

RV COLLEGE OF ENGINEERING[®]

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus of V & VI Semesters

2018 SCHEME

CIVIL ENGINEERING

VISION

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

MISSION

- 1. To deliver outcome based Quality education, emphasizing on experiential learning with the state of the art infrastructure.
- 2. To create a conducive environment for interdisciplinary research and innovation.
- 3. To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- 4. To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- 5. To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

QUALITY POLICY

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

CORE VALUES

Professionalism, Commitment, Integrity, Team Work, Innovation

RV COLLEGE OF ENGINEERING[®] (Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus of V & VI Semesters

2018 SCHEME

DEPARTMENT OF CIVIL ENGINEERING

DEPARTMENT VISION

Excel in Education, Research and Consultancy in Civil Engineering with emphasis on Sustainable Development

DEPARTMENT MISSION

- Disseminating and integrating the knowledge of civil Engineering and allied fields
- Enhancing industry-institute interaction leading to interdisciplinary research.
- Imbibing wide-range of skills in cutting-edge technology for sustainable development.
- Motivate entrepreneurship and professional ethics to serve the society.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **PEO1.** Successfully address technological and managerial challenges.
- **PEO2.** Professionally design and execute Civil Engineering projects.
- **PEO3.** Pursue advanced education, research and continue life-long learning process to remain active professionals.
- PEO4. Play key roles in addressing societal needs through interdisciplinary approach.

PSODescriptionPSO1Apply knowledge of fundamental aspects to analyze and design civil engineering
structures.PSO2Provide sustainable solutions to civil engineering problems.PSO3Employ codal provisions to arrive at comprehensive solutions to address societal needsPSO4Exhibit communication and teamwork skills.

PROGRAM SPECIFIC OUTCOMES (PSOS)

Lead Society: American Society of Civil Engineers (ASCE)

Sl. No.	Abbreviation	Meaning
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	SEE	Semester End Examination
5.	CE	Professional Core Elective
6.	GE	Global Elective
7.	HSS	Humanities and Social Sciences
8.	CV	Civil Engineering
9.	ME	Mechanical Engineering
10.	EE	Electrical & Electronics Engineering
11.	EC	Electronics & Communication Engineering
12.	IM	Industrial Engineering & Management
13.	EI	Electronics & Instrumentation Engineering
14.	СН	Chemical Engineering
15.	CS	Computer Science & Engineering
16.	TE	Telecommunication Engineering
17.	IS	Information Science & Engineering
18.	BT	Biotechnology
19.	AS	Aerospace Engineering
20.	PH	Physics
21.	СН	Chemistry
22.	MA	Mathematics

ABBREVIATIONS

INDEX

		V Semester	
Sl. No.	Course Code	Course Title	Page No.
1.	18HEM51	Introduction to Management and Economics	1
2.	18CV52	Structural Analysis II	3
3.	18CV53	Design and Drawing of RCC Structures	5
4.	18CV54	Highway Engineering	8
5.	18CV55	Hydrology and Irrigation Engineering	11
6.	18CV5AX	Group A: Professional electives (MOOC Courses)	13-21
7.	18G5BXX	Group B:Global Elective	GE B1 – GE B38

	VI Semester					
Sl. No.	Course Code	Course Title	Page No.			
1.	18HSI61	Intellectual Property Rights and Entrepreneurship	58			
2.	18CV62	Design and Drawing of Steel Structures	60			
3.	18CV63	Waste Water Engineering	63			
4.	18CV64	Estimation and Costing	66			
5.	18CV6CX	Elective C: Professional Electives	68-79			
6.	18CV6DX	Elective D: Professional Electives	80-91			
7.	18G6EXX	Elective E: Global Elective	GE E1 – GE E35			
		Professional Practice- II				
8.	18HS68	(Employability Skills and Professional Development of	126			
		Engineers)**				

RV COLLEGE OF ENGINEERING[®] (Autonomous Institution Affiliated to VTU, Belagavi) CIVIL ENGINEERING

	FIFTH SEMESTER CREDIT SCHEME							
Sl.	Course Code	Course Title	BoS	Credit Allocation			Total	
No.	Course Coue	Course The	DUS	L	Т	Р	Credits	
1.	18HEM51	Introduction to Management and Economics	HSS	3	0	0	3	
2.	18CV52	Structural Analysis II	CV	3	1	0	4	
3.	18CV53	Design and Drawing of RCC Structures	CV	3	0	1	4	
4.	18CV54	Highway Engineering	CV	3	0	1	4	
5.	18CV55	Hydrology and Irrigation Engineering	CV	3	0	0	3	
6.	18CV5AX	Group A: Professional electives (MOOC Courses)	CV	3	0	0	3	
7.	18G5BXX	Group B:Global Elective	Respective BoS	3	0	0	3	
						24		
	Т	otal number of Hours/Week		21	2	5	28	

	GROUP A: PROFESSIONAL ELECTIVES (MOOC COURSES)					
Sl. No.	Course Code	Course Title				
1.	18CV5A1	Theory of Elasticity				
2.	18CV5A2	Environmental Chemistry				
3.	18CV5A3	Glass in Buildings: Design and Applications				
4.	18CV5A4	Introduction to Multimodal Urban Transportation Systems				
5.	18CS5A5	The Joy of Computing Using Python				

GROUP B: GLOBAL ELECTIVES				
Sl. No.	Dept.	Course Code	Course Title	Credits
		Co	urses offered by the Departments	
1.	AS	18G5B01	Fundamentals of Aerospace Engineering	03
2.	BT	18G5B02	Nanotechnology	03
3.	CH	18G5B03	Fuel Cell Technology	03
4.	CS	18G5B04	Intelligent Systems	03
5.	CV	18G5B05	Remote Sensing and Geographic Information System	03
6.	EC	18G5B06	Automotive Electronics	03
7.	EE	18G5B07	e-Mobility	03
8.	EI	18G5B08	Smart Sensors & Instrumentation	03
9.	IM	18G5B09	Operations Research	03
10.	IS	18G5B10	Management Information Systems	03
11.	ME	18G5B11	Automotive Mechatronics	03
12.	TE	18G5B12	Telecommunication systems	03
		Courses offe	red by Science Departments & HSS Board	
13.	PY	18G5B13	Quantum Mechanics of Hetero/Nano Structures	03
14.	PY	18G5B14	Thin Films and Nanotechnology	03
15.	CY	18G5B15	Advances in corrosion science and technology	03
16.	MA	18G5B16	Computational Advanced Numerical Methods	03
17.	MA	18G5B17	Mathematics to Machine Learning	03
18.	HSS	18G5B18	Engineering Economy	03

RV COLLEGE OF ENGINEERING[®] (Autonomous Institution Affiliated to VTU, Belagavi) CIVIL ENGINEERING

	SIXTH SEMESTER CREDIT SCHEME							
CLN: Comme Code		Course Title	DOG	Credi	Total			
51. NO	Course Code	Course The	BUS	L	Т	Р	Credits	
1.	18HSI61	Intellectual Property Rights and Entrepreneurship	HSS	3	0	0	3	
2.	18CV62	Design and Drawing of Steel Structures	CV	3	0	1	4	
3.	18CV63	Waste Water Engineering	CV	3	0	1	4	
4.	18CV64	Estimation and Costing	CV	3	0	0	3	
5.	18CV6CX	Elective C: Professional Electives	CV	3	0	0	3	
6.	18CV6DX	Elective D: Professional Electives	CV	3	0	0	3	
7.	18G6EXX	Elective E: Global Elective	Respective BoS	3	0	0	3	
8.	18HS68	Professional Practice- II (Employability Skills and Professional Development of Engineers)**	HSS	0	0	1	1	
		Total Number of Credits					24	
	Total number of Hours/Week2105+1**27							

	GROUP C: PROFESSIONAL ELECTIVES					
Sl. No.	Course Code	Course Title				
1.	18CS6C1	Internet of Things				
2.	18CV6C2	Advanced Concrete Technology				
3.	18CV6C3	Traffic Engineering				
4.	18CV6C4	Municipal and Plastic Waste Management				
5.	18CV6C5	Integrated Watershed Management				
6.	18CV6C6	Structural Dynamics				

	GROUP D: PROFESSIONAL ELECTIVES					
Sl. No.	Course Code	Course Title				
1.	18CS6D1	Machine Learning				
2.	18CV6D2	Bridge Engineering				
3.	18CV6D3	Structural Masonry				
4.	18CV6D4	Construction Management				
5.	18CV6D5	Pre-Fabrication Construction Techniques				
6.	18CV6D6	Ground Improvement Techniques				

GROUP E: GLOBAL ELECTIVES						
Sl. No.	Dept.	Course Code	Course Title	Credits		
		C	Courses offered by the Departments			
1.	AS	18G6E01	Aircraft Systems	03		
2.	BT	18G6E02	Bioinspired Engineering	03		
3.	СН	18G6E03	Sustainable Technology	03		
4.	CS	18G6E04	Graph Theory	03		
5.	CV	18G6E05	Disaster Management	03		
6.	EC	18G6E06	Wearable Electronics	03		
7.	EE	18G6E07	Energy Auditing and Management	03		
8.	EI	18G6E08	Virtual Instrumentation & Applications	03		
9.	IM	18G6E09	Systems Engineering	03		
10.	IS	18G6E10	Introduction to Mobile Application Development	03		
11.	ME	18G6E11	Industrial Automation	03		
12.	TE	18G6E12	Mobile Network System and Standards	03		
		Courses of	fered by Science Departments & HSS Board			
13.	PY	18G6E13	Thin film nanodevice fabrication technology	03		
14.	СҮ	18G6E14	Chemistry of advanced energy storage devices for E- mobility	03		
15.	MA	18G6E15	Advanced Statistical Methods	03		
16.	MA	18G6E16	Mathematical Modeling	03		
17.	HSS	18G6E17	Foundational Course on Entrepreneurship 03			

				Semester:	V				
	INTRODUCTION TO MANAGEMENT AND ECONOMICS								
<u> </u>	1]		101121/21	(Theory)		1	100 34	1	
Course C		:	18HEM51		CIE Marks	:	100 Ma	rks	
Credits:	L:1:P	:	3:0:0		SEE Marks	:			
Hours Course I	••		39L		SEE Duration	:	3.00 H 0	ours	
Course Learning Objectives: The students will be able to									
	tand the	e ev	olution of man	nagement thought.					
$\frac{2}{2}$ Acquir	e knowl	eag	ge of the functi	ons of Managemen	t.				
3 Gain b	$\frac{1}{1}$	WI	edge of essenti	als of Micro econor	nics and Macroecon	$\frac{10m}{10m}$	$\frac{1}{1}$		
4 Unders	stand the	e co	oncepts of maci	roeconomics releva	nt to different organ	nzat	ional con	exts.	
								07 Ung	
.							r	U/ HIS	
Introduc	tion to	Ma	anagement: N	lanagement Functi	ons, Roles & Skills	s, M	lanageme	nt History –	
Classical	Approa	ich:	: Scientific M	anagement & Adr	ninistrative Theory	, Q	lantitative	e Approach:	
Operation	is Resea	rch	i, Behavioral A	Approach: Hawthorn	ie Studies, Contemp	ora	ry Approa	ich: Systems	
& Contin	gency I	nec	ory. Case studie	UNIT II					
						~	. ~	09 HIS	
Foundati	ons of	Pla	anning: Type	s of Goals & Pla	ns, Approaches to	Set	ting Goa	ls & Plans,	
Strategic	Manage	me	ent Process, Co	rporate & Competit	ive Strategies. Case	e stu	dies.		
Organiza	tional §	Stri	ucture & Desig	on: Overview of D	esigning Organizatio	onal	Structure	·Work	
Specializa	ation D	ena	rtmentalization	n Chain of Comma	nd Span of Control	Ce	ntralizatio	on &	
Decentral	ization	Fo	rmalization M	lechanistic & Organ	ic Structures Case	, ee stud	lies.		
Decentitu	<u>12ution,</u>	10	initianization, iti	UNIT-III		beat		09 Hrs	
Motivati	ng Fmi	ماد	vees. Farly Th	heories of Motivat	ion [.] Maslow's Hie	rare	hy of Ne	eds Theory	
McGrego	r's The	orv	X & Theory	Y Herzherg's Tw	o Factor Theory C	onte	emporary	Theories of	
Motivatio	n [.] Adar	n's	Equity & Vro	om's Expectancy T	heory Case studies		Sinportary		
11100110010						•			
Manager	s as Lea	ade	ers: Behavioral	Theories: Ohio Sta	te & University of	Micl	nigan Stu	dies, Blake	
& Moutor	n's Man	age	erial Grid, Cont	tingency Theories of	of Leadership: Herse	ey &	Blancha	rd's	
Situationa	al Leade	rsh	ip, Contempor	ary Views of Leade	rship: Transactiona	1&'	Transform	national	
Leadershi	p. Case	stı	udies.					I	
				UNIT-IV				07 Hrs	
Introduc	tion to	Ec	conomics: Imp	ortance of Econon	nics, Microeconomi	ics a	and Macr	oeconomics,	
Theories	and M	ode	els to Underst	tand Economic Iss	sues, An Overview	v of	Econom	ic Systems.	
Demand,	Supply,	an	d Equilibrium	in Markets for Go	ods and Services, P	rice	Elasticity	of Demand	
and Price	Elastic	ity	of Supply, El	lasticity and Pricin	g, Changes in Inco	ome	and Price	es Affecting	
Consump	tion Ch	oice	es, Monopolist	ic Competition, Oli	gopoly.				
				UNIT-V				07 Hrs	
Essential	s of 1	Ma	croeconomics	Prices and in	flation, Exchange	ra	te, Gros	s domestic	
product(C	GDP), c	com	ponents of C	GDP, the Labor	Market, Money a	nd	banks, I	nterest rate,	
Macroeconomic models- an overview, Growth theory, The classical model, Keynesian cross model,									
IS-LM-model, The AS-AD-model, The complete Keynesian model, The neo-classical synthesis,									
Exchange rate determination and the Mundell-Fleming model									
Cours	e Outco	ome	es: After comp	pleting the course,	the students will b	e ab	le to		
CO1:	Explain	n tł	he principles	of management th	eory & recognize	the	character	ristics of an	
	organiz	zatio	on.						
CO2:	Demon	stra	ate the import	ance of key perfo	rmance areas in st	trate	gic mana	gement and	
	design	app	propriate organ	nizational structure	s and possess an al	bilit	y to conc	eive various	

	systems orientation.
CO4 :	Understand the basic concepts and principles of Micro economics and Macroeconomics.

Re	ference Books
1.	Stephen Robbins, Mary Coulter & NeharikaVohra, Management, Pearson Education Publications, 10 th Edition, ISBN: 978-81-317-2720-1.
2.	James Stoner, Edward Freeman & Daniel Gilbert Jr, Management, PHI, 6 th Edition, ISBN: 81- 203-0981-2.
3.	Steven A. Greenlaw ,David Shapiro,Principles of Microeconomics,2nd Edition,ISBN:978-1- 947172-34-0
4.	Dwivedi.D.N, Macroeconomics: Theory and Policy,McGraw Hill Education; 3rd Edition,2010,ISBN-13: 978-0070091450.
5.	Peter Jochumzen, Essentials of Macroeconomics, 1 st Edition., 2010, ISBN:978-87-7681-558-5.

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

50% weightage should be given to case studies. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level. **50% weightage should be given to case studies.**

CO-PO Mapping													
CO/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
PO													
CO1	3		1			3		3	3	3	3	3	
CO2	3	2						1	2	3	2	2	
CO3			1			2		2	2	3	3	3	
CO4	2		2			3	1	3	2	2	3	3	

	Semester: V											
STRUCTURAL ANALYSIS II												
(Theory)												
Course Code : 18CV52 CIE : 100 Marks												
Cre	edits: L:T:P	:	3:1:0		SEE	:	100 Marks					
Total Hours:39L+26TSEE Duration:3.00 I						3.00 Hours						
Cou	ırse Learnii	ıg	Objectives: The s	students will be able to								
1	Understand	l tl	he basic concepts o	f plastic analysis and matrix	method of analysis.							
2	Understand	l tl	he concept of influe	ence line diagram and its ap	plication under rollin	g 1	oads.					
3	Analyse the	e s	structural system ur	nder static and rolling loads.								
4	Evaluate th	و ا	hehaviour of struct	ures by conventional strain	energy and plastic m	etł	ods of analysis					

UNIT-I	08 Hrs
Redundant Trusses: Introduction, Analysis of statically indeterminate structures using method, Analysis of trusses (Redundant up to second degree), Lack of fit in member stress in redundant truss.	g strain energy & temperature
UNIT-II	08 Hrs

Moment - Distribution Method: Introduction, Stiffness factor, Distribution Factor, Distribution moment and Carry-over moment; Analysis of Continuous beams with and without settlement of supports. Single bay, Single storey, Orthogonal Portal frames with and without sway.

UNIT-III	08 Hrs
Rolling loads and influence lines: Rolling load analysis for simply supported beams (Network)	o overhanging
beams), for the case of several point loads and UDL, Influence line diagrams for reactions	s, Shear forces
and Bending moments at a given section for simply supported beams	
(No overhanging beams).	

UNIT-IV Plastic Analysis: Introduction to plastic hinge, plastic collapse load, conditions of plastic analysis. Redistribution of moments. Theorems of plastic collapse, plastic analysis of beams and orthogonal portal frames by mechanism method.

UNIT-V 07 Hrs Introduction to Matrix Methods: Flexibility method and Stiffness method - Introduction, concept of flexibility and stiffness, Development of stiffness, flexibility matrix (maximum size 3x3) by basic approach for determinate structures along given coordinates. (No analysis required).

Course Outcomes: After completing the course, the students will be able to								
_								

Reference Books

1.	Structural Analysis, R C Hibbler, 8 th edition, Pearson Publications, ISBN-13 : 978-0132570534
2.	Theory of Structures, S. Ramamrutham, Dhanpat Rai Publishing Company Private Limited-New
	Delhi; Ninth edition (2014), ISBN-13: 978-9384378103
3.	Limit State Design of Steel Structures, Duggal S K, Tata McGraw-Hill Education, 2014, ISBN-
	13:978-9351343493
4.	Structural Analysis Vol-2, S S Bhavikatti, Fourth edition, Vikas Publishing House, 2013, ISBN-10:
	9789325968806, ISBN-13: 978-9325968806, ASIN: 9325968800.

08 Hrs

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Experiential Learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	-	-	-	-	-	-	-
CO2	3	2	-	-	-	-	-	-	-	-	-	-
CO3	-	2	1	-	-	-	-	-	-	-	-	-
CO4	2	3	2	-	-	-	-	-	-	-	-	-

Semester End Evaluation (SEE): Theory (100 Marks) = Total 100 Marks

Semester: V											
DESIGN AND DRAWING OF RCC STRUCTURES											
		(Theo	ry &Practice)								
Course Code	:	18CV53		CIE	:	100+50 Marks					
Credits: L:T:P	:	3:0:1		SEE	:	100+50 Marks					
Total Hours	:	39L+ 33P		SEE Duration	:	3 Hrs+3 Hrs					
Course Learning Objectives: The students will be able to											
1 Describe limit state method specifications for RCC structures											
2 Analyze numerical and footings	pro	blems on RCC struct	tural elements s	such as beams, colu	imns	slabs, staircase					
3 Evaluate and design	gn	RCC structural elen	nents such as	beams, columns,	slabs	, staircase and					
footings as per spec	cific	ations of relevant IS	codes								
4 Detail the design ou	itco	mes of reinforcemen	ts for RCC stru	ctural elements							
		Unit-I				09 Hrs					
Principles of Limit St	ate	Design and Ultimat	e Strength of 1	RC Sections							
Philosophy of limit sta	te c	lesign, Principle of li	imit states, Fac	tor of safety, Char	acter	istic and design					
loads, Characteristic	and	design strength, G	eneral aspects	of ultimate stren	gth,	Stress block					
parameters for limit s	state	e of collapse, Ultim	ate flexural st	rength of rectang	ular s	sections- singly					
reinforced and doubly	rei	nforced, Ultimate fle	exural strength	of flanged section	s, Ul	timate torsional					
strength and shear stre	ngt	h of RC sections, Co	oncept of develo	opment length and	anch	orage, Analysis					
problems using IS 456	:200	00	-			0.0 **					
		Unit-I			6.1	08 Hrs					
Design of beams: Prac	tica	al requirements of RC	C beam; size,	cover and spacing	of bai	rs, Design of					
rectangular and flanged	1 R(CC beams for flexure	e, shear, deflect	ion, Anchorage, etc	c. (Si	mply					
supported and Cantilev	er i	beams only) using IS	456:2000 and S	SP10.		00 11					
Design of slobs		Unit-11	1			U8 Hrs					
Concrel considerations	for	design of clobe Dee	tongular claba	nonning in one dir	ontin	Doctoroulor					
slabs spanning in two	lira	ctions for various bo	unders conditio	paining in one un	come	nt design for					
two way slabs Design		simply supported and	L cantilever slab	413, 101310111011101	10	in design for					
two way stabs, Design	01	Unit-IX		s as per 15 +50.200		07 Hrs					
Design of columns						07 1115					
General aspects, effect	ive	length of column, loa	ads on columns	, slenderness ratio,	Mini	mum					
uni exiel moment. Des	SIIC	of columns subjects	d to avial load a	r columns subjecte	u lo a	laing IS					
456.2000 and SD16	Ign	of columns subjected	i to axiai ioad a	ind uni-axial mome	int. C	sing 15					
430.2000 allu Sf 10.											
Design of stairs:	Unit V U/ Hrs										
Loading on stairs Deci	ion	of doglegged stairs	lesion of open-	well stairs as ner I	5 4 5 6	·2000					
Design of Footings.	511	or abgregged starts, (Josign of open-	men stans as per h	5 450	.2000.					
Introduction Load on	foo	ting. Design of source	re and rectano	lar isolated footin	gs fo	r axial load and					
uni-axial moment as pe	er IS	5 456:2000.		1991 1991iii	0. 10	iouu unu					
and and moment as po											

Laboratory

Preparation of salient drawings and schedule of bars adopting the given data:

- 1. Singly and Doubly reinforced beams Simply supported and cantilever beams.
- 2. T- Beam and slab arrangement.
- 3. One-way and two-way slab with and without torsion reinforcement.
- 4. Dog legged and Open well staircase.
- 5. Square, rectangular and Circular Isolated column with footing.

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Apply the philosophy and principles of limit state method to design RCC structural elements									
CO2:	Analyze RCC structural elements by limit state method									
CO3:	Design RCC structural elements as per the provisions of IS codes									
CO4:	Sketch reinforcement details and evaluate the quantity of steel for RCC structural elements									

Reference Books

1.	Reinforced Concrete Design (IS: 456-2000 Principles and Practice), R.N. Pranesh, N. Krishna									
	Raju, 1st Edition, New Age International (P) Limited, New Delhi, 2014,									
	ISBN13:9788122414608									
2.	Limit State Design of Reinforced Concrete, Varghese P.C, 2nd Edition, Eastern Economy									
	Edition, Prentice –Hall of India Pvt Ltd, New Delhi, 2004, ISBN 9788120320390									
3.	Design of Reinforced Concrete Structures, Unnikrishnan and DevadasMenon, 4th Edition, PHI									
	New Delhi, 2003,ISBN 978-0070495043									
4.	RCC Designs (Reinforced Concrete Structures), Punmia B.C., Ashok Kumar Jain, Arun									
	Kumar Jain, 10th Edition, 2011, Laxmi Publications (P) Ltd, New Delhi, ISBN 978-81-318-									
	0942-6									
IS C	IS Codes									
1	IS 456: 2000, Indian Standard, Plain and Reinforced Concrete - Code of Practice (Fourth									
	Revision), BIS, New Delhi, 2000									
2	SP-16, Design Aids for Reinforced Concrete to IS: 456-1978, BIS, New Delhi, 1997									

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Experiential Learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks are considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	-	-	-	-	-	-	-	-	1	-	-	
CO2	-	2	-	-	-	-	-	-	-	1	-	-	
CO3	1	-	3	-	-	-	2	-	-	1	-	-	
CO4	-	-	1	-	-	-	-	-	-	1	-	-	

			Semester: V					
HIGHWAY ENGINEERING								
(Theory &Practice)								
Course Code	:	18CV54		CIE		:	100-	+50 Marks
Credits: L:T:P	:	3:0:1		SEE		:	100-	+50 Marks
Total Hours	:	39L+ 33P		SEE Dura	tion	:	3 Hr	rs+3 Hrs
Course Learning Ob	ojec	tives: The student	ts will be able to					
1 Understand the im	por	tance of road traffi	c and geometric eler	ments				
2 Analyze flexible as	nd	rigid pavement des	ign					
3 Understand the as	pec	ts of construction a	and drainage system	S				
4 Decide the importa	anc	e of economics in o	peration and mainte	enance of high	iways	3		
		Ur	nit — I					07 Hrs
Principles of Transp	orf	tation Engineering	z: Importance of Tra	ansportation,	Salier	nt fe	eature	s of ongoing
major road projects i	n t	he country, Classi	fications of roads, I	Importance ar	nd fea	atur	es of	Road safety
engineering. Elemen	ts	of road traffic, T	raffic studies and	their uses,	Appli	icati	ions	of Artificial
Intelligence in Traffic	: M	anagement.		,	11			
0		Un	it – II					09 Hrs
Highway Geometric	De	sign: Importance,	Factors controlling	the design of	Geon	netri	ic ele	ments, Cross
Section Elements- Ri	ght	t of way and width	n consideration, roa	dway, should	lers, k	cerb	os, tra	ffic barriers,
medians, Facilities for	or j	pedestrians, buses	and trucks, Sight	distances-Ty	pes, l	Fact	tors a	ffecting and
measurements. Horizo	onta	al alignment, super	elevation, Gradients	. (Note: Deriv	ation	not	t requ	ired)
		Uni	4 TTT					00 TI
		UII	u – 111					U8 HIS
Pavement Design:		IDC 27	2010					
Flexible pavement de	esig	in as per IRC: $37 -$	2018.					
Design of rigid paver	ner	$\frac{11 \text{ as per IKC} \cdot 58 - 1}{11 \text{ sper IKC} \cdot 58 - 1}$	2013.					
		Un	t - 1v					08 Hrs
Highway Drainage S	sys	tem: Importance a	nd requirements, Su	irface and Sul	bsurfa	ace	drain	age system -
methods, Design of fi	lter	S.						
Highway Construct	ilon	i: Construction of	f Subgrade, Gran	ular Sub Ba	ise, V	Wet	M13	Macadam,
Bituminous Surface, G	Jen	nent concrete surfa	ce.					07.11
			$\frac{\mathbf{u} \mathbf{t} - \mathbf{v}}{\mathbf{v}}$	• ,		. ,		07 Hrs
Highway Maintenan	ce	and Economics: If	mportance of highw	ay maintenan	ce, Di	istre	esses	and remedial
Ineasures for Flexible	an	u Kigiu pavements.	nafits and costs. Ea	onomio onalu	aia U	ich	mon f	inonoing in
India	ayı	Economics, user be	chefits and costs, Eco	ononne anarys	\$15, п	Ign	way I	mancing m
muta.			Laboratory					
Highway Material T	oct	ina						
Determination of	CSL	ing						
I Impact Value	of	aggregates						
II Abrasion Val	ne (of aggregates						
III Crushing and Ten percent fines value of aggregates								
IV. Shape tests of	IV Shape tests on aggregates							
V. Specific gravity of bitumen								
VI. Penetration v	alu	e of bitumen						
VII. Ductility valu	ie o	f bitumen						
VIII. Softening Poi	nt e	of bitumen						
IX. California Be	ariı	ng Ratio of soil san	nple					
Innovative Experime	ent	S	-					
Design of Bituminous mixes								
Demonstration								
Viscosity of Bitumen	(A	bsolute and Kinem	atic)					

Cours	e Outcomes: After completing the course, the students will be able to
CO1:	Explain suitable geometry, materials and drainage system for design and construction of
	pavements.
CO2:	Compute the design requirements for geometry, drainage and pavements.
CO3:	Select suitable geometry, materials and drainage for design and construction of pavements.
CO4:	Evaluate and recommend geometry materials and design for pavements.

Ref	erence Books
1.	Khanna, S.K. and Justo, C.E.G, Veeraragavan A, 'Highway Engineering', Nemechand
	and Bros. Roorkee, 10 th Edition, 2014 ISBN: 9788185240633, 8185240639
2	R Srinivasa Kumar, "Highway Engineering", Universities Press (India) Private
	Limited, Reprinted 2018, ISBN:978 81 7371 681 2
3	L. R. Kadiyali, N.B. Lal, Principles And Practices Of Highway Engineering,
	Khanna Publishers, 2004, ISBN-13: 978-8174091659
4	Khanna, Justo and Veeraragavan - 'Highway Material Testing' Nemechand Bros,
	Roorkee, V Edition, 2009, ISBN 9788185240213
5	IRC -37-2018, IRC-58-2015, MoRTH-Specifications for Road & Bridge Works (5th
	Revision) Indian Roads Congress, New Delhi

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Experiential Learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks are considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

					CO-I	PO Map	ping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	-	-	-	-	-	-	-	-	-	-
CO2	2	2	-	-	-	-	-	1	-	-	-	-
CO3	2	3	-	-	-	-	-	1	-	-	-	-
CO4	-	-	-	-	-	-	-	1	-	-	-	-

			Semester: V				
	HYDROLOGY AND IRRIGATION ENGINEERING						
			(Theory)		1	1	
Course Code	:	18CV55		CIE	:	100 Marks	
Credits: L:T:P	:	3:0:0		SEE	:	100 Marks	
Total Hours	:	39L		SEE Duration	:	3Hrs	
Course Learning O	bje	ctives: The stude	nts will be able t	0			
1 Understand the k	nov	vledge of earth sc	ience and circula	tion of water on ear	th th	rough Hydrologic	
- cycle.	- 1		•••	1 . 1	.1		
2 Analyze the hyd	rol	ogic data's such	as precipitation	and its abstraction	thre	ough evaporation,	
Study the scienti	apo	orranspiration, run	OII.	vice food around Dro	hlan	a autonding from	
3 Study the scient	nc mlt	ural farming	ater to solis to ra	use lood clops, Pro	obien	is extending from	
4 Estimation of Cro		utat tattiling.	to determine store	and connective of reser	voir		
	рw	ater requirement	to determine store	ige capacity of reser	von.		
			UNIT.I			07 Hrs	
Hvdrology: Introd	luc	tion Hydrologi	c cvcle (Hort	on's representatio	n a	and Engineering	
Representation), wa	ter	budget equation.	Applications in	engineering, source	es of	f Data. numerical	
problems.						,	
Precipitation: Form	s ai	nd types of precip	itation, Measurer	nent of rainfall using	g Syr	non's and Syphon	
type of rain gauges,	O	ptimum number o	of rain gauge stat	ions, Consistency o	f rai	nfall data (double	
mass curve method), (Computation of n	nean rainfall, Es	timation of missing	data	a, presentation of	
precipitation data, nu	ime	rical problems.					
			Unit – II			08 Hrs	
Losses: Evaporatio	n:	Introduction, Pro	cess, factors affe	ecting evaporation,	meas	urement using IS	
class-A Pan, estima	tio	n using empirica	l formulae (Mey	ver's and Rohwer's	equ	ations) Reservoir	
evaporation and cont	rol						
Evapo-transpiration	n:	Introduction, Con	sumptive use, Al	ET, PET, Factors at	fecti	ng, Measurement,	
Infiltration: Introdu	y-U	findele equation.	ng infiltration int	Filtration consolity m	20001	romant by double	
ring infiltrometer H	orte	n's infiltration eq	uation infiltration	nindices numerical	nroh	lems	
						08 Hrs	
Runoff Eactors affecting runoff runoff measurement Estimation of runoff using rational and							
empirical methods in	um	erical problems	ii medsurement,	Estimation of rune	u u	sing fational and	
Hydrographs: Components of hydrographs unit hydrograph and its derivation from simple storm							
hydrograph, base flo	w s	separation, prepara	ation of unit hydr	ographs – from isol	ated	storms, method of	
superposition, numer	ica	l problems.	5			,	
		Ī	U nit –IV			08 Hrs	
Irrigation: Definition	on,	Benefits and ill ef	fects of irrigation	n, System of irrigation	on: si	urface and ground	
water, flow irrigation	n, li	ft irrigation, Band	hara irrigation.	•		C	
Water Requirement	ts	of Crops: Duty,	delta and base p	period, relationship	betw	een them, factors	
affecting duty of w	ate	r, crops and crop	seasons in Indi	a, irrigation efficien	ncy,	and frequency of	
irrigation.							
Application of ANN	Application of ANN Model to Hydrology and Crop Water Requirement model.						
		1	Unit –V			08 Hrs	
Canals: Types of ca	nal	s. Alignment of c	anals. Definition	ot gross command a	rea,	cultural command	
area, intensity of irrigation, time factor, crop factor. Unlined and lined canals. Standard sections.							
Design of canals by Lacey's and Kennedy's method.							
Reservoirs: Definit	ion	, investigation fo	or reservoir site,	storage zones det	ermi	nation of storage	
capacity using mass	ur	ves, economical n	eight of dam.				

Course	e Outcomes: After completing the course, students will be able to
CO1:	Describe various hydrological parameters and irrigation practices in use for design of water
	resources projects.
CO2:	Understand the hydrological aspects of surface water and concepts of irrigation water
	management
CO3:	Determine various hydrological parameters over a catchment, crop water requirement and
	storage capacity of a reservoir.
CO4:	Analyse the hydrological data, stream flow data for design of conveyance system, canal
	works hydraulic structures.

Reference Books

1.	Engineering Hydrology, Subramanya K., Tata McGraw Hill, New Delhi, 4 th Edition, 2013, ISBN-10: 1259029972, ISBN-13: 978-1259029974.
2.	Applied Hydrology, VenTe Chow, Tata McGraw Hill Edition, 2010, ISBN-13:9780070702424, ISBN-10:007070242X.
3.	Irrigation Engineering and Hydraulic Structures, S.K.Garg, Khanna publications, New Delhi.2006, ISBN-10: 8174090479, ISBN-13: 978-8174090478.
4.	Irrigation water resources and water Power Engineering, P.N.Modi, Standard book house, 9th edition, 2008, ISBN 8189401297, ISBN-13: 978-8189401290
5.	Irrigation Engineering, R.K. Sharma, S Chand & company; Revised edition 2007, ISBN-10: 8121921287, ISBN-13: 978-8121921282.
6.	Soft computing in water resources engineering, Tayfur Gökmen, WIT Press, Great Britain, UK, 20124, ISBN: ISBN: 978-1-84564-636-3.
7.	Water Resources Systems Planning and Management, Jain, S.K. and Singh V.P, 2003, Elsevier.
8.	Water Resources Systems Planning and Management, Chaturvedi M C (1987), Tata McGraw Hill, New Delhi.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-F	O Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	-	2	-	2	2	1	-	-	-	2
CO2	3	2	-	-	-	1	2	-	2	-	2	2
CO3	3	2	2	-	-	2	2	-	1	-	-	2
CO4	3	2	2	2	-	2	-	-	2	-	2	2

	Semester: V						
	THEORY OF ELASTICITY						
	(Elective-A: PROFESSIONAL ELECTIVE, MOOC COURSE)						
Cou	rse Code	:	18CV5A1		CIE Marks	:	100
Cree	dits: L:T:P	:	3:0:0		SEE Marks	:	100
Tota	otal Hours : 39L SEE Duration : On		Online Exam				
Cou	Course Learning Objectives: The students will be able to						
1.	1. Understand the analysis of Complex structural systems						
2. Acquire knowledge of two and three dimensional state of stress in a body							
3. Develop the mathematical model of a physical problem							
4. Demonstrate the concepts of photo-elasticity and Nonlinear elasticity							

Unit – I	7 Hrs				
Mathematical Preliminaries Introduction to Tensor, Concept of Stresses and Strains					
Unit – II	8 Hrs				
Material Behaviour- 1 General anisotropic material, strain energy density, constitutive	e relation,				
Material Behaviour-2 Material symmetry, linear elastic material, Generalized Hook's law					
Unit – III	8 Hrs				
Formulation of boundary value problems in elasticity Equilibrium, compatibility, formulation in					
Cartesian and Polar coordinates, Solution of boundary value problems in elasticity-1 Pl	ane stress				
and plane strain problems					
Unit – IV	8 Hrs				
Solution of boundary value problems in elasticity- 1 Problems in flexure, Solution of	boundary				
value problems in elasticity- 1 Problems in Torsion					
Unit – V	8 Hrs				
Introduction to Thermo-elasticity, Introduction to photo-elasticity, Introduction Nonlinear	elasticity				

Course Outcomes: After con	npleting the course.	, the students will be	e able to
-----------------------------------	----------------------	------------------------	-----------

CO 1:	Explain the basic principles of Elasticity.
CO 2:	Analyse the behavior of objects under two and three dimensional state of stress
CO 3:	Evaluate the stress and strain in two and three dimensional problems.
CO 4:	Formulate equations governing the behavior of two and three dimensional solids.

Reference Books:

1.	Theory	OI	Elasticity,	Timosnenko	&Goodier,3rd	edition,	Tata	McGraw-Hill	Publishing
	Compan	y,IS	BN-10: 007	0702608,ISBN	N-13: 978-00700	70268.			

- 2. Elasticity, Theory, Applications, and Numerics, Martin H. Sadd, 3rd edition, Academic Press, ISBN-10: 0124081363, ISBN-13:978-0124081369
- Advanced Mechanics of Solids, Srinath L.S, 3rd edition, 2010, TataMcGraw Hill Publishing 3. company ISBN-10: 0070858055 ISBN-13: 978-0070858053

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	-	-	-	-	-	-	-	-	-	1
CO2	2	3	2	3	-	-	-	-	-	-	-	2
CO3	2	2	-	I	-	-	-	-	-	-	-	2
CO4	3	3	-	2	-	-	-	-	-	-	-	2

				Semester: V								
			ENVI	RONMENTAL CHE	CMISTRY							
	(Elective-A: PROFESSIONAL ELECTIVE, MOOC COURSE)											
Cou	rse Code	:	18CV5A2		CIE Marks	:	100					
Cree	dits: L:T:P	:	3:0:0		SEE Marks	:	100					
Tota	al Hours	:	39L		SEE Duration	:	Online Exam					
Cou	Course Learning Objectives: The students will be able to learn											
1.	1. Application of equilibrium equation and material balance equations to calculate conditions in											
	environment	al s	ystems at equili	brium using the conce	pt of components.							
2.	Demonstrati	on (of chemical equi	librium programs suc	h as VMINTEQ to c	alc	ulate conditions in					
	environment	al s	ystems at equili	brium.								
3.	Analysis of	kin	etic equations,	stoichiometric relatio	nship and material	bal	lances to calculate					
	conditions in	en	vironmental syst	tems in which reaction	ns occur that are not	at e	equilibrium.					
4.	Application	of f	fundamental asp	pects of thermodynam	nics to describe equi	lib	rium conditions in					
	environment	al s	ystem.									
5.	Understand	the	equilibrium and	d kinetic limitations,	relative importance	of	each for chemical					
	process in er	vir	onmental system	1.								

Unit – I	8 Hrs							
Introduction- Fundamentals of Equilibrium and kinetics, Equilibrium- Process								
Feasibility(Criteria and Driving Forces), Gibbs Energy at standard and non-standard conditions								
(Activity, Temperature, Pressure), Phase Equilibrium								
Equilibrium Model- Component Balance								
Introduction to Kinetics, Rate of Reaction, Type of ideal Reactors- Batch, CSTR, Plug Flow Reactor,								
Application of mass balance. Reaction kinetics for reversible reactions,								
Unit – II	8 Hrs							
Determination of Rate Equation (Rate and Concentration based: Liner, Linearized and N	Non-linear							
regression), Acid and Base Reactions- Introduction and importance, System at Equilibriu	m, Single							
Reaction-Henderson-Haselbach Equation. Ionization Fractions and practical application of	acid-base							
reactions, Models for multiple Reactions. Introduction and use of VMINTEQ Softwar	e, Recipe							
Problems and Inverse/Dose Problems. Log C-pH graph, Carbonate System for Closed a	and Open							
Systems: Application of VMINTEQ, Titration (Equivalence Point), Buffers: Appli	cation of							
VMINTEQ.								
Unit – III	8 Hrs							
Buffer Intensity at various pH ranges, Design of Buffers, Alkalinity-Theoretical and Practical,								
Acidity - Mineral, Phenolphthalein and Total Acidity, Multiple Equivalence Points, Effect of								
addition of acid/base.Practical applications of Alkalinity-Acidity related concepts, Mixing	problems							
& conservative quantity/component balances, Alkalinity due to carbonate and non-	carbonate							
Species.								
Aqueous Complexes, Equilibrium, strength of Complexes, Equilibrium models for Complex	ĸ							
Formation, Introduction to Precipitation and Dissolution, Practical application, Kinetics &	Stages of							
precipitation, Controlling Precipitation.	-							
Unit – IV	7Hrs							
Equilibrium models for precipitation, Solubility, Competitive Precipitation, Predomina	nce Area							
Diagrams, Saturation Indices.								
Redox Reactions- Introduction, Applications, Formation of half reactions, Balancing of								
Reactions, Kinetics and its relevance, Kinetic models for redox reactions.								
Unit – V	8 Hrs							
Equilibrium, Reaction Feasibility: Q/K approach, pe approach (Relevance of pe)								
Reaction feasibility: Eh approach (Galvanic Cell, Nernst Equation, Relationship between E	Eh, pe and							
Gibbs Free Energy), Oxidation-Reduction Potential (ORP) Measurement, Predominar	nce Area,							
Diagrams, Corrosion.								

Course	Outcomes: After completing the course, the students will be able to
CO 1:	Apply equilibrium equation and material balance equations to calculate conditions in
	environmental systems at equilibrium using the concept of components
CO 2:	Demonstrate chemical equilibrium program such as VMINTEQ to calculate conditions in
	environmental systems at equilibrium.
CO 3:	Analyse kinetic equations, stoichiometric relationship and material balances to calculate
	conditions in environmental systems in which reactions occur that are not at equilibrium.
CO 4:	Apply fundamental aspects of thermodynamics to describe equilibrium conditions in
	environmental system and Visualise equilibrium and kinetic limitations, relative importance
	of each for chemical process in environmental system.

Refe	erence Books:
1.	Water Chemistry, M. Benjamin, Waveland Press, Long Grove, Illinois, 2010 (ISBN
	1577666674)
2.	Water Chemistry: An Introduction to the Chemistry of Natural and Engineered Aquatic
	Systems, Patrick L. Brezonik, William A. Arnold, Oxford University Press, New York, 2011,
3.	Aquatic Chemistry, 3rd Edition, W. Stumm, J.J. Morgan, John Wiley and Sons, New York,
	1996. 4- Aquatic Surface Chemistry, W. Stumm (Ed), John Wiley and Sons, New York, 1987

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	1	-	-	-	-	-	-	-	-	-	1	
CO2	-	1	1	-	2	-	-	-	-	-	-	1	
CO3	1	-	1	1	-	-	-	-	-	-	-	1	
CO4	-	2	2	-	1	-	-	-	-	-	-	1	

	Semester: V											
GLASS IN BUILDINGS : DESIGN AND APPLICATIONS												
	(Elective-A: PROFESSIONAL ELECTIVE, MOOC COURSE)											
Cou	Course Code:18CV5A3CIE Marks:100											
Credits: L:T:P : 3:0:0 SEE Marks : 100							100					
Tota	Total Hours : 39L SEE Duration : Online Exam											
Cou	rse Learning	Ob	jectives: The stu	idents will be able to								
1.	Understand t	he	behaviour and pr	roperties of a material	like glass as per stan	Idai	rds.					
2.	Recognize the	ne o	lifferent stages in	n manufacturing of gla	ass and processes inv	olv	red.					
3.	3. Compare behaviour of different forms of glass as a construction material.											
4.	4. Demonstrate the utility of glass as an engineering material in civil engineering.											

	1						
Unit – I	7 Hrs						
Modern Architectural Requirements: Requirements as per Standards – NBC – Fire & Stru	ıctural						
Unit – II	8 Hrs						
How to design a Sustainable Building: Building Physics, Green Buildings Requirement	nts, Codal						
Recommendations – ECBC/IS, Segment Based Design							
Unit – III	8 Hrs						
Manufacturing of glass: Types of Glass, Coating Technology – High Performance Glass, I	Innovative						
Applications – Electrochromic & Digital Printing							
Processing: Tempering/ Double glazing/ Lamination, Printing on Glass							
Unit – IV	8 Hrs						
Glass as Building Envelope Material: Glass Parameters, Façade Fundamentals, Façade	Design &						
Testing, Design Façade for Daylighting & Energy effciency – Modeling, Design Tools & S	Simulation						
Software's used for Design, Understand high performance glass, Glass for Acoustics, Fire	& Interior						
applications, Glass for Safety & Security							
Unit – V	8 Hrs						
Case Studies: On Design & Detailing, Application Impact, Building Measurements & its Im	ipact						
	_						

Course	Outcomes: After completing the course, the students will be able to
CO 1:	Explain the properties of glass as an engineering material.
CO 2:	Apply the knowledge of engineering to select suitable type of glass to be used in a particular
	industry with concept of sustainability.
CO 3:	Examine the behaviour of glass based on the stages of manufacturing and processing.
CO 4:	Design of glass buildings with materials satisfying both safety and security requirements.

Re	ference Books:										
1.	Structural Glass Facades and Enclosures, Mic Patterson, April 2011, Wiley, ISBN: 978-0-470-										
	50243-3.										
2.	Glass in Architecture, Michael Wigginton, 2002, Phaidon Press, ISBN: 071484098X,										
	9780714840987.										
3.	Envelope Design for Buildings, William Allen, 1997, Architectural Press, ISBN-10: 0750628545										
	ISBN-13 : 978-0750628549.										
4.	Joseph Amstock, Glass in Construction, 1997, McGraw-Hill Education, ISBN-10: 0070016194										
	ISBN-13 : 978-0070016194.										

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	-	-	-	-	-	-	-	-	-	-	1	
CO2	2	1	2	-	-	1	2	-	-	-	1	2	
CO3	-	-	1	-	1	-	2	-	-	-	-	1	
CO4	1	1	3	-	-	1	-	-	1	1	1	2	

	Semester: V							
	INTRODUCTION TO MULTIMODAL URBAN TRANSPORTATION SYSTEMS							
	(Ele	ctive-A: PROF	ESSIONAL ELECTI	IVE, MOOC COUR	RSE	E)	
Cou	rse Code	:	18CV5A4		CIE Marks		100	
Credits: L:T:P		:	3:0:0		SEE Marks	:	100	
Tota	Total Hours		39L		SEE Duration	:	Online Exam	
Cou	rse Learning	Ob	jectives: The stu	idents will be able to				
1.	Identify the	sust	ainability princip	ples in transportation				
2.	. Introduce the concept of Travel Demand Management (TDM)							
3.	3. Disseminate the techniques of urban public transit planning, operations and management							
4.	4. Imbibe the concepts of non-motorized urban transport							
5.	Demonstrate the applications in intelligent transportation systems (ITS)							

Unit – I	9 Hrs				
Overview of Urban transportation: Urbanization and Transport, Key issues in urban trans	sportation,				
Challenges in urban transportation, Travel demand modelling overview, Vehicular Level of Service					
(LOS) overview.					
Public Transportation :					
Introduction to public transportation, Basic operating elements of public transporta	tion, Bus				
Transportation, Financing public transportation, Transit marketing Rail transportation, Int	termediate				
Public Transportation, Measuring performance of transit systems, Advanced operation co	oncepts of				
public transportation, Bus & amp, Rail Transit Capacity Station Capacity, Transit Stop Locat	ion.				
Unit – II	7 Hrs				
Non-Motorised Transportation (NMT) Planning:					
Introduction to NMT Systems, Assessing existing NMT scenario, Data collection and a	nalysis in				
NMT Planning, Complementarity and Selection of Interventions, Alternative Selection	n through				
Economic & amp; Financial Analysis, Basic NMT Characteristics, Pedestrian Data Colle	ection and				
Flow Characteristics PTS Case Studies Pedestrian flow characteristics on facilities Pedestria	n Level of				
Service (PLOS) based on Flow models, Other types of Pedestrian Level of Service (PLOS.					
Unit – III	7 Hrs				
HCM 2010 Methodology for PLOS, Bicycle Facilities and Level of Service (BLOS), H	3LOS and				
Bicycle Compatibility Index (BCI), NMT Design Principles Design of Pedestrian Infr	rastructure				
Design of Cycling Infrastructure Design of Cycling Infrastructure.					
Unit – IV	8 Hrs				
Urban Transport & amp; Sustainability: Travel Demand Management (TDM) overv	view Push				
measures cases , Pull measure cases, Parking Studies Transit Oriented Developmer	nt (TOD),				
Introduction to Intelligent Transportation Systems (ITS) ITS components, applica	tions and				
communication, ITS Architecture, Electronic Toll Collection (ETC), Public Bicycle Shar	ing (PBS)				
System with ITS.					
Unit – V	7 Hrs				
Multimodal transportation (MMT) environment, Multimodal Level of Service (MMLOS)	Design of				
multimodal transfer facilities Park & amp; Ride (P& amp;R) Facility Planning, An Introd	duction to				
Pedestrian Road Safety and associated Risk Factors Road crash estimation and elements of	predictive				
methods, Predicting Vehicle-Pedestrian and Vehicle-Bicycle conflicts, Environmental Concerns of					
Urban Transport Sustainable strategies for Urban Transportation					
Course Outcomes: After completing the course, the students will be able to					
CO 1: Understand the sustainability principles in transportation and Travel Demand Mana	gement				
CO 2: Determine the techniques of urban public transit planning, operations and managem	ent				

- **CO 3:** Apply concepts of non-motorized urban transport
- **CO 4:** Analyse the applications in intelligent transportation systems

Ref	ference Books
1.	Travel Demand Management and Road User Pricing: Success, Failure and Feasibility, edited
	by Gerd Sammer & amp; Wafaa Saleh (2009), AshGate
2.	The Implementation and Effectiveness of Transport Demand Management Measures -
	An International Perspective, edited by Stephen Ison, Tom Rye, (2008), Ashgate
3.	Sustainable Transport: Planning for Walking and Cycling in Urban Environments, edited by
	Rodney Tolley (2003) Woodhead Publishing Ltd.

					CO	-PO M	apping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	-	-	2
CO2	2	-	1	-	-	-	-	-	-	-	-	1
CO3	2	-	1	1	-	-	-	-	-	-	-	2
CO4	3	2	2	-	2	-	-	1	1	1	-	2

Semester: V								
	THE JOY OF COMPUTING USING PYTHON							
	(Elective-A: PROFESSIONAL ELECTIVE, MOOC COURSE)							
				(Common to all bran	ches)	-		
Course Code		:	18CS5A5		CIE	:	100	
Credits: L:T:P		:	3:0:0		SEE	••	100	
Total Hours		:	39L	· · · · · · · · · · · · · · · · · · ·	SEE Duration		Online Exam	
Course Lo	earnii	ıg	Objectives: Th	ne students will be able	to			
1 Understan	d wh	y I	Python is a use	eful scripting languag	ge for developers.			
2 Learn how	v to u	se	lists, tuples, a	nd dictionaries in Pyt	thon programs.			
³ Define the structure and components of a Python program.								
4 Develop c	4 Develop cost-effective robust applications using the latest Python trends and							
technologies								

Unit-I	08 Hrs				
Motivation for Computing, Welcome to Programming!!, Variables and Expressions :	Design your				
own calculator, Loops and Conditionals : Hopscotch once again, Lists, Tuples and Conditionals	onditionals :				
Lets go on a trip, Abstraction Everywhere : Apps in your phone.					
Unit – II	08 Hrs				
Counting Candies : Crowd to the rescue, Birthday Paradox : Find your twin, Google	e Translate :				
Speak in any Language, Currency Converter : Count your foreign trip expenses,					
Unit –III	08 Hrs				
Monte Hall : 3 doors and a twist, Sorting : Arrange the books, Searching : Find	in seconds,				
Substitution Cipher : What's the secret !!, Sentiment Analysis : Analyse you	Substitution Cipher : What's the secret !!, Sentiment Analysis : Analyse your Facebook				
dataPermutations : Jumbled Words, Spot the similarities : Dobble game					
Unit IV	08 Hrs				
Count the words : Hundreds, Thousands or Millions, Rock, Paper and Scissor	:: Cheating				
not allowed !!, Lie detector : No lies, only TRUTH, Calculation of the Area : Don't					
measure, Six degrees of separation, Image Processing : Fun with images					
	07 Hrs				
Tic tac toe : Let's play, Snakes and Ladders : Down the memory lane, Recursi	ion : Tower				
of Hanoi, Page Rank : How Google Works !!					

Cou	Course Outcomes: After completing the course, the students will be able to						
CO1:	Explore and apply the concept of python to solve real world problems.						
CO2:	Design Classes and establish relationships among Classes for various applications						
	from problem definition.						
CO3	Develop applications using google translator and gaming application.						
CO4:	Implement real time application such as browser automation, NLP, Image						
	processing etc using python						

Re	eference Books
1	Head First Python, Paul Barry, 10 th Edition, 2016, O'Reilly, ISBN 978-9352134823.
2	Python Cookbook: Recipes for Mastering Python 3,David Beazley, Brian K. Jones, 9 th Edition, 2017, O'Reilly, ISBN 978-1449340377.
3	Python: The Complete Reference,Martin C Brown,7 th Edition,2018,McGraw Hill Education, ISBN 978-9387572942.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	1	1	-	-	1	-	-	-	2
CO2	3	3	2	1	1	-	-	1	-	-	-	2
CO3	3	3	3	2	1	-	-	2	-	-	-	2
CO4	3	3	3	2	1	-	-	2	-	-	-	2

	Semester: V						
	FUNDAMENTALS OF AEROSPACE ENGINEERING						
	(GROUP B: GLOBAL ELECTIVE)						
				(Theory)			
Course Code		:	18G5B01		CIE	:	100 Marks
Credits: L:T:P		••	3:0:0		SEE	:	100 Marks
Hou	rs	••	39L		SEE Duration	:	3.00 Hours
Cou	rse Learning	g O	bjectives: To enable	the students to:			
1	Understand	l th	e history and basic pri	inciples of aviation			
2	2 Demonstrate and explain foundation of flight, aircraft structures, material, aircraft propulsion						
3	3 Comprehend the importance of all the systems and subsystems incorporated on an air vehicle						
4	4 Appraise the significance of all the subsystems in achieving a successful flight						

Unit-I	08 Hrs
Introduction to Aircraft: History of aviation, International Standard atmosphere, Atmosphere	ere and its
properties, Temperature, pressure and altitude relationships, Classification of aircrafts, Anato	omy of an
aircraft & Helicopters, Basic components and their functions, Simple Problems on	Standard
Atmospheric Properties.	
Unit – II	08 Hrs
Basics of Aerodynamics: Bernoulli's theorem, Centre of pressure, Lift and drag, Types	s of drag,
Aerodynamic Coefficients, Aerodynamic centre, Wing Planform Geometry, Airfoil nomenclat	ure, Basic
Aerodynamic characteristics of airfoil, NACA nomenclature, Simple problems on lift and dra	g.
Unit -III	07 Hrs
Aircraft Propulsion: Introduction, Classification of power plants, Gas Turbine Engine: Bray	ton Cycle,
Principle of operation of turbojet, turboprop, turbofan engines, ramjet and scramjet	engines,
Comparative merits and demerits of different types Engines.	
Unit -IV	09 Hrs
Introduction to Space Flight: The upper atmosphere, Introduction to basic orbital mechanics	, Kepler's
Laws of planetary motion, Orbit equation, and Space vehicle trajectories.	
Rocket Propulsion: Principles of operation of rocket engines, Rocket Equation, Types of rock	ets: Solid,
Liquid and Hybrid Propellant Rockets, Rocket Performance parameters: Thrust, Specific	Impulse,
Exhaust Velocity, Simple Problems on rocket performance.	_
Unit -V	07 Hrs
Aerospace Structures and Materials: Introduction, General types of construction, Monococ	lue, Semi-
Monocoque and Geodesic structures, Structure of Wing and Fuselage and its basic construction	on.
Comme Ordenseen Addition of the second of the standard and milling shift of	

Course	Course Outcomes: At the end of this course the student will be able to:					
CO1:	Appreciate and apply the basic principles of aviation					
CO2:	Apply the concepts of fundaments of flight, basics of aircraft structures, aircraft propulsion and					
	aircraft materials during the development of an aircraft					
CO3:	Comprehend the complexities involved during development of flight vehicles.					
CO4:	Evaluate and criticize the design strategy involved in the development of airplanes					

Ref	Reference Books					
1	Introduction to Flight, John D. Anderson, 7th Edition, 2011, McGraw-Hill Education, ISBN					
1	9780071086059.					
	Rocket Propulsion Elements, Sutton G.P., 8th Edition, 2011, John Wiley, New York, ISBN:					
2	1118174208, 9781118174203.					

3	Fundamentals of Compressible Flow, Yahya, S.M, 5 th Edition, 2016, New Age International, ISBN: 8122440223
4	Aircraft structural Analysis, T.H.G Megson, 2010, Butterworth-Heinemann Publications, ISBN:
4	978-1-85617-932-4

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	3	2	2	-	-	-	1
CO2	2	2	2	3	2	1	1	1	-	-	-	1
CO3	1	-	3	3	-	-	-	-	-	-	-	1
CO4	2	2	3	3	-	2	2	2	-	-	-	1

	Semester: V						
	NANOTECHNOLOGY						
			(GROUP B	: GLOBAL ELEC	CTIVE)		
				(Theory)			
Cour	rse Code	:	18G5B02		CIE	:	100 Marks
Cred	lits: L:T:P	:	3:0:0		SEE	••	100 Marks
Tota	l Hours	:	39L		SEE Duration	••	3.00 Hours
Cour	rse Learning (Dbj	ectives: The studen	ts will be able to			
1	Understand	the	basic knowledge	of nanomaterials a	and the process to	sy	nthesize and
	characterize t	he	nanoparticles.				
2	Learn about	Na	ano sensors and th	heir applications in	n mechanical, elect	rica	l, electronic,
	magnetic, chemical fields.						
3 Apply the concept of nanotechnology in sensing, transducing and actuating mechanism.							
4 Design the nanoscale products used in multidisciplinary fields.							
	Unit-I 08 Hrs						

	00 1115
Introduction to Nanomaterials: History of Nanotechnology, structures and properties of	of carbon
based, metal based, bio-nanomaterails and hybrids: Bucky Ball, Nanotubes, Diam	ond like
carbon(DLC), Quantum Dots, Nano Shells, Dendrimers, Nanocarriers, Nanocrystals	s, hybrid
biological/inorganic, protein & DNA based nanostructures. Nanosafety Issues: Toxicolo	gy health
effects caused by nanoparticles.	
Unit II	
Omt – H	09 Hrs
Nano Synthesis and Fabrication: Introduction & overview of Nanofabrication: Bottor	n up and
Nano Synthesis and Fabrication: Introduction & overview of Nanofabrication: Bottor Top down approaches using processes like Ball milling, Sol-gel Process, and Chemica	n up and Vapour
Nano Synthesis and Fabrication: Introduction & overview of Nanofabrication: Bottor Top down approaches using processes like Ball milling, Sol-gel Process, and Chemica deposition (CVD), electrodeposition and various lithography techniques (Hard & Soft lithography techniques (Hard &	n up and Vapour ography).

Characterization of Nanostructures: Spectroscopy - UV-Visible spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy, X-ray spectroscopy. Electron Microscopy - Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM). Scanning Probe Microscopy - Atomic Force microscopy (AFM), Scanning Tunnel Microscopy (STM).

Unit –III							
Nanosensors: Overview of nanosensors, prospects and market. Types of Nanosensors	and their						
applications. Electromagnetic nanosensors: Electronic nose and electronic tongue,	Magnetic						
nanosensors. Mechanical nanosensors: Cantilever Nanosensors, Mechanics of CNTs, Bi	osensors:						
Biosensors in modern medicine.							
	1						

 Unit –IV
 07 Hrs

 Micro & Nano-Electromechanical systems and Microfluidics: MEMS/NEMS: Magnetic,

 Chemical and Mechanical Transducers –Sensing and Actuators. Microfluidics: Laminar flow,

 Hagen-Peouiselle equation, basic fluid ideas, Special considerations of flow in small channels,

 mixing, microvalves & micropumps.

Unit –v	U/ HIS
Applications of Nanotechnology: Molecular electronics, molecular switches, mechanica	al cutting
tools, machine components, magnets, DLC coated grinding wheels. Electrical, electron	nic, solar
cells, Batteries, fuel cells, Nanofilters. Medical nanotechnology: in Diagnostics, Therapeut	ics, Drug
delivery and Nanosurgery. Nano in Agriculture- nanopesticides, nanofertilizers etc.	

Course (Course Outcomes: After completing the course, the students will be able to						
CO1:	Understand the structures of nano materials and their properties.						
CO2:	Apply the various synthesis and fabrication methods and interpret the characterization						
	results.						
CO3:	Analyze the working mechanism of nanosensors and transducers and Apply its						
	knowledge in various fields.						
CO4:	Create and evaluate nano Design, Devices and Systems in various disciplines.						

Refere	ence Books
	B.S. Murty., P. Shankar., B.Raj, BB. Rath, and J. Murday, Textbook of Nanosciences and
1	Nanotechnology, Springer, Co-publication with University Press (India) Pvt. Ltd. VCH,
	XII.1st Edition, 2013, ISBN- 978-3-642-28030-6.
2	V. K. Khanna, Nanosensors: Physical, Chemical and Biological, CRC press, 1 st Edition,
2	2013, ISBN 9781439827123 (Unit III).
3	C. C. Kock., Nanostructured materials, Nanostructured materials, William Andrew
	Publishing, 2 nd Edition, 2007, ISBN 0-8155-1534-0.
4	M. Wilson., K. Kannangara., G.Smith., M.Simmons., B. Raguse., Nanotechnology, ,
	overseas Press (India) Private Ltd.,1st Edition, 2005,ISBN 81-88689-20-3.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	3	2	3	3	-	-	1	2	-
CO2	3	3	3	2	3	3	2	-	2	-	-	-
CO3	3	2	2	2	2	1	1	-	-	-	1	-
CO4	1	2	3	3	3	2	1	-	-	2	-	-

Semester: V							
	FUEL CELL TECHNOLOGY						
(GKUUP B: GLUBAL ELEUTIVE) (Theory)							
Cour	rse Code	:	18G5B03	(Theory)	CIE	:	100 Marks
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours
Cour	rse Learning O)bje	ectives: The student	s will be able to			
1	Recall the co	once	ept of fuel cells				
2	Distinguish v	vari	ous types of fuel ce	lls and their functionalities	S		
3	Know the ap	plic	cations of fuel cells	in various domains			
4	Understand t	he	characterization of f	uel cells			
			1	U nit-I			07 Hrs
Intro	oduction – I:						
Fuel	cell definition,	his	storical developmen	ts, working principle of f	uel cell, compo	nen	ts of fuel cell,
EMF	of the cell, Fue	el C	Cell Reactions, fuels	for cells and their property	ies		
			U	nit — II			07 Hrs
Туре	es of fuel cells -	- II	•				
Class	sification of fue	el c	ells, alkaline fuel ce	ell, polymer electrolyte fu	el cell, phospho	ric	acid fuel cell,
molte	en carbonate fu	el c	ell, solid oxide fuel	cell, advantages and disad	lvantages of eac	h	
			U	nit –III			07 Hrs
Effic	iencies, losses	and	l kinetics– III:		11		
Intrir	isic maximum	eff	iciency, voltaic eff	iciency, faradaic efficient	cy, overall effic	cien	cy, activation
losse	s, fuel crossov	er	and internal curren	t, ohmic losses, mass tra	ansport/concentr	atic	on losses, and
activ	ation/electrode/	rea	ction kinetics				0.0 11 mg
Fuel	Cell Characte	rist	tics - IV·	mit —1 v			Uð Hrs
In-sit	u characterizat	ion	· I-V curve curren	t – voltage measurement	current interri	int	measurement
cycli	c voltammetry	ele	ctrochemical imped	ance spectroscopy	, current interre	٩Pt	meusurement,
Ex-si	tu characteriza	tio	n techniques: Proto	n conductivity, flexural	strength, electri	ical	conductivity.
elect	rochemical surf	ace	area and electroche	emical activity	succession, crocker		•••••••••••••••••••••••••••••••••••••••
Unit –V 10 Hrs							
Appl	ications of fue	l ce	ells – V:				
Applications of fuel cells in air, road and rail transport, hydrogen storage, handling and safety issues.							
Production and storage of hydrogen							
Cour	se Autcomes.	Δf	ter completing the	course the students will	he able to		
CO1	: Understand	the	e fundamentals and	characteristics of fuel cells	S abic to		
CO2	: Apply cher	nic	al engineering prin	ciples to distinguish fuel	cells from cor	ver	ntional energy
	systems			r-se to assunguish fuer			
CO3	: Analyze the	e pe	erformance of fuel c	ells using different charac	terization techni	que	s
CO4	: Evaluate th	e p	ossibility of integrat	ing fuel cell systems with	conventional en	erg	v systems
		· P	, si integrat	6			J - J

Reference Books						
1	Fuel Cells – Principles and Applications, Viswanathan and M Aulice Scibioh, 1 st Edition,					
	2009, Universities Press, ISBN – 13: 978 1420 060287					
2	Fuel Cell Systems Explained, James Larminie and Andrew Dicks, 2 nd Edition, 2003, John					
	Wiley & Sons, ISBN – 978 0470 848579					

3	Fuel Cell Fundamentals, O 'Hayre, R. P., S. Cha, W. Colella, F. B. Prinz, 1 st Edition, 2006, Wiley, New York, ISBN – 978 0470 258439
4	Recent Trends in Fuel Cell Science and Technology, Basu. S, 1 st Edition, 2007, Springer, ISBN – 978 0387 688152

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	-	1	-	1	-	-	-
CO2	2	-	2	-	-	-	-	-	-	-	-	-
CO3	-	3	-	-	-	-	3	-	2	-	-	-
CO4	-	2	2	-	-	-	2	-	3	-	-	2

Semester: V										
INTELLIGENT SYSTEMS										
(GROUP B: GLOBAL ELECTIVE)										
(Theory)										
Cou	rse Code	:	18G5B04		CIE Marks	:	100 Marks			
Credits: L:T:P		:	3:0:0		SEE Marks	:	100 Marks			
Tota	Total Hours:39LSEE Duration:3.00 Hours									
Course Learning Objectives: The students will be able to										
1.	Understand fundamental AI concepts and current issues.									
2.	Understand	and	apply a range of	AI techniques including sear	ch, logic-based re	easc	oning, neural			
	networks and reasoning with uncertain information.									
3.	Recognize computational problems suited to an intelligent system solution.									
4.	Identify and	l list	the basic issues	of knowledge representation,	blind and heurist	ic s	earch.			
				Unit – I			07 Hrs			
Intro	oduction: Th	le Fo	oundations of Ar	tificial Intelligence, History of	of Artificial Intell	ige	nce, The State			
of th	e Art, Intelli	gent	Agent: Introdu	ction, How Agents Should A	ct, Structure of I	ntel	ligent Agents,			
Prot	olem-solving	: So	lving Problems	by Searching Search Strate	egies, Avoiding	Rej	peated States,			
Avoi	ding Repeate	ed St	ates				I			
				Unit – II			08 Hrs			
Info	rmed Searc	h M	lethods: Best-F	irst Search, Heuristic Func	tions, Memory	Bou	inded Search,			
Itera	tive Improve	ment	Algorithms			_	~			
Gan	e Playing: 1	ntro	duction: Games	as Search Problems, Perfect	Decisions in Tw	'o-ŀ	Person, Games			
Impe	erfect Decisio	ons, A	Alpha-Beta Prun	ing, Games That Include an E	lement of Chance	e				
				Unit – III			08 Hrs			
Kno	wledge Infer	ence								
Knov	wledge repre	sent	ation -Productio	n based system, Frame base	ed system. Infer	ence	e - Backward			
chan	ning, Forward	d cha	aining, Rule val	ue approach, Fuzzy reasonin	g - Certainty fac	tors	s, Bayes Rule,			
Unce	ertainty Princ	iples	, Bayesian Theo	ry-Bayesian Network-Demps	ter - Shafer theor	y.	00.77			
Unit – IV 08 Hrs										
Learning from Observations: A General Model of Learning Agents, Inductive Learning, Learning										
Decision Trees, Using Information Theory, Learning General Logical Descriptions, Why Learning										
Works: Computational Learning Theory										
Kemorcement Learning: Passive Learning in a Known Environment, Passive Learning in an										
Unki	nown Enviro	nmer	nt, Active Learni	ng in an Unknown Environm	ent		00 11			
Expert Systems, Components, Production rules, Statistical reasoning, certainty factors, measure of holiof and disbaliof. Moto loval knowledge. Interpretent systems, Architecture of several systems, and the several systems of the										
bener and disperier, Meta level knowledge, introspection. Expert systems - Architecture of expert										
syste	systems, Koles of expert systems - Knowledge Acquisition –Meta knowledge, Heuristics. Typical									
expe	expert systems - MYCIN, DART, XOON, Expert systems shells.									
Course	Course Outcomes: After completing the course, the students will be able to									
--------	--	--	--	--	--	--	--	--		
CO 1:	Understand and explore the basic concepts and challenges of Artificial Intelligence.									
CO 2:	Analyze and explain basic intelligent system algorithms to solve problems.									
CO 3:	Apply Artificial Intelligence and various logic-based techniques in real world problems.									
CO 4:	Assess their applicability by comparing different Intelligent System techniques									

Reference Books:

1.	AI – A Modern Approach, Stuart Russel, Peter Norvig, 3 rd Edition, 2010, Pearson Education,
	ISBN-13: 978-0-13-604259-4
2.	Artificial Intelligence (SIE), Kevin Night, Elaine Rich, Nair B., 3 rd Edition, 2008, McGraw
	Hill, ISBN: 9780070087705
3.	Introduction to AI and ES, Dan W. Patterson, Pearson Education, 3 rd Edition, 2007, ISBN-
	13: 978-0134771007
4.	Introduction to Expert Systems, Peter Jackson, 4th Edition, Pearson Education, 2007, ISBN-
	13: 978-8131709337

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO1												PO12
CO1	3	3	3	3	3	2	2	1	2	-	2	2
CO2	3	3	3	3	3	2	2	1	2	-	2	2
CO3	3	3	3	3	3	2	1	1	2	-	2	2
CO4	3	3	3	3	3	1	2	1	1	1	2	2

	Semester: V								
	REMOTE SENSING AND GEOGRAPHIC INFORMATION SYSTEM (GROUP B: GLOBAL ELECTIVE)								
				(Theory)					
Co	urse Code	:	18G5B05		CIE	:	100 Marks		
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks		
Tot	Total Hours		39 L		SEE Duration	:	3.00 Hours		
Co	urse Learning	Ob	jectives: The st	udents will be able to					
1	Understand c	onc	ept of using pho	tographic data to determi	ne relative positions	s of j	points.		
2	Study the me	tho	ls of collection of	of land data using Terrest	rial and Aerial came	era.			
3	Analyze the o	lata	gathered from v	various sensors and interp	ret for various appli	catio	ons.		
4	4 Apply the principles of RS, GIS and GPS in various scopes of Civil Engineering.								
				I Init-I			07 Hrs		

Unit-1	0/Hrs					
Remote Sensing- Definition, types of remote sensing, components of remote sensing, elect	tromagnetic					
spectrum, Black body, Atmospheric windows, energy interaction with earth surface features. Spectral						
reflectance curve. Platforms and sensors. Sensor resolutions. Types of satellites- Indian and other						
remote sensing satellites (IRS, IKONS and Landsat). Principle of visual interpretation - key	elements.					
Unit – II	08 Hrs					
Photogrammetry: Introduction types of Photogrammetry, Advantages Photogrammetry, I	ntroduction					
to digital Photogrammetry.						
Aerial Photogrammetry: Advantages over ground survey methods- geometry of vertical p	hotographs,					
scales of vertical photograph. Ground coordination- relief displacement, scale ground co	ordinates –					
flight planning.						
Unit –III	08 Hrs					
Geographic Information System- Introduction, Functions and advantages, sources of da	ita for GIS.					
Database - Types, advantages and disadvantages. Data Analysisoverlay operations, netwo	rk analysis,					
spatial analysis. Outputs and map generation.						
GPS- components and working principles.						
Unit –IV	08 Hrs					
Applications of GIS, Remote Sensing and GPS: Water Resources engineering and n	nanagement					
(prioritization of river basing water perspective zones and its mapping). Highway and tra	-					
(prioritization of fiver basins, water perspective zones and its mapping), finghway and ta	insportation					
(highway alignment, Optimization of routes, accident analysis), Environmental Enginee	insportation ering (Geo-					
(highway alignment, Optimization of routes, accident analysis), Environmental Enginee statistical analysis of water quality, rainfall).	unsportation ering (Geo-					
(highway alignment, Optimization of routes, accident analysis), Environmental Enginee statistical analysis of water quality, rainfall). Unit –V	ering (Geo-					
(highway alignment, Optimization of routes, accident analysis), Environmental Enginee statistical analysis of water quality, rainfall). Unit –V Applications of GIS, Remote Sensing and GPS: Urban Planning & Management, urb	ering (Geo- 08 Hrs Dan sprawl,					
(highway alignment, Optimization of routes, accident analysis), Environmental Engineer statistical analysis of water quality, rainfall). Unit –V Applications of GIS, Remote Sensing and GPS: Urban Planning & Management, url Change detection studies, forests and urban area, agriculture, Disaster Management. Lay	onsportation ering (Geo- 08 Hrs oan sprawl, 'outs: Dead					
(highway alignment, Optimization of routes, accident analysis), Environmental Enginee statistical analysis of water quality, rainfall). Unit –V Applications of GIS, Remote Sensing and GPS: Urban Planning & Management, url Change detection studies, forests and urban area, agriculture, Disaster Management. Lay end, Radial, Grid iron, Circular system.	08 Hrs Dan sprawl, 70uts: Dead					

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand and remember the principle of Remote Sensing (RS) and Geographical Information							
	Systems (GIS) data acquisition and its applications.							
CO2:	Apply RS and GIS technologies in various fields of engineering and social needs							

CO3:	Analyze and evaluate the information obtained by applying RS and GIS technologies.
CO4:	Create a feasible solution in the different fields of application of RS and GIS

Refer	Reference Books										
1	Geographic Information System-An Introduction, Tor Bernharadsen, 2009, 3rd Edition, Wiley										
1	India Pvt. Ltd. New Delhi, ISBN - 9788126511389.										
2	Principles of Remote sensing and Image Interpretation, Lillesand and Kiefer, 2011, 6th Edition,										
Z	John Wiley Publishers, New Delhi, ISBN – 8126532238.										
3	Higher Surveying, Chandra A.M, 2015, 3rd Edition, New age international (P) Ltd,										
	ISBN: 8122438121										
4	Remote Sensing, Robert A. Schowengerdt, 2009, 3 rd Edition, Elsevier India Pvt Ltd, New Delhi.										
5	Remote Sensing and GIS, Bhatta B, 2011, Oxford University Press, New Delhi,										
	ISBN - 0198072392										

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	1	-	-	-	-	-	-
CO2	2	1	-	-	1	1	-	-	-	-	-	-
CO3	2	2	1	-	2	1	1	-	-	-	-	1
CO4	2	2	1	-	3	2	2	-	-	-	1	1

	Semester: V								
	AUTOMOTIVE ELECTRONICS								
	(GROUP B: GLOBAL ELECTIVE)								
				(Theory)					
Co	ourse Code	:	18G5B06	CIE Marks	:	100 Marks			
Cı	edits: L:T:P	:	3:0:0	SEE Marks	:	100 Marks			
Hours		:	39L	SEE Duration	:	3.00 Hours			
Co	ourse Learning (Ob	jectives: The st	udents will be able to					
1	Acquire the know	OW	ledge of automo	otive domain fundamentals, need of Electronics ar	d co	ommunication			
I	interfaces in Au	ito	motive systems.						
2	Apply various t	yp	es of sensors, ac	ctuators and Motion Control techniques in Automo	otive	systems			
Understand dig		Understand digital engine control systems and Embedded Software's and ECU's used in automotive							
3	systems.								
4	Analyse the con	nce	pts of Diagnosti	ics, safety and advances in Automotive electronic	Syst	ems.			

UNIT-I

Fundamentals of Automotive: Evolution and Use of Electronics in Automotive, Automotive Systems, The Engine, Engine Control, Internal Combustion Engines, Spark Ignition Engines and Alternative Engines. Ignition System, Ignition Timing, Drivetrain, Suspensions, Brakes and Steering Systems. **Basics of electronic engine control:** Motivation for Electronic Engine Control, Concept of an Electronic Engine control system, Definition of General terms, Definition of Engine performance terms, Engine mapping, Effect of Air/Fuel ratio, spark timing and EGR on performance, Control Strategy, Electronic Fuel control system, Analysis of intake manifold pressure, Electronic Ignition.

08 Hrs

07 Hrs

08 Hrs

Automotive Sensors and Actuators:

Automotive Control System Applications of Sensors and Actuators,

Sensors: Air Flow Sensor, Engine Crankshaft Angular Position Sensor, Throttle Angle Sensor, Temperature Sensor, Sensors for Feedback Control, Sensors for Driver Assistance System: Radar, Lidar, Video Technology.

Actuators: Solenoids, Piezo Electric Force Generators, Fluid mechanical Actuators, Electric Motors and Switches.

UNIT-III

UNIT-II

Digital Engine Control Systems: Digital Engine control features, Control modes for fuel Control (Seven Modes), EGR Control, Electronic Ignition Control - Closed Loop Ignition timing, Spark Advance Correction Scheme, Integrated Engine Control System.

Vehicle Motion Control: Typical Cruise Control System, Digital Cruise Control System, Digital Speed Sensor, Throttle Actuator, Digital Cruise Control configuration, Cruise Control Electronics (Digital only), Antilock Brake System (ABS), Electronic Suspension System, Electronic Steering Control.

UNIT-IV	08 Hrs
Automotive Communication Systems:	
Automotive networking: Bus systems, Technical principles, network topology. Buses in motor	vehicles:
CAN, Flex Ray, LIN, Ethernet, IP, PSI5, MOST, D2B and DSI.	

Automotive Embedded Software Development

Fundamentals of Software and software development lifecycles. Overview of AUTOSAR methodology and principles of AUTOSAR Architecture.

Diagnostics and Safety in Automotive:

Timing Light, Engine Analyzer, Electronic Control System Diagnostics: Onboard diagnostics, Off-board diagnostics, Expert Systems, Occupant Protection Systems – Accelerometer based Air Bag systems, Case study on ON-BOARD, OFF-BOARD diagnostics.

Advances in Automotive Electronic Systems: Alternative Fuel Engines, Electric and Hybrid vehicles, Fuel cell powered cars, Collision Avoidance Radar warning Systems, Navigation: Navigation Sensors, Radio Navigation, dead reckoning navigation, Video based driver assistance systems, Night vision Systems.

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Acquire the knowledge of automotive domain fundamentals, need of Electronics and						
	communication interfaces in Automotive systems.						
CO2:	Apply various types of sensors, actuators and Motion Control techniques in Automotive						
	systems						
CO3:	Analyze digital engine control systems and Embedded Software's and ECU's used in						
	automotive systems.						
CO4:	Illustrate the concepts of Diagnostics, safety and advances in Automotive electronic Systems.						

Referen	Reference Books							
1.	Understanding Automotive Electronics, Williams. B. Ribbens, 6th Edition, 2003, Elsevier							
	science, Newness publication, ISBN-9780080481494.							
2.	Automotive Electronics Handbook, Robert Bosch, 2004, John Wiley and Sons, ISBN-							
	0471288357							
3.	Automobile Electrical and Electronic Systems, Tom Denton, 3 rd Edition, Elsevier Butterworth-							
	Heinemann. ISBN 0-7506-62190.							
4.	Advanced Automotive Fault Diagnosis, Tom Denton, 2 nd Edition, Elsevier Butterworth-							
	Heinemann. ISBN 0-75-066991-8.							

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	1	-	-	-	1	2	1	-	1
CO2	3	2	1	1	1	-	1	1	1	1	-	1
CO3	3	2	2	2	1	-	1	1	2	1	-	1
CO4	3	2	2	2	-	1	2	1	1	1	-	1

	Semester: V						
	e- MOBILITY						
			(GROUP I	B: GLOBAL ELE	CTIVE)		
				(Theory)			
Co	ourse Code	:	18G5B07		CIE	:	100 Marks
Cr	edits: L:T:P	:	3:0:0		SEE	:	100 Marks
To	otal Hours	:	39L		SEE Duration	:	3.00 Hours
Co	ourse Learning	g O	bjectives: The stud	lents will be able to			
1	Understand th	ne b	asics of electric and	hybrid electric vehic	cles, their architectur	e an	nd modelling.
2	Explain differ	rent	energy storage tecl	nnologies used for el	ectric vehicles and th	neir	management
	system.						
3	Describe vari	ous	electric drives and	its integration with	Power electronic cire	cuit	s suitable for
	electric vehicles.						
4	4 Design EV Simulator through performance evaluation and system optimization techniques						
	and need for	the	charging infrastruct	ture.			

Unit-I	06 Hrs
Electromobility and the Environment: A Brief History of the Electric Powertrain,	Energy
Sources for Propulsion and Emissions, The Advent of Regulations, Drive Cycles, B	EV Fuel
Consumption, Range, and mpge, Carbon Emissions for Conventional and Electric Pow	ertrains,
An Overview of Conventional, Battery, Hybrid, and Fuel Cell Electric Systems, A Cor	nparison
of Automotive and Other Transportation Technologies.	
Vehicle Dynamics: Vehicle Load Forces, Vehicle Acceleration, Simple Drive Cycle for	Vehicle
Comparisons	
Unit – II	09 Hrs
Batteries: Batteries Types and Battery Pack, Lifetime and Sizing Considerations,	Battery
Charging, Protection, and Management Systems, Battery Models, Determining the C	Cell/Pack
Voltage for a Given Output\Input Power, Cell Energy and Discharge Rate.	
Battery Charging: Basic Requirements for Charging System, Charger Architectur	es, Grid
Voltages, Frequencies, and Wiring, Charging Standards and Technologies, SAE J1772,	Wireless
Charging, The Boost Converter for Power Factor Correction.	
Unit -III	10 Hrs
Battery Management System: BMS Definition, Li-Ion Cells, Li-Ion BMSs, Li-Ion B	Batteries,
BMS Options: Functionality, CCCV Chargers, Regulators, Balancers, Protectors, Func	tionality
Comparison, Technology, Topology.	
BMS Functions: Measurement: Voltage, Temperature, Current, Management: Pr	otection,
Thermal Management, Balancing, Distributed Charging, Evaluation, External Commu	nication:
Dedicated analog and digital wires.	
Unit –IV	07 Hrs
Electric Drivetrain: Overview of Electric Machines, classification of electric machines	s used in
automobile drivetrains, modelling of electric machines, Power Electronics, controlling	electric
machines, electric machine and power electronics integration Constraints.	
Unit –V	07 Hrs
EV Simulation: system level simulation, EV simulator, simulator modules, perf	ormance
evaluation, system optimization.	
EV Infrastructure: Domestic charging infrastructure, Public charging infras	tructure,
Standardization and regulations, Impacts on power system.	

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Explain the basics of electric and hybrid electric vehicles, their architecture, technologies
	and modelling.
CO2:	Discuss and implement different energy storage technologies used for electric vehicles
	and their management system.
CO3:	Analyze various electric drives and its integration techniques with Power electronic
	circuits suitable for electric vehicles.
CO4:	Design EV Simulator for performance evaluation and system optimization and
	understand the requirement for suitable EV infrastructure.

Refe	rence Books
	Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric
1	and Fuel Cell Vehicles, John G. Hayes, G. Abas Goodarzi, 1st Edition, 2018, Wiley, <i>ISBN</i>
	9781119063667.
2	Battery Management system for large Lithium Battery Packs, Davide Andrea, 1st Edition,
4	2010, ARTECH HOUSE, ISBN-13 978-1-60807-104-3
3	Hybrid Vehicles from Components to System, F. BADIN, Ed, 1st Edition, 2013, Editions
5	Technip, Paris, ISBN 978-2-7108-0994-4.
4	Modern Electric Vehicle Technology C.C. Chan and K.T. Chau, 1st Edition, 2001, Oxford
-	university press, ISBN 0 19 850416 0.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	2	2	2	3	-	2	-	-	1
CO2	3	3	3	3	3	3	3	-	2	2	1	-
CO3	2	3	3	3	3	2	3	-	2	1	1	-
CO4	3	3	3	3	3	2	3	2	2	-	1	-

	Semester: V					
			SMART	SENSORS & INSTRUMENTATION		
			(GR	OUP B: GLOBAL ELECTIVE)		
				(Theory)		
Cou	rse Code	:	18G5B08	CIE	:	100 Marks
Cred	Credits: L:T:P		3:0:0	SEE	:	100 Marks
Tota	al Hours : 39L		39L	SEE Duratio	a :	3.00 Hours
Cou	rse Learnin	g O	bjectives: The	students will be able to		
1	Understand	l th	e fundamentals	of transducers and sensors.		
2	2 Demonstrate the working principles of different transducers and sensors.					
3	3 Apply the principles of different type of sensors and transducers on state of art problems.					
4	Create a sy	ste	m using approp	riate transducers and sensors for a particular ap	plicat	ion.

Unit-I	07 Hrs
Introduction: Definition of a transducer, Block Diagram, Classification of Transducers, Ac	lvantages
of Electrical transducers.	
Resistive Transducers:	
Potentiometers: Characteristics, Loading effect, and problems.	
Strain gauge: Theory, Types, applications and problems.	
Thermistor, RTD: Theory, applications and problems.	
Unit – II	09 Hrs
Thermocouple: Measurement of thermocouple output, compensating circuits, lead comp	pensation,
advantages and disadvantages of thermocouple.	
LVDT: Principle, Characteristics, Practical applications and problems.	
Capacitive Transducers: Capacitive transducers using change in area of plates, distance	between
plates and change of dielectric constants, Applications of Capacitive Transducers and probler	ns
Unit –III	09 Hrs
Piezo-electric Transducers: Principles of operation, expression for output voltage, Piez	o-electric
materials, equivalent circuit, loading effect, Frequency response and Problems.	
Special Transducers: Hall effect transducers, Thin film sensors, and smart transducers: I	Principles
and applications, Introduction to MEMS Sensors and Nano Sensors, Schematic of the	design of
sensor, applications.	
Unit –IV	07 Hrs
Chemical sensors: pH value sensor, dissolved oxygen sensor, oxidation-reduction potentia	al sensor,
Zirconium probe Sensors, Chem FET sensors.	
Photo sensors: Photo resistor, Photodiode, Phototransistor, Photo-FET, Charge coupled devi	ce.
Tactile sensors: Construction and operation, types.	
Unit –V	07 Hrs
Humidity Sensors and Moisture Sensors: Concept of humidity, Electrical Conductivity	Sensors,
Thermal Conductivity Sensors, Optical Hygrometer, Oscillating Hygrometer.	
IR Sensors: Golay cells, Thermopile, pyroelectric sensor, bolometers, Active Far-Infrared	Sensors,
Gas flame detectors	

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Understand the basic principles of different transducers and sensors.						
CO2:	Apply the knowledge of transducers and sensors to comprehend digital instrumentation						
	systems.						
CO3:	Analyze and evaluate the performance of different transducers and sensors for various						
	applications.						
CO4:	Create a system using appropriate transducers and sensors for a particular application.						

Refere	Reference Books						
1	Jacob Fraden, Handbook of Modern Sensors: Physics, Designs, and Applications, 4th Edition						
	2008, PHI Publication, ISBN: 978-1-4419-6465-6.						
2	Clarence W.de Silva, Sensors and Actuators: Control systems Instrumentation, 2013 Edition,						
	CRC Press, ISBN: 978-1-4200-4483-6.						
2	A.K. Sawhney, Electrical and Electronic Measurements and Instrumentation, 18th Edition,						
3	2008, Dhanpat Rai and Sons, ISBN: 81-7700-016-0.						
4	Transducers and Instrumentation, D.V.S. Murthy, 2 nd Edition 2008, PHI Publication, ISBN:						
	978-81-203-3569-1.						

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks are executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	-	-	-	-	-	-	-	-	-
CO2	2	3	-	-	2	2	-	-	-	-	-	-
CO3	1	2	2	-	1	1	-	-	-	-	-	2
CO4	-	-	-	-	1	1	-	-	-	3	-	1

Semester: V									
	OPERATIONS RESEARCH								
(GROUP B: GLOBAL ELECTIVE)									
Cou	Course Code · 18C5B09 CIF · 100 Marks								
Cree	lits: L:T:P	•	3:0:0		SEE	•	100 Marks		
Tota	l Hours	:	39 L		SEE Duration	:	3.00 Hours		
Cou	rse Learning (Dbje	ectives: The st	udents will be able to					
1	Develop the	skil	lls in the app	lication of operations res	earch models for	con	nplex decision-		
	making situat	ions	5.	1			1		
2	Implement th	e m	ethodology and	tools of operations resear	ch to assist decisio	n-m	naking.		
	*			*			Ū.		
				UNIT-I			07 Hrs		
Intr	oduction: OR 1	netl	nodology, Defi	nition of OR, Application	of OR to Engineer	ng	and Managerial		
prob	lems, Features	of C	OR models, Lir	nitations of OR.					
Line	ar Programm	ing	Definition, Ma	athematical Formulation, S	Standard Form, Sol	utic	on Space, Types		
of so	olution - Basic l	Feas	sible, Degenera	te, Solution through Graph	hical Method. Usag	ge o	f software tools		
to de	monstrate LPP	(de	monstrations a	nd assignments only)					
<i></i>			• • • • •	UNIT-II			<u>10Hrs</u>		
Sim	plex Method 8	e Se	ensitivity Ana	lysis: Simplex methods, A	rtificial Stating So	luti	on - M Method		
& T	wo phase met	hod	, Sensitivity A	Analysis - Graphical sens	itivity analysis, A	lget	braic sensitivity		
anal	ysis. Interpretat	ion	of graphical ou	itput from software packag	ges such as MS Exc	el			
T	D			UNIT-III	11 D ' C ''	1	10 Hrs		
1 rai	isportation P	rob	lem:Formulati	on of transportation mo	del, Basic feasit	ole .	solution using		
diffe	rent methods,	10	ptimality Me	thods, Unbalanced trans	portation problem	1, .	Degeneracy in		
trans	portation prob	lem	is, Variants	in Transportation Proble	ems, Applications	01	Transportation		
prob	lems.			C 1 A 1 11	0.1.1	1	C		
ASSI	gnment Probl	em:	Formulation	of the Assignment probl	em, Solution met	nod	of assignment		
prob	lem-Hungarian	Me	thod, Solution	method of assignment pro	oblem-Hungarian N	/leti	nod, Variants in		
assig	inment problem	1, 11	aveling Salesn	nan Problem.	. 11				
Usag	ge of software t	ools	to demonstrat	e Transportation and Assig	gnment problems		06 11		
Pro	act Managam	nt 1	Using Notwor	UNII-IV k Analysis-Network const	ruction Determine	tior	U6 Hrs		
and	duration floats		Osing Network	of crashing Usaga of sof	twore tools to dom	one	troto N/W flow		
nroh	lome	, CI	INI - Liements	of clashing, Usage of sol		UIIS	strate IN/ W HOW		
proo	lems			UNIT_V			06 Hrs		
Gan	e Theory: Intr	odu	ction. Two per	son Zero Sum game Pure	strategies – Game	s wi	th saddle point		
Gran	bical Method	Tł	ne rules of d	ominance solution meth	od of games with	1011	t saddle point,		
Arithmetic method									
	incure incurou.								
Cou	rse Outcomes:	Af	ter completing	g the course, the students	will be able to				
CO	Understand	l th	e basic conc	epts of different models	s of operations r	ese	arch and their		
	application	s.		-					

CO2:	Build and	solve Trans	portation M	odels and Assignm	ent Models.
000					

Reference Books

ſ

1	Operation Research an Introduction, Taha H A, 8th Edition, 2004, PHI, ISBN:0130488089.
2	Operations Research: Principles and Practice, Ravindran, Phillips, Solberg, 2 nd Edition, 2007,
	John Wiley & Sons, ISBN: 8126512563
3	Introduction to Operation Research, Hiller and Liberman, 8th Edition, 2004, Tata McGraw Hill,
	ISBN: 0073017795.
4	Operations Research Theory and Application, J K Sharma, 2 nd Edition, 2003, Pearson Education
	Pvt Ltd, ISBN: 0333-92394-4.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	3	2	2	-	-	-	1	-	-	1
CO2	-	2	-	-	-	-	-	-	-	1	-	1
CO3	2	-	-	2	2	-	-	1	-	-	-	-
CO4												

				Semester: V				
MANAGEMENT INFORMATION SYSTEMS								
(GROUP B: GLOBAL ELECTIVE)								
~	~ .	1		(Theory)				
Cou	rse Code	:	18G5B10	CIE		:	100 Marks	
Cree	dits: L:T:P	:	3:0:0	SEE		:	100 Marks	
Total Hours : 39L SEE Duration : 3.00 Hours								
Cou	rse Learning C)bje	ectives: The student	s will be able to				
1	To understand	1 th	e basic principles an	d working of information technology				
2	Describe the 1	ole	of information tech	nology and information systems in bu	siness.			
3	To contrast ar	nd c	ompare how interne	t and other information technologies	support bu	sine	ess processes.	
4	To give an ov	vera	all perspective of the	e importance of application of intern	et technol	ogie	es in business	
	administration	1.						
T 0		•		Unit-I			08 Hrs	
Inform	nation systems	in 	Global Business To	oday:	,		C (
The r	ole of informa	tior	n systems in busin	ess today, Perspectives on informat	ion system	ms,	Contemporary	
approa	aches to inform	atio	on systems, Hands-o	n MIS projects. Global E-Business a	ind Colla	oor	ation: Busines	
proces	s and information	ion	systems, Types of t	business information systems, System	is for colla	1DO1	ation and team	
work,	The informatio	n sy	stems function in b	isiness. A Case study on E business.				
T C				Unit – 11			08 Hrs	
Infori	ination Systems	s, U 1	organizations and S	trategy:	ni-stien e		1	
Organ Usina	information and	IOF	mation systems, Ho	w information systems impact orga	nization a	na Je	business firms	
Using Inform	information sy		Ins to gain competition	live advantage, management issues, I	Lunical an	la z	ocial issues in or	
inform	nation system	s. (Tha	moral dimonsions of	f information society. A Case study of	n husinoss		is, Eulies III al	
mom	lation society, 1	ne		Unit III		pia		
IT Inf	frastructure an	d F	merging Technolo	णात –111 जंहड:			00 1115	
IT infi	rastructure Infr	asti	licture components	Contemporary hardware platform tre	ends Cont	em	oorary software	
nlatfor	rm trends Ma	nao	ement issues Sec	ring Information Systems: Syste	mus, com m vulner	ahil	ity and abuse	
Busine	ess value of sec	mag	wand control Estab	lishing framework for security and c	ontrol Te	chn	ology and tools	
for pro	otecting inform:	atio	n resources A case	study on cybercrime	011101, 10	UIIII	stogy and took	
ioi più	steering month		in resources. In cuse i	Init_IV			08 Hrs	
Achie	ving Operation	nal	Excellence and Cus	stomer Intimacy:				
Enterr	orise systems. S	Sup	ply chain managem	ent (SCM) systems, Customer relation	ionship m	ana	gement (CRM	
systems, Enterprise application E-commerce: Digital Markets Digital Goods: E-commerce and the internet								
E-commerce-business and technology. The mobile digital platform and mobile E-commerce Building and E-								
commerce web site. A Case study on ERP.								
Unit –V 07 Hrs								
Mana	ging Knowleds	ge:		•				
The k	knowledge man	age	ment landscape, Er	terprise-wide knowledge manageme	nt system	, Kı	nowledge worl	
systen	ns, Intelligent t	ech	iniques. Enhancing	Decision Making: Decision making	ng and inf	forn	nation systems	
Busine	ess intelligence	in	the enterprise. Busi	ness intelligence constituencies. Bui	ding Info	rm	ation Systems	

Systems as planned organizational change, Overview of systems development.

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand and apply the fundamental concepts of information systems.							
CO2:	Develop the knowledge about management of information systems.							
CO3:	Interpret and recommend the use information technology to solve business problems.							
CO4:	Apply a framework and process for aligning organization's IT objectives with business strategy.							

Reference Books Kenneth C. La

1	Kenneth C. Laudon and Jane P. Laudon: Management Information System, Managing the Digital
I	Firm, Pearson Education, 14th Global edition, 2016, ISBN:9781292094007.
2	James A. O' Brien, George M. Marakas: Management Information Systems, Global McGraw Hill,
2	10 th Edition, 2011, ISBN: 978-0072823110.
2	Steven Alter: Information Systems, The Foundation of E-Business, Pearson Education, 4 th Edition,
3	2002, ISBN:978-0130617736.
4	W.S. Jawadekar: Management Information Systems, Tata McGraw Hill, 2006, ISBN:
4	9780070616349

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	3	-	-	-	-	-	-	-	1	-	1
CO3	3	3	1	-	2	-	-	-	-	1	-	1
CO4	3	3	2	1	2	-	-	-	-	1	-	1

	V Semester									
	AUTOMOTIVE MECHATRONICS									
	(GROUP B: GLOBAL ELECTIVE)									
			•	(Theory)						
Cour	rse Code	:	18G5B11		CIE	••	100 Marks			
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks			
Tota	l Hours	:	39 L		SEE Duration	••	3.00 Hours			
Cour	rse Learning ()bje	ctives: The students w	vill be able to						
1	Identify varie	ous N	Aechatronics systems	of a modern automobile						
2	Describe how	the	proper quantity/grade	of fuel affects engine perf	formance.					
3	Understand E	Bhar	at-VI / EURO-VI emis	ssion norms						
4	4 Apply the knowledge of engineering and science to analyse the performance of Mechatronics									
	system									
5	Analyse vehi	cle s	ub-systems comprisin	g of sensors and actuators						

Unit-I	06 Hrs					
Automobile Engines						
Classifications of Internal Combustion Engines. Engine nomenclature and mechanics. Mixture	formation					
and direct fuel injection - homogeneous and stratified injection. Thermodynamic principles of	Otto and					
Diesel cycle. Operation, characteristics and energy yield in a 4-stroke engine. Fuels: Gasoline,	Diesel,					
LPG and Natural Gas for automotive applications. Fuel properties- Octane number and Cetane	number.					
Unit-II	10 Hrs					
Engine Auxiliary Systems:						
Air Intake and Exhaust System (Bharat Stage -VI norms) - Intake manifold, Turbocharger, In	tercooler,					
Exhaust manifold, 3-way and oxidation catalytic convertor, Exhaust Gas Recirculation system.						
Common Rail Fuel Injection system- Low pressure and high-pressure fuel systems, Re	turn line,					
Quantity control valve, Injectors - solenoid and piezo injectors.						
Unit-III	10 Hrs					
Vehicular Auxiliary Systems:						
Vehicle frame and body classification- Hatchback, Sedan, SUV, Coupe, Roadster. Adaptive	Brakes -					
Disc and drum brakes, Antilock Braking Systems, ESP, TCS. Wheels and Tyres- Toe-In,	Toe-Out,					
Caster and Camber angle. Classification of tyres, Radial, Tubeless.						
Supplemental Restraint System: Active and passive safety, Vehicle structure, Gas generator a	and air					
bags, Belt Tensioner, Acceleration sensor, Rollover sensor, Seat occupancy recognition.						
Unit-IV	07 Hrs					
Principles of motor vehicle electronics - Basic structure of control units, Functions of control	ol units and					
On-Board Diagnostic kit.						
Telematics in vehicles – Radio Transmission, Interference and signal processing. Lubrication	and cooling					
system- Components, working principle, Properties, Viscosity.						
Unit-V	06 Hrs					
Sensors: Oxygen sensors, Crankshaft Angular Position Sensor, Manifold Absolute Pressure Se	nsor,					
Coolant Temperature Sensor, Hot Film Mass Air flow Sensor, Throttle Position Sensor.						

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Describe the functions of Mechatronic systems in a modern automobile								
CO2:	Evaluate the performance of an engine by its parameters								
CO3:	Analyse the automotive exhaust pollutants as per emission norms								
CO4:	Demonstrate communication of control modules using a On-Board Diagnostic kit								

Refere	nce Books										
1.	Automotive Technology - A systems approach, Jack Erjavec, 5th Edition, Delamr Cengage										
	Learning, ISBN-13: 978-1428311497										
2.	Automotive Engineering Fundamentals, Richard Stone and Jeffrey K. Ball, 2004,										
	SAE International, ISBN: 0768009871										
3.	Bosch Automotive Handbook, Robert Bosch, 9th Edition, 2004, ISBN: 9780768081527										
4.	Understanding Automotive Electronics, William B Ribbens, 5th Edition, Butterworth-										
	Heinemann, ISBN 0-7506-7008-8										

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30 (Q) + 50 (T) + 20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	2	1	2	1	-	-	1	2	3	-	-
CO2	2	1	2	1	3	-	-	2	2	3	-	-
CO3	1	2	2	1	2	-	-	2	2	3	-	-
CO4	1	2	2	1	2	-	-	2	2	1	-	1

	Semester: V										
	TELECOMMUNICATION SYSTEMS										
	(GROUP B: GLOBAL ELECTIVE)										
				(Theory)		-					
Cou	rse Code	:	18G5B12		CIE	:	100 Marks				
Credits: L:T:P			3:0:0		SEE	:	100 Marks				
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours				
Cou	rse Learning C	bjo	ectives: The students	s will be able to							
1	Represent sch	em	atic of communication	on system and identif	fy its components.						
2	Classify satel	lite	orbits and sub-syste	ms for communication	on.						
3	Analyze diffe	rent	t telecommunication	services, systems an	d principles.						
4	Explain the ro	ole o	of optical communic	ation system and its o	components.						
5	Describe the f	eat	ures of wireless tech	nologies and standar	ds						

UNIT-I	06 Hrs							
Introduction to Electronic Communication: The Significance of Human Commu	nication,							
Communication Systems, Types of Electronic Communication, Modulation and Multiplexing,								
Electromagnetic Spectrum, Bandwidth, A Survey of Communication Applications.								
The Fundamentals of Electronics: Gain, Attenuation, and Decibels.								
Radio Receivers: Super heterodyne receiver.								
UNIT-II	10 Hrs							
Modulation Schemes: Analog Modulation: AM, FM and PM- brief review.								
Digital Modulation: PCM, Line Codes, ASK, FSK, PSK.								
Wideband Modulation: Spread spectrum, FHSS, DSSS.								
Multiple Access: FDMA, TDMA, CDMA.								
UNIT-III	09 Hrs							
Satellite Communication: Satellite Orbits, Satellite Communication Systems, Satellite Subsystems,								
Satellite Communication: Satellite Orbits, Satellite Communication Systems, Satellite Sub	systems,							
Satellite Communication: Satellite Orbits, Satellite Communication Systems, Satellite Sub Ground Stations, Satellite Applications, Global Positioning System.	osystems,							
Satellite Communication: Satellite Orbits, Satellite Communication Systems, Satellite Sub Ground Stations, Satellite Applications, Global Positioning System. UNIT-IV	osystems, 07 Hrs							
Satellite Communication: Satellite Orbits, Satellite Communication Systems, Satellite Sub Ground Stations, Satellite Applications, Global Positioning System. UNIT-IV Optical Communication: Optical Principles, Optical Communication Systems, Fiber-Optical Communication	osystems, 07 Hrs c Cables,							
Satellite Communication: Satellite Orbits, Satellite Communication Systems, Satellite Sub Ground Stations, Satellite Applications, Global Positioning System. UNIT-IV Optical Communication: Optical Principles, Optical Communication Systems, Fiber-Optic Optical Transmitters and Receivers, Wavelength-Division Multiplexing, Passive Optical Network	osystems, 07 Hrs c Cables, vorks.							
Satellite Communication: Satellite Orbits, Satellite Communication Systems, Satellite Sub Ground Stations, Satellite Applications, Global Positioning System. UNIT-IV Optical Communication: Optical Principles, Optical Communication Systems, Fiber-Optic Optical Transmitters and Receivers, Wavelength-Division Multiplexing, Passive Optical Netw UNIT-V	osystems, 07 Hrs c Cables, vorks. 07 Hrs							
Satellite Communication: Satellite Orbits, Satellite Communication Systems, Satellite Sub Ground Stations, Satellite Applications, Global Positioning System. UNIT-IV Optical Communication: Optical Principles, Optical Communication Systems, Fiber-Optic Optical Transmitters and Receivers, Wavelength-Division Multiplexing, Passive Optical Network UNIT-V Cell Phone Technologies: Cellular concepts, Frequency allocation, Frequency reuse,	07 Hrs c Cables, vorks. 07 Hrs Internet							
Satellite Communication: Satellite Orbits, Satellite Communication Systems, Satellite Sub Ground Stations, Satellite Applications, Global Positioning System. UNIT-IV Optical Communication: Optical Principles, Optical Communication Systems, Fiber-Optic Optical Transmitters and Receivers, Wavelength-Division Multiplexing, Passive Optical Network UNIT-IV Optical Principles, Optical Communication Systems, Fiber-Optic Optical Transmitters and Receivers, Wavelength-Division Multiplexing, Passive Optical Network UNIT-V Cell Phone Technologies: Cellular concepts, Frequency allocation, Frequency reuse, Telephony, The Advanced Mobile Phone System [AMPS].	osystems, 07 Hrs c Cables, vorks. 07 Hrs Internet							
Satellite Communication: Satellite Orbits, Satellite Communication Systems, Satellite Sub Ground Stations, Satellite Applications, Global Positioning System. UNIT-IV Optical Communication: Optical Principles, Optical Communication Systems, Fiber-Optic Optical Transmitters and Receivers, Wavelength-Division Multiplexing, Passive Optical Netw UNIT-V Cell Phone Technologies: Cellular concepts, Frequency allocation, Frequency reuse, Telephony, The Advanced Mobile Phone System [AMPS]. Wireless Technologies: Wireless LAN, PANs and Bluetooth, ZigBee and Mesh Wireless Network	osystems, 07 Hrs c Cables, vorks. 07 Hrs Internet tworks.							

Cours	Course Outcomes: After completing the course, the students will be able to									
CO1	Describe the basics of communication systems.									
CO2	Analyze the importance of modulation and multiple access schemes for communication									
	systems.									
CO3	Analyze the operational concept of cell phone and other wireless technologies.									
CO4	Justify the use of different components and sub-system in advanced communication systems.									

Refe	erence Books
1	Principles of Electronic Communication Systems, Louis E. Frenzel, 4th Edition, 2016, Tata
	McGraw Hill, ISBN: 978-0-07-337385-0.
2	Electronic Communication Systems, George Kennedy, 3rd Edition, 2008, Tata McGraw Hill,
	ISBN: 0-02-800592-9.
3	Introduction to Telecommunications, Anu A. Gokhale, 2 nd Edition, 2008, Cengage Learning
	ISBN: 981-240-081-8.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	-	1	1	-	-	-	1	-	-	-
CO2	2	1	-	1	1	-	-	-	1	-	-	-
CO3	2	1	-	1	1	-	-	-	2	-	-	-
CO4	1	1	-	1	1	1	-	-	1	-	-	-

	Semester: V											
	QUANTUM MECHANICS OF HETERO/NANO STRUCTURES											
(GROUP B: GLOBAL ELECTIVE)												
Con	rso Codo		18C5B13	(Ineory)	CIF	.	100 M	mlze				
Cree	lite Coue	•	3.0.0		SFF	•	100 Ma	urks orks				
Tota	al Hours	•	<u>391</u>		SEE Duration	•	3.00 H	ours				
Cou	rse Learning C) bie	ectives: The student	s will be able to	SEE Duration	•	0.00 11	Jul 5				
1	1 Understand the role of Quantum mechanics in physical processes as we reduce dimensions											
2	 2 Explain the design and performance of low dimensional semiconductors and their modelling 											
3	Understand th	e di	ifferences observed	in transport propertie	enneonauctors and	nal me	aterials	5.				
1	Apply the role		hotorostructuros in	devices	s of low difficitsion	141 111	aterrars.					
-	Apply the lot		leterosu decides in	devices	as and sansars that		on the a	ontum				
3	Acquire the ki	now	ledge to design and	develop smart devic	es and sensors that	runs	on the qu	lantum				
	technology.											
				Tinit T				00 IIma				
Revi	iow of Augntur	n N	lechanics and Solid	UIIII-I 1 state Physics:								
Way	e particle dualit	u w	Jeisenberg's Uncert	ainty Principle group	n velocity. Time in	dener	ident and	denendent				
Sohr	odingor Equation	y, 1 on 1	and its application	Parturbation theory	Eermi's Golden		Eroo ol	actron and				
Earm	ouniger Equation	f a	alida Danaity of at	retuination theory,	, Fermi s Golden	Nuic	Dloob	theorem in				
Fern	ni gas model o		onds, Density of si	ates and its depende	ence on dimension	nanty	, Bloch	ineorem in				
perio	Daic structures,	D	ynamics of electro	ns and notes in ba	ands, Effective m	ass, (distinct	regimes of				
cond	luction and the i	mp	ortant parameters cr	haracterising it.				00 XX				
D .	· · · ·		11 11	<u>Unit – II</u> ·				08 Hrs				
Basi	cs of semicond	ucu	ors and lower dime			•1•.	Б	D:00 :				
Intri	nsic and extrir	ISIC	semiconductors, e	electron and note c	oncentration. Mot	ility,	Energy	Diffusion,				
Con	tinuity equation	ns.	Carrier life-times	and Diffusion len	gth. Degenerate	semic	conductor	s. Optical				
proc	esses of semi-	con	ductors, inter-band	and intra-band proc	cess. Quantum we	ells of	f nanost	ructures of				
diffe	erent geometries	s-Sc	juare, Parabolic, T	riangular and their s	solutions, Quantur	n Do	ts, wires	and wells				
(Fro	m 0-Dim to 3 D)im)). Strained Layers a	nd its effect on bands	s. Band structure/e	energy	y levels i	n Quantum				
Wel	ls and Excitonic	eff	ects in them.									
				Unit –III				08 Hrs				
Qua	ntum Nano str	uct	ures and Quantum	Transport:								
Arch	nitecture and w	ork	ing of n-channel N	MOSFET, metal – s	emiconductor con	tact(ii	nterface)	in details,				
Hom	no-junction, He	tero	-junction, Hetero-s	tructures. Modulation	n and strain doped	l Qua	antum W	ells. Super				
Latti	ice: Kronig Per	nney	/ Model of a super	r-lattice, Tight Bindi	ing Approximation	n of a	a super l	attice. The				
gene	esis of Quantum	genesis of Quantum Transport: Parallel transport : scattering mechanism, experimental data(focus will be										
on C	GaAs), hot electi	on GaAs), hot electrons. Perpendicular transport: Resonant tunneling. Electric field effect in super lattices:										
Stark effect.												
Starl	k effect.	rons	. i orponatourai uu	nsport. Resonant tun	neling. Electric fie	ld eff	ect in suj	ber lattices:				
Starl	k effect.	rons		Unit –IV	neling. Electric fie	ld eff	ect in suj	08 Hrs				
Starl	k effect. nsport in Nano	rons -str	uctures in electric	Unit –IV and magnetic fields	neling. Electric fie	ld eff		08 Hrs				
Starl Trai Quar	k effect. nsport in Nano ntized conducta	rons -str	uctures in electric : Landauer Buttike	Unit –IV and magnetic fields r transmission forma	neling. Electric fie	ld effe	ormalism	08 Hrs to explain				
Starl Tran Quan quan	k effect. nsport in Nano ntized conducta ntized conducta	-str	uctures in electric : Landauer Buttike of devices like qua	Unit –IV and magnetic fields r transmission forma antum point contacts	neling. Electric fie : alism, Application . Aharonov-Bohm	ld effe	ormalism	oer lattices: 08 Hrs to explain l rings and				
Starl Tran Quan quan othe	k effect. nsport in Nano ntized conducta ntized conductar r systems. Viola	-str ince atio	uctures in electric : Landauer Buttike of devices like qua n of Kirchhoff's cir	Unit –IV and magnetic fields r transmission forma antum point contacts rcuit laws for quantu	neling. Electric fie : alism, Application . Aharonov-Bohm m conductors. Con	ld effe	ormalism or in gold or Blockad	oer lattices: 08 Hrs to explain l rings and le. Density				
Starl Tran Quan quan other of S	k effect. nsport in Nano ntized conductantized	-str -str ince atio	uctures in electric : Landauer Buttike of devices like qua n of Kirchhoff's cinter tern in a magnetic	Unit –IV and magnetic fields r transmission forma antum point contacts cuit laws for quantu field. Landau qua	neling. Electric fie alism, Application . Aharonov-Bohm m conductors. Con ntization of electr	of for effectulomb	ormalism ormalism ormalism ormalism ormalism	to explain l rings and le. Density netic field.				
Starl Tran Quan quan other of S Shul	k effect. nsport in Nano ntized conducta ntized conductant r systems. Viola tates of a 2D onikov-de Haas	-str -str ince atio syst	uctures in electric : Landauer Buttike of devices like qua n of Kirchhoff's cin tem in a magnetic ect. Quantum Hall F	Unit –IV and magnetic fields r transmission forma antum point contacts cuit laws for quantu field. Landau qua cffect-integer and qua	neling. Electric fie alism, Application . Aharonov-Bohm m conductors. Con ntization of electruntum.	of for effect alomb	ormalism t in gold Blockad n a mag	08 Hrs to explain l rings and le. Density netic field.				
Starl Tran Quan quan othe of S Shut	k effect. nsport in Nano ntized conductant r systems. Viola tates of a 2D ponikov-de Haas	-str nce nce atio sys	uctures in electric : Landauer Buttike of devices like qua n of Kirchhoff's cin tem in a magnetic ect. Quantum Hall E	Unit –IV and magnetic fields r transmission forma antum point contacts reuit laws for quantu field. Landau quan Effect-integer and quan Unit –V	neling. Electric fie alism, Application . Aharonov-Bohm m conductors. Con ntization of electr ntum.	of fo effeculomb	ormalism ormalism ormalism ormalism ormalism ormalism ormalism ormalism ormalism ormalism	08 Hrs to explain l rings and de. Density netic field. 07 Hrs				
Starl Tran Quan othe: of S Shut	k effect. nsport in Nano ntized conductant trized conductant r systems. Viola tates of a 2D ponikov-de Haas lications in Op	-str ince atio syst effe	uctures in electric : Landauer Buttike of devices like qua n of Kirchhoff's cin tem in a magnetic ect. Quantum Hall E electronics and Spi	Unit –IV and magnetic fields r transmission forma antum point contacts reuit laws for quantu field. Landau qua Effect-integer and qua Unit –V ntronics:	neling. Electric fie alism, Application . Aharonov-Bohm m conductors. Con ntization of electron ntum.	of for effectulomb	ormalism ormalism ormalism ormalism ormalism ormalism ormalism ormalism ormalism ormalism ormalism	oer lattices: 08 Hrs to explain l rings and le. Density netic field. 07 Hrs				

transport devices, Single-electron transistors, Optical properties of Quantum Wells and Superlattices, Quantum Dots and Nano crystals. Quantum confined Stark effect, Stark ladders, Bloch oscillations. Spintronics, transport of spin, spin valve, Giant Maneto-resistance, Spin Injection (Johnson-Silsbee experiments).

Course	e Outcomes: After completing the course, the students will be able to
CO1:	After successful completion of the course the student will be able to identify the different domains
	of application of the concepts of Quantum mechanics in Nano structures, super-lattices and
	Photonics.
CO2:	The student will gain knowledge to understand the crucial physics layers and principles that are at
	the core of nano and meso technology.
CO3:	The student will be able to apply the concepts to solve problems (quantitative and qualitative)
CO4:	The student can apply the concepts in an interdisciplinary manner and can create new ideas and
	products related to appliances and sensors, that use the said concepts.

Refere	ence Books
1	The Physics of Low Dimensional Semiconductors an introduction, John H Davies, xxx Edition,
L	1998, Cambridge University Press, ISBN: 0-521-48491-X (pbk).
2	Introduction to Quantum Mechanics, David J Griffiths & Darrell F. Schroeter, 3 rd Edition, 2018,
2	Cambridge University Press, ISBN: 978-1107189638
3	Nanotechnology for Microelectronics and Optoelectronics, J.M. Martinez-Duert, R.J. Martin Palma
	and F. Agullo-Rueda, 1st Edition, 2006, Elsevier Press, ISBN: 9780080456959
4	Electronic Transport in Mesoscopic Systems, Supriyo Datta, 1st Edition, 1997, Cambridge
4	University Press ISBN: 9780521599436
5	Semiconductor Optoelectronic devices, Pallab Bhattacharya, 2 nd Edition, 1996, Prentice Hall of
5	India, ISBN: 978-0134956565
6	Semiconductor Devices, Physics and Technology, S. M. Sze, 2 nd Edition, 2008, Wiley Student
0	Edition, ISBN: 978-8126516810

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	2	1	3	2	2	-	-	-	1	
CO2	3	3	3	2	1	2	1	1	-	-	-	1	
CO3	3	3	3	2	1	1	1	1	-	-	-	1	
CO4	1	2	1	2	1	2	2	1	2	2	-	1	

				Semester: V							
THIN FILMS AND NANOTECHNOLOGY											
(GROUP B: GLOBAL ELECTIVE)											
(Theory)											
Cou	rse Code	:	18G5B14		CIE	:	100 Marks				
Cre	Credits: L:1:P : 300 Total Hours : 200										
	ll Hours rea Laarning (: bi/	39L	nte will be able to	SEE Duration	:	3.00 Hours				
1 Understand the basics of thin films structure and property.											
 Onderstand the basics of thin film property. Acquire the knowledge of thin film propertion by various techniques and their characterization 											
4	methods	100	ledge of thin film		s teeninques and the		aracterization				
3	Apply the kno	wle	edge to select the r	nost potential methods	s to produce thin film	ns fo	or wanted				
J	applications	, ,, , ,	suge to select the r	nost potential method.		15 10	4 wanted				
4	Asses typical	thir	film applications								
- Asses typical till mill applications.											
				Unit-I			08 Hrs				
Nan	ostructures and	d N	anomaterials:								
Туре	es of nanostru	ctu	res and propertie	es of nanomaterials:	Introduction, Th	ree	dimensional, Two				
dime	ensional, One d	ime	ensional, Zero-din	nensional nano-structu	red materials. Carbo	on l	Nano Tubes (CNT)				
Qua	ntum Dots, shel	1 st	ructures, Multilay	er thin films and supe	er lattice clusters. Sy	nthe	esis through Sol ge				
and	Spray Pyroly	sis.	Mechanical-phy	sical-chemical proper	rties. Current trend	ds	and challenges o				
nanc	science and nar	ote	chnology.								
				Unit – II			08 Hrs				
Thi	n Film Prepara	tio	n Methods:								
Vac	uum technolog	y- 1	Basics of Vacuum	pumps and vacuum n	neasurements, Physi	cal	Vapour Deposition				
(PV	D) Techniques	: E	Evaporation - The	rmal evaporation, Ele	ectron beam evapor	atio	n, and Cathode are				
depo	osition. Sputter	ing	: DC sputtering, R	RF Sputtering, Magnet	ron sputtering, and Id	on b	eam sputtering.				
0				Unit –III			08 Hrs				
Suri	ace Preparatio	n a	nd Growth of Th	un Films:		c					
Nuc	leation – theore	1ca	and experimental	l aspects. Surface prep	aration & Engineerin	ng fo	or Thin film growth				
Clea	ning, Modificat	10n	, Masking & Patte	erning, Base Coats and	Top Coats. Thin Fi	lm g	rowth: Sequence of				
thin	film growth, D	ete	cts and impurities	s, Effect of Deposition	n Parameters on film	n gr	owth. Properties of				
Thin Films: Adhesion, Thickness, Surface, Physical, Chemical and Mechanical.											
Che	nootonization	e T	hin Film Duonauti	Unit –IV			08 Hrs				
	racterization o		um rum Properti	ies:	ton and Ctalas De-	£1.	methoda Court				
Film	hology and t	asu	rement: Quartz c	AEM Eilm comment	tion by V more Distant		r methods. Surface				
mor]	phology and to	pog	ion by Uall affect	Arivi. riiin composit	non by A-ray Photo	beled	Luon Spectroscopy				
Elec	uncal character	izat	ion by Hall effec	n measurement, Four	probe analyzer. Op		- characterization -				
H II11	sometry Rama	n N	pectroscopy Diele	ectric and Mechanical i	properties characteri	Z8110	าท				

Thin Film Applications:

Band gap Engineering through thin films for electrical and optical applications. Thin Film for energy applications - coating on solar cells, fuel cells, batteries and super capacitors. Thin film thermo electric materials for thermal sensor applications. Thin film coating as protective coating for optical surfaces and as anti-reflection. Thin Film drug delivery and antibacterial surfaces - opportunities and challenges

07 Hrs

Unit –V

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Understand the basic mechanism of surface modification and thin film growth.								
CO2:	Attain strong hold on thin film preparation by various techniques and their characterization								
	methods.								
CO3:	Apply the knowledge to select the most potential methods to produce thin films for wanted								
	applications.								
CO4:	Detailed knowledge of thin film selection for various applications.								

Refere	nce Books
1	Thin Film Phenomenon, K.L.Chopra, 1st edition, 1969, McGraw-Hill ISBN-13: 978-0070107991.
2	Materials Science of Thin Films, Milton Ohring, 2 nd Edition, Academic Press, 2002, ISBN 978-0-
2	12-524975-1
2	Thin-Film Deposition: Principles and Practice, Donald Smith, 1st edition, 1994, McGraw-Hill
5	College, ISBN-13: 978-0071139137.
4	Handbook of Thin-Film Technology, Hartmut Frey, Hamid R Khan Editors, 1st edition, 2015,
-+	Springer, ISBN 978-3-642-05429-7.
	Nanostructures and Thin Films for Multifunctional Applications Technology, Properties and
5	Devices, Ion Tiginyanu, Pavel Topala, Veaceslav Ursaki, 1st edition, 2016, Springer, ISBN 978-3-
	319-30197-6.

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	2	2	1	-	-	-	-	-	-	-	-	2			
CO2	3	2	2	2	-	-	-	-	-	-	-	2			
CO3	2	3	3	2	-	1	1	1	-	-	-	2			
CO4	2	3	3	2	1	2	2	2	2	2	-	2			

				Semester: V				
	1	AD	VANCES IN COR	RROSION SCIENCE	AND TECHNOL	OGY	ł	
			(GROU	UP B: GLOBAL ELF	ECTIVE)			
Con	ma Cada		1905015	(Theory)	CIE		100 Ma	nlza
	lits. L.T.P	•	18G5D15 3.0.0		SFE	•	100 Mai 100 Mai	rks rks
Tota	l Hours	:	39L		SEE Duration	:	3.00 Ho	urs
Cou	rse Learning (Dbje	ectives: The studen	ts will be able to		1.		10
1	Understand th	ne fi	indamental & socio	o, economic aspects of	f corrosion.			
2	Identify pract	ices	for the prevention	and remediation of co	prrosion.			
3	Analyzing me	etho	dologies for predic	ting corrosion tendend	cies.			
4	Evaluate vari	ous	corrosion situation	s and implement suita	ble corrosion contro	l me	easures.	
				1				
				Unit-I				08 Hrs
Intr	oduction to co	rros	sion and its effect					
Intro	duction: The	dire	ct and indirect eff	fects of corrosion, ec	onomic losses, Ind	irect	losses -S	Shutdown,
cont	amination, los	s of	f product, loss of	f efficiency, environ	mental damage, Ir	npoi	tance of	corrosion
prev	ention in variou	ıs in	dustries, corrosion	auditing in industries	, corrosion map of I	ndia		
Corr	osion issues in	n sj	pecific industries-p	power generation, ch	emical processing	indı	stries, oil	l and gas
Indu	stries, pulp and	pap	per plants, corrosio	n effect in electronic i	ndustry.			
				Unit – II				08 Hrs
Тур	es of Electroch	emi	ical corrosion					
Intro	duction: Galva	nic	series, Pilling-Bed	worth ratio, Types: G	alvanic corrosion, c	revi	ce corrosi	on, pitting
corre	osion, intergra	nula	ar corrosion, eros	sion corrosion, stres	ss corrosion, seaso	on (cracking,	hydrogen
emb	rittlement, high	ten	perature corrosion	, bacterial corrosion, o	corrosion in polyme	r (pl	astic) mate	erials.
Crev	vice corrosion-r	necl	hanism of differen	tial aeration corrosion	n, mixed potential t	heor	y for und	erstanding
com	mon corrosion	of n	netals and alloys.					
				Unit –III				07 Hrs
Cor	rosion in diffe	ren	t engineering mat	erials				
Cone	crete structures.	, duj	plex, super duplex	stainless steels, ceram	ics, composites.			
Cor	rosion in Speci	ific]	Materials: Corrosi	ion of Iron, Nickel, Al	uminium, Titanium	and	Super allo	oys.
The	rmodynamics	of	Corrosion: Pour	baix diagram and it	s importance in n	netal	corrosio	n and its
calcu	ulation for Al, (Cu, 1	Ni and Fe.					
				Unit –IV				07 Hrs
Adv	ances in Corro	osio	n Control					
Prine	ciples of corro	osioi	n prevention, mat	erial selection, desig	n considerations, c	ontr	ol of env	rironment-
decr	ease in veloc	city,	passivity, remo	val oxidizer, Inhibi	tors and passivate	ors,	coatings-	organic,
elect	roplating of Co	oppe	er, Nickel and Chr	comium, physical vap	or deposition-sputte	ring	, Electrole	ess plating
of N	ickel.							
				Unit –V				09 Hrs
Cor	rosion Testing							
Phys	sio-chemical i	met	hods: Specimens,	environment, evalu	ation of corrosion	n da	image, A	ccelerated
labo	ratory tests-salt	s sp	ray, service tests.					
Elec	trochemical n	neth	ods: Electrode po	otential measurement	s, polarization mea	sure	ments. St	ern-Geary
equa	tion, Impedance	ce n	neasurements, Acc	celerated tests. Advar	ntages and limitation	ons o	of corrosi	on testing
meth	nods.							-

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Understand the causes and mechanism of various types of corrosion								
CO2:	Identify, analyze and interpret corrosion with respect to practical situations.								
CO3:	Apply the knowledge of chemistry in solving issues related to corrosion.								
CO4:	Develop practical solutions for problems related to corrosion.								

Reference Books

1	Corrosion Engineering, M.G, Fontana, 3 rd Edition, 2005, Tata McGraw Hill, ISBN: 978-0070214637.
2	Principles and Prevention of Corrosion, D. A Jones, 2 nd Edition, 1996, Prentice Hall, ISBN: 978-0133599930.
3	Design and corrosion prevention, Pludek, 1978, McMillan, ISBN: 978-1349027897
4	Introduction to metal corrosion, Raj Narain, 1983, Oxford &IBH, ISBN: 8120402995.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	2	-	-	-	-	-	-	-	1	-	1			
CO2	3	2	2	1	-	-	-	-	-	1	-	1			
CO3	3	3	2	2	2	-	-	-	-	1	-	1			
CO4	3	3	3	3	2	-	-	-	-	1	-	1			

Semester: V												
COMPUTATIONAL ADVANCED NUMERICAL METHODS												
(GROUP B: GLOBAL ELECTIVE)												
Соц	rse Code	• 18C5B16	(Theory)	CIF	•	100 Marks						
Cree	dits: L:T:P	: 3:0:0		SEE	•	100 Marks						
Total Hours : 39L SEE Duration : 3.00 Hours												
Course Learning Objectives: The students will be able to												
1 Gain adequate exposure to learn alternative methods to solve algebraic and transcendental equations												
	using suitable numerical techniques.											
2	2 Use the concepts of interpolation techniques arising in various fields.											
3	Solve initial	value and boundary	value problems which	ch have great sign	ifica	nce in engineering						
	practice.		-									
4	Apply the con	ncepts of eigen value a	and eigen vector to o	btain the critical va	lues	of various physical						
	phenomena.											
5	Demonstrate	elementary programm	ning language, imp	ementation of alg	orith	ims and computer						
	programs to solve mathematical problems.											
			Unit-I			07 Hrs						
Alge	braic and Tra	nscendental Equation	s:									
Root	ts of equations	in engineering practice	e - Fixed point iterativ	ve method, Aitken	proc	ess, Muller method,						
Chel	byshev method.	Simulation using MA	ГLAB.									
.			Unit – II			07 Hrs						
Inte	rpolation:		CC C 1	· 1 D: · 1 1 1.00								
Intro	duction to finit	e differences, Finite di	terences of a polynor	nial, Divided differe	ence	s, Newton's divided						
diffe	rence interpola	tion formula, Hermite	interpolation, Spline	interpolation - line	ear, o	quadratic and cubic						
splin	e interpolation.	Simulation using MA	ILAB.			0.0 11						
Diff	montial Equation	iona I.	Unit –III			08 Hrs						
	erenual Equal	10115 1: ungo Kutto Folkhorg n	athods to solve diffe	rantial aquations P	01110	larry value problems						
	ge-Kutta allu K	Ditz mathad Shootir	a mothod Different	iel transform moth	od t	a solve differential						
	tions Simulatic	-Kitz methou, Shoom	ig method, Different		ou i	o solve unrerenuar						
equations. Simulation using MATLAB.												
Diff	erential Equati	ions II•	Unit –I v			00 1118						
Solu	tion of second of	order initial value prob	lems - Runge-Kutta m	ethod Milne metho	d C	ubic spline method						
Finit	e difference me	ethod for ordinary linea	r Nonlinear different	ial equations Simul	atio	using MATLAB						
		inter or	Unit –V	equations, onnu		09 Hrs						
Eige	en Value Proble	ems:				V M						
Eige	n values and	Eigen vectors, Powe	r method, Inverse F	ower method, Bo	unds	on Eigen values,						
Gers	hgorin circle t	heorem, Jacobi metho	od for symmetric ma	trices, Given's me	thoc	l. Simulation using						

MATLAB.

Course	Course Outcomes: After completing the course, the students will be able to													
CO1:	Identify and interpret the fundamental aspects of different Mathematical concepts and													
	corresponding computational techniques.													
CO2:	Apply the knowledge and skills of computational techniques to solve different types of application													
	problems.													
CO3:	Analyze the physical problem and use appropriate method to solve numerically using													
	computational techniques.													
CO4:	Distinguish the overall mathematical knowledge gained to demonstrate and analyze the problems													
	arising in engineering practice.													

Refere	ence Books
1	Numerical methods for scientific and engineering computation, M. K. Jain, S. R. K. Iyengar and R.
-	K. Jain, 6 th Edition, 2012, New Age International Publishers, ISBN-13: 978-81-224-2001-2.
2	Numerical Analysis, Richard L. Burden and J. Douglas Faires, 9th Edition, 2012, Cengage
2	Learning, ISBN-13: 978-81-315-1654-6.
3	Introductory Methods of Numerical Analysis, S. S. Sastry, 4th Edition, 2011, PHI Learning Private
5	Ltd., ISBN: 978-81-203-2761-0.
4	Numerical Methods for Engineers, Steven C. Chapra, Raymond P. Canale, 5th Edition, 2011, Tata
4	Mcgraw Hill, ISBN-10: 0-07-063416-5.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	2	-	1	-	-	-	-	-	-	-	2			
CO2	3	2	1	-	-	-	-	-	-	-	-	2			
CO3	2	3	2	2	-	-	-	-	-	-	-	1			
CO4	3	3	1	2	1	-	-	-	-	-	-	3			

Semester: V								
			MATHEMAT	ICS FOR MACHIN	E LEARNING			
(GROUP B: GLOBAL ELECTIVE)								
Соц	rse Code	:	18G5B17	(Theory)	CIE	•	100 Marks	
Cree	lits: L:T:P	•	3:0:0		SEE	:	100 Marks	
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours	
Cou	rse Learning O	bje	ctives: The student	s will be able to				
1	Understand the foundation of	ne ma	basic knowledge o	n the fundamental	concepts of linear	alge	ebra that form the	
2	Acquire pract	ical	knowledge of vector	or calculus and optim	nization to understan	d tł	e machine learning	
_	algorithms or	tecl	niques.	or curculus and optim		u 11	ie maenine rearing	
3	Use the cond	ent	s of probability a	nd distributions to	analyze possible an	plic	cations of machine	
	learning.	-p.	s of proceeding a		analyze possione ap	pni		
4	Apply the con	cen	ts of regression and	estimation to solve r	roblems of machine	lear	mino	
5	Analyze the	ann	ropriate mathemati	cal techniques for c	lassification and or	tim	ization of decision	
	problems	чрр	ropriate mainemati	eur teeninques for e	assilication and op	tiiii	ization of decision	
	problems.							
			I	U nit-I			07 Hrs	
Line	ar Algebra:							
Revi	ew of Vector S	Spac	ces-Linear Independ	lence, Basis, Rank a	nd Linear Mappings	s. A	ffine Spaces, Inner	
Prod	ucts, Lengths a	nd 1	Distances, Angles a	nd Orthogonality, Or	thonormal Basis, Or	tho	gonal Complement,	
Inne	r Product of Fu	ncti	ons, Orthogonal Pro	jections, Rotations, S	ingular Value Decor	npc	osition.	
			U	nit — II	0	-	07 Hrs	
Vect	tor Calculus an	d C	Continuous Optimiz	zation:				
Grad	lients of Vecto	or-V	Valued Functions,	Gradients of Matrie	ces, Identities for	Cor	nputing Gradients,	
Back	propagation an	d A	utomatic Differentia	ation, Linearization a	nd Multivariate Tayl	or S	Series, Optimization	
Usin	g Gradient Dese	cent	t, Constrained Optin	nization and Lagrang	e Multipliers and Co	nve	x Optimization.	
	-		U	nit –III			08 Hrs	
Prol	pability and Dis	stri	butions:					
Con	struction of a P	rob	ability Space, Disci	rete and Continuous	Probabilities, Sum F	lule	e, Product Rule and	
Baye	es' Theorem, G	aus	sian Distribution, C	Conjugacy and the E	Exponential Family,	Cha	ange of Variables -	
Inve	rse Transform.							
			U	nit –IV			08 Hrs	
Line	ar Regression:							
Prob	lem Formulation	on,	Parameter Estima	tion, Bayesian Line	ar Regression, Ma	xim	um Likelihood as	
Orth	ogonal Projectio	on.						
Den	sity Estimation	wi	th Gaussian Mixtu	re Models:				
Gau	ssian Mixture N	lod	el, Parameter Learr	ning via Maximum L	ikelihood, EM Algo	orith	m, Latent-Variable	
Pers	Perspective.							
Unit –V 09 Hrs								
Dim	ensionality Red	luc	tion with Principal	Component Analys	is (PCA):			
Prob	lem Setting, M	axi	mum Variance Pers	spective, Projection	Perspective, Eigenve	ecto	r Computation and	
Low	-Rank Approxi	mat	tions, PCA in High	Dimensions, Key S	Steps of PCA in Pra	acti	ce, Latent Variable	
Pers	pective.							
Clas	sification with	Suj	pport Vector Mach	ines:				
Sepa	rating Hyperpl	ane	es, Primal Support	Vector Machine,	Dual Support Vect	or	Machine, Kernels,	
Num	Numerical Solution.							

Course	e Outcomes: After completing the course, the students will be able to				
CO1:	Explore the fundamental concepts of mathematics involved in machine learning techniques.				
CO2:	Orient the basic concepts of mathematics towards machine learning approach.				
CO3:	Apply the linear algebra and probability concepts to understand the development of different				
	machine learning techniques.				
CO4:	Analyze the mathematics concepts to develop different machine learning models to solve practical				
	problems.				

Refere	Reference Books					
1	Mathematics for Machine Learning, M. P. Deisenroth, A. A. Faisal and C. S. Ong, 1st Edition,					
	2020, Cambridge University Press.					
2	Linear Algebra and Learning from Data, Gilbert Strang, 1st Edition, 2019, Wellesley Cambridge					
	Press, ISBN: 0692196382, 9780692196380.					
3	Introduction to Machine Learning, Ethem Alpaydin, 2 nd Edition, 2010, PHI Publication, ISBN-					
3	978-81-203-4160-9.					
4	The Elements of Statistical Learning, Trevor Hastie, Robert Tibshirani and Jerome Friedman, 2 nd					
-+	Edition, 2009, Springer, ISBN: 978-0-387-84857-0, 978-0-387-84858-7.					

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

V Semester							
ENGINEERING ECONOMY							
			(G	ROUP B: GLOBAL ELECTIVE)			
~		T		(Theory)			
Cours	e Code	:	18G5B18		E	:	100 Marks
Course Code		:	18G5B02	SI	SEE		100 Marks
Total]	Hours	:	39L	SI	SEE Duration		03 Hours
Cours	e Learning	g 0	bjectives: Stud	lents are expected to			
1.	To inculc	ate	an understandi	ng of concept of money and its impor	tance in the ev	alu	ation of
	projects.						
2.	Analyze t	he	present worth c	f an asset.			
3.	3. Evaluate the alternatives based on the Equivalent Annual Worth.						
4.	Illustrate	con	cept of money	and its importance in evaluating the r	projects.		

	07 Hrs
Introduction: Principles of Engineering Economy, Engineering Decision- Makers, Engine	ering and
Economics, Problem solving and Decision making, Intuition and Analysis, Tactics and Strategy.	
Interest and Interest Factors: Interest rate, Simple interest, Compound interest, Cash- flow	diagrams,
Exercises and Discussion.	
Unit – II	07 Hrs
Present worth comparison : Conditions for present worth comparisons, Basic Present worth com	nparisons,
Present worth equivalence, Net Present worth, Assets with unequal lives, infinite lives, Future	re worth
comparison, Pay – back comparison, Exercises, Discussions and problems.	
Unit – III	07 Hrs
Equivalent annual worth comparisons: Equivalent Annual Worth Comparison methods, Situ	ations for
Equivalent Annual Worth Comparison Consideration of asset life, Comparison of assets with	equal and
unequal lives, Use of sinking fund method, Exercises, Problems.	
Rate of return calculations: Rate of return, Minimum acceptable rate of return, IRR, IRR misco	nceptions,
Problems	
riobenis.	
Unit – IV	06 Hrs
Unit – IV Replacement Analysis: Replacement studies, replacement due to deterioration, obsolescence, in	06 Hrs adequacy,
Unit – IV Replacement Analysis: Replacement studies, replacement due to deterioration, obsolescence, in economic life for cyclic replacements, Exercises, Problems.	06 Hrs adequacy,
Unit – IV Replacement Analysis: Replacement studies, replacement due to deterioration, obsolescence, in economic life for cyclic replacements, Exercises, Problems. Break- Even Analysis: Basic concepts, Linear Break- Even analysis, Exercises, Problems.	06 Hrs adequacy,
Unit – IV Replacement Analysis: Replacement studies, replacement due to deterioration, obsolescence, in economic life for cyclic replacements, Exercises, Problems. Break- Even Analysis: Basic concepts, Linear Break- Even analysis, Exercises, Problems. Unit – V	06 Hrs adequacy, 06 Hrs
Unit – IV Replacement Analysis: Replacement studies, replacement due to deterioration, obsolescence, in economic life for cyclic replacements, Exercises, Problems. Break- Even Analysis: Basic concepts, Linear Break- Even analysis, Exercises, Problems. Unit – V Depreciation: Causes of Depreciation, Basic methods of computing depreciation charges,	06 Hrs adequacy, 06 Hrs Exercises,
Unit – IV Replacement Analysis: Replacement studies, replacement due to deterioration, obsolescence, in economic life for cyclic replacements, Exercises, Problems. Break- Even Analysis: Basic concepts, Linear Break- Even analysis, Exercises, Problems. Unit – IV Depreciation: Causes of Depreciation, Basic methods of computing depreciation charges, Problems.	06 Hrs adequacy, 06 Hrs Exercises,
Unit – IV Replacement Analysis: Replacement studies, replacement due to deterioration, obsolescence, in economic life for cyclic replacements, Exercises, Problems. Break- Even Analysis: Basic concepts, Linear Break- Even analysis, Exercises, Problems. Unit – V Depreciation: Causes of Depreciation, Basic methods of computing depreciation charges, Problems. Effects of inflation: Causes, consequences and control of inflation, inflation in economic analysis	06 Hrs adequacy, 06 Hrs Exercises, s.
Unit – IV Replacement Analysis: Replacement studies, replacement due to deterioration, obsolescence, in economic life for cyclic replacements, Exercises, Problems. Break- Even Analysis: Basic concepts, Linear Break- Even analysis, Exercises, Problems. Unit – V Depreciation: Causes of Depreciation, Basic methods of computing depreciation charges, Problems. Effects of inflation: Causes, consequences and control of inflation, inflation in economic analysi	06 Hrs adequacy, 06 Hrs Exercises, s.
Unit – IV Replacement Analysis: Replacement studies, replacement due to deterioration, obsolescence, in economic life for cyclic replacements, Exercises, Problems. Break- Even Analysis: Basic concepts, Linear Break- Even analysis, Exercises, Problems. Unit – V Depreciation: Causes of Depreciation, Basic methods of computing depreciation charges, Problems. Effects of inflation: Causes, consequences and control of inflation, inflation in economic analysi Course Outcomes: After going through this course the student will be able to	06 Hrs adequacy, 06 Hrs Exercises, s.

	1	e
CO 2:	Compare the alternatives using different comp	bound interest factors, Select a feasible alternative
	based on the analysis.	
CO 3:	Formulate a given problem for decision making	ng

CO 4:	Evaluate alternatives and develop capital budget for different scenarios
	Drandate anternatives and develop capital badget for anterent section

Reference Books:					
1.	Engineering Economy, Riggs J.L., 5th Edition, Tata McGraw Hill, ISBN 0-07-058670-5				
2.	Engineering Economics, R Panneerselvam, Eastern Economy Edition 2001, PHI, ISBN - 81-				
	203-1743-2.				
3.	Cost Accounting, Khan M Y, 2nd Edition, 2000, Tata McGraw-Hill, ISBN 0070402248				
4.	Mechanical Estimating & Costing, T.R.Banga, S.C.Sharma, 16th Edition, 2011, Khanna				
	Publishers, ISBN 8174091009				

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	1	1	-	-	-	-	-	-	-	-	1
CO2	2	1	1	-	-	-	-	-	-	-	-	-
CO3	1	1	1	-	1	-	-	-	-	-	-	-
CO4	-	1	2	-	1	1	-	-	-	-	1	-

		V	'I Semester			
INTELLECTUAL PROPERTY RIGHTS AND ENTREPRENEURSHIP						
Course Code	•	18HSI61	(Ineory)	CIE	•	100 Marks
Credits: L:T:P	•	3:0:0		SEE	•	100 Marks
Total Hours	•	301		SEE Duration	•	100 Marks
Course Learning	· Oh	inctives: The students y	will be able to	SEE Duration	•	05 111 5
1 To build awarer		on the various forms of	of IPR and to build	the perspectives on	the	concepts and
to develop the li	inka	ages in technology inno	vation and IPR.	t the perspectives on	une	concepts and
2 To encourage	inn	ovation, invention an	d investment and	d disclosure of new	Te	chnology
and to recognize	ze a	and reward innovative	eness			
3 To motivate to	owa	rds entrepreneurial ca	reers and build	strong foundations	ski	lls to enable
starting, buildin	g ai	nd growing a viable as	well as sustainable	e venture.		
4 Develop an ent	rep	reneurial outlook and	mind set along v	with critical skills an	nd l	knowledge to
manage risks as	soc	iated with entrepreneur	·S.			
		TI	•́4 Т			00 11
Introduction. Typ		UII of Intellectual Property	WIPO			Uð Hrs
Patents • Introduc	tion	Scope and salient	features of nat	ent natentable and	l n	on-natentable
inventions Patent	P	ocedure - Overview	Transfer of Pat	ent, patentable and	າກດ່	logy patents
protection of tradit	ion	al knowledge. Infringer	nent of patents an	d remedy. Case studi	es	iogy patentis,
Trade Secrets: De	fini	tion. Significance. Toc	als to protect Trade	e secrets in India.	•••	
		Unit	: – II			08 Hrs
Trade Marks: Co	nce	ept, function and differ	rent kinds and for	rms of Trade marks,	Re	gistrable and
non- registrable m	arks	. Registration of Trad	e Mark; Deceptive	e similarity; Transfer	r of	Trade Mark,
ECO Label, Passin	g o	ff, Infringement of Trac	de Mark with Case	e studies and Remedi	es.	
		Unit	-III			09 Hrs
Industrial Design	: In	troduction of Industria	l Designs Feature	s of Industrial, Desig	gn. I	Procedure for
obtaining Design P	rot	ection, Revocation, Inf	ringement and Rei	medies, Case studies		
Copy Right: Intro	duc	tion, Nature and scope	, Rights conferred	by copy right, Copy	rig	ht protection,
transfer of copy ri	ght	s, right of broad castin	ig organizations a	ind performer's right	is, I	Exceptions of
Copy Right, Infring	gen	ent of Copy Right with	1 case studies		1:00	and true of
aubororimo. Ovoru	iow	of Information Tachno	logy Act 2000 and	d IT A mondmont A of	200	rent types of
	iew	Unit	<u>-IV</u>	a 11 Amenument Act	200	00 07 Hrs
Introduction to E	ntr	epreneurshin – Learn	how entrepreneu	rship has changed th	e w	orld Identify
six entrepreneurial	mv	ths and uncover the tru	e facts. Explore E	-cells on Campus	0	ond. Identify
Listen to Some	Suc	cess Stories: - Globa	al legends Under	stand how ordinary	pe	ople become
successful global	en	trepreneurs, their jou	rneys, their cha	llenges, and their	suc	cess stories.
Understand how or	din	ary people from their o	wn countries have	e become successful	entr	epreneurs.
Characteristics of	f a	Successful Entrepren	eur Understand t	he entrepreneurial jo	ourr	ney and learn
the concept of diff	fere	nt entrepreneurial style	es. Identify your	own entrepreneurshi	p st	yle based on
your personality the	raits	s, strengths, and weak	nesses. Learn abo	out the 5M Model,	eac	h of the five
entrepreneurial sty	les	in the model, and how	they differ from ea	ach other. Communi	cate	e Effectively:
Learn how incorre	ct a	ssumptions and limitin	g our opinions ab	out people can negat	ive	ly impact our
communication.	[der	ntify the barriers w	which cause cor	nmunication break	low	n, such as
miscommunication	an	d poor listening, and le	arn how to overco	me them.		
Communication 1	Bes	t Practices. Understar	nd the importance	e of listening in con	nmı	inication and
learn to listen acti	vel	y. Learn a few body l	anguage cues suc	ch as eye contact an	d h	andshakes to
strengthen commu	nica	tion. (Practical Applica	ation)			0711
Dogian Thislin -	for	Uni	Understand D-	aion Thinking an -		U/Hrs
Design Ininking	101 hc	Ustomer Delight:	- Understand De	sign Ininking as a	pro	obiem-solving
process. Describe t	ne	principles of Design Th	inking. Describe f	the Design Thinking	pro	cess.

Sales Skills to Become an Effective Entrepreneur: - Understand what customer focus is and how

all selling effort should be customer-centric. Use the skills/techniques of personal selling, Show and Tell, and Elevator Pitch to sell effectively.

Managing Risks and Learning from Failures: - Identify risk-taking and resilience traits. Understand that risk-taking is a positive trait. Learn to cultivate risk-taking traits. (Practical Application) Appreciate the role of failure on the road to success, and understand when to give up. Learn about some entrepreneurs/risk-takers. (Practical Application).

Are You Ready to be an Entrepreneur: - Let's ask "WHY" Give participants a real picture of the benefits and challenges of being an entrepreneur. Identify the reasons why people want to become entrepreneurs. Help participants identify why they would want to become entrepreneurs.

Reference Books

- **1.** Law Relating to Intellectual Property, Wadehra B L,5th Edition, 2012, Universal Law Pub Co. Ltd.-Delhi, ISBN: 9789350350300
- **2.** Intellectual Property Rights: Unleashing Knowledge Economy, Prabuddha Ganguly, 1st Edition, 2001, Tata McGraw Hill Publishing Company Ltd., New Delhi, ISBN: 0074638602.
- **3.** Intellectual Property and the Internet, Rodney Ryder, 2002, Lexis Nexis U.K., ISBN: 8180380025, 9788180380020.
- **4.** Entrepreneurship, Rajeev Roy, 1st Edition, 2012, Oxford University Press, New Delhi, ISBN: 9780198072638.

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Comprehend the applicable source, scope and limitations of Intellectual Property within					
	the purview of engineering domain.					
CO2:	Knowledge and competence related exposure to the various Legal issues pertaining to					
	Intellectual Property Rights with the utility in engineering perspectives.					
CO3:	Enable the students to have a direct experience of venture creation through a facilitated					
	learning environment.					
CO4:	It allows students to learn and apply the latest methodology, frameworks and tools that					
	entrepreneurs use to succeed in real life.					

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. 50% weightage should be given to case studies. Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level. **50% weightage should be given to case studies.**

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	2	-	1	2	2	-	1
CO2	1	1	-	-	-	3	2	3	1	2	-	1
CO3	-	1	-	-	-	2	1	3	3	3	3	3
CO4	-	1	2	2	3	-	-	-	1	-	2	1

DESIGN AND DRAWING OF STEE (Theory & Practice) Course Code : 18CV62 : 2.0.1	L STRUCTURES								
(Theory & Practice) Course Code : 18CV62 Course Code : 2001) CIF								
Course Code : 18CV62	CIF	(Theory & Practice)							
	Course Code : 18CV62 CIE : 100+50 Marks								
Credits: L:1:P : 3:0:1	SEE	:	100+50 Marks						
Total Hours: 39L+33PSEE Duration: 3 Hrs+									
Course Learning Objectives: The students will be able to									
1 Understand the behavior of elements in steel structures 800:2007 is the code of practice used in the course)	using current desi	gn	specifications.(IS						
2 Apply their knowledge from statics, and structural ana between analysis and design of steel structures	2 Apply their knowledge from statics, and structural analysis understanding in the relationship between analysis and design of steel structures								
3 Design of steel structural elements of different forms, connections under different states of loading and to prepare structural steel drawings.									
Unit-1 Introduction: Adventages and disadventages of steel structu	mag load and load	0.000	binations design						
nii ouucion. Auvanages and uisauvanages of sieer structu philosophies, structural forms	ures, ioau aliu ioau (.0111	omations, design						
Bolted connections: Advantages Types Modes of failures	Introduction to sim	nle	semi rigid and						
rigid connections. Eccentric connections (plane of connection parallel and perpendicular to the plane of									
moment) Simple beam to beam and beam to column connection	ons: Framed stiffene	ed r	instiffened seated						
connections.	ons. I funica, stiffene	, u, u							
Unit-II 08 Hrs									
Welded connections: Advantages, disadvantages, Types of joints, weld symbols. Design of simple									
joints, eccentric connections, (plane of connection parallel and perpendicular to the plane of									
moment).Simple beam to beam and beam to column connections, Framed, stiffened, unstiffened seated									
connections using welds.									
Unit-III									
Design of tension members: modes of failures, Analysis and design of tension members- angles, Lug									
angles, Introduction to Artificial Intelligence in Steel design									
Unit-IV 08 Hrs									
Design of compression members: Failure modes, section used for compression member, member									
classification, analysis and design of simple axially loaded members. Design of lacing, battens, Design									
of slab base.									
Unit V 07 Hrs									
Design of beams: Beam types, section classification, design	gn of laterally suppo	orte	d beams, Design						
procedure for laterally unsupported beams.									
Unit-IV 08 Hrs Design of compression members: Failure modes, section used for compression member, member classification, analysis and design of simple axially loaded members. Design of lacing, battens, Design of slab base. 07 Hrs Unit V 07 Hrs Design of beams: Beam types, section classification, design of laterally supported beams, Design 08 Hrs									

Laboratory

Part-B1

a) Data given drawing using drafting software of the following

i) Beam to beam connections - Framed connections- bolted and welded

ii) Beam to column connections - unstiffened and stiffened connections - bolted and welded.

iii) Laced and battened column- bolted and welded

Part-B2

b) Design and drawing

i.Gusset Base

ii.Roof truss including bolted and welded connection, supports

Course Outcomes: After completing the course, the students will be able to							
CO1	Explain the engineering properties and behavior of structural steel						
CO2	Apply the behavior of steel members and connections to analyze structural components						
CO3	Analyze and evaluate critical capacity of structural steel sections						
CO4	Design and detail steel members and connections						

Ref	erence Books
1.	Subramanian N, 'Design of Steel structures', Oxford University press, 2 nd Edition, 2016, ISBN
	9780199460915
2.	S K Duggal, 'Limit state design of steel structures', Tata McGraw Hill Education Private Limited,
	2017, 2 nd edition, ISBN-13 978-9351343493
3.	Bhavikatti S S, 'Design of Steel structures', I K International Publications, 2016, 3 rd editionISBN
	9789382332091
4.	BIS Codes:
	i) IS-800-2007, General construction in steel-code of practice.
	ii) IS 875-1987, Code of practice for design loads,
	iii) SP6(6)- 1972, ISI handbook for structural engineers-application of plastic theory in
	design of steel structures.
	iv) SP6(1)-1964,Reaffirmed in 2003 Handbook for structural engineers- Structural steel sections

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks are considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and viva is for 10marks. The laboratory consists of Part B1 and Part B2. Out of 40 marks , Part-B1 is evaluated for 15 marks and Part-B2 is evaluated for 25marks (Design-15, Drawing-10). Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	-	-	-	1	-	-	-	1
CO2	3	1	-	-	-	-	-	2	-	-	-	2
CO3	1	3	2	-	-	-	-	2	-	-	-	2
CO4	3	-	3	-	-	-	1	3	-	-	-	3
	Semester: VI											
----------------	---	------------	-------------------	---------------------	-------	---	--------------	--				
	WASTE WATER ENGINEERING											
				(Theory & Practice)								
Co	urse Code	:	18CV63	CIE Mar	ks	:	100+50 Marks					
Credits: L:T:P		:	3:0:1	SEE Mar	·ks	:	100+50 Marks					
Total Hours		:	39L+33P	SEE Dura	ation	:	3 Hrs+3 Hrs					
Co	urse Learning	g O	bjectives: Studen	ts will be able to								
1	To understand the importance and necessity of scientific collection and disposal systems for storm and wastewater.											
2	2 To analyze flow variation of sewage and storm water and to estimate design flows for a community											
3	3 To design suitable conveyance systems for sewage and storm water											
4	To study physical, chemical and biological characteristics and treatment methods to ensure safe disposal of wastewater.											

UNIT-I 07 Hrs Introduction: -Necessity of sanitation, types of sewerage systems and their suitability. Quantity of Sewage: dry weather flow, factors affecting dry weather flow. Flow variations and their effects on design of sewerage system; computation of design flow, estimation of storm flow, rational method and empirical formulae for design of storm water drain; Time of concentration, Numerical problems.

UNIT-II	09 Hrs
Design of Sewers. Hydraulic formulae for velocity, effects of flow variations on veloc	city, self-
cleansing and non-scouring velocities, Design of hydraulic elements for circular sewers	s flowing
full and partially full conditions. Numerical problems.	

Sewer Appurtenances: Inlets, catch basins, manholes, storm water regulator, oil and grease traps. Analysis of Sewage: Physical, Chemical and Biological characteristics, concepts of aerobic and anaerobic activity, BOD and COD. Sampling - significance, techniques and frequency. Numerical problems.

UNIT-III	07 Hrs
Treatment of Sewage. Flow diagram of municipal sewage treatment plant - Importance	of each
unit.	

Primary treatment-Screening, Grit chambers, Primary sedimentation tanks -concepts and Design.

UNIT-IV	08 Hrs
Secondary treatment: Trickling filter -theory and operation, types and design. Activated	sludge
process -principle and flow diagram, methods of aeration, modifications, F/M ratio, design	of ASP
UNIT-V	08 Hrs
Disposal of Effluents. By dilution, self-purification phenomenon, oxygen sag curve,	zones of
purification, sewage farming, sewage sickness, Disposal standards on land and water body.	

Anaerobic sludge digestion- Principles, digestion tanks, Sludge drying beds, design. Miscellaneous Treatment Methods: Septic tanks and Oxidation Pond –Concept and Design.

Introduction to Artificial Intelligence in waste water treatment: Types of AI, Applications of AI (Artificial Neural Networks, Fuzzy Logic, Genetic Algorithms) in waste water, Disadvantages of AI in treatment of waste water.

	Laboratory
1	Determination of Alkalinity, Acidity and pH.
2	Determination of Calcium, Magnesium and Total Hardness.
3	Determination of Chlorides and Sulphates.
4	Determination of percentage of available chlorine in bleaching powder, Residual Chlorine and Chlorine Demand.
5	Removal of turbidity by Jar test.
6	Determination of Iron.
7	Determination of Fluorides.
8	Determination of Solids in Sewage: Total Solids, Suspended Solids, Dissolved Solids, Volatile Solids, Fixed Solids, Settleable Solids.
9	Determination of DO
10	Determination of BOD and COD.
11	Total Count Test & MPN Determination.

Course	Course Outcomes: After completing the course, students will be able to					
CO1:	Estimate average and peak wastewater from a community and design suitable conveyance					
	system for sewage and storm water.					
CO2:	Evaluate wastewater quality to suggest suitable small scale treatment option.					
CO3:	Design a comprehensive wastewater treatment system to achieve required quality standards					
	for safe disposal and reuse of wastewater.					
CO4:	Design of effective and efficient sludge and waste water disposal system.					

Reference Books

1.	S. K. Garg "Environmental Engineering: Sewage Disposal and Air Pollution Engineering
	(Volume - 2), 33 Edition, 2015, Khanna Publishers, ISBN: 9788174092304, 8174092307.
2.	Water and Waste water Engineering Vol-II -Fair, Gayer and Okun, Willey publishers, New
	York.2008, ISBN-10: 0470411929, ISBN-13: 978-0470411926
3.	Wastewater treatment Concepts and Design Approach by Karia G.L., Chritian R.A. Second
	Edition, 2013. Prentice Hall India Private limited, ISBN-10: 8120328604, ISBN-13: 978-
	8120328600.
4.	Waste Water Treatment, Disposal and Reuse -Metcalf and Eddy inc, Tata McGraw Hill
	Publications (2008 Edition), ISBN-10: 0071008241, ISBN-13: 978-0071008242
5.	CPHEEO Manual on "Wastewater Collection, Treatment and Disposal", Ministry of Urban
	Development, Government of India, New Delhi.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) +10 (T) +10 (IE) =50 Marks.

Civil Engineering

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

					CO	-PO Ma	apping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	3	2	-	2	2	2	-	-	-	1
CO2	3	2	2	2	-	2	2	2	-	-	-	1
CO3	2	1	3	-	-	2	2	2	-	-	-	-
CO4	3	-	3	-	-	2	2	2	-	-	-	-

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

	Semester: VI							
	ESTIMATION AND COSTING							
				(Theory)				
С	ourse Code	:	18CV64		CIE	:	100 Marks	
С	redits: L:T:P	:	3:0:0		SEE	:	100 Marks	
Total Hours			39L		SEE Duration	:	3.00 Hours	
С	ourse Learning Objec	tiv	es: The students	s will be able to				
1	Estimator learns to re-	read the construction drawings and extract quantities of items of different items						
1	involved in the construction project and prepare estimates for the proposed project							
2	Imparting the knowledge of different types of estimates-Item wise, area basis, contract documents,							
4	departmental procedures etc							
3	2 Calculations and earthwork quantities for construction, earthen embankments, canals			nts, canals etc.				
3	Preparation of detailed specification for the items of constructions							
4	Preparation of construction estimates using available software for accuracy and faster preparation							
5	Retrieval of data, Rate	e ar	alysis, perform o	calculations in sho	rter time enabling th	he e	estimator to give	
3	more attention to alternative construction methods, to assess labour and equipment utilization							

UNIT-I	08 Hrs		
Estimation: Different type of estimates, study of various drawing attached with estimates	s, important		
terms, units of measurement, abstract of estimate, approximate methods of estimating bui	ldings, cost		
from materials and recommended labour coefficients.	-		
Building Estimate: Methods of taking out quantities and cost-center line method, long an	d short wall		
method or crossing method. Preparation of detailed and abstract estimates for the follo	owing Civil		
Engineering works - Buildings - Masonry structures, framed structures with flat, slopped	RCC roofs		
with all building components. Culverts (includes box culvert, pipe culvert and RC sla	ub culverts)		
manhole and septic tank.			
AI in estimating civil engineering structures.			
UNIT-II	07 Hrs		
Specifications: Definition of specifications, objectives of writing specifications, es	ssentials in		
specifications, general and detailed specifications of item of works in buildings, speci	fications of		
aluminum and wooden partitions, false ceiling, aluminum and fiber doors and windows. Various			
types of claddings.			
UNIT-III	08 Hrs		
Contracts: Types of contract-essential of contract -legal aspects, penal provision or	breach of		
contract. Definition of the terms-Tender, Earnest money deposit, tender forms, documents and types.			
Comparative statements, acceptance of contract documents and issue of work orders, duties and			
liabilities, termination of contract, completion certificate, quality control, right of contract	or refund of		
deposit. Administrative approval - Technical sanction. Nominal muster roll, measureme	ent books –		
procedure for recording and checking measurements – preparation of bills.			
UNIT-IV	08 Hrs		
Measurement of Earth Work for Roads: Methods for computation of earthwork-cro	ss sections-		
med section formula, trapezoidal or average end area or mean sectional area formula,	prismoidal		
formula.	_		
Project Preparation: Preliminary Survey Report and Detailed Project Report			
UNIT-V			
Rate analysis: Definition and purpose. Working out quantities and rates for the followi	08 Hrs		
The analysis bet and purpose of an and the former a	08 Hrs ng standard		
items of works – earth work in different types of soils, cement concrete of different mixes	08 Hrs ng standard , bricks and		
items of works – earth work in different types of soils, cement concrete of different mixes stone masonry, flooring, plastering, RCC works, centering and form work for different	08 Hrs ng standard , bricks and RCC items,		

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Extract quantities of construction items by reading engineering / construction drawings and					
	specifications followed in executing projects					
CO2:	Prepare of estimates using different methods for building projects (RCC, Steel Structures,					
	Masonry, Road and Hydraulic Structures)					
CO3:	Apply the method of working out unit rate analysis of different construction items for					
	finally prepared tendered documents					
CO4:	Create tender document, billing of qualities of works and other financial related issues					

Reference Books

1.	N. Chakraborti, "Estimating, costing, specification and Valuation in Civil Engg", Published
	by author, Culcutta, 20 th Edition, 2007
2.	B.N. Dutta, "Estimating & Specification", USB Publishers and Distributors, New Delhi, 25 th
	Revised Edition, 2006, ISBN 817476383X, ISBN 9788174763839
3.	S.C. Rangawala, "Estimating and Specification", Charotar Publishing House, Anand, 2008
4.	G.S. Birdie, "Text book of Estimating and Costing", Dhanpath Rai and Sons, New Delhi, 1 st
	Edition, 2008

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Experiential Learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

The question paper consists of Part A and Part B. Part A will be for 20 marks covering the complete syllabus and is compulsory.

Part B will be for 80 marks and shall consist of four questions (descriptive, analytical, problems or/and design). Question from unit I shall be for 35 marks and remaining three questions for 15 marks. All four questions from part B will have internal choice and one of the two have to be answered compulsorily.

					CO-	ΡΟ Με	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	-	-	-	2	-	-	2	-
CO2	3	1	-	-	-	-	-	-	-	-	-	-
CO3	1	-	-	-	-	-	-	-	-	-	2	-
CO4	-	2	-	-	2	-	-	-	-	-	3	-

Semester End Evaluation (SEE): Theory (100 Marks) = Total 100 Marks

	Semester: VI						
			IN	TERNET OF THIN	IGS		
			(Electi	ve C: Professional E	lective)		
			(C	ommon to All Branc	hes)	-	ſ
Cours	Irse Code : 18CS6C1 CIE Marks : 100						100
Credi	ts: L:T:P	:	3:0:0		SEE Marks	:	100
Total	Hours	:	39L		SEE Duration	:	3 Hrs
Cours	e Learning (Objec	ctives: The stude	nts will be able to			
1.	Understand	l desi	gn principles in	lot ,edge ,fog comput	ing and its challeng	es	
2.	Identify the	e Inte	rnet Connectivity	y, security issues and	its protocols		
3.	Explore and	d imp	olement Internet	of Things (IoT) and N	lew Computing Para	dig	ms
4.	Apply and Clouds	analy	ze the Orchestra	tion and resource man	nagement inioT, 5G,	Fo	g, Edge, and
-			Unit	<u>– I – – – – – – – – – – – – – – – – – –</u>		8	Hrs
Interne	t of Things S	trateg	gic Research and	Innovation Agenda -	Internet of Things V	isic	on ,IoT Strategic
Resear	ch and Innov	ation	Directions, IoT	Applications, Interne	et of Things and Rel	ateo	1 Future Internet
Drive	blogies, inira	struc	ture, Networks	and Communication,	Processes, Data Ma	inag	gement, Security,
Privac	y & Trust, D	evice	Level Ellergy Is	sues II		0	Una
Intorna	t of Things S	tonde	UIII UIII	– II tus Paguiramants Ini	tiativas and Organia	otic	nis Introduction
M2M	Service Laver	v Ston	dardisation OC	C Sensor Web for Io	T IFFF and IFTF		T T Simpler IoT
Word	s) of Tomorro	w N	Interoperation of the Interoperation	ility Challenges to Co	ne Today-Physical y	11 U 76 V	Virtual Solve the
Basic I	First — The F	hvsia	cal Word The I	ata Interoperability	The Semantic Intero	ner	ability The
Organi	zational Inter	opera	ability. The Eter	nal Interoperability,	The Importance of S	tan	dardisation — The
Beginr	ing of Everv	thing					
	<u> </u>	0	Unit	- III		8	Hrs
Intern	et of Things	Priva	acy, Security an	d Governance-Introd	luction, Overview of	f A	ctivity Chain —
Govern	nance, Privac	y and	Security Issues,	Contribution From F	P7 Project, Security	and	1 Privacy
Challe	nge in Data A	ggre	gation for the Io	Γ in Smart Cities-Sec	urity, Privacy and Ti	ust	in Iot-Data-
Platfor	ms for Smart	Citie	es, First Steps To	wards a Secure Platfo	orm, Smartie Approa	ch	
			Unit	- IV		8	Hrs
Intern	et of Things	(IoT) and New Com	puting Paradigms Fo	og and Edge Compu	ting	g Completing the
Cloud ,Advantages of FEC: SCALE , How FEC Achieves These Advantages: SCANC 9, Hierarchy of							
Fog an	Fog and Edge Computing, Business Models, Addressing the Challenges in Federating Edge						
Resources, The Networking Challenge, The Management Challenge, Integrating IoT + Fog + Cloud							
$\frac{\text{Unit} - \text{V}}{7 \text{ Hrs}}$							
Management and Orchestration of Network Slices in 5G, Fog, Edge, and Clouds Introduction							
,Backg	round, Netwo	ork S	licing in 5G, Net	work Slicing in Softw	vare-Defined Clouds	, N	etwork Slicing
Course Outcomes: After completing the course, the students will be able to							
	Course Outcomes: After completing the course, the students will be able to						
	Edge and C	lond	S	or rinings (101) with 1	tow computing I al	uur	5ms nike 50, 10g,
CO 2.	Analyze Pro	totvr	ing and demons	trate resource manage	ment concepts in Ne	w	Computing
	Paradigms		and demons	and resource munuge	since concepts in tw	- ••	
CO 3:	Apply optim	nal w	vireless technolog	gy to implement Inter	rnet of Things and ea	lge	computing
	applications						

CO 4: Propose IoT-enabled applications for building smart spaces and services with security features,

Refer	rence Books:
1.	Internet of Things: Converging Technologies for Smart Environments and Integrated Ecosystems, Dr. Ovidiu Vermesan, Dr. Peter Friess, River Publishers, 2013ISBN: 978-87-92982-73-5(Print)
	ISBN: 978-87-92982-96-4(E-Book).
2.	Fog and Edge Computing: Principles and Paradigms, <u>Rajkumar Buyya</u> , <u>Satish Narayana Srirama</u> , 2019, Wiley series on parallel and distributed computing, ISBN: 978-1-119-52498-4.
3.	Internet of Things: Architecture and Design Principles, Raj Kamal, 2017, TMH Publications, ISBN:9789352605224.
4.	Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M Communications, Daniel Minoli, 1 st Edition, 2013, Willy Publications, ISBN: 978-1-118-47347-4.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-P	'O Map	ping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	1	-	2	2	-	-	1	-	2
CO2	2	2	1	1	-	2	2	-	1	1	-	3
CO3	1	2	1	1	-	2	2	-	1	1	-	2
CO4	1	2	2	2	-	3	3	1	2	2	-	3

	Semester: VI						
			ADVANCED	CONCRETE TEC	CHNOLOGY		
			(Group	C: Professional El	lective)		
Co	urse Code	:	18CV6C2		CIE	:	100 Marks
Cr	Credits: L:T:P : 3:0:0 SEE : 100 Marks						100 Marks
To	tal Hours	:	39L		SEE Duration	:	3 Hrs
Co	urse Learning O	bje	ctives: The stude	nts will be able to			
1	Analyze the suita	bil	ity of concrete for	filed applications			
2 Assess the methods of determining ingredients for making concrete							
3 Outline the importance of durability and proportioning							
4	4 Describe various types of modern concretes						

4 Describe various types of modern concretes

Unit-I	08 Hrs
Microstructure and Dimensional stability -Structure of a Hydrated Cement Paste, porce	osity of paste
and concrete, transition Zone, Elastic Modulus, factors affecting strength and elasticity	of concrete.
Shrinkage, creep and thermal effects.	
Unit-II	07 Hrs
Chemical admixtures- Mechanism of chemical admixture, Plasticizers and super Plasticize	rs, dosage
and their effect on concrete properties in fresh and hardened state, Mineral admixture-Fly as	h, Silica
fume, GGBS, metakaolin.	
Unit-III	08 Hrs
Durability of concrete - Introduction, impermeability of concrete, acid attack, efflorescence	e, Corrosion-
Factors influencing corrosion, pH, carbonation, Freezing and thawing, Alkali Aggregate Rea	action,
IS456-2000 requirement for durability. Remedial measures.	
Unit-IV	08 Hrs
Mix design : Concrete Mix Design by ACI and other methods - Numerical examples	. Differences
between ACI and IS methods of proportioning using IS-10262-2019, Basic concepts of Mach	ine Learning
in concrete mix design – case studies.	
Geopolymer Properties and applications Geopolymer concrete,	
Self-compacting concrete Properties and applications of self-compacting concrete.	
Unit V	08 Hrs
Fiber reinforced concrete – Fibers types and properties, Behavior of FRC in compression, A	applications.
Light weight concrete-materials properties and types. Typical light weight concrete mix	
High density concrete, High performance concrete and High strength concrete -materia	lls, properties
and applications, typical mix. Concept of disaster resistant concrete structures - Effect of groups and applications, typical mix. Concept of disaster resistant concrete structures - Effect of groups and applications and applications are applied as a structure of the structure	ound shaking
on structures. Ground failure, Tsunami and tidal wayos, fire	

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Understand dimensional stability, microstructure and properties of cement concrete					
CO2:	Assess the methods of determining the suitable admixture and ingredients for making concrete					
CO3:	Outline the importance of durability of conventional and other concretes					
CO4:	Describe properties and applications of concretes					

 Shanthakumar.A.R, Concrete technology, Oxford University Press, New Delhi, 2007, ISBN 9780195671537 Shetty. M.S., Concrete Technology Theory and Practice, S.Chand& Co Ltd., New Delhi, 200 ISBN-13: 978-8121900034. Kumar Mehtha.P and Paulo J M Monteiro., Concrete Microstructre, Properties and Materia Indian Edition Indian Concrete Institute Chennai 1997 ISBN-13: 978-93392047 	Ref	erence Books
 Shetty. M.S., Concrete Technology Theory and Practice, S.Chand& Co Ltd., New Delhi, 200 ISBN-13: 978-8121900034. Kumar Mehtha.P and Paulo J M Monteiro., Concrete Microstructre, Properties and Materia Indian Edition Indian Concrete Institute Chennai 1997 ISBN-13: 978-93392047 	1.	Shanthakumar.A.R, Concrete technology, Oxford University Press, New Delhi, 2007,
 Shetty. M.S., Concrete Technology Theory and Practice, S.Chand& Co Ltd., New Delhi, 200 ISBN-13: 978-8121900034. Kumar Mehtha.P and Paulo J M Monteiro., Concrete Microstructre, Properties and Materia Indian Edition Indian Concrete Institute Chennai 1997 ISBN-13: 978-93392047 		ISBN 9780193071337
 ISBN-13: 978-8121900034. 3. Kumar Mehtha.P and Paulo J M Monteiro., Concrete Microstructre, Properties and Materia Indian Edition Indian Concrete Institute Chennai 1997 ISBN-13: 978-933920474 	2.	Shetty. M.S., Concrete Technology Theory and Practice, S.Chand& Co Ltd., New Delhi, 2007
3. Kumar Mehtha.P and Paulo J M Monteiro., Concrete Microstructre, Properties and Materia		ISBN-13: 978-8121900034.
Indian Edition Indian Concrete Institute Chennai 1997 ISBN-13-978-93392047	3.	Kumar Mehtha.P and Paulo J M Monteiro., Concrete Microstructre, Properties and Materials,
Indian Edition, Indian Concrete Institute, Chemian, 1777 ISBN -15. 776-755720476		Indian Edition, Indian Concrete Institute, Chennai, 1997 ISBN-13: 978-9339204761

	Publisher: McGraw Hill Education; 4 edition ,2014.
4.	Neville. A.M, Properties of concrete V Edition,(2012) Peaerson Education, Inc, and Dorling Kindersley Publishing Inc. ISBN-13: 978-8131791073.
5.	Gambhir M L., Concrete Technology theory and Practice, Fifth Edition, Tata McGraw Hill Education private Ltd, New Delhi. 2013 ISBN-13: 978-1259062551.
6.	IS: 10262-2019, Code of practice for concrete mix proportioning.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Semester End Evaluation (SEE): Theory (100 Marks) = Total 100 Marks

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	-	-	-	-	-	-	1	-	-
CO2	2	2	2	-	-	-	-	-	-	-	-	-
CO3	2	2	2	-	-	-	2	-	-	-	-	-
CO4	2	2	2	-	-	3	-	-	-	-	-	1

			Semester: VI			
		TRA	AFFIC ENGINEER	ING		
		(Grou	p C: Professional E	lective)		
Course Code	:	18CV6C3		CIE	: 100	Marks
Credits: L:T:P : 3:0:0 SEE : 100 Marks					Marks	
Total Hours	:	39L		SEE Duration	: 3 Hr	S
Course Learning	Obje	ctives: The stude	nts will be able to			
1 Understand fund	lame	ntals of Traffic En	igineering, concepts	and scope.		
2 Analyze the co engineering para	oncep mete	pt of road user ers	and vehicular char	acteristics and the	ir influend	ce on traffi
3 Analysis of data	, sar	npling and apply s	suitable solutions			
4 Design of traffic	sign	als, intersections	and parking layout.			
		.	Unit-I			08 Hrs
Human factors and Traffic Parameter S Objectives and Meth	veh Stud od o	nicular characteris ies f study -Definitior	stics affecting road on of study area -Sam	lesign and traffic floor	ow, motor ction.	vehicle act
			Unit-II			08 Hrs
Analysis and Interp	retat	ion of Traffic Stud	dies – Classified Vol	ume, Speed, Origin	and Destin	ation.
			Unit-III			08 Hrs
Design of signalize Signal timings as pe markings channelize	d in er IR ed ir	C guidelines. Type tersections and the	pes of intersections raffic rotary.	at grade such as int	ersections	with
			Unit-IV			08 Hrs
Parking and Accide Parking-on Street an data collection, Anal vehicle - Measures to	ent A d off ysis, o red	Analysis: f Street Parking stu , collision, collisio luce Accidents, Nu	idies and configuration and condition diag merical Problems.	on, design of layout. rams -right angle co	Accidents	s- Causes, n parked
			Unit V			07 Hrs
Traffic manageme Driver, Vehicle and signals- vehicle actua Design, IRC Method Intelligence in Publi	nt te Roac ated , - N	echniques d controls- Traffic and synchronized Jumerical Problem d Private transpor	Regulations-One Wa signals -Signal Co-o s except vehicle actu rtation.	ay- Traffic Signs- Tr rdination - Webster' ated signals. Applic	raffic mark s method c ation of A	ings-Traffic of signal rtificial
Course Outcomes	: Aft	ter completing the	e course, the studen	ts will be able to	for accider	nts , various

	aspects of traffic signal
CO2:	Apply traffic regulation controls to control accidents
CO3:	Evaluate causes for accidents and traffic regulations.
CO4:	Design by different methods viz., Webster's and IRC methods.

Referen	nce Books
1	Khanna, S.K. and Justo, C.E.G. Veeraragavan A, 'Highway Engineering', Nemchand and Bros. Roorkee, 10 th Edition, 2010, ISBN 8185240434, 9788185240435
2	Kadiyali, L.R., 'Traffic Engineering', Khanna Publishers, VII Edition, 2001, ISBN 8174091653, 97881740916.
3	Matson, Smith and Hurd., "Traffic Engineering", McGraw Hill and Co, III Edition, 2003, ISBN 0070409102
4	Shane and Roess, Traffic Engineering -, PHI, IV Edition, 2005, ISBN 0132076527.
5	IRC3-1983,9-1972,62-1976,64-1990,65-1976,66-1976,67-2001,69-1977,70-1977,73-1980,79-1981,80-1981,86-1983,92-1985,93-1985,99-1988,102-1988,103-1988,106-1990,110-1996 Indian Roads Congress.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	-	-	-	-	-	-	-	-	-	-	-			
CO2	-	2	3	2	-	-	-	-	-	-	-	1			
CO3	-	1	2	3	-	-	-	-	-	-	-	-			
CO4	1	-	2	3	-	-	-	-	-	-	-	-			

Semester End Evaluation (SEE): Theory (100 Marks) = Total 100 Marks

Semester: VI											
MUNICPAL AND PLASTIC WASTE MANAGEMENT											
(Group C: Professional Core Elective)											
Course Code	:	18CV6C4		CIE	:	100 Marks					
Credits: L:T:P	edits: L:T:P : 3:0:0 SEE : 100 Marks										
Total Hours:39LSEE Duration:3 Hrs											
Course Learning Ol	oje	ctives: The studer	nts will be able to								
1 Impart the knowle	edg	ge of present metho	ods of municipal and	d plastic waste mana	ger	nent system and to					
analyze the drawl	oac	ks.									
2 Understand vario	us	waste management	t statutory rules.								
3 Identify the adver	se	effects of imprope	r waste managemen	t on environment.							
4 Analyze different	el	ements of solid wa	ste management, de	sign and develop re	cycl	ling options.					
		Ţ	UNIT-I			08 Hrs					
Introduction: Land	Pol	llution. Scope and	l importance of soli	d waste managemer	nt. F	Present solid waste					
disposal methods. M	ler	its and demerits of	of open dumping,	feeding to hogs, ir	icin	eration, pyrolysis,					
composting, sanitary	lar	ndfill. Definition an	nd functional element	nts of solid waste m	ana	gement.					
Sources: Sources of	Sol	lid waste, types of	solid waste, compos	sition of municipal s	olic	l waste, generation					
rate, Numerical Probl	en	18.									
UNIT-II						07 Hrs					
Collection and tran	sp	ortation of muni	icipal solid waste:	Handling and seg	rega	ation of wastes at					
source, Collection (p	rin	nary & secondary)) of municipal solid	l wastes, collection	equ	ipment, collection					
route optimization, M	lur	nicipal Solid waste	(Management and I	Handling) 2016 rule	s.						
		U	NIT-III			08 Hrs					
Composting Aerob	ic	and anaerobic c	composting - proc	ess description, p	roce	ess microbiology,					
Vermicomposting, Si	te	visit to compost pl	ant, Numerical prob	olems.							
Sanitary land fillin	g :	Definition, advar	ntages and disadvar	ntages, site selection	on,	methods, reaction					
occurring in landfill-		Gas and Leachate	movement, Control	of gas and leachate	e mo	ovement, Site visit					
to landfill site.											
UNIT-IV 08 Hrs											
Plastic waste mana	gei	ment: Types of p	lastic, uses, global	and Indian statistic	s, s	sources, Impact of					
plastic waste on land,	m	arine and wild life	, Plastic waste mana	agement rules 2016.							
		t	JNIT-V			08 Hrs					
Recycling of plastic	Wa	aste: Possible alter	rnate materials to p	lastics, Greener alte	rnat	ives, green plastic					
products, bio-based p	products, bio-based plastic products, plastic resources, recovery and circular economy.										

Course	Course Outcomes: After completing the course, the students will be able to											
CO1:	Understand the existing municipal and plastic management system and to identify their											
	drawbacks.											
CO2:	Identify the adverse effects of improper waste management on environment											
CO3:	Evaluate and monitor the flow of Municipal and Plastic waste as per the rules laid by Ministry											
	of Environment & Forest											
CO4:	Design recycling and disposal options for municipal and plastic waste.											

Refe	rence Books
1.	Integrated Solid Waste Management : Engineering principles and management issues George Tchobanoglous, Hilary Theisen , Samuel A Vigil, published by M/c Graw hill Education .
	Indian edition 2014. ISBN – 13: 978- 9339205249, ISBN-10 : 9339205243
2.	Environmental Engineering, Howard S Peavy, Donald R Rowe and George Tchobanoglous, Tata Mcgraw Hill Publishing Co ltd., 2013, ISBN-13 9789351340263.
3.	Municipal Solid waste (Management & Handling Rules) 2016. Ministry of Environment & Forest Notification, New Delhi.
4.	Plastic waste management rules 2016. Ministry of Environment & Forest Notification, New Delhi.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	1	-	-	-	-	2	2	-	-	-	-	-		
CO2	2	2	-	1	1	3	2	-	1	-	-	-		
CO3	2	2	3	-	-	2	2	2	1	-	-	1		
CO4	2	2	3	1	1	1	2	-	-	-	1	1		

Semester End Evaluation (SEE): Theory (100 Marks) = Total 100 Marks

	Semester: VI											
INTEGRATED WATERSHED MANAGEMENT												
			(Group C:	Professional Core I	Elective)							
Cou	rse Code	:	18CV6C5		CIE	:	100 Marks					
Crec	lits: L:T:P	••	3:0:0		SEE		100 Marks					
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours					
Cou	rse Learning Obj	ecti	ives: The stude	nts will be able to								
1	Introduce the con	ncej	pts of watershed	management and its	impact on the natura	l wa	ater cycle.					
2	Preparation of di	ffei	ent thematic ma	ps and its analysis.								
3	3 Determination of watershed characteristics, runoff and soil loss estimation.											
4	Introduce variou	s m	ethods of water	conservation and wa	ter harvesting in wate	ersh	ed.					

UNIT-I	06 Hrs
Introduction: Watershed definition and importance, delineation of watershed,	watershed
characteristics, causes, consequences of watershed deterioration. Watershed managen	nent plan-
identification of problems, objectives and priorities, steps in developing watershed.	Issues in
watershed management-land degradation.	
UNIT-II	08 Hrs
Map Preparation: Introduction, different approaches, thematic maps-base map, drainage	map, land
use/land cover, hydrogeomorphology, soil, slope, lineament etc., map updation, change det	tection and
analysis.	
Drainage analysis: Definition, drainage pattern-different types, Horton's and Strahler's	method of
stream ordering, analysis of linear aspects, areal aspects, relief aspects and inferences.	
Advanced computing techniques: Design of digital models - Visual programming - Grap	phical user
interface - Interactive model concepts – using AI and ML approaches.	
UNIT-III	10 Hrs
Runoff Estimation: Introduction, necessity, runoff different methods, factors affecting ru	noff, SCS
Curve Number method.	
Soil Loss Estimation: Introduction, importance, types of erosion, resources mapping, un	rbanization
effect on hydrological cycle, soil loss estimation (USLE method).	
UNIT-IV	08 Hrs
Erosion Control: Measures and land reclamation, Management techniques-vegetation	measures,
forest lands, grass lands, structural measures- erosion control, sediment control and flood co	ntrol.
Water conservation: Introduction, conservation, methods for crop land, treatment for c	atchments,
small storage structures, objectives and data required types of storage structures, design data	
UNIT-V	07 Hrs
Water Harvesting: Small earthen dams -planning, construction sequence, computation	of storage
capacity, small weirs, drought from ponds, nala bunds, groundwater recharge, extraction.	

Course (Course Outcomes: After completing the course, students will be able to									
CO1:	Describe the process of implementing land use and water management practices within a									
	watershed.									
CO2:	Understand the methods of watershed management to protect and improve the quality of the									
	water and other natural resources.									
CO3:	Determine the watershed characteristics, runoff and soil loss estimation.									
CO4:	Analyse various technique of conserving natural resources within the watershed.									

Ref	erence Books
1.	Watershed Management – Guidelines for Indian Conditions, Tideman E.M, 1 st Edition, Omega
	Publishers, New Delhi,2011, ISBN-9788185399348
2.	Remote Sensing and Image Interpretation, Thomas M. Lillisand and R.W.Kiefer, 5 th Edition, John
	Wiley and Sons, New York, 2004, ISBN: 0-471-15227-7
3.	Remote Sensing: The Quantitative Approach , Ven Te Swain and Shirley M .Davis. Mc Grawl
	Hill Book Company, Fifth Edition.
4.	Engman E T and Gurney R J "Remote Sensing in Hydrology", Springer Netherlands, ISBN:
	9789401066709.
5.	Abbott M.B, and Minns A.W. Computational hydraulics Ashgate, London, UK, 2007
6.	Aliev R. A, and Aliev Rashad Soft Computing and its Applications World Scientific Publications
	Co. Pte. Ltd. Singapore, 2001.
7.	Janusz Kacprzyk Applied Decision with Soft Computing Springer, 2003

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	1	-	2	-	2	2	1	-	-	-	2		
CO2	3	2	-	-	-	1	2	-	2	-	2	2		
CO3	3	2	2	-	-	2	2	-	1	-	-	2		
CO4	3	2	2	2	-	2	-	-	2	-	2	2		

Semester End Evaluation (SEE): Theory (100 Marks) = Total 100 Marks

	Semester: VI										
	STRUCTURAL DYNAMICS										
			(Group (C: Professional Elec	tive)						
Cour	se Code	:	18CV6C6		CIE	:	100 Marks				
Cred	its: L:T:P	••	3:0:0		SEE	:	100 Marks				
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours				
Cour	se Learning Obje	ctiv	es: The students	s will be able to							
1	Understand princi	iple	s of structural dy	namics							
2	Describe the dyna	ımi	es of single, mult	i degree and response	es of shear buildings						
3	Evaluate the resp	ons	es of various syst	ems using different a	pproaches						
4	Apply the structure	ral	dynamics theory	to real world problem	ns like seismic analysi	s					
	UNIT-I 07 Hrs										
Intro	Introduction: Introduction to dynamic problems of Civil Engineering, Concept of degrees of										
C 1											

freedom, D'Alembert's principle, Principle of virtual displacement, Problems to derive the equations of motions of dynamic systems. UNIT-II 08 Hrs

Dynamics of Single-degree-of-freedom systems: Mathematical models of un-damped and damped SDOF system, Free vibration response of damped and un-damped systems.

UNIT-III **08 Hrs** Forced vibration: response to harmonic loading, support motion, evaluation of damping, vibration isolation, transmissibility, response to periodic forces.

UNIT-IV	08 Hrs
Mathematical models of un-damped and damped MDOF systems: Free vibrat	ion of un-
damped MDOF systems - Natural frequencies and mode shapes, orthogonality cond	itions, free
vibration of damped MDOF systems, modal analysis.	

UNIT-V Response of Single degree of freedom systems to arbitrary excitation: Duhamel integral solution, Response to suddenly applied load and triangular pulse loading. Principle of vibration-

measuring instruments-seismometer and accelerometer. Dynamics of Continuous systems: Free longitudinal vibration of bars, flexural vibration of beams with different end conditions.

Course	Outcomes: After completing the course, the students will be able to
CO1:	Apply knowledge of mathematics and mechanics for solving problems on structural dynamics.
CO2:	Develop equations of motion for discrete and vibratory systems.
CO3:	Evaluate the frequencies for various undamped and damped structures subjected to free
	excitation.
CO4 :	Understand and implement concepts of engineering seismology and working principles of
	vibration measuring instruments.

Reference Books Structural Dynamics : Vibrations and Systems, 1st Edition, Madhujit Mukophadhyay, Publisher: 1. ANE Books ISBN: 9788180520907, 8180520900, 2008 2. Structural Dynamics: Theory and Computation, Mario Paz, 2nd Edition, CBS Publisher ISBN: 9788123909783, 8123909780, 2004 Dynamics of Structures, R,W.clough and J.Penzien, 2nd revised Edition, McGraw - Hill 3. Education, 1993, ISBN -10: 0071132414, ISBN -13: 978-0071132411. Theory of vibration with applications, Willaim Thomson, 4th Edition, CRC Press, 1996, ISBN -10: 4. 0748743804, ISBN -13: 978-0748743803.

08 Hrs

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Semester End Evaluation (SEE): Theory (100 Marks) = Total 100 Marks

					CO-	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	1	-	-	-	-	-	-	-
CO2	3	2	-	-	-	-	-	-	-	-	-	-
CO3	-	2	1	-	-	-	-	-	-	-	-	-
CO4	2	3	2	-	1	-	-	-	-	-	-	-

	Semester: VI						
	Machine Learning						
			(Elec	ctive D: Professional	Elective)		
			((Common to 9 Branc	ches)		
Cou	rse Code	:	18CS6D1		CIE Marks	:	100 Marks
Crec	lits: L:T:P	:	3:0:0		SEE Marks	:	100 Marks
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours
Cou	rse Learning	g Ob	jectives: The stu	idents will be able to			
1.	1. Understand the concepts of supervised and unsupervised learning.						
2.	2. Analyze models such as support vector machines, kernel SVM, naive Bayes, decision tree						
classifier, random forest classifier, logistic regression, K-means clustering and more in Python							
3.	3. Implement and work with state-of-art tools in machine learning						

ntroduction to Machine Learning: Introduction, What is Human Learning?, Types of Human Learning, What is Machine Learning? Types of Machine Learning - Supervised learning, Jnsupervised learning, Reinforcement learning, Comparison – supervised, unsupervised, and einforcement learning, Problems Not To Be Solved Using Machine Learning, Applications of <i>Aachine Learning</i> , State-of-The-Art Languages/Tools In Machine Learning, Issues in Machine Learning.
Learning, What is Machine Learning? Types of Machine Learning - Supervised learning, Jnsupervised learning, Reinforcement learning, Comparison – supervised, unsupervised, and einforcement learning, Problems Not To Be Solved Using Machine Learning, Applications of Aachine Learning, State-of-The-Art Languages/Tools In Machine Learning, Issues in Machine Learning.
Jnsupervised learning, Reinforcement learning, Comparison – supervised, unsupervised, and einforcement learning, Problems Not To Be Solved Using Machine Learning, Applications of <i>Machine Learning</i> , State-of-The-Art Languages/Tools In Machine Learning, Issues in Machine Learning.
einforcement learning, Problems Not To Be Solved Using Machine Learning, Applications of Machine Learning, State-of-The-Art Languages/Tools In Machine Learning, Issues in Machine Learning.
Machine Learning, State-of-The-Art Languages/Tools In Machine Learning, Issues in Machine Learning.
earning.
Preparing to Model: Introduction, Machine Learning Activities, Basic Types of Data in Machine
earning, Exploring Structure of Data, Data Quality and Remediation, Data Pre-Processing
Unit – II 8 Hrs
Modelling and Evaluation: Introduction, Selecting a Model, Training a Model (for Supervised
earning), Model Representation and Interpretability, Evaluating Performance of a Model, Supervised
earning - classification, Supervised learning - regression, Unsupervised learning - clustering,
mproving Performance of a Model.
Basics of Feature Engineering, Introduction, Feature Transformation, Feature construction,
Feature extraction, Feature Subset Selection, Issues in high-dimensional data, Key drivers of feature
election - feature relevance and redundancy, Measures of feature relevance and redundancy, Overall
eature selection process, Feature Selection Approaches.
Unit – III 8 Hrs
Bayesian Concept Learning: Introduction, Why Bayesian Methods are Important?, Bayes' Theorem,
Bayes' Theorem and Concept Learning, Brute-force Bayesian algorithm, Concept of consistent
earners, Bayes optimal classifier, Naïve Bayes classifier, Applications of Naïve Bayes classifier,
Iandling Continuous Numeric Features in Naïve Bayes Classifier, Bayesian Belief Network,
ndependence and conditional independence, Use of the Bayesian Belief network in machine learning
Unit – IV 8 Hrs
Supervised Learning: Classification Introduction, Example of Supervised Learning, Classification
Aodel, Classification Learning Steps, Common Classification Algorithms, k-Nearest Neighbour
KNN), Decision tree, Random forest model, Support vector machines.
Super vised Learning: Regression, Introduction, Example of Regression, Common Regression
Algorithms, Simple linear regression, Multiple linear regression, Assumptions in Regression Analysis,
Main Problems in Regression Analysis, Improving Accuracy of the Linear Regression Model,
olynomial Regression Model, Logistic Regression, Maximum Likelihood Estimation
Unit – V 7 Hrs
Jnsupervised Learning, Introduction, Unsupervised vs Supervised Learning, Application of
Jnsupervised Learning, Clustering, Clustering as a machine learning task, Different types of
lustering techniques, Partitioning methods, K-Medoids: a representative object-based technique,
Hierarchical clustering, Density-based methods – DBSCAN, Finding Pattern using Association Rule,
Definition of common terms, Association rule, The apriori algorithm for association rule learning,
Build the apriori principle rules.

Course	Outcomes: After completing the course, the students will be able to
CO1:	Explore and apply the fundamentals of machine learning techniques.
CO2:	Understand different techniques of data pre processing.
CO3:	Analyze the strength and weakness of different machine learning models to solve
	real world problems.
CO4:	Implement and apply different supervised and unsupervised machine learning
	algorithms.

Reference Books:

1.	Machine Learning, Amit Kumar Das, SaikatDutt, Subramanian Chandramouli, Pearson
	Education India, April 2018 ISBN: 9789389588132.
2.	Introduction to Machine Learning, EthemAlpaydin, 2 nd Edition, 2010, PHI Publication, ISBN-978-81-
	203-4160-9.
3.	Practical data science with R, Zumel, N., & Mount J, Manning Publications, 2014,
	ISBN 9781617291562
4.	Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence
	Algorithms, Nikhil Buduma, O'Reilly Publications, 2016 Edition, ISBN-13: 978-
	1491925614.
5.	Pattern Recognition and Machine Learning, Christopher M Bishop, Springer, February
	2006, ISBN-10: 0-387-31073-8, ISBN-13: 978-0387-31073-2.
6.	The Elements of Statistical Learning, Trevor Hastie, Robert Tibshirani, and Jerome
	Friedman, Springer, Second Edition, April 2017, ISBN 978-0-387-84858-7

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-F	O Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	1	-	-	-	-	-	-	1
CO2	2	2	2	2	1	-	-	-	-	-	-	1
CO3	3	3	3	3	2	-	-	-	-	-	-	1
CO4	3	3	3	3	2	2	-	-	-	-	-	2

High-3: Medium-2: Low-1

Civil Engineering

	Semester: VI						
			BRID	GE ENGINEERIN	IG		
			(Group D	: Professional Ele	ctive)		
Cours	se Code	:	18CV6D2		CIE	:	100 Marks
Credits: L:T:P : 3:0:0 SEE : 100 M				100 Marks			
Total Hours			s : 39L SEE Duration		SEE Duration	:	3.00 Hours
Cours	se Learning Obje	ctiv	ves: The students	s will be able to			
1	1 Describe history, classification and component of bridges						
2	2 Illustrate the limit state design method						
3	3 Know various types of bridges its components and their specific uses						
4	4 Discuss design philosophy and codal requirements						

	;
Introduction: Historical Developments, Site Selection for Bridges, Necessary Investigations	æ
collection of essential bridge design data, definition of bridge, Components of bridge, Classification of	of
Bridges, Requirements of an ideal bridge, Forces on Bridges.	
Hydraulic Design: Methods of finding design discharge, Natural artificial and linear water ways, afflux	Х,
economic span of bridge, Scour depth	
Unit-II 07 Hrs	
Bridge substructures: General, Design and construction of Bridge piers, Abutments, Win	ng
walls, Approaches, Bearings for bridges, Rocker and roller bearings, sliding bearings, Neopren	ne
Bridge bearing.	
Superstructures: Components - Parapets and Railings for Highway Bridges, Classification of	of
Highway Bridge parapets, Cross barriers and its Details.	
Unit-III 08 Hrs	
Low cost bridges- Introduction, types of low cost bridges, Cause-ways, suspension bridges,	,
Culverts.	
Bridge Loading: Standard Specifications for Roads and Railways Bridges, General, Indian Road	ŀ
Congress Bridge Code, Detailed explanation of IRC standard live loads.	
Loading for road bridges: Dead load, Live load, Impact factor, Centrifugal force, wind loads, hydraulic	с
forces, longitudinal forces, Seismic forces; Earth pressure, Buovancy; Lane concept, Equivalent loads,	
traffic load: Width of Roadway and Footway.	,
Unit-IV 09 Hrs	
Box Culvert: Different Loading Cases IRC Class AA Tracked, Wheeled and Class A Loading	g.
working out the worst combination of loading, Moment Distribution, Calculation of BM & SI	F.
Structural Design of Slab Culvert, Reinforcement Detailing.	,
Unit V 09 Hrs	
RCC deck Slab Bridge: Introduction to RCC deck slab bridge. Loading calculations and analysi	is.
Calculation of BM & SF. Structural design of deck slab bridge for class AA loading and class	A
loading. Reinforcement detailing. Introduction to structural health monitoring in integration with A	۸I.
simulation study and incorporation of sensors.	7

Course C	Course Outcomes: After completing the course, the students will be able to						
CO1:	Describe the principle of bridge site investigation, bridge hydrology and standard						
CO2:	Apply the concepts of IRC 6 and IRC 21 in design of Bridges						
CO3:	Analysis of bridges subjected to various loads						
CO4:	Design of RCC Deck slab bridge for Class AA tracked vehicle loading						

Ref	erence Books
1.	S. P. Bindra, "Bridge Engineering", Dhanpat Rai & sons publication, New Delhi, 1990, ISBN 9788189928841
2.	M. A. Jayaram, "Design of Bridge Structures", PHI Pvt Ltd., 2 nd Edition, 2012, ISBN 9788120338524
3.	D. Johnson and Victor, "Essentials of Bridge Engineering" Oxford and IBH publications, 1980, ISBN 9788120417175.
4.	Krishnaraju N, "Design of Bridges" Oxford; ISBN : 8120403444, 918812040344

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	-	-	-	-	-	-	-	-	-	-	-	
CO2	-	2	-	-	-	-	-	-	-	1	-	-	
CO3	1	-	3	-	-	-	-	2	-	-	-	-	
CO4	-	-	1	-	-	-	-	-	-	1	-	-	

Semester End Evaluation (SEE): Theory (100 Marks) = Total 100 Marks

	Semester: VI										
	STRUCTURAL MASONRY										
			(Group]	D: Professional C	Core Elective)						
Cour	Course Code : 18CV6D3 CIE : 100 Marks										
Credi	its: L:T:P	:	3:0:0		SEE	:	100 Marks				
Total	Hours	:	39L		SEE Duration	:	3.00 Hours				
Cour	se Learning C)bje	ctives: The stud	lents will be able	to						
1	To understan	d m	asonry materials	and its mechanica	al properties						
2	2 To understand the factors influencing the performance of masonry structures										
3	3 To understand the behaviour of masonry structures under various loading conditions										
4	To present th	e ai	alvsis and design	n methodology add	opted for masonry b	uildi	ngs				

UNIT-I	06 Hrs
Introduction to Masonry units, materials and Types:	
History of masonry, characteristics of masonry units- strength, modulus of elasticity	and water
absorption .Masonry materials-Classification and properties of mortars, selection of mortars	
	1
UNIT-II	08 Hrs
Strength of Masonry in Compression:	
Behaviour of masonry under compression, strength and elastic properties, influence of m	asonry unit
and mortar characteristics, effect of masonry unit height on compressive strength, influence	of masonry
bonding patterns on strength, prediction of strength of masonry in Indian context.	
UNIT-III	08 Hrs
Flexural and shear bond, flexural strength and shear strength:	
Bond between masonry unit and mortar, tests for determining flexural and shear bond	strengths,
factors affecting bond strength, effect of bond strength on compressive strength, orthotro	pic strength
properties of masonry in flexure, shear strength of masonry, test procedures for evaluating	flexural and
shear strength.	
	1
UNIT-IV	07 Hrs
Failure theories of masonry under compression: Effects of slenderness and eccentricit	y, effect of
rate of absorption, effect of curing, effect of ageing, workmanship on compressive strength.	
Permissible stresses: Permissible compressive, tensile and shear stresses, stress reduction	1 and shape
reduction factors, increase in permissible stresses for eccentric vertical and lateral loads.	
UNIT-V	10 Hrs
Design of load bearing masonry buildings:	
Effective height of walls and columns, opening of walls, effective length, effective	thickness,
slenderness ratio, eccentricity, load dispersion, arching action, lintels, walls carrying A	Axial loads,
eccentric loads with different eccentric ratios, wall with openings, freestanding wall; Des	ign of load
bearing masonry for building up to 2 to 3storeys for gravity loading using IS- 1905 Codal	provisions.
Introduction to reinforced masonry.	

Course Outcomes: After completing the course, the students will be able to												
CO1:	Understand the concept of structural masonry, failure theories and strength under compression											
CO2:	Define different masonry units, mortars and factors influencing masonry strength											
CO3:	Choose appropriate unit and mortar for masonry design											
CO4:	Apply codal provision for design of load bearing masonry building based on IS 1905 – 1987											

Refe	erence Books
1.	K.S.Jagadish, Structural Masonry, I K International Publishing House Pvt. Ltd (30 November
	2015), ISBN-10: 9384588660, ISBN-13: 978-9384588663
2.	Sinha.B.P& Davis S R "Design of masonry structures "E & FN Spon
3.	A.W.Hendry, Structural Masonry Macmillan Press, London, ISBN 9780333733097
4.	Sven Sahlin, Structural Masonry, Prentice Hall Inc., Englewood Cliffs, New Jersey, ISBN
	9780138539375. IS:1905.SP-20 (S & T), New Delhi
5.	Robert G. Drysdale, Ahmad A. Hamid, Lawrie R. Baker, Masonry Structures: Behavior and
	Design, Prentice Hall College Div; 2nd edition (May 1993), ISBN-10: 0135620260, ISBN-
	13: 978-0135620267

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	1	-	-	-	-	1	-	-	-	-	1		
CO2	2	2	-	-	-	-	1	-	-	-	-	1		
CO3	1	-	1	-	-	-	-	-	-	-	-	1		
CO4	-	-	2	-	-	-	-	-	-	-	-	1		

Semester End Evaluation (SEE): Theory (100 Marks) = Total 100 Marks

	Semester: VI											
	CONSTRUCTION MANAGEMENT											
	(Group D: Professional Elective)											
Cour	se Code	:	18CV6D4		CIE	:	100 Marks					
Credits: L:T:P : 3:0:0 SEE				SEE	:	100 Marks						
Total	l Hours	:	39L		SEE Duration	:	3.00 Hours					
Cour	se Learning Objectiv	ves	: The students v	will be able to								
1	Study the constructi	on	planning and scl	neduling metho	ds.							
2	To study the applica	tio	ns of operations	research to Con	nstruction Industries	s.						
3	3 Study the principles and applications of Engineering Economics to Construction Industries.											
4	4 Understand importance of construction guality and safety.											

UNIT-I	08 Hrs						
Construction planning: Introduction to construction project management, time estimates, planning							
methods of projects- Bar and Mile stone charts, PERT and CPM network analysis including	methods of projects- Bar and Mile stone charts, PERT and CPM network analysis including numerical						
problems on CPM and PERT.							
UNIT-II	07 Hrs						
Network crashing and cost time relationship: Construction cost-Direct cost, indirect cost	, total cost,						
optimum cost. Optimum duration of project by network crashing, including simple	numerical						
problems.							
UNIT-III	08 Hrs						
Transportation problems: Introduction, Mathematical formulation, optimal so	lution of						
Transportation Problem -methods for initial basic feasible solution, summary of method	s of initial						
BFS, North west corner method, Lowest cost entry method, Vogel's approximatio	n method.						
Optimization using MODI method.							
UNIT-IV	08 Hrs						
Introduction to Engineering economics: Basic Concepts of economic analysis, Micro	and Macro						
analysis, project feasibility, economic and financial feasibility, , interest formula, present we	orth, future						
worth, Annual equivalent. Basis for comparison of alternatives, rate of return method,	oreak even						
analysis, benefit cost ratio problems on above.							
UNIT-V	08 Hrs						
QUALITY AND SAFETY MANAGEMENT -							
Construction Quality, Inspection and Testing, Quality Control, Quality Assurance, To	tal Quality						
Management, Critical Factors of TQM; Benchmarking, , third party certification. Safety laws and							
standards. Safety Hazards. Safety Management in Construction Industry- Safety rules in co	netruction						
	instruction,						

Course	Course Outcomes: After completing the course, the students will be able to												
CO1:	Understand the elements of engineering economics, selection of equipment's, transportation												
	and project planning & scheduling												
CO2:	Apply the principles of engineering economics and planning and scheduling techniques in												
	construction project management												
CO3:	Analyze the applications of various techniques of planning in construction projects												
CO4:	Evaluate the applied techniques /methods/safety and quality factors of planning in												
	construction projects												

Refe	erence Books
1.	Construction Engineering and management, S.Seetharaman, 2 nd Edition, Umesh Publications, Delhi, 2000, ISBN 9788188114061.
2.	Construction Project Management, Chitkara McGraw Hill Education, 3 rd edition (30 June 2014), ISBN-13: 978-9339205447
3.	Operations Research Concepts, Problems and Solutions, V.K.Kapoor, 5 th Revised Edition, Sultan Chand & Sons, New Delhi, 2011, ISBN 9788180548543.
4.	Engineering Economics, Pannerselvam, 2 nd Revised Edition, Prentice Hall India Learning Private Limited; (2013). ISBN-13: 978-8120348370
5.	Safety Management in Construction and Industry, David Gold Smith, Mc Graw Hill Publications.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	2	2	-	-	1	2	2	2	-	2	3	1			
CO2	2	2	-	-	2	2	2	2	-	2	3	1			
CO3	2	2	-	-	-	3	3	-	-	2	3	1			
CO4	2	2	-	1	-	3	3	-	-	2	3	1			

Semester End Evaluation (SEE): Theory (100 Marks) = Total 100 Marks

Semester: VI										
PRE-FABRICATION CONSTRUCTION TECHNIQUES										
(Group D: Professional Elective)										
Course (Code	:	18CV6D5		CIE	:	100 Marks			
Credits: L:T:P : 3:0:0 SEE : 100 Ma						100 Marks				
Total Ho	Total Hours: 39LSEE Duration: 3.00 Hours									
Course I	earning Objectiv	es:	The students v	vill be able to						
1	Know the differe	nt	types of stresse	s acting on the st	ructures while lifting	ng tl	ne prefabricated			
1	structures and typ	e c	of equipment rec	quired to support s	such stresses					
2	Define various ty	pes	of prefabricate	d techniques.						
3 Illustrate production, organization, plant setup and maintenance										
4	4 Design and detail various types of pre-engineered buildings									

	00 IIma
General Principles of Pre Fabrication Comparison with monolithic construction	– Types of
prefabrication – site and plant prefabrication - Economy of prefabrication – Modular c	oordination –
Standardization – Planning for Components of prefabricated structures – Disuniting of	f structures –
Design considerations of simple rectangular beams and I beams.	
UNIT-II	07 Hrs
Production, Transportation & erection; Organization of production, storing and erection	n equipment;
Shuttering and mould design – Dimensional tolerances; Erection of R.C. structures, Total	prefabricated
buildings Handling and erection stresses - Elimination of erection stresses - Beam	s, columns –
Symmetrical frames.	
UNIT-III	08 Hrs
Precast sandwich Panels ,Prestressed concrete solid flat, slabs, Hollow core slab/panels	s, Prestressed
concrete Double "T", Bridge, Precast segmental Box Girders, Specifications	and Seismic
considerations.	
UNIT-IV	08 Hrs
Dimensioning and detailing of joints for different structural connections; construction and	expansion
joints. Types of sealing agents. Structural and Non Structural fasteners.	•
UNIT-V	08 Hrs
UNIT-V Pre-Engineered Buildings Introduction – Advantages - Pre Engineered Buildings Vs Conv	08 Hrs

Course	Outcomes: After completing the course, the students will be able to
CO1:	Define various types of prefabricated techniques.
CO2:	Evaluate managerial, organizational and production of pre-engineered structural elements.
CO3:	Detail various types of pre-engineered buildings
CO4:	Design the pre-engineered structures and execute the same for a given structure

rence Books
L. Mokk, "Prefabricated Concrete for Industrial and Public Structures," Publishing House of the
Hungarian Academy of Sciences, Budapest, 2007.
T. Koncz, "Manual of Precast Concrete Construction", Vol. I, II, III & IV, Berlin, 1971.
B. Lewicki, "Building with Large Prefabricates", Elsevier Publishing Company, Amsterdam,
London, New York, 1998.
Hass, A.M. Precast concrete design and Applications, Applied Science Publishers, 1983.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	-	-	-	1	-	-	-	-	1
CO2	2	3	1	-	-	-	2	-	-	-	-	1
CO3	1	2	1	1	-	-	-	-	-	-	-	1
CO4	3	3	3	-	-	-	-	-	-	-	-	1

Semester End Evaluation (SEE): Theory (100 Marks) = Total 100 Marks

	Semester: VI							
	GROUND IMPROVEMENT TECHNIQUES							
			(Group I	D: Professional Elec	tive)			
Cour	Course Code : 18CV6D6 CIE : 100 Marks							
Credits: L:T:P			3:0:0		SEE	:	100 Marks	
Total Hours: 39LSEE Duration: 3.00 Hou						3.00 Hours		
Cour	rse Learning Obje	ctiv	ves: The student	s will be able to				
1	1 Understand the various methods of soil stabilization for problematic soils.							
2	2 Discuss the concepts of ground improvement methods for various soil conditions.							
3	3 Illustrate the various techniques of soil modification.							
4	4 Summarize the methods of improvement of difficult ground							

UNIT-I	08 Hrs
Ground Improvement: Definition, Objectives of soil improvement, Classification	of ground
improvement techniques, Factors to be considered in the selection of the best soil i	mprovement
technique.	
Grouting: Introduction, Effects of grouting, Chemicals and materials used, Types of grouting	ng, Grouting
procedure, Applications of grouting.	
UNIT-II	08 Hrs
Mechanical Modification: Type of mechanical-modification. Aim of modification.	compaction.
Principle of modification for various types of soils. Effect of grain size distribution on con	npaction for
various soil types like BC soil. Lateritic soil, coarse-grained soil, micaceous soil, Field c	ompaction -
static, dynamic, impact and vibratory type, Specification of compaction.	1
UNIT-III	07 Hrs
Hydraulic Modification: Definition, aim, principle, techniques, gravity drain, lowering of	water table,
multistage well point, vacuum dewatering, discharge equations, design of dewatering syste	m including
pipe line effects of dewatering. Drainage of slopes, preloading, vertical drains, sand drains.	
UNIT-IV	08 Hrs
Chemical Modification: Definition, aim, special effects, and methods. Techniques,	admixtures,
stabilization. hydration -effect of cement stabilization on permeability, Swelling and shrink	age. Criteria
for cement stabilization, Artificial neural network model for determining the strength of s	soil –cement
mixtures.	
	A -
UNIT-V	07 Hrs
Geosynthetics: Introduction, Soil reinforcement, Properties of geosynthetics, App	lications of
geosynthetics, Soil nailing technique.	

Course	Course Outcomes: After completing the course, students will be able to							
CO1:	Describe the in-situ methods of soil improvement							
CO2:	Acquire knowledge of ground improvement methods and its application							
CO3:	Analyze the behavior of soil with the ground improvement methods							
CO4 :	Summarize the methods of stabilization and its suitability for various problematic soils.							

Ref	erence Books
1.	Purushothama Raj. P. "Ground Improvement Techniques" Firewall Media Publisher, 2004
	ISBN8170088372
2.	G. L. Shivkumar Babu "An introduction to soil reinforcement and geosynthetics", niversities Press
	(India) Pvt. Ltd. ISBN9788173718489
3.	Manfied Hausmann "Engineering principles of ground modification", McGraw Hill Pub. Co., New
	York.,2008 ISBN0070272794
4.	Bell, F.G. "Methods of treatment of unstable ground", Butterworths, London. 2007
	ISBN0408001666
5.	J.Nelson and Miller. D.J. "Expansive soils", John Wiley and Sons., 1997 ISBN0471181145

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	1	-	-	-	1	-	-	-	-	2
CO2	1	2	1	-	-	2	1	3	-	-	-	3
CO3	1	1	1	1	-	2	1	3	-	-	-	3
CO4	2	1	1	-	-	2	2	1	-	-	-	3

Semester End Evaluation (SEE): Theory (100 Marks) = Total 100 Marks

	Semester: VI						
	AIRCRAFT SYSTEMS						
	(GROUP E: GLOBAL ELECTIVE)						
	(Theory)						
Cou	rse Code	:	18G6E01		CIE	:	100 Marks
Credits: L:T:P		:	3:0:0		SEE		100 Marks
Hours		:	39L		SEE Duration	:	3.00 Hours
Cou	rse Learning O	€bje	ctives: To ena	ble the students to:			
1	1 List the various systems involved in the design of an aircraft						
2	2 Demonstrate the technical attributes of all the subsystems of an aircraft						
3	3 Explain the significance of each systems and its subsystems for developing an airplane						
4	Demonstrate t	he i	ntegration of t	he systems with the airplane			

Unit-I	07Hrs					
Flight Control Systems: Primary and secondary flight controls, Flight control linkage	e system,					
Conventional Systems, Power assisted and fully powered flight controls.						
Unit – II	10Hrs					
Aircraft Hydraulic & Pneumatic Systems: Components of a typical Hydraulic system, W	orking or					
hydraulic system, Power packs, Hydraulic actuators. Pneumatic system and components, Use	hydraulic system, Power packs, Hydraulic actuators. Pneumatic system and components, Use of bleed					
air, Landing gear and braking, Shock absorbers-Retraction mechanism.						
Unit -III	08Hrs					
Aircraft Fuel Systems: Characteristics of aircraft fuel system, Fuel system and its con	mponents,					
Gravity feed and pressure feed fuel systems, Fuel pumps-classification, Fuel control unit.						
Unit -IV	07Hrs					
	0/1115					
Environmental Control Systems: Air-conditioning system, vapour cycle system, de-icing	and anti-					
Environmental Control Systems: Air-conditioning system, vapour cycle system, de-icing icing system, Fire detection- warning and suppression. Crew escape aids.	and anti-					
 Environmental Control Systems: Air-conditioning system, vapour cycle system, de-icing icing system, Fire detection- warning and suppression. Crew escape aids. Engine Systems: Engine starting sequence, Starting and Ignition systems, Engine oils and lubricating system. 	and anti-					
Environmental Control Systems: Air-conditioning system, vapour cycle system, de-icing icing system, Fire detection- warning and suppression. Crew escape aids. Engine Systems: Engine starting sequence, Starting and Ignition systems, Engine oils and lubricating system. Unit -V	and anti- a typical 07Hrs					
Environmental Control Systems: Air-conditioning system, vapour cycle system, de-icing icing system, Fire detection- warning and suppression. Crew escape aids. Engine Systems: Engine starting sequence, Starting and Ignition systems, Engine oils and lubricating system. Unit -V Aircraft Instruments : Instruments displays, panels & layouts, Instrumentation grouping, N	and anti- a typical 07Hrs Vavigation					
Environmental Control Systems: Air-conditioning system, vapour cycle system, de-icing icing system, Fire detection- warning and suppression. Crew escape aids. Engine Systems: Engine starting sequence, Starting and Ignition systems, Engine oils and lubricating system. Unit -V Aircraft Instruments instruments displays, panels & layouts, Instrumentation grouping, N instruments, Radio instruments, Hydraulic and Engine instruments.	and anti- a typical 07Hrs Javigation					
Environmental Control Systems: Air-conditioning system, vapour cycle system, de-icing icing system, Fire detection- warning and suppression. Crew escape aids. Engine Systems: Engine starting sequence, Starting and Ignition systems, Engine oils and lubricating system. Unit -V Aircraft Instruments is Instruments displays, panels & layouts, Instrumentation grouping, N instruments, Radio instruments, Hydraulic and Engine instruments. Air Data Instruments : Basic air data system and probes, Mach meter, Air speed indicator	and anti- a typical 07Hrs Javigation r, Vertical					

sensing, stall warning, Mach warning, altitude alerting system.

Course Outcomes:

At the end of this course the student will be able to :

CO1:	Categorise the various systems required for designing a complete airplane
CO2:	Comprehend the complexities involved during development of flight vehicles.
CO3:	Explain the role and importance of each systems for designing a safe and efficient flight vehicle
CO4:	Demonstrate the different integration techniques involved in the design of an air vehicle

Reference Books

1	Introduction to Flight, John D. Anderson, 7 th Edition, 2011, McGraw-Hill Education, ISBN 9780071086059.
2	Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration, Moir, I. and Seabridge, A., 3 rd Edition, 2008, Wiley Publications, ISBN- 978-0470059968

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	3	3	1	1	3	2	2	-	-	-	1			
CO2	2	3	3	3	1	1	1	1	-	-	-	1			
CO3	2	2	3	3	1	-	-	-	-	-	-	2			
CO4	3	3	3	3	1	2	1	2	-	-	-	1			

	Semester: VI										
	BIO INSPIRED ENGINEERING										
	(GROUP E: GLOBAL ELECTIVE)										
				(Theory)							
Cou	rse Code	:	18G6E02		CIE	:	100 Marks				
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks				
Tota	Total Hours:39 LSEE Duration:3.00 Hou										
Cou	rse Learning ()bj	ectives: The studen	ts will be able to							
1	To familiarize	e er	igineering students v	with basic biologica	l concepts						
2	Utilize the si	mil	arities noted in nat	ure for a particular	problem to bring i	nsp	iration to the				
	designer.										
3	Explain appli	cat	ions such as smart s	structures, self-heali	ing materials, and ro	bot	ics relative to				
	their biologic	al a	inalogs								
4	To gain an u	nde	rstanding that the d	esign principles from	m nature can be tran	slat	ed into novel				
	devices and s	truc	ctures.	_							

Unit-I	08 Hrs							
Introduction to biological systems: General and Special biomolecules, Plant, anim	nal and							
microbial cell types, Somatic and Sensory system. Plant process - Photosynthesis. Neural networks,								
Neuron models-Signal encoding architecture, Synaptic plasticity-Supervised, unsupervised and								
reinforcement learning, Evolution of artificial neural networks-Hybrid neural systems wi	ith case							
study Harvesting Desert Fog.								
Unit – II	08 Hrs							
Introduction to Biomimetics: Introduction to micro architectural aspects. Structures and p	ohysical							
functions of biological composites of engineering – related case study: Camera from eyes, c	clothing							
designs and hooks from Velcro Criteria for future materials design and processing. Comp	putation							
Cellular systems: Cellular automata - modelling with cellular systems with cellular sys	stems –							
artificial life – analysis and synthesis of cellular systems: Nature's Water Filter.								
Unit –III (08 Hrs							
Engineering of synthetic organs: Growth, development and principle of artificial skins, 1	hearing							
aids, artificial limbs, artificial lungs and artificial lever. Implants-working principle of pace	emaker,							
Breast Implants, Artificial Eye Lenses, Blood sugar monitoring, artificial heart. Applica	ation of							
Spine Screws, Rods and Artificial Discs, Metal Screws, Pins, Plates and Rods								
Unit –IV (07 Hrs							
Biosimilars: Introduction, characteristics and bioequivalence. Criteria for Bioequiv	valence,							
Development of Biosimilars, Statistical Methods for Assessing Biosimilarity, Issu	ues on							
Immunogenicity Studies, Regulatory Requirements, Stability Analysis of Biosimilar Pr	roducts,							
Challenges involved in Biosimilars.								
Unit –V	08 Hrs							
Biomechatronics: Introduction to MEMS based devices, Evolution of behavioural sy	systems,							
learning in behavioural systems – co evolution of body and control. Behaviour in cognitive	science							
and artificial intelligence. Biological inspiration for robots, Robots as biological mode	els and							
robotics behaviour, Application of sleek scale of shark skin.								

Course (Course Outcomes: After completing the course, the students will be able to								
CO1:	Remember and explain the concepts of biological and physiological processes								
CO2:	Elucidate the basic principles for design and development of biological systems.								
CO3:	Differentiate biological phenomena to support inspiration for visual and conceptual design problems								

CO4:	Develop technical solutions to customer needs by utilizing a variety of bio-inspiration
	techniques.

Reference Books

1101010	
1	Yoseph Bar-Cohen. Biomimetics: Biologically Inspired Technologies D. Floreano and C. Mattiussi, "Bio-Inspired Artificial Intelligence", CRC Press, 2018. ISBN: 1420037714, 9781420037715.
2	Bououdina, Mohamed. Emerging Research on Bioinspired Materials Engineering. IGI Global, 2016. ISBN: 1466698128, 9781466698123.
3	Christopher H. M. Jenkins. Bio-Inspired Engineering. Momentum Press, 2011. ISBN: 1606502255, 9781606502259.
4	Göran Pohl, Werner Nachtigall. Biomimetics for Architecture & Design: Nature - Analogies – Technology. Springer, 2019. ISBN: 3319191209, 978331919120

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks**.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover the entire unit having the same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	2	3	-	-	1	3	2	-	1	1	1	-			
CO2	3	3	2	3	2	-	1	2	-	1	2	-			
CO3	2	2	2	3	3	3	2	2	-	1	2	2			
CO4	2	2	3	3	2	-	1	2	1	-	-	-			

				Semester: VI								
			SUSTAIN	ABLE TECHNOL	OGY							
	(GROUP E: GLOBAL ELECTIVE)											
(Theory)												
Cour	se Code	:	18G6E03		CIE	:	100 Marks					
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks					
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours					
Cour	Course Learning Objectives: The students will be able to											
1	Understand th	le fi	indamental concepts	s related to interaction	n of industrial and ec	olog	gical systems.					
2	Understand th	e ba	asic concepts of life	cycle assessment.								
3	Demonstrate l	ife	cycle assessment me	ethodology using app	oropriate case studies	•						
4	Use concepts	of s	ystems-based, trans	-disciplinary approac	h to sustainability.							
				··· • · · ·			0.0 77					
T	1		1 .1.4	Jnit-I			08 Hrs					
Intro	duction to sus	tan	nability:	and Life Cycle /	Analysia Matanial	flor	u and wasta					
mono	duction to St	ista icol	and Health Effects	Character of Enviro	Analysis, Material	110	v and waste					
IIIaiia	igement, Chem	icai		nit = II	onnentai Fioblenis		07 Hrs					
Envi	ronmental Da	ta (Collection and LCA	Methodology:			071113					
Envi	ronmental Dat	a (Collection Issues.	Statistical Analysis	of Environmental	Da	ita. Common					
Analy	vtical Instrume	nts,	Overview of LCA I	Methodology. – Goal	, Definition.	20	, common					
		,	Uı	nit –III	,		08 Hrs					
Life	Cycle Assessm	ent	•									
Life	Cycle Impact A	sse	ssment, Life Cycle	Interpretation, LCA E	Benefits and Drawbac	cks.						
Wet	Biomass Gasif	ier	5:									
Intro	duction, Classi	fica	tion of feedstock	for biogas generation	n, Biomass conversi	ion	technologies:					
Photo	osynthesis, Bio	gas	generation, Factor	s affecting bio-diges	stion, Classification	of	biogas plants,					
Float	ing drum plant	anc	l fixed dome plant the	heir advantages and d	lisadvantages.		00 11					
<u>р</u> .		1 *1	U1	nit –I V			08 Hrs					
Desig	gn for Sustaina	abii Aote	ity:	1 Design for Sustains	hility							
Dry	Riomass Casif	iore		u Design for Sustaina	ionity.							
Biom	lass energy cor	iver	•• sion routes Therma	l gasification of bion	nass Classification o	fσ	asifiers Fixed					
bed s	vstems:		sion routes, merme	a guisineation of bion		1 5	usinens, i med					
	J = = = = = = = = = = = = = = = = = = =		U	nit –V			08 Hrs					
Case	Studies:											
Odor	Removal for C	Drga	anics Treatment Pla	nt, Bio-methanation,	Bioethanol production	on.	Bio fuel from					
water	r hyacinth.				_							
Cour	se Outcomes:	Aft	er completing the	course, the students	will be able to							
CO1	: Understand	the	e sustainability chal	llenges facing the cu	urrent generation, ar	nd s	systems-based					
	approaches	req	uired to create susta	inable solutions for so	ociety.							
CO2	: Identify pro	oble	ms in sustainability	and formulate appr	ropriate solutions ba	sed	on scientific					
	research, ap	plie	ed science, social an	d economic issues.								
CO3	: Apply scien	tifi	c method to a system	ns-based, trans-discip	linary approach to su	ista	inability					
CO4	: Formulate	app	ropriate solutions b	based on scientific r	research, applied sci	enc	e, social and					

Refere	nce Books									
1	Sustainable	Engineering	Principles	and	Practice,	Bavik	R	Bhakshi,	2019,	Cambridge
1	University P	ress, ISBN - 9	9781108333	726.						

economic issues.

2	Environmental Life Cycle Assessment, Olivier Jolliet, Myriam Saade-Sbeih, Shanna Shaked,
2	Alexandre Jolliet, Pierre Crettaz, 1st Edition, CRC Press, ISBN: 9781439887660.
2	Sustainable Engineering: Drivers, Metrics, Tools, and Applications, Krishna R. Reddy,
3	Claudio Cameselle, Jeffrey A. Adams, 2019, John Wiley & Sons, ISBN-9781119493938

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	-	-	-	-	-	-	-	1	-	1		
CO2	3	2	2	1	-	-	-	-	-	1	-	1		
CO3	3	3	2	2	-	-	-	-	-	1	-	1		
CO4	3	3	3	3	-	-	-	-	-	1	-	1		

Semester: VI						
GRAPH THEORY						
(GROUP E: GLOBAL ELECTIVE)						
(Theory)						
Course Code	:	18G6E04		CIE Marks	:	100 Marks
Credits: L:T:P	:	3:0:0		SEE Marks	••	100 Marks
Total Hours	:	39L		SEE Duration	:	3.00 Hours

Cour	rse Learning Objectives: The students will be able to
1	

- 1 Understand the basics of graph theory and their various properties.
- 2 Model problems using graphs and to solve these problems algorithmically.
- 3 Apply graph theory concepts to solve real world applications like routing, TSP/traffic control, etc.
- 4 Optimize the solutions to real problems like transport problems etc.,

UNIT-I	07 Hrs				
Introduction to graph theory					
Introduction, Mathematical preliminaries, definitions and examples of graphs, degrees and	nd regular				
graphs, sub graphs, directed graphs, in degrees and out degrees in digraphs.	0				
Basic concepts in graph theory					
Paths and cycles, connectivity, homomorphism and isomorphism of graphs, connectivity in digraphs.					
UNIT-II	09 Hrs				
Graph representations, Trees, Forests					
Adjacency matrix of a graph, Incidence matrix of a graph, Adjacency lists, Trees and pro	operties of				
trees, Characterization of trees, Centers of trees, Rooted trees, Binary threes, Spanning trees and					
forests, Spanning trees of complete graphs, An application to electrical networks, Mini	mum cost				
spanning trees.					
UNIT-III	09 Hrs				
Fundamental properties of graphs and digraphs					
Bipartite graphs, Eulerian graphs, Hamiltonian graphs, Hamiltonian cycles in weighte	ed graphs,				
Eulerian digraphs.					
Planar graphs, Connectivity and Flows					
Embedding in surfaces, Euler's formula, Characterization of planar graphs, Kuratowski's	s theorem,				
Dual of a planar graphs.					
UNIT-IV	07 Hrs				
Matchings and Factors					
Min-Max theorem, Independent sets and covers, Dominating sets, maximum bipartite match	ing.				
Coloring of graphs					
The chromatic number of a graph, Results for general graphs, The chromatic polynomial of	of a graph,				
Basic properties of chromatic polynomial, chordal graphs, powers of graphs, Edge coloring of graphs					
UNIT-V	07Hrs				
Graph algorithms	-				
Graph connectivity algorithms, Breadth first search and Depth first search, Shortest path algorithms,					
Dijikstra's shortest path algorithm, Minimum cost spanning tree algorithms, Algorithm of	Kruskal's				
and Prim's.					
Course Outcomes: After completing the course, the students will be able to					

Course Outcomes: After completing the course, the students will be able to			
CO1.	Understand and explore the basics of graph theory.		
CO2.	Analyse the significance of graph theory in different engineering disciplines		
CO3.	Demonstrate algorithms used in interdisciplinary engineering domains.		
CO4.	Evaluate or synthesize any real world applications using graph theory.		
Reference	Books		
-----------	-------		

1.	Introduction to graph theory, Douglas B. West, 2 nd Edition, 2001, PHI, ISBN- 9780130144003,
	ISBN-0130144002.
2.	Graph Theory, Modeling, Applications and Algorithms, Geir Agnarsson, Raymond Greenlaw,
	Pearson Education, 1 st Edition, 2008, ISBN- 978-81-317-1728-8.
3.	Introduction to Algorithms, Cormen T.H., Leiserson C. E, Rivest R.L., Stein C., 3rd Edition,
	2010, PHI, ISBN:9780262033848

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	-	-	-	-	-	-	1	1	-	-
CO2	2	3	2	1	-	-	-	-	2	2	-	1
CO3	2	2	3	2	-	-	-	-	2	2	-	1
CO4	2	2	3	2	-	1	-	-	2	2	-	1

				Semester: VI						
			DIS	ASTER MANAGEM	IENT					
	(GROUP E: GLOBAL ELECTIVE)									
	(Theory)									
Cou	irse Code	:	18G6E05		CIE	: 100 Marks				
Cre	dits: L:T:P	:	3:0:0		SEE	:	100 Marks			
Tot	al Hours	:	39L		SEE Duration	:	3.00 Hours			
Cou	irse Learning	Ob	jectives: The stud	ents will be able to			·			
1	Study the env	iror	mental impact of	natural and manmade	calamities					
2	Learn to analy	/ze	and assess risk inv	volved due to disasters						
3	Understand th	e ro	ole of public partic	ipation.						
4	Learn the man	nage	ement tools and m	itigation techniques.						
							0.0 77			
NT (Unit-I			08 Hrs			
	ural disasters	and	1 Disaster manag	ement	1. J	1				
Intr	oduction to national	fina	and Industrial H	lazards- floods, lands	lides, earthquakes, v	volca	noes, avalanche,			
Env	vironmental rist	me z di	, release of entuel	ities Preparation of d	on site and off site	disa	ster management			
nlar	nonmentar fist	r u	actual disaster Po	st disaster plans Reli	ef camp organizatio	n R	ole of voluntary			
org	anization and a	rme	d forces during di	sasters	er camp organizatio	/II. IX	ole of voluntary			
0150			a torees during un	Im:4 II			07 II.ma			
Die	analysis and	0.00	assmant	Umi – 11			07 HIS			
Ras	ic concept P	ass	ose of risk anal	vsis Analytical tech	niques and tools	of	rick assessment			
Tox	icology Signit	ica	nce of risk Risk	characterization Risk	communication and	1 Ma	nagement AI in			
eme	ergency respons	ses.			•••••••••••••••					
				Unit –III			08 Hrs			
Env	vironmental In	npa	ct Assessment (E	IA)			00 1115			
Def	inition, Basic	con	cepts and princip	oles of EIA. Regulate	ory framework in	India	. Environmental			
inve	entory. Base lin	e st	udies. Over view	of EIA studies.	5					
	-			Unit –IV			08 Hrs			
Ass	essment and N	[et]	hodologies				00 1115			
Phy	sical. Biologic	al.	Natural resources.	Socio economic and	cultural environme	ntal	assessment. EIA			
met	hodologies- Ac	lho	c, Matrix, Checklis	st approaches. Econon	nic evaluation of im	pacts	- cost benefits of			
EIA	. Public partic	ipa	tion in environme	ntal decision making.	Procedures for rev	viewi	ng EIA analysis			
and	statement. Dec	isic	on methods for eva	luation of alternatives	•		0 5			
				Unit _V			08 Hrs			
Die	aster Mitigatio	n a	nd Management				00 1115			
Intr	oduction. types	. m	odes of disaster m	nanagement, tools and	techniques, primary	v and	l secondarv data.			
Nat	ural disasters it	s ca	auses and remedie	s-Earthquake hazards-	Causes and remedie	s. Fl	ood and Drought			
asse	essment. cause	s ai	nd remedies. Lan	dslides-causes and re	medies. Fire hazar	ds ir	buildings. Fire			
haz	ard manageme	nt.	Traffic managem	ent, Cyclones and h	urricanes, inter der	artm	ent cooperation.			
Reg	ional and globa	ıl d	isaster mitigation.	, ,	,		r			
Co	irse Outcomes	:: A	fter completing f	he course, the studen	ts will be able to					
CO	1: Explain t	ne d	lifferent types of d	isasters and manage the	ne pre and post disas	ster s	ituation.			

CO4: Analyze and evaluated the impact of measures adopted to mitigate the impacts.

Refer	rence Books
1	Environmental Impact Analysis Hand Book, John G Rau and David C Wooten, Edition: 2013,
I	ISBN: 978-0070512177.
	Introduction to environmental Impact assessment, John Glasson, RikiTherivel, Andrew
2	Chadwick, Edition: 2012, Research Press, ISBN:000-0415664705.2005, Reliance Publishing
	House, New Delhi.
2	Natural Disaster Reduction, Girish K Mishrta, G C Mathew (eds), Edition, 2005, Reliance
3	Publishing House, New Delhi,
4	Remote Sensing and Image Interpretation, Thomas M. Lillisand and R.W. Keifer, 6th Edition,
4	2002, John Wiley, ISBN:9780470052457.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	1	1	-	-	1	1	-	-	-	-	-
CO2	-	2	1	-	-	2	1	1	-	-	-	-
CO3	-	2	1	-	-	2	1	3	-	-	-	-
CO4	-	1	1	-	-	3	2	1	-	-	-	-

	Semester: VI							
	WEARABLE ELECTRONICS							
	(GROUP E: GLOBAL ELECTIVE)							
				(Theory)				
Cou	Course Code:18G6E06CIE:100 Mark					100 Marks		
Credits: L:T:P		:	3:0:0	SE	EE	:	100 Marks	
Total Hours		s : 39L		SE	EE Duration		3.00 Hours	
Cou	rse Learning (Obj	jectives: The st	udents will be able to				
1	Explain the ty	ypes	s and applicatio	n of wearable sensor.				
2	2 Describe the working of sensitivity, conductivity and energy generation in wearable devices.							
3	3 Explain the various facets of wearable application, advantage & challenges.							
4	4 Understand different testing and calibration in wearable devices.							

Unit-I	08 Hrs
Introduction: world of wearable (WOW), Role of wearable, The Emerging Concept of	Big Data, The
Ecosystem Enabling Digital Life, Smart Mobile Communication Devices, Attributes	of Wearables,
Taxonomy for Wearables, Advancements in Wearables, Textiles and Clothing, Applications	s of Wearables.
[Ref 1: Chapter 1.1]	

Unit – II 08 Hrs Wearable Bio and Chemical Sensors: Introduction, System Design, Microneedle Technology, Sampling Gases, Types of Sensors, Challenges in Chemical Biochemical Sensing, Sensor Stability, Interface with the Body, Textile Integration, Power Requirements, Applications: Personal Health, Sports Performance, Safety and Security, Case studies. [Ref 1: Chapter 2.1]

Unit –III				
Smart Textile: Conductive fibres for electronic textiles: an overview, Types of conductive fibre,				
Applications of conductive fibres, Bulk conductive polymer yarn, Bulk conductive	polymer yarn,			
Techniques for processing CPYs, Wet-spinning technique, Electrospinning technique, case studies, Hands				
on project in wearable textile: Solar Backpack, LED Matrix wallet. [Ref 2: Chapter 1,2] &. [Ref 3: Chapter				
6,9]				
Unit –IV				

Cint IV	00 1115
Energy Harvesting Systems: Introduction, Energy Harvesting from Temperature Gradien	it,
Thermoelectric Generators, Dc-Dc Converter Topologies, Dc-Dc Converter Design for Ult	tra-Low Input
Voltages, Energy Harvesting from Foot Motion, Ac-Dc Converters, Wireless Energy Trans	smission,
Energy Harvesting from Light, Case studies. [Ref 1: Chapter 4.1]	

Unit –V	08 Hrs
Wearable antennas for communication systems: Introduction, Background of textile an	tennas, Design
rules for embroidered antennas, Integration of embroidered textile surfaces onto polyr	ner substrates,
Characterizations of embroidered conductive, textiles at radio frequencies, RF pe	erformance of
embroidered textile antennas, Applications of embroidered antennas. [Ref 2: Chapter 10]	

Course	Outcomes: After completing the course, the students will be able to
CO1:	Describe the different types and wearable sensors, textile, energy harvesting systems and antenna
CO2:	Analysis measurable quantity and working of wearable electronic devices.
CO3:	Determine & interpret the outcome of the wearable devices and solve the design challenges
CO4:	Analyse and Evaluate the wearable device output parameter in real time scenario or given problem
	statement.

Refer	ence Books
1	Wearable Sensors: Fundamentals, Implementation and Applications, Edward Sazonov, Michael R.
1	Neuman Academic Press, 1 st Edition, 2014, ISBN-13: 978-0124186620.
2	Electronic Textiles: Smart Fabrics and Wearable Technology, Tilak Dias, Woodhead Publishing;
2	1 st Edition, ISBN-13: 978-0081002018.
2	Make It, Wear It: Wearable Electronics for Makers, Crafters, and Cosplayers, McGraw-Hill
3	Education, 1st Edition, ISBN-13: 978-1260116151.
4	Flexible and Wearable Electronics for Smart Clothing: Aimed to Smart Clothing, Gang Wang,
4	Chengyi Hou, Hongzhi Wang, Wiley, 1st Edition, ISBN-13: 978-3527345342
_	Printed Batteries: Materials, Technologies and Applications, Senentxu Lanceros-Méndez, Carlos
3	Miguel Costa, Wiley, 1st Edition, ISBN-13: 978-1119287421

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO	-PO M	apping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	-	-	-	-	-	-		-	-
CO2	3	2	2	3	-	-	-	2	2		-	-
CO3	2	2	3	3	-	-	-	2	2		-	-
CO4	3	3	3	3	2	3	2	3	3	3	2	3

	Semester: VI						
			ENERGY AUD	ITING AND MAN	AGEMENT		
			(GROUP E	: GLOBAL ELE	CTIVE)		
				(Theory)			
Co	ourse Code	:	18G6E07		CIE	:	100 Marks
Cı	redits: L:T:P	:	3:0:0		SEE	:	100 Marks
To	Total Hours		39L		SEE Duration	:	3.00 Hours
Co	ourse Learnin	g O	bjectives: The stud	ents will be able to			
1	Understand th	he r	need for energy audi	t, energy manageme	ent and the concepts	of b	oth.
2	2 Explain Processes for energy audit of electrical systems.						
3	3 Design and develop processes for energy audit of mechanical systems.						
4	Prepare the fe	orm	at for energy audit of	of buildings and ligh	ting systems.		

Unit-I	06 Hrs
Types of Energy Audit and Energy-Audit Methodology: Definition of Energy Audit,	Place of
Audit, Energy – Audit Methodology, Financial Analysis, Sensitivity Analysis, Project F	inancing
Options, Energy Monitoring and Training.	
Survey Instrumentation: Electrical Measurement, Thermal Measurement, Light Meas	urement,
Speed Measurement, Data Logger and Data Acquisition System,	
Energy Audit of a Power Plant: Indian Power Plant Scenario, Benefit of Audit, Types	of
Power Plants, Energy Audit of Power Plant.	
Unit – II	10 Hrs

Electrical-Load Management: Electrical Basics, Electrical Load Management, Variable-Frequency Drives, Harmonics and its Effects, Electricity Tariff, Power Factor, Transmission and Distribution Losses.

Energy Audit of Motors: Classification of Motors, Parameters related to Motors, Efficiency of a Motor, Energy Conservation in Motors, BEE Star Rating and Labelling.

Energy Audit of Pumps, Blowers and Cooling Towers: Pumps, Fans and Blowers, Cooling Towers

Unit -III	10 Hrs
Energy Audit of Boilers: Classification of Boilers, Parts of Boiler, Efficiency of a Boil	ler, Role
of excess Air in Boiler Efficiency, Energy Saving Methods.	
Energy Audit of Furnaces: Parts of a Furnace, classification of Furnaces, Energy	y saving
Measures in Furnaces, Furnace Efficiency	
Energy Audit of Steam-Distribution Systems :S team as Heating Fluid, Steam	Basics,
Requirement of Steam, Pressure, Piping, Losses in Steam Distribution Systems,	Energy
Conservation Methods	
Unit –IV	07 Hrs
Compressed Air System: Classification of Compressors, Types of Compressors, Com	npressed
Air – System Layout, Energy – Saving Potential in a Compressed – Air System.	
Energy Audit of HVAC Systems: Introduction to HVAC, Components of Air - Cond	litioning
System, Types of Air – Conditioning Systems, Human Comfort Zone and Psychrometry,	, Vapour
- Compression Refrigeration Cycle, Energy Use Indices, Impact of Refrigerants on Envi	ronment

Unit –V06 HrsEnergy Audit of Lighting Systems: Fundamentals of Lighting, Different Lighting Systems,
Ballasts, Fixtures (Luminaries), Reflectors, Lenses and Louvres, Lighting Control Systems,
Lighting System Audit, Energy Saving Opportunities.06 Hrs

Energy Audit Applied to Buildings: Energy – Saving Measures in New Buildings, Water Audit, Method of Audit, General Energy – Savings Tips Applicable to New as well as Existing Buildings.

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Explain the need for energy audit, prepare a flow for audit and identify the instruments						
	needed.						
CO2:	Design and perform the energy audit process for electrical systems.						
CO3:	Design and perform the energy audit process for mechanical systems						
CO4:	Propose energy management scheme for a building						

Reference Books

	i chee boons
1	Handbook of energy audit, Sonal Desai, Kindle Edition, 2015, McGraw Hill Education,
	ISBN: 9339221346, 9789339221348
2	Energy management handbook, Wayne C Turner and Steve Doty, 6th Edition, 2015, CRC
2	Press, ISBN: 0-88173-542-6
2	Energy management, Sanjeev Singh and Umesh Rathore, 1 st Edition, 2016, Katson Books,
3	ISBN 10: 9350141019, ISBN 13: 9789350141014
4	Energy audit of building systems, Moncef Krarti, 2 nd Edition, 2010, CRC Press
	ISBN: 9781439828717

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-1	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	1	2	3	2	1	1	1	2
CO2	3	3	2	2	2	2	3	2	1	1	2	2
CO3	3	3	2	2	2	2	3	2	1	1	2	2
CO4	3	3	2	2	2	2	3	3	1	1	2	2

				Semester: VI			
			VIRTUAL	INSTRUMENTATION & APPI	LICATIONS		
			(Gl	ROUP E: GLOBAL ELECTI	VE)		
-		1		(Theory)		1	
Cou	rse Code	:	18G6E08		CIE	:	100 Marks
Cree	lits: L:T:P	:	3:0:0		SEE	:	100 Marks
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours
Cou	rse Learning	<u>g ()</u>	bjectives: Th	e students will be able to			
	Understand	ling	the difference	e between conventional and graph	iical programmin	g	
2	Differentia	ting	g the real time	and virtual instrument.	ants of data again		ion with
3	Anaryzing LabVIFW	the	basies of dat	a acquisition and learning the con-	cepts of data acqu	iisii	ion with
4	Developing	7 8 1	real time appl	ication using myRIO and myDAC) programming co	nce	ents
-	Developing	5	ieur unie uppi				
				Unit-I			07 Hrs
Basi	c of Virtual	Inst	rumentation,	Introduction to Lab VIEW, Com	ponents of LabVl	EW	and Labels.,
Cont	roller, Indic	cato	rs data type	s, wiring tool, debugging tools	s, Creating Sub-	Vis	s, Boolean, -
Mec	hanical actio	n- s	witch, and la	ch actions, Enum, Text, Ring, Ty	pe Def, Strict Typ	be D	Def.
				Unit – II	• • •		09 Hrs
For I	Loop, While	Lo	op, Shift regi	sters, stack shift register, feedbac	ck node, and tunn	el,	elapsed time,
wait	function, Ca	ase	structures, for	rmula node, Sequence structures, l	Local and Global	var	iables.
				Unit –III			09 Hrs
Arra	ys and cluste	ers,	Visual displa	y types- graphs, charts, XY graph	, Introduction to	Stri	ing Functions,
Laby	/IEW String	Fu	nctions, Typic	cal examples, File Formats, File I/	O Functions, File	e op	peration
				Unit –IV			07 Hrs
Desi	gn Pattern-	Pro	oducer-Consu	mer Model, Event Structure M	odel, Master-Sla	ve	Model, State
Mac	hine Model,	Sy	nchronizatio	n using Semaphore, Introduction t	o DAQ System, l	Mea	asurement and
Auto	mation Exp	olor	er, DAQ A	ssistants, Analysis Assistants,	Instrument Assis	stan	t, Real time
appli	cation using	my	DAQ Config	ured it as Virtual labs, Counters, I	Low level Lab-VI	EW	Program,
	Unit –V 07 Hrs						
Sign	Signal Processing Application- Fourier transforms, Power spectrum, Correlation methods, windowing						
& fl	& flittering Real time application using myRIO Communication protocol (SPI I2C UART) for						
Emb	Embedded Applications, Configure myRIO for speed control of DC Motor using encoder. Kevpad						
appli	cation. LCI). [°]	IR Sensor.	and onboard sensors. Develor	oment of control	l s	vstem. Image
acou	isition and p	roce	essing				,,
			8				

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Remember and understand the fundamentals of Virtual Instrumentation and data Acquisition.						
CO2:	Apply the theoretical concepts to realize practical systems.						
CO3:	Analyze and evaluate the performance of Virtual Instrumentation Systems.						
CO4:	Create a VI system to solve real time problems using data acquisition.						

Refere	ice Books	
1	Jovitha Jerome, Virtual instrumentation Using LabVIEW,4th Edition, 2010, PHI Learning	g
I	Pvt.Ltd , ISBN: 978-8120340305	

2	Sanjay Gupta & Joseph John, Virtual Instrumentation Using LabVIEW, 2 nd Edition, 2017,
	Tata McGraw Hill Publisher Ltd, ISBN : 978-0070700284
2	Lisa. K. Wills, LabVIEW for Everyone, 2 nd Edition, 2008, Prentice Hall of India, , ISBN :
3	978-013185672
4	Garry Johnson, Richard Jennings, LabVIEW Graphical Programming, , 4thEdition , 2017,
	McGraw Hill Professional, ISBN: 978-1259005336

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks are executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	1	1	1	-	-	-	-	-	1	1	-	1		
CO2	1	3	2	1	2	-	-	-	1	1	-	1		
CO3	2	2	3	3	3	-	-	-	1	1	-	2		
CO4	1	2	2	3	3	1	0	2	3	2	1	2		

Semester: VI													
SYSTEMS ENGINEERING													
(GROUP E: GLOBAL ELECTIVE)													
	(Theory)												
Cou	rse Code	:	18G6E09		CIE	:	100 Marks						
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks						
Total Hours			1rs : 39 L		SEE Duration	:	3.00 Hours						
Cou	rse Learning ()bje	ectives:										
1.	Understand th	ne L	ife Cycle of System	IS.									
2.	Explain the ro	ole o	of Stake holders and	their needs in org	anizational system	ns.							
3.	Develop and	Doc	cument the knowledg	ge base for effectiv	ve systems engine	ering	g processes.						
4.	Apply availab	ole t	ools, methods and te	echnologies to sup	port complex high	n tec	hnology systems.						
5.	Create the fra	me	works for quality pro	ocesses to ensure l	high reliability of	syste	ems.						

UNIT-I	06 Hrs					
System Engineering and the World of Modem System: What is System Engineering?, Origins of						
System Engineering, Examples of Systems Requiring Systems Engineering, System Eng	ineering					
viewpoint, Systems Engineering as a Profession, The power of Systems Engineering, problem	s.					
Structure of Complex Systems: System building blocks and interfaces, Hierarchy of C	Complex					
systems, System building blocks, The system environment, Interfaces and Interactions.						
The System Development Process: Systems Engineering through the system Life Cycle, Evol	utionary					

Characteristics of the development process, The system engineering method, Testing throughout system development, problems.

UNIT – II10 HrsSystems Engineering Management: Managing systems development and risks, Work breakdownstructure (WBS), System Engineering Management Plan (SEMP), Risk Management, Organization ofSystems Engineering, Systems Engineering Capability Maturity Assessment, Systems Engineeringstandards, Problem.

Needs Analysis: Originating a new system, Operations analysis, Functional analysis, Feasibility analysis, Feasibility definition, Needs validation, System operational requirements, problems.

Concept Exploration: Developing the system requirements, Operational requirements analysis, Performance requirements formulation, Implementation concept exploration, Performance requirements validation, problems.

UNIT – III10 HrsConcept Definition: Selecting the system concept, Performance requirements analysis, Functional
analysis and formulation, Concept selection, Concept validation, System Development planning,
System Functional Specifications, problems

Advanced Development: Reducing program risks, Requirements analysis, Functional Analysis and Design, Prototype development, Development testing, Risk reduction, problems.

UNIT – IV	07 Hrs							
Engineering Design: Implementing the System Building blocks, requirements analysis, Functional								
analysis and design, Component design, Design validation, Configuration Management, probl	analysis and design, Component design, Design validation, Configuration Management, problems.							
Integration and Evaluation: Integrating, Testing and evaluating the total system, Test plant	ning and							
preparation, System integration, Developmental system testing, Operational test and ev	aluation,							
problems.								
TINITE X7	06 IIma							

Production: Systems Engineering in the factory, Engineering for production, Transition from development to production, Production operations, Acquiring a production knowledge base, problems.

Operations and support: Installing, maintenance and upgrading the system, Installation and test, Inservice support, Major system upgrades: Modernization, Operational factors in system development, problems.

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Understand the Life Cycle of Systems.								
CO2:	Explain the role of Stake holders and their needs in organizational systems.								
CO3:	Develop and Document the knowledge base for effective systems engineering processes.								
CO4:	Apply available tools, methods and technologies to support complex high technology systems.								
CO5:	Create the frameworks for quality processes to ensure high reliability of systems.								

Reference Books:

1.	Systems Engineering – Principles and Practice, Alexander Kossoaikoff, William N Sweet, 2012,
	John Wiley & Sons, Inc, ISBN: 978-81-265-2453-2
2.	Handbook of Systems Engineering and Management, Andrew P. Sage, William B. Rouse, 1999,
	John Wiley & Sons, Inc., ISBN 0-471-15405-9
3.	General System Theory: Foundation, Development, Applications, Ludwig von Bertalanffy, 1973,
	Penguin University Books, ISBN: 0140600043, 9780140600049.
4.	Systems Engineering and Analysis, Blanchard, B., and Fabrycky, W., 5th edition, 2010, Prentice
	Hall, Saddle River, NJ, USA

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. **Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	1	-	-	-	-	1	-	-	-	-	-	1		
CO2	-	2	3	-	1	-	-	1	-	-	2	-		
CO3	-	3	-	-	-	2	2	1	-	3	2	-		
CO4	-	-	2	1	-	-	-	-	-	-	-	-		
CO5	1	1	-	2	-	1	2	-	3	-	-	-		

	Semester: VI												
INTRODUCTION TO MOBILE APPLICATION DEVELOPMENT													
(GROUP E: GLOBAL ELECTIVE)													
(Theory)													
Course	e Code	:	18G6E10		CIE	:	100 Marks						
Credit	s: L:T:P	:	3:0:0		SEE	:	100 Marks						
Total Hours : 39L SEE Duration : 3.00 Ho													
Course Learning Objectives: The students will be able to 1 Comprehend the knowledge on essentials of android application development													
Comprehend the knowledge on essentials of android application development. Demonstrate the basic and advanced features of android technology													
Z Demonstrate the basic and advanced features of android technology.													
3	Develop the	SK1	Is in designing and buildin	g mobile applications	s using android pla	itto	rm.						
4	Create. debu	g ar	nd publish innovative mobi	le applications using	android Platform.								
5	Comprehend	the	knowledge on essentials of	of android application	development.								
Unit-I 08 Hrs													
Introd	iuction:					1 т.							
Smart	phone operation	ng	systems and smart phones	applications. Introd	uction to Androic	i, Ir u d	istalling Android						
Studio	, creating an A	ndr	old app project, deploying	the app to the emulat	for and a device. U	ID	esign: Building a						
layout	with UI eleme	nts,	Layouts, views and Resol	urces, Text and Scrol	ling views.	•,	т <i>и</i> т.:						
Activit	ties and Inten	ts,	The Activity Lifecycle, I	Managing State, Act	ivities and Impli	CIT	Intents, Testing,						
debugg	ging, and using	g si	upport libraries, The And	roid Studio Debugge	er, Testing androi	d aj	pp, The Android						
Suppor	rt Library.						0.0 77						
I.com o			Unit	- 11			08 Hrs						
User e	experience:	. т		Notion Design	I. Winn Dallah	د د 1	·						
User 1	Interaction, Use	er n	nput Controls, Menus, Scre	een Navigation, Recy	cier view, Delign	trui	user experience,						
Drawa	bles, Styles, ar	10 1	nemes, Material Design, I	Providing Resources	for Adaptive Layo	outs	, Testing app UI,						
Testing	g the User Inter	rtac	e	TTT			00 11						
Work	ing in the heal		Unit -	-111			U8 Hrs						
Doole	ing in the back	(gro	vullu: noTaalt and Aavna Taalt I	laadan Connact to t	ha Intamat Duca	daa	t Dessivers and						
Dackg	round Tasks, A	-tsy	heduling and antimizing h	Loader, Connect to t	le Internet, Broad	icas	st Receivers, and						
Service	es. Inggenng,	sc.	neduling and optimizing t	background tasks – 1	Notifications, Sch	eau	ing Alarms, and						
Transi	erring Data En	1016		TX 7			00 11						
Unit –IV 08 Hrs													
All ab	out uata:		Staming Data Shared Dra	formana Ann Cattin	sa Staring data ya	:	SOLita SOLita						
Preferences and Settings, Storing Data, Shared Preferences, App Settings. Storing data using SQLite - SQLite													
Friner, SqLite Database. Sharing data with content providers. Loading data using loaders.													
Using	Using Selection Widgets and Debugging, Displaying and Fetching Information, Using Dialogs and Fragments,												
Advan	ceu Android	Pro	ogramming: Internet, En	tertainment, and S	ervices, Impleme	ntir	ig urawing and						
animat	animations. Displaying web pages and maps, communicating with SMS and emails. Creating and consuming												
services - Location based services, Sensors.													
Hard	Unit –V 07 Hrs												
Hardy	Hardware Support & devices:												
Permis	ssions and Lib	rarı	Permissions and Libraries, Performance and Security. Firebase and AdMob, Publish and Polish, Multiple										

Form Factors, Using Google Services.

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Comprehend the basic features of android platform and the application development process.
	Acquire familiarity with basic building blocks of Android application and its architecture.
CO2:	Apply and explore the basic framework, usage of SDK to build Android applications incorporating
	Android features in developing mobile applications.
CO3:	Demonstrate proficiency in coding on a mobile programming platform using advanced Android
	technologies, handle security issues, rich graphics interfaces, using debugging and troubleshooting
	tools.
CO4:	Create innovative applications, understand the economics and features of the app marketplace by
	offering the applications for download.

Refere	ence Books
1	Android Programming, Phillips, Stewart, Hardy and Marsicano, Big Nerd Ranch Guide, 2 nd Edition,
1	2015, ISBN-13 978-0134171494
2	Android Studio Development Essentials - Android 6, Neil Smyth, 2015, Createspace Independent
2	Publishing Platform, ISBN: 9781519722089
3	Android Programming – Pushing the limits, Eric Hellman, 2013, Wiley, ISBN-13: 978-1118717370
	Professional Android 2 Application Development, Reto Meier, Wiley India Pvt.Ltd 1 st Edition,
4	2012, ISBN-13: 9788126525898
-	Beginning Android 3, Mark Murphy, Apress Springer India Pvt Ltd, 1 st Edition, 2011, ISBN-13:
5	978-1-4302-3297-1
6	Android Developer Training - https://developers.google.com/training/android/
	Android Testing Support Library - https://google.github.io/android-testing-support-library/

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	2	-	-	-	3	-	-	-	-	-	-	2			
CO2	3	-	-	-	3	-	-	-	-	-	1	2			
CO3	-	3	3	-	3	-	1	-	-	2	1	3			
CO4	3	3	3	1	3	2	1	2	2	1	1	3			

	Semester: VI											
	INDUSTRIAL AUTOMATION											
(GROUP E: GLOBAL ELECTIVE)												
(THOERY)												
Cou	Course Code:18G6E11CIE:100 Marks											
Credits: L:T:P :		:	3:0:0	SEE	:	100 Marks						
Total Hours:39 LSEE Duration:3.00 Hours						3.00 Hours						
Cou	Course Learning Objectives: The students will be able to											
1	Identify the v	ario	ous types of Actuators, ser	nsors and switching devices u	sed in	n industrial						
	automation.											
2	Understand t	the	fundamentals of CNC, PL	C and Industrial robots.								
3	Describe the	fun	ctions of hardware compo	nents for automation								
4	Prepare simp	le n	nanual part programs for C	CNC and Ladder logic for PL	C.							
5	Demonstrate	the	ability to develop suitable	e industrial automation system	ns usi	ng all the concepts						

Unit-I	06 Hrs
Overview of Automation in Industry	
Basic kinds of Industrial type equipment, automation and process control, mechanization vs au	tomation
continuous and discrete control, basic elements of an automated system, advanced automation	functions
levels of automation, basic automation circuits.	
Unit-II	10 Hrs
Sensors and Industrial Switching elements.	
Sensor terminology, Classification of sensors and transducers, Limit switch, Temperature s	sensors,
Light sensors, position sensors, inductive and capacitive proximity sensors, optical encoders,	Relays,
Solenoids, moving part logic elements, fluidic elements, timers, comparisons between sw	vitching
elements.	
Industrial Automation Synthesis	
Introductory principles, basic automation examples, meaning of the electrical and mechanical	latch,
automation circuits with sensors, design regulations and implementation.	
Unit-III	10 Hrs
Logical Design of Automation Circuits	
Postulates and theorems of Boolean algebra, Classical state diagrams, state diagrams with sens	ors, step
by step transition due to discrete successive signal, state diagram with time relays, compone	nts state
diagram method, state diagrams and minimum realisations, sequential automation	systems,
Applications - Bi directional lead screw movable worktable with two speeds, Palindromic me	ovement
of a worktable with memory.	
Elements of electro pneumatic actuation	
Basic elements of pneumatic system, pneumatic cylinders, Symbolic representations of pneum	natic and
electrical switching devices, Indirect control of double acting cylinders, memory control	circuit,
cascading design, automatic return motion, quick exhaust valve circuit, and cyclic operat	ion of a
cylinder, pressure sequence valve and time delay valve circuits. Automatic return motion, Se	parating
similar balls, Stamping device.	
Unit-IV	06 Hrs
Numerical Control and Robotics	
Numerical control, components of CNC, classification, coordinate systems, motion control str	ategies,

Numerical control, components of CNC, classification, coordinate systems, motion control strategies, interpolation, NC words, Simple part programming for turning, milling and drilling. Components of the robot, base types, grippers, Configurations and simple programming using VAL.

Unit-V	07 Hrs

Programmable logic control systems

Internal structure, principles of operation, latching, ladder diagrams, programming instructions, types of timers, forms of counters, writing simple ladder diagrams from narrative description and Boolean logic. Programming exercises on motor control in two directions, traffic control, cyclic movement of cylinder, conveyor belt control, alarm system, sequential process, and continuous filling operation on a conveyor.

Course	Outcomes: After completing the course, the students will be able to
CO1:	Recall and Illustrate the application of sensors actuators, switching elements and inspection
	technologies in industrial automation.
CO2:	Build the circuit diagrams for fluid power automation, Ladder diagrams for PLC and
	identify its application areas.
CO3:	Evaluate CNC part programs for 2D complex profiles, perform machining and turning
	centres interfaced with Robots.
CO4:	Develop a suitable industrial automated system integrating all of the above advanced
	automation concepts

Referen	ce Books
1.	Stamatios Manesis, George Nikolakopoulos, 'Introduction to Industrial Automation', CRC
	Press, 2018, ISBN - 978-1-4987-0540-0
2.	David W. Pessen, 'Industrial automation; Circuit design and components', Wiley India, 1st
	Edition, 2011, ISBN –13–978–8126529889.
3.	Joji P, 'Pneumatic Controls', Wiley India, 1 st Edition, ISBN – 978–81–265–1542–4.
4.	Petruzella, Frank D, Programmable logic controllers, McGraw-Hill, 4th Edition, 2013, ISBN-
	13: 978-0-07-351088-0

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30 (Q) + 50 (T) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	2	2	-	3	1	-	-	-	1	-	1
CO2	2	2	3	2	2	-	-	-	1	2	-	1
CO3	2	2	3	3	2	-	-	-	-	2	-	-
CO4	3	3	3	2	2	-	-	-	-	2	-	1

	Semester: VI						
	MOBILE NETWORK SYSTEM AND STANDARDS (GROUP E: GLOBAL ELECTIVE) (Theory)						
Cou	rse Code	:	18G6E12	CIE	:	100 Marks	
Credits: L:T:P		:	3:0:0	SEE	:	100 Marks	
Hrs/	Week	:	40L	SEE Duration	:	3.00 Hrs	
Cou	rse Learning	; Ol	bjectives: The	students will be able to			
1	1 Understand the essential principles of cellular communication and factors that might degrade the performance.						
2	2 Describe the second-Generation pan-European digital mobile cellular communication standards.						
3	3 Analyze the 3G cellular technologies including GPRS and UMTS.						
4	4 Compare the existing and future trends in Wireless technologies.						

Unit-I	07 Hrs
Principle of Cellular Communication: Cellular Terminology, Cell Structure and Cluster, F	requency
Reuse Concept, Cluster size and System Capacity, Method of Locating Co-channel cells, F	requency
Reuse distance, Co-channel Interference and Signal Quality, Co-channel interference F	Reduction
Methods.	
Unit – II	08 Hrs
Basic Cellular system: Consideration of components of a cellular system- A basic cellular	ar system
connected to PSTN, Main parts of a basic cellular system, Operation of a Cellular	system,
Performance criteria- Voice quality, Trunking and Grade of Service, Spectral Efficiency of	of FDMA
and TDMA systems.	
Unit –III	09 Hrs
Second generation Cellular Technology: GSM: GSM Network Architecture, Identifier	s used in
GSM System, GSM channels, Authentication and Security in GSM, GSM Call Procedu	re, GSM
Hand-off Procedures.	
IS-95: Forward Link, Reverse Link, Soft-handover in IS-95.	
Unit –IV	08 Hrs
3G Digital Cellular Technology: GPRS: GPRS technology, GPRS Network Architectur	e, GPRS
signalling, Mobility Management in GPRS.	
UMTS: UMTS Network Architecture, UMTS Interfaces, UMTS Air Interface Specification	s, UMTS
Channels.	
Unit –V	08 Hrs
Wireless Personal Area Networks: Network architecture, components, Bluetooth,	Zigbee,
Applications. Wireless Local Area networks: Network Architecture, Standards, Application	ns.
Wireless Metropolitan Area Networks: IEEE 802.16 standards, advantages, WMAN	Network

architecture, Protocol stack.

Course	Course Outcomes: After completing the course, the students will be able to						
CO1	Describe the concepts and terminologies for Cellular Communication.						
CO2	Analyze the Architecture, Hand-off and Security aspects in 2G and 3G Networks.						
CO3	Compare the performance features of 2G and 3G Cellular Technologies.						
CO4	Analyze and Compare the architectures of various Wireless technologies and standards.						

Reference Books

Iterere	
1	Wireless Communications, T.L. Singal, 2 nd Reprint 2011, Tata McGraw Hill Education
1	Private Limited, ISBN: 978-0-07-068178-1.
2	Wireless and Mobile Networks Concepts and Protocols, Dr.Sunil Kumar S Manvi, 2010,
4	Willey India Pvt. Ltd., ISBN: 978-81-265-2069-5.
2	Wireless Communication, Upena Dalal, 1st Edition, 2009, Oxford higher Education,
5	ISBN-13:978-0-19-806066-6.
4	Wireless Communications Principles and practice, Theodore S Rappaport, 2 nd Edition,
4	Pearson, ISBN 97881-317-3186-4.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	-	2	-	-	-		-	-	
CO2	3	2	3	-	2	-	-	-	2	-	-	
CO3	3	3	-	2	2	-	-	-	2	-	-	3
CO4	3	2	2	-	2	-	-	-	2	-	-	3

	Semester: VI							
	THIN FILM NANO DEVICE FABRICATION TECHNOLOGY							
	(GROUP E: GLOBAL ELECTIVE)							
~		1		(Theory)				
Cou	rse Code	:	18G6E13		CIE	:	100 Ma	rks
Cree	lits: L:T:P	:	3:0:0		SEE	:	100 Mai	rks
Tota	l Hours	:	39L		SEE Duration	:	3.00 Ho	urs
Cou	rse Learning O)bje	ctives: The student	s will be able to				
1	Basic understa	andi	ng of vacuum and r	elated technology				
2	Knowledge of	gro	owth, optimization a	nd characterization o	of thin films and nano	ostri	uctures	
3	Design approp	oria	te growth technique	for desired application	on			
4	Fabricate and	Eva	luate thin film nand	devices for advance	d applications			
				Unit-I				08 Hrs
Vacu	um Technolog	gy:						
Intro	duction (KTG,	cla	ssification of Vacu	um), Gas transport a	and pumping, Q-rate	e ca	lculation,	Basics of
Vacu	um - Principles	s of	different vacuum pu	umps: Rotary, Roots,	Diffusion, Turbo me	olec	ular, and	Cryogenic
pum	ps, getter pump	os (.	NEG), sublimation	pump (TSP); differe	ential pumping, Mea	asur	ement of	vacuum -
Cond	cept of Capacita	ince	Manometer, Pirani	and Penning gauges.				
	Unit – II 08 Hrs							
Subs	Substrate Surfaces& Thin Film Nucleation:							
Aton	Atomic view of substrate surfaces, Thermodynamic aspects of nucleation, Kinetic processes in nucleation							
and	growth, experim	nent	al studies of nucleat	tion and growth (Brie	f)	-		
Defe	Defects in Thin Films:							

0-D (point defects), 1-D (line defects), 2&3-D (grain boundaries, stacking faults, crystal twins, voids and precipitates), strain mismatch, Ion implantation defects (Amorphization), Effects of defects on the film (Electrical resistivity, PN junction leakage current, diffusion, Mechanical stress), defect propagation in films

08 Hrs

Fabrication Techniques

Chemical Approaches: Electro Spinning and spin coating routes, Pulsed electro-chemical vapor deposition (PECVD)

Unit –III

Physical Approaches: Metalorganic chemical vapor deposition (MOCVD), Atomic Layer Deposition (ALD) - pulsed laser deposition, Arc plasma deposition.

Lithography: Photo/FIB techniques, Etching process: Dry and Wet etching

Unit –IV07 HrsCharacterization TechniquesSurface morphology measurements: Kelvin-probe Force Microscopy (KFM), Surface X-ray Diffraction(SXRD), Vacancy type defects and interfacial surface chemistry: Positron Annihilation LifetimeSpectroscopy (PALS), Angle Resolved X-ray Photoelectron spectroscopy (ARXPS) Point, line defects,grain boundary studies: Transmission Electron microscopy (TEM), UV Visible Spectroscopy (UV-Vis)Unit –V08 HrsSilicon wafer fabrication – Wafer to cell formation - I-V characteristics and spectral response of c-Si solarcells. Factors limiting the efficiency, Differences in properties between crystalline silicon and amorphous(a-Si) siliconThin Film Solar Cells: Principle of multi-junction cells, Structure and fabrication of GaInP/GaAs/Ge triplejunction solar cell - Cell configuration – techniques used for the deposition of each layer- cellcharacteristics, optical efficiency measurements (brief)

Thin film Nano Biosensor: Biosensors and nanotechnology, Basic biosensor architecture, Biosensor

(receptor/antigen) recognition element, Biosensor transducer (electrochemical, optical, thermal, mass), Glucowatch TM, Examples in cancer detection

Field Effect Transistors: Overview, Basic Structure, I-V Characteristics, Lateral transport of electrons in different regions of transistors.

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	Choose the right choice of material for the desired application					
CO2:	Improve the desired nanostructures and their properties					
CO3:	Fabricate appropriate Nanodevices					
CO4:	Optimize the nanodevice fabrication process for repeatability.					

Refere	nce Books
1	Solid State Physics, Ashcroft & Mermin, 2 nd Edition, Brooks/Cole, 1976, ISBN-13: 978-
1	0030839931
2	Nanotechnology for photovoltaics, Loucas Tsakalakos, 1st Edition, 2010, ISBN 9781420076745.
2	Microfabrication for Industrial Applications, Regina Luttge, 1 st Edition, William Andrew, 2011,
3	ISBN: 9780815515821.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Experiential Learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) +50(T) +20(EL) =100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	2	1	-	-	-	-	-	-		-	2	
CO2	3	2	2	2	-	-	-	-	-		-	2	
CO3	2	3	3	2	2	1	1	1	-	1	-	2	
CO4	2	3	3	2	2	2	2	2	2	2	-	2	

	Semester: VI										
	CHEMISTRY OF ADVANCED ENERGY STORAGE DEVICES FOR E-MOBILITY										
(GROUP E: GLOBAL ELECTIVE)											
C	C. J.		19C/E14	(Theory)	CIE	<u> </u>	100 141				
Cou	rse Code liter I .T.D	:	18G6E14 3.0.0		CIE SFF	:	100 Mark 100 Mark	KS ZC			
Tota		•	391		SEE SFE Duration	•	3 00 Hom	ns			
Cou	Course Learning Objectives: The students will be able to										
1	Understand th	e ba	asic concepts of adv	anced storage device	s.						
2	Apply the bas	ic c	oncepts of storage d	evices for E-mobility	in the area of auton	noti	ve engineer	ing.			
3	Impart know	ledg	ge of electrochemis	stry to analyze the	problems associate	d v	with electri	c/hybrid			
	vehicles.	C	·		•			2			
4	Develop know	vled	ge of battery manag	ement system and re-	cycling of storage de	vic	es.				
	*			· · · ·							
				Unit-I				07 Hrs			
Intro	oduction of En	erg	y Storage Systems	in Electric vehicles:							
Back	ground of alter	nati	ve energy sources a	and sustainability. Int	roduction of E-mob	lity	: Overview	of land,			
mari	ne and space	veh	icle electrification.	Vehicle performance	ce and fuel econom	ny	and charac	teristics.			
Elect	tric vehicles co	onfi	guration, energy an	nd power requirement	nts for various HE	Vs	and EVs V	Vehicles.			
Fund	lamentals of bar	tery	v technology in hybr	rid vehicles.							
				Unit – II				08 Hrs			
Adv	anced Lithium	ion	Battery Technolog	gy for Electric-vehic	eles:						
Basi	c concepts of li	thiu	im batteries, Advan	ced Lithium batterie	s for E-mobility: Ce	ell c	onstruction	, battery			
com	ponents, princi	ple	of operation, ele	ctrode fabrication,	electrolytes, battery	m	odules and	l packs.			
Cons	struction, worki	ng a	and future application	ons of Li-polymer ba	tteries, Li-S battery,	Li-	Air battery	, Li-iron			
sulfi	de cells and sol	id-s	tate batteries.					0.0 T T			
Futu	no Soono in no	n 1	ithium Dattoniog.	Unit –III				08 Hrs			
rutu Limi	totions of lithi	II- I	battoriog Constru	ation components	vorking and applica	otio	ng of Non	Lithium			
botto	rias: Sodium b	otto	v Magnasium batt	ory Nickel Metal H	working and applied		alle Vanad	ium and			
iron	hesed betterio		ly, Magnesium Dau Ni Uydrogon, battar	rios Advanced bett	orios for transports	a c	ells, vallau	hottory			
horiz	vontal plate Ph-	Δci	d batteries Advanta	ges and applications	of non-lithium batter	inor	11. 191-19111	Dattery,			
110112	iontal plate 1 0-2		d batteries. Advanta	Unit _IV		ics.		08 Hrs			
Che	mistry of Alter	nat	ive Storage Device	S:				00 1115			
Intro	duction to supe	er c	apacitor, material c	haracteristics. Const	uction, working and	l ar	plications of	of Super			
capa	citors and Ultr	a ca	apacitor for E mob	ility: Double laver S	uper capacitors. Ac	uec	ous super ca	apacitor.			
orga	organic based super capacitors asymmetric super capacitors and Ultra capacitors. Advanced battery-super										
capa	capacitor hybrids for large vehicles Battery-Fuel cell hybridization for transportation applications. Battery-										
Solar Cell (Photovoltaic) hybridization, and advanced energy storage devices for back-up of solar energy											
	Unit –V 08 Hrs										
Batt	Battery Maintenance and Recycling:										
Batte	Battery Management Systems (BMS), Fundamentals of battery management systems and controls.										
Batte	ery Thermal M	anag	gement: Passive coo	oling – PCM system	s, Active cooling –	Liq	uids & air :	systems.			
Batte	ery Recycling	Fecl	nnologies: Technolo	ogy and economic a	spects of battery red	cycl	ing. Enviro	onmental			
safet	y in battery re	ecyc	cling process. Regu	ulations and safety	aspects of high vo	ltag	e batteries:	battery			
stanc	lards, safe hand	ling	g of lithium batteries	i.		J		-			
								-			

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understanding the fundamentals of advanced batteries, super capacitors and fuel cells for electric
	vehicles.
CO2:	Applying the chemistry knowledge used for hybridization of various energy storage and conversion
	devices for vehicle electrification.
CO3:	Analyses of battery management, safety, global market trends for large format batteries.
CO4:	Evaluation of efficiency of a battery with respect to cost, environmental safety, material, energy
	consumption, reuse and recycling.

Refere	ence Books
1	Battery reference book, T. R. Crompton., 3rd edition, NEWNES Reed Educational and Professional
1	Publishing Ltd 2000, ISBN: 07506 4625 X.
2	Batteries for Electric Vehicles, D. A. J. Rand, R. Woods, and R. M. Dell, Society of Automotive
2	Engineers, Warrendale PA, 2003. ISBN 10: 0768001277.
2	Lithium Batteries, Science and Technology, GA. Nazri and G. Pistoa, Kluwer Academic Publisher,
3	2003, ISBN 978-0-387-92675-9.
4	Battery Technology Handbook, H. A. Kiehne, Marcel Dekker, NYC, 2003. ISBN: 0824742494
4	9780824742492.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	-	-	2	-	-	-	-	1	-	1	
CO2	3	3	2	2	2	-	-	-	1	1	-	1	
CO3	2	2	3	3	2	-	-	-	3	1	2	1	
CO4	3	3	2	3	2	-	-	-	2	1	3	1	

	Semester: VI										
ADVANCED STATISTICAL METHODS											
	(GROUP E: GLOBAL ELECTIVE)										
0		I	100 (117	(Theory)	OTT		100 10 1				
Cou	rse Code	:	18G6E15		CIE	:	100 Marks				
Cree	lits: L:I:P	:	3:0:0		SEE SEE Duration						
	Iotal Hours : 39L SEE Duration : 3.00 Hours Course Learning Objectives: The students will be able to										
1	Adequate exp	0511	re to understand the	basic knowledge on	classification and re	ore	ssion trees that form				
-	the foundation	u fo	r analyzing data	busic knowledge on	clussification and re	610	ssion trees that form				
2	Use the conce	nte	of cluster analysis a	nd conjoint analysis	techniques arising in	1 V91	rious fields				
3	Apply the co	nce	nts of discriminant	analysis and factor	analysis which has		reat significance in				
5	Apply the co	root	jeo	analysis and factor	analysis which hav	le g	reat significance in				
1	Domonstrato d	ha	nee.	of regression and lo	alinaar modele						
4	Demonstrate	ne	practical importance	of regression and rog	gimear models.						
				I Init-I			07 Hrs				
Clas	sification and	Reg	ression Trees:				07 1115				
Intro	duction. the Ba	sic	Tree Model. Catego	rical or Quantitative	Predictors, Regressi	on ′	Frees. Classification				
Tree	s Stopping Rul	es	Pruning and Cross-V	Validation Loss func	tions Geometry						
	s, stopping itu	c 5,	r runnig und eross	Unit – II	dons, deoniedy.		07 Hrs				
Clus	ter Analysis:						07 1115				
Intro	duction. Types	of	Clustering, Correlat	tions and Distances.	Hierarchical Cluster	ing.	Partitioning via K-				
mea	ns. Additive Tre	es.	01400001118, 0011014								
				Unit –III			08 Hrs				
Con	joint Analysis:										
Intro	duction. Addit	ive	Tables, Multiplicat	tive Tables. Comput	ing Table Margins	bas	sed on an Additive				
Mod	el. Applied Cor	nioi	nt Analysis.	, I	0 0						
	× 11	5	<u>y</u>	Unit –IV			08 Hrs				
Disc	riminant Anal	ysis	and Factor Analys	sis:							
Intro	duction, Linea	r D	iscriminant Model,	Linear discriminant	function, Discrimin	nant	analysis, Principal				
Com	ponent, Factor	Ana	alysis, Principal Con	nponents versus Facto	or Analysis, Applica	tior	is and Caveats.				
-				Unit –V			09 Hrs				
Log	stic Regression	ı ar	nd Loglinear Mode	ls:							
Intro	Introduction, Binary Logit, Multinomial Logit, Conditional Logit, Discrete Choice Logit, Stepwise Logit,										
Fitti	ng a Loglinear I	Mod	lel.	-							
L	-										
Cou	rse Outcomes:	Af	ter completing the	course, the students	will be able to						
COI	: Explore the	fur	damental concepts	of statistical methods	arising in various fi	elds	engineering.				
CO ₂	Apply the k	nov	CO2: Apply the knowledge and skills of statistical techniques to understand various types of analysis.								

CO3:	Analyze the appropriate statistical techniques to solve the real-world problem and to optimize the
	solution.
CO4.	Distinguish the overall knowledge gained to demonstrate the problems origing in many prestical

CO4: Distinguish the overall knowledge gained to demonstrate the problems arising in many practical situations.

Refere	nce Books
1	Statistics I, SYSTAT 10.2, ISBN 81-88341-04-5.
•	Nonparametric Statistical Inference, Gibbons J., D., and Chakraborti, S., 4th Edition, 2003, Marcel
2	Decker, New York. ISBN: 0-8247-4052-1.

3	Applied Statistics and Probability for Engineers, Douglas C. Montgomery and George C. Runger, 6 th Edition, 2014, John Wiley & Sons, ISBN: 13 9781118539712, ISBN (BRV):9781118645062.
4	An Introduction to Multivariate Analysis, T. W. Anderson, 3 rd Edition, 2003, John Wiley & Sons, New Jersey JSBN: 0-471-36091-0

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-I	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

				Semester: VI							
MATHEMATICAL MODELING											
	(GROUP E: GLOBAL ELECTIVE)										
C	C. J.	Γ.	190(E1((Theory)	CIE		100 M1				
Coul	rse Code	:	18G0E10 2.0.0			:	100 Mark	KS KS			
Tota	115: L:1:F	•	391		SEE SEE Duration	•	3 00 Hou	15 rs			
Com	Course Learning Objectives: The students will be able to										
1	1 Adequate exposure to understand the basic knowledge of mathematical modeling.										
2	 2 Use the concepts of discrete process models arising in various fields. 										
3	Apply the co	nce	epts of modeling o	f nano liquids which	ch have great sign	ifica	nce in eng	gineering			
	practice.			1	6 6		C				
4	Demonstrate	the	practical importance	e of graph theoretic	models, variationa	l pr	oblem and	dynamic			
	programming		1 1		,	I		5			
	1 0 0										
				Unit-I				07 Hrs			
Elen	nentary Mathe	ma	tical Modeling:								
Basic	c concepts. Rea	al v	world problems, (Sc	eience and Engineeri	ng), Approximation	ı of	the problem	m, Steps			
invol	ved in modelin	ng.	Linear growth and	l decay model, Logi	stic model, Model	of 1	nass-spring	-dashpot			
(pres	ent in shock al	oso	rbed, mechanical en	gineering problems)	, Chemical reaction	, Di	ug absorpti	ion from			
blood	d stream. Motic	n o	f a projectile, Curre	nt flow in electrical c	ircuits (LCR).						
				Unit – II				07 Hrs			
Disc	rete Process	Mo	dels:								
Intro	duction to Dif	fer	ence equations, Int	roduction to discret	e models-simple e	xam	ples, Math	ematical			
mode	eling through	diff	erence equations in	n economics, finance	e, population dyna	mic	s and gene	etics and			
prob	ability theory.										
				Unit –III				08 Hrs			
Mod	eling of Nano	Liq	uids:								
Nano	o liquids-Basic	co	ncepts, Mathematic	al modeling of nan	o liquids-Buongion	no	Model (Tw	o phase			
mode	el): Relative in	npc	rtance of the nano	particle transport me	echanisms. Conserv	vatio	n equation	for two			
phase	e nano liquids:	The	e Continuity equation	n, Momentum equation	on and Energy equa	tion					
				Unit –IV				08 Hrs			
Graj	ph Theoretic M	lod	els:								
Math	ematical mode	elin	g through graphs-M	Iodels in terms of u	undirected graphs,	dire	cted graphs	s, signed			
grapl	ns and weighted	l gr	aphs. Problems with	engineering applicat	tions.			I			
				Unit –V				09 Hrs			
Vari	ational Proble	m a	and Dynamic Progr	amming:							
Opti	mization princ	iple	es and techniques,	Mathematical mode	els of variational	pro	blem and	dynamic			
prog	ramming, Probl	em	s with engineering a	pplications.							
C			(
Cou	rse Outcomes:	Aľ	ter completing the	course, the students	will be able to	a f	1.4				
	Explore the	rur	idamental concepts (bi inathematical mod	eis arising in variou	s fie	ius enginee	ring.			
	Apply the k	no	wiedge and skills of	aiscrete and continu	ious models to und	ersta	and various	types of			
002	analysis.		• , •				1.	• •			
03	: Analyze the	e ap	propriate mathemat	ical model to solve t	the real-world prob	lem	and to opti-	mize the			

Refere	nce Books
1	Mathematical Modeling, J. N. Kapur, 1st Edition, 1998, New Age International, New Delhi, ISBN:
L	81-224-0006-X.
2	Case studies in mathematical modeling, D. J. G. James and J. J. Mcdonald, 1981, Stanly Thames,
2	Cheltonham, ISBN: 0470271779, 9780470271773.
	Modeling with difference equations, D. N. Burghes, M. S. Borrie, Ellis Harwood, 1981, ISBN 13:
3	9780853122869.
4	Mathematical Modeling: Models, Analysis and Applications, Sandip Banerjee, 2014, Chapman and
4	Hall/CRC Textbook, ISBN 9781439854518.

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

	VI Semester										
	FOUNDATIONAL COURSE ON ENTREPRENEURSHIP										
	(GROUP E: GLOBAL ELECTIVE)										
	(Theory)										
Co	urse Code	:	18G6E17		CIE Marks	:	100 Marks				
Cr	edits: L:T:P	:	3:0:0		SEE Marks	:	100 Marks				
To	tal Hours	:	39L		SEE Duration	:	3.00 Hours				
Co	urse Learning (<u>)</u> Db	jectives:								
1	To make partic	ipa	ints self-discove	er their innate flow, entrepreneurial s	style, and identify	/ pr	oblems				
	worth solving t	he	reby becoming	entrepreneurs							
2	To handhold pa	arti	cipants on lean	methodology to craft value proposit	ion and get ready	wi	ith lean				
	canvas		•								
3	To create solut	ion	demo by condu	acting customer interviews and findi	ng problem-solut	tior	ı fit for				
	building Minin	nur	n Viable Produc	et (MVP)							
4	To make partic	ipa	ints understand	cost structure, pricing, revenue type	s and importance	of	adopting				
	shared leadersh	nip	to build good to	eam	-		~ -				
5	To help partici	par	nts build a stron	g brand and identify various sales ch	annels for their p	oroc	ducts and				
	services										
6	To take particip	par	ts through basi	cs of business regulations and other	legal terms along	-Wi	ith				
	understanding	of	Intellectual Proj	perty Rights							
				I Init-I			08 Hrs				

Oint-1	00 1115						
Self-Discovery and Opportunity Discovery							
Finding the Flow; Effectuation; Identifying the Effectuation principles used in activities; Identifying							
Problem Worth Solving; Design Thinking; Brainstorming; Presenting the Identified problems; Identifying							
the Entrepreneurial Style.							
Unit – II	08 Hrs						
Customer, Solution and Lean Methodology							
Customers and Markets; Segmentation and Targeting; Identifying Jobs, Pains, and Gains and Earl	у						
Adopters; Crafting Value Proposition Canvas (VPC); Presenting VPC; Basics of Business Model	and						
Lean Approach; Sketching the Lean Canvas; Risks and Assumptions; Presenting Lean Canvas.							
Unit – III	07 Hrs						
Problem-Solution Fit and Building MVP							
Blue Ocean Strategy - Plotting the Strategy Canvas; Four Action Framework: Eliminate-Reduce-F	Raise-						
Create Grid of Blue Ocean Strategy; Building Solution Demo and Conducting Solution Interviews	;						
Problem-Solution Fit; Building MVP; Product-Market Fit; Presenting MVP.							
Unit – IV	07 Hrs						
Financial Planning & Team Building							
Cost Structure - Estimating Costs; Revenues and Pricing: Revenue Streams, Revenue Types, Iden	ifying						
Secondary Revenue Streams, Estimating Revenue and Price; Profitability Checks; Bootstrapping a	and						
Initial Financing; Practising Pitch; Shared Leadership; Hiring and Fitment, Team Role and							
Responsibilities.							
Unit – V	09 Hrs						
Marketing, Sales, Regulations and Intellectual Property							
Positioning and Branding; Channels; Sales Planning; Project Management; Basics of Business							

Regulations; How to Get Help to Get Started; Patents, Trademark, Licensing, Contracts; Common Legal mistakes, Types of Permits, Tax Registration Documents, Compliance; Infringement and Remedies, Ownership and Transfer.

Course	Course Outcomes: After completing the course, the students will be able to						
CO1	Showcase the ability to discern distinct entrepreneurial traits						
CO2	Know the parameters to assess opportunities and constraints for new business ideas						
CO3	Understand the systematic process to select and screen a business idea						
CO4	Design strategies for successful implementation of ideas						
CO5	Create Business Model and develop Minimum Viable Product						

Refer	Reference Books:							
1	Running Lean: Iterate from Plan A to a Plan That Works. O'Reilly Media, Maurya, A., 2012.							
2	Entrepreneurship. Roy, R., 2012. Oxford University Press							
3	Intellectual Property Law in India. Gupta, T. S., 2011. Kluwer Law International							
	Flow: The Psychology of Optimal Experience. Czikszentmihalyi, M., 2008. Harper Perennial							
4	Modern Classics							
5	Effectuation: Elements of Entrepreneurial Expertise. Sarasvathy, S. D., 2009. Edward Elgar							
Э	Publishing Ltd.							

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20. **Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.**

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	2	-	1	2	2	-	1
CO2	1	1	-	-	-	3	2	3	1	2	-	1
CO3	-	1	-	-	-	2	1	3	3	3	3	3
CO4	-	1	2	2	3	-	-	-	1	-	2	1

	Semester: VI						
PROFESSIONAL PRACTICE – II							
EMPLOYABILITY	Y S.	KILLS AND PROFE	SSION	AL DEVELOPME	NT	OF ENGINEERS	<u>,</u>
Course Code	:	18HS08		CIE Marks	:	50 Marks	
Credits: L:1:P	:	0:0:1		SEE Marks	:	50 Marks	
Hours	:	18 Hrs/Semester		CIE Duration	:	02 Hrs	
1 Improve qualitation	<u>jec</u>	uves: The students v	<u>viii be ai</u>	Die to			
1 Improve qualitativ		no quantitative proble	to enooid	ig skills.			
Z Apply critical and	10	gical thinking process	to specifi	d arriva at relation	hin	a hatriaan aanaant	
3 Additive to verball	y C	ompare and contrast v	vorus an	a arrive at relations	smp	s between concepts	s,
Applying good	mir	ning. Ind many that halp i	n comm	unicating ideas		all as in tachnics	<u>_1</u>
4 Apprying good		iu maps mai neip i		lunicating lucas as	> w	en as in technica	ai
uocumentation							
		UNIT	r			06 Urg	c .
Antitudo Tost Proporo	tion	UNIT-	L uda taste	Koy Components	0	ontitativo Antitudo	5
Problem Solving Da	tioi ta S	Sufficiency Data Anal	lucie N	umber Systems M	Qu ath	Vocabulary fractio	-
decimals digit places	etc	Junicicicy, Data Ana	lysis - Iv	unioer Systems, wi	am	vocabulary, fractio	Л
Reasoning and Logic	al A	Antitude - Introduction	n to nuzz	le and games organ	niziı	ng information nar	ts
of an argument cor	nm	on flaws arguments	and as	sumptions Analytic	cal	Reasoning Critic	al
Reasoning.		on numb, urguments	und us	amptions. Thurft	our	ricusoning, entite	ui
		UNIT-I	T			06 Hrs	s
Verbal Analogies - V	Vha	t are Analogies. How	z to Sol ^y	ve Verbal Analogie	s &	developing High	er
Vocabulary, Gramma	r. C	comprehension and A	oplicatio	n. Written Ability.	Nor	- Verbal Reasoning	g.
Brain Teasers. Creativ	vity	Aptitude.		,			0,
Group Discussion- T	hec	ory &Evaluation : Un	derstand	ing why and how	is t	he group discussio	m
conducted, The tech	niqu	ies of group discussi	on, Dise	cuss the FAQs of	gro	up discussion, bod	ly
language during GD.	•				C		•
		UNIT-III	[. A			06 Hrs	5
Resume Writing- Wri	ting	g Resume, how to writ	e effecti	ve resume, Understa	and	ing the basic	
essentials for a resum	e, F	Resume writing tips G	uidelines	for better presentat	ion	of facts.	
		UN	T-III.B			06 Hrs	5
Technical Document	ati	on - Introduction to te	chnical v	vriting- Emphasis o	n la	nguage difference	
between general and t	ech	nical writing, Content	s in a teo	chnical document, R	lepo	ort design overview	<i>,</i>
& format Headings, list & special notes, Writing processes, Translating technical information,							
Power revision techniques, Patterns & elements of sentences, Common grammar, usage &							
punctuation problems.							
UNIT-IV 06 Hrs						S	
Interview Skills -a) Personal Interviews , b) Group Interviews , c) Mock Interviews - Questions							
asked & how to handle them, Body language in interview, Etiquette, Dress code in interview,							
Behavioral and technical interviews, Mock interviews - Mock interviews with different Panels.							
Practice on stress interviews, technical interviews, General HR interviews etc.							
UNIT-V 06 Hrs							
Interpersonal Relation	ns -	Optimal Co-existence	, Cultura	l Sensitivity, Gende	er se	ensitivity	
Adapting to the Cor	por	ate Culture- Capabili	ty & Ma	aturity Model, Dec	isio	n Making Analysi	s,
Brain Storm. Adaptin	g to	the Corporate Culture	e.				

Cours	Course Outcomes: After completing the course, the students will be able to							
CO1:	Inculcate employability skill to suit the industry requirement.							
CO2:	Analyze problems using quantitative and reasoning skills							
CO3:	Exhibit verbal aptitude skills with appropriate comprehension and application.							
CO4:	Focus on Personal Strengths and Competent to face interviews and answer							

Re	ference Books
1.	The 7 Habits of Highly Effective People, Stephen R Covey Free Press, 2004 Edition,
	ISBN: 0743272455
2.	How to win friends and influence people, Dale Carnegie General Press, 1 st Edition, 2016,
	ISBN: 9789380914787
3.	Crucial Conversation: Tools for Talking When Stakes are High, Kerry Patterson, Joseph
	Grenny, Ron Mcmillan 2012 Edition, McGraw-Hill Publication ISBN: 9780071772204
4.	Ethnus, Aptimithra: Best Aptitude Book ,2014 Edition, Tata McGraw Hill ISBN:
	9781259058738

Scheme of Continuous Internal Examination and Semester End Examination

Phase	Activity							
		ge						
Phase I	CIE will be conducted during the 5 th semester and evaluated for 50 marks.	50%						
V Sem	The test will have two components. The Quiz is evaluated for 15 marks and							
	second component consisting of questions requiring descriptive answers is							
	evaluated for 35 marks. The test & quiz will assess the skills acquired							
	through the training module.							
	SEE is based on the test conducted at the end of the 5 th semester The test will							
	have two components a Quiz evaluated for 15 marks and second component							
	consisting of questions requiring descriptive answers is evaluated for 35							
	marks.							
Phase II	During the 6 th semester a test will be conducted and evaluated for 50 marks.	50%						
VI Sem	The test will have two components a Short Quiz and Questions requiring							
	descriptive answers. The test & quiz will assess the skills acquired through							
	the training module.							
	SEE is based on the test conducted at the end of the 6 th semester The test wil							
	have two components. The Quiz evaluated for 15 marks and second							
	component consisting of questions requiring descriptive answers is evaluated							
	for 35 marks							
Phase III	At the end of the VI Sem Marks of CIE (5 th Sem and 6 th Sem) is consolidated	ted for 50						
At the	marks (Average of Test1 and Test 2 (CIE 1+CIE2)/2.							
end of	At the end of the VI Sem Marks of SEE (5 th Sem and 6 th Sem) is consolidated for							
VI Sem	marks (Average of CIE 1 and CIE 2 (CIE 1+CIE2)/2.							

Curriculum Design Process

Academic Planning And Implementation

Process for Course Outcome Attainment

Final CO Attainment Process

Civil Engineering

Program Outcome Attainment Process

PROGRAM OUTCOMES (POs)

1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.

2. **Problem analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.

4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.

6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.