, Types op's method, Ja es. ss Distribution oduction, Boussi on vertical line, to line load, Un t, Westergaard a	and nbu in s nes , Ve nifo unal	causes of slope faile 's method, Slope an Un Soil Mass: q's analysis, isobar s ertical stress under u rmly loaded rectang ysis, comparison of Un	ures, Infinite slopes, S alysis by stability cha nit – II and pressure bulb, Va niformly loaded circu gular area, equivalen Boussinesq and Wes nit –III	Slope stability analy arts, Role of geosynt ertical stress distribu ular area and under t point load methoo tergaard theories.	tion l, N	y Method of Slices- cs in stabilization of 7 Hrs on horizontal plane load, vertical stress ewmark's influence 8 Hrs					
pene Stab Intro Bish slope Stre Intro and due char	bility of Slopes: oduction, Types op's method, Ja es. ss Distribution oduction, Boussi on vertical line, to line load, Un t, Westergaard a ring Capacity:	and nbu in s nes , Ve nifo unal	causes of slope failu 's method, Slope an Un Soil Mass: q's analysis, isobar a ertical stress under u rmly loaded rectang ysis, comparison of Un	ures, Infinite slopes, S alysis by stability cha nit – II and pressure bulb, Ve niformly loaded circu gular area, equivalen Boussinesq and Wes nit –III	Slope stability analy arts, Role of geosynt ertical stress distribu ular area and under t point load method tergaard theories.	tion strip	oy Method of Slices- cs in stabilization of 7 Hrs on horizontal plane load, vertical stress ewmark's influence 8 Hrs					
stre Stre Intro Stre Intro and due chart Bean Intro	sility of Slopes: oduction, Types op's method, Ja es. ss Distribution oduction, Boussi on vertical line, to line load, Un t, Westergaard a ring Capacity: oduction, Terzag	and nbu in s nes , Ve nifo unal	causes of slope failu 's method, Slope an Un Soil Mass: q's analysis, isobar a ertical stress under u rmly loaded rectang ysis, comparison of Un s analysis, Skempto	ures, Infinite slopes, S alysis by stability cha nit – II and pressure bulb, Ve niformly loaded circu gular area, equivalen Boussinesq and Wes nit –III	Slope stability analy arts, Role of geosynt ertical stress distribu ular area and under s t point load method tergaard theories. 's, Meyerhof's theo	sis theti tion strip	by Method of Slices- cs in stabilization of 7 Hrs on horizontal plane load, vertical stress ewmark's influence 8 Hrs of Bearing capacity,					
pene Stab Intro Bish slope Stre Intro and due chart Intro Effe	bility of Slopes: oduction, Types op's method, Ja es. ss Distribution oduction, Boussi on vertical line, to line load, Un t, Westergaard a ring Capacity: oduction, Terzag ct of water table	and nbu in $\frac{1}{100}$ ness, Ve nifo unal ghi'	causes of slope fail 's method, Slope an Un Soil Mass: q's analysis, isobar a ertical stress under u rmly loaded rectang ysis, comparison of Un s analysis, Skempto bearing capacity, e	ures, Infinite slopes, S alysis by stability cha nit – II and pressure bulb, Va niformly loaded circu gular area, equivalen Boussinesq and Wes nit –III on's, Brinch Hansen ffect of eccentricity of	Slope stability analy arts, Role of geosynt ertical stress distribu ular area and under s t point load method tergaard theories. 's, Meyerhof's theo of loading, I.S. Code	tion strip l, N	by Method of Slices- cs in stabilization of 7 Hrs on horizontal plane load, vertical stress ewmark's influence 8 Hrs of Bearing capacity, ethod for computing					
stab Intro Bish slope Stre Intro and due chart Bean Intro Effect bear	sility of Slopes: oduction, Types op's method, Ja es. ss Distribution oduction, Boussi on vertical line, to line load, Un t, Westergaard a ring Capacity: oduction, Terzag ct of water table ing capacity, Pla	and nbu in $\frac{1}{100}$ nes , Ve nifo unal ghi' e on	causes of slope faile 's method, Slope an Un Soil Mass: q's analysis, isobar sertical stress under u rmly loaded rectang ysis, comparison of Un s analysis, Skempto bearing capacity, e load test, Penetration	ures, Infinite slopes, S alysis by stability cha nit – II and pressure bulb, Va niformly loaded circu gular area, equivalen Boussinesq and Wes nit –III on's, Brinch Hansen ffect of eccentricity on tests.	Slope stability analy arts, Role of geosynt ertical stress distribu ular area and under s t point load method tergaard theories. 's, Meyerhof's theo of loading, I.S. Code	sis b heti tion strip l, N	oy Method of Slices- cs in stabilization of 7 Hrs on horizontal plane load, vertical stress ewmark's influence 8 Hrs of Bearing capacity, ethod for computing					
pene Stab Intro Bish slope Stre Intro and due char Intro Effea bear	sility of Slopes: oduction, Types op's method, Ja es. ss Distribution oduction, Boussi on vertical line, to line load, Un t, Westergaard a ring Capacity: oduction, Terzag ct of water table ing capacity, Pla	and nbu in $\frac{1}{1}$ nes nifo unal ghi' e on ate 1	causes of slope faile 's method, Slope an Un Soil Mass: q's analysis, isobar a ertical stress under u rmly loaded rectang ysis, comparison of Un s analysis, Skempto bearing capacity, e load test, Penetration Un	ures, Infinite slopes, S alysis by stability cha and pressure bulb, Ve niformly loaded circu gular area, equivalen Boussinesq and Wes nit –III on's, Brinch Hansen ffect of eccentricity on tests.	Slope stability analy arts, Role of geosynt ertical stress distribu ular area and under s t point load method tergaard theories. 's, Meyerhof's theo of loading, I.S. Code	sis b heti tion strip l, N	by Method of Slices- cs in stabilization of 7 Hrs on horizontal plane load, vertical stress ewmark's influence 8 Hrs of Bearing capacity, ethod for computing 8 Hrs					
stre Intro Bish slope Stre Intro and due chart Intro Effect bear	sility of Slopes: oduction, Types op's method, Ja es. ss Distribution oduction, Boussi on vertical line, to line load, Un t, Westergaard a ring Capacity: oduction, Terzag ct of water table ing capacity, Pla Foundations: T	and nbu in $\frac{1}{100}$ nes nifo unal ghi' e on ate 1	causes of slope faile 's method, Slope an Un Soil Mass: q's analysis, isobar ertical stress under u rmly loaded rectang ysis, comparison of Un s analysis, Skempto bearing capacity, e load test, Penetration Un es of piles and Insta	ures, Infinite slopes, S alysis by stability cha nit – II and pressure bulb, Vo niformly loaded circu gular area, equivalen Boussinesq and Wes nit –III on's, Brinch Hansen ffect of eccentricity on tests. nit –IV llation, Load capacity	Slope stability analy arts, Role of geosynt ertical stress distribu ular area and under s t point load method tergaard theories. 's, Meyerhof's theo of loading, I.S. Code	tion strip l, N ry ce me load	by Method of Slices- cs in stabilization of 7 Hrs on horizontal plane load, vertical stress ewmark's influence 8 Hrs of Bearing capacity, ethod for computing 8 Hrs d test, Pile groups,					
pene Stab Intro Bish slope Stre Intro and due chart Intro Effe bear Pile	sility of Slopes: oduction, Types op's method, Ja es. ss Distribution oduction, Boussi on vertical line, to line load, Un t, Westergaard a ring Capacity: oduction, Terzag ct of water table ing capacity, Pla Foundations: T tic settlement of	and nbu in $\frac{1}{1}$ nes , V ϵ nifo unal ghi' e on ate 1 Fype	causes of slope faile 's method, Slope an Un Soil Mass: q's analysis, isobar a ertical stress under u rmly loaded rectang ysis, comparison of Un s analysis, Skempto bearing capacity, e load test, Penetration Un es of piles and Insta- es, Consolidation se	ures, Infinite slopes, S alysis by stability channels and pressure bulb, Va niformly loaded circu gular area, equivalen Boussinesq and Wes nit –III on's, Brinch Hansen ffect of eccentricity of n tests. nit –IV llation, Load capacity	Slope stability analy arts, Role of geosynt ertical stress distribu ular area and under s t point load method tergaard theories. 's, Meyerhof's theo of loading, I.S. Code y of Single pile, Pile group, Piles subject	tion strip l, N ry ce me load	by Method of Slices- cs in stabilization of 7 Hrs on horizontal plane load, vertical stress ewmark's influence 8 Hrs of Bearing capacity, ethod for computing 8 Hrs d test, Pile groups, o Negative skin					
pene Stab Intro Bish slope Stre Intro and due chart Intro Effect bear Pile Elass fricti	sility of Slopes: oduction, Types op's method, Ja es. ss Distribution oduction, Boussi on vertical line, to line load, Un t, Westergaard a ring Capacity: oduction, Terzag ct of water table ing capacity, Pla Foundations: T tic settlement of ion.	and nbu in s nes , Ve nifo unal ghi' e on ate 1 rypo	causes of slope faile 's method, Slope an Un Soil Mass: q's analysis, isobar sertical stress under u rmly loaded rectang ysis, comparison of Un s analysis, Skempto bearing capacity, e load test, Penetration Un es of piles and Insta es, Consolidation se	ures, Infinite slopes, S alysis by stability channels nit – II and pressure bulb, Va niformly loaded circu gular area, equivalen Boussinesq and Wes nit –III on's, Brinch Hansen ffect of eccentricity of n tests. nit –IV llation, Load capacity ottlement under a pile	Slope stability analy arts, Role of geosynt ertical stress distribu- ular area and under s t point load method tergaard theories. 's, Meyerhof's theo of loading, I.S. Code y of Single pile, Pile group, Piles subject	tion strip l, N ry ce me load ed t	by Method of Slices- cs in stabilization of 7 Hrs on horizontal plane load, vertical stress ewmark's influence 8 Hrs of Bearing capacity, ethod for computing 8 Hrs d test, Pile groups, o Negative skin					
pene Stab Intro Bish slope Stre Intro and due chart Bean Intro Effe bear Pile Elass fricti	sility of Slopes: oduction, Types op's method, Ja es. ss Distribution oduction, Boussi on vertical line, to line load, Un t, Westergaard a ring Capacity: oduction, Terzag ct of water table ing capacity, Pla Foundations: T tic settlement of ion.	and nbu in s ness, Ve nifo unal ghi' c on ate 1	causes of slope faile 's method, Slope an Un Soil Mass: q's analysis, isobar a ertical stress under u rmly loaded rectang ysis, comparison of Un s analysis, Skempto bearing capacity, e load test, Penetration Un es of piles and Instal es, Consolidation se	ures, Infinite slopes, S alysis by stability char nit – II and pressure bulb, Va niformly loaded circu gular area, equivalen Boussinesq and Wes nit –III on's, Brinch Hansen affect of eccentricity of n tests. nit –IV llation, Load capacity ettlement under a pile nit –V	Slope stability analy arts, Role of geosynt ertical stress distribu ular area and under s t point load method tergaard theories. 's, Meyerhof's theo of loading, I.S. Code y of Single pile, Pile group, Piles subject	tion strip l, N ry ce me load ed t	by Method of Slices- cs in stabilization of 7 Hrs on horizontal plane load, vertical stress ewmark's influence 8 Hrs of Bearing capacity, ethod for computing 8 Hrs d test, Pile groups, o Negative skin 8 Hrs					
pene Stab Intro Bish slope Stre Intro and due chart Intro Effe bear Pile Elass fricti	sility of Slopes: oduction, Types op's method, Ja es. ss Distribution oduction, Boussi on vertical line, to line load, Un t, Westergaard a ring Capacity: oduction, Terzag ct of water table ing capacity, Pla Foundations: T tic settlement of ion.	and nbu in s ness, Ve nifo unal ghi' ghi' fype	causes of slope faile 's method, Slope an Un Soil Mass: q's analysis, isobar a ertical stress under u rmly loaded rectang ysis, comparison of Un s analysis, Skempto bearing capacity, e oad test, Penetration Un es of piles and Insta es, Consolidation se	ures, Infinite slopes, S alysis by stability channels and pressure bulb, Va niformly loaded circu gular area, equivalen Boussinesq and Wes nit –III on's, Brinch Hansen ffect of eccentricity of n tests. nit –IV llation, Load capacity ettlement under a pile nit –V	Slope stability analy arts, Role of geosynt ertical stress distribu ular area and under s t point load method tergaard theories. 's, Meyerhof's theo of loading, I.S. Code y of Single pile, Pile group, Piles subject	sis b heti tion strip l, N ry c e me load ed t	by Method of Slices- cs in stabilization of 7 Hrs on horizontal plane load, vertical stress ewmark's influence 8 Hrs of Bearing capacity, ethod for computing 8 Hrs d test, Pile groups, o Negative skin 8 Hrs					

pressure for a sloping backfill and a sloping wall face, Retaining walls-types and modes of fa Mechanically stabilised earth walls-Basic concept and stability of Mechanically stabilised earth walls

PART-B

- 1. Specific Gravity Determination
- 2. Moisture Content Determination
- 3. Sieve Analysis for Coarse-grained Soils
- 4. Hydrometer Analysis for Fine-grained Soils
- 5. Atterberg's Limits and Indices
- 6. Standard Proctor Compaction Test
- 7. Field Density Test (Core Cutter Method and Sand Replacement Method)
- 8. Determination of permeability of soils (Constant Head & Variable Head Tests)
- 9. Determination of strength of soils
 - a) Direct Shear Test
 - b) Triaxial Test (UU only)
 - c) Unconfined Compression Test
 - d) Vane shear Test
- 10. Demonstration
 - a) Rapid Moisture Meter
 - b) Proctor Needle
 - c) Relative density apparatus
 - d) Standard Penetration Test
 - e) Differential Free Swell Test
 - f) Consolidation of soils

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Understand the soil behavior under different sub soil conditions, loading conditions and design									
	parameters of sub-structure									
CO2:	Gain Knowledge in the domain of foundation Engineering by applying the soil behaviour theory									
	and its pattern involved in sub-structure design									
CO3:	Recommend suitable type of foundation and the stability of slopes based the investigated soil data									
	and load distribution pattern									
CO4:	Design suitable foundation system and evaluate the stability of sub-soil condition including slopes									
	being subjected to loading conditions									

Refere	ence Books
1	Bowles. J.E,Foundation Analysis and Designs, McGraw Hill Publishing Co., New York1996, 5 th Edition. ISBN: 978-0071188449
2	Terzaghi, Peck and Mesri, "Soil Mechanics in Engineering Practice, 3 rd Edition, Wiley publication, 2012, ISBN:978-0134115856.
3	Gopal Ranjan and Rao ASR ,Basic and Applied Soil Mechanics, New Age International (P) ltd, New Delhi, 2000, ISBN: 788122412239
4	VNS Murthy, Soil Mechanics and Foundation Engineering, First Edition, UBS Publishers and Distributors, New Delhi, 2007, ISBN:9788174763228

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

CO-PO Mapping															
CO/PO	CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12														
CO1	2	2	1	-	-	-	-	-	-	1	-	2			
CO2	3	3	3	2	-	-	-	-	-	2	-	2			
CO3	2	3	-	3	-	-	-	-	-	1	-	3			
CO4	3	2	3	1	-	-	-	-	-	1	-	2			

Semester: VII											
	Course Title: EXTENSIVE SURVEY PROJECT										
Cou	rse Code	:	18CV73		CIE Marks	••	100				
Cred	lits: L:T:P	:	0:0:4		SEE Marks		100				
Tota	l Hours	:	52		SEE Duration	:	3Hrs				
Cou	rse Learning	g O	bjectives: The	e students will be able to							
1	Describe t	he	types of surve	eys and use of surveying tools ar	nd equipments rec	luir	red for civil				
	engineering	g pi	rojects.								
2	Address the	e fi	eld problems a	nd challenges in surveying.							
3	Evaluation	, in	terpretation an	d communication the field data.							
4	Design and	l de	velop solution	s to meet societal needs.							

New Tank Project ;

- 1. Survey and preparation of drawing for longitudinal and Cross section of bund
- 2. Survey and preparation of drawing for Block levels at waste Weir Site.
- 3. Survey and preparation of drawing for Capacity Contours.
- 4. Survey and preparation of drawing for Initial Alignment of Channel.
- 5. Survey and preparation of drawing for Final Alignment of Channel.

Water Supply & Sanitary Project - conduction of survey, preparation of drawings ;

- 1. Water Supply Project.
 - a. Survey and preparation of maps for water supply to the village
 - b. Longitudinal and cross sections along the alignment of pipeline
 - c. Calculation of cutting and filling along the alignment of pipeline
- 2. Sanitary Project.
- Village survey & preparation of drawings for waste water drainage

Highway Project ;

- 1. Initial Alignment of Highway.
- 2. Final Alignment of Highway.

Preparation of finalized drawings and related calculations of cutting and filling for the following projects

- 1. New Tank Project
- 2. Water Supply & Sanitary Project

Highway Project

Cou	Course Outcomes: After completing the course, the students will be able to								
1	Understand the different surveys required for various Civil Engineering projects								
2	Apply the various equipments and methods of survey for different civil engineering projects								
3	Analyze the field data and prepare the drawings based on the survey field work								
4	Evaluate and calculate the bill of quantities for various works based on the survey and drawings								
	prepared								

Scheme of Continuous Internal Examination (CIE):

Evaluation will be carried out under three Phases:

Scheme of Evaluation for CIE:

CIE consists of preliminary survey, survey field work and preparation of preliminary drawings. The total marks for CIE shall be **100** out of which 20% for preliminary survey, 50% for field work and 30% for preparation and submission of drawings.

Scheme of Evaluation for SEE:

Based on performance in the viva voce examination out of 100

CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	-	-	-	-	-	-	-	-	3	2		2	
CO2	-	-	-	-	-	-	3	-	2	-	-	-	
CO3	-	-	-	-	-	-	2	-	3	-	1	1	
CO4	-	-	-	-	-	3	2	1	2	1	1	2	

Low-1 Medium-2 High-3

	SEMESTER : VII										
-		1	INTERNS	SHIP)						
Col	urse Code	:	18CV74		CIE Marks	:	50				
Cre	edit L:T:P	:	0:0:2		SEE Marks	:	50				
Ho	urs/week	:	4		SEE Duration	:	3 Hrs				
			GUIDEL	INES							
1.	The duration of the inter	nship	shall be for a perio	d of 6	5/8 weeks on full time basi	s afte	er IV semester				
	final exams and before t	he co	mmencement of VI	I sem	ester.						
2.	2. The student must submit letters from the industry clearly specifying his / her name and the duration										
2	of the internship on the c	comp	any letter head with	auth	orized signature.						
3.	the student has apprelled	ed to	the field of speciali	zatio	n of the respective UG pro	ograi	mme in which				
4	Students undergoing int	amah	in training are advi	icad t	a raport their program or	d au	hmit pariodia				
4.	students undergoing int	rospo	ativo guidos	ised i	to report their progress an	ia su	ionni periodic				
5	Students have to present	tho in	cuve guides.	orrio	d out to the departmental a	omn	vittag and only				
5.	upon approval by the or	mmi	ttoo the student cor		a out to the departmental c	onn it the	hard copy of				
	the final internship rep	ort F	Jowever interim o	r proc	iodic reports as required	by	the industry /				
	organization can be subn	nitted	as per the format ac	centa	ble to the respective indus	trv /	organizations				
6	The reports shall be prin	ted o	n A4 size with 1.5 s	spacir	ng and Times New Roman	ı witl	h font size 12				
0.	outer cover of the report	t (wra	apper) has to be Ivo	rv co	lor for UG circuit Program	ms a	nd Light Blue				
	for Non-Circuit Program	ns.	TT ,	5			8				
7.	The broad format of the	interi	nship final report sh	all be	e as follows						
	Cover Page		1 1								
	Certificate from	Colle	ege								
	Certificate from	Indu	stry / Organization								
	Acknowledgeme	ent									
	 Synopsis 										
	Table of Conten	ts									
	• Chapter 1 - Pre	ofile	of the Organizatio	n: O	rganizational structure, P	rodu	cts, Services,				
	Business Partner	rs, Fii	nancials, Manpower	; Soc	eietal Concerns, Professior	nal Pi	ractices,				
	Chapter 2 - Acti	vities	of the Department								
	• Chapter 3 - Tasl	s Per	formed: summaries	the t	asks performed during 8-v	veek	period				
	• Chapter 4 – Refl	ection	ns: Highlight specifi	c tecl	hnical and soft skills that y	ou ac	equired during				
	internship										
a	References & A	nnexu	ure								
	irse Outcomes:	1. :	(1	-1-1-4							
Afte	er going through the inter	nsnip	the student will be	able 1	to:						
	1: Apply engineering and	l mar	agement principles	ata aa	lutions						
	2: Analyze real-time pro		s and suggest alterna	ate so	DIULIONS						
	3. Communicate effective A: Imbibe the practice of	nrof	nu work in teams	heed t	for lifelong learning						
Sch	eme of Continuous Inter	rnal l	Evaluation (CIF).	iccu I	tor motong toanning.						
The	evaluation committee sh		nsist of Guide Profe	esor/	Associate Professor and A	esist	ant Professor				
The	committee shall assess the	ne pre	sentation and the pr	ogres	ss reports in two reviews	-55150					
The	evaluation criteria shall h	be as	per the rubrics give	1 belo)W:						
•											
R	eviews		Activit	y			Weightage				
Re	eview-I Explanation of	f th	ne application of	f e	ngineering knowledge	in					
	industries, abi	lity t	o comprehend the	func	tioning of the organizati	on/	45%				

departments,

	Review-	Importance	of	resource	management,	environment	and			
	II	sustainability	55%							
Scheme for Semester End Evaluation (SEE):										
The SEE examination shall be conducted by an external examiner (domain expert) and an internal										
e	examiner. Evaluation shall be done in batches, not exceeding 6 students per batch.									

	Semester: VII									
	PRE STRESSED CONCRETE									
			(Grou	p F: Professional El	lective)					
Cou	Course Code:18CV7F1CIE:100 Marks						100 Marks			
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks			
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours			
Cou	rse Learning C)bj	ectives: The student	s will be able to						
1	Understand th	le c	oncept and behaviou	ir of prestressed conc	crete members					
2	Explain the fu	Ind	amental concepts of	stress analysis.						
3	Apply system	s o	f pre-stressing for va	rious sections of stru	ctural elements					
4	Evaluate and	ana	lyze the stresses und	ler various conditions	8					
5	Design and detail the prestressed concrete members for various loading conditions									

Unit-I	7 Hrs								
Introduction: Historic development- general principles of Prestressing, Types of pre stressing, pre-									
tensioning and post tensioning, advantages and limitation of prestressed concrete, Materials for pre stressed									
concrete- high strength steel and concrete, properties, Stress-strain characteristics of high str	concrete- high strength steel and concrete, properties, Stress-strain characteristics of high strength steel and								
concrete									
Codal Provisions: Basic principles of pre stressing, fundamentals of prestress, Load bala	incing concept,								
Stress concept, center of thrust, Pretensioning and post tensioning methods-Analysis of p	ost tensioning,								
Systems of pre stressing, End anchorages	-								
Unit – II	8 Hrs								
Analysis of sections for flexure: Elastic analysis of pre stressed concrete beams with stra	ight, parabolic,								
triangular, trapezoidal cable profiles, Combination of cable profiles, Eccentric and concentri	c pre stressing,								
Numerical problems									
Unit –III	9 Hrs								
Losses of Prestress: Loss of prestress in pretensioned and post tensioned members due to elastic shortening									
of concrete, shrinkage of concrete, creep of concrete, relaxation of steel, slip in anchorage	e and frictional								
losses, Numerical problems.									
Deflection of pre stressed concrete beams: Short term and long-term deflections, Elastic de	flections under								
transferred loads and due to different cable profiles, Deflection limits as per IS 1343, Effe	ect of creep on								
deflection, Load versus deflection curve, methods of reducing deflection, Numerical problem	is,								
Unit –IV	7Hrs								
Limit state of Collapse: Flexure- IS code recommendations, Ultimate flexural strength of se	ctions, IS code								
recommendations on shear strength, Shear resistance of sections, shear reinforcement,	Limit state of								
serviceability- Control of deflection and cracking, Numerical Problems.									
Unit –V	8 Hrs								
Design of Beams: Design of pre stressing force and eccentricity for post tensioned pr	ismatic beams,								
permissible stresses, Limiting zone and cable profile.									
Course Outcomes: After completing the course, the students will be able to									

Course Outcomes: After completing the course, the students will be able to								
CO1:	Understand the fundamental concepts of stress analysis							
CO2:	Apply systems of pre-stressing for various sections of structural elements.							
CO3:	Analyze and evaluate the stresses under various conditions							
CO4:	Design the prestressed concrete members for various loading conditions							

Refere	nce Books
1	Pre stressed concrete, N Krishna Raju,6 th Edition, 2018, Tata McGraw Hill Publishers, 2018, ISBN: 9789387886209, 9387886204

2	Pre stressed Concrete, P Dayarathnam, P Sarah, 7th Edition, 2017, MedTech Publishers, ISBN-10:
2	9789386479778, ISBN-13: 978-9386479778
2	Pre stressed Concrete, K. U. Muthu, Ibrahim Azmi, JanardhanaMaganti, M. Vijayanand, First
3	Edition, 2016, PHI Learning, ISBN-13: 9788120351691
4	Design of pre stressed concrete structures, T Y Lin and Ned H Burns, Wiley India Private Limited;
4	Third edition (7 September 2010), ISBN-10 : 9788126528035, ISBN-13 : 978-8126528035
Code I	Book
1	IS 1343:2012; Pre stressed Concrete: Code of practice, Bureau of Indian Standards, New Delhi

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	-	-	-	-	-	1	-	-
CO2	-	2	-	-	-	-	-	-	-	1	-	-
CO3	1	-	3	-	-	-	2	-	-	1	-	-
CO4	-	-	1	-	-	-	-	-	-	1	-	-

	Semester: VII										
	PAVEMENT MATERIALS AND DESIGN										
			(Grou	p F: Professional El	lective)						
Cou	Course Code		18CV7F2		CIE		100 Marks				
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks				
Tota	Total Hours		ours : 39L		SEE Duration	:	3.00 Hours				
Cou	rse Learning ()bj	ectives: The student	s will be able to							
1	Understand t	ype	s ,components and f	actors affecting desig	gn of pavements						
2	Analyze stresses in flexible pavements using layered system										
3	Analyze stresses in rigid pavements										
4	4 Design flexible and rigid pavements using IRC method										

Types and Component parts of Pavements - A brief study on aggregates, bitumen and modified bitumen like cutback, emulsion, polymer modified bitumen - Bituminous mix design methods, specifications and testing - Superpave mix design and material testing. 8 Hrs Factors affecting Design and Performance of Pavements: Comparison between Highway and Airport pavements - Functions and Significance of Subgrade properties, Various Methods of Assessment of Subgrade Soil Strength for Pavement Design - Causes and Effects of variation in Moisture Content and Temperature - Depth of Frost Penetration, Failures of Pavement. 8 Hrs Analysis & Design of Flexible Pavement: 8 Hrs 8 Hrs Analysis & Design of Flexible Pavement: 8 Hrs 8 Hrs Analysis & Design of Flexible Pavement: 8 Hrs 8 Hrs Analysis & Design of Flexible Pavement: 8 Hrs 8 Hrs Analysis & Design of Flexible Pavement: 9 Pavement Design Methods – Mechanistic Empirical, Semi-empirical, Analytical and Mechanistic-empirical approaches - Development, Principle, Design steps, Advantages and Applications of different Pavement Design Methods – Mechanistic Empirical Pavement Design – Guidelines and examples 8 Hrs Analysis & Design of Rigid pavements: Types of Stresses and Causes, Factors influencing the Stresses; General conditions in Rigid Pavement Analysis, ESWL, Wheel Load Stresses, Warping Stresses, Friction Stresses, Combined Stresses - Types of Joints in Cement Concrete Pavement Besign Multi-V 8 Hrs Alternate Materials fo	Unit-I	7 Hrs								
cutback, emulsion, polymer modified bitumen - Bituminous mix design methods, specifications and testing - Superpave mix design and material testing. Wint - II 8 Hrs Factors affecting Design and Performance of Pavements: Comparison between Highway and Airport pavements - Functions and Significance of Subgrade properties, Various Methods of Assessment of Subgrade Soil Strength for Pavement Design - Causes and Effects of variation in Moisture Content and Temperature - Depth of Frost Penetration, Failures of Pavement. Unit -III 8 Hrs Analysis & Design of Flexible Pavement: Stresses and Deflections in Homogeneous Masses - Burmister's 2-layer, 3- layer Theories - Wheel Load Stresses - ESWL of Multiple Wheels - ESAL – VDF - Repeated Loads and EWL factors - Sustained Loads and Pavement behaviour under Traffic Loads - Empirical, Semi-empirical, Analytical and Mechanistic-empirical approaches - Development, Principle, Design steps, Advantages and Applications of different Pavement Design Methods – Mechanistic Empirical Pavement Design – Guidelines and examples 8 Hrs Malysis & Design of Rigid pavements: Types of Stresses and Causes, Factors influencing the Stresses; General conditions in Rigid Pavement Analysis, ESWL, Wheel Load Stresses, Warping Stresses, Friction Stresses, Combined Stresses - Types of Joints in Cement Concrete Pavement Design 8 Hrs Alternate Materials for durable pavements: artificial aggregates – Industrial waste materials – fly ash, pond ash, marble dust, GGBS, Geo-polymer coated aggregates – waste plastics, fibres – recycled aggregate and RAP. Nanomaterials for pavements: Nano clay, Nano silica, Carbon Nano Tube (CNT) and other nanomaterials – or warm mix technologies: additive	Types and Component parts of Pavements - A brief study on aggregates, bitumen and modified bitumen like									
− Superpave mix design and material testing. 0nit − II 8 Hrs Factors affecting Design and Performance of Pavements: Comparison between Highway and Airport pavements - Functions and Significance of Subgrade properties, Various Methods of Assessment of Subgrade Soil Strength for Pavement Design - Causes and Effects of variation in Moisture Content and Temperature - Depth of Frost Penetration, Failures of Pavement. 8 Hrs Analysis & Design of Flexible Pavement: 8 Unit −III 8 Hrs Analysis & Design of Flexible Pavement: Stresses and Deflections in Homogeneous Masses - Burmister's 2-layer, 3-layer Theories - Wheel Load Stresses - ESWL of Multiple Wheels - ESAL – VDF - Repeated Loads and EWL factors - Sustained Loads and Pavement behaviour under Traffic Loads - Empirical, Semi-empirical, Analytical and Mechanistic-empirical approaches - Development, Principle, Design steps, Advantages and Applications of different Pavement Design Methods – Mechanistic Empirical Pavement Design – Guidelines and examples 8 Hrs Analysis & Design of Rigid pavements: Types of Stresses and Causes, Factors influencing the Stresses; General conditions in Rigid Pavement Analysis, ESWL, Wheel Load Stresses, Warping Stresses, Friction Stresses, Combined Stresses - Types of Joints in Cement Concrete Pavement beign 8 Hrs Alternate Materials for durable pavements: artificial aggregates – Industrial waste materials – fly ash, pond ash, marble dust, GGBS, Geo-polymer coated aggregates – waste plastics, fibres – recycled aggregate and She servel as and Cold mix technologies: additives and modifiers, design guidelines and Cold mix technologies: materials, additives, guidelines and practices Cource Outcomes:	cutback, emulsion, polymer modified bitumen - Bituminous mix design methods, specifications and testing									
Unit – II 8 Hrs Factors affecting Design and Performance of Pavements: Comparison between Highway and Airport pavements - Functions and Significance of Subgrade properties, Various Methods of Assessment of Subgrade Soil Strength for Pavement Design - Causes and Effects of variation in Moisture Content and Temperature - Depth of Frost Penetration, Failures of Pavement. 8 Hrs Analysis & Design of Flexible Pavement: Stresses and Deflections in Homogeneous Masses - Burmister's 2-layer, 3- layer Theories - Wheel Load Stresses - ESWL of Multiple Wheels - ESAL – VDF - Repeated Loads and EWL factors - Sustained Loads and Pavement behaviour under Traffic Loads - Empirical, Semi-empirical, Analytical and Mechanistic-empirical approaches - Development, Principle, Design steps, Advantages and Applications of different Pavement Design Methods – Mechanistic Empirical Pavement Design - Guidelines and examples 8 Hrs Analysis & Design of Rigid pavements: Types of Stresses and Causes, Factors influencing the Stresses; General conditions in Rigid Pavement Analysis, ESWL, Wheel Load Stresses, Warping Stresses, Friction Stresses, Combined Stresses - Types of Joints in Cement Concrete Pavements and their Functions, Joint Spacing, Design of Slab Thickness, Design of Joint Details for Longitudinal Joints, Contractor Joints and Expansion Joints, IRC Method of Design – Mechanistic Empirical Pavement Design 8 Hrs Alternate Materials for durable pavements: artificial aggregates – Industrial waste materials – fly ash, pond ash, marble dust, GGBS, Geo-polymer coated aggregates – waste plastics, fibres – recycled aggregate and RAP. Nanomaterials for pavements: artificial aggregates – waste plastics, fibres – recycled aggregate and RAP. Nanomaterials for pavements: and practices 8 Hrs	– Superpave mix design and material testing.									
Factors affecting Design and Performance of Pavements: Comparison between Highway and Airport pavements - Functions and Significance of Subgrade properties, Various Methods of Assessment of Subgrade Soil Strength for Pavement Design - Causes and Effects of variation in Moisture Content and Temperature - Depth of Frost Penetration, Failures of Pavement. Image: Content of Content of Pavement Design - Causes and Deflections in Homogeneous Masses - Burmister's 2-layer, 3- layer Theories - Wheel Load Stresses - ESWL of Multiple Wheels - ESAL – VDF - Repeated Loads and EWL factors - Sustained Loads and Pavement behaviour under Traffic Loads - Empirical, Semi-empirical, Analytical and Mechanistic-empirical approaches - Development, Principle, Design steps, Advantages and Applications of different Pavement Design Methods – Mechanistic Empirical Pavement Design – Guidelines and examples Unit -IV 8 Hrs Analysis & Design of Rigid pavements: Types of Stresses and Causes, Factors influencing the Stresses; General conditions in Rigid Pavement Analysis, ESWL, Wheel Load Stresses, Warping Stresses, Friction Stresses, Combined Stresses - Types of Joints in Cement Concrete Pavements and their Functions, Joint Spacing, Design of Slab Thickness, Design of Joint Details for Longitudinal Joints, Contraction Joints and Expansion Joints, IRC Method of Design – Mechanistic Empirical Pavement Design Unit -V 8 Hrs Alternate Materials for durable pavements: Nano clay, Nano silica, Carbon Nano Tube (CNT) and other nanomaterials for gavements: Nano clay, Nano silica, Carbon Nano Tube (CNT) and other nanomaterials – warm mix technologies: additives and modifiers, design guidelines and Cold mix technologies: materials, additives, guidelines and practices Course Outcomes: After compl	Unit – II	8 Hrs								
pavements - Functions and Significance of Subgrade properties, Various Methods of Assessment of Subgrade Soil Strength for Pavement Design - Causes and Effects of variation in Moisture Content and Temperature - Depth of Frost Penetration, Failures of Pavement. Image: Content of Content of Prost Penetration, Failures of Pavement. 8 Hrs Analysis & Design of Flexible Pavement: Stresses and Deflections in Homogeneous Masses - Burmister's 2-layer, 3- layer Theories - Wheel Load Stresses - ESWL of Multiple Wheels - ESAL – VDF - Repeated Loads and EWL factors - Sustained Loads and Pavement behaviour under Traffic Loads - Empirical, Semi-empirical, Analytical and Mechanistic-empirical approaches - Development, Principle, Design steps, Advantages and Applications of different Pavement Design Methods – Mechanistic Empirical Pavement Design – Guidelines and examples Unit -IV 8 Hrs Analysis & Design of Rigid pavements: Types of Stresses and Causes, Factors influencing the Stresses; General conditions in Rigid Pavement Analysis, ESWL, Wheel Load Stresses, Warping Stresses, Friction Stresses, Combined Stresses - Types of Joints in Cement Concrete Pavements and their Functions, Joint Spacing, Design of Slab Thickness, Design of Joint Details for Longitudinal Joints, Contraction Joints and Expansion Joints, IRC Method of Design – Mechanistic Empirical Pavement Design 8 Hrs Alternate Materials for durable pavements: and tificial aggregates – Industrial waste materials – fly ash, pond ash, marble dust, GGBS, Geo-polymer coated aggregates – waste plastics, fibres – recycled aggregate and RAP. Nanomaterials for pavements: Nano clay, Nano silica, Carbon Nano Tube (CNT) and other nanomaterials – warm mix technologies: additives and modifiers, design guidelines and Cold mix technologies:: add	Factors affecting Design and Performance of Pavements: Comparison between Highwa	y and Airport								
Soil Strength for Pavement Design - Causes and Effects of variation in Moisture Content and Temperature - Depth of Frost Penetration, Failures of Pavement. 8 Hrs Analysis & Design of Flexible Pavement: Stresses and Deflections in Homogeneous Masses - Burnister's 2-layer, 3-layer Theories - Wheel Load Stresses - ESWL of Multiple Wheels - ESAL – VDF - Repeated Loads and EWL factors - Sustained Loads and Pavement behaviour under Traffic Loads - Empirical, Semi-empirical, Analytical and Mechanistic-empirical approaches - Development, Principle, Design steps, Advantages and Applications of different Pavement Design Methods – Mechanistic Empirical Pavement Design - Guidelines and examples Unit –IV 8 Hrs Analysis & Design of Rigid pavements: Types of Stresses and Causes, Factors influencing the Stresses; General conditions in Rigid Pavement Analysis, ESWL, Wheel Load Stresses, Warping Stresses, Friction Stresses, Combined Stresses - Types of Joints in Cement Concrete Pavements and their Functions, Joint Spacing, Design of Slab Thickness, Design of Joint Details for Longitudinal Joints, Contraction Joints and Expansion Joints, IRC Method of Design – Mechanistic Empirical Pavement Design Unit –V 8 Hrs Alternate Materials for durable pavements: artificial aggregates – Industrial waste materials – fly ash, pond ash, marble dust, GGBS, Geo-polymer coated aggregates – waste plastics, fibres – recycled aggregate and RAP. Nanomaterials for pavements: Nano clay, Nano silica, Carbon Nano Tube (CNT) and other nanomaterials – warm mix technologies: additives and modifiers, design guidelines and Cold mix technologies: materials, additives, guidelines and practices Course Outcomes: After completing the course, the students will be able to	pavements - Functions and Significance of Subgrade properties, Various Methods of Assessme	ent of Subgrade								
Unit –III 8 Hrs Analysis & Design of Flexible Pavement: Stresses and Deflections in Homogeneous Masses - Burmister's 2-layer, 3- layer Theories - Wheel Load Stresses - ESWL of Multiple Wheels - ESAL – VDF - Repeated Loads and EWL factors - Sustained Loads and Pavement behaviour under Traffic Loads - Empirical, Semi-empirical, Analytical and Mechanistic-empirical approaches - Development, Principle, Design steps, Advantages and Applications of different Pavement Design Methods – Mechanistic Empirical Pavement Design – Guidelines and examples 8 Hrs Analysis & Design of Rigid pavements: Types of Stresses and Causes, Factors influencing the Stresses; General conditions in Rigid Pavement Analysis, ESWL, Wheel Load Stresses, Warping Stresses, Friction Stresses, Combined Stresses - Types of Joints in Cement Concrete Pavements and their Functions, Joint Spacing, Design of Slab Thickness, Design of Joint Details for Longitudinal Joints, Contraction Joints and Expansion Joints, IRC Method of Design – Mechanistic Empirical Pavement Design Vinit –V 8 Hrs Alternate Materials for durable pavements: artificial aggregates – Industrial waste materials – fly ash, pond ash, marble dust, GGBS, Geo-polymer coated aggregates – waste plastics, fibres – recycled aggregate and RAP. Nanomaterials for pavements: Nano clay, Nano silica, Carbon Nano Tube (CNT) and other nanomaterials – warm mix technologies: additives and modifiers, design guidelines and Cold mix technologies: additives and modifiers, design guidelines and Cold mix technologies: materials, additives, guidelines and practices Course Outcomes: After completing the course, the students will be able to Col: Identify the suitable pavement mater	Soil Strength for Pavement Design - Causes and Effects of variation in Moisture Content and	I Temperature -								
Unit -III8 HrsAnalysis & Design of Flexible Pavement: Stresses and Deflections in Homogeneous Masses - Burmister's 2- layer, 3- layer Theories - Wheel Load Stresses - ESWL of Multiple Wheels - ESAL – VDF - Repeated Loads and EWL factors - Sustained Loads and Pavement behaviour under Traffic Loads - Empirical, Semi- empirical, Analytical and Mechanistic-empirical approaches - Development, Principle, Design steps, Advantages and Applications of different Pavement Design Methods – Mechanistic Empirical Pavement Design – Guidelines and examples8 HrsMalysis & Design of Rigid pavements: Types of Stresses and Causes, Factors influencing the Stresses; General conditions in Rigid Pavement Analysis, ESWL, Wheel Load Stresses, Warping Stresses, Friction Stresses, Combined Stresses - Types of Joints in Cement Concrete Pavements and their Functions, Joint Spacing, Design of Slab Thickness, Design of Joint Details for Longitudinal Joints, Contraction Joints and Expansion Joints, IRC Method of Design – Mechanistic Empirical Pavement Design8 HrsAlternate Materials for durable pavements: artificial aggregates – Industrial waste materials – fly ash, pond ash, marble dust, GGBS, Geo-polymer coated aggregates – waste plastics, fibres – recycled aggregate and RAP. Nanomaterials for pavements: Nano clay, Nano silica, Carbon Nano Tube (CNT) and other nanomaterials – warm mix technologies: additives and modifiers, design guidelines and Cold mix technologies: materials, additives, guidelines and practicesCourseCourse: Culaculate stresses and deflection in flexible and rigid pavementsCold mix technologies: Course, the students will be able to CO2: Calculate stresses and deflection in flexible and rigid pavementsCourse: Colaculate stresses and deflection in flexible and rigid pavementsCO3: Design	Depth of Frost Penetration, Failures of Pavement.									
Analysis & Design of Flexible Pavement: Stresses and Deflections in Homogeneous Masses - Burmister's 2-layer, 3- layer Theories - Wheel Load Stresses - ESWL of Multiple Wheels - ESAL – VDF - Repeated Loads and EWL factors - Sustained Loads and Pavement behaviour under Traffic Loads - Empirical, Semi-empirical, Analytical and Mechanistic-empirical approaches - Development, Principle, Design steps, Advantages and Applications of different Pavement Design Methods – Mechanistic Empirical Pavement Design – Guidelines and examples Unit –IV 8 Hrs Analysis & Design of Rigid pavements: Types of Stresses and Causes, Factors influencing the Stresses; General conditions in Rigid Pavement Analysis, ESWL, Wheel Load Stresses, Warping Stresses, Friction Stresses, Combined Stresses - Types of Joints in Cement Concrete Pavements and their Functions, Joint Spacing, Design of Slab Thickness, Design of Joint Details for Longitudinal Joints, Contraction Joints and Expansion Joints, IRC Method of Design – Mechanistic Empirical Pavement Design Unit –V Methods – GGBS, Geo-polymer coated aggregates – Industrial waste materials – fly ash, pond ash, marble dust, GGBS, Geo-polymer coated aggregates – waste plastics, fibres – recycled aggregate and RAP. Nanomaterials for pavements: Nano clay, Nano silica, Carbon Nano Tube (CNT) and other nanomaterials – warm mix technologies: additives, and modifiers, design guidelines and Cold mix technologies: materials, additives, guidelines and practices Course Outcomes: After completing the course, the students will be able to CO2: Calculate stresses and deflection in flexible and rigid pavements	Unit –III	8 Hrs								
layer, 3- layer Theories - Wheel Load Stresses - ESWL of Multiple Wheels - ESAL – VDF - Repeated Loads and EWL factors - Sustained Loads and Pavement behaviour under Traffic Loads - Empirical, Semi-empirical, Analytical and Mechanistic-empirical approaches - Development, Principle, Design steps, Advantages and Applications of different Pavement Design Methods – Mechanistic Empirical Pavement Design – Guidelines and examples Unit –IV 8 Hrs Analysis & Design of Rigid pavements: Types of Stresses and Causes, Factors influencing the Stresses; General conditions in Rigid Pavement Analysis, ESWL, Wheel Load Stresses, Warping Stresses, Friction Stresses, Combined Stresses - Types of Joints in Cement Concrete Pavements and their Functions, Joint Spacing, Design of Slab Thickness, Design of Joint Details for Longitudinal Joints, Contraction Joints and Expansion Joints, IRC Method of Design – Mechanistic Empirical Pavement Design 8 Hrs Alternate Materials for durable pavements: artificial aggregates – Industrial waste materials – fly ash, pond ash, marble dust, GGBS, Geo-polymer coated aggregates – waste plastics, fibres – recycled aggregate and RAP. Nanomaterials for pavements: Nano clay, Nano silica, Carbon Nano Tube (CNT) and other nanomaterials – warm mix technologies: additives and practices Course Outcomes: After completing the course, the students will be able to CO3: Design and evaluate flexible pavement using IRC method CO3: Design of Slab Thickness, Design of Joint Details for Longitudinal Joints, CONT and other nanomaterials for durable pavements: artificial	Analysis & Design of Flexible Pavement: Stresses and Deflections in Homogeneous Masses	- Burmister's 2-								
and EWL factors - Sustained Loads and Pavement behaviour under Traffic Loads - Empirical, Semi- empirical, Analytical and Mechanistic-empirical approaches - Development, Principle, Design steps, Advantages and Applications of different Pavement Design Methods – Mechanistic Empirical Pavement Design – Guidelines and examples Unit –IV 8 Hrs Analysis & Design of Rigid pavements: Types of Stresses and Causes, Factors influencing the Stresses; General conditions in Rigid Pavement Analysis, ESWL, Wheel Load Stresses, Warping Stresses, Friction Stresses, Combined Stresses - Types of Joints in Cement Concrete Pavements and their Functions, Joint Spacing, Design of Slab Thickness, Design of Joint Details for Longitudinal Joints, Contraction Joints and Expansion Joints, IRC Method of Design – Mechanistic Empirical Pavement Design Unit –V 8 Hrs Alternate Materials for durable pavements: artificial aggregates – Industrial waste materials – fly ash, pond ash, marble dust, GGBS, Geo-polymer coated aggregates – waste plastics, fibres – recycled aggregate and RAP. Nanomaterials for pavements: Nano clay, Nano silica, Carbon Nano Tube (CNT) and other nanomaterials – warm mix technologies: additives and modifiers, design guidelines and Cold mix technologies: materials, additives, guidelines and practices Course Outcomes: After completing the course, the students will be able to CO1: Identify the suitable pavement materials, pavement components and its function CO2: Calculate stresses and deflection in flexible and rigid pavements CO3: Design and evaluate flexible pavement using IRC method	layer, 3- layer Theories - Wheel Load Stresses - ESWL of Multiple Wheels - ESAL - VDF - I	Repeated Loads								
empirical, Analytical and Mechanistic-empirical approaches - Development, Principle, Design steps, Advantages and Applications of different Pavement Design Methods – Mechanistic Empirical Pavement Design – Guidelines and examples Unit –IV 8 Hrs Analysis & Design of Rigid pavements: Types of Stresses and Causes, Factors influencing the Stresses; General conditions in Rigid Pavement Analysis, ESWL, Wheel Load Stresses, Warping Stresses, Friction Stresses, Combined Stresses - Types of Joints in Cement Concrete Pavements and their Functions, Joint Spacing, Design of Slab Thickness, Design of Joint Details for Longitudinal Joints, Contracton Joints and Expansion Joints, IRC Method of Design – Mechanistic Empirical Pavement Design Unit –V 8 Hrs Alternate Materials for durable pavements: artificial aggregates – Industrial waste materials – fly ash, pond ash, marble dust, GGBS, Geo-polymer coated aggregates – waste plastics, fibres – recycled aggregate and RAP. Nanomaterials for pavements: Nano clay, Nano silica, Carbon Nano Tube (CNT) and other nanomaterials – warm mix technologies: additives and modifiers, design guidelines and Cold mix technologies: materials, additives, guidelines and practices Course Outcomes: After completing the course, the students will be able to CO1: Identify the suitable pavement materials, pavement components and its function CO2: Calculate stresses and deflection in flexible and rigid pavements CO3: Design and evaluate flexible pavement using IRC method	and EWL factors - Sustained Loads and Pavement behaviour under Traffic Loads - Er	npirical, Semi-								
Advantages and Applications of different Pavement Design Methods – Mechanistic Empirical Pavement Design – Guidelines and examples Unit –IV 8 Hrs Analysis & Design of Rigid pavements: Types of Stresses and Causes, Factors influencing the Stresses; General conditions in Rigid Pavement Analysis, ESWL, Wheel Load Stresses, Warping Stresses, Friction Stresses, Combined Stresses - Types of Joints in Cement Concrete Pavements and their Functions, Joint Spacing, Design of Slab Thickness, Design of Joint Details for Longitudinal Joints, Contraction Joints and Expansion Joints, IRC Method of Design – Mechanistic Empirical Pavement Design 8 Hrs Alternate Materials for durable pavements: artificial aggregates – Industrial waste materials – fly ash, pond ash, marble dust, GGBS, Geo-polymer coated aggregates – waste plastics, fibres – recycled aggregate and RAP. Nanomaterials for pavements: Nano clay, Nano silica, Carbon Nano Tube (CNT) and other nanomaterials – warm mix technologies: additives and modifiers, design guidelines and Cold mix technologies: materials, additives, guidelines and practices Course Outcomes: After completing the course, the students will be able to CO2: Calculate stresses and deflection in flexible and rigid pavements CO3: Design and evaluate flexible pavement using IRC method	empirical, Analytical and Mechanistic-empirical approaches - Development, Principle,	Design steps,								
Unit –IV 8 Hrs Analysis & Design of Rigid pavements: Types of Stresses and Causes, Factors influencing the Stresses; General conditions in Rigid Pavement Analysis, ESWL, Wheel Load Stresses, Warping Stresses, Friction Stresses, Combined Stresses - Types of Joints in Cement Concrete Pavements and their Functions, Joint Spacing, Design of Slab Thickness, Design of Joint Details for Longitudinal Joints, Contraction Joints and Expansion Joints, IRC Method of Design – Mechanistic Empirical Pavement Design 8 Hrs Alternate Materials for durable pavements: artificial aggregates – Industrial waste materials – fly ash, pond ash, marble dust, GGBS, Geo-polymer coated aggregates – waste plastics, fibres – recycled aggregate and RAP. Nanomaterials for pavements: Nano clay, Nano silica, Carbon Nano Tube (CNT) and other nanomaterials – warm mix technologies: additives and modifiers, design guidelines and Cold mix technologies: materials, additives, guidelines and practices Course Outcomes: After completing the course, the students will be able to CO2: Calculate stresses and deflection in flexible and rigid pavements CO3: Design and evaluate flexible pavement using IRC method	Advantages and Applications of different Pavement Design Methods - Mechanistic Empi	rical Pavement								
Unit -IV8 HrsAnalysis & Design of Rigid pavements: Types of Stresses and Causes, Factors influencing the Stresses; General conditions in Rigid Pavement Analysis, ESWL, Wheel Load Stresses, Warping Stresses, Friction Stresses, Combined Stresses - Types of Joints in Cement Concrete Pavements and their Functions, Joint Spacing, Design of Slab Thickness, Design of Joint Details for Longitudinal Joints, Contraction Joints and Expansion Joints, IRC Method of Design – Mechanistic Empirical Pavement Design8 HrsAlternate Materials for durable pavements: artificial aggregates – Industrial waste materials – fly ash, pond ash, marble dust, GGBS, Geo-polymer coated aggregates – waste plastics, fibres – recycled aggregate and RAP. Nanomaterials for pavements: Nano clay, Nano silica, Carbon Nano Tube (CNT) and other nanomaterials – warm mix technologies: additives and modifiers, design guidelines and Cold mix technologies: materials, additives, guidelines and practicesCourse Outcomes: After completing the course, the students will be able to CO1:CO2:Calculate stresses and deflection in flexible and rigid pavementsCO3:Design and evaluate flexible pavement using IRC method	Design – Guidelines and examples									
Analysis & Design of Rigid pavements: Types of Stresses and Causes, Factors influencing the Stresses; General conditions in Rigid Pavement Analysis, ESWL, Wheel Load Stresses, Warping Stresses, Friction Stresses, Combined Stresses - Types of Joints in Cement Concrete Pavements and their Functions, Joint Spacing, Design of Slab Thickness, Design of Joint Details for Longitudinal Joints, Contraction Joints and Expansion Joints, IRC Method of Design – Mechanistic Empirical Pavement Design Unit –V 8 Hrs Alternate Materials for durable pavements: artificial aggregates – Industrial waste materials – fly ash, pond ash, marble dust, GGBS, Geo-polymer coated aggregates – waste plastics, fibres – recycled aggregate and RAP. Nanomaterials for pavements: Nano clay, Nano silica, Carbon Nano Tube (CNT) and other nanomaterials – warm mix technologies: additives and modifiers, design guidelines and Cold mix technologies: materials, additives, guidelines and practices Course Outcomes: After completing the course, the students will be able to CO1: Identify the suitable pavement materials, pavement components and its function CO2: Calculate stresses and deflection in flexible and rigid pavements CO3: Design and evaluate flexible pavement using IRC method CO4: Design and evaluate rigid pavements by IRC method	Unit –IV	8 Hrs								
General conditions in Rigid Pavement Analysis, ESWL, Wheel Load Stresses, Warping Stresses, Friction Stresses, Combined Stresses - Types of Joints in Cement Concrete Pavements and their Functions, Joint Spacing, Design of Slab Thickness, Design of Joint Details for Longitudinal Joints, Contraction Joints and Expansion Joints, IRC Method of Design – Mechanistic Empirical Pavement Design Unit –V & Hrs Alternate Materials for durable pavements: artificial aggregates – Industrial waste materials – fly ash, pond ash, marble dust, GGBS, Geo-polymer coated aggregates – waste plastics, fibres – recycled aggregate and RAP. Nanomaterials for pavements: Nano clay, Nano silica, Carbon Nano Tube (CNT) and other nanomaterials – warm mix technologies: additives and modifiers, design guidelines and Cold mix technologies: materials, additives, guidelines and practices Course Outcomes: After completing the course, the students will be able to CO1: Identify the suitable pavement materials, pavement components and its function CO2: Calculate stresses and deflection in flexible and rigid pavements CO3: Design and evaluate flexible pavement using IRC method CO4: Design and evaluate flexible pavements by IRC method	Analysis & Design of Rigid pavements: Types of Stresses and Causes, Factors influencing	ig the Stresses;								
Stresses, Combined Stresses - Types of Joints in Cement Concrete Pavements and their Functions, Joint Spacing, Design of Slab Thickness, Design of Joint Details for Longitudinal Joints, Contraction Joints and Expansion Joints, IRC Method of Design – Mechanistic Empirical Pavement Design Unit –V & Hrs Alternate Materials for durable pavements: artificial aggregates – Industrial waste materials – fly ash, pond ash, marble dust, GGBS, Geo-polymer coated aggregates – waste plastics, fibres – recycled aggregate and RAP. Nanomaterials for pavements: Nano clay, Nano silica, Carbon Nano Tube (CNT) and other nanomaterials – warm mix technologies: additives and modifiers, design guidelines and Cold mix technologies: materials, additives, guidelines and practices Course Outcomes: After completing the course, the students will be able to CO1: Identify the suitable pavement materials, pavement components and its function CO2: Calculate stresses and deflection in flexible and rigid pavements CO3: Design and evaluate flexible pavement using IRC method CO4: Design and evaluate rigid pavements by IRC method	General conditions in Rigid Pavement Analysis, ESWL, Wheel Load Stresses, Warping St	resses, Friction								
Spacing, Design of Slab Thickness, Design of Joint Details for Longitudinal Joints, Contraction Joints and Expansion Joints, IRC Method of Design – Mechanistic Empirical Pavement Design Unit –V 8 Hrs Alternate Materials for durable pavements: artificial aggregates – Industrial waste materials – fly ash, pond ash, marble dust, GGBS, Geo-polymer coated aggregates – waste plastics, fibres – recycled aggregate and RAP. Nanomaterials for pavements: Nano clay, Nano silica, Carbon Nano Tube (CNT) and other nanomaterials – warm mix technologies: additives and modifiers, design guidelines and Cold mix technologies: materials, additives, guidelines and practices Course Outcomes: After completing the course, the students will be able to CO1: Identify the suitable pavement materials, pavement components and its function CO2: Calculate stresses and deflection in flexible and rigid pavements CO3: Design and evaluate flexible pavement using IRC method CO4: Design and evaluate rigid pavements by IRC method	Stresses, Combined Stresses - Types of Joints in Cement Concrete Pavements and their F	Functions, Joint								
Expansion Joints, IRC Method of Design – Mechanistic Empirical Pavement Design Unit –V 8 Hrs Alternate Materials for durable pavements: artificial aggregates – Industrial waste materials – fly ash, pond ash, marble dust, GGBS, Geo-polymer coated aggregates – waste plastics, fibres – recycled aggregate and RAP. Nanomaterials for pavements: Nano clay, Nano silica, Carbon Nano Tube (CNT) and other nanomaterials – warm mix technologies: additives and modifiers, design guidelines and Cold mix technologies: materials, additives, guidelines and practices Course Outcomes: After completing the course, the students will be able to CO1: Identify the suitable pavement materials, pavement components and its function CO2: Calculate stresses and deflection in flexible and rigid pavements CO3: Design and evaluate flexible pavement using IRC method CO4: Design and evaluate rigid pavements by IRC method	Spacing, Design of Slab Thickness, Design of Joint Details for Longitudinal Joints, Contract	tion Joints and								
Unit -V8 HrsAlternate Materials for durable pavements: artificial aggregates – Industrial waste materials – fly ash, pond ash, marble dust, GGBS, Geo-polymer coated aggregates – waste plastics, fibres – recycled aggregate and RAP. Nanomaterials for pavements: Nano clay, Nano silica, Carbon Nano Tube (CNT) and other nanomaterials – warm mix technologies: additives and modifiers, design guidelines and Cold mix technologies: materials, additives, guidelines and practicesCourse Outcomes: After completing the course, the students will be able to CO1:CO2:Calculate stresses and deflection in flexible and rigid pavementsCO3:Design and evaluate flexible pavement using IRC methodCO4:Design and evaluate rigid pavements by IRC method	Expansion Joints, IRC Method of Design – Mechanistic Empirical Pavement Design									
Alternate Materials for durable pavements: artificial aggregates – Industrial waste materials – fly ash, pond ash, marble dust, GGBS, Geo-polymer coated aggregates – waste plastics, fibres – recycled aggregate and RAP. Nanomaterials for pavements: Nano clay, Nano silica, Carbon Nano Tube (CNT) and other nanomaterials – warm mix technologies: additives and modifiers, design guidelines and Cold mix technologies: materials, additives, guidelines and practices Course Outcomes: After completing the course, the students will be able to CO1: Identify the suitable pavement materials, pavement components and its function CO2: Calculate stresses and deflection in flexible and rigid pavements CO3: Design and evaluate flexible pavement using IRC method CO4: Design and evaluate rigid pavements by IRC method	Unit –V	8 Hrs								
 ash, marble dust, GGBS, Geo-polymer coated aggregates – waste plastics, fibres – recycled aggregate and RAP. Nanomaterials for pavements: Nano clay, Nano silica, Carbon Nano Tube (CNT) and other nanomaterials – warm mix technologies: additives and modifiers, design guidelines and Cold mix technologies: materials, additives, guidelines and practices Course Outcomes: After completing the course, the students will be able to CO1: Identify the suitable pavement materials, pavement components and its function CO2: Calculate stresses and deflection in flexible and rigid pavements CO3: Design and evaluate flexible pavement using IRC method CO4: Design and evaluate rigid pavements by IRC method 	Alternate Materials for durable pavements: artificial aggregates – Industrial waste materials	– fly ash, pond								
 RAP. Nanomaterials for pavements: Nano clay, Nano silica, Carbon Nano Tube (CNT) and other nanomaterials – warm mix technologies: additives and modifiers, design guidelines and Cold mix technologies: materials, additives, guidelines and practices Course Outcomes: After completing the course, the students will be able to CO1: Identify the suitable pavement materials, pavement components and its function CO2: Calculate stresses and deflection in flexible and rigid pavements CO3: Design and evaluate flexible pavement using IRC method CO4: Design and evaluate rigid pavements by IRC method 	ash, marble dust, GGBS, Geo-polymer coated aggregates - waste plastics, fibres - recycled	l aggregate and								
 nanomaterials – warm mix technologies: additives and modifiers, design guidelines and Cold mix technologies: materials, additives, guidelines and practices Course Outcomes: After completing the course, the students will be able to CO1: Identify the suitable pavement materials, pavement components and its function CO2: Calculate stresses and deflection in flexible and rigid pavements CO3: Design and evaluate flexible pavement using IRC method CO4: Design and evaluate rigid pavements by IRC method 	RAP. Nanomaterials for pavements: Nano clay, Nano silica, Carbon Nano Tube (Cl	NT) and other								
technologies: materials, additives, guidelines and practices Course Outcomes: After completing the course, the students will be able to CO1: Identify the suitable pavement materials, pavement components and its function CO2: Calculate stresses and deflection in flexible and rigid pavements CO3: Design and evaluate flexible pavement using IRC method CO4: Design and evaluate rigid pavements by IRC method	nanomaterials - warm mix technologies: additives and modifiers, design guidelines	and Cold mix								
Course Outcomes: After completing the course, the students will be able toCO1:Identify the suitable pavement materials, pavement components and its functionCO2:Calculate stresses and deflection in flexible and rigid pavementsCO3:Design and evaluate flexible pavement using IRC methodCO4:Design and evaluate rigid pavements by IRC method	technologies: materials, additives, guidelines and practices									
CO1:Identify the suitable pavement materials, pavement components and its functionCO2:Calculate stresses and deflection in flexible and rigid pavementsCO3:Design and evaluate flexible pavement using IRC methodCO4:Design and evaluate rigid pavements by IRC method	Course Outcomes: After completing the course, the students will be able to									
 CO2: Calculate stresses and deflection in flexible and rigid pavements CO3: Design and evaluate flexible pavement using IRC method CO4: Design and evaluate rigid pavements by IRC method 	CO1: Identify the suitable pavement materials, pavement components and its function									
CO3:Design and evaluate flexible pavement using IRC methodCO4:Design and evaluate rigid pavements by IRC method	CO2: Calculate stresses and deflection in flexible and rigid pavements									
CO4: Design and evaluate rigid pavements by IRC method	CO3: Design and evaluate flexible pavement using IRC method									
	CO4: Design and evaluate rigid pavements by IRC method									

Reference Books									
1	Yoder and Witczak, Principles of Pavement Design, 1975, John Wiley and sons, 0471977802, 9780471977803								
2	Yang, Design of functional pavements, 1973, McGraw-Hill, ISBN: 0070722439 9780070722439.								

2	Harold N. Atkins, Highway Materials, Soils, and Concrete, 2002, Prentice Hall, ISBN-10 :
3	0130993042
4	Relevant IRC Codes

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	2	-	-	-	-	-	1	-	1
CO3	3	3	2	3	-	-	-	-	-	1	-	1
CO4	3	3	3	1	-	-	-	-	-	1	-	2

	Semester: VII								
INDUSTRIAL WASTE WATER TREATMENT									
(Group F: Professional Elective)									
Co	urse Code	:	18CV7F3		CIE	:	100 Marks		
Cre	edits: L:T:P	:	3:0:0		SEE	:	100 Marks		
Tot	tal Hours	:	39L		SEE Duration	:	3.00 Hours		
Co	urse Learning O	bje	ectives: The student	s will be able to					
1	To analyze the treatment plant.	eff	ect of disposal of u	ntreated industrial w	vaste water into wat	er b	ody and on sewage		
2	To study variou	s tr	eatment options to r	educe the strength ar	nd volume of the ind	ustri	al waste water.		
3	To determine v industries.	vari	ous source of wast	e water, their chara	cteristics and dispo	sal	options for various		
4	To determine al	teri	native treatment met	hods, reuse, recovery	v options for various	indu	ustrial Waste Water.		
			τ	J nit-I			08 Hrs		
Int	roduction: Diffe	ren	ce between domestic	and Industrial waste	water, Effect of discl	narg	e of industrial waste		
wat	er on Streams a	nd	on Municipal Sew	age Treatment Plan	ts. Stream Sampling	g, E	ffluent and Stream		
Sta	ndards			1/ /1 1 /* NT	· 1: ·:				
Fa	atment Method	s:	volume reduction, s	strength reduction, N	eutralization,				
Equ		ppo	nuoning.	nit II			09 Ung		
Tre	eatment Method	c •	Removal of suspend	led solids and colloi	ds Removal of ino	roan	vic dissolved solids		
Rer	noval of organic	di	ssolved solids- Log	ooning Activated sl	udge process Modi	fied	aeration Trickling		
filte	er, Wet combusti	on.	Well injection.	8,					
Tre	atment and Dispo	osal	of sludge solids – A	erobic and Anaerobi	c digestion, Vacuum	n filt	ration, Drying beds,		
inci	ineration, Centrif	ugi	ng, Sanitary land fil	ling, Contact stabiliza	ation.				
			Uı	nit –III			08 Hrs		
Pro	cess flow sheet	sho	owing origin / sour	ces of waste water,	Characteristics of v	vast	e water, alternative		
trea	tment methods,	disj	posal, reuse and rec	overy along with flo	w sheet. Effect of v	vast	e disposal on water		
bod	lies.								
Inc	lustries to be cov	ere	d are: Tanning Indus	stry, Cane Sugar Indu	stry, and Distillery	Indu	stry		
D	<u> </u>	1	<u> </u>	nit – IV			08 Hrs		
Pro	cess flow sheet	sho	owing origin / sour	ces of waste water,	Characteristics of v	vast	e water, alternative		
trea	treatment methods, disposal, reuse and recovery along with flow sheet. Effect of waste disposal on water								
Inc	Dodles. Industrias to be severed any Depar and Dulp Industry, Departmentical Industry, Cotton Tartile Industry								
Industries to be covered are. Faper and Fulp industry, Finantiaceducar industry, Cotton Textile industry									
Pro	UIIII - V U/ Hrs Process flow sheet showing origin / sources of waste water. Characteristics of waste water alternative								
trea	treatment methods disposal reuse and recovery along with flow sheet Effect of waste disposal on water								
bod	lies.		,,				r		
Inc	lustries to be cov	ere	d are: Dairy and fert	ilizer					
Co	mbined Treatme	ent	Feasibility of comb	ined treatment of ind	ustrial raw waste wa	ter v	with domestic waste		
wat	water, Discharge of Raw, Partially treated and Completely treated Waste water to stream.								

Course Outcomes: After completing the course, the students will be able to									
CO1:	Analyze domestic and industrial waste water with their characteristics and suggest suitable treatment								
	option.								
CO2:	Summarize the impact of disposal of untreated, partially treated sewage into water body and into								
	sewage treatment plant.								

CO3:	Evaluate different sources of waste water and their characteristics, in different industries, and suggest
	suitable recycling, recovery options to reduce the strength and volume of waste water to be treated.
CO4:	Structure suitable treatment methods, compared with other alternatives to reduce the pollution.

Refere	Reference Books :							
1	Liquid waste of Industry- Theories, Practices and Treatment, Nelsol L. Nemerow, 1st edition,							
1	reprint 2000, Addison-Wesley Publishing Company, ISBN-13 : 978-0201052640							
2	Industrial Waste Water Treatment, M N Rao and A.K Dutta, 3 rd Edition, Reprint 2018, oxford and							
2	IBH Publishing Co. Pvt Ltd, ISBN-139788120417120.							
•	Industrial Waste Treatment Technology, Ahmad Ashfaq, 1 st Edition, K Kataria& Sons Publishers,							
3	2014 , ISBN-139789350145111							
4	IS Codes for treatment and disposal of industrial waste water into water body and sewer							

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	-	1	-	2	2	-	-	-	-	-
CO2	2	2	-	-	-	2	2		-	-		-
CO3	2	2	-	-	-	2	2	-	-	-		-
CO4	2	2	2	-	-	2	3	-	-	-	-	-

	Semester: VII							
	HYDRAULIC STRUCTURES							
			(Grou	p F: Professional El	lective)			
Course Code			18CV7F4		CIE		100 Marks	
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks	
Tota	Total Hours		39L		SEE Duration		3.00 Hours	
Cou	rse Learning C)bje	ectives: The student	s will be able to				
1	Analyze and	des	ign gravity dams.					
2	2 Find the cross-section of earth dam and estimate the seepage loss.							
3	3 Design spillways and aprons for diversion works.							
4	4 Design Cross drainage works and chose appropriate canal regulation works.							

I Init-I	08 Hrs					
Gravity Dams: Introduction forces acting on dam cause of failure design principles principal and						
sheer strasses. Elementary profile and prostical profile of a gravity dam Drainage galleries, joints in						
shear suesses. Elementary prome and practical prome of a gravity dam. Dramage ganeties, joints in						
	00 11					
	08 Hrs					
Earth Dams: Introduction, causes of failure of earth dams, preliminary section, Det	ermination of					
parametric line by Casagrande's method. Estimation of seepage.						
Unit –III	08 Hrs					
Cross Drainage Works: Introduction, Type of C.D works, Design considerations for C.D works.						
Transition formula design of protection works, Design of only aqueduct.						
Unit –IV	08 Hrs					
Spillways: Types, Design of Ogee spillway, Upstream and downstream profiles, Ener	gy dissipation					
devices.						
Diversion Headwork's: Design of aprons - Failure of hydraulic structures institute	d on pervious					
foundations. Bligh's Creep theory for seepage flow, Lane's weighted Creep theory, Khosl	a's theory and					
concept of flow nets.	5					
Unit –V	07 Hrs					
Canal Regulation Works: Canal regulation works, canal regulators, alignment of the off ta	king channels,					
Distributary head regulator and cross regulator.						
Canal falls: Necessity and types - Trapezoidal notch fall, Syphon well drop, Simple vertical drop fall,						
Sarda type fall, Straight glacis fall, Baffle fall or Inglis fall.						

Canal Outlets or Modules: Requirements of good Module, types of Modules, Criteria for judging the performance of modules, certain other important definitions connected with modules, types of non-modular outlets, types of semi modules or Flexible outlets, types of rigid modules.

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Check the stability of gravity dam sand design the dam.							
CO2:	Estimate the quantity of seepage through earth dams.							
CO3:	Design spillways and aprons for various diversion works.							
CO4:	Select particular type of canal regulation work for canal network.							

Reference Books

1	Dam Hydraulics, D. L. Vischer, W. H. Hager, Wiley Publishers, March 1998 ISBN: 978-0-471- 97289-1.
2	Irrigation Engineering and Hydraulic Structures, S.K.Garg, Khanna Publishers, New Delhi, 2006, ISBN-10: 8174090479, ISBN-13: 978-8174090478.
3	Irrigation and Water Resources Engineering- Asawa G.L- New Age International (P) Ltd. Publishers, I

	Edition, 2005								
4	Irrigation and Water Power Engineering, Punmia and Pandey Lal, Askok Kumar Jain, Arun Kumar Jain, 16 th Edition, 2019,Lakshmi Publications, New Delhi, ISBN:8131807630, 978-81318076373.								
5	Irrigation, Water Power and Water Resources Engineering, K.R.Arora,4th Revised Edition, 2014, Standard Publishers, ISBN 8180140075, 978-8180140075.								
6	R.K.Sharma, Irrigation Engineering, S Chand Publishing; 1 st edition, 2017, ISBN: 9789352533770.								
7	Irrigation water resources and water Power Engineering, P.N.Modi, Standard book house, New Delhi, 9th edition, 2008, ISBN 8189401297, ISBN-13: 978-8189401290								
8	Irrigation Engineering and Hydraulic Structures, S.R. Sahasrabudhe, S.K. Kataria& Sons, 2013 Edition, ISBN-10: 9350141310, ISBN-13: 978-9350141311.								

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											
CO1	1	-	-	2	-	-	-	-	-	3	-	1
CO2	2	-	-	2	-	2	2	-	-	-	2	-
CO3	3	2	-	-	2	1	-	-	-	-	2	1
CO4	3	-	2	3	2	-	-	-	2	2	-	1

	Semester: IV							
	AL	TE	RNATIVE BUILD	ING MATERIALS	AND TECHNOLO)GI	ES	
			(Grou	p F: Professional El	ective)			
Cou	Course Code:18CV7F5CIE:100 Marks							
Crec	lits: L:T:P	:	3:0:0		SEE	:	100 Marks	
Tota	l Hours	••	39L		SEE Duration	:	3.00 Hours	
Cou	rse Learning O	bje	ectives: The students	s will be able to				
1	To study proc	ess	that is environmenta	al appropriate and res	ource-efficient throu	ugho	out a building's life-	
	cycle							
2	To study inno	vati	ve solutions using s	tate-of-the-art techno	logies and building	mat	erials	
3	To study how	to	minimize environme	ental impact by facilit	ating to use local an	d re	cycled materials to	
	lessen energy	in l	ouildings					
4	To study the b	eha	vior of masonry ma	terials and structures				
5	To study the c	ost	effective methods in	n building technology	and design			
6	To induce sus	tair	able and inclusive to	echnology				
			τ	U nit-I			08 Hrs	
Intro	oduction to En	erg	y in building mater	rials and buildings				
Ener	gy in building	ma	aterials, Environme	ntal issues concerne	d to building mate	rials	s, Global warming,	
Envi	ronmental frier	ıdly	and cost effective	building technologi	es, Buildings in di	ffere	ent climatic region.	
Ener	Energy evaluation of building materials – units and mortars.							
Unit – II 08 Hrs								
Intro	Introduction to alternative to cement and mortars, Masonry units:							
Alter	rnative Cement	s a	nd fine aggregates,	, Mortars, Types, Pr	reparation, Propertie	es, 1	Masonry materials-	
Class	sification and p	op	erties of mortars, sel	ection of mortars.				
Man	Manufacturing process and Characteristics of alternative masonry units - stabilized mud blocks. Geo polymer							

FaL- G Blocks, Aerated concrete blocks etc - strength, modulus of elasticity and water absorption. Polymer mortars.

Unit –III	08 Hrs

Alternative Building Technologies

Alternative Technology for wall construction,

Ferro cement and ferroconcrete building, components, Materials and specifications, Properties, Construction methods, Applications, Alternate form works.

Alternative roofing systems-Concepts, Filler slabs, Composite beam panel roofs, Masonry vaults and domes. Bamboo application in housing and building construction

Unit –IV	08 Hrs
Fibre Reinforced composites (cementations and polymer):	
Types and Properties of constituent materials for Fibre Reinforced composites,	
Properties of Fibre Reinforced composites, analysis and Applications.	
Unit –V	07 Hrs

Cost Effective Building Design:

Concept of appropriate Cost Effective buildings and Cost saving techniques adopted in planning, design and construction

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understand need of Alternative Building Materials in Construction industry
CO2:	Analyze embodied energy, structural behavior of alternative materials
CO3:	Evaluate properties of mortar and other alternative construction materials
CO4:	Design methods for cost effective buildings by adopting cost effective materials and cost saving
	techniques

Refe	erence Books
1.	Alternative building Materials and Technologies, K.S.Jagadish, B.V.Venkatarama Reddy and K.S.NanjundaRao, New Age International Private Limited; Second Edition (1 January 2017);ISBN
	978-9385923876
2.	K.S. Jagadish, Building Alternatives for housing. Lecture notes on Alternative Building, Dept of Civil
	Engg, Indian Institute of Science, 1997
3.	Paul Graham McHenry, Adobe and Rammed Earth Buildings: Design and Construction, University of
	Arizona Press; New edition (15 September 1989), ISBN-10: 0816511241, ISBN-13: 978-0816511242
4.	Ferrocement & Laminated Cementitious Composites, Antoine E. Naaman, Techno Press 3000 (1
	January 2000), ISBN-13 : 978-0967493909
5.	Sustainable Building Technology, K.S. Jagadish, I K International Publishing House Pvt. Ltd (30 March
	2019) ISBN-13: 978-9386768209.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	3	2	-	-	1	-	1
CO2	-	-	2	-	-	1	2	-	-	-	-	1
CO3	2	-	-	-	-	1	1	-	-	-	-	1
CO4	-	-	1	-	-	-	2	-	-	-	-	1

Low-1 Medium-2 High-3

	Semester: VII						
	ADVANCED DESIGN OF RCC STRUCTURES						
			(Grou	p G: Professional E	lective)		
Co	urse Code	:	18CV7G1		CIE	:	100 Marks
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks
Total Hours		: 39L			SEE Duration		3.00 Hours
Со	urse Learning ()bjø	ectives: The student	s will be able to			
1	Apply the meth	ods	of designing RCC s	structural elements			
2	2 Design RCC structural such as slabs, beams, columns, footings using SP-16						
3	3 Design advanced RCC structures such as portal frame, combined footing and earth retaining wall using						
	SP-16						
4							

4 Create bar bending schedule and detailing of reinforcement to RCC structures

Unit-I 07 Hrs Beam and Slab: Design (using SP16) and reinforcement detailing of RCC beam sections (cast monolithic with slabs) with fixed supports and continuous supports (two and three spans). Design (using SP16) and reinforcement detailing of RCC slabs with continuous supports (two and three spans). Unit – II 08 Hrs **Slender Column:** Design (using SP16) and reinforcement detailing of RCC slender columns (square, rectangular and circular sections) subjected to axial load and uni-axial bending; axial load and bi-axial bending. Unit –III **08 Hrs Portal Frame:** Design (using SP16) and reinforcement detailing of RCC portal frame (Single storey-single bay) with hinged and fixed ends. Two storey – two bay Unit –IV **08 Hrs Combined Footing:** Design (using SP16) and reinforcement detailing of RCC rectangular or trapezoidal combined footing supporting vertical loads from two columns. Combined footing types include: slab type combined footing; beam and slab type combined footing and strap beam type combined footing. Introduction to software tools. Unit –V **08 Hrs Earth Retaining Wall:**

Design (using SP16) and reinforcement detailing of RCC earth retaining walls. Retaining wall types include cantilever retaining wall and counterfort retaining wall. Analysis of with multilevels restraint.

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Estimate loads and forces or moments acting on RCC structures						
CO2:	Design RCC structures as per limit state method and codal provisions						
CO3:	Demonstrate the usage of SP-16 in various design calculations of RCC structures						
CO4:	Draw sectional views and detail the reinforcements provided to RCC structures						

Reference Books1Reinforced Concrete Structures - Volume 2, Punmia B C., Fifth edition, 2015, Laxmi Publications,
ISBN-10 : 8131806669; ISBN-13 : 978-81318066612Limit State Design of Reinforced concrete, Varghese P C, 2nd edition, 2008, Prentice Hall India
Learning Private Limited, ISBN: 8120320395, ISBN-10 : 8120320395; ISBN-13 : 978-8120320390

2	Design of Reinforced Concrete Structures, Unnikrishnan Pillai and Devadas Menon, Third Edition,								
⁵ 2017, McGraw Hill Education, ISBN-10 : 007014110X; ISBN-13 : 978-0070141100									
4	Advanced Reinforced concrete Design, Krishna Raju N, Third Revised edition, 2016, CBS Publishers								
⁴ and Distributors Pvt. Ltd., ISBN-10 : 9788123929606; ISBN-13 : 978-8123929606									
-	Advanced Reinforced concrete Design, Varghese P C, 2nd edition, 2005, Prentice Hall India Learning								
2	Private Limited, ISBN-10: 812032787X; ISBN-13: 978-8120327870								
Co	des:								
1	IS 456:2000, Code of practice for Plain and Reinforced Concrete, Bureau of Indian Standards								
2	2 SP 24-1983, Explanatory hand book on IS code of practice for plain and Reinforced concrete								
	SP 16-1980, Design Aids for IS code of practice for Plain and reinforced concrete, Bureau of								
•	Indian Standards								
4	SP 34 : 1987, handbook on reinforcement and detailing, bureau of Indian standards, New Delhi								

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-]	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	-	-	-	-	-	-	-	-
CO2	3	2	3	1	-	-	-	1	-	-	-	-
CO3	1	1	2	-	-	-	-	-	-	-	-	-
CO4	3	1	3	-	-	-	-	-	-	-	-	-

			Semester: VII			
		TRANSP	ORTATION ENGIN	NEERING		
		(Grou	p G: Professional El	lective)		1
Course Code	:	18CV7G2		CIE	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks
Total Hours	:	39		SEE Duration	:	3.00 Hours
Course Learning O	bj€	ectives: The student	s will be able to			
1 Understand th	e fu	indamentals and des	ign standards of raily	way engineering.		
2 Analyze the su	irve	eys, types and applic	cations of Tunnel and	l harbor.		
3 Design the air	por	t runway, taxiway a	nd permanent way.			
		Ţ	J nit-I			7 Hrs
Introduction: Role	of r	ailways in transport	ation- selection of ro	utes		
Permanent way: R	equ	irements for an idea	l permanent way, typ	oical Cross sections of	of si	ngle and double line
B.G. tracks – in cutt	ing	, embankment. Gau	iges and types of gau	ges with dimensions	s. Co	oning of wheels and
tilting of rails. Rails	fun	ctions, requirement	s, types of rail section	ns, length of rails, de	efect	s in rails.
		U	nit — II			8 Hrs
Ballast and sleeper	s: I	Functions and requir	ements, calculation	of quantity of mater	ials	needed for laying a
track, traction and T	ract	tive resistances, trac	tive power, Hauling	capacity, Problems of	on al	pove.
Geometric design o	f tr	ack: Necessity of C	eometric Design of r	ailway track, gradie	nt ai	nd types of gradient.
Speed of train, trans	itio	n curve, super eleva	ation, cant deficiency	, negative cant- spe	ed c	alculation based on
Indian Railways For	mu	lae for High speed t	racks only-problems	on above.		
		U	nit –III			8 Hrs
Tunnels and Mass	tra	nsit systems:			c	4 1 1 1
Tunnels-Benefits fro	m	unneling, Notations	in tunneling, Cross s	ections of the tunnel	S 10	r the roads and rails,
alignments of the tur	ine.	is, Methods of tunne	of urban transit	ation- planning, Mas	s tra	insit, definitions and
classifications, capa	July					Q LIng
Unit –iv 8 Hrs					ons	
waters-Purpose diff	Harbors :Harbors-Layouts and components, classification of narbors, Effect of wind, wave, tides, Break					
waters-rupose, unretent types of oreak waters, whats, quays, jetties and pies, Dry dock and wet docks, navigational aids. Container handling and management. Concepts of Ferry and Inland waterways						
nuvigutionui ulub. ex	$\frac{1}{1}$					
Airways – Introdu	ctio	n. Lavout of an a	irport with compon	ent parts and func	tion	s of each. Aircraft
Characteristics – Air	Characteristics – Airport Classifications, - Site selection- regional Planning. Orientation of runway by using					
wind rose diagram with examples.						
Runway: Basic length of the runway assumptions –corrections to runway length- Factors affecting the layout						
of the taxiway-geom	etri	ics of taxiway- desig	gn of Exit taxiways- l	ICAO Specifications	. Pr	oblems on above.
Visual Aids: Airpor	t m	arking – lightings-Ii	nstrumental landing s	systems.		

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Recognize and choose the scope and objectives of railway Engineering.						
CO2:	Identify and interpret the importance of tunnel construction.						
CO3:	Explain and illustrate the necessity, components, types and application of harbors.						
CO4:	Categorize, design and construct the various features of airport.						

Reference Books							
1	Railway Engineering, Saxena and Arora, 13th Edition, 2013, Dhanpat Rai and Sons, New Delhi, ISBN:13: 978-8189928834.						
2	Tunnel Engineering, Srinivasan R, Harbour, Dock C, 27 th Edition, 2015, Charotar Publishing House.						

	ISBN: 978-81-928692-6-1.
3	Airport Planning and Design, Khanna, Arora and Jain, 6 th Edition, 1999, Nemchand, Roorkee ISBN:9788185240688.
4	Docks and Harbor Engineering", Oza H.P. and OzaG.H , 7 th Edition, 2013, Charotar Publishing House, ISBN:978-93-80358-78-9.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	-	-	-	-	-	-	-	1	-	-
CO2	-	2	2	2	-	-	-	-	-	1	-	-
CO3	-	2	2	2	-	-	-	-	-	1	-	-
CO4	-	-	2	2	-	-	-	-	-	-	1	-

				Semester: VII			
			ENVIRONM	ENTAL IMPACT A	SSESSMENT		
			(Grou	p G: Professional El	ective)		
Cou	rse Code	:	18CV7G3		CIE	:	100 Marks
Cree	lits: L:T:P	:	3:0:0		SEE	:	100 Marks
Tota	l Hours	:	39L		SEE Duration	:	3 Hours
Course Learning Objectives: The students will be able to							
1	To study facto	ors	to be considered for	preparing an Environ	mental Impact stater	nen	t for developmental
	projects.						
2	To study the p	orin	ciples and technique	s of Environmental in	mpact assessment (E	IA)	
3	Mitigation tec	hni	ques and study of al	ternatives			
4	Make specific	ca	se studies				1
			τ	J nit-I			07 Hrs
Intr	oduction:						
Impa	act of developm	ent	al projects – sustain	able development – N	Need for Environmen	ıtal	Impact Assessment
(EIA	.) - Introductio	n,	Environmental Imp	pact statement (EIS)	- EIA capability an	nd	limitations – Legal
prov	isions on EIA –	- sta	ges of EIA, Types of	of EIA ,carrying capa	city concept.		1
			U	nit — II			08 Hrs
Role	of NEPA in EI	Α,	CEQ, Environmenta	l documents.			
EIA/	EIS & FONSI	rela	ationship, Processing	g of EIA/EIS, Enviror	nmental attributes.		
Met	hodologies: Cri	teri	a to be considered f	for the selection of E	IA methodologies, A	dho	oc, overlays, Check
lists	 Matrices – Ne 	etw	orks – Cost-benefit a	analysis with their adv	vantages and limitation	ons	
			U	nit –III			08 Hrs
Prec	liction and Ass	essi	ment: Assessment of	f Impact on land, wate	r, air and noise, Soci	o Eo	conomic and human
healt	h and on Flora	and	d fauna – Mathemat	ical models –. Risk A	Assessment, ISO 140)00	and Environmental
Aud	iting, Disaster N	/Ian	agement plan, Post	project Audit.			
			Uı	nit —IV			08 Hrs
Env	ironment man	age	ment plan: Plan fo	or mitigation of adve	rse impact on Envir	roni	nent – Options for
mitig	gation of impac	t on	water, air, land, Ec	ology and socio-ecor	omic Environment -	- A(ddressing the issues
relat	ed to project a	ffe	cted people. Post p	roject monitoring, E	IA legislations in I	ndi	a. Effective Public
Participation, Benefits and Procedures.							
	Unit –V 08 Hrs						
Case	e Studies						
EIA	for the infrast	ruc	ture projects –Airp	ort, Dam, Highway, I	Mining, fertilizer, Co	onst	ruction, Water and
wast	e water treatme	nt p	lants, Hazardous wa	ste landfill site.	-		

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Carryout scoping and screening of developmental projects for environmental and social assessments.					
CO2:	Explain different methodologies for environmental impact prediction and assessment.					
CO3:	Plan Environmental impact assessments and Environmental management plans.					
CO4:	Evaluate environmental impact assessment reports.					

Reference Books						
1	Canter, R.L., "Environmental Impact Assessment", McGraw-Hill Inc., New Delhi,					
	1 st October 1995. ISBN-10,0070097674, ISBN-13,978-0070097674.					
2	Petts, J., Handbook of Environmental Impact Assessment Vol. I and II, Wiley-Blackwell					
	Science, London, 2009. ISBN: 978-0-632-04773-4, May 1999.					
2	Y.Anjaneyulu, Valli Manickam, Environmental Impact Assessment Methodologies, Second					
3	Edition, B.S.Publications, ISBN 978817800224, 2010.					

4	David P Lawrence, "Environmental Impact Assessment – Practical Solutions to Recurrent Problems", ISBN-13: 978-0471457220,2013.
5	Shukla, S.K. and Srivastava, P.R., "Concepts in Environmental Impact Analysis", Common Wealth Publishers, New Delhi, 1992.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	1	2		-	-	-	-	-	1	-	1
CO2	-	1	2	-	-	-	-	-	-	1	-	1
CO3	-	1	2	-	-	-	-	-	-	1	-	1
CO4	-	1	1	-	-	-	-	-	-	1	-	1

	Semester: VII						
			GROUN	ND WATER HYDR	OLOGY		
			(Grou	p G: Professional E	lective)		
Cou	rse Code	:	18CV7G4		CIE	:	100 Marks
Credits: L:T:P		:	3:0:0		SEE		100 Marks
Tota	Total Hours		39L		SEE Duration	:	3.00 Hours
Cou	rse Learning C	bje	ectives: The student	s will be able to			
1	To characteriz	ze tl	ne properties of grou	and water and aquifer	·S.		
2	2 To quantify the ground water flow.						
3	3 To locate occurrence of ground water and augment ground water resources.						
4	4 To synthesize ground water development methods.						

Unit-I	7 Hrs
Introduction: Importance, vertical distribution of subsurface water, occurrence in different	types of rocks
and soils, definitions-aquifers, aquifuge, aquitard, aquiclude, confined and Unconfined aquife	ers.
Unit – II	8 Hrs
Fundamentals of Ground Water Flow: Aquifer parameters, specific yield and specific reters storage coefficient, derivation of the expression, Darcy's law, hydraulic conductivity, permeability and intrinsic permeability, transmissibility, permeability in isotropic, anisotropic	ntion, porosity, coefficient of c layered soils.
Unit –III	8 Hrs
Well Hydraulics: Steady Flow, Radial flow in confined and unconfined aquifers, pumping t	est Unsteady
Flow, General equation, derivation; thesis method, Cooper and Jacob method, Chow's meth	od, solution of
unsteady flow equations, leaky aquifers (only introduction), and interference of well, image v	vell theory.
Unit –IV	8 Hrs
Ground Water Exploration: Seismic method, electrical resistively method, Geo-physic	cal techniques,
electrical logging, radioactive logging, induction logging, sonic and fluid logging.	_
Unit –V	8 Hrs
Ground Water Development: Types of wells, methods of construction, tube well design, du	g wells, pumps
for lifting water, working principles, power requirement, Conjunctive use, necessity, t	echniques and
economics.	
Ground Water Recharge: Artificial recharge, Rainwater harvesting for ground water rechar	·ge.

Course	Course Outcomes: After completing the course, the students will be able to				
CO1:	Find the characteristics of aquifers.				
CO2:	Estimate the quantity of ground water by various methods.				
CO3:	Locate the zones of ground water resources.				
CO4:	Select particular type of well and augment the ground water storage.				

Refere	ence Books
1	Groundwater Hydrology, David Keith Todd, Larry W Mays, 3 rd Edition, 2011, Wiley and Sons, New Delhi, ISBN: 978-8126530038
2	Groundwater Hydrology, Herman Bower, 1 st Edition, 1978, McGraw Hill, New Delhi, ISBN: 978-0070067158
3	Ground Water, H M Raghunath, 3 rd Edition, 2007, New Age Publishers, New Delhi, ISBN: 978- 8122419047

4	Water Wells and Pumps, A M Michael, S D Khepar, S K Sondhi, 2 nd Edition, 2008, McGraw Hill,
4	New Delhi, ISBN: 978-0071591201

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	-	-	-	-	-	1	-	1
CO4	3	3	3	3	-	-	-	-	-	1	-	1

Semester: VII							
	VALUATION ENGINEERING						
(Group G: Professional Elective)							
Cou	rse Code	:	18CV7G5		CIE	:	100 Marks
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks
Total Hours		:	39L		SEE Duration		3.00 Hours
Cou	Course Learning Objectives: The students will be able to						
1 Understand different types of outgoings							
2 Analyze different methods of calculation of depreciation.							
3 Apply methods of valuation to different form of properties.							
4	4 Prepare valuation reports of various movable and immovable properties						

Unit-I	8 Hrs				
Introduction: Purpose of valuation, Different forms of values.					
Outgoings: Municipal & Govt. Taxes, insurance, Loss of rent, collection charges, sinking fund, Annual					
repairs & maintenance. Depreciation.					
Methods of calculation of depreciation: Year's Purchase, Capitalized value, Obsolescence, Amortization.					
Unit – II	8 Hrs				
Methods of valuation: Open land valuation, Factors affecting intrinsic values of land, Compa	arative method,				
Abstractive method, Belting method.					
Rent : Definition, Forms of rents. Cost of structure, BIS rules for measuring plinth area and cubical contents.					
Rights and Liabilities of Lessor & Lessee, Leasehold properties, freehold Properties.					
Unit –III	8 Hrs				
Valuation of land with buildings: Rental method, Land and building method, Valuation on profit basis,					
Direct comparison of capital value, Residual or Development method.					
Valuation of agricultural/farm lands.					
Unit –IV	8 Hrs				
Easements: Self-imposed, Legally created, Dominant and Servient heritage. Effect of easements on					
valuation.					
Market: Real Estate market and market value, fair market value, open market value, affecting parameters.					
Investments: Bonds, debentures, capital gains, Wealth Tax and Income Tax.					
Unit –V	7 Hrs				
Case Studies: Valuation of immovable properties. Preparation of valuation reports for various types of					
buildings, land with buildings, plant and equipments. Case Laws, Real Estate regulatory acts, Valuers					
association.	-				

Course Outcomes: After completing the course, the students will be able to					
CO1:	Understand the different types of properties, outgoings, depreciations, Investments, valuation etc				
CO2:	Apply the different methods of calculation of depreciation, valuation of buildings, open lands				
CO3:	Analyze and evaluate the rent and value of the property scientifically				
CO4:	Develop the valuation reports of the real properties				
Reference Books					
1	John A Parks., Banerjee D.N. "Principles and Practice of Valuation ". 1998, Eastern law house ISBN:8171770940 9788171770946				
2	Roshan H. Namavathi, "Professional Practice" 2001.Lakhani Book Depot. ISBN : 9382472665 9789382472667				
3	Mitra A.K., "Theory and Practice of Valuation " 1986. Eastern law house ISBN : 087094-917-9				
4	Rao Gopinath C H, "Valuation Practices of Immovable Properties." 2002. ISBN: 336.2220954 G 647				
CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	-	-	-	1	-	-	-
CO2	-	-	3	3	-	-	-	-	1	1	-	-
CO3	-	-	-	-	-	2	2	-	1	-	-	-
CO4	-	-	3	3	-	-	-	1	1	1	-	-

Semester: VII										
UNMANNED AERIAL VEHICLES										
(Group H: Global Elective)										
Course Code	:	18G7H01	CIE	:	100 Marks					
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks					
Hours	:	39L	SEE Duration	:	3.00 Hours					

Course Learning Objectives: The students will be able to

1	Get an overview of the history of UAV systems
2	Understand the importance of aerodynamics, propulsion, structures and avionics in the design of UAV
3	Demonstrate ability to address the various mission payloads - on-board & off-board, propulsion
	systems, integration with manned systems
4	Comprehend the importance of guidance and navigation of a UAV

4 Comprehend the importance of guidance and navigation of a UAV

Unit-I	07Hrs							
Overview of Unmanned Aerial Vehicles and Systems: History of UAVs, Need of unmanned aerial								
Overview of UAV Systems-System Composition, Classification of UAVs based on size, range and								
endurance, Basic working of fixed, rotary and flapping UAVs, Applications of UAVs.								
Unit – II	08 Hrs							
Aerodynamics of Unmanned Aerial Vehicles: Airfoil nomenclature and its characteristic	cs, Basic							
aerodynamics equations, Aircraft polar, Types of drag, Aerodynamics of rotary and flapping wings,	Airframe							
configurations-HTOL, VTOL and Hybrids.								
Unit -III	08 Hrs							
Structures of UAV: Mechanic loading, Load calculation, Materials used for UAV (general intr	oduction),							
Selection criteria for structure, Types of structural elements used in UAV their signific	ance and							
characteristics.								
UAV Propulsion Systems: Thrust Generation, Powered Lift, Sources of Power for UAVs- Pisto	n, Rotary,							
Gas turbine engines, electric or battery powered UAVs.								
Unit -IV	08 Hrs							
Payloads of UAVs : Non-dispensable Payloads- Electro-optic Payload Systems, Radar Imaging	Payloads,							
Electronic Warfare Payloads, Dispensable Payloads and other payloads.								
Launch and Recovery Systems for UAVs: UAV Launch Methods for Fixed-Wing Vehi	cles- Rail							
Launchers, Pneumatic Launchers, Hydraulic/Pneumatic Launchers, Zero Length RATO Launch	of UAVs,							
UAV Recovery Systems-Conventional Landings, Vertical Net Systems, Parachute Recovery, VTC	DL UAVs,							
Mid-Air Retrieval, Shipboard Recovery.								
Unit -V	08 Hrs							
UAV Navigation and Guidance Systems								
Navigation, Dead Reckoning, Inertial, Radio Navigation, Satellite-Way point Navigation, UAV	Guidance,							
Types of guidance, UAV communication systems,								
and Ground control station, Telemetry, UAS future.								
Course Outcomes:								
At the and of this source, the student will be able to t								

At the	At the end of this course the student will be able to :							
CO1	Appraise the evolution of UAVs and understand the current potential benefits of UAVs							
CO2	Apply the principles of Aerospace Engineering in design and development of UAVs							
CO3	Determine and evaluate the performance of UAV designed for various Missions and applications							
CO4	Appreciate the guidance and navigation systems for enabling the versatility of UAV systems							

Ref	erence Books
1	Unmanned Aircraft Systems UAV design, development and deployment, Reg Austin, 1 st Edition, 2010,
	Wiley, ISBN 9780470058190.
	Introduction to UAV Systems, Paul G Fahlstrom, Thomas J Gleason, 4 th Edition, 2012, Wiley, ISBN:
2	978-1-119-97866-4
2	Advances in Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy, Kimon P.
3	Valavanis, 1 st Edition,2007, Springer ISBN 9781402061141
4	Flight Stability and Automatic Control, Robert C. Nelson, 2 nd Edition, October 1, 1997, McGraw-Hill,
4	Inc, ISBN 978-0070462731.
5	Design of Unmanned Air Vehicle Systems, Dr. Armand J. Chaput, 3 rd Edition, 2001, Lockheed Martin
3	Aeronautics Company, ISBN: 978-1-60086-843-6

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	3	2	2				1
CO2	2	3	3	3	1	1	1	1				2
CO3	1		3	3								2
CO4	3	3	3	3		2	1	2				2

Semester: VII										
	BIOINFORMATICS									
	(Group H: Global Elective)									
Cou	rse Code	:	18G7H02		CIE	:	100 Marks			
Cree	dits: L:T:P	:	3:0:0		SEE	:	100 Marks			
Tota	al Hours	:	39L		SEE Duration	:	3.00 Hours			
Course Learning Objectives: The students will be able to										
1	1 Acquire the knowledge of biological database and its role in insilico research									
2	2 Understand the essential algorithms behind the biological data analysis such as Dynamic									
	programming, Dot plotting, Evolutionary and Clustering algorithms along with their implementation.									
3	Use various	too	ls and techniques f	for the prediction of	linear & non-linear	r st	ructures of both macro			
	and micro n	nole	ecules and study t	he dynamics of ma	cromolecules and	Hig	gh Throughput Virtual			
	Studies.									
4	Perform anno	otat	ion of unknown Dl	NA and Protein sequ	ences and explore t	he	principles of molecular			
	modelling									
5	Apply the k	nov	vledge towards an	alyzing the sequence	es using programm	nin	g languages and Drug			
	development	,								
	Unit-I 8 Hrs									
Bior	nolecules and	In	troduction to Bioi	nformatics:						
Intro	duction to Bio	ome	lecules. Structure,	Types and Function	s of Carbohydrates,	Lip	oids, Nucleic Acids and			

Introduction to Biomolecules. Structure, Types and Functions of Carbohydrates, Lipids, Nucleic Acids and Proteins. Genetic code, Codon degeneracy, Genes and Genomes. Introduction to Bioinformatics, Goals, Scope, Applications in biological science and medicine. Biological databases – Sequence, structure, Special Databases and applications - Genome, Microarray.

Unit – II8 HrsSequence analysis: Introduction, Types of sequence alignments, Pairwise sequence alignment, Multiple
sequence alignment, Alignment algorithms Needleman & Wunch, Smith & Waterman and Progressive
global alignment, Database Similarity Searching- Scoring matrices – BLOSSUM and PAM, Basic Local
Alignment Search Tool (BLAST), and FASTA. Next Generation Sequencing – Alignment and Assembly.Molecular Phylogenetics: Introduction, Terminology, Forms of Tree Representation. Phylogenetic Tree
Construction Methods - Distance-Based, Character-Based Methods and Phylogenetic Tree evaluation

Unit –III9 HrsPredictive and structural bioinformatics: Gene prediction programs – ab initio and homology based
approaches. ORFs for gene prediction. Detection of functional sites and codon bias in the DNA. Predicting
RNA secondary structure, Protein structure basics, structure visualization, comparison and classification.
Protein structure predictive methods using protein sequence, Protein identity based on composition.
Structure prediction - Prediction of secondary structure.

Unit –IV	7 Hrs
PERL: Introduction to Perl, writing and executing a Perl program, Operators, Var	iables and Special
variables. Object Oriented Programming in Perl-Class and object, Polymorphism	n, inheritance and
encapsulation. Data Types - Scalar, Array and Associative array. Regular Expr	essions (REGEX),
Components of REGEX - Operators, Metacharacters and Modifiers.	
Unit –V	7 Hrs

BioPERL: Introduction to BioPerl, BioPerl Modules, Applications of BioPerl – Sequence retrieval from Database and submission of sequence to online Database, Indexing and accessing local databases, Sequence alignments BioPerl and Sequence Analysis - Pair wise and Multiple sequence alignment, Parsing BLAST and FASTA results.

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Demonstrate the knowledge of retrieval of the biological data in the essential formats and its									
	analysis.									
CO2:	Analyse the gene, protein and RNA data to find the degree of similarities and identifying the									
	patterns									
CO3:	Apply the drug designing methods for screening and inventing the new targets and drugs									
CO4:	Predict the structure of a compound and design the molecule.									

Reference Books

Ittiti	chee books
1.	Essential Bioinformatics, Jin Xiong, 2006, Cambridge University Press, ISBN: 978-05-216-00828.
2.	Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins; D. Andreas Baxevanis and B. F; Francis Ouellette. 2009; Wiley-IEEE; 3rd edn; ISBN: 978-81-265-21920.
3	Bioinformatics: Sequence and Genome Analysis; D W Mount; 2014; CSHL Press; 2nd edn; ISBN: 9780879697129.
4	Computational Systems Biology; A Kriete and R Eils; 2006; Academic Press; Illustrated edn; ISBN: 978-01-208-87866.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	-	-	-	-	-	1	-	1
CO4	3	3	3	3	-	-	-	-	-	1	-	1

	Semester: VII						
	INDUSTRIAL SAFETY AND RISK MANAGEMENT						
	(Group H: Global Elective)						
Course Code		:	18G7H03	CIE		:	100 Marks
Credits:L:T:P			3:0:0		SEE	:	100 Marks
Tota	l Hours		39L	SEE Duration		:	3.00 Hours
Cour	rse Learning (Dbj	ectives: The stude	ents will be able	to		
1	Select approp	oria	te risk assessment	techniques.			
2	2 Analyze public and individual perception of risk.						
3	3 Relate safety, ergonomics and human factors.						
4	Carry out risl	c as	sessment in proces	ss industries			

4 Carry out ris	sk assessment in proces	s industries
-----------------	-------------------------	--------------

Unit-I	08 Hrs				
Introduction: Introduction to industrial safety engineering, major industrial accidents, safety and					
health issues, key concepts and terminologies, Hazard theory, Hazard triangle, Haz	ard actuation,				
Actuation transition, Causal factors, Hazard recognition.					
Unit – II	08 Hrs				
Risk assessment and control: Individual and societal risks, Risk assessment, Ri	sk perception,				
Acceptable risk, ALARP, Prevention through design.					
Hazard Identification Methods: Preliminary Hazard List (PHL): Overview,	methodology,				
worksheets, case study. Preliminary Hazard Analysis (PHA): Overview, methodolog	y, worksheets,				
risk index, example.	-				
Unit –III	08 Hrs				
Hazard analysis: Hazard and Operability Study (HAZOP): Definition, Process para	meters, Guide				
words, HAZOP matrix, Procedure, Example. Failure Modes and Effects Analy	ysis (FMEA):				
Introduction, system breakdown concept, methodology, example.					
Unit –IV	08 Hrs				
Application of Hazard Identification Techniques: Case of pressure tank, system	m breakdown				
structure, safety ontology, Accident paths, HAZOP application, risk adjusted discounte	d rate method,				
probability distribution, Hiller's model					
Unit –V	07 Hrs				
Safety in process industries and case studies: Personnel Protection Equipment (PPE): Safety					
glasses, face shields, welding helmets, absorptive lenses, hard hats, types of hand PPI	E, types of foot				
PPE, types of body PPE. Bhopal gas tragedy, Chernobyl nuclear disaster, Chemical	plant explosion				
and fire.					

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Recall risk assessment techniques used in process industry.							
CO2:	Interpret the various risk assessment tools.							
CO3:	Use hazard identification tools for safety management.							
CO4:	Analyze tools and safety procedures for protection in process industries.							

Refer	ence Books							
1	Functional Safety in the Process Industry: A Handbook of practical Guidance in the							
	application of IEC61511 and ANSI/ISA-84, Kirkcaldy K.J.D Chauhan, 2012, North corolina,							
	Lulu publication, ISBN:1291187235							
2	Safety Instrumented Systems Verification Practical probabilistic calculations, Goble and William							
	M., 2005, Pensulvania ISA publication, ISBN:155617909X							
3	Industrial safety and risk Management, Laird Wilson and Doug Mc Cutche, 1st Edition, 2003,							
	The University of alberta press, Canada, ISBN: 0888643942.							

Civil Engineering

4 Industrial Safety, Health and Environment Management Systems, R K Jain, Sunil S Rao, 4th Edition, 2005, Khanna Publishers, New Delhi, ISBN: 8174092102

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-1 O Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	1	-	1	1	1	-	-	1	-
CO2	2	3	1	-	1	1	-	-	-	-	-	-
CO3	3	2	1	1	2	-	1	-	-	1	1	-
CO4	3	-	1	-	-	-	-	-	1	-	1	-

CO-PO Mapping

Low-1 Medium-2 High-3

				Semester: VII	[
			W	EB PROGRAM	MING					
	(Group H: Global Elective)									
Cour	se Code	:	18G7H04		CIE	:	100	Marks		
Cred	lits: L:T:P	:	3:0:0		SEE	: 100 Marks				
Tota	l Hours	:	39L		SEE Duration	:	3.00	Hours		
Cour	se Learning	Obj	ectives: The studer	ts will be able to						
1	Understand t	the	standard structure of	f HTML/XHTML	and its differences.					
2	Adapt HTM	L ar	nd CSS syntax & set	mantics to build w	eb pages.					
3	Learn the de	fini	tions and syntax of	different web prog	ramming tools such	n as l	JavaSo	cript, XML and		
	Ajax to desig	gn v	veb pages.							
4	Design and o	dev	elop interactive, clie	ent-side, server-sid	le executable web	appl	icatior	ns using different		
	techniques s	uch	as CSS, JavaScript,	XML and Ajax.						
r								I		
			l	Jnit-I				07 Hrs		
Intro	oduction to W	eb.	, HTML and XHT	ML:						
Func	lamentals of V	Veb	(Internet, WWW, V	eb Browsers and	Web Servers, URL	s, M	IIME,	HTTP, Security,		
the V	Veb Program	ners	s Toolbox), XHIM	L: Basic syntax, S	tandard structure, I	3as10	c text	markup, Images,		
Нуре	AT 5. Core H	ASUS TAN	, 1 ables, Forms, Fra	imes.	d bracks quotation	n a n	rofor	notted toxt lists		
horiz	AL 5: Core H	hlor	ik lovel elements	text level element	a breaks, quotation	ns, p	· The	video Element:		
Orga	nization Flom	ant	s: The time Element	Syntactic Differe	s The audio Elen	Πent.	nd YE	TMI		
Orga		CIII	s, The time Element	nit II		iL a		1 WIL.		
CSS	(Cascading S	Styl	e Sheet)	int – 11				001115		
Intro	duction Level	ls o	f style sheets Style	specification form:	ats Selector forms	Prot	nertv v	value forms Font		
prop	erties. List pro	pper	ties. Color. Alignme	ent of text. The box	x model. Backgrou	nd in	nages.	The and		
<div.< td=""><td>> tags, Conflic</td><td>ct re</td><td>esolution.</td><td></td><td></td><td></td><td></td><td></td></div.<>	> tags, Conflic	ct re	esolution.							
The	Basics of Jav	aSc	ript:							
Over	view of JavaS	Scri	pt; Object orientation	on and JavaScript;	General syntactic	chai	racteri	stics; Primitives,		
oper	ations, and exp	pres	sions; Screen outpu	t and keyboard inp	out; Control stateme	ents.				
			U	nit —III				09 Hrs		
Java	Script (conti	nue	d):							
Obje	ct creation a	nd	modification; Arra	ays; Functions; C	Constructor; Pattern	n m	atchin	g using regular		
expr	essions; Errors	s in	scripts.							
Java	Script and H	TM	L Documents:							
The.	JavaScript exe	cuti	on environment; Th	e Document Objec	t Model; Element a	icces	ss in Ja	avaScript; Events		
and	event handling	g; E	landling events from	n the Body element	nts, Button elemen	ts, T	ext bo	ox and Password		
elem	ents; The DO	M 2	event model; The r	avigator object.				00 11		
D			Ul with IoweCovints	nit —I V				08 Hrs		
Dyna	duction to dur	ents	with JavaScript:	ioning alamanta. N	loving alamanta D	امسم	mt via	ihilityy Changing		
	s and fonts: I	iain Tyn	amic content: Stack	ioning elements; N	noving elements; E		r Paa	to a mouse		
click	colors and fonts; Dynamic content; Stacking elements; Locating the mouse cursor; Reacting to a mouse									
Intr	, slow movem \mathbf{p}	нр	of elements, Dragg	and dropping	elements.					
Orio	ins and uses o	f P	HP∙ overview of PF	IP· General syntac	tic characteristics.	Prin	nitives	Operations and		
Expr	essions: Outp	ut:	Control statements:	Arrays: Functions	: Pattern Matching	r: Fo	orm Ha	andling:Cookies:		
Sessi	on Tracking	,		, , , , , , , , , , , , , , , ,	.,	, 10				
			T	nit –V				07 Hrs		
XM	L:Introduction	i; Sv	/ntax; Document str	ucture; Document '	Type definitions: N	ame	spaces	s; XML schemas:		
Disp	Displaying raw XML documents; Displaying XML documents with CSS; XSLT style sheets.									

Ajax: Overview of Ajax; Basics of Ajax: The Application; The Form Document; The Request Phase; The Response Document; The Receiver Phase.

Course	e Outcomes: After completing the course, the students will be able to						
CO1:	Understand the basic syntax and semantics of HTML/XHTML.						
CO2:	Apply HTML/XHTML tags for designing static web pages and forms using Cascading Style						
	Sheet.						
CO3:	Develop Client-Side Scripts using JavaScript and Server-Side Scripts using PHP and utilize the						
	concepts of XML & Ajax to design dynamic web pages.						
CO4:	Develop web based applications using PHP, XML and Ajax.						

Refere	ence Books
1	Programming the World Wide Web – Robert W. Sebesta, 7 th Edition, Pearson Education, 2013,
	ISBN-13:978-0132665810.
2	Web Programming Building Internet Applications – Chris Bates, 3 rd Edition, Wiley India, 2006,
	ISBN: 978-81-265-1290-4.
2	Internet & World Wide Web How to H program – M. Deitel, P.J. Deitel, A. B. Goldberg,
3	3 rd Edition, Pearson Education / PHI, 2004, ISBN-10: 0-130-89550-4
4	The Complete Reference to HTML and XHTML- Thomas A Powell, 4 th Edition, Tata McGraw
	Hill, 2003, ISBN: 978-0-07-222942-4.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-]	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	2	-	1	1	1	-	-	-	-	1
CO2	-	-	2	-	1	1	-	-	-	-	-	-
CO3	-	-	-	-	2	-	-	-	2	-	-	2
CO4	-	-	3	-	2	-	-	-	2	-	-	2

1	Semester: VII										
	SOLID WASTE MANAGEMENT AND STATUTORY RULES										
	(Group H: Global Elective)										
Cou	rse Code	:	18G7H05		CIE	:	100	Marks			
Crea	lits: L:T:P	:	3:0:0		SEE	:	: 100 Marks				
Tota	l Hours	:	39 L		SEE Duration	:	3.0	0 Hours			
Cou	rse Learning ()bje	ectives: The student	s will be able to							
1	Impart the ki drawbacks.	low	ledge of present m	ethods of solid waste	management system	em	and	to analyze the			
2	Understand va	ario	us waste manageme	ent statutory rules for th	e present system.						
3	Analyze diffe biodegradab	rent le w	elements of solid aste by composting	waste management and	design and develo	p re	ecycl	ing options for			
4	Identify hazar	dou	s waste, e-waste, pl	astic waste and bio med	dical waste and thei	r m	anage	ement systems.			
			_								
				Unit-I				08 Hrs			
Intro	oduction: Pres	ent	solid waste disposa	l methods. Merits and	demerits of open	dun	nping	g, incineration,			
pyro	lysis, composti	ng,	sanitary landfill. So	cope and importance of	f solid waste mana	gem	nent.	Definition and			
func	tional elements	of s	solid waste manager	ment.							
Sour	ces: Sources of	So	lid waste, types of s	olid waste, composition	n of municipal solic	l wa	ste, g	generation rate,			
Prob	lems.										
Coll	ection and trai	nspo	ortation of munici	pal solid waste: Collec	ction of solid waste	- se	rvice	es and systems,			
Mun	icipal Solid wa	iste	(Management and	Handling) 2016 rules	with amendments.	Site	e vis	it to collection			
syste	em.										
			U	nit – II	Unit – II 08 Hrs						
	Composting Aerobic and anaerobic composting - process description, process microbiology,										
Com	posting Aero	bic	and anaerobic	composting - proce	ess description, p	proc	ess	microbiology,			
Vern	nicomposting Aero	bic Site	and anaerobic visit to compost pla	composting - proce int, Numerical problem	ess description, j	proc	ess	microbiology,			
Vern Sani	nicomposting Aero nicomposting, S tary land fillin	bic Site g: I	and anaerobic visit to compost pla Definition, advantag	composting - proce ant, Numerical problem ges and disadvantages,	ess description, j s. site selection, meth	proc	ess , read	microbiology, ction occurring			
Vern Sani in la	nposting Aero nicomposting, S tary land fillin ndfill- Gas an	bic Site g: I d L	and anaerobic visit to compost pla Definition, advantag eachate movement,	composting - proce ant, Numerical problem ges and disadvantages, Control of gas and lead	ess description, j is. site selection, meth chate movement, Si	oroc lods ite v	ess , read	microbiology, ction occurring o landfill site.			
Vern Sani in lan	nposting Aero nicomposting, S tary land fillin ndfill- Gas an	bic Site g: I d L	and anaerobic visit to compost pla Definition, advantag eachate movement, U	composting - proce ant, Numerical problem ges and disadvantages, Control of gas and lead nit –III	ess description, p is. site selection, meth chate movement, Si	oroc lods lite v	ess, read	microbiology, ction occurring o landfill site. 08 Hrs			
Vern Sani in lan Haza	nposting Aero nicomposting, S tary land fillin ndfill- Gas an ardous waste n	bic Site g: I d L nan	and anaerobic visit to compost pla Definition, advantag eachate movement, U agement: Definitio	composting - proce ant, Numerical problem ges and disadvantages, Control of gas and lead nit –III ns, Identification of has	ess description, j is. site selection, meth chate movement, Si zardous waste, Cla	oroc lods ite v	ess , read isit t	microbiology, ction occurring o landfill site. 08 Hrs on of hazardous			
Vern Sani in lan Haza wast	aposting Aero nicomposting, S tary land fillin ndfill- Gas an ardous waste n e, onsite storag	bic Site g: I d L nan ge, c	and anaerobic visit to compost pla Definition, advantag eachate movement, U agement: Definition collection, transfer a	composting - proce ant, Numerical problem ges and disadvantages, <u>Control of gas and leac</u> nit –III ns, Identification of haz and transport, processi	ess description, j is. site selection, meth chate movement, Si zardous waste, Cla ng, disposal, Haza	oroc lods ite v ssifi rdou	ress , read isit t catic is an	microbiology, ction occurring o landfill site. 08 Hrs on of hazardous d other wastes			
Vern Sani in lau Haza wast (Man	aposting Aero nicomposting, S tary land fillin ndfill- Gas an ardous waste n e, onsite storag nagement and T	bic Site ng: I d L nan ge, c Tran	and anaerobic visit to compost pla Definition, advantag eachate movement, U agement: Definition collection, transfer a sboundary Moveme	composting - proce ant, Numerical problem ges and disadvantages, <u>Control of gas and lead</u> nit –III ns, Identification of haz and transport, processin ent) Rules, 2016 with an	ss description, p ss. site selection, meth chate movement, Si zardous waste, Cla ng, disposal, Haza mendments. Site vi	oroc ods ite v ssifi rdou sit t	ress , read isit t catic is an o haz	microbiology, ction occurring o landfill site. 08 Hrs on of hazardous d other wastes zardous landfill			
Vern Sani in lau Hazz wast (Man site	nposting Aero nicomposting, S tary land fillin ndfill- Gas an ardous waste n e, onsite storag nagement and T	bic Site ng: I d La nan ge, c Tran	and anaerobic visit to compost pla Definition, advantag eachate movement, U agement: Definitio collection, transfer a sboundary Moveme	composting - proce ant, Numerical problem ges and disadvantages, Control of gas and lead nit –III ms, Identification of has and transport, processin ent) Rules, 2016 with an	ess description, p is. site selection, meth chate movement, Si zardous waste, Cla ng, disposal, Haza mendments. Site vi	oroc lods ite v ssifi rdou sit t	ress , read isit t cations an o haz	microbiology, ction occurring o landfill site. 08 Hrs on of hazardous d other wastes zardous landfill			
Vern Sani in lan Haza wast (Man site	aposting Aero nicomposting, S tary land fillin ndfill- Gas an ardous waste n e, onsite storag nagement and T	bic Site ng: I d La nan ge, c Tran	and anaerobic visit to compost pla Definition, advantag eachate movement, U agement: Definition collection, transfer a sboundary Movement U	composting - proce ant, Numerical problem ges and disadvantages, <u>Control of gas and leac</u> <u>nit –III</u> ns, Identification of haz and transport, processi- ent) Rules, 2016 with an <u>nit –IV</u>	ess description, j is. site selection, meth chate movement, Si zardous waste, Cla ng, disposal, Haza mendments. Site vi	oroc ide v ssifi rdou sit t	ess , read isit t catic is an o haz	microbiology, ction occurring o landfill site. 08 Hrs on of hazardous d other wastes zardous landfill 08 Hrs			
Com Vern Sani in lau Haz: wast (Man site Bio I	aposting Aero nicomposting, S tary land fillin ndfill- Gas an ardous waste n e, onsite storag nagement and T medical waste	bic Site ng: I d L nan ge, c ran ran	and anaerobic visit to compost pla Definition, advantag eachate movement, U agement: Definition collection, transfer a sboundary Movement U magement: Classifie	composting - proce ant, Numerical problem ges and disadvantages, <u>Control of gas and leac</u> nit –III ns, Identification of haz and transport, processin ent) Rules, 2016 with an nit –IV cation of bio medical w	ess description, j is. site selection, meth chate movement, Si zardous waste, Cla ng, disposal, Haza mendments. Site vi	oroc ide v ssifi rdou sit t	ress , read isit t catic is an o haz	microbiology, ction occurring o landfill site. 08 Hrs on of hazardous d other wastes zardous landfill 08 Hrs ion, disposal of			
Vern Sani in lan Haza wast (Man site Bio n bio	aposting Aero nicomposting, S tary land fillin ndfill- Gas an ardous waste n e, onsite storag nagement and T medical waste medical waste	bbic Site ng: I d L nan ge, c Tran man ge, c Tran	and anaerobic visit to compost pla Definition, advantag eachate movement, U agement: Definitio collection, transfer a sboundary Moveme U nagement: Classifie omedical waste m	composting - proce ant, Numerical problem ges and disadvantages, Control of gas and lead nit –III ms, Identification of har and transport, processin ent) Rules, 2016 with an nit –IV cation of bio medical w anagement (Manage	ess description, p sis. site selection, meth chate movement, Si zardous waste, Cla ng, disposal, Haza mendments. Site vi aste, collection, tra ement & Hand	oroc nods ite v ssifi rdou sit t nspeling	ess , read isit t catic is an o haz ortati Rul	microbiology, ction occurring o landfill site. 08 Hrs on of hazardous d other wastes zardous landfill 08 Hrs ion, disposal of es) 2016 with			
Verm Sani in lar Haza wast (Man site Bio n bio ta	aposting Aero nicomposting, S tary land fillin ndfill- Gas an ardous waste n e, onsite storag nagement and T medical waste medical waste, ndments. Site vi-	bbic site	and anaerobic visit to compost pla Definition, advantag eachate movement, U agement: Definitio collection, transfer a sboundary Moveme U nagement: Classific omedical waste m to hospital to observ	composting - proce ant, Numerical problem ges and disadvantages, <u>Control of gas and lead</u> <u>nit –III</u> ns, Identification of haz and transport, processin ent) Rules, 2016 with an <u>nit –IV</u> cation of bio medical w anagement (Managore ve biomedical waste col	ss description, p sis. site selection, meth chate movement, Si zardous waste, Cla ng, disposal, Haza mendments. Site vi aste, collection, tra ement & Hand lection and transpo	oroc nods ite v ssifi rdou sit t nsp ing rtat	ess , read isit t catio is an o haz ortati Rul	microbiology, ction occurring o landfill site. 08 Hrs on of hazardous d other wastes zardous landfill 08 Hrs ion, disposal of es) 2016 with ystem and visit			
Vern Sani in lan Haza wast (Man site Bio n bio	aposting Aero nicomposting, S tary land fillin ndfill- Gas an ardous waste n e, onsite storag nagement and T medical waste medical waste ndments. Site vi-	bic Site ng: I d L nan ge, c Tran man ge, c Tran Bi isit t	and anaerobic visit to compost pla Definition, advantag eachate movement, U agement: Definition collection, transfer sboundary Moveme U nagement: Classifie omedical waste m to hospital to observ ineration plant.	composting - proce ant, Numerical problem ges and disadvantages, <u>Control of gas and leac</u> nit –III ns, Identification of haz and transport, processi- ent) Rules, 2016 with an nit –IV cation of bio medical w anagement (Manage re biomedical waste col	ess description, j is. site selection, meth chate movement, Si zardous waste, Cla ng, disposal, Haza mendments. Site vi raste, collection, tra ement & Hand lection and transpo	nods aods ate v ssifi rdou sit t nspo ling rtat	ess , read isit to catic is an o haz ortati Rul ion s	microbiology, ction occurring o landfill site. 08 Hrs on of hazardous d other wastes zardous landfill 08 Hrs ion, disposal of es) 2016 with ystem and visit			
Vern Sani in lau Haz: wast (Man site Bio n bio amen to bio	aposting Aero nicomposting, S tary land fillin ndfill- Gas an ardous waste n e, onsite storag nagement and T medical waste medical waste ndments. Site vi- omedical waste	blic Site g: I d L man ge, c ran Bi isit t isit t	and anaerobic visit to compost pla Definition, advantag eachate movement, U agement: Definition sollection, transfer a sboundary Moveme U nagement: Classifie omedical waste m to hospital to observ ineration plant.	composting - proce ant, Numerical problem ges and disadvantages, <u>Control of gas and leac</u> nit –III ns, Identification of haz and transport, processin ent) Rules, 2016 with an nit –IV cation of bio medical w anagement (Manago ve biomedical waste col	ss description, j is. site selection, meth chate movement, Si zardous waste, Cla ng, disposal, Haza mendments. Site vi aste, collection, tra ement & Hand lection and transpo	oroc nods ite v ssiff rdou sit t ing ing	ess , reac isit t ccatic Is an o haz ortati Rul ion s	microbiology, ction occurring o landfill site. 08 Hrs on of hazardous d other wastes zardous landfill 08 Hrs ion, disposal of es) 2016 with ystem and visit 07 Hrs			
Com Vern Sani in lan Haza wast (Man site Bio I bio 1 amen to bio E-wa	aposting Aero nicomposting, S tary land fillin ndfill- Gas an ardous waste n e, onsite storag nagement and T medical waste medical waste, ndments. Site v omedical waste	bic Site og: I d L nan ge, c ran Bi sist t isit t isit t	and anaerobic visit to compost pla Definition, advantag eachate movement, U agement: Definitio collection, transfer a sboundary Moveme U nagement: Classifie omedical waste m to hospital to observine interation plant. U : Definition, Con-	composting - proce ant, Numerical problem ges and disadvantages, <u>Control of gas and lead</u> <u>nit –III</u> ans, Identification of haz and transport, processing ent) Rules, 2016 with an <u>nit –IV</u> cation of bio medical was anagement (Manage ve biomedical waste color <u>Init –V</u> mponents, Materials u	ss description, j sis. site selection, meth chate movement, Si zardous waste, Cla ng, disposal, Haza mendments. Site vi aste, collection, tra ement & Hand lection and transpo	oroc adds ite v ssifi rdou sit t ing rtat	ess , readisit t catic Is an o haz ortati Rul ion s	microbiology, ction occurring o landfill site. 08 Hrs on of hazardous d other wastes zardous landfill 08 Hrs ion, disposal of es) 2016 with ystem and visit 07 Hrs ectronic goads,			
Com Vern Sani in lan Haz: wast (Man site Bio I bio amen to bio E-wa Recy	aposting Aero nicomposting, S tary land fillin ndfill- Gas an ardous waste n e, onsite storag nagement and T medical waste medical waste omedical waste aste managem veling and recov	bic Site ag: I d L nan ge, c Tran Bi sit t inc isit t inc	and anaerobic visit to compost pla Definition, advantage eachate movement, U agement: Definition collection, transfer a sboundary Moveme Unagement: Classified omedical waste m to hospital to observe ineration plant. U : Definition, Con- integrated approac	composting - proce ant, Numerical problem ges and disadvantages, <u>Control of gas and lead</u> <u>nit –III</u> ns, Identification of haz and transport, processizent) Rules, 2016 with an <u>nit –IV</u> cation of bio medical w anagement (Manage ye biomedical waste col <u>Unit –V</u> mponents, Materials u h. e-waste (Managemen	ss description, j sis. site selection, meth chate movement, Si zardous waste, Cla ng, disposal, Haza mendments. Site vi aste, collection, tra ement & Hand lection and transpo- used in manufactu nt) Rules 2016 and	oroc adds ate v ssifi rdou sit t nspo ling ortat	ess , readisit t catic catic Is an o haz ortati Rul ion s g ele	microbiology, ction occurring o landfill site. 08 Hrs on of hazardous d other wastes zardous landfill 08 Hrs ion, disposal of es) 2016 with ystem and visit 07 Hrs ectronic goads, nents. Site visit			
Com Vern Sani in lau Haz: wast (Man site Bio I bio amen to bio E-wa Recy to e- Place	aposting Aero nicomposting, S tary land fillin ndfill- Gas an ardous waste n e, onsite storag nagement and T medical waste medical waste ndments. Site vio omedical waste aste managem veling and recoview	bbic Site site site ag: I d La nan ge, c Tran Site site site site site site site site s	and anaerobic visit to compost pla Definition, advantag eachate movement, Uagement: Definition collection, transfer a sboundary Moveme Unagement: Classifie omedical waste m to hospital to observ ineration plant. U Definition, Con integrated approact ant.	composting - proce ant, Numerical problem ges and disadvantages, <u>Control of gas and lead</u> nit –III ns, Identification of har and transport, processi- ent) Rules, 2016 with an nit –IV cation of bio medical w anagement (Manage we biomedical waste col Unit –V mponents, Materials u h. e-waste (Management	ss description, p is. site selection, meth chate movement, Si zardous waste, Cla ng, disposal, Haza mendments. Site vi raste, collection, tra ement & Hand lection and transpo	oroc aods ite v ssifi rdou sit t nspo rtat rring am	ess , readisit t catic s an o haz ortati Rul ion s	microbiology, ction occurring o landfill site. 08 Hrs on of hazardous d other wastes zardous landfill 08 Hrs ion, disposal of es) 2016 with ystem and visit 07 Hrs ectronic goads, nents. Site visit			
Com Vern Sani in lan Haza wast (Man site Bio 1 bio 2 amen to bio E-wa Recy to e- Plas	aposting Aero nicomposting, S tary land fillin ndfill- Gas an ardous waste n e, onsite storag nagement and T medical waste medical waste ndments. Site v omedical waste aste managem vcling and recov waste treatmen tic waste man	bbic Site ng: I d L nan (c) c ran Bi sit t isit t isit t wery t pl age	and anaerobic visit to compost pla Definition, advantage eachate movement, Uagement: Definition collection, transfer a sboundary Moveme Unagement: Classifie omedical waste m to hospital to observineration plant. U : Definition, Con- integrated approace ant. ment: Manufactur oge rules 2009 with	composting - proce ant, Numerical problem ges and disadvantages, <u>Control of gas and leac</u> nit –III ans, Identification of haz and transport, processin ent) Rules, 2016 with an nit –IV cation of bio medical w anagement (Manage ve biomedical waste col Unit –V mponents, Materials u h. e-waste (Management ing of plastic with no amendments	ss description, j is. site selection, meth chate movement, Si zardous waste, Cla ng, disposal, Haza mendments. Site vi aste, collection, tra ement & Hand lection and transpo	oroc aods ite v ssift rdou sit t nspo ling ortat am e m	ess , reac isit t catic is an o haz ortati Rul ion s g ele endn aanag	microbiology, ction occurring o landfill site. 08 Hrs on of hazardous d other wastes zardous landfill 08 Hrs ion, disposal of es) 2016 with ystem and visit 07 Hrs ectronic goads, nents. Site visit gement. Plastic			
Com Vern Sani in lan Haza wast (Man site Bio n bio amen to bio E-wa Recy to e- Plas man	aposting Aero nicomposting, S tary land fillin ndfill- Gas an ardous waste n e, onsite storag nagement and T medical waste medical waste aste managem vcling and recov waste treatmen tic waste man ufacture, sale &	man man man man ge, c ran man man man man man man man m	and anaerobic visit to compost pla Definition, advantage eachate movement, Uagement: Definition collection, transfer a sboundary Moveme Unagement: Classific omedical waste m to hospital to observe ineration plant. U : Definition, Con- integrated approact ant. coment: Manufactur age rules 2009 with	composting - proce ant, Numerical problem ges and disadvantages, <u>Control of gas and lead</u> <u>nit –III</u> ns, Identification of har and transport, processin ent) Rules, 2016 with an <u>nit –IV</u> cation of bio medical w anagement (Manage re biomedical waste col <u>Unit –V</u> mponents, Materials u h. e-waste (Management ing of plastic with no amendments.	ss description, p ss. site selection, meth chate movement, Si zardous waste, Cla ng, disposal, Haza mendments. Site vi aste, collection, tra ement & Hand lection and transpo used in manufactu nt) Rules 2016 and prms. Plastic wast	oroc aods ite v ssiff rdou sit t nspo ling ortat am e m	ess , readisit t catic locatic Is an o haz ortati Rul ion s g ele eendn aanag	microbiology, ction occurring o landfill site. 08 Hrs on of hazardous d other wastes zardous landfill 08 Hrs ion, disposal of es) 2016 with ystem and visit 07 Hrs ectronic goads, nents. Site visit gement. Plastic			
Com Vern Sani in lan Haz: wast (Man site Bio I bio amen to bin E-wa Recy to e- Plass manu	aposting Aero nicomposting, S tary land fillin ndfill- Gas an ardous waste n e, onsite storag nagement and T medical waste medical waste ndments. Site vi- omedical waste aste managem vcling and recov waste treatmen tic waste man	Africa Site Site Site Site Site Site Site Site	and anaerobic visit to compost pla Definition, advantage eachate movement, Uagement: Definition collection, transfer a sboundary Movement Unagement: Classified omedical waste m to hospital to observe ineration plant. U : Definition, Con- integrated approace ant. ment: Manufactur age rules 2009 with	composting - proce ant, Numerical problem ges and disadvantages, <u>Control of gas and leac</u> nit –III ns, Identification of har and transport, processi- ent) Rules, 2016 with an nit –IV cation of bio medical w anagement (Manage we biomedical waste col <u>Unit –V</u> mponents, Materials u h. e-waste (Management ing of plastic with no amendments.	ss description, j sis. site selection, meth chate movement, Si zardous waste, Cla ng, disposal, Haza mendments. Site vi raste, collection, tra ement & Handi lection and transpo ised in manufactu nt) Rules 2016 and prms. Plastic wast	oroco aods ite v ssiff rdou sit t msp ling rrtat rring am	ess , readisit t catic us an o haz ortati Rul ion s g ele endn aanag	microbiology, ction occurring o landfill site. 08 Hrs on of hazardous d other wastes zardous landfill 08 Hrs ion, disposal of es) 2016 with ystem and visit 07 Hrs ectronic goads, nents. Site visit gement. Plastic			

001	Challestand the current solid waste management system and statutory rules.								
CO2:	Analyze drawbacks in the present system and provide recycling and disposal options for each type								
	of waste in compliance to rules.								
CO3:	Distinguish Hazardous waste, Biomedical waste, E waste and to provide scientific management								
	system.								

CO4: Evaluate and monitor the Biomedical waste, Hazardous waste, E waste, Plastic and Municipal waste management as per the rules laid by Ministry of Environment, Forest and Climate change.

Refere	nce Books :
1	Integrated Solid Waste Management, George.C. Tchobanoglous, International edition ,1993, McGraw hill publication. ISBN 978-0070632370
2	Electronic waste management , R.E. Hester, Roy M Harrison, , Cambridge, UK, 2009, RSC Publication, ISBN 9780854041121
3	Solid Waste Management Rules 2016, Ministry of Environment, Forest and Climate Change Notification, New Delhi, 8 th April 2016
4	Hazardous and other wastes (Management and Transboundary Movement) Rules, 2016, Ministry of Environment, Forest and Climate Change Notification, New Delhi, 04 th April, 2016.
5	Biomedical waste management (Management & Handling Rules) 2016,. Ministry of Environment & Forest Notification, New Delhi, amendment on 28 th March, 2016.
6	E-waste (Management) Rules 2016, Ministry of Environment, Forest and Climate Change Notification, New Delhi, 23 rd March , 2016.
7	Plastic Waste (Management and Handling) Rules, 2011 as amended in 2018, Ministry of Environment, Forest and Climate Change Notification, New Delhi, 27 th March , 2018

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	1	-	-	-	-	2	2	1	-	1	-	2			
CO2	2	2	2	2	-	1	2	1	-	-	-	-			
CO3	1	-	2	2	-	1	2	1	-	1	-	-			
CO4	2	-	-	3	-	1	2	1	-	-	-	1			

-

			Semester: VII									
IMAGE PROCESSING AND MACHINE LEARNING												
	(Group H: Global Elective)											
Course Code	:	18G7H06		CIE	:	100 Marks						
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks						
Total Hours	:	39 L		SEE Duration	:	3.00 Hours						
Course Learning Objectives: The students will be able to												
1 Understand the major concepts and techniques in image processing and Machine Learning												
2 To explore, manipulate and analyze image processing techniques												
3 To become fa	mil	iar with regre	ssion methods, classification	n methods, clustering	g met	hods.						
4 Demonstrate	ima	ge processing	and Machine Learning know	wledge by designing	and							
implementing	g alg	orithms to so	ve practical problems									
			Unit-I			08 Hrs						
Introduction to im	age	processing:										
Introduction to imag	ge p	rocessing, Ap	plications of image processi	ng, Components of a	n ima	age processing						
system, Fundament	als	teps in image	processing, Image formati	on and representation	on, C	olor imagery,						
basic definitions, Pi	xels	, Image resolu	ition, PPI and DPI, Bitmap ii	mages, Lossless and	lossy	compression,						
Image file formats,		or spaces, Be	er curve, Ellipsoid, Gamm	a correction, Exampl	les o	r zooming and						
shrinking in image	proc	essing Advar	Unit II			08 Hrs						
Basics of Python	Scik	it image & A	dvanced Image Processing	using Open CV.		00 1115						
Basics of python.	vari	ables & data	types, data structures, co	ontrol flow & cond	ition	al statements.						
uploading & viewir	ng ai	n image. Imag	e resolution, gamma correct	ion. determining stru	ıctur	al similarities.						
	8	8-,8	Unit –III			08 Hrs						
Advanced Image p	oroc	essing using	Open CV									
Blending Two Ima	ges,	Changing Co	ontrast and Brightness Addi	ng Text to Images S	Smoc	othing Images,						
Median Filter, Gai	ussi	an Filter, Bi	ateral Filter, Changing the	e Shape of Images	, Ef	fecting Image						
Thresholding, Calcu	ulati	ng Gradients	Performing Histogram Equ	alization								
			Unit –IV			08 Hrs						
Image Processing	usin	g Machine I	earning									
Feature mapping u	ising	g SIFT algor	ithm, Image registration u	sing the RANSAC	algo	orithm, Image						
classification using	Art	ificial Neural	Networks, Image classifica	tion using CNNs, Ir	nage	classification						
using machine learn	ning	Approaches.										
			Unit –V			08 Hrs						
Real time use CAS	ES					1.0 . 1.						
Exhaustive vs. Sto	chas	stic Search, S	shapes, Contours, and App	earance Models. M	ean-	shift tracking;						
Contour-based mod	eis,	finding palm	lines, Face Detection / Reco	ognition, Tracking m	over	nents.						

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Gain knowledge about basic concepts of Image Processing
CO2:	Identify machine learning techniques suitable for a given problem
CO3:	Write programs for specific applications in image processing
CO4:	Apply different techniques for various applications using machine learning techniques.

Reference Books

1	Digital Image Processing, Rafael C. Gonzalez and Richard E. Woods Pearson Education, 3rd
T	Edition, ISBN 978-81-317-2695-2.

2	Practical Machine Learning and Image Processing: For Facial Recognition, Object Detection, and Pattern Recognition Using Python, Himanshu Singh, 1 st Edition, Apress, ISBN:978-1-4842-
	4149-3
2	Pattern Recognition and Machine Learning, Christopher Bishop, 1st Edition Springer, 2008,
5	ISBN: 978-0387-31073-2
4	Computer Vision: A modern Approach, David Forsyth and Jean Ponce, 2 nd Edition, Prentice
4	Hall India 2004, ISBN: 978-0136085928

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for assignment is 20. The total marks of CIE are 100. **Total CIE is 30(Q)+50(T)+20(EL)=100Marks**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	3	2	3	2	-	-	-	-	-	-	1			
CO2	-	3	-	1	2	-	-	1	2	-	-	1			
CO3	3	-	2	1	3	-	-	1	1	1	-	1			
CO4	3	3	3	3	2	-	-	1	1	1	-	1			

Low-1 Medium-2 High-3

	Semester: VII										
RENEWABLE ENERGY SOURCES AND STORAGE SYSTEM											
		(Gr	oup H: Global Elect	ive)							
Course Code	:	18G7H07		CIE	:	100 Marks					
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks					
Total Hours	:	39L		SEE Duration	:	3.00 Hours					
Course Learning	Course Learning Objectives: The students will be able to										
1 Understand Concepts of nonconventional energy sources and allied technology required for energy conversion.											
2 Analyse the Ba	sics	of battery working	and sizing of battery	for a given applicat	ion.						
3 Design aspects	of s	olar and wind powe	er systems.								
4 Energy storage	tech	niques									
		U	NIT-I			08 Hrs					
Basics of Renewa	ble	Energy: Energy b	alance of the earth,	Solar radiation, win	nd e	energy, geothermal					
energy.											
Geothermal Energ	gy –	principles, technic	al description, heat su	pply by hydro-geot	herr	nal systems, heat					
supply by deep wel	ls, g	eothermal generati	on, economic and env	vironmental analysis	5. TI						
Biomass Energy:	31011 71.001	nass Production, El	nergy Plantation, Bio	mass Gasification, I	hec	ory of Gasification,					
Gasifier		sincations, Opurati	., Downurant and Cros	ss-uran Gasiners, A	ррп	cations of Biomass					
Tidal Energy. Intr	odu	ction Tidal Energy	Resource Tidal Poy	ver Basin Advanta	res	and Disadvantages					
of Tidal Power.	ouu	ction, ridar Energy	Resource, fildar i ov	ver Dasin, / dvantag	503	and Disadvantages					
		U	nit – II			08 Hrs					
Photo Voltaic Syst	ems	: PV Cell . Modul	e and array: Equivale	nt electrical circuit.	Ope	en –circuit voltage					
and short circuit cu	rren	t. I-V and P-V curv	ves Array design Pe	Photo Voltaic Systems : PV Cell, Module and array; Equivalent electrical circuit, Open –circuit voltage							
Grid Connected S	and snort circuit current, I-V and P-V curves, Array design, Peak power Tracking, System Components,										
Grid-connected solar PV system Components of Grid -connected solar PV systems. Grid connected PV											
Grid-connected sol	olar ar P	PV Power System V system, Compon	n: Introduction to gridents of Grid –connection	id connected PV system ted solar PV system	sys sten ns, (tem Components, n, Configuration of Grid connected PV					
Grid-connected sol system Design for s	olar ar P smal	PV Power Syster V system, Comport l power Applicatio	n: Introduction to gridents of Grid –connections, Grid-connected F	id connected PV system of solar PV system V system design fo	sys sten ns, (r po	tem Components, n, Configuration of Grid connected PV ower plants.					
Grid-connected sol system Design for s	olar ar P smal	PV Power System V system, Comport 1 power Applicatio Ut	n: Introduction to gridents of Grid –connected F ns, Grid- connected F nit -III	id connected PV system eted solar PV system PV system design fo	sys sten ns, (r po	tem Components, n, Configuration of Grid connected PV ower plants. 08 Hrs					
Wind Power: Intro world.	olar ar P smal	PV Power System V system, Comport 1 power Applicatio Unition, site selection,	n: Introduction to gri nents of Grid –connect ns, Grid- connected F nit -III Advantages and Disa	id connected PV system eted solar PV system PV system design fo dvantages, Wind po	sys stem ns, (r po wer	tem Components, n, Configuration of Grid connected PV ower plants. 08 Hrs installations in the					
Wind Power: Intro world. Wind Speed and E	olar ar P smal	PV Power System V system, Comport <u>1 power Applicatio</u> Union, site selection, gy: Speed and Pow	n: Introduction to gri ents of Grid –connected F nit -III Advantages and Disa er Relations, Power E	ak power Tracking, id connected PV system event solar PV system PV system design fo dvantages, Wind po xtracted from the wi	stem ns, ($r po$ wer nd.	tem Components, n, Configuration of Grid connected PV ower plants. 08 Hrs installations in the Rotor-Swept Area,					
Grid-connected sol system Design for s Wind Power: Intro world. Wind Speed and E Air Density, Globa	olar ar P smal duct	PV Power System V system, Comport 1 power Applicatio Unition, site selection, gy: Speed and Power ind Patterns, Wind	n: Introduction to gri nents of Grid –connect ns, Grid- connected F nit -III Advantages and Disa er Relations, Power E d Speed Distribution	ak power Tracking, id connected PV system every system design fo dvantages, Wind po xtracted from the wi , Weibull Probabili	sten ns, (<u>r po</u> wer wer nd.	tem Components, n, Configuration of Grid connected PV ower plants. 08 Hrs installations in the Rotor-Swept Area, Distribution, Mode					
Grid-connected sol system Design for s Wind Power: Intro world. Wind Speed and E Air Density, Globa and Mean Speeds, 1	olar ar P smal duct ner 1 W	PV Power System V system, Comport 1 power Applicatio Union, site selection, gy: Speed and Power ind Patterns, Wind t Mean Cube Speed	n: Introduction to gri nents of Grid –connect ns, Grid- connected F nit -III Advantages and Disa er Relations, Power E d Speed Distribution d, Mode, Mean, and I	ak power Tracking, id connected PV system PV system design fo dvantages, Wind po xtracted from the wi , Weibull Probabili RMC Speeds, Energ	stem ns, ($r po$ wer nd. ty ,l	tem Components, n, Configuration of Grid connected PV ower plants. 08 Hrs installations in the Rotor-Swept Area, Distribution, Mode bistribution, Digital					
 Grid-connected sol system Design for s Wind Power: Intro world. Wind Speed and E Air Density, Globa and Mean Speeds, 1 Data Processing, Ef 	olar ar P smal duct duct ner 1 W Roo	PV Power System V system, Comport <u>1 power Applicatio</u> Un- tion, site selection, gy: Speed and Powe ind Patterns, Wind t Mean Cube Speed of Hub Height, Imp	n: Introduction to gri nents of Grid –connect ns, Grid- connected F nit -III Advantages and Disa er Relations, Power E d Speed Distribution d, Mode, Mean, and I portance of Reliable I	ak power fracking, id connected PV system PV system design fo dvantages, Wind po xtracted from the wi , Weibull Probabili RMC Speeds, Energ Data, Wind Speed Pr	stem ns, (<u>r po</u> wer nd. ty ,l y D	tem Components, n, Configuration of Grid connected PV ower plants. 08 Hrs installations in the Rotor-Swept Area, Distribution, Mode bistribution, Digital ction, Wind Energy					
 Grid-connected sol system Design for s Wind Power: Intro world. Wind Speed and E Air Density, Globa and Mean Speeds, 1 Data Processing, Ef Resource Maps. 	olar ar P smal duct ner 1 W Roo fect	PV Power System V system, Comport 1 power Applicatio Union, site selection, gy: Speed and Power ind Patterns, Wind t Mean Cube Speed of Hub Height, Imp	n: Introduction to gri ents of Grid –connect ns, Grid- connected F nit -III Advantages and Disa er Relations, Power E d Speed Distribution d, Mode, Mean, and I portance of Reliable I	ak power Tracking, id connected PV system PV system design fo dvantages, Wind po xtracted from the wi , Weibull Probabili RMC Speeds, Energ Data, Wind Speed Pr	sys sten ns, (<u>r po</u> wer nd. ty ,l y D edic	tem Components, n, Configuration of Grid connected PV ower plants. 08 Hrs installations in the Rotor-Swept Area, Distribution, Mode vistribution, Digital ction, Wind Energy					
 Grid-connected sol system Design for s Wind Power: Intro world. Wind Speed and E Air Density, Globa and Mean Speeds, 1 Data Processing, Ef Resource Maps. Wind Power System 	olar ar P smal duct ner 1 W Roo fect	PV Power Syster V system, Comport <u>1 power Applicatio</u> Un- tion, site selection, gy: Speed and Pow- ind Patterns, Wind t Mean Cube Speed of Hub Height, Imp	n: Introduction to grinents of Grid –connected F nit of Grid –connected F nit -III Advantages and Disa er Relations, Power E d Speed Distribution d, Mode, Mean, and F portance of Reliable F ents, Tower, Turbine,	ak power Tracking, id connected PV system PV system design fo dvantages, Wind po xtracted from the wi , Weibull Probabili RMC Speeds, Energ Data, Wind Speed Pr , Blades, Speed Cor	syssen ns, (<u>r po</u> wer nd. ty ,l y D edic	tem Components, h, Configuration of Grid connected PV over plants. 08 Hrs installations in the Rotor-Swept Area, Distribution, Mode vistribution, Digital ction, Wind Energy I, Turbine Rating,					
 Grid-connected sol system Design for s Wind Power: Intro world. Wind Speed and E Air Density, Globa and Mean Speeds, 1 Data Processing, Ef Resource Maps. Wind Power Syste Power vs Speed and 	olar ar P smal duct ner; 1 W Roo ffect ems: d TS	PV Power System V system, Comport <u>1 power Applicatio</u> Un- tion, site selection, gy: Speed and Pow ind Patterns, Wind t Mean Cube Speed of Hub Height, Imp System Compone R.	n: Introduction to gridents of Grid –connected Finit -III Advantages and Disa er Relations, Power E d Speed Distribution d, Mode, Mean, and I portance of Reliable I ents, Tower, Turbine,	ak power frackling, id connected PV system PV system design fo dvantages, Wind po xtracted from the wi , Weibull Probabili RMC Speeds, Energ Data, Wind Speed Pr , Blades, Speed Con	nd. ns, (<u>r po</u> wer nd. ty ,l y D edic	tem Components, h, Configuration of Grid connected PV over plants. 08 Hrs installations in the Rotor-Swept Area, Distribution, Mode bistribution, Digital ction, Wind Energy I, Turbine Rating,					
Grid-connected sol system Design for s Wind Power: Intro world. Wind Speed and E Air Density, Globa and Mean Speeds, T Data Processing, Ef Resource Maps. Wind Power Syste Power vs Speed and	olar ar P smal duct ner 1 W Roo ffect ems:	PV Power System V system, Comport 1 power Applicatio Union, site selection, gy: Speed and Power ind Patterns, Wind t Mean Cube Speed of Hub Height, Imp s System Compone R. Union	n: Introduction to grinents of Grid –connected F nit -III Advantages and Disa er Relations, Power E d Speed Distribution d, Mode, Mean, and I portance of Reliable I ents, Tower, Turbine,	ak power Tracking, id connected PV system PV system design fo dvantages, Wind po xtracted from the wi , Weibull Probabili RMC Speeds, Energ Data, Wind Speed Pr Blades, Speed Con	sys sten ns, (<u>r po</u> wer nd. y D edic ntro	tem Components, h, Configuration of Grid connected PV over plants. 08 Hrs installations in the Rotor-Swept Area, Distribution, Mode vistribution, Digital ction, Wind Energy I, Turbine Rating, 08 Hrs					
 Grid-connected sol system Design for s Wind Power: Intro world. Wind Speed and E Air Density, Globa and Mean Speeds, J Data Processing, Ef Resource Maps. Wind Power System Power vs Speed and Wind Power System 	olar ar P smal duct ner; 1 W Roo ffect ems: d TS ems:	PV Power Syster V system, Comport <u>1 power Applicatio</u> Un- tion, site selection, gy: Speed and Power ind Patterns , Wind t Mean Cube Speed of Hub Height ,Imp s System Compone R. Un- Maximum Energy	n: Introduction to grinents of Grid –connected F nit -III Advantages and Disa er Relations, Power E d Speed Distribution d, Mode, Mean, and I portance of Reliable I ents, Tower, Turbine, nit –IV y Capture, Maximum	Ak power Tracking, id connected PV system PV system design fo dvantages, Wind po xtracted from the wi , Weibull Probabili RMC Speeds, Energ Data, Wind Speed Pr Blades, Speed Con Power Operation C	nd. , (y D edic	tem Components, h, Configuration of Grid connected PV over plants. 08 Hrs installations in the Rotor-Swept Area, Distribution, Mode bistribution, Digital ction, Wind Energy I, Turbine Rating, 08 Hrs stant-TSR Scheme,					
 Grid-connected sol system Design for s Wind Power: Intro world. Wind Speed and E Air Density, Globa and Mean Speeds, 1 Data Processing, Ef Resource Maps. Wind Power Syste Power vs Speed and Wind Power Syste Peak-Power-Tracki Plades Poter University 	olar ar P smal duct ner; 1 W Rooo ffect ems: d TS ems: ng s	PV Power Syster V system, Comport <u>1 power Applicatio</u> Un- tion, site selection, gy: Speed and Powe ind Patterns , Wind t Mean Cube Speed of Hub Height ,Imp : System Compone R. Un- Maximum Energy scheme, System-D	m: Introduction to grinents of Grid –connected F nit -III Advantages and Disa er Relations, Power E d Speed Distribution d, Mode, Mean, and I portance of Reliable I ents, Tower, Turbine, nit –IV y Capture, Maximum besign Trade-offs, Tu	ak power Tracking, id connected PV system PV system design fo dvantages, Wind po xtracted from the wi , Weibull Probabili RMC Speeds, Energ Data, Wind Speed Pr Blades, Speed Con Power Operation C urbine Towers and	syssen ns, (<u>r po</u> wer nd. ty ,l y D edic ntro	tem Components, h, Configuration of Grid connected PV over plants. 08 Hrs installations in the Rotor-Swept Area, Distribution, Mode Distribution, Digital ction, Wind Energy I, Turbine Rating, 08 Hrs stant-TSR Scheme, acing, Number of					
 Grid-connected sol system Design for s Wind Power: Intro world. Wind Speed and E Air Density, Globa and Mean Speeds, 1 Data Processing, Ef Resource Maps. Wind Power Syste Power vs Speed and Wind Power Syste Peak-Power-Tracki Blades, Rotor Upw System Control Power Page 	olar ar P smal duct ner; 1 W Rooo fect ems: d TS ems: ng s ind o	PV Power Syster V system, Comport 1 power Applicatio Union, site selection, gy: Speed and Power ind Patterns, Wind t Mean Cube Speed of Hub Height, Imple System Compone R. Union Maximum Energy scheme, System-D por Downwind, Hor	n: Introduction to gri nents of Grid –connect ns, Grid- connected F nit -III Advantages and Disa er Relations, Power E d Speed Distribution d, Mode, Mean, and F portance of Reliable I ents, Tower, Turbine, nit –IV v Capture, Maximum Design Trade-offs, Tu izontal vs. Vertical A	ak power Tracking, id connected PV system PV system design fo dvantages, Wind po xtracted from the wi , Weibull Probabili RMC Speeds, Energ Data, Wind Speed Pr , Blades, Speed Con Power Operation C urbine Towers and xis.	nd. y D edic from ty ,l y D edic from Sp	tem Components, h, Configuration of Grid connected PV over plants. 08 Hrs installations in the Rotor-Swept Area, Distribution, Mode distribution, Digital ction, Wind Energy I, Turbine Rating, 08 Hrs stant-TSR Scheme, acing, Number of					
 Grid-connected sol system Design for s Wind Power: Intro world. Wind Speed and E Air Density, Globa and Mean Speeds, 1 Data Processing, Ef Resource Maps. Wind Power Syste Power vs Speed and Wind Power Syste Peak-Power-Tracki Blades, Rotor Upw System Control Ro Environmental As 	olar ar P smal duct ner; 1 W Rooo ffect ems: ng : ind (equi	PV Power Syster V system, Comport 1 power Applicatio Unition, site selection, gy: Speed and Power ind Patterns, Wind t Mean Cube Speed of Hub Height, Imp System Compone R. United Maximum Energy Scheme, System-D or Downwind, Hort rements: Speed Co	n: Introduction to grinents of Grid –connected F nit -III Advantages and Disa er Relations, Power E d Speed Distribution d, Mode, Mean, and I portance of Reliable I ents, Tower, Turbine, <u>nit –IV</u> / Capture, Maximum Design Trade-offs, Tr izontal vs. Vertical A ontrol, Rate Control.	ak power Tracking, id connected PV system PV system design fo dvantages, Wind po xtracted from the wi , Weibull Probabili RMC Speeds, Energ Data, Wind Speed Pr , Blades, Speed Con Power Operation C urbine Towers and xis.	sys sten ns, (r po wer nd. ty ,l y D edic ntro Cons Sp	tem Components, h, Configuration of Grid connected PV over plants. 08 Hrs installations in the Rotor-Swept Area, Distribution, Mode vistribution, Digital ction, Wind Energy I, Turbine Rating, 08 Hrs stant-TSR Scheme, acing, Number of on Birds					
 Grid-connected sol system Design for s Wind Power: Intro world. Wind Speed and E Air Density, Globa and Mean Speeds, 1 Data Processing, Ef Resource Maps. Wind Power Syste Power vs Speed and Wind Power Syste Peak-Power-Tracki Blades, Rotor Upw System Control Re Environmental As 	olar ar P smal duct ner fl W Rooo ffect ems: ng s ind c equi pect	PV Power Syster V system, Comport <u>1 power Applicatio</u> Un- tion, site selection, gy: Speed and Powe ind Patterns , Wind t Mean Cube Speed of Hub Height ,Imp : System Compone R. Un- Maximum Energy scheme, System-D or Downwind, Horr rements: Speed Co- ts: Audible Noise,	n: Introduction to grinents of Grid –connected F nit -III Advantages and Disa er Relations, Power E d Speed Distribution d, Mode, Mean, and I portance of Reliable I ents, Tower, Turbine, nit –IV v Capture, Maximum besign Trade-offs, Tu izontal vs. Vertical A ontrol, Rate Control. Electromagnetic Inter nit –V	ak power Tracking, id connected PV system PV system design fo dvantages, Wind po xtracted from the wi , Weibull Probabili RMC Speeds, Energ Data, Wind Speed Pr , Blades, Speed Con Power Operation C urbine Towers and xis.	sys sten ns, (r po wer nd. ty ,l y D edic ntro Cons Sp	tem Components, h, Configuration of Grid connected PV over plants. 08 Hrs installations in the Rotor-Swept Area, Distribution, Mode Distribution, Digital ction, Wind Energy I, Turbine Rating, 08 Hrs stant-TSR Scheme, acing, Number of on Birds. 07 Hrs					

Energy stor	Energy storage												
Batteries :	Different	types	of	batteries,	Equivalent	Electrical	Circuit,	Battery	charging,	Battery			
management	t												

Flywheels : Energy Relations, Components, Benefits over battery

Other Storage devices : Superconducting magnetic energy storage, Compressed air, Pumped storage hydropower, Hydrogen Energy storage

Course	Outcomes: After completing the course, the students will be able to								
CO1:	CO1: Understand the concepts of power generation from various renewable sources.								
CO2:	Design the Size of the battery required for solar PV applications.								
CO3:	Design main components of solar and wind power systems.								
CO4 :	Execute projects in renewable power generation.								

Reference Books

1	Renewable energy: Technology, Economics and Environment, Martin Kaltschmitt, Wolfgang
	Streicher Andreas Wiese, Springer Publication, 2007, ISBN 978-3-540-70947-3
r	Solar photo voltaic Technology and systems, Chetan Singh Solanki, third edition(2013),PHI
4	,Learning private limited New Delhi ISBN: 978-81-203-4711-3
2	Wind and solar power system design, Analysis and operation, Mukund R. Patel, second Edition.
3	CRC Group , Taylor and Francis group, New Delhi , ISBN 978-0-8493-1570-1
1	Power System Energy Storage Technologies, Paul Breeze, Academic Press, 2018, ISBN 978-0-
4	12-812902-9

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	2	2	3	2	-	-	-	-	-	1	-	1			
CO2	3	3	2	1	1	2	-	-	-	1	-	1			
CO3	3	2	2	2	2	2	2	1	-	1	-	1			
CO4	3	3	3	3	2	3	1	1	1	3	1	3			

	Semester: VII								
	MEMS AND APPLICATIONS								
			(Gre	oup H: Global I	Elective)				
Cou	Course Code:18G7H08CIE:100 Marks						100 Marks		
Credits:L:T:P		:	3:0:0		SEE	:	100 Marks		
Total Hours		:	39L	SEE Duration		:	3.00 Hours		
Cou	rse Learning (Dbj	ectives: The stude	ents will be able	to				
1	Understand th	he r	udiments of Micro	o fabrication tecl	nniques.				
2	2 Identify and associate the various sensors and actuators to applications.								
3	3 Analyze different materials used for MEMS.								
4	4 Design applications of MEMS to disciplines.								

Unit-I	06 Hrs					
Overview of MEMS & Microsystems: MEMS and Microsystems, Typical MEMS and micro system						
products, Evolution of micro fabrication, Microsystems and microelectronics, Multidiscip	linary nature					
of Microsystems, Design and manufacture, Applications of Microsystems in automotive	e, healthcare,					
aerospace and other industries.						
Working Principle of Microsystems: Biomedical and biosensors. Micro sensors: Acousti	c, Chemical,					
Optical, Pressure, Thermal.						
Unit – II	09 Hrs					
Micro actuation: Using thermal forces, shape memory alloys, Piezoelectric crystals and	electrostatic					
forces. MEMS with micro actuators: Microgrippers, micromotors, microvalves and micro	micropumps,					
microaccelerometers, microfluidics.	~					
Introduction to Scaling: Scaling in Geometry, Scaling in Rigid body dynamics,	, Scaling in					
Electrostatic forces, scaling in electromagnetic forces and scaling in fluid mechanics.						
Unit –III	09 Hrs					
Materials for MEMS and Microsystems: Substrates and wafers, Active substrate mate	rials, Silicon					
as substrate material, Silicon Compounds, Si-Piezoresistors, GaAs, Quartz, Piezoelect	ric Crystals,					
Polymers and packaging materials. Three level of Microsystem packaging, Die level packa	ging, Device					
level packaging, System level packaging. Interfaces in microsystem packaging. Essentia	al packaging					
technologies: die preparation, Surface bonding, Wire bonding, Sealing, 3D packaging.						
Unit –IV	08 Hrs					
Microsystem Fabrication Process: Introduction to microsystems, Photolithography, Ion I	mplantation,					
Diffusion, Oxidation, CVD, PVD-Sputtering, Deposition of Epiaxy, Etching, LIGA proc	ess: General					
description, Materials for substrates and photoresists, Electroplating and SLIGA process.						
	07 Hrs					
Micro Sensors, Actuators, Systems and Smart Materials: An Overview	• • • •					
Silicon Capacitive Accelerometer, Piezo resistive Pressure sensor, Fibre-optic sensors, Con	nductometric					
Gas Sensor, Electrostatic Comb drive, Magnetic Microrelay, Portable blood analyzer, Piezo electric						
Inkjet Print nead, Micromirror array for video projection, Micro-PCR Systems, Smart r	naterials and					
systems.						
Course Outcomes: After completing the course, the students will be able to						
CO1: Understand the operation of micro devices, micro systems and their applications.						

CO2:	Apply the principle of material science to sensor	design

- **CO3:** Analyze the materials used for sensor designs.
- **CO4:** Conceptualize and design micro devices, micro systems.

Refer	ence Books
1	MEMS & Microsystems Design and Manufacture, Tai-Ran Hsu, 2 nd Edition, 2002, Tata
	McGraw Hill Education, New Delhi, ISBN-13:978-0-07-048709-3.
2	Micro and Smart Systems, G.K. Ananthasuresh, K.J. Vinoy, K.N. Bhat, V.K. Aatre, 2015,
2	Wiley Publications, ISBN-:978-81-265-2715-1.
2	Foundations of MEMS, Chang Liu, 2012, Pearson Education Inc., ISBN-13:978-0-13-249736-
3	7.
4	Smart Material Systems and MEMS, Vijay K Varadan, K. J. Vinoy, S. Gopalakrishnan, 2006,
	Wiley-INDIA, ISBN-978-81-265-3170-7.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) +60(T) +10(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-		-	1	-	1
CO3	3	3	2	2	1	-	-		-	1	-	1
CO4	3	3	3	3	1	-	-		1	1	1	1

	Semester: VII								
	PROJECT MANAGEMENT								
			(Group H:	Global E	lective)				
Course Code			18G7H09 CIE		CIE	:	100 Marks		
Credits: L:T:P			3:0:0		SEE		100 Marks		
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours		
Cour	se Learning O	bjeo	ctives: The students will b	e able to					
1	1 To understand the principles and components of project management.								
2	2 To appreciate the integrated approach to managing projects.								
3	To explain dif	fere	nt process groups and kno	wledge ar	eas used to manage	proj	ect.		

I Init-I	07 Hrs					
Introduction : What is project what is project management relationships among port	folio management					
program management, project, what is project management, relationships allong portfolio management,						
project management, project management, and organizational project management, re	role of the project					
manager, project management body of knowledge	, fore of the project					
La:4 H	00 11					
Unit – 11	09 Hrs					
Organizational influences & Project life cycle: Organizational influences on project m	nanagement,					
project state holders & governance, project team, project life cycle.	-					
Project Integration Management: Develop project charter, develop project managem	nent plan, direct &					
manage project work, monitor & control project work, perform integrated change control	ol, close project or					
phase.						
Unit –III	09 Hrs					
Project Scope Management: Project scope management, collect requirements define s	scope, create WBS,					
validate scope, control scope.	_					
Project Time Management: Plan schedule management, define activities, sequence	activities, estimate					
activity resources, estimate activity durations, develop schedule, control schedule.						
Unit –IV	07 Hrs					
Project Cost management: Project Cost management, estimate cost, determine budget,	control costs.					
Project Quality management: Plan quality management, perform quality assurance, co	ntrol quality.					
Unit –V	07 Hrs					
Project Risk Management: Plan risk management, identify risks, perform qualitative ris	sk analysis, perform					
quantitative risk analysis, plan risk resources, control risk.						
Project Procurement Management: Project Procurement Management, conduct procurements, control						
procurements, close procurement.						

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Understand the concepts, tools and techniques for managing large projects.						
CO2:	Explain various knowledge areas and process groups in the project management framework.						
CO3:	Analyze and evaluate risks in large and complex project environments.						
CO4 :	Develop project plans for various types of organizations.						

Reference Books							
1	A Guide to the Project Management Body of Knowledge(PMBOK Guide), Project Managen Institute, 5 th Edition, 2013, ISBN: 978-1-935589-67-9	nent					
2	Project Planning Analysis Selection Financing Implementation & Review, Prasanna Chandra, Edition, 2010, Tata McGraw Hill Publication, ISBN 0-07-007793-2.	7 th					

3	Project Management A System approach to Planning Scheduling & Controlling, Harold Kerzner, 10 th Edition, 2009, CBS Publishers and Distributors, ISBN 047027806.
4	Strategic Project Management Made Simple: Practical Tools for Leaders and Teams, Terry Schmidt, 1 st Edition, 2009, John Wiley & Sons, ISBN: 978-0470411582

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2											
CO2	2	2		1	1							
CO3							1	1				
CO4	2		3		1							

Low-1 Medium-2 High-3

Semester: VII									
CYBER FORENSICS AND DIGITAL INVESTIGATIONS									
				(Group H: Global Ele	ective)				
Cou	Course Code : 18G7H10 CIE : 100 Marks								
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks		
Total Hours		:	39 L		SEE Duration	:	3.00 Hours		
Cou	rse Learning	Obj	ectives: The stu	udents will be able to					
1	To provide a	n un	derstanding Co	omputer forensics fundan	nentals and comprehe	end tl	ne impact of		
	cybercrime a	nd f	orensics.	-	_		_		
2	Describe the	mot	ive and remedi	al measures for cybercrit	me, detection and har	ndling	g.		
3	3 Demonstrate and investigate the use of Tools used in cyber forensics.								
4	Analyse area	ıs aff	fected by cyber	crime and identify Legal	Perspectives in cybe	er sec	urity.		

Unit-I	09 Hrs					
Introduction To Cybercrime: Cybercrime: Definition and Origins of the Word, C	ybercrime and					
Information Security, Who are Cybercriminals?, Classifications of Cybercrimes, Cybercrime Era: Survival						
Mantra for the Netizens. Cyber offenses: How Criminals Plan Them: How Criminals Pl	an the Attacks,					
Social Engineering, Cyberstalking, Cyber cafe and Cybercrimes, Botnets: The Fuel for Cybercrime, Attack						
Vector, Cloud Computing.	_					
Unit – II	08 Hrs					
Cybercrime: Mobile And Wireless Devices: Introduction, Proliferation of Mobile and Wi	reless Devices,					
Trends in Mobility, Credit Card Frauds in Mobile and Wireless Computing Era, Security Ch	nallenges Posed					
by Mobile Devices, Registry Settings for Mobile Devices, Authentication Service Secur	ity, Attacks on					
Mobile/Cell Phones, Mobile Devices: Security Implications for organizations, Organizationa	al Measures for					
Handling Mobile devices, Organizational Security Policies and Measures in Mobile Computin	g Era, Laptops.					
Unit –III	07 Hrs					
Tools And Methods Used In Cybercrime: Introduction, Proxy Servers and Anonymi	zers, Phishing,					
Password Cracking, Keyloggers and Spywares, Virus and Worms, Trojan Horses a	nd Backdoors,					
Steganography, DoS and DDoS Attacks, SQL Injection, Buffer Overflow, Attacks on Wire	eless Networks.					
Phishing and Identity Theft: Introduction, Phishing, Identity Theft (ID Theft).	•					
Unit –IV	08 Hrs					
Understanding Computer Forensics: Introduction, Historical Background of Cyber for	rensics, Digital					
Forensics Science, The Need for Computer Forensics, Cyber forensics and Digital Evide	ence, Forensics					
Analysis of E-Mail, Digital Forensics Life Cycle, Chain of Custody Concept, Netw	ork Forensics,					
Approaching a Computer Forensics Investigation, Setting up a Computer Forensic	cs Laboratory:					
Understanding the Requirements, Computer Forensics and Steganography, Relevance of the	ne OSI 7 Layer					
Model to Computer Forensics, Forensics and Social Networking Sites: The Security/P	rivacy Threats,					
Computer Forensics from Compliance Perspective, Challenges in Computer Forensics, Spe	ecial Tools and					
Techniques, Forensics Auditing, Anti-forensics.						
Unit –V	07 Hrs					
Cybercrime And Cyber Security: The Legal Perspectives-Introduction, Why Do We Need	Cyberlaws: The					
Indian Context, The Indian IT Act, Challenges to Indian Law and Cybercrime Scenario in	India, Digital					
Signatures and the Indian IT Act, Amendments to the Indian IT Act, Cybercrime and Punishment.						
Course Outcomes: After completing the course, the students will be able to						
CO1: Interpret the basic concepts of cyber security, cyber law and their roles.						

CO2:	Articulate evidence collection and legal challenges.
CO3:	Discuss tool support for detection of various attacks.

CO4: Demonstrate through use of proper tools knowledge on the cyber security, Cybercrime and

Refere	ence Books :
1	Cyber Security: Understanding Cyber Crimes, Computer Forensics And Legal Perspectives,
_	SunitBelapure and Nina Godbole, Wiley India Pvt Ltd, ISBN: 978-81-265-21791, 2013.
2	Introduction to information security and cyber laws, Dr. Surya PrakashTripathi, RitendraGoyal,
2	Praveen Kumar Shukla, KLSI. Dreamtech Press, ISBN: 9789351194736, 2015.
3	Cybersecurity: Managing Systems, Conducting Testing, and Investigating Intrusions, Thomas J.
	Mowbray, Copyright © 2014 by John Wiley & Sons, Inc, ISBN: 978 -1-118 84965 -1
4	Cyber Forensics, Technical Publications, I. A. Dhotre1 st Edition edition (2016), ISBN-13: 978-
	9333211475

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (O) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	-	-	-	-	-	-	3	1	-	-
CO2	1	2	-	2	2	-	-	2	2	3	1	2
CO3	2	3	-	2	2	2	-	2	3	2	-	-
CO4	3	2	3	2	3	1	-	2	3	2	1	1

	Semester: VII								
	ROBOTICS AND AUTOMATION								
	(Group H: Global Elective)								
Cou	rse Code	:	18G7H11		CIE	:	100 Marks		
Cred	lits:L:T:P	••	3:0:0		SEE	:	100 Marks		
Total Hours : 39 L SEE Duration						:	3.00 Hours		
Cou	rse Learning O	bje	ctives: The stud	lents will be able to					
1	Understand th	e co	oncepts of robot	ics and automation.					
2	Impart the know	owl	edge of robotic	programming and robot	tic operation control				
3	3 Selection and analysis of robot configuration and kinematics								
4	Importance of	aut	tomation manufa	acturing techniques and	l processing industries				
5	Development	of a	automation syste	em for manufacturing a	nd processing industrie	es			

	Unit-I	06 Hrs						
Introd	Introduction - Basics of kinematics, Anatomy of robot, Robot configuration, Robot joints, Sensors and							
drive s	ystem, Control modes, Specification of robots, Robot programming methods.							
	Unit – II	09 Hrs						
Robot	Kinematics - Position and orientation of objects, Objects coordinate frame, Rotation mat	rix, Euler						
angles	roll, pitch and yaw angles coordinate transformations, Joint variables and position of end	l effector,						
Homog	geneous transformation.							
D-H pa	arameters and conventions, D-H matrix, Direct kinematic and inverse analysis of planar and	nd 3 DoF						
robots.								
	Unit –III	10 Hrs						
Trajec	tory planning - Introduction, Path versus trajectory, Joint-space versus Cartesian-space des	scriptions,						
Basics	of trajectory planning, Joint-space trajectory planning, Third-order and Fifth-order pe	olynomial						
trajecto	ory planning.							
Autom	nation in Production Systems - Manufacturing support systems, Automation principles an	d						
strategi	ies, Levels of Automation, Production Concepts and Mathematical models, Numericals.							
	Unit –IV	08 Hrs						
Machi	ne Vision - Object recognition by features, Basic features used for object identification, I	Moments,						
Templa	ate matching, Discrete Fourier descriptors, Computed Tomography (CT), Depth measurer	nent with						
vision	systems, Scene analysis versus mapping, Range detection and Depth analysis, Stereo imagi	ng, Scene						
analysi	s with shading and sizes, Specialized lighting, Image data compression, Intraframe spatia	al domain						
techniq	jues, Interframe coding, Compression techniques, Colour images, Heuristics, Applications	of vision						
system	8							
	Unit –V	06 Hrs						
Flexib	le Manufacturing Systems - Introduction to FMS - concepts, integration in the data p	rocessing						
system	s, FMS scheduling. Case studies.							
Materia	al Handling systems - Conveyors - AGVs - industrial robots in material handling - A	utomated						
Storage	e and retrieval system.							
Distrib	uted data processing in FMS - Database Management System and their applications in C.	AD/CAM						
and FM	IS – distributed systems in FMS - Integration of CAD and CAM							
Course	e Outcomes: After completing the course, the students will be able to							
CO1 :	Understand the characteristics and working principle of robots.							
CO2 :	Apply the related mathematical model to formulate the kinematics and trajectory pl	anning of						
	industrial robot.							

CO3:	Analyse the machine vision for effective Flexible Manufacturing Systems.

CO4: Develop model and integrate drives for industrial robots and automation systems.

Refere	ence Books
1	Mohsen Shahinpoor, "A Robot Engineering Textbook", Harper & Row Publishers, 3 rd Edition,
1	New York, ISBN:006045931X
2	John J. Craig, "Introduction to Robotics", Pearson Education International, 3 rd Edition,
2	ISBN:109876543, 1-13-123629-6
3	Mikell P Groover, "Automation, Production Systems, and Computer-integrated Manufacturing",
	Pearson Publishing, 3 rd Edition, 2014, ISBN 978 81 203 3418 2
1	Joseph Talavage, "Flexible Manufacturing Systems in Practice Design: Analysis and
4	Simulation", CRC Press, 1987, ISBN 9780824777180

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	1	-	-	1	-	-	-	2	-	2
CO2	3	3	1	3	1	1	-	-	-	2	-	2
CO3	2	-	2	-	1	1	-	-	2	-	-	2
CO4	3	3	2	3	1	1	-	2	3	-	3	2

	Semester: VII							
SPACE TECHNOLOGY AND APPLICATIONS (GROUP H: GLOBAL ELECTIVE)								
Cou	Course Code		Course Code		18G7H12	CIE	:	100 Marks
Credits: L:T:P		:	3:0:0	SEE	:	100 Marks		
Tot	al Hrs	Hrs : 39L		SEE Duration	:	3.00 Hours		
Cou	ırse Learning ()bj	ectives: The stude	ents will be able to				
1	Define the earth	en	vironment and its b	behavior, launching vehicles for satellites and	its a	associated concepts.		
2	Analyze satellit	es i	n terms of technolo	ogy, structure and communications.				
3	Use satellites for	or sp	bace applications, r	remote sensing and metrology.				
4	Apply the space	e teo	chnology, technolo	ogy mission and advanced space systems to n	atic	on's growth.		

	UNIT-I	08 Hrs
Earth's	environment: Atmosphere, ionosphere, Magnetosphere, Van Allen Radiat	ion belts,
Interplar	netary medium, Solar wind, Solar- Earth Weather Relations.	
Launch	Vehicles: Rocketry, Propellants, Propulsion, Combustion, Solid, Liquid and Cryogenic	engines,
Control	and Guidance system, Ion propulsion and Nuclear Propulsion.	
	UNIT-II	07 Hrs
Satellite	e Technology: Structural, Mechanical, Thermal, Power control, Telemetry, Telec	omm and
Quality a	and Reliability, Payloads, Classification of satellites.	
Satellite	e structure: Satellite Communications, Transponders, Satellite antennas.	
	UNIT-III	08 Hrs
Satellite	e Communications: LEO, MEO and GEO orbits, Altitude and orbit controls, Multip	le Access
Techniq	ues.	
Space a	applications: Telephony, V-SAT, DBS system, Satellite Radio and TV, Tele-Educati	on, Tele-
medicine	e, Satellite navigation, GPS.	
	UNIT-IV	08 Hrs
Remote	UNIT-IV Sensing: Visual bands, Agricultural, Crop vegetation, Forestry, water Resources, Land	08 Hrs use, Land
Remote mapping	UNIT-IV Sensing: Visual bands, Agricultural, Crop vegetation, Forestry, water Resources, Land g, geology, Urban development resource Management, and image processing techniques.	08 Hrs use, Land
Remote mapping Metrolo	UNIT-IV Sensing: Visual bands, Agricultural, Crop vegetation, Forestry, water Resources, Land g, geology, Urban development resource Management, and image processing techniques. ogy: Weather forecast (Long term and Short term), weather modelling, Cyclone pr	08 Hrs use, Land edictions,
Remote mapping Metrolo Disaster	UNIT-IV Sensing: Visual bands, Agricultural, Crop vegetation, Forestry, water Resources, Land g, geology, Urban development resource Management, and image processing techniques. ogy: Weather forecast (Long term and Short term), weather modelling, Cyclone pr and flood warning, rainfall predictions using satellites.	08 Hrs use, Land edictions,
Remote mapping Metrolo Disaster	UNIT-IV Sensing: Visual bands, Agricultural, Crop vegetation, Forestry, water Resources, Land g, geology, Urban development resource Management, and image processing techniques. ogy: Weather forecast (Long term and Short term), weather modelling, Cyclone pr and flood warning, rainfall predictions using satellites. UNIT-V	08 Hrs use, Land edictions, 08Hrs
Remote mapping Metrolo Disaster Space M	UNIT-IV Sensing: Visual bands, Agricultural, Crop vegetation, Forestry, water Resources, Land g, geology, Urban development resource Management, and image processing techniques. ogy: Weather forecast (Long term and Short term), weather modelling, Cyclone pr and flood warning, rainfall predictions using satellites. UNIT-V Missions: Technology missions, deep space planetary missions, Lunar missions, zer	08 Hrs use, Land edictions, 08Hrs o gravity
Remote mapping Metrolo Disaster Space M experime	UNIT-IV Sensing: Visual bands, Agricultural, Crop vegetation, Forestry, water Resources, Land g, geology, Urban development resource Management, and image processing techniques. ogy: Weather forecast (Long term and Short term), weather modelling, Cyclone pr and flood warning, rainfall predictions using satellites. UNIT-V Missions: Technology missions, deep space planetary missions, Lunar missions, zer ents, space biology and International space Missions.	08 Hrs use, Land edictions, 08Hrs o gravity
Remote mapping Metrolo Disaster Space M experime Advance	UNIT-IV Sensing: Visual bands, Agricultural, Crop vegetation, Forestry, water Resources, Land g, geology, Urban development resource Management, and image processing techniques. ogy: Weather forecast (Long term and Short term), weather modelling, Cyclone pr and flood warning, rainfall predictions using satellites. UNIT-V Missions: Technology missions, deep space planetary missions, Lunar missions, zer ents, space biology and International space Missions. ed space systems: Remote sensing cameras, planetary payloads, space shuttle, space stat	08 Hrs use, Land edictions, 08Hrs o gravity ion, Inter-
Remote mapping Metrolo Disaster Space M experime Advance space co	UNIT-IV Sensing: Visual bands, Agricultural, Crop vegetation, Forestry, water Resources, Land g, geology, Urban development resource Management, and image processing techniques. ogy: Weather forecast (Long term and Short term), weather modelling, Cyclone pr and flood warning, rainfall predictions using satellites. UNIT-V Missions: Technology missions, deep space planetary missions, Lunar missions, zer ents, space biology and International space Missions. ed space systems: Remote sensing cameras, planetary payloads, space shuttle, space station mmunication systems.	08 Hrs use, Land edictions, 08Hrs o gravity ion, Inter-
Remote mapping Metrolo Disaster Space M experime Advance space co	UNIT-IV Sensing: Visual bands, Agricultural, Crop vegetation, Forestry, water Resources, Land g, geology, Urban development resource Management, and image processing techniques. ogy: Weather forecast (Long term and Short term), weather modelling, Cyclone pr and flood warning, rainfall predictions using satellites. UNIT-V Missions: Technology missions, deep space planetary missions, Lunar missions, zer ents, space biology and International space Missions. ed space systems: Remote sensing cameras, planetary payloads, space shuttle, space station mmunication systems.	08 Hrs use, Land edictions, 08Hrs o gravity ion, Inter-
Remote mapping Metrolo Disaster Space M experime Advance space co	UNIT-IV Sensing: Visual bands, Agricultural, Crop vegetation, Forestry, water Resources, Land g, geology, Urban development resource Management, and image processing techniques. ogy: Weather forecast (Long term and Short term), weather modelling, Cyclone present flood warning, rainfall predictions using satellites. UNIT-V Missions: Technology missions, deep space planetary missions, Lunar missions, zer ents, space biology and International space Missions. ed space systems: Remote sensing cameras, planetary payloads, space shuttle, space stationmunication systems. Outcomes: After completing the course, the students will be able to	08 Hrs use, Land edictions, 08Hrs o gravity ion, Inter-
Remote mapping Metrolo Disaster Space M experime Advance space co Course CO1	UNIT-IV Sensing: Visual bands, Agricultural, Crop vegetation, Forestry, water Resources, Land g, geology, Urban development resource Management, and image processing techniques. ogy: Weather forecast (Long term and Short term), weather modelling, Cyclone prand flood warning, rainfall predictions using satellites. UNIT-V Missions: Technology missions, deep space planetary missions, Lunar missions, zer ents, space biology and International space Missions. ed space systems: Remote sensing cameras, planetary payloads, space shuttle, space stationmunication systems. Outcomes: After completing the course, the students will be able to Explain different types of satellites, orbit and associated subsystems.	08 Hrs use, Land edictions, 08Hrs o gravity ion, Inter-

	11 2	U		2	1	11	
CO3	Analyze the appli	cations of satellite	in the area o	f communication,	remote se	ensing, m	etrology etc.

CO4 Study technology trends, satellite missions and advanced space systems.

Refe	erence Books								
1	Atmosphere, weather and climate, R G Barry, Routledge publications, 2009,								
	ISBN- 10 :0415465702.								
2	Fundamentals of Satellite Communication, K N Raja Rao, PHI, 2012, ISBN:9788120324015.								
3	Satellite Communication, Timothy pratt, John Wiley, 1986 ISBN: 978-0-471-37007-9,								
	ISBN 10: 047137007X.								
4	Remote sensing and applications, B C Panda, VIVA books Pvt. Ltd., 2009,								
	ISBN: 108176496308.								

CIE is executed by the way of Tests (T), Quizzes (Q) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1									1	
CO2	2	2	1	1							1	
CO3	2	2	1								1	
CO4	2	2	1								1	

				Somoston VI	r					
(Group H: Global Elective)										
Cou	rse Code	:	18G7H13		CIE	:	100 Marks			
Cree	dits: L: T:P	:	3:0:0		SEE	:	100 Marks			
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours			
Course Learning Objectives: The students will be able to										
1 Familiarize with the various celestial bodies and the laws governing their behavior										
2	Understand matter	the	fundamental conc	epts of relativity	and establish the re	elati	ion between light and			
3	Study the me	ethe	ods used to identify	and investigate th	ne nature of differer	nt st	ellar bodies			
4	Determine the	he c	haracteristic featur	es of any star by u	inderstanding its sp	ectr	al properties			
5	Contemplate	e th	e complex system o	of the milky way g	alaxy and its comp	one	nts			
			U	nit-I			7 Hrs			
Fun	damental con	cer	ots in Astronomy:		~					
Orig	in of the Uni	ivei	se, Major constitu	ients of the univ	erse, Cosmic Micr	OWa	ive Radiation (CMR)			
Dack	ground, Geoc	ent	ric Universe, Retro	grade Motion of j	blanets, Brief introc	iuct	ion to the Copernican			
Cool	rdinata System	ion:	olor System Planet	to lowe of motion	e-Azimuth Coordi	nau	e System, Equatorial			
C00	iumate System	1, 5	Ulai System, Fland	is - laws of motion	i or pranets, miler p	lanc				
Tho	ory of Spacial	D	Un Jotivity:	II – II			01115			
Gali	lean Transform	nat	ions Failure of G	alilean Transform	ations Lorentz Tra	nsfa	ormations Derivation			
Time	e & Space in S	Spe	cial Relativity. Mo	mentum & Energy	v in Relativity. Dor	nle	r Effect for light (Red			
& B1	lue Shift). The	eq	uivalence principle.	the principle of m	inimal gravitationa	1 co	upling, Schwarzschild			
spac	etime, Past-Pr	ese	nt-Future (Light Co	one diagram).	C		1 8,			
			Uni	it –III			8 Hrs			
Stell	ar Astrophys	ics								
Blac	kbody radiation	on,	Connection betwee	en Color and Ten	perature, Stellar Pa	aral	lax, Magnitude Scale,			
Life	cycle of stars	(B	irth, Life & Death)	, Hertzsprung-Ru	ssel Diagram, Class	sific	cation of Binary Stars,			
Mas	s Determination	on	using Visual Bina	ries, Eclipsing Sp	ectroscopic Binarie	es, l	Formation of Spectral			
Line	s, Schroding	ger's	s time-dependent	and independe	nt equations, Bo	ltzr	nann-Saha Equation,			
Chai	Chandrashekar's Limit, black holes (qualitatively).									
			Uni	it –IV			8 Hrs			
Ligh	it and Matter	:				1	1 1 5			
D1sp	ersion of lig	ht.	(Prism & Grating), Spectral Lines	, de-Broglie's Way	vele	ngth and Frequency,			
He1s	enberg's Unce	rta	nty Principle, Broa	idening of Spectra	lines					
Spec	tral Charact	eriz	ation of Stars:		Emertie D Cit					
Desc	cription of the	Kao T-	liation Field, Stella	r Opacity, Transfe	er Equation, Profile	01 3	spectral Lines, Optical			
Tele	scopes, Radio	1e	lescopes (Case Stud	lies)						

Unit –V

Galaxy Astronomy:

The Milky way Galaxy, Counting the Stars, Historical Models, Differential & Integrated Star Counts, Extrasolar planets, Methods of detection of extrasolar planets, Distance to the Galactic Centre, Galactic Coordinate System, Classification of Galaxies, Introduction to Elliptical galaxies, Irregular galaxies, Dwarf galaxies.

8 Hrs

Course	Outcomes: After completing the course, the students will be able to
CO1:	Contemplate the nature of our universe by identifying and studying the behavior of celestial
	bodies.
CO2:	Explain the usefulness of the theory of relativity, light and matter in establishing the
	fundamental behavior of stellar bodies.
CO3:	Utilize various techniques to discover the components of our universe and conclude their
	celestial properties.
CO4:	Interpret the spectral properties of any astronomical body to illustrate its properties.
CO5 :	Inspect the milky way galaxy to identify the proponents and their characteristic features.

Refe	rence Books
1	Carroll Bradley W, and Dale A Ostlie, An Introduction to Modern Astrophysics. Reading, 2nd Edition, 1995, MA: Addison-Wesley Pub, ISBN: 9780201547306.
2	Padmanabhan, T, Theoretical Astrophysics, Vols.1-3, 2005, Cambridge University Press, ISBN-9780521016278.
3	Shu F, The Physical Universe, New Edition, 1982, University of California, ISBN- 978-0935702057.
4	Harwit M, Astrophysical Concepts, 3rd Edition, 2000, Springer-verlag, ISBN- 978-0387949437.
5	Shapiro, Stuart L, and Saul A Teukolsky, Black Holes, White Dwarfs, and Neutron Stars, 1st Edition, 1983, Wiley, ISBN: 9780471873167.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Assignment/Presentation/Project 20.

Total CIE is 30(Q) +50(T) +20(A) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	2	-	-	1	-	1	-	-	2
CO2	3	2	2	2	-	-	1	-	1	-	-	2
CO3	2	3	1	2	2	1	1	-	2	1	-	2
CO4	3	3	1	2	2	1	2	-	3	3	-	2

	Semester: VII									
	ΝΙΑΤΕΚΙΑΕΣ ΓΟΚ ΑΣΥΑΝΟΕΣ ΤΕΟΠΝΟΕΟΥΥ ΑΝΣ ΣΥΕΟΤΚΟΣΟΥΙΟ ΟΠΑΣΑ ΟΤΕΡΙΖΑΤΙΟΝΙ									
	CHARACIERIZATION									
Con	maa Cada			oup n: Giobai Elective)		100 Manka			
Cou	rse Code	:	18G/H14 2.0.0			:	100 Marks			
Cree		:	3:0:0	SEE	D 4 ¹	:	100 Marks			
Iotal Hours : 40L SEE Duration : 3.00 Hours										
Cou	rse Learning	<u>Ub</u>	jectives: The stude	nts will be able to	1 6	1.	1 , 1 1 , 1			
I	Apply the ba	asic	concepts of Chemi	stry to develop futuristic	materials for	nig	in-tech applications in			
_	the area of E	ing	neering.							
2	Impart soun	d k	nowledge in the c	ifferent fields of materi	al chemistry	so	as to apply it to the			
	problems in	eng	gineering field.							
3	Develop an	aly	tical capabilities of	f students so that they	can characte	eriz	e, transform and use			
	materials in	eng	gineering and apply	knowledge gained in sol	ving related of	eng	ineering problems.			
			U	nit-I			8 Hrs			
Coa	ting and pack	agi	ing materials							
Surf	ace Coating r	nat	erials:							
Synt	hesis and appl	ica	tions of Polymer co	ating materials: Teflon, S	Silicone films	s Po	lyvinyl chloride & its			
cope	lymers, Poly	viny	yl acetate, Poly ethy	lene-HDPE, LDPE, Poly	urethane.					
Prop	erties required	l in	a pigment and exte	nders.						
Inor	ganic pigment	s-ti	tanium dioxide, zir	c oxide, carbon black, c	hromate pign	nen	ts, molybdate orange,			
chro	me green, ultr	ama	arine blue, iron blu	e, cadmium red.						
Cor	rosion inhibit	ing	pigments- zinc ph	osphate, zinc and barium	chromate pig	mer	nts, ceramic pigments,			
meta	l flake pigmer	nts,	extenders.							
Deve	elopments in n	new	polymers such as a	lendrimers, biopolymers	& biodegrad	able	e polymers.			
Pacl	kaging materi	ials	•							
Food	l products: Ce	ellu	losic and Polymeri	c packaging materials ar	nd their prop	ertie	es – including barrier			
prop	erties, strengtl	n pr	operties, optical pr	operties. Glass, aluminur	n, tin, paper,	pla	stics, composites.			
Phar	maceutical pro	odu	cts: Injectables and	tablet packaging materia	ıls.	_	-			
			Un	t – II			7 Hrs			
Adh	esives									
Intro	duction-Class	ific	ation of Adhesive	es-Natural adhesives, sy	unthetic adh	esiv	ves-drying adhesives,			
pres	sure sensitive a	adh	esives, contact adh	esives, hot adhesives. On	e-part adhesi	ves	, multi part adhesives.			
Adh	esive Action.	De	velopment of Adh	sive strength- Physical	factors influe	enci	ng Adhesive Action-			
surfa	ce tension, su	rfac	e smoothness, thic	cness of adhesive film, el	asticity and t	ensi	ile strength. Chemical			
Fact	ors Influencing	g A	dhesive action - pre	sence of polar groups, de	gree of poly	mer	ization, complexity of			
the a	dhesive mole	cul	es, effect of pH. A	dhesive action- specific	adhesive acti	ion,	mechanical adhesive			
actic	n, fusion adh	esi	on. Development of	f adhesive strength- ad	sorption theo	orv	and diffusion theory.			
Prep	aration, curing	g ar	nd bonding Process	es by adhesives-with ref	erence to En	, oxv	, phenolics, Silicone.			
Polv	urethane. Acr	vlic	adhesives. Polv vi	vl alcohol. Polvvinvl ac	etate.	5				
	·····,•••	,		t –III			8 Hrs			
Onti	cal fibre mat	eri	als							
Fibe	r Ontics Adv	ant	ages of ontical fib	er communication over a	analog comm	าแท่	cation Classification			
1	1 6 7				. 1 61					

Fiber Optics, Advantages of optical fiber communication over analog communication, Classification based on refractive index of the core- step index and graded index optical fibres, Classification based on core radius-single mode and multimode optical fibres, Fibre fabrication. -Methods to manufacture optical glass fibres. Double crucible method and preform methods. Manufacture of perform- Chemical Vapour Deposition (CVD), Modified vapour deposition (MCVD) Plasma activated vapour deposition (PCVD), Outside vapour deposition (OVD)-Vapour-phase axial deposition (VAD). Drawing the fibres from perform, coating and jacketing process.

Ion exchange resins and membranes

Ion exchange resins-Introduction, Types-cation and anion exchange resins, examples, physical properties, chemical properties-capacity, swelling, kinetics, stability, ion exchange equilibrium, regeneration. Applications of ion exchange resins-softening of water, demineralization of water, advantages and disadvantages of ion exchange resins-calcium sulphate fouling, iron fouling, adsorption of organic matter, bacterial contamination. Ion exchange membranes, Types-anion and cation exchange membranes. Classification of ion exchange membranes based on connection way between charged groups and polymeric matrix-homogeneous and heterogeneous ion exchange membranes, examples. Fabrication of ion exchange cottons- anion exchange cotton and cation exchange cotton. Application of ion exchange membranes in purification of water by electro dialysis method.

Unit –IV	8 Hrs
postrosponia Characterization of materials:	

Spectroscopic Characterization of materials:

Electromagnetic radiation, interaction of materials with electromagnetic radiation.

UV- visible spectrophotometry: **Introduction**-Electronic transitions- factors influencing position and intensity of absorption bands-absorption spectra of dienes, polyene and α,β -unsaturated carbonyl compounds, Working of UV-Vis spectrophotometer, Theoretical calculation of λ_{max} by using Woodward-Fieser rules- for cyclic and α,β -unsaturated carbonyl compounds.

IR Spectroscopy: Introduction, principle, molecular vibrations, vibrational frequency, number of fundamental vibrations, factors influencing fundamental vibrations, instrumentation of IR spectrophotometer, sampling techniques, application of IR spectroscopy in characterization of functional groups.

Unit –V	8 Hrs
NMR spectroscopy:	

H¹ NMR Spectroscopy: Basic concepts- relaxation process. NMR spectrometer-FT NMR-Solvents used in NMR, internal standards-Chemical equivalence -Integrals and Integrations- chemical shift-Factors affecting chemical shifts- shielding and deshielding effects – chemical and magnetic equivalent – magnetic anisotropy-spin-spin splitting rules- Application of NMR on various compounds such as alkanes, alkenes, alkynes, alkyl halides, alcohols, ethers, amines, aldehydes, ketones, carboxylic acids, esters, amides & mono substituted aromatic compounds. Problems on prediction of structure of compounds. Application of NMR in magnetic resonance imaging (MRI).

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Identify sustainable engineering materials and understand their properties.
CO2:	Apply the basic concepts of chemistry to develop futuristic materials for high-tech applications
	in different areas of engineering.
CO3:	Analyze and evaluate the specific application of materials.
CO4:	Design the route for synthesis of material and its characterization.

Refere	ence Books
1	Materials Science by G.K.Narula, K.S.Narula & V.K.Gupta. 38th editon, Tata McGraw-Hill
1	Publishing Company Limited-2015, ISBN: 9780074517963
2	Solar Lighting by Ramachandra Pode and Boucar Diouf, Springer e-book, 2011, ISBN: 978-1-
2	4471-2133-6 (Print) 978-1-4471-2134-3 (Online).
2	Spectroscopy of organic compounds by P.S.Kalsi, New Age Internatioal(P) ltd, publisher,
3	2005, ISBN 13: 9788122415438
4	Food Packaging Materials. Mahadeviah M & Gowramma RV, Tata McGraw Hill Publishing
4	Company Limited, 1996, ISBN :0074622382 9780074622384.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are

conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	-	-	-	-	-	-	-	-
CO2	3	-	-	-	-	2	2	-	-	1	-	-
CO3	-	3	-	2	-	-	-	-	-	-	-	-
CO4	-	-	3	-	-	1	1	-	-	-	-	1

Semester: VII							
	APPLIED PSYCHOLOGY FOR ENGINEERS						
				(Group H: Global Electi	ve)		
Course	e Code	:	18G7H15		CIE	:	100 Marks
Credit	s: L:T:P	:	3:0:0		SEE	:	100 Marks
Total l	Hours	:	39 L		SEE Duration	:	3.00 Hours
Course	e Learning	Ob	jectives: The s	udents will be able to			
1	To apprec	ciat	e human beha	vior and human mind i	in the context of lea	arnei	r's immediate
	society an	d e	environment.				
2	To unders	stai	nd the import	ance of lifelong learnin	ng and personal flex	xibil	ity to sustain
	personal a	nd	Professional	development as the natu	ire of work evolves.		-
3	To provid	le :	students with	knowledge and skills	for building firm for	ound	lation for the
	suitable engineering professions.						
4	To prepar	e s	tudents to fun	ction as effective Engine	eering Psychologist	s in	an Industrial,
	Governmental or consulting organization.						
5	To enable	st	udents to use	psychological knowled	ge, skills, and value	es in	occupational
	pursuits in	ı a	variety of set	ings that meet personal	goals and societal n	leeds	5.
			•	- 1	-		

Unit-I	07 Hrs				
Introduction to Psychology: Definition and goals of Psychology: Role of a Psychologist in the	Society:				
Today's Perspectives (Branches of psychology). Psychodynamic, Behavioristic, Cognitive, Humanistic,					
Psychological Research and Methods to study Human Behavior: Experimental, Obse	ervation,				
Questionnaire and Clinical Method.					
Unit – II	09 Hrs				
Intelligence and Aptitude: Concept and definition of Intelligence and Aptitude, Nature of Intel	lligence.				
Theories of Intelligence – Spearman, Thurston, Guilford Vernon. Characteristics of Intelligen	ce tests,				
Types of tests. Measurement of Intelligence and Aptitude, Concept of IQ, Measurement of M	Multiple				
Intelligence – Fluid and Crystallized Intelligence.					
Unit –III	09 Hrs				
Personality: Concept and definition of personality, Approaches of personality- psychoanalytical	l, Socio-				
Cultural, Interpersonal and developmental, Humanistic, Behaviorist, Trait and type appr	roaches.				
Assessment of Personality: Self- report measures of Personality, Questionnaires, Rating Sca	ales and				
Projective techniques, its Characteristics, advantages & limitations, examples. Behavioral Asse	essment.				
Psychological Stress: a. Stress- Definition, Symptoms of Stress, Extreme products of stress v s F	Burnout,				
Work Place Trauma. Causes of Stress – Job related causes of stress. Sources of Frustration, Str	ress and				
Job Performance, Stress Vulnerability-Stress threshold, perceived control					
Unit –IV	07 Hrs				
Application of Psychology in Working Environment: The present scenario of information tech	nnology,				
the role of psychologist in the organization, Selection and Training of Psychology Professionals	to work				
in the field of Information Technology. Distance learning, Psychological consequences of	f recent				
developments in Information Technology. Type A and Type B Psychological Counseling - N	Need for				
Counseling, Types – Directed, Non- Directed, Participative Counseling.					
Unit –V	07 Hrs				
Learning: Definition, Conditioning – Classical Conditioning, Basics of Classical Conditioning					
(Pavlov), the process of Extinction, Discrimination and Generalization. Operant Conditioning					
(Skinner expt). The basics of operant conditioning, Schedules of reinforcement. Cognitive -					
Social approaches to learning – Latent Learning, Observational Learning, Trial and Error					
Method, Insightful Learning.					

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Understand the application of psychology in engineering and technology and develop a						
	route to accomplish goals in their work environment.						
CO2:	Define learning and compare and contrast the factors that cognitive, behavioral, and						
	Humanistic theorists believe influence the learning process.						
CO3:	Develop understanding of psychological attributes such as intelligence, aptitude,						
	creativity, resulting in their enhancement and apply effective strategies for self-						
	management and self-improvement.						
CO4:	Apply the theories into their own and others' lives in order to better understand their						
	personalities and experiences.						

Refer	Reference Books					
1	Understanding Psychology Feldman R. S, IV edition, (1996) McGraw Hill India					
2	Psychology Robert A. Baron, III edition (1995) Prentice Hall India.					
3	3. Organizational Behaviour , Stephen P Robbins Pearson Education Publications, 13^{th} Edition, ISBN $- 81-317 - 1132 - 3$					
4	4. Organisational Behaviour : Human Behaviour at Work ,John W.Newstrem and Keith Davis. Tata McGraw Hill India, 10th Edition, ISBN 0-07-046504-5					

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	-	-	-	-	-	1	-	1
CO4	3	3	3	3	-	-	-	-	-	1	-	1

	Semester: VII						
	Advanced course in Entrepreneurship						
			(0	Froup H: Global Elective)			
Co	ourse Code	••	18G7H16	CIE	••	100 Marks	
Cı	redits: L:T:P	••	3:0:0	SEE	••	100 Marks	
To	otal Hours	••	39 L	SEE Duration	:	3.00 Hours	
Co	ourse Learning Ob	ject	tives: The student	s will be able to			
1	Acquire additional	kn	owledge and skills	s for developing early customer traction into a	repea	atable business.	
2	Learn the tools and	d n	nethods for achiev	ing sustainable growth, such as by refining th	neir p	roduct or service	
	and business models, building brand strategy, making a sales and financial plan						
3	3 Develop brand strategy and create digital presence, Develop channel strategy for customer outreach.						
4	4 Leverage social media to reach new customers cost effectively, Develop strategies to increase revenues and						
	expand markets						

Unit-I	07 Hrs			
Intro to building Products & Value Proposition: Diagnose: Where are you today on the Product Life Cycle? Assess				
your Start-up's attractiveness				
Competition & testing: Conduct a Competition Analysis Identify your Competitive Advantage				
Unit – II	06 Hrs			
Market Validation: Market validation, Customer Usability Interviews, Analyzing Customer feedback				
Delivering Value: Enlist marketing channels, Identify partners for your venture, Create a Sales plan				
Unit –III	07 Hrs			
Customer acquisition & growth channels: Types of Marketing Channels: Targeting Blogs, Unconv	ventional PF			
Search Engine Marketing, Search Engine Optimization, Social ads, display ads and existing platforms	, Email			
Marketing, Viral Marketing, Affiliate programs, Magazines, Newspaper, Radio and TV ads, Offline Ads, T	Trade Shows			
Unit –IV	10 Hrs			
Business model: Reiterate and Refine your Business Model Canvas, Choose the right business model for your s	tart-up			
Financial Planning: Forecasting sales and revenue projections, Cash-flow statement				
Unit –V	09 Hrs			
Pitching: Create your funding plan, Build your pitch deck and compose your pitch.				
Experiential Learning: Student teams will present their practice ventures: business model, business plan,				
growth achieved, and key learnings to their classmates, faculty, and other entrepreneurs				

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Develop strategies to increase revenues and expand markets, Explore licensing and franchising for					
	business expansion.					
CO2:	Leverage technologies and platforms for growth stage companies, Develop key metrics to track					
	progress.					
CO3:	Basics of registering a company, Understanding business regulations and compliances.					
CO4 :	Advanced concepts of business finance, Financial planning.					

Reference Books					
1	Running Lean: Iterate from Plan A to a Plan That Works. O'Reilly Media, Maurya, A., 2012.				
2	Entrepreneurship. Roy, R., 2012. Oxford University Press				
3	Intellectual Property Law in India. Gupta, T. S., 2011. Kluwer Law International				
4	Flow: The Psychology of Optimal Experience. Czikszentmihalyi, M., 2008. Harper Perennial Modern				
4	Classics				

Civil Engineering

CIE is executed by way of tests (T) and Milestones (M). A minimum of four milestone submission have to be submitted and first three milestones (M1, M2, M3) are evaluated for 10 marks adding up to 30 marks and the final milestone (M4) is evaluated for 20 marks. All milestone submissions are online and as per format and portal prescribed by Wadhwani foundations. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(M1, M2 and M3) +50(T) +20(M4) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	-	-	-	-	-	1	-	1
CO4	3	3	3	3	-	-	-	-	-	1	-	1

	Semester VIII							
	MAJOR PROJECT							
Co	ourse Code	:	18CVP81		CIE	:	100 Marks	
Cr	edits: L:T:P	:	0:0:16		SEE	:	100 Marks	
Total Hours		:	32		SEE Duration	:	3.00 Hours	
Co	ourse Learning (Dbje	ectives: The students	s will be able to	·			
1.	Acquire the ab	ility	to make links across	different areas of know	ledge and to generate, d	evel	op and evaluate	
	ideas and infor	mat	ion so as to apply the	se skills to the project tas	sk.			
2.	Acquire the sl	cills	to communicate eff	fectively and to present	ideas clearly and cohe	rent	ly to a specific	
	audience in both written and oral forms.							
3.	3. Acquire collaborative skills through working in a team to achieve common goals.							
4.	4. Self-learn, reflect on their learning and take appropriate action to improve it.							
5.	Prepare schedules and budgets and keep track of the progress and expenditure.							

Major Project Guidelines:

- 1. The project topic, title and synopsis have to be finalized and submitted to their respective internal guide(s) before the beginning of the 8th semester.
- 2. The detailed Synopsis (approved by the department *Project Review Committee*) has to be submitted during the 1st week after the commencement of 8th semester.

Batch Formation:

- > Students are free to choose their project partners from within the program or any other program.
- Each student in the team must contribute towards the successful completion of the project. The project may be carried out In-house / Industry / R & D Institution.
- The project work is to be carried out by a team of two to four students, in exceptional cases where a student is placed in a company and offered an internship through the competitive process or student is selected for internship at national or international level through competitive process, the student can work independently.
- The students are allowed to do either a project for full 5 days in the industry or full 5 days in the college.
- In case the project work is carried out outside Bengaluru, such students must be available during Project Evaluation process scheduled by the respective departments and they must also interact with their guide regularly through Email / Webinar / Skype etc.

Project Topic Selection:

The topics of the project work must be in the *field of respective program areas or in line with* CoE's(Centre of Excellence) identified by the college or List of project areas as given by industry/Faculty. The projects as far as possible should have societal relevance with focus on sustainability.

Students can select courses in *NPTEL* from the discipline of *Humanities and Social Sciences, Management, Multidisciplinary and Design Engineering.* The course chosen could be either of *4w/8w/12w* duration. The students need to enrol for a course, register for the exam and submit the ecertificate to the department, as and when it is released by NPTEL. *The same will be considered as one of the components during project evaluation of phase 2 and phase 5.*

Project Evaluation:

- > Continuous monitoring of project work will be carried out and cumulative evaluation will be done.
- > The students are required to meet their internal guides once in a week to report their progress in project work.

- > Weekly Activity Report (WAR) has to be maintained in the form of a diary by the project batch and the same has to be discussed with the Internal Guide regularly.
- > In case of *Industry project*, during the course of project work, the internal guides will have continuous interaction with external guides and will visit the industry at least twice during the project period.
- > For CIE assessment the project groups must give a final seminar with the draft copy of the project report.
- > The presentation by each group will be for 20-30 minutes and every member of the team needs to justify the contributions to the project.
- > The project team is required to submit Hard copies of the detailed Project Report in the prescribed format to the department.
- > For CIE 50% weightage should be given to the project guide and 50% weightage to the project evaluation committee.
- > Before the final evaluations the project group is required to produce a No dues certificate from Industry, Central Library and Department.

Cour	se Outcomes of Major Project:
1	Apply knowledge of mathematics, science and engineering to solve respective engineering domain
	problems.
2	Design, develop, present and document innovative/multidisciplinary modules for a complete
	engineering system.
3	Use modern engineering tools, software and equipment to solve problem and engage in life-long
	learning to follow technological developments.
4	Function effectively as an individual, or leader in diverse teams, with the understanding of
	professional ethics and responsibilities.

CIE Assessment:

The following are the weightings given for the various stages of the project.

- 1. Selection of the topic and formulation of objectives 10% 2. Design and Development of Project methodology 25%
- 3. Execution of Project 25% 4. Presentation, Demonstration and Results Discussion 30% 10%
- 5. Report Writing & Publication

SEE Assessment:

	The following are the weightages given during Viva Examination.	
1.	Written presentation of synopsis	10%
2.	Presentation/Demonstration of the project	30%
3.	Methodology and Experimental Results & Discussion	30%
4.	Report	10%
5.	Viva Voce	20%

Calendar of Events for the Project Work:

Week	Event
Beginning of 7th Semester	Formation of group and approval by the department committee.
7 th Semester	Problem selection and literature survey
Last two weeks of 7 th Semester	Finalization of project and guide allotment
II Week of 8th Semester	Synopsis submission and preliminary seminar
III Week	First visit of the internal guides to industry (In case of project being carried out
	in industry)
III to VI Week	Design and development of project methodology

Civil Engineering
VII to IX Week	Implementation of the project
X Week	Submission of draft copy of the project report
XI and XII Week	Second visit by guide to industry for demonstration. Final seminar by Department
	project Committee and guide for internal assessment. Finalization of CIE.

Evaluation Scheme for CIE and SEE

Scheme of Evaluation for CIE		Scheme of Evaluation for SEE	
Particulars	%Marks	Particulars	%Marks
Project Evaluation I	10%	Project Synopsis (Initial Write up)	10%
Project Evaluation II	25%	Project Demo / Presentation	30%
Project Evaluation III	25%	Methodology and Results Discussion	30%
Project Evaluation Phase-IV (Submission of Draft Project Report for Verification)	30%	Project Work Report	10%
Project Evaluation Phase-V (Project Final Internal Evaluation)	10%	Viva-voce	20%
Total	100	Total	100